Linux-libre 3.0.32-gnu1
[librecmc/linux-libre.git] / drivers / usb / core / hcd.c
1 /*
2  * (C) Copyright Linus Torvalds 1999
3  * (C) Copyright Johannes Erdfelt 1999-2001
4  * (C) Copyright Andreas Gal 1999
5  * (C) Copyright Gregory P. Smith 1999
6  * (C) Copyright Deti Fliegl 1999
7  * (C) Copyright Randy Dunlap 2000
8  * (C) Copyright David Brownell 2000-2002
9  * 
10  * This program is free software; you can redistribute it and/or modify it
11  * under the terms of the GNU General Public License as published by the
12  * Free Software Foundation; either version 2 of the License, or (at your
13  * option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful, but
16  * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
17  * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
18  * for more details.
19  *
20  * You should have received a copy of the GNU General Public License
21  * along with this program; if not, write to the Free Software Foundation,
22  * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
23  */
24
25 #include <linux/module.h>
26 #include <linux/version.h>
27 #include <linux/kernel.h>
28 #include <linux/slab.h>
29 #include <linux/completion.h>
30 #include <linux/utsname.h>
31 #include <linux/mm.h>
32 #include <asm/io.h>
33 #include <linux/device.h>
34 #include <linux/dma-mapping.h>
35 #include <linux/mutex.h>
36 #include <asm/irq.h>
37 #include <asm/byteorder.h>
38 #include <asm/unaligned.h>
39 #include <linux/platform_device.h>
40 #include <linux/workqueue.h>
41
42 #include <linux/usb.h>
43 #include <linux/usb/hcd.h>
44
45 #include "usb.h"
46
47
48 /*-------------------------------------------------------------------------*/
49
50 /*
51  * USB Host Controller Driver framework
52  *
53  * Plugs into usbcore (usb_bus) and lets HCDs share code, minimizing
54  * HCD-specific behaviors/bugs.
55  *
56  * This does error checks, tracks devices and urbs, and delegates to a
57  * "hc_driver" only for code (and data) that really needs to know about
58  * hardware differences.  That includes root hub registers, i/o queues,
59  * and so on ... but as little else as possible.
60  *
61  * Shared code includes most of the "root hub" code (these are emulated,
62  * though each HC's hardware works differently) and PCI glue, plus request
63  * tracking overhead.  The HCD code should only block on spinlocks or on
64  * hardware handshaking; blocking on software events (such as other kernel
65  * threads releasing resources, or completing actions) is all generic.
66  *
67  * Happens the USB 2.0 spec says this would be invisible inside the "USBD",
68  * and includes mostly a "HCDI" (HCD Interface) along with some APIs used
69  * only by the hub driver ... and that neither should be seen or used by
70  * usb client device drivers.
71  *
72  * Contributors of ideas or unattributed patches include: David Brownell,
73  * Roman Weissgaerber, Rory Bolt, Greg Kroah-Hartman, ...
74  *
75  * HISTORY:
76  * 2002-02-21   Pull in most of the usb_bus support from usb.c; some
77  *              associated cleanup.  "usb_hcd" still != "usb_bus".
78  * 2001-12-12   Initial patch version for Linux 2.5.1 kernel.
79  */
80
81 /*-------------------------------------------------------------------------*/
82
83 /* Keep track of which host controller drivers are loaded */
84 unsigned long usb_hcds_loaded;
85 EXPORT_SYMBOL_GPL(usb_hcds_loaded);
86
87 /* host controllers we manage */
88 LIST_HEAD (usb_bus_list);
89 EXPORT_SYMBOL_GPL (usb_bus_list);
90
91 /* used when allocating bus numbers */
92 #define USB_MAXBUS              64
93 struct usb_busmap {
94         unsigned long busmap [USB_MAXBUS / (8*sizeof (unsigned long))];
95 };
96 static struct usb_busmap busmap;
97
98 /* used when updating list of hcds */
99 DEFINE_MUTEX(usb_bus_list_lock);        /* exported only for usbfs */
100 EXPORT_SYMBOL_GPL (usb_bus_list_lock);
101
102 /* used for controlling access to virtual root hubs */
103 static DEFINE_SPINLOCK(hcd_root_hub_lock);
104
105 /* used when updating an endpoint's URB list */
106 static DEFINE_SPINLOCK(hcd_urb_list_lock);
107
108 /* used to protect against unlinking URBs after the device is gone */
109 static DEFINE_SPINLOCK(hcd_urb_unlink_lock);
110
111 /* wait queue for synchronous unlinks */
112 DECLARE_WAIT_QUEUE_HEAD(usb_kill_urb_queue);
113
114 static inline int is_root_hub(struct usb_device *udev)
115 {
116         return (udev->parent == NULL);
117 }
118
119 /*-------------------------------------------------------------------------*/
120
121 /*
122  * Sharable chunks of root hub code.
123  */
124
125 /*-------------------------------------------------------------------------*/
126
127 #define KERNEL_REL      ((LINUX_VERSION_CODE >> 16) & 0x0ff)
128 #define KERNEL_VER      ((LINUX_VERSION_CODE >> 8) & 0x0ff)
129
130 /* usb 3.0 root hub device descriptor */
131 static const u8 usb3_rh_dev_descriptor[18] = {
132         0x12,       /*  __u8  bLength; */
133         0x01,       /*  __u8  bDescriptorType; Device */
134         0x00, 0x03, /*  __le16 bcdUSB; v3.0 */
135
136         0x09,       /*  __u8  bDeviceClass; HUB_CLASSCODE */
137         0x00,       /*  __u8  bDeviceSubClass; */
138         0x03,       /*  __u8  bDeviceProtocol; USB 3.0 hub */
139         0x09,       /*  __u8  bMaxPacketSize0; 2^9 = 512 Bytes */
140
141         0x6b, 0x1d, /*  __le16 idVendor; Linux Foundation */
142         0x03, 0x00, /*  __le16 idProduct; device 0x0003 */
143         KERNEL_VER, KERNEL_REL, /*  __le16 bcdDevice */
144
145         0x03,       /*  __u8  iManufacturer; */
146         0x02,       /*  __u8  iProduct; */
147         0x01,       /*  __u8  iSerialNumber; */
148         0x01        /*  __u8  bNumConfigurations; */
149 };
150
151 /* usb 2.0 root hub device descriptor */
152 static const u8 usb2_rh_dev_descriptor [18] = {
153         0x12,       /*  __u8  bLength; */
154         0x01,       /*  __u8  bDescriptorType; Device */
155         0x00, 0x02, /*  __le16 bcdUSB; v2.0 */
156
157         0x09,       /*  __u8  bDeviceClass; HUB_CLASSCODE */
158         0x00,       /*  __u8  bDeviceSubClass; */
159         0x00,       /*  __u8  bDeviceProtocol; [ usb 2.0 no TT ] */
160         0x40,       /*  __u8  bMaxPacketSize0; 64 Bytes */
161
162         0x6b, 0x1d, /*  __le16 idVendor; Linux Foundation */
163         0x02, 0x00, /*  __le16 idProduct; device 0x0002 */
164         KERNEL_VER, KERNEL_REL, /*  __le16 bcdDevice */
165
166         0x03,       /*  __u8  iManufacturer; */
167         0x02,       /*  __u8  iProduct; */
168         0x01,       /*  __u8  iSerialNumber; */
169         0x01        /*  __u8  bNumConfigurations; */
170 };
171
172 /* no usb 2.0 root hub "device qualifier" descriptor: one speed only */
173
174 /* usb 1.1 root hub device descriptor */
175 static const u8 usb11_rh_dev_descriptor [18] = {
176         0x12,       /*  __u8  bLength; */
177         0x01,       /*  __u8  bDescriptorType; Device */
178         0x10, 0x01, /*  __le16 bcdUSB; v1.1 */
179
180         0x09,       /*  __u8  bDeviceClass; HUB_CLASSCODE */
181         0x00,       /*  __u8  bDeviceSubClass; */
182         0x00,       /*  __u8  bDeviceProtocol; [ low/full speeds only ] */
183         0x40,       /*  __u8  bMaxPacketSize0; 64 Bytes */
184
185         0x6b, 0x1d, /*  __le16 idVendor; Linux Foundation */
186         0x01, 0x00, /*  __le16 idProduct; device 0x0001 */
187         KERNEL_VER, KERNEL_REL, /*  __le16 bcdDevice */
188
189         0x03,       /*  __u8  iManufacturer; */
190         0x02,       /*  __u8  iProduct; */
191         0x01,       /*  __u8  iSerialNumber; */
192         0x01        /*  __u8  bNumConfigurations; */
193 };
194
195
196 /*-------------------------------------------------------------------------*/
197
198 /* Configuration descriptors for our root hubs */
199
200 static const u8 fs_rh_config_descriptor [] = {
201
202         /* one configuration */
203         0x09,       /*  __u8  bLength; */
204         0x02,       /*  __u8  bDescriptorType; Configuration */
205         0x19, 0x00, /*  __le16 wTotalLength; */
206         0x01,       /*  __u8  bNumInterfaces; (1) */
207         0x01,       /*  __u8  bConfigurationValue; */
208         0x00,       /*  __u8  iConfiguration; */
209         0xc0,       /*  __u8  bmAttributes; 
210                                  Bit 7: must be set,
211                                      6: Self-powered,
212                                      5: Remote wakeup,
213                                      4..0: resvd */
214         0x00,       /*  __u8  MaxPower; */
215       
216         /* USB 1.1:
217          * USB 2.0, single TT organization (mandatory):
218          *      one interface, protocol 0
219          *
220          * USB 2.0, multiple TT organization (optional):
221          *      two interfaces, protocols 1 (like single TT)
222          *      and 2 (multiple TT mode) ... config is
223          *      sometimes settable
224          *      NOT IMPLEMENTED
225          */
226
227         /* one interface */
228         0x09,       /*  __u8  if_bLength; */
229         0x04,       /*  __u8  if_bDescriptorType; Interface */
230         0x00,       /*  __u8  if_bInterfaceNumber; */
231         0x00,       /*  __u8  if_bAlternateSetting; */
232         0x01,       /*  __u8  if_bNumEndpoints; */
233         0x09,       /*  __u8  if_bInterfaceClass; HUB_CLASSCODE */
234         0x00,       /*  __u8  if_bInterfaceSubClass; */
235         0x00,       /*  __u8  if_bInterfaceProtocol; [usb1.1 or single tt] */
236         0x00,       /*  __u8  if_iInterface; */
237      
238         /* one endpoint (status change endpoint) */
239         0x07,       /*  __u8  ep_bLength; */
240         0x05,       /*  __u8  ep_bDescriptorType; Endpoint */
241         0x81,       /*  __u8  ep_bEndpointAddress; IN Endpoint 1 */
242         0x03,       /*  __u8  ep_bmAttributes; Interrupt */
243         0x02, 0x00, /*  __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8) */
244         0xff        /*  __u8  ep_bInterval; (255ms -- usb 2.0 spec) */
245 };
246
247 static const u8 hs_rh_config_descriptor [] = {
248
249         /* one configuration */
250         0x09,       /*  __u8  bLength; */
251         0x02,       /*  __u8  bDescriptorType; Configuration */
252         0x19, 0x00, /*  __le16 wTotalLength; */
253         0x01,       /*  __u8  bNumInterfaces; (1) */
254         0x01,       /*  __u8  bConfigurationValue; */
255         0x00,       /*  __u8  iConfiguration; */
256         0xc0,       /*  __u8  bmAttributes; 
257                                  Bit 7: must be set,
258                                      6: Self-powered,
259                                      5: Remote wakeup,
260                                      4..0: resvd */
261         0x00,       /*  __u8  MaxPower; */
262       
263         /* USB 1.1:
264          * USB 2.0, single TT organization (mandatory):
265          *      one interface, protocol 0
266          *
267          * USB 2.0, multiple TT organization (optional):
268          *      two interfaces, protocols 1 (like single TT)
269          *      and 2 (multiple TT mode) ... config is
270          *      sometimes settable
271          *      NOT IMPLEMENTED
272          */
273
274         /* one interface */
275         0x09,       /*  __u8  if_bLength; */
276         0x04,       /*  __u8  if_bDescriptorType; Interface */
277         0x00,       /*  __u8  if_bInterfaceNumber; */
278         0x00,       /*  __u8  if_bAlternateSetting; */
279         0x01,       /*  __u8  if_bNumEndpoints; */
280         0x09,       /*  __u8  if_bInterfaceClass; HUB_CLASSCODE */
281         0x00,       /*  __u8  if_bInterfaceSubClass; */
282         0x00,       /*  __u8  if_bInterfaceProtocol; [usb1.1 or single tt] */
283         0x00,       /*  __u8  if_iInterface; */
284      
285         /* one endpoint (status change endpoint) */
286         0x07,       /*  __u8  ep_bLength; */
287         0x05,       /*  __u8  ep_bDescriptorType; Endpoint */
288         0x81,       /*  __u8  ep_bEndpointAddress; IN Endpoint 1 */
289         0x03,       /*  __u8  ep_bmAttributes; Interrupt */
290                     /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8)
291                      * see hub.c:hub_configure() for details. */
292         (USB_MAXCHILDREN + 1 + 7) / 8, 0x00,
293         0x0c        /*  __u8  ep_bInterval; (256ms -- usb 2.0 spec) */
294 };
295
296 static const u8 ss_rh_config_descriptor[] = {
297         /* one configuration */
298         0x09,       /*  __u8  bLength; */
299         0x02,       /*  __u8  bDescriptorType; Configuration */
300         0x1f, 0x00, /*  __le16 wTotalLength; */
301         0x01,       /*  __u8  bNumInterfaces; (1) */
302         0x01,       /*  __u8  bConfigurationValue; */
303         0x00,       /*  __u8  iConfiguration; */
304         0xc0,       /*  __u8  bmAttributes;
305                                  Bit 7: must be set,
306                                      6: Self-powered,
307                                      5: Remote wakeup,
308                                      4..0: resvd */
309         0x00,       /*  __u8  MaxPower; */
310
311         /* one interface */
312         0x09,       /*  __u8  if_bLength; */
313         0x04,       /*  __u8  if_bDescriptorType; Interface */
314         0x00,       /*  __u8  if_bInterfaceNumber; */
315         0x00,       /*  __u8  if_bAlternateSetting; */
316         0x01,       /*  __u8  if_bNumEndpoints; */
317         0x09,       /*  __u8  if_bInterfaceClass; HUB_CLASSCODE */
318         0x00,       /*  __u8  if_bInterfaceSubClass; */
319         0x00,       /*  __u8  if_bInterfaceProtocol; */
320         0x00,       /*  __u8  if_iInterface; */
321
322         /* one endpoint (status change endpoint) */
323         0x07,       /*  __u8  ep_bLength; */
324         0x05,       /*  __u8  ep_bDescriptorType; Endpoint */
325         0x81,       /*  __u8  ep_bEndpointAddress; IN Endpoint 1 */
326         0x03,       /*  __u8  ep_bmAttributes; Interrupt */
327                     /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8)
328                      * see hub.c:hub_configure() for details. */
329         (USB_MAXCHILDREN + 1 + 7) / 8, 0x00,
330         0x0c,       /*  __u8  ep_bInterval; (256ms -- usb 2.0 spec) */
331
332         /* one SuperSpeed endpoint companion descriptor */
333         0x06,        /* __u8 ss_bLength */
334         0x30,        /* __u8 ss_bDescriptorType; SuperSpeed EP Companion */
335         0x00,        /* __u8 ss_bMaxBurst; allows 1 TX between ACKs */
336         0x00,        /* __u8 ss_bmAttributes; 1 packet per service interval */
337         0x02, 0x00   /* __le16 ss_wBytesPerInterval; 15 bits for max 15 ports */
338 };
339
340 /*-------------------------------------------------------------------------*/
341
342 /**
343  * ascii2desc() - Helper routine for producing UTF-16LE string descriptors
344  * @s: Null-terminated ASCII (actually ISO-8859-1) string
345  * @buf: Buffer for USB string descriptor (header + UTF-16LE)
346  * @len: Length (in bytes; may be odd) of descriptor buffer.
347  *
348  * The return value is the number of bytes filled in: 2 + 2*strlen(s) or
349  * buflen, whichever is less.
350  *
351  * USB String descriptors can contain at most 126 characters; input
352  * strings longer than that are truncated.
353  */
354 static unsigned
355 ascii2desc(char const *s, u8 *buf, unsigned len)
356 {
357         unsigned n, t = 2 + 2*strlen(s);
358
359         if (t > 254)
360                 t = 254;        /* Longest possible UTF string descriptor */
361         if (len > t)
362                 len = t;
363
364         t += USB_DT_STRING << 8;        /* Now t is first 16 bits to store */
365
366         n = len;
367         while (n--) {
368                 *buf++ = t;
369                 if (!n--)
370                         break;
371                 *buf++ = t >> 8;
372                 t = (unsigned char)*s++;
373         }
374         return len;
375 }
376
377 /**
378  * rh_string() - provides string descriptors for root hub
379  * @id: the string ID number (0: langids, 1: serial #, 2: product, 3: vendor)
380  * @hcd: the host controller for this root hub
381  * @data: buffer for output packet
382  * @len: length of the provided buffer
383  *
384  * Produces either a manufacturer, product or serial number string for the
385  * virtual root hub device.
386  * Returns the number of bytes filled in: the length of the descriptor or
387  * of the provided buffer, whichever is less.
388  */
389 static unsigned
390 rh_string(int id, struct usb_hcd const *hcd, u8 *data, unsigned len)
391 {
392         char buf[100];
393         char const *s;
394         static char const langids[4] = {4, USB_DT_STRING, 0x09, 0x04};
395
396         // language ids
397         switch (id) {
398         case 0:
399                 /* Array of LANGID codes (0x0409 is MSFT-speak for "en-us") */
400                 /* See http://www.usb.org/developers/docs/USB_LANGIDs.pdf */
401                 if (len > 4)
402                         len = 4;
403                 memcpy(data, langids, len);
404                 return len;
405         case 1:
406                 /* Serial number */
407                 s = hcd->self.bus_name;
408                 break;
409         case 2:
410                 /* Product name */
411                 s = hcd->product_desc;
412                 break;
413         case 3:
414                 /* Manufacturer */
415                 snprintf (buf, sizeof buf, "%s %s %s", init_utsname()->sysname,
416                         init_utsname()->release, hcd->driver->description);
417                 s = buf;
418                 break;
419         default:
420                 /* Can't happen; caller guarantees it */
421                 return 0;
422         }
423
424         return ascii2desc(s, data, len);
425 }
426
427
428 /* Root hub control transfers execute synchronously */
429 static int rh_call_control (struct usb_hcd *hcd, struct urb *urb)
430 {
431         struct usb_ctrlrequest *cmd;
432         u16             typeReq, wValue, wIndex, wLength;
433         u8              *ubuf = urb->transfer_buffer;
434         u8              tbuf [sizeof (struct usb_hub_descriptor)]
435                 __attribute__((aligned(4)));
436         const u8        *bufp = tbuf;
437         unsigned        len = 0;
438         int             status;
439         u8              patch_wakeup = 0;
440         u8              patch_protocol = 0;
441
442         might_sleep();
443
444         spin_lock_irq(&hcd_root_hub_lock);
445         status = usb_hcd_link_urb_to_ep(hcd, urb);
446         spin_unlock_irq(&hcd_root_hub_lock);
447         if (status)
448                 return status;
449         urb->hcpriv = hcd;      /* Indicate it's queued */
450
451         cmd = (struct usb_ctrlrequest *) urb->setup_packet;
452         typeReq  = (cmd->bRequestType << 8) | cmd->bRequest;
453         wValue   = le16_to_cpu (cmd->wValue);
454         wIndex   = le16_to_cpu (cmd->wIndex);
455         wLength  = le16_to_cpu (cmd->wLength);
456
457         if (wLength > urb->transfer_buffer_length)
458                 goto error;
459
460         urb->actual_length = 0;
461         switch (typeReq) {
462
463         /* DEVICE REQUESTS */
464
465         /* The root hub's remote wakeup enable bit is implemented using
466          * driver model wakeup flags.  If this system supports wakeup
467          * through USB, userspace may change the default "allow wakeup"
468          * policy through sysfs or these calls.
469          *
470          * Most root hubs support wakeup from downstream devices, for
471          * runtime power management (disabling USB clocks and reducing
472          * VBUS power usage).  However, not all of them do so; silicon,
473          * board, and BIOS bugs here are not uncommon, so these can't
474          * be treated quite like external hubs.
475          *
476          * Likewise, not all root hubs will pass wakeup events upstream,
477          * to wake up the whole system.  So don't assume root hub and
478          * controller capabilities are identical.
479          */
480
481         case DeviceRequest | USB_REQ_GET_STATUS:
482                 tbuf [0] = (device_may_wakeup(&hcd->self.root_hub->dev)
483                                         << USB_DEVICE_REMOTE_WAKEUP)
484                                 | (1 << USB_DEVICE_SELF_POWERED);
485                 tbuf [1] = 0;
486                 len = 2;
487                 break;
488         case DeviceOutRequest | USB_REQ_CLEAR_FEATURE:
489                 if (wValue == USB_DEVICE_REMOTE_WAKEUP)
490                         device_set_wakeup_enable(&hcd->self.root_hub->dev, 0);
491                 else
492                         goto error;
493                 break;
494         case DeviceOutRequest | USB_REQ_SET_FEATURE:
495                 if (device_can_wakeup(&hcd->self.root_hub->dev)
496                                 && wValue == USB_DEVICE_REMOTE_WAKEUP)
497                         device_set_wakeup_enable(&hcd->self.root_hub->dev, 1);
498                 else
499                         goto error;
500                 break;
501         case DeviceRequest | USB_REQ_GET_CONFIGURATION:
502                 tbuf [0] = 1;
503                 len = 1;
504                         /* FALLTHROUGH */
505         case DeviceOutRequest | USB_REQ_SET_CONFIGURATION:
506                 break;
507         case DeviceRequest | USB_REQ_GET_DESCRIPTOR:
508                 switch (wValue & 0xff00) {
509                 case USB_DT_DEVICE << 8:
510                         switch (hcd->speed) {
511                         case HCD_USB3:
512                                 bufp = usb3_rh_dev_descriptor;
513                                 break;
514                         case HCD_USB2:
515                                 bufp = usb2_rh_dev_descriptor;
516                                 break;
517                         case HCD_USB11:
518                                 bufp = usb11_rh_dev_descriptor;
519                                 break;
520                         default:
521                                 goto error;
522                         }
523                         len = 18;
524                         if (hcd->has_tt)
525                                 patch_protocol = 1;
526                         break;
527                 case USB_DT_CONFIG << 8:
528                         switch (hcd->speed) {
529                         case HCD_USB3:
530                                 bufp = ss_rh_config_descriptor;
531                                 len = sizeof ss_rh_config_descriptor;
532                                 break;
533                         case HCD_USB2:
534                                 bufp = hs_rh_config_descriptor;
535                                 len = sizeof hs_rh_config_descriptor;
536                                 break;
537                         case HCD_USB11:
538                                 bufp = fs_rh_config_descriptor;
539                                 len = sizeof fs_rh_config_descriptor;
540                                 break;
541                         default:
542                                 goto error;
543                         }
544                         if (device_can_wakeup(&hcd->self.root_hub->dev))
545                                 patch_wakeup = 1;
546                         break;
547                 case USB_DT_STRING << 8:
548                         if ((wValue & 0xff) < 4)
549                                 urb->actual_length = rh_string(wValue & 0xff,
550                                                 hcd, ubuf, wLength);
551                         else /* unsupported IDs --> "protocol stall" */
552                                 goto error;
553                         break;
554                 default:
555                         goto error;
556                 }
557                 break;
558         case DeviceRequest | USB_REQ_GET_INTERFACE:
559                 tbuf [0] = 0;
560                 len = 1;
561                         /* FALLTHROUGH */
562         case DeviceOutRequest | USB_REQ_SET_INTERFACE:
563                 break;
564         case DeviceOutRequest | USB_REQ_SET_ADDRESS:
565                 // wValue == urb->dev->devaddr
566                 dev_dbg (hcd->self.controller, "root hub device address %d\n",
567                         wValue);
568                 break;
569
570         /* INTERFACE REQUESTS (no defined feature/status flags) */
571
572         /* ENDPOINT REQUESTS */
573
574         case EndpointRequest | USB_REQ_GET_STATUS:
575                 // ENDPOINT_HALT flag
576                 tbuf [0] = 0;
577                 tbuf [1] = 0;
578                 len = 2;
579                         /* FALLTHROUGH */
580         case EndpointOutRequest | USB_REQ_CLEAR_FEATURE:
581         case EndpointOutRequest | USB_REQ_SET_FEATURE:
582                 dev_dbg (hcd->self.controller, "no endpoint features yet\n");
583                 break;
584
585         /* CLASS REQUESTS (and errors) */
586
587         default:
588                 /* non-generic request */
589                 switch (typeReq) {
590                 case GetHubStatus:
591                 case GetPortStatus:
592                         len = 4;
593                         break;
594                 case GetHubDescriptor:
595                         len = sizeof (struct usb_hub_descriptor);
596                         break;
597                 }
598                 status = hcd->driver->hub_control (hcd,
599                         typeReq, wValue, wIndex,
600                         tbuf, wLength);
601                 break;
602 error:
603                 /* "protocol stall" on error */
604                 status = -EPIPE;
605         }
606
607         if (status) {
608                 len = 0;
609                 if (status != -EPIPE) {
610                         dev_dbg (hcd->self.controller,
611                                 "CTRL: TypeReq=0x%x val=0x%x "
612                                 "idx=0x%x len=%d ==> %d\n",
613                                 typeReq, wValue, wIndex,
614                                 wLength, status);
615                 }
616         }
617         if (len) {
618                 if (urb->transfer_buffer_length < len)
619                         len = urb->transfer_buffer_length;
620                 urb->actual_length = len;
621                 // always USB_DIR_IN, toward host
622                 memcpy (ubuf, bufp, len);
623
624                 /* report whether RH hardware supports remote wakeup */
625                 if (patch_wakeup &&
626                                 len > offsetof (struct usb_config_descriptor,
627                                                 bmAttributes))
628                         ((struct usb_config_descriptor *)ubuf)->bmAttributes
629                                 |= USB_CONFIG_ATT_WAKEUP;
630
631                 /* report whether RH hardware has an integrated TT */
632                 if (patch_protocol &&
633                                 len > offsetof(struct usb_device_descriptor,
634                                                 bDeviceProtocol))
635                         ((struct usb_device_descriptor *) ubuf)->
636                                         bDeviceProtocol = 1;
637         }
638
639         /* any errors get returned through the urb completion */
640         spin_lock_irq(&hcd_root_hub_lock);
641         usb_hcd_unlink_urb_from_ep(hcd, urb);
642
643         /* This peculiar use of spinlocks echoes what real HC drivers do.
644          * Avoiding calls to local_irq_disable/enable makes the code
645          * RT-friendly.
646          */
647         spin_unlock(&hcd_root_hub_lock);
648         usb_hcd_giveback_urb(hcd, urb, status);
649         spin_lock(&hcd_root_hub_lock);
650
651         spin_unlock_irq(&hcd_root_hub_lock);
652         return 0;
653 }
654
655 /*-------------------------------------------------------------------------*/
656
657 /*
658  * Root Hub interrupt transfers are polled using a timer if the
659  * driver requests it; otherwise the driver is responsible for
660  * calling usb_hcd_poll_rh_status() when an event occurs.
661  *
662  * Completions are called in_interrupt(), but they may or may not
663  * be in_irq().
664  */
665 void usb_hcd_poll_rh_status(struct usb_hcd *hcd)
666 {
667         struct urb      *urb;
668         int             length;
669         unsigned long   flags;
670         char            buffer[6];      /* Any root hubs with > 31 ports? */
671
672         if (unlikely(!hcd->rh_pollable))
673                 return;
674         if (!hcd->uses_new_polling && !hcd->status_urb)
675                 return;
676
677         length = hcd->driver->hub_status_data(hcd, buffer);
678         if (length > 0) {
679
680                 /* try to complete the status urb */
681                 spin_lock_irqsave(&hcd_root_hub_lock, flags);
682                 urb = hcd->status_urb;
683                 if (urb) {
684                         clear_bit(HCD_FLAG_POLL_PENDING, &hcd->flags);
685                         hcd->status_urb = NULL;
686                         urb->actual_length = length;
687                         memcpy(urb->transfer_buffer, buffer, length);
688
689                         usb_hcd_unlink_urb_from_ep(hcd, urb);
690                         spin_unlock(&hcd_root_hub_lock);
691                         usb_hcd_giveback_urb(hcd, urb, 0);
692                         spin_lock(&hcd_root_hub_lock);
693                 } else {
694                         length = 0;
695                         set_bit(HCD_FLAG_POLL_PENDING, &hcd->flags);
696                 }
697                 spin_unlock_irqrestore(&hcd_root_hub_lock, flags);
698         }
699
700         /* The USB 2.0 spec says 256 ms.  This is close enough and won't
701          * exceed that limit if HZ is 100. The math is more clunky than
702          * maybe expected, this is to make sure that all timers for USB devices
703          * fire at the same time to give the CPU a break in between */
704         if (hcd->uses_new_polling ? HCD_POLL_RH(hcd) :
705                         (length == 0 && hcd->status_urb != NULL))
706                 mod_timer (&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4));
707 }
708 EXPORT_SYMBOL_GPL(usb_hcd_poll_rh_status);
709
710 /* timer callback */
711 static void rh_timer_func (unsigned long _hcd)
712 {
713         usb_hcd_poll_rh_status((struct usb_hcd *) _hcd);
714 }
715
716 /*-------------------------------------------------------------------------*/
717
718 static int rh_queue_status (struct usb_hcd *hcd, struct urb *urb)
719 {
720         int             retval;
721         unsigned long   flags;
722         unsigned        len = 1 + (urb->dev->maxchild / 8);
723
724         spin_lock_irqsave (&hcd_root_hub_lock, flags);
725         if (hcd->status_urb || urb->transfer_buffer_length < len) {
726                 dev_dbg (hcd->self.controller, "not queuing rh status urb\n");
727                 retval = -EINVAL;
728                 goto done;
729         }
730
731         retval = usb_hcd_link_urb_to_ep(hcd, urb);
732         if (retval)
733                 goto done;
734
735         hcd->status_urb = urb;
736         urb->hcpriv = hcd;      /* indicate it's queued */
737         if (!hcd->uses_new_polling)
738                 mod_timer(&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4));
739
740         /* If a status change has already occurred, report it ASAP */
741         else if (HCD_POLL_PENDING(hcd))
742                 mod_timer(&hcd->rh_timer, jiffies);
743         retval = 0;
744  done:
745         spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
746         return retval;
747 }
748
749 static int rh_urb_enqueue (struct usb_hcd *hcd, struct urb *urb)
750 {
751         if (usb_endpoint_xfer_int(&urb->ep->desc))
752                 return rh_queue_status (hcd, urb);
753         if (usb_endpoint_xfer_control(&urb->ep->desc))
754                 return rh_call_control (hcd, urb);
755         return -EINVAL;
756 }
757
758 /*-------------------------------------------------------------------------*/
759
760 /* Unlinks of root-hub control URBs are legal, but they don't do anything
761  * since these URBs always execute synchronously.
762  */
763 static int usb_rh_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
764 {
765         unsigned long   flags;
766         int             rc;
767
768         spin_lock_irqsave(&hcd_root_hub_lock, flags);
769         rc = usb_hcd_check_unlink_urb(hcd, urb, status);
770         if (rc)
771                 goto done;
772
773         if (usb_endpoint_num(&urb->ep->desc) == 0) {    /* Control URB */
774                 ;       /* Do nothing */
775
776         } else {                                /* Status URB */
777                 if (!hcd->uses_new_polling)
778                         del_timer (&hcd->rh_timer);
779                 if (urb == hcd->status_urb) {
780                         hcd->status_urb = NULL;
781                         usb_hcd_unlink_urb_from_ep(hcd, urb);
782
783                         spin_unlock(&hcd_root_hub_lock);
784                         usb_hcd_giveback_urb(hcd, urb, status);
785                         spin_lock(&hcd_root_hub_lock);
786                 }
787         }
788  done:
789         spin_unlock_irqrestore(&hcd_root_hub_lock, flags);
790         return rc;
791 }
792
793
794
795 /*
796  * Show & store the current value of authorized_default
797  */
798 static ssize_t usb_host_authorized_default_show(struct device *dev,
799                                                 struct device_attribute *attr,
800                                                 char *buf)
801 {
802         struct usb_device *rh_usb_dev = to_usb_device(dev);
803         struct usb_bus *usb_bus = rh_usb_dev->bus;
804         struct usb_hcd *usb_hcd;
805
806         if (usb_bus == NULL)    /* FIXME: not sure if this case is possible */
807                 return -ENODEV;
808         usb_hcd = bus_to_hcd(usb_bus);
809         return snprintf(buf, PAGE_SIZE, "%u\n", usb_hcd->authorized_default);
810 }
811
812 static ssize_t usb_host_authorized_default_store(struct device *dev,
813                                                  struct device_attribute *attr,
814                                                  const char *buf, size_t size)
815 {
816         ssize_t result;
817         unsigned val;
818         struct usb_device *rh_usb_dev = to_usb_device(dev);
819         struct usb_bus *usb_bus = rh_usb_dev->bus;
820         struct usb_hcd *usb_hcd;
821
822         if (usb_bus == NULL)    /* FIXME: not sure if this case is possible */
823                 return -ENODEV;
824         usb_hcd = bus_to_hcd(usb_bus);
825         result = sscanf(buf, "%u\n", &val);
826         if (result == 1) {
827                 usb_hcd->authorized_default = val? 1 : 0;
828                 result = size;
829         }
830         else
831                 result = -EINVAL;
832         return result;
833 }
834
835 static DEVICE_ATTR(authorized_default, 0644,
836             usb_host_authorized_default_show,
837             usb_host_authorized_default_store);
838
839
840 /* Group all the USB bus attributes */
841 static struct attribute *usb_bus_attrs[] = {
842                 &dev_attr_authorized_default.attr,
843                 NULL,
844 };
845
846 static struct attribute_group usb_bus_attr_group = {
847         .name = NULL,   /* we want them in the same directory */
848         .attrs = usb_bus_attrs,
849 };
850
851
852
853 /*-------------------------------------------------------------------------*/
854
855 /**
856  * usb_bus_init - shared initialization code
857  * @bus: the bus structure being initialized
858  *
859  * This code is used to initialize a usb_bus structure, memory for which is
860  * separately managed.
861  */
862 static void usb_bus_init (struct usb_bus *bus)
863 {
864         memset (&bus->devmap, 0, sizeof(struct usb_devmap));
865
866         bus->devnum_next = 1;
867
868         bus->root_hub = NULL;
869         bus->busnum = -1;
870         bus->bandwidth_allocated = 0;
871         bus->bandwidth_int_reqs  = 0;
872         bus->bandwidth_isoc_reqs = 0;
873
874         INIT_LIST_HEAD (&bus->bus_list);
875 }
876
877 /*-------------------------------------------------------------------------*/
878
879 /**
880  * usb_register_bus - registers the USB host controller with the usb core
881  * @bus: pointer to the bus to register
882  * Context: !in_interrupt()
883  *
884  * Assigns a bus number, and links the controller into usbcore data
885  * structures so that it can be seen by scanning the bus list.
886  */
887 static int usb_register_bus(struct usb_bus *bus)
888 {
889         int result = -E2BIG;
890         int busnum;
891
892         mutex_lock(&usb_bus_list_lock);
893         busnum = find_next_zero_bit (busmap.busmap, USB_MAXBUS, 1);
894         if (busnum >= USB_MAXBUS) {
895                 printk (KERN_ERR "%s: too many buses\n", usbcore_name);
896                 goto error_find_busnum;
897         }
898         set_bit (busnum, busmap.busmap);
899         bus->busnum = busnum;
900
901         /* Add it to the local list of buses */
902         list_add (&bus->bus_list, &usb_bus_list);
903         mutex_unlock(&usb_bus_list_lock);
904
905         usb_notify_add_bus(bus);
906
907         dev_info (bus->controller, "new USB bus registered, assigned bus "
908                   "number %d\n", bus->busnum);
909         return 0;
910
911 error_find_busnum:
912         mutex_unlock(&usb_bus_list_lock);
913         return result;
914 }
915
916 /**
917  * usb_deregister_bus - deregisters the USB host controller
918  * @bus: pointer to the bus to deregister
919  * Context: !in_interrupt()
920  *
921  * Recycles the bus number, and unlinks the controller from usbcore data
922  * structures so that it won't be seen by scanning the bus list.
923  */
924 static void usb_deregister_bus (struct usb_bus *bus)
925 {
926         dev_info (bus->controller, "USB bus %d deregistered\n", bus->busnum);
927
928         /*
929          * NOTE: make sure that all the devices are removed by the
930          * controller code, as well as having it call this when cleaning
931          * itself up
932          */
933         mutex_lock(&usb_bus_list_lock);
934         list_del (&bus->bus_list);
935         mutex_unlock(&usb_bus_list_lock);
936
937         usb_notify_remove_bus(bus);
938
939         clear_bit (bus->busnum, busmap.busmap);
940 }
941
942 /**
943  * register_root_hub - called by usb_add_hcd() to register a root hub
944  * @hcd: host controller for this root hub
945  *
946  * This function registers the root hub with the USB subsystem.  It sets up
947  * the device properly in the device tree and then calls usb_new_device()
948  * to register the usb device.  It also assigns the root hub's USB address
949  * (always 1).
950  */
951 static int register_root_hub(struct usb_hcd *hcd)
952 {
953         struct device *parent_dev = hcd->self.controller;
954         struct usb_device *usb_dev = hcd->self.root_hub;
955         const int devnum = 1;
956         int retval;
957
958         usb_dev->devnum = devnum;
959         usb_dev->bus->devnum_next = devnum + 1;
960         memset (&usb_dev->bus->devmap.devicemap, 0,
961                         sizeof usb_dev->bus->devmap.devicemap);
962         set_bit (devnum, usb_dev->bus->devmap.devicemap);
963         usb_set_device_state(usb_dev, USB_STATE_ADDRESS);
964
965         mutex_lock(&usb_bus_list_lock);
966
967         usb_dev->ep0.desc.wMaxPacketSize = cpu_to_le16(64);
968         retval = usb_get_device_descriptor(usb_dev, USB_DT_DEVICE_SIZE);
969         if (retval != sizeof usb_dev->descriptor) {
970                 mutex_unlock(&usb_bus_list_lock);
971                 dev_dbg (parent_dev, "can't read %s device descriptor %d\n",
972                                 dev_name(&usb_dev->dev), retval);
973                 return (retval < 0) ? retval : -EMSGSIZE;
974         }
975
976         retval = usb_new_device (usb_dev);
977         if (retval) {
978                 dev_err (parent_dev, "can't register root hub for %s, %d\n",
979                                 dev_name(&usb_dev->dev), retval);
980         }
981         mutex_unlock(&usb_bus_list_lock);
982
983         if (retval == 0) {
984                 spin_lock_irq (&hcd_root_hub_lock);
985                 hcd->rh_registered = 1;
986                 spin_unlock_irq (&hcd_root_hub_lock);
987
988                 /* Did the HC die before the root hub was registered? */
989                 if (HCD_DEAD(hcd))
990                         usb_hc_died (hcd);      /* This time clean up */
991         }
992
993         return retval;
994 }
995
996
997 /*-------------------------------------------------------------------------*/
998
999 /**
1000  * usb_calc_bus_time - approximate periodic transaction time in nanoseconds
1001  * @speed: from dev->speed; USB_SPEED_{LOW,FULL,HIGH}
1002  * @is_input: true iff the transaction sends data to the host
1003  * @isoc: true for isochronous transactions, false for interrupt ones
1004  * @bytecount: how many bytes in the transaction.
1005  *
1006  * Returns approximate bus time in nanoseconds for a periodic transaction.
1007  * See USB 2.0 spec section 5.11.3; only periodic transfers need to be
1008  * scheduled in software, this function is only used for such scheduling.
1009  */
1010 long usb_calc_bus_time (int speed, int is_input, int isoc, int bytecount)
1011 {
1012         unsigned long   tmp;
1013
1014         switch (speed) {
1015         case USB_SPEED_LOW:     /* INTR only */
1016                 if (is_input) {
1017                         tmp = (67667L * (31L + 10L * BitTime (bytecount))) / 1000L;
1018                         return (64060L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp);
1019                 } else {
1020                         tmp = (66700L * (31L + 10L * BitTime (bytecount))) / 1000L;
1021                         return (64107L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp);
1022                 }
1023         case USB_SPEED_FULL:    /* ISOC or INTR */
1024                 if (isoc) {
1025                         tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L;
1026                         return (((is_input) ? 7268L : 6265L) + BW_HOST_DELAY + tmp);
1027                 } else {
1028                         tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L;
1029                         return (9107L + BW_HOST_DELAY + tmp);
1030                 }
1031         case USB_SPEED_HIGH:    /* ISOC or INTR */
1032                 // FIXME adjust for input vs output
1033                 if (isoc)
1034                         tmp = HS_NSECS_ISO (bytecount);
1035                 else
1036                         tmp = HS_NSECS (bytecount);
1037                 return tmp;
1038         default:
1039                 pr_debug ("%s: bogus device speed!\n", usbcore_name);
1040                 return -1;
1041         }
1042 }
1043 EXPORT_SYMBOL_GPL(usb_calc_bus_time);
1044
1045
1046 /*-------------------------------------------------------------------------*/
1047
1048 /*
1049  * Generic HC operations.
1050  */
1051
1052 /*-------------------------------------------------------------------------*/
1053
1054 /**
1055  * usb_hcd_link_urb_to_ep - add an URB to its endpoint queue
1056  * @hcd: host controller to which @urb was submitted
1057  * @urb: URB being submitted
1058  *
1059  * Host controller drivers should call this routine in their enqueue()
1060  * method.  The HCD's private spinlock must be held and interrupts must
1061  * be disabled.  The actions carried out here are required for URB
1062  * submission, as well as for endpoint shutdown and for usb_kill_urb.
1063  *
1064  * Returns 0 for no error, otherwise a negative error code (in which case
1065  * the enqueue() method must fail).  If no error occurs but enqueue() fails
1066  * anyway, it must call usb_hcd_unlink_urb_from_ep() before releasing
1067  * the private spinlock and returning.
1068  */
1069 int usb_hcd_link_urb_to_ep(struct usb_hcd *hcd, struct urb *urb)
1070 {
1071         int             rc = 0;
1072
1073         spin_lock(&hcd_urb_list_lock);
1074
1075         /* Check that the URB isn't being killed */
1076         if (unlikely(atomic_read(&urb->reject))) {
1077                 rc = -EPERM;
1078                 goto done;
1079         }
1080
1081         if (unlikely(!urb->ep->enabled)) {
1082                 rc = -ENOENT;
1083                 goto done;
1084         }
1085
1086         if (unlikely(!urb->dev->can_submit)) {
1087                 rc = -EHOSTUNREACH;
1088                 goto done;
1089         }
1090
1091         /*
1092          * Check the host controller's state and add the URB to the
1093          * endpoint's queue.
1094          */
1095         if (HCD_RH_RUNNING(hcd)) {
1096                 urb->unlinked = 0;
1097                 list_add_tail(&urb->urb_list, &urb->ep->urb_list);
1098         } else {
1099                 rc = -ESHUTDOWN;
1100                 goto done;
1101         }
1102  done:
1103         spin_unlock(&hcd_urb_list_lock);
1104         return rc;
1105 }
1106 EXPORT_SYMBOL_GPL(usb_hcd_link_urb_to_ep);
1107
1108 /**
1109  * usb_hcd_check_unlink_urb - check whether an URB may be unlinked
1110  * @hcd: host controller to which @urb was submitted
1111  * @urb: URB being checked for unlinkability
1112  * @status: error code to store in @urb if the unlink succeeds
1113  *
1114  * Host controller drivers should call this routine in their dequeue()
1115  * method.  The HCD's private spinlock must be held and interrupts must
1116  * be disabled.  The actions carried out here are required for making
1117  * sure than an unlink is valid.
1118  *
1119  * Returns 0 for no error, otherwise a negative error code (in which case
1120  * the dequeue() method must fail).  The possible error codes are:
1121  *
1122  *      -EIDRM: @urb was not submitted or has already completed.
1123  *              The completion function may not have been called yet.
1124  *
1125  *      -EBUSY: @urb has already been unlinked.
1126  */
1127 int usb_hcd_check_unlink_urb(struct usb_hcd *hcd, struct urb *urb,
1128                 int status)
1129 {
1130         struct list_head        *tmp;
1131
1132         /* insist the urb is still queued */
1133         list_for_each(tmp, &urb->ep->urb_list) {
1134                 if (tmp == &urb->urb_list)
1135                         break;
1136         }
1137         if (tmp != &urb->urb_list)
1138                 return -EIDRM;
1139
1140         /* Any status except -EINPROGRESS means something already started to
1141          * unlink this URB from the hardware.  So there's no more work to do.
1142          */
1143         if (urb->unlinked)
1144                 return -EBUSY;
1145         urb->unlinked = status;
1146
1147         /* IRQ setup can easily be broken so that USB controllers
1148          * never get completion IRQs ... maybe even the ones we need to
1149          * finish unlinking the initial failed usb_set_address()
1150          * or device descriptor fetch.
1151          */
1152         if (!HCD_SAW_IRQ(hcd) && !is_root_hub(urb->dev)) {
1153                 dev_warn(hcd->self.controller, "Unlink after no-IRQ?  "
1154                         "Controller is probably using the wrong IRQ.\n");
1155                 set_bit(HCD_FLAG_SAW_IRQ, &hcd->flags);
1156                 if (hcd->shared_hcd)
1157                         set_bit(HCD_FLAG_SAW_IRQ, &hcd->shared_hcd->flags);
1158         }
1159
1160         return 0;
1161 }
1162 EXPORT_SYMBOL_GPL(usb_hcd_check_unlink_urb);
1163
1164 /**
1165  * usb_hcd_unlink_urb_from_ep - remove an URB from its endpoint queue
1166  * @hcd: host controller to which @urb was submitted
1167  * @urb: URB being unlinked
1168  *
1169  * Host controller drivers should call this routine before calling
1170  * usb_hcd_giveback_urb().  The HCD's private spinlock must be held and
1171  * interrupts must be disabled.  The actions carried out here are required
1172  * for URB completion.
1173  */
1174 void usb_hcd_unlink_urb_from_ep(struct usb_hcd *hcd, struct urb *urb)
1175 {
1176         /* clear all state linking urb to this dev (and hcd) */
1177         spin_lock(&hcd_urb_list_lock);
1178         list_del_init(&urb->urb_list);
1179         spin_unlock(&hcd_urb_list_lock);
1180 }
1181 EXPORT_SYMBOL_GPL(usb_hcd_unlink_urb_from_ep);
1182
1183 /*
1184  * Some usb host controllers can only perform dma using a small SRAM area.
1185  * The usb core itself is however optimized for host controllers that can dma
1186  * using regular system memory - like pci devices doing bus mastering.
1187  *
1188  * To support host controllers with limited dma capabilites we provide dma
1189  * bounce buffers. This feature can be enabled using the HCD_LOCAL_MEM flag.
1190  * For this to work properly the host controller code must first use the
1191  * function dma_declare_coherent_memory() to point out which memory area
1192  * that should be used for dma allocations.
1193  *
1194  * The HCD_LOCAL_MEM flag then tells the usb code to allocate all data for
1195  * dma using dma_alloc_coherent() which in turn allocates from the memory
1196  * area pointed out with dma_declare_coherent_memory().
1197  *
1198  * So, to summarize...
1199  *
1200  * - We need "local" memory, canonical example being
1201  *   a small SRAM on a discrete controller being the
1202  *   only memory that the controller can read ...
1203  *   (a) "normal" kernel memory is no good, and
1204  *   (b) there's not enough to share
1205  *
1206  * - The only *portable* hook for such stuff in the
1207  *   DMA framework is dma_declare_coherent_memory()
1208  *
1209  * - So we use that, even though the primary requirement
1210  *   is that the memory be "local" (hence addressible
1211  *   by that device), not "coherent".
1212  *
1213  */
1214
1215 static int hcd_alloc_coherent(struct usb_bus *bus,
1216                               gfp_t mem_flags, dma_addr_t *dma_handle,
1217                               void **vaddr_handle, size_t size,
1218                               enum dma_data_direction dir)
1219 {
1220         unsigned char *vaddr;
1221
1222         if (*vaddr_handle == NULL) {
1223                 WARN_ON_ONCE(1);
1224                 return -EFAULT;
1225         }
1226
1227         vaddr = hcd_buffer_alloc(bus, size + sizeof(vaddr),
1228                                  mem_flags, dma_handle);
1229         if (!vaddr)
1230                 return -ENOMEM;
1231
1232         /*
1233          * Store the virtual address of the buffer at the end
1234          * of the allocated dma buffer. The size of the buffer
1235          * may be uneven so use unaligned functions instead
1236          * of just rounding up. It makes sense to optimize for
1237          * memory footprint over access speed since the amount
1238          * of memory available for dma may be limited.
1239          */
1240         put_unaligned((unsigned long)*vaddr_handle,
1241                       (unsigned long *)(vaddr + size));
1242
1243         if (dir == DMA_TO_DEVICE)
1244                 memcpy(vaddr, *vaddr_handle, size);
1245
1246         *vaddr_handle = vaddr;
1247         return 0;
1248 }
1249
1250 static void hcd_free_coherent(struct usb_bus *bus, dma_addr_t *dma_handle,
1251                               void **vaddr_handle, size_t size,
1252                               enum dma_data_direction dir)
1253 {
1254         unsigned char *vaddr = *vaddr_handle;
1255
1256         vaddr = (void *)get_unaligned((unsigned long *)(vaddr + size));
1257
1258         if (dir == DMA_FROM_DEVICE)
1259                 memcpy(vaddr, *vaddr_handle, size);
1260
1261         hcd_buffer_free(bus, size + sizeof(vaddr), *vaddr_handle, *dma_handle);
1262
1263         *vaddr_handle = vaddr;
1264         *dma_handle = 0;
1265 }
1266
1267 void usb_hcd_unmap_urb_setup_for_dma(struct usb_hcd *hcd, struct urb *urb)
1268 {
1269         if (urb->transfer_flags & URB_SETUP_MAP_SINGLE)
1270                 dma_unmap_single(hcd->self.controller,
1271                                 urb->setup_dma,
1272                                 sizeof(struct usb_ctrlrequest),
1273                                 DMA_TO_DEVICE);
1274         else if (urb->transfer_flags & URB_SETUP_MAP_LOCAL)
1275                 hcd_free_coherent(urb->dev->bus,
1276                                 &urb->setup_dma,
1277                                 (void **) &urb->setup_packet,
1278                                 sizeof(struct usb_ctrlrequest),
1279                                 DMA_TO_DEVICE);
1280
1281         /* Make it safe to call this routine more than once */
1282         urb->transfer_flags &= ~(URB_SETUP_MAP_SINGLE | URB_SETUP_MAP_LOCAL);
1283 }
1284 EXPORT_SYMBOL_GPL(usb_hcd_unmap_urb_setup_for_dma);
1285
1286 static void unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
1287 {
1288         if (hcd->driver->unmap_urb_for_dma)
1289                 hcd->driver->unmap_urb_for_dma(hcd, urb);
1290         else
1291                 usb_hcd_unmap_urb_for_dma(hcd, urb);
1292 }
1293
1294 void usb_hcd_unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
1295 {
1296         enum dma_data_direction dir;
1297
1298         usb_hcd_unmap_urb_setup_for_dma(hcd, urb);
1299
1300         dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1301         if (urb->transfer_flags & URB_DMA_MAP_SG)
1302                 dma_unmap_sg(hcd->self.controller,
1303                                 urb->sg,
1304                                 urb->num_sgs,
1305                                 dir);
1306         else if (urb->transfer_flags & URB_DMA_MAP_PAGE)
1307                 dma_unmap_page(hcd->self.controller,
1308                                 urb->transfer_dma,
1309                                 urb->transfer_buffer_length,
1310                                 dir);
1311         else if (urb->transfer_flags & URB_DMA_MAP_SINGLE)
1312                 dma_unmap_single(hcd->self.controller,
1313                                 urb->transfer_dma,
1314                                 urb->transfer_buffer_length,
1315                                 dir);
1316         else if (urb->transfer_flags & URB_MAP_LOCAL)
1317                 hcd_free_coherent(urb->dev->bus,
1318                                 &urb->transfer_dma,
1319                                 &urb->transfer_buffer,
1320                                 urb->transfer_buffer_length,
1321                                 dir);
1322
1323         /* Make it safe to call this routine more than once */
1324         urb->transfer_flags &= ~(URB_DMA_MAP_SG | URB_DMA_MAP_PAGE |
1325                         URB_DMA_MAP_SINGLE | URB_MAP_LOCAL);
1326 }
1327 EXPORT_SYMBOL_GPL(usb_hcd_unmap_urb_for_dma);
1328
1329 static int map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1330                            gfp_t mem_flags)
1331 {
1332         if (hcd->driver->map_urb_for_dma)
1333                 return hcd->driver->map_urb_for_dma(hcd, urb, mem_flags);
1334         else
1335                 return usb_hcd_map_urb_for_dma(hcd, urb, mem_flags);
1336 }
1337
1338 int usb_hcd_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1339                             gfp_t mem_flags)
1340 {
1341         enum dma_data_direction dir;
1342         int ret = 0;
1343
1344         /* Map the URB's buffers for DMA access.
1345          * Lower level HCD code should use *_dma exclusively,
1346          * unless it uses pio or talks to another transport,
1347          * or uses the provided scatter gather list for bulk.
1348          */
1349
1350         if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1351                 if (hcd->self.uses_pio_for_control)
1352                         return ret;
1353                 if (hcd->self.uses_dma) {
1354                         urb->setup_dma = dma_map_single(
1355                                         hcd->self.controller,
1356                                         urb->setup_packet,
1357                                         sizeof(struct usb_ctrlrequest),
1358                                         DMA_TO_DEVICE);
1359                         if (dma_mapping_error(hcd->self.controller,
1360                                                 urb->setup_dma))
1361                                 return -EAGAIN;
1362                         urb->transfer_flags |= URB_SETUP_MAP_SINGLE;
1363                 } else if (hcd->driver->flags & HCD_LOCAL_MEM) {
1364                         ret = hcd_alloc_coherent(
1365                                         urb->dev->bus, mem_flags,
1366                                         &urb->setup_dma,
1367                                         (void **)&urb->setup_packet,
1368                                         sizeof(struct usb_ctrlrequest),
1369                                         DMA_TO_DEVICE);
1370                         if (ret)
1371                                 return ret;
1372                         urb->transfer_flags |= URB_SETUP_MAP_LOCAL;
1373                 }
1374         }
1375
1376         dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1377         if (urb->transfer_buffer_length != 0
1378             && !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)) {
1379                 if (hcd->self.uses_dma) {
1380                         if (urb->num_sgs) {
1381                                 int n = dma_map_sg(
1382                                                 hcd->self.controller,
1383                                                 urb->sg,
1384                                                 urb->num_sgs,
1385                                                 dir);
1386                                 if (n <= 0)
1387                                         ret = -EAGAIN;
1388                                 else
1389                                         urb->transfer_flags |= URB_DMA_MAP_SG;
1390                                 urb->num_mapped_sgs = n;
1391                                 if (n != urb->num_sgs)
1392                                         urb->transfer_flags |=
1393                                                         URB_DMA_SG_COMBINED;
1394                         } else if (urb->sg) {
1395                                 struct scatterlist *sg = urb->sg;
1396                                 urb->transfer_dma = dma_map_page(
1397                                                 hcd->self.controller,
1398                                                 sg_page(sg),
1399                                                 sg->offset,
1400                                                 urb->transfer_buffer_length,
1401                                                 dir);
1402                                 if (dma_mapping_error(hcd->self.controller,
1403                                                 urb->transfer_dma))
1404                                         ret = -EAGAIN;
1405                                 else
1406                                         urb->transfer_flags |= URB_DMA_MAP_PAGE;
1407                         } else {
1408                                 urb->transfer_dma = dma_map_single(
1409                                                 hcd->self.controller,
1410                                                 urb->transfer_buffer,
1411                                                 urb->transfer_buffer_length,
1412                                                 dir);
1413                                 if (dma_mapping_error(hcd->self.controller,
1414                                                 urb->transfer_dma))
1415                                         ret = -EAGAIN;
1416                                 else
1417                                         urb->transfer_flags |= URB_DMA_MAP_SINGLE;
1418                         }
1419                 } else if (hcd->driver->flags & HCD_LOCAL_MEM) {
1420                         ret = hcd_alloc_coherent(
1421                                         urb->dev->bus, mem_flags,
1422                                         &urb->transfer_dma,
1423                                         &urb->transfer_buffer,
1424                                         urb->transfer_buffer_length,
1425                                         dir);
1426                         if (ret == 0)
1427                                 urb->transfer_flags |= URB_MAP_LOCAL;
1428                 }
1429                 if (ret && (urb->transfer_flags & (URB_SETUP_MAP_SINGLE |
1430                                 URB_SETUP_MAP_LOCAL)))
1431                         usb_hcd_unmap_urb_for_dma(hcd, urb);
1432         }
1433         return ret;
1434 }
1435 EXPORT_SYMBOL_GPL(usb_hcd_map_urb_for_dma);
1436
1437 /*-------------------------------------------------------------------------*/
1438
1439 /* may be called in any context with a valid urb->dev usecount
1440  * caller surrenders "ownership" of urb
1441  * expects usb_submit_urb() to have sanity checked and conditioned all
1442  * inputs in the urb
1443  */
1444 int usb_hcd_submit_urb (struct urb *urb, gfp_t mem_flags)
1445 {
1446         int                     status;
1447         struct usb_hcd          *hcd = bus_to_hcd(urb->dev->bus);
1448
1449         /* increment urb's reference count as part of giving it to the HCD
1450          * (which will control it).  HCD guarantees that it either returns
1451          * an error or calls giveback(), but not both.
1452          */
1453         usb_get_urb(urb);
1454         atomic_inc(&urb->use_count);
1455         atomic_inc(&urb->dev->urbnum);
1456         usbmon_urb_submit(&hcd->self, urb);
1457
1458         /* NOTE requirements on root-hub callers (usbfs and the hub
1459          * driver, for now):  URBs' urb->transfer_buffer must be
1460          * valid and usb_buffer_{sync,unmap}() not be needed, since
1461          * they could clobber root hub response data.  Also, control
1462          * URBs must be submitted in process context with interrupts
1463          * enabled.
1464          */
1465
1466         if (is_root_hub(urb->dev)) {
1467                 status = rh_urb_enqueue(hcd, urb);
1468         } else {
1469                 status = map_urb_for_dma(hcd, urb, mem_flags);
1470                 if (likely(status == 0)) {
1471                         status = hcd->driver->urb_enqueue(hcd, urb, mem_flags);
1472                         if (unlikely(status))
1473                                 unmap_urb_for_dma(hcd, urb);
1474                 }
1475         }
1476
1477         if (unlikely(status)) {
1478                 usbmon_urb_submit_error(&hcd->self, urb, status);
1479                 urb->hcpriv = NULL;
1480                 INIT_LIST_HEAD(&urb->urb_list);
1481                 atomic_dec(&urb->use_count);
1482                 atomic_dec(&urb->dev->urbnum);
1483                 if (atomic_read(&urb->reject))
1484                         wake_up(&usb_kill_urb_queue);
1485                 usb_put_urb(urb);
1486         }
1487         return status;
1488 }
1489
1490 /*-------------------------------------------------------------------------*/
1491
1492 /* this makes the hcd giveback() the urb more quickly, by kicking it
1493  * off hardware queues (which may take a while) and returning it as
1494  * soon as practical.  we've already set up the urb's return status,
1495  * but we can't know if the callback completed already.
1496  */
1497 static int unlink1(struct usb_hcd *hcd, struct urb *urb, int status)
1498 {
1499         int             value;
1500
1501         if (is_root_hub(urb->dev))
1502                 value = usb_rh_urb_dequeue(hcd, urb, status);
1503         else {
1504
1505                 /* The only reason an HCD might fail this call is if
1506                  * it has not yet fully queued the urb to begin with.
1507                  * Such failures should be harmless. */
1508                 value = hcd->driver->urb_dequeue(hcd, urb, status);
1509         }
1510         return value;
1511 }
1512
1513 /*
1514  * called in any context
1515  *
1516  * caller guarantees urb won't be recycled till both unlink()
1517  * and the urb's completion function return
1518  */
1519 int usb_hcd_unlink_urb (struct urb *urb, int status)
1520 {
1521         struct usb_hcd          *hcd;
1522         int                     retval = -EIDRM;
1523         unsigned long           flags;
1524
1525         /* Prevent the device and bus from going away while
1526          * the unlink is carried out.  If they are already gone
1527          * then urb->use_count must be 0, since disconnected
1528          * devices can't have any active URBs.
1529          */
1530         spin_lock_irqsave(&hcd_urb_unlink_lock, flags);
1531         if (atomic_read(&urb->use_count) > 0) {
1532                 retval = 0;
1533                 usb_get_dev(urb->dev);
1534         }
1535         spin_unlock_irqrestore(&hcd_urb_unlink_lock, flags);
1536         if (retval == 0) {
1537                 hcd = bus_to_hcd(urb->dev->bus);
1538                 retval = unlink1(hcd, urb, status);
1539                 usb_put_dev(urb->dev);
1540         }
1541
1542         if (retval == 0)
1543                 retval = -EINPROGRESS;
1544         else if (retval != -EIDRM && retval != -EBUSY)
1545                 dev_dbg(&urb->dev->dev, "hcd_unlink_urb %p fail %d\n",
1546                                 urb, retval);
1547         return retval;
1548 }
1549
1550 /*-------------------------------------------------------------------------*/
1551
1552 /**
1553  * usb_hcd_giveback_urb - return URB from HCD to device driver
1554  * @hcd: host controller returning the URB
1555  * @urb: urb being returned to the USB device driver.
1556  * @status: completion status code for the URB.
1557  * Context: in_interrupt()
1558  *
1559  * This hands the URB from HCD to its USB device driver, using its
1560  * completion function.  The HCD has freed all per-urb resources
1561  * (and is done using urb->hcpriv).  It also released all HCD locks;
1562  * the device driver won't cause problems if it frees, modifies,
1563  * or resubmits this URB.
1564  *
1565  * If @urb was unlinked, the value of @status will be overridden by
1566  * @urb->unlinked.  Erroneous short transfers are detected in case
1567  * the HCD hasn't checked for them.
1568  */
1569 void usb_hcd_giveback_urb(struct usb_hcd *hcd, struct urb *urb, int status)
1570 {
1571         urb->hcpriv = NULL;
1572         if (unlikely(urb->unlinked))
1573                 status = urb->unlinked;
1574         else if (unlikely((urb->transfer_flags & URB_SHORT_NOT_OK) &&
1575                         urb->actual_length < urb->transfer_buffer_length &&
1576                         !status))
1577                 status = -EREMOTEIO;
1578
1579         unmap_urb_for_dma(hcd, urb);
1580         usbmon_urb_complete(&hcd->self, urb, status);
1581         usb_unanchor_urb(urb);
1582
1583         /* pass ownership to the completion handler */
1584         urb->status = status;
1585         urb->complete (urb);
1586         atomic_dec (&urb->use_count);
1587         if (unlikely(atomic_read(&urb->reject)))
1588                 wake_up (&usb_kill_urb_queue);
1589         usb_put_urb (urb);
1590 }
1591 EXPORT_SYMBOL_GPL(usb_hcd_giveback_urb);
1592
1593 /*-------------------------------------------------------------------------*/
1594
1595 /* Cancel all URBs pending on this endpoint and wait for the endpoint's
1596  * queue to drain completely.  The caller must first insure that no more
1597  * URBs can be submitted for this endpoint.
1598  */
1599 void usb_hcd_flush_endpoint(struct usb_device *udev,
1600                 struct usb_host_endpoint *ep)
1601 {
1602         struct usb_hcd          *hcd;
1603         struct urb              *urb;
1604
1605         if (!ep)
1606                 return;
1607         might_sleep();
1608         hcd = bus_to_hcd(udev->bus);
1609
1610         /* No more submits can occur */
1611         spin_lock_irq(&hcd_urb_list_lock);
1612 rescan:
1613         list_for_each_entry (urb, &ep->urb_list, urb_list) {
1614                 int     is_in;
1615
1616                 if (urb->unlinked)
1617                         continue;
1618                 usb_get_urb (urb);
1619                 is_in = usb_urb_dir_in(urb);
1620                 spin_unlock(&hcd_urb_list_lock);
1621
1622                 /* kick hcd */
1623                 unlink1(hcd, urb, -ESHUTDOWN);
1624                 dev_dbg (hcd->self.controller,
1625                         "shutdown urb %p ep%d%s%s\n",
1626                         urb, usb_endpoint_num(&ep->desc),
1627                         is_in ? "in" : "out",
1628                         ({      char *s;
1629
1630                                  switch (usb_endpoint_type(&ep->desc)) {
1631                                  case USB_ENDPOINT_XFER_CONTROL:
1632                                         s = ""; break;
1633                                  case USB_ENDPOINT_XFER_BULK:
1634                                         s = "-bulk"; break;
1635                                  case USB_ENDPOINT_XFER_INT:
1636                                         s = "-intr"; break;
1637                                  default:
1638                                         s = "-iso"; break;
1639                                 };
1640                                 s;
1641                         }));
1642                 usb_put_urb (urb);
1643
1644                 /* list contents may have changed */
1645                 spin_lock(&hcd_urb_list_lock);
1646                 goto rescan;
1647         }
1648         spin_unlock_irq(&hcd_urb_list_lock);
1649
1650         /* Wait until the endpoint queue is completely empty */
1651         while (!list_empty (&ep->urb_list)) {
1652                 spin_lock_irq(&hcd_urb_list_lock);
1653
1654                 /* The list may have changed while we acquired the spinlock */
1655                 urb = NULL;
1656                 if (!list_empty (&ep->urb_list)) {
1657                         urb = list_entry (ep->urb_list.prev, struct urb,
1658                                         urb_list);
1659                         usb_get_urb (urb);
1660                 }
1661                 spin_unlock_irq(&hcd_urb_list_lock);
1662
1663                 if (urb) {
1664                         usb_kill_urb (urb);
1665                         usb_put_urb (urb);
1666                 }
1667         }
1668 }
1669
1670 /**
1671  * usb_hcd_alloc_bandwidth - check whether a new bandwidth setting exceeds
1672  *                              the bus bandwidth
1673  * @udev: target &usb_device
1674  * @new_config: new configuration to install
1675  * @cur_alt: the current alternate interface setting
1676  * @new_alt: alternate interface setting that is being installed
1677  *
1678  * To change configurations, pass in the new configuration in new_config,
1679  * and pass NULL for cur_alt and new_alt.
1680  *
1681  * To reset a device's configuration (put the device in the ADDRESSED state),
1682  * pass in NULL for new_config, cur_alt, and new_alt.
1683  *
1684  * To change alternate interface settings, pass in NULL for new_config,
1685  * pass in the current alternate interface setting in cur_alt,
1686  * and pass in the new alternate interface setting in new_alt.
1687  *
1688  * Returns an error if the requested bandwidth change exceeds the
1689  * bus bandwidth or host controller internal resources.
1690  */
1691 int usb_hcd_alloc_bandwidth(struct usb_device *udev,
1692                 struct usb_host_config *new_config,
1693                 struct usb_host_interface *cur_alt,
1694                 struct usb_host_interface *new_alt)
1695 {
1696         int num_intfs, i, j;
1697         struct usb_host_interface *alt = NULL;
1698         int ret = 0;
1699         struct usb_hcd *hcd;
1700         struct usb_host_endpoint *ep;
1701
1702         hcd = bus_to_hcd(udev->bus);
1703         if (!hcd->driver->check_bandwidth)
1704                 return 0;
1705
1706         /* Configuration is being removed - set configuration 0 */
1707         if (!new_config && !cur_alt) {
1708                 for (i = 1; i < 16; ++i) {
1709                         ep = udev->ep_out[i];
1710                         if (ep)
1711                                 hcd->driver->drop_endpoint(hcd, udev, ep);
1712                         ep = udev->ep_in[i];
1713                         if (ep)
1714                                 hcd->driver->drop_endpoint(hcd, udev, ep);
1715                 }
1716                 hcd->driver->check_bandwidth(hcd, udev);
1717                 return 0;
1718         }
1719         /* Check if the HCD says there's enough bandwidth.  Enable all endpoints
1720          * each interface's alt setting 0 and ask the HCD to check the bandwidth
1721          * of the bus.  There will always be bandwidth for endpoint 0, so it's
1722          * ok to exclude it.
1723          */
1724         if (new_config) {
1725                 num_intfs = new_config->desc.bNumInterfaces;
1726                 /* Remove endpoints (except endpoint 0, which is always on the
1727                  * schedule) from the old config from the schedule
1728                  */
1729                 for (i = 1; i < 16; ++i) {
1730                         ep = udev->ep_out[i];
1731                         if (ep) {
1732                                 ret = hcd->driver->drop_endpoint(hcd, udev, ep);
1733                                 if (ret < 0)
1734                                         goto reset;
1735                         }
1736                         ep = udev->ep_in[i];
1737                         if (ep) {
1738                                 ret = hcd->driver->drop_endpoint(hcd, udev, ep);
1739                                 if (ret < 0)
1740                                         goto reset;
1741                         }
1742                 }
1743                 for (i = 0; i < num_intfs; ++i) {
1744                         struct usb_host_interface *first_alt;
1745                         int iface_num;
1746
1747                         first_alt = &new_config->intf_cache[i]->altsetting[0];
1748                         iface_num = first_alt->desc.bInterfaceNumber;
1749                         /* Set up endpoints for alternate interface setting 0 */
1750                         alt = usb_find_alt_setting(new_config, iface_num, 0);
1751                         if (!alt)
1752                                 /* No alt setting 0? Pick the first setting. */
1753                                 alt = first_alt;
1754
1755                         for (j = 0; j < alt->desc.bNumEndpoints; j++) {
1756                                 ret = hcd->driver->add_endpoint(hcd, udev, &alt->endpoint[j]);
1757                                 if (ret < 0)
1758                                         goto reset;
1759                         }
1760                 }
1761         }
1762         if (cur_alt && new_alt) {
1763                 struct usb_interface *iface = usb_ifnum_to_if(udev,
1764                                 cur_alt->desc.bInterfaceNumber);
1765
1766                 if (!iface)
1767                         return -EINVAL;
1768                 if (iface->resetting_device) {
1769                         /*
1770                          * The USB core just reset the device, so the xHCI host
1771                          * and the device will think alt setting 0 is installed.
1772                          * However, the USB core will pass in the alternate
1773                          * setting installed before the reset as cur_alt.  Dig
1774                          * out the alternate setting 0 structure, or the first
1775                          * alternate setting if a broken device doesn't have alt
1776                          * setting 0.
1777                          */
1778                         cur_alt = usb_altnum_to_altsetting(iface, 0);
1779                         if (!cur_alt)
1780                                 cur_alt = &iface->altsetting[0];
1781                 }
1782
1783                 /* Drop all the endpoints in the current alt setting */
1784                 for (i = 0; i < cur_alt->desc.bNumEndpoints; i++) {
1785                         ret = hcd->driver->drop_endpoint(hcd, udev,
1786                                         &cur_alt->endpoint[i]);
1787                         if (ret < 0)
1788                                 goto reset;
1789                 }
1790                 /* Add all the endpoints in the new alt setting */
1791                 for (i = 0; i < new_alt->desc.bNumEndpoints; i++) {
1792                         ret = hcd->driver->add_endpoint(hcd, udev,
1793                                         &new_alt->endpoint[i]);
1794                         if (ret < 0)
1795                                 goto reset;
1796                 }
1797         }
1798         ret = hcd->driver->check_bandwidth(hcd, udev);
1799 reset:
1800         if (ret < 0)
1801                 hcd->driver->reset_bandwidth(hcd, udev);
1802         return ret;
1803 }
1804
1805 /* Disables the endpoint: synchronizes with the hcd to make sure all
1806  * endpoint state is gone from hardware.  usb_hcd_flush_endpoint() must
1807  * have been called previously.  Use for set_configuration, set_interface,
1808  * driver removal, physical disconnect.
1809  *
1810  * example:  a qh stored in ep->hcpriv, holding state related to endpoint
1811  * type, maxpacket size, toggle, halt status, and scheduling.
1812  */
1813 void usb_hcd_disable_endpoint(struct usb_device *udev,
1814                 struct usb_host_endpoint *ep)
1815 {
1816         struct usb_hcd          *hcd;
1817
1818         might_sleep();
1819         hcd = bus_to_hcd(udev->bus);
1820         if (hcd->driver->endpoint_disable)
1821                 hcd->driver->endpoint_disable(hcd, ep);
1822 }
1823
1824 /**
1825  * usb_hcd_reset_endpoint - reset host endpoint state
1826  * @udev: USB device.
1827  * @ep:   the endpoint to reset.
1828  *
1829  * Resets any host endpoint state such as the toggle bit, sequence
1830  * number and current window.
1831  */
1832 void usb_hcd_reset_endpoint(struct usb_device *udev,
1833                             struct usb_host_endpoint *ep)
1834 {
1835         struct usb_hcd *hcd = bus_to_hcd(udev->bus);
1836
1837         if (hcd->driver->endpoint_reset)
1838                 hcd->driver->endpoint_reset(hcd, ep);
1839         else {
1840                 int epnum = usb_endpoint_num(&ep->desc);
1841                 int is_out = usb_endpoint_dir_out(&ep->desc);
1842                 int is_control = usb_endpoint_xfer_control(&ep->desc);
1843
1844                 usb_settoggle(udev, epnum, is_out, 0);
1845                 if (is_control)
1846                         usb_settoggle(udev, epnum, !is_out, 0);
1847         }
1848 }
1849
1850 /**
1851  * usb_alloc_streams - allocate bulk endpoint stream IDs.
1852  * @interface:          alternate setting that includes all endpoints.
1853  * @eps:                array of endpoints that need streams.
1854  * @num_eps:            number of endpoints in the array.
1855  * @num_streams:        number of streams to allocate.
1856  * @mem_flags:          flags hcd should use to allocate memory.
1857  *
1858  * Sets up a group of bulk endpoints to have num_streams stream IDs available.
1859  * Drivers may queue multiple transfers to different stream IDs, which may
1860  * complete in a different order than they were queued.
1861  */
1862 int usb_alloc_streams(struct usb_interface *interface,
1863                 struct usb_host_endpoint **eps, unsigned int num_eps,
1864                 unsigned int num_streams, gfp_t mem_flags)
1865 {
1866         struct usb_hcd *hcd;
1867         struct usb_device *dev;
1868         int i;
1869
1870         dev = interface_to_usbdev(interface);
1871         hcd = bus_to_hcd(dev->bus);
1872         if (!hcd->driver->alloc_streams || !hcd->driver->free_streams)
1873                 return -EINVAL;
1874         if (dev->speed != USB_SPEED_SUPER)
1875                 return -EINVAL;
1876
1877         /* Streams only apply to bulk endpoints. */
1878         for (i = 0; i < num_eps; i++)
1879                 if (!usb_endpoint_xfer_bulk(&eps[i]->desc))
1880                         return -EINVAL;
1881
1882         return hcd->driver->alloc_streams(hcd, dev, eps, num_eps,
1883                         num_streams, mem_flags);
1884 }
1885 EXPORT_SYMBOL_GPL(usb_alloc_streams);
1886
1887 /**
1888  * usb_free_streams - free bulk endpoint stream IDs.
1889  * @interface:  alternate setting that includes all endpoints.
1890  * @eps:        array of endpoints to remove streams from.
1891  * @num_eps:    number of endpoints in the array.
1892  * @mem_flags:  flags hcd should use to allocate memory.
1893  *
1894  * Reverts a group of bulk endpoints back to not using stream IDs.
1895  * Can fail if we are given bad arguments, or HCD is broken.
1896  */
1897 void usb_free_streams(struct usb_interface *interface,
1898                 struct usb_host_endpoint **eps, unsigned int num_eps,
1899                 gfp_t mem_flags)
1900 {
1901         struct usb_hcd *hcd;
1902         struct usb_device *dev;
1903         int i;
1904
1905         dev = interface_to_usbdev(interface);
1906         hcd = bus_to_hcd(dev->bus);
1907         if (dev->speed != USB_SPEED_SUPER)
1908                 return;
1909
1910         /* Streams only apply to bulk endpoints. */
1911         for (i = 0; i < num_eps; i++)
1912                 if (!eps[i] || !usb_endpoint_xfer_bulk(&eps[i]->desc))
1913                         return;
1914
1915         hcd->driver->free_streams(hcd, dev, eps, num_eps, mem_flags);
1916 }
1917 EXPORT_SYMBOL_GPL(usb_free_streams);
1918
1919 /* Protect against drivers that try to unlink URBs after the device
1920  * is gone, by waiting until all unlinks for @udev are finished.
1921  * Since we don't currently track URBs by device, simply wait until
1922  * nothing is running in the locked region of usb_hcd_unlink_urb().
1923  */
1924 void usb_hcd_synchronize_unlinks(struct usb_device *udev)
1925 {
1926         spin_lock_irq(&hcd_urb_unlink_lock);
1927         spin_unlock_irq(&hcd_urb_unlink_lock);
1928 }
1929
1930 /*-------------------------------------------------------------------------*/
1931
1932 /* called in any context */
1933 int usb_hcd_get_frame_number (struct usb_device *udev)
1934 {
1935         struct usb_hcd  *hcd = bus_to_hcd(udev->bus);
1936
1937         if (!HCD_RH_RUNNING(hcd))
1938                 return -ESHUTDOWN;
1939         return hcd->driver->get_frame_number (hcd);
1940 }
1941
1942 /*-------------------------------------------------------------------------*/
1943
1944 #ifdef  CONFIG_PM
1945
1946 int hcd_bus_suspend(struct usb_device *rhdev, pm_message_t msg)
1947 {
1948         struct usb_hcd  *hcd = container_of(rhdev->bus, struct usb_hcd, self);
1949         int             status;
1950         int             old_state = hcd->state;
1951
1952         dev_dbg(&rhdev->dev, "bus %s%s\n",
1953                         (msg.event & PM_EVENT_AUTO ? "auto-" : ""), "suspend");
1954         if (HCD_DEAD(hcd)) {
1955                 dev_dbg(&rhdev->dev, "skipped %s of dead bus\n", "suspend");
1956                 return 0;
1957         }
1958
1959         if (!hcd->driver->bus_suspend) {
1960                 status = -ENOENT;
1961         } else {
1962                 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
1963                 hcd->state = HC_STATE_QUIESCING;
1964                 status = hcd->driver->bus_suspend(hcd);
1965         }
1966         if (status == 0) {
1967                 usb_set_device_state(rhdev, USB_STATE_SUSPENDED);
1968                 hcd->state = HC_STATE_SUSPENDED;
1969         } else {
1970                 spin_lock_irq(&hcd_root_hub_lock);
1971                 if (!HCD_DEAD(hcd)) {
1972                         set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
1973                         hcd->state = old_state;
1974                 }
1975                 spin_unlock_irq(&hcd_root_hub_lock);
1976                 dev_dbg(&rhdev->dev, "bus %s fail, err %d\n",
1977                                 "suspend", status);
1978         }
1979         return status;
1980 }
1981
1982 int hcd_bus_resume(struct usb_device *rhdev, pm_message_t msg)
1983 {
1984         struct usb_hcd  *hcd = container_of(rhdev->bus, struct usb_hcd, self);
1985         int             status;
1986         int             old_state = hcd->state;
1987
1988         dev_dbg(&rhdev->dev, "usb %s%s\n",
1989                         (msg.event & PM_EVENT_AUTO ? "auto-" : ""), "resume");
1990         if (HCD_DEAD(hcd)) {
1991                 dev_dbg(&rhdev->dev, "skipped %s of dead bus\n", "resume");
1992                 return 0;
1993         }
1994         if (!hcd->driver->bus_resume)
1995                 return -ENOENT;
1996         if (HCD_RH_RUNNING(hcd))
1997                 return 0;
1998
1999         hcd->state = HC_STATE_RESUMING;
2000         status = hcd->driver->bus_resume(hcd);
2001         clear_bit(HCD_FLAG_WAKEUP_PENDING, &hcd->flags);
2002         if (status == 0) {
2003                 /* TRSMRCY = 10 msec */
2004                 msleep(10);
2005                 spin_lock_irq(&hcd_root_hub_lock);
2006                 if (!HCD_DEAD(hcd)) {
2007                         usb_set_device_state(rhdev, rhdev->actconfig
2008                                         ? USB_STATE_CONFIGURED
2009                                         : USB_STATE_ADDRESS);
2010                         set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2011                         hcd->state = HC_STATE_RUNNING;
2012                 }
2013                 spin_unlock_irq(&hcd_root_hub_lock);
2014         } else {
2015                 hcd->state = old_state;
2016                 dev_dbg(&rhdev->dev, "bus %s fail, err %d\n",
2017                                 "resume", status);
2018                 if (status != -ESHUTDOWN)
2019                         usb_hc_died(hcd);
2020         }
2021         return status;
2022 }
2023
2024 #endif  /* CONFIG_PM */
2025
2026 #ifdef  CONFIG_USB_SUSPEND
2027
2028 /* Workqueue routine for root-hub remote wakeup */
2029 static void hcd_resume_work(struct work_struct *work)
2030 {
2031         struct usb_hcd *hcd = container_of(work, struct usb_hcd, wakeup_work);
2032         struct usb_device *udev = hcd->self.root_hub;
2033
2034         usb_lock_device(udev);
2035         usb_remote_wakeup(udev);
2036         usb_unlock_device(udev);
2037 }
2038
2039 /**
2040  * usb_hcd_resume_root_hub - called by HCD to resume its root hub 
2041  * @hcd: host controller for this root hub
2042  *
2043  * The USB host controller calls this function when its root hub is
2044  * suspended (with the remote wakeup feature enabled) and a remote
2045  * wakeup request is received.  The routine submits a workqueue request
2046  * to resume the root hub (that is, manage its downstream ports again).
2047  */
2048 void usb_hcd_resume_root_hub (struct usb_hcd *hcd)
2049 {
2050         unsigned long flags;
2051
2052         spin_lock_irqsave (&hcd_root_hub_lock, flags);
2053         if (hcd->rh_registered) {
2054                 set_bit(HCD_FLAG_WAKEUP_PENDING, &hcd->flags);
2055                 queue_work(pm_wq, &hcd->wakeup_work);
2056         }
2057         spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
2058 }
2059 EXPORT_SYMBOL_GPL(usb_hcd_resume_root_hub);
2060
2061 #endif  /* CONFIG_USB_SUSPEND */
2062
2063 /*-------------------------------------------------------------------------*/
2064
2065 #ifdef  CONFIG_USB_OTG
2066
2067 /**
2068  * usb_bus_start_enum - start immediate enumeration (for OTG)
2069  * @bus: the bus (must use hcd framework)
2070  * @port_num: 1-based number of port; usually bus->otg_port
2071  * Context: in_interrupt()
2072  *
2073  * Starts enumeration, with an immediate reset followed later by
2074  * khubd identifying and possibly configuring the device.
2075  * This is needed by OTG controller drivers, where it helps meet
2076  * HNP protocol timing requirements for starting a port reset.
2077  */
2078 int usb_bus_start_enum(struct usb_bus *bus, unsigned port_num)
2079 {
2080         struct usb_hcd          *hcd;
2081         int                     status = -EOPNOTSUPP;
2082
2083         /* NOTE: since HNP can't start by grabbing the bus's address0_sem,
2084          * boards with root hubs hooked up to internal devices (instead of
2085          * just the OTG port) may need more attention to resetting...
2086          */
2087         hcd = container_of (bus, struct usb_hcd, self);
2088         if (port_num && hcd->driver->start_port_reset)
2089                 status = hcd->driver->start_port_reset(hcd, port_num);
2090
2091         /* run khubd shortly after (first) root port reset finishes;
2092          * it may issue others, until at least 50 msecs have passed.
2093          */
2094         if (status == 0)
2095                 mod_timer(&hcd->rh_timer, jiffies + msecs_to_jiffies(10));
2096         return status;
2097 }
2098 EXPORT_SYMBOL_GPL(usb_bus_start_enum);
2099
2100 #endif
2101
2102 /*-------------------------------------------------------------------------*/
2103
2104 /**
2105  * usb_hcd_irq - hook IRQs to HCD framework (bus glue)
2106  * @irq: the IRQ being raised
2107  * @__hcd: pointer to the HCD whose IRQ is being signaled
2108  *
2109  * If the controller isn't HALTed, calls the driver's irq handler.
2110  * Checks whether the controller is now dead.
2111  */
2112 irqreturn_t usb_hcd_irq (int irq, void *__hcd)
2113 {
2114         struct usb_hcd          *hcd = __hcd;
2115         unsigned long           flags;
2116         irqreturn_t             rc;
2117
2118         /* IRQF_DISABLED doesn't work correctly with shared IRQs
2119          * when the first handler doesn't use it.  So let's just
2120          * assume it's never used.
2121          */
2122         local_irq_save(flags);
2123
2124         if (unlikely(HCD_DEAD(hcd) || !HCD_HW_ACCESSIBLE(hcd))) {
2125                 rc = IRQ_NONE;
2126         } else if (hcd->driver->irq(hcd) == IRQ_NONE) {
2127                 rc = IRQ_NONE;
2128         } else {
2129                 set_bit(HCD_FLAG_SAW_IRQ, &hcd->flags);
2130                 if (hcd->shared_hcd)
2131                         set_bit(HCD_FLAG_SAW_IRQ, &hcd->shared_hcd->flags);
2132                 rc = IRQ_HANDLED;
2133         }
2134
2135         local_irq_restore(flags);
2136         return rc;
2137 }
2138 EXPORT_SYMBOL_GPL(usb_hcd_irq);
2139
2140 /*-------------------------------------------------------------------------*/
2141
2142 /**
2143  * usb_hc_died - report abnormal shutdown of a host controller (bus glue)
2144  * @hcd: pointer to the HCD representing the controller
2145  *
2146  * This is called by bus glue to report a USB host controller that died
2147  * while operations may still have been pending.  It's called automatically
2148  * by the PCI glue, so only glue for non-PCI busses should need to call it.
2149  *
2150  * Only call this function with the primary HCD.
2151  */
2152 void usb_hc_died (struct usb_hcd *hcd)
2153 {
2154         unsigned long flags;
2155
2156         dev_err (hcd->self.controller, "HC died; cleaning up\n");
2157
2158         spin_lock_irqsave (&hcd_root_hub_lock, flags);
2159         clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2160         set_bit(HCD_FLAG_DEAD, &hcd->flags);
2161         if (hcd->rh_registered) {
2162                 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2163
2164                 /* make khubd clean up old urbs and devices */
2165                 usb_set_device_state (hcd->self.root_hub,
2166                                 USB_STATE_NOTATTACHED);
2167                 usb_kick_khubd (hcd->self.root_hub);
2168         }
2169         if (usb_hcd_is_primary_hcd(hcd) && hcd->shared_hcd) {
2170                 hcd = hcd->shared_hcd;
2171                 if (hcd->rh_registered) {
2172                         clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2173
2174                         /* make khubd clean up old urbs and devices */
2175                         usb_set_device_state(hcd->self.root_hub,
2176                                         USB_STATE_NOTATTACHED);
2177                         usb_kick_khubd(hcd->self.root_hub);
2178                 }
2179         }
2180         spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
2181         /* Make sure that the other roothub is also deallocated. */
2182 }
2183 EXPORT_SYMBOL_GPL (usb_hc_died);
2184
2185 /*-------------------------------------------------------------------------*/
2186
2187 /**
2188  * usb_create_shared_hcd - create and initialize an HCD structure
2189  * @driver: HC driver that will use this hcd
2190  * @dev: device for this HC, stored in hcd->self.controller
2191  * @bus_name: value to store in hcd->self.bus_name
2192  * @primary_hcd: a pointer to the usb_hcd structure that is sharing the
2193  *              PCI device.  Only allocate certain resources for the primary HCD
2194  * Context: !in_interrupt()
2195  *
2196  * Allocate a struct usb_hcd, with extra space at the end for the
2197  * HC driver's private data.  Initialize the generic members of the
2198  * hcd structure.
2199  *
2200  * If memory is unavailable, returns NULL.
2201  */
2202 struct usb_hcd *usb_create_shared_hcd(const struct hc_driver *driver,
2203                 struct device *dev, const char *bus_name,
2204                 struct usb_hcd *primary_hcd)
2205 {
2206         struct usb_hcd *hcd;
2207
2208         hcd = kzalloc(sizeof(*hcd) + driver->hcd_priv_size, GFP_KERNEL);
2209         if (!hcd) {
2210                 dev_dbg (dev, "hcd alloc failed\n");
2211                 return NULL;
2212         }
2213         if (primary_hcd == NULL) {
2214                 hcd->bandwidth_mutex = kmalloc(sizeof(*hcd->bandwidth_mutex),
2215                                 GFP_KERNEL);
2216                 if (!hcd->bandwidth_mutex) {
2217                         kfree(hcd);
2218                         dev_dbg(dev, "hcd bandwidth mutex alloc failed\n");
2219                         return NULL;
2220                 }
2221                 mutex_init(hcd->bandwidth_mutex);
2222                 dev_set_drvdata(dev, hcd);
2223         } else {
2224                 hcd->bandwidth_mutex = primary_hcd->bandwidth_mutex;
2225                 hcd->primary_hcd = primary_hcd;
2226                 primary_hcd->primary_hcd = primary_hcd;
2227                 hcd->shared_hcd = primary_hcd;
2228                 primary_hcd->shared_hcd = hcd;
2229         }
2230
2231         kref_init(&hcd->kref);
2232
2233         usb_bus_init(&hcd->self);
2234         hcd->self.controller = dev;
2235         hcd->self.bus_name = bus_name;
2236         hcd->self.uses_dma = (dev->dma_mask != NULL);
2237
2238         init_timer(&hcd->rh_timer);
2239         hcd->rh_timer.function = rh_timer_func;
2240         hcd->rh_timer.data = (unsigned long) hcd;
2241 #ifdef CONFIG_USB_SUSPEND
2242         INIT_WORK(&hcd->wakeup_work, hcd_resume_work);
2243 #endif
2244
2245         hcd->driver = driver;
2246         hcd->speed = driver->flags & HCD_MASK;
2247         hcd->product_desc = (driver->product_desc) ? driver->product_desc :
2248                         "USB Host Controller";
2249         return hcd;
2250 }
2251 EXPORT_SYMBOL_GPL(usb_create_shared_hcd);
2252
2253 /**
2254  * usb_create_hcd - create and initialize an HCD structure
2255  * @driver: HC driver that will use this hcd
2256  * @dev: device for this HC, stored in hcd->self.controller
2257  * @bus_name: value to store in hcd->self.bus_name
2258  * Context: !in_interrupt()
2259  *
2260  * Allocate a struct usb_hcd, with extra space at the end for the
2261  * HC driver's private data.  Initialize the generic members of the
2262  * hcd structure.
2263  *
2264  * If memory is unavailable, returns NULL.
2265  */
2266 struct usb_hcd *usb_create_hcd(const struct hc_driver *driver,
2267                 struct device *dev, const char *bus_name)
2268 {
2269         return usb_create_shared_hcd(driver, dev, bus_name, NULL);
2270 }
2271 EXPORT_SYMBOL_GPL(usb_create_hcd);
2272
2273 /*
2274  * Roothubs that share one PCI device must also share the bandwidth mutex.
2275  * Don't deallocate the bandwidth_mutex until the last shared usb_hcd is
2276  * deallocated.
2277  *
2278  * Make sure to only deallocate the bandwidth_mutex when the primary HCD is
2279  * freed.  When hcd_release() is called for the non-primary HCD, set the
2280  * primary_hcd's shared_hcd pointer to null (since the non-primary HCD will be
2281  * freed shortly).
2282  */
2283 static void hcd_release (struct kref *kref)
2284 {
2285         struct usb_hcd *hcd = container_of (kref, struct usb_hcd, kref);
2286
2287         if (usb_hcd_is_primary_hcd(hcd))
2288                 kfree(hcd->bandwidth_mutex);
2289         else
2290                 hcd->shared_hcd->shared_hcd = NULL;
2291         kfree(hcd);
2292 }
2293
2294 struct usb_hcd *usb_get_hcd (struct usb_hcd *hcd)
2295 {
2296         if (hcd)
2297                 kref_get (&hcd->kref);
2298         return hcd;
2299 }
2300 EXPORT_SYMBOL_GPL(usb_get_hcd);
2301
2302 void usb_put_hcd (struct usb_hcd *hcd)
2303 {
2304         if (hcd)
2305                 kref_put (&hcd->kref, hcd_release);
2306 }
2307 EXPORT_SYMBOL_GPL(usb_put_hcd);
2308
2309 int usb_hcd_is_primary_hcd(struct usb_hcd *hcd)
2310 {
2311         if (!hcd->primary_hcd)
2312                 return 1;
2313         return hcd == hcd->primary_hcd;
2314 }
2315 EXPORT_SYMBOL_GPL(usb_hcd_is_primary_hcd);
2316
2317 static int usb_hcd_request_irqs(struct usb_hcd *hcd,
2318                 unsigned int irqnum, unsigned long irqflags)
2319 {
2320         int retval;
2321
2322         if (hcd->driver->irq) {
2323
2324                 /* IRQF_DISABLED doesn't work as advertised when used together
2325                  * with IRQF_SHARED. As usb_hcd_irq() will always disable
2326                  * interrupts we can remove it here.
2327                  */
2328                 if (irqflags & IRQF_SHARED)
2329                         irqflags &= ~IRQF_DISABLED;
2330
2331                 snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d",
2332                                 hcd->driver->description, hcd->self.busnum);
2333                 retval = request_irq(irqnum, &usb_hcd_irq, irqflags,
2334                                 hcd->irq_descr, hcd);
2335                 if (retval != 0) {
2336                         dev_err(hcd->self.controller,
2337                                         "request interrupt %d failed\n",
2338                                         irqnum);
2339                         return retval;
2340                 }
2341                 hcd->irq = irqnum;
2342                 dev_info(hcd->self.controller, "irq %d, %s 0x%08llx\n", irqnum,
2343                                 (hcd->driver->flags & HCD_MEMORY) ?
2344                                         "io mem" : "io base",
2345                                         (unsigned long long)hcd->rsrc_start);
2346         } else {
2347                 hcd->irq = -1;
2348                 if (hcd->rsrc_start)
2349                         dev_info(hcd->self.controller, "%s 0x%08llx\n",
2350                                         (hcd->driver->flags & HCD_MEMORY) ?
2351                                         "io mem" : "io base",
2352                                         (unsigned long long)hcd->rsrc_start);
2353         }
2354         return 0;
2355 }
2356
2357 /**
2358  * usb_add_hcd - finish generic HCD structure initialization and register
2359  * @hcd: the usb_hcd structure to initialize
2360  * @irqnum: Interrupt line to allocate
2361  * @irqflags: Interrupt type flags
2362  *
2363  * Finish the remaining parts of generic HCD initialization: allocate the
2364  * buffers of consistent memory, register the bus, request the IRQ line,
2365  * and call the driver's reset() and start() routines.
2366  */
2367 int usb_add_hcd(struct usb_hcd *hcd,
2368                 unsigned int irqnum, unsigned long irqflags)
2369 {
2370         int retval;
2371         struct usb_device *rhdev;
2372
2373         dev_info(hcd->self.controller, "%s\n", hcd->product_desc);
2374
2375         hcd->authorized_default = hcd->wireless? 0 : 1;
2376         set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
2377
2378         /* HC is in reset state, but accessible.  Now do the one-time init,
2379          * bottom up so that hcds can customize the root hubs before khubd
2380          * starts talking to them.  (Note, bus id is assigned early too.)
2381          */
2382         if ((retval = hcd_buffer_create(hcd)) != 0) {
2383                 dev_dbg(hcd->self.controller, "pool alloc failed\n");
2384                 return retval;
2385         }
2386
2387         if ((retval = usb_register_bus(&hcd->self)) < 0)
2388                 goto err_register_bus;
2389
2390         if ((rhdev = usb_alloc_dev(NULL, &hcd->self, 0)) == NULL) {
2391                 dev_err(hcd->self.controller, "unable to allocate root hub\n");
2392                 retval = -ENOMEM;
2393                 goto err_allocate_root_hub;
2394         }
2395         hcd->self.root_hub = rhdev;
2396
2397         switch (hcd->speed) {
2398         case HCD_USB11:
2399                 rhdev->speed = USB_SPEED_FULL;
2400                 break;
2401         case HCD_USB2:
2402                 rhdev->speed = USB_SPEED_HIGH;
2403                 break;
2404         case HCD_USB3:
2405                 rhdev->speed = USB_SPEED_SUPER;
2406                 break;
2407         default:
2408                 retval = -EINVAL;
2409                 goto err_set_rh_speed;
2410         }
2411
2412         /* wakeup flag init defaults to "everything works" for root hubs,
2413          * but drivers can override it in reset() if needed, along with
2414          * recording the overall controller's system wakeup capability.
2415          */
2416         device_init_wakeup(&rhdev->dev, 1);
2417
2418         /* HCD_FLAG_RH_RUNNING doesn't matter until the root hub is
2419          * registered.  But since the controller can die at any time,
2420          * let's initialize the flag before touching the hardware.
2421          */
2422         set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2423
2424         /* "reset" is misnamed; its role is now one-time init. the controller
2425          * should already have been reset (and boot firmware kicked off etc).
2426          */
2427         if (hcd->driver->reset && (retval = hcd->driver->reset(hcd)) < 0) {
2428                 dev_err(hcd->self.controller, "can't setup\n");
2429                 goto err_hcd_driver_setup;
2430         }
2431         hcd->rh_pollable = 1;
2432
2433         /* NOTE: root hub and controller capabilities may not be the same */
2434         if (device_can_wakeup(hcd->self.controller)
2435                         && device_can_wakeup(&hcd->self.root_hub->dev))
2436                 dev_dbg(hcd->self.controller, "supports USB remote wakeup\n");
2437
2438         /* enable irqs just before we start the controller,
2439          * if the BIOS provides legacy PCI irqs.
2440          */
2441         if (usb_hcd_is_primary_hcd(hcd) && irqnum) {
2442                 retval = usb_hcd_request_irqs(hcd, irqnum, irqflags);
2443                 if (retval)
2444                         goto err_request_irq;
2445         }
2446
2447         hcd->state = HC_STATE_RUNNING;
2448         retval = hcd->driver->start(hcd);
2449         if (retval < 0) {
2450                 dev_err(hcd->self.controller, "startup error %d\n", retval);
2451                 goto err_hcd_driver_start;
2452         }
2453
2454         /* starting here, usbcore will pay attention to this root hub */
2455         rhdev->bus_mA = min(500u, hcd->power_budget);
2456         if ((retval = register_root_hub(hcd)) != 0)
2457                 goto err_register_root_hub;
2458
2459         retval = sysfs_create_group(&rhdev->dev.kobj, &usb_bus_attr_group);
2460         if (retval < 0) {
2461                 printk(KERN_ERR "Cannot register USB bus sysfs attributes: %d\n",
2462                        retval);
2463                 goto error_create_attr_group;
2464         }
2465         if (hcd->uses_new_polling && HCD_POLL_RH(hcd))
2466                 usb_hcd_poll_rh_status(hcd);
2467         return retval;
2468
2469 error_create_attr_group:
2470         clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2471         if (HC_IS_RUNNING(hcd->state))
2472                 hcd->state = HC_STATE_QUIESCING;
2473         spin_lock_irq(&hcd_root_hub_lock);
2474         hcd->rh_registered = 0;
2475         spin_unlock_irq(&hcd_root_hub_lock);
2476
2477 #ifdef CONFIG_USB_SUSPEND
2478         cancel_work_sync(&hcd->wakeup_work);
2479 #endif
2480         mutex_lock(&usb_bus_list_lock);
2481         usb_disconnect(&rhdev);         /* Sets rhdev to NULL */
2482         mutex_unlock(&usb_bus_list_lock);
2483 err_register_root_hub:
2484         hcd->rh_pollable = 0;
2485         clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2486         del_timer_sync(&hcd->rh_timer);
2487         hcd->driver->stop(hcd);
2488         hcd->state = HC_STATE_HALT;
2489         clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2490         del_timer_sync(&hcd->rh_timer);
2491 err_hcd_driver_start:
2492         if (usb_hcd_is_primary_hcd(hcd) && hcd->irq >= 0)
2493                 free_irq(irqnum, hcd);
2494 err_request_irq:
2495 err_hcd_driver_setup:
2496 err_set_rh_speed:
2497         usb_put_dev(hcd->self.root_hub);
2498 err_allocate_root_hub:
2499         usb_deregister_bus(&hcd->self);
2500 err_register_bus:
2501         hcd_buffer_destroy(hcd);
2502         return retval;
2503
2504 EXPORT_SYMBOL_GPL(usb_add_hcd);
2505
2506 /**
2507  * usb_remove_hcd - shutdown processing for generic HCDs
2508  * @hcd: the usb_hcd structure to remove
2509  * Context: !in_interrupt()
2510  *
2511  * Disconnects the root hub, then reverses the effects of usb_add_hcd(),
2512  * invoking the HCD's stop() method.
2513  */
2514 void usb_remove_hcd(struct usb_hcd *hcd)
2515 {
2516         struct usb_device *rhdev = hcd->self.root_hub;
2517
2518         dev_info(hcd->self.controller, "remove, state %x\n", hcd->state);
2519
2520         usb_get_dev(rhdev);
2521         sysfs_remove_group(&rhdev->dev.kobj, &usb_bus_attr_group);
2522
2523         clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2524         if (HC_IS_RUNNING (hcd->state))
2525                 hcd->state = HC_STATE_QUIESCING;
2526
2527         dev_dbg(hcd->self.controller, "roothub graceful disconnect\n");
2528         spin_lock_irq (&hcd_root_hub_lock);
2529         hcd->rh_registered = 0;
2530         spin_unlock_irq (&hcd_root_hub_lock);
2531
2532 #ifdef CONFIG_USB_SUSPEND
2533         cancel_work_sync(&hcd->wakeup_work);
2534 #endif
2535
2536         mutex_lock(&usb_bus_list_lock);
2537         usb_disconnect(&rhdev);         /* Sets rhdev to NULL */
2538         mutex_unlock(&usb_bus_list_lock);
2539
2540         /* Prevent any more root-hub status calls from the timer.
2541          * The HCD might still restart the timer (if a port status change
2542          * interrupt occurs), but usb_hcd_poll_rh_status() won't invoke
2543          * the hub_status_data() callback.
2544          */
2545         hcd->rh_pollable = 0;
2546         clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2547         del_timer_sync(&hcd->rh_timer);
2548
2549         hcd->driver->stop(hcd);
2550         hcd->state = HC_STATE_HALT;
2551
2552         /* In case the HCD restarted the timer, stop it again. */
2553         clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2554         del_timer_sync(&hcd->rh_timer);
2555
2556         if (usb_hcd_is_primary_hcd(hcd)) {
2557                 if (hcd->irq >= 0)
2558                         free_irq(hcd->irq, hcd);
2559         }
2560
2561         usb_put_dev(hcd->self.root_hub);
2562         usb_deregister_bus(&hcd->self);
2563         hcd_buffer_destroy(hcd);
2564 }
2565 EXPORT_SYMBOL_GPL(usb_remove_hcd);
2566
2567 void
2568 usb_hcd_platform_shutdown(struct platform_device* dev)
2569 {
2570         struct usb_hcd *hcd = platform_get_drvdata(dev);
2571
2572         if (hcd->driver->shutdown)
2573                 hcd->driver->shutdown(hcd);
2574 }
2575 EXPORT_SYMBOL_GPL(usb_hcd_platform_shutdown);
2576
2577 /*-------------------------------------------------------------------------*/
2578
2579 #if defined(CONFIG_USB_MON) || defined(CONFIG_USB_MON_MODULE)
2580
2581 struct usb_mon_operations *mon_ops;
2582
2583 /*
2584  * The registration is unlocked.
2585  * We do it this way because we do not want to lock in hot paths.
2586  *
2587  * Notice that the code is minimally error-proof. Because usbmon needs
2588  * symbols from usbcore, usbcore gets referenced and cannot be unloaded first.
2589  */
2590  
2591 int usb_mon_register (struct usb_mon_operations *ops)
2592 {
2593
2594         if (mon_ops)
2595                 return -EBUSY;
2596
2597         mon_ops = ops;
2598         mb();
2599         return 0;
2600 }
2601 EXPORT_SYMBOL_GPL (usb_mon_register);
2602
2603 void usb_mon_deregister (void)
2604 {
2605
2606         if (mon_ops == NULL) {
2607                 printk(KERN_ERR "USB: monitor was not registered\n");
2608                 return;
2609         }
2610         mon_ops = NULL;
2611         mb();
2612 }
2613 EXPORT_SYMBOL_GPL (usb_mon_deregister);
2614
2615 #endif /* CONFIG_USB_MON || CONFIG_USB_MON_MODULE */