Linux-libre 4.9.18-gnu
[librecmc/linux-libre.git] / drivers / tty / serial / sh-sci.c
1 /*
2  * SuperH on-chip serial module support.  (SCI with no FIFO / with FIFO)
3  *
4  *  Copyright (C) 2002 - 2011  Paul Mundt
5  *  Copyright (C) 2015 Glider bvba
6  *  Modified to support SH7720 SCIF. Markus Brunner, Mark Jonas (Jul 2007).
7  *
8  * based off of the old drivers/char/sh-sci.c by:
9  *
10  *   Copyright (C) 1999, 2000  Niibe Yutaka
11  *   Copyright (C) 2000  Sugioka Toshinobu
12  *   Modified to support multiple serial ports. Stuart Menefy (May 2000).
13  *   Modified to support SecureEdge. David McCullough (2002)
14  *   Modified to support SH7300 SCIF. Takashi Kusuda (Jun 2003).
15  *   Removed SH7300 support (Jul 2007).
16  *
17  * This file is subject to the terms and conditions of the GNU General Public
18  * License.  See the file "COPYING" in the main directory of this archive
19  * for more details.
20  */
21 #if defined(CONFIG_SERIAL_SH_SCI_CONSOLE) && defined(CONFIG_MAGIC_SYSRQ)
22 #define SUPPORT_SYSRQ
23 #endif
24
25 #undef DEBUG
26
27 #include <linux/clk.h>
28 #include <linux/console.h>
29 #include <linux/ctype.h>
30 #include <linux/cpufreq.h>
31 #include <linux/delay.h>
32 #include <linux/dmaengine.h>
33 #include <linux/dma-mapping.h>
34 #include <linux/err.h>
35 #include <linux/errno.h>
36 #include <linux/init.h>
37 #include <linux/interrupt.h>
38 #include <linux/ioport.h>
39 #include <linux/major.h>
40 #include <linux/module.h>
41 #include <linux/mm.h>
42 #include <linux/of.h>
43 #include <linux/platform_device.h>
44 #include <linux/pm_runtime.h>
45 #include <linux/scatterlist.h>
46 #include <linux/serial.h>
47 #include <linux/serial_sci.h>
48 #include <linux/sh_dma.h>
49 #include <linux/slab.h>
50 #include <linux/string.h>
51 #include <linux/sysrq.h>
52 #include <linux/timer.h>
53 #include <linux/tty.h>
54 #include <linux/tty_flip.h>
55
56 #ifdef CONFIG_SUPERH
57 #include <asm/sh_bios.h>
58 #endif
59
60 #include "serial_mctrl_gpio.h"
61 #include "sh-sci.h"
62
63 /* Offsets into the sci_port->irqs array */
64 enum {
65         SCIx_ERI_IRQ,
66         SCIx_RXI_IRQ,
67         SCIx_TXI_IRQ,
68         SCIx_BRI_IRQ,
69         SCIx_NR_IRQS,
70
71         SCIx_MUX_IRQ = SCIx_NR_IRQS,    /* special case */
72 };
73
74 #define SCIx_IRQ_IS_MUXED(port)                 \
75         ((port)->irqs[SCIx_ERI_IRQ] ==  \
76          (port)->irqs[SCIx_RXI_IRQ]) || \
77         ((port)->irqs[SCIx_ERI_IRQ] &&  \
78          ((port)->irqs[SCIx_RXI_IRQ] < 0))
79
80 enum SCI_CLKS {
81         SCI_FCK,                /* Functional Clock */
82         SCI_SCK,                /* Optional External Clock */
83         SCI_BRG_INT,            /* Optional BRG Internal Clock Source */
84         SCI_SCIF_CLK,           /* Optional BRG External Clock Source */
85         SCI_NUM_CLKS
86 };
87
88 /* Bit x set means sampling rate x + 1 is supported */
89 #define SCI_SR(x)               BIT((x) - 1)
90 #define SCI_SR_RANGE(x, y)      GENMASK((y) - 1, (x) - 1)
91
92 #define SCI_SR_SCIFAB           SCI_SR(5) | SCI_SR(7) | SCI_SR(11) | \
93                                 SCI_SR(13) | SCI_SR(16) | SCI_SR(17) | \
94                                 SCI_SR(19) | SCI_SR(27)
95
96 #define min_sr(_port)           ffs((_port)->sampling_rate_mask)
97 #define max_sr(_port)           fls((_port)->sampling_rate_mask)
98
99 /* Iterate over all supported sampling rates, from high to low */
100 #define for_each_sr(_sr, _port)                                         \
101         for ((_sr) = max_sr(_port); (_sr) >= min_sr(_port); (_sr)--)    \
102                 if ((_port)->sampling_rate_mask & SCI_SR((_sr)))
103
104 struct sci_port {
105         struct uart_port        port;
106
107         /* Platform configuration */
108         struct plat_sci_port    *cfg;
109         unsigned int            overrun_reg;
110         unsigned int            overrun_mask;
111         unsigned int            error_mask;
112         unsigned int            error_clear;
113         unsigned int            sampling_rate_mask;
114         resource_size_t         reg_size;
115         struct mctrl_gpios      *gpios;
116
117         /* Break timer */
118         struct timer_list       break_timer;
119         int                     break_flag;
120
121         /* Clocks */
122         struct clk              *clks[SCI_NUM_CLKS];
123         unsigned long           clk_rates[SCI_NUM_CLKS];
124
125         int                     irqs[SCIx_NR_IRQS];
126         char                    *irqstr[SCIx_NR_IRQS];
127
128         struct dma_chan                 *chan_tx;
129         struct dma_chan                 *chan_rx;
130
131 #ifdef CONFIG_SERIAL_SH_SCI_DMA
132         dma_cookie_t                    cookie_tx;
133         dma_cookie_t                    cookie_rx[2];
134         dma_cookie_t                    active_rx;
135         dma_addr_t                      tx_dma_addr;
136         unsigned int                    tx_dma_len;
137         struct scatterlist              sg_rx[2];
138         void                            *rx_buf[2];
139         size_t                          buf_len_rx;
140         struct work_struct              work_tx;
141         struct timer_list               rx_timer;
142         unsigned int                    rx_timeout;
143 #endif
144
145         bool autorts;
146 };
147
148 #define SCI_NPORTS CONFIG_SERIAL_SH_SCI_NR_UARTS
149
150 static struct sci_port sci_ports[SCI_NPORTS];
151 static struct uart_driver sci_uart_driver;
152
153 static inline struct sci_port *
154 to_sci_port(struct uart_port *uart)
155 {
156         return container_of(uart, struct sci_port, port);
157 }
158
159 struct plat_sci_reg {
160         u8 offset, size;
161 };
162
163 /* Helper for invalidating specific entries of an inherited map. */
164 #define sci_reg_invalid { .offset = 0, .size = 0 }
165
166 static const struct plat_sci_reg sci_regmap[SCIx_NR_REGTYPES][SCIx_NR_REGS] = {
167         [SCIx_PROBE_REGTYPE] = {
168                 [0 ... SCIx_NR_REGS - 1] = sci_reg_invalid,
169         },
170
171         /*
172          * Common SCI definitions, dependent on the port's regshift
173          * value.
174          */
175         [SCIx_SCI_REGTYPE] = {
176                 [SCSMR]         = { 0x00,  8 },
177                 [SCBRR]         = { 0x01,  8 },
178                 [SCSCR]         = { 0x02,  8 },
179                 [SCxTDR]        = { 0x03,  8 },
180                 [SCxSR]         = { 0x04,  8 },
181                 [SCxRDR]        = { 0x05,  8 },
182                 [SCFCR]         = sci_reg_invalid,
183                 [SCFDR]         = sci_reg_invalid,
184                 [SCTFDR]        = sci_reg_invalid,
185                 [SCRFDR]        = sci_reg_invalid,
186                 [SCSPTR]        = sci_reg_invalid,
187                 [SCLSR]         = sci_reg_invalid,
188                 [HSSRR]         = sci_reg_invalid,
189                 [SCPCR]         = sci_reg_invalid,
190                 [SCPDR]         = sci_reg_invalid,
191                 [SCDL]          = sci_reg_invalid,
192                 [SCCKS]         = sci_reg_invalid,
193         },
194
195         /*
196          * Common definitions for legacy IrDA ports, dependent on
197          * regshift value.
198          */
199         [SCIx_IRDA_REGTYPE] = {
200                 [SCSMR]         = { 0x00,  8 },
201                 [SCBRR]         = { 0x01,  8 },
202                 [SCSCR]         = { 0x02,  8 },
203                 [SCxTDR]        = { 0x03,  8 },
204                 [SCxSR]         = { 0x04,  8 },
205                 [SCxRDR]        = { 0x05,  8 },
206                 [SCFCR]         = { 0x06,  8 },
207                 [SCFDR]         = { 0x07, 16 },
208                 [SCTFDR]        = sci_reg_invalid,
209                 [SCRFDR]        = sci_reg_invalid,
210                 [SCSPTR]        = sci_reg_invalid,
211                 [SCLSR]         = sci_reg_invalid,
212                 [HSSRR]         = sci_reg_invalid,
213                 [SCPCR]         = sci_reg_invalid,
214                 [SCPDR]         = sci_reg_invalid,
215                 [SCDL]          = sci_reg_invalid,
216                 [SCCKS]         = sci_reg_invalid,
217         },
218
219         /*
220          * Common SCIFA definitions.
221          */
222         [SCIx_SCIFA_REGTYPE] = {
223                 [SCSMR]         = { 0x00, 16 },
224                 [SCBRR]         = { 0x04,  8 },
225                 [SCSCR]         = { 0x08, 16 },
226                 [SCxTDR]        = { 0x20,  8 },
227                 [SCxSR]         = { 0x14, 16 },
228                 [SCxRDR]        = { 0x24,  8 },
229                 [SCFCR]         = { 0x18, 16 },
230                 [SCFDR]         = { 0x1c, 16 },
231                 [SCTFDR]        = sci_reg_invalid,
232                 [SCRFDR]        = sci_reg_invalid,
233                 [SCSPTR]        = sci_reg_invalid,
234                 [SCLSR]         = sci_reg_invalid,
235                 [HSSRR]         = sci_reg_invalid,
236                 [SCPCR]         = { 0x30, 16 },
237                 [SCPDR]         = { 0x34, 16 },
238                 [SCDL]          = sci_reg_invalid,
239                 [SCCKS]         = sci_reg_invalid,
240         },
241
242         /*
243          * Common SCIFB definitions.
244          */
245         [SCIx_SCIFB_REGTYPE] = {
246                 [SCSMR]         = { 0x00, 16 },
247                 [SCBRR]         = { 0x04,  8 },
248                 [SCSCR]         = { 0x08, 16 },
249                 [SCxTDR]        = { 0x40,  8 },
250                 [SCxSR]         = { 0x14, 16 },
251                 [SCxRDR]        = { 0x60,  8 },
252                 [SCFCR]         = { 0x18, 16 },
253                 [SCFDR]         = sci_reg_invalid,
254                 [SCTFDR]        = { 0x38, 16 },
255                 [SCRFDR]        = { 0x3c, 16 },
256                 [SCSPTR]        = sci_reg_invalid,
257                 [SCLSR]         = sci_reg_invalid,
258                 [HSSRR]         = sci_reg_invalid,
259                 [SCPCR]         = { 0x30, 16 },
260                 [SCPDR]         = { 0x34, 16 },
261                 [SCDL]          = sci_reg_invalid,
262                 [SCCKS]         = sci_reg_invalid,
263         },
264
265         /*
266          * Common SH-2(A) SCIF definitions for ports with FIFO data
267          * count registers.
268          */
269         [SCIx_SH2_SCIF_FIFODATA_REGTYPE] = {
270                 [SCSMR]         = { 0x00, 16 },
271                 [SCBRR]         = { 0x04,  8 },
272                 [SCSCR]         = { 0x08, 16 },
273                 [SCxTDR]        = { 0x0c,  8 },
274                 [SCxSR]         = { 0x10, 16 },
275                 [SCxRDR]        = { 0x14,  8 },
276                 [SCFCR]         = { 0x18, 16 },
277                 [SCFDR]         = { 0x1c, 16 },
278                 [SCTFDR]        = sci_reg_invalid,
279                 [SCRFDR]        = sci_reg_invalid,
280                 [SCSPTR]        = { 0x20, 16 },
281                 [SCLSR]         = { 0x24, 16 },
282                 [HSSRR]         = sci_reg_invalid,
283                 [SCPCR]         = sci_reg_invalid,
284                 [SCPDR]         = sci_reg_invalid,
285                 [SCDL]          = sci_reg_invalid,
286                 [SCCKS]         = sci_reg_invalid,
287         },
288
289         /*
290          * Common SH-3 SCIF definitions.
291          */
292         [SCIx_SH3_SCIF_REGTYPE] = {
293                 [SCSMR]         = { 0x00,  8 },
294                 [SCBRR]         = { 0x02,  8 },
295                 [SCSCR]         = { 0x04,  8 },
296                 [SCxTDR]        = { 0x06,  8 },
297                 [SCxSR]         = { 0x08, 16 },
298                 [SCxRDR]        = { 0x0a,  8 },
299                 [SCFCR]         = { 0x0c,  8 },
300                 [SCFDR]         = { 0x0e, 16 },
301                 [SCTFDR]        = sci_reg_invalid,
302                 [SCRFDR]        = sci_reg_invalid,
303                 [SCSPTR]        = sci_reg_invalid,
304                 [SCLSR]         = sci_reg_invalid,
305                 [HSSRR]         = sci_reg_invalid,
306                 [SCPCR]         = sci_reg_invalid,
307                 [SCPDR]         = sci_reg_invalid,
308                 [SCDL]          = sci_reg_invalid,
309                 [SCCKS]         = sci_reg_invalid,
310         },
311
312         /*
313          * Common SH-4(A) SCIF(B) definitions.
314          */
315         [SCIx_SH4_SCIF_REGTYPE] = {
316                 [SCSMR]         = { 0x00, 16 },
317                 [SCBRR]         = { 0x04,  8 },
318                 [SCSCR]         = { 0x08, 16 },
319                 [SCxTDR]        = { 0x0c,  8 },
320                 [SCxSR]         = { 0x10, 16 },
321                 [SCxRDR]        = { 0x14,  8 },
322                 [SCFCR]         = { 0x18, 16 },
323                 [SCFDR]         = { 0x1c, 16 },
324                 [SCTFDR]        = sci_reg_invalid,
325                 [SCRFDR]        = sci_reg_invalid,
326                 [SCSPTR]        = { 0x20, 16 },
327                 [SCLSR]         = { 0x24, 16 },
328                 [HSSRR]         = sci_reg_invalid,
329                 [SCPCR]         = sci_reg_invalid,
330                 [SCPDR]         = sci_reg_invalid,
331                 [SCDL]          = sci_reg_invalid,
332                 [SCCKS]         = sci_reg_invalid,
333         },
334
335         /*
336          * Common SCIF definitions for ports with a Baud Rate Generator for
337          * External Clock (BRG).
338          */
339         [SCIx_SH4_SCIF_BRG_REGTYPE] = {
340                 [SCSMR]         = { 0x00, 16 },
341                 [SCBRR]         = { 0x04,  8 },
342                 [SCSCR]         = { 0x08, 16 },
343                 [SCxTDR]        = { 0x0c,  8 },
344                 [SCxSR]         = { 0x10, 16 },
345                 [SCxRDR]        = { 0x14,  8 },
346                 [SCFCR]         = { 0x18, 16 },
347                 [SCFDR]         = { 0x1c, 16 },
348                 [SCTFDR]        = sci_reg_invalid,
349                 [SCRFDR]        = sci_reg_invalid,
350                 [SCSPTR]        = { 0x20, 16 },
351                 [SCLSR]         = { 0x24, 16 },
352                 [HSSRR]         = sci_reg_invalid,
353                 [SCPCR]         = sci_reg_invalid,
354                 [SCPDR]         = sci_reg_invalid,
355                 [SCDL]          = { 0x30, 16 },
356                 [SCCKS]         = { 0x34, 16 },
357         },
358
359         /*
360          * Common HSCIF definitions.
361          */
362         [SCIx_HSCIF_REGTYPE] = {
363                 [SCSMR]         = { 0x00, 16 },
364                 [SCBRR]         = { 0x04,  8 },
365                 [SCSCR]         = { 0x08, 16 },
366                 [SCxTDR]        = { 0x0c,  8 },
367                 [SCxSR]         = { 0x10, 16 },
368                 [SCxRDR]        = { 0x14,  8 },
369                 [SCFCR]         = { 0x18, 16 },
370                 [SCFDR]         = { 0x1c, 16 },
371                 [SCTFDR]        = sci_reg_invalid,
372                 [SCRFDR]        = sci_reg_invalid,
373                 [SCSPTR]        = { 0x20, 16 },
374                 [SCLSR]         = { 0x24, 16 },
375                 [HSSRR]         = { 0x40, 16 },
376                 [SCPCR]         = sci_reg_invalid,
377                 [SCPDR]         = sci_reg_invalid,
378                 [SCDL]          = { 0x30, 16 },
379                 [SCCKS]         = { 0x34, 16 },
380         },
381
382         /*
383          * Common SH-4(A) SCIF(B) definitions for ports without an SCSPTR
384          * register.
385          */
386         [SCIx_SH4_SCIF_NO_SCSPTR_REGTYPE] = {
387                 [SCSMR]         = { 0x00, 16 },
388                 [SCBRR]         = { 0x04,  8 },
389                 [SCSCR]         = { 0x08, 16 },
390                 [SCxTDR]        = { 0x0c,  8 },
391                 [SCxSR]         = { 0x10, 16 },
392                 [SCxRDR]        = { 0x14,  8 },
393                 [SCFCR]         = { 0x18, 16 },
394                 [SCFDR]         = { 0x1c, 16 },
395                 [SCTFDR]        = sci_reg_invalid,
396                 [SCRFDR]        = sci_reg_invalid,
397                 [SCSPTR]        = sci_reg_invalid,
398                 [SCLSR]         = { 0x24, 16 },
399                 [HSSRR]         = sci_reg_invalid,
400                 [SCPCR]         = sci_reg_invalid,
401                 [SCPDR]         = sci_reg_invalid,
402                 [SCDL]          = sci_reg_invalid,
403                 [SCCKS]         = sci_reg_invalid,
404         },
405
406         /*
407          * Common SH-4(A) SCIF(B) definitions for ports with FIFO data
408          * count registers.
409          */
410         [SCIx_SH4_SCIF_FIFODATA_REGTYPE] = {
411                 [SCSMR]         = { 0x00, 16 },
412                 [SCBRR]         = { 0x04,  8 },
413                 [SCSCR]         = { 0x08, 16 },
414                 [SCxTDR]        = { 0x0c,  8 },
415                 [SCxSR]         = { 0x10, 16 },
416                 [SCxRDR]        = { 0x14,  8 },
417                 [SCFCR]         = { 0x18, 16 },
418                 [SCFDR]         = { 0x1c, 16 },
419                 [SCTFDR]        = { 0x1c, 16 }, /* aliased to SCFDR */
420                 [SCRFDR]        = { 0x20, 16 },
421                 [SCSPTR]        = { 0x24, 16 },
422                 [SCLSR]         = { 0x28, 16 },
423                 [HSSRR]         = sci_reg_invalid,
424                 [SCPCR]         = sci_reg_invalid,
425                 [SCPDR]         = sci_reg_invalid,
426                 [SCDL]          = sci_reg_invalid,
427                 [SCCKS]         = sci_reg_invalid,
428         },
429
430         /*
431          * SH7705-style SCIF(B) ports, lacking both SCSPTR and SCLSR
432          * registers.
433          */
434         [SCIx_SH7705_SCIF_REGTYPE] = {
435                 [SCSMR]         = { 0x00, 16 },
436                 [SCBRR]         = { 0x04,  8 },
437                 [SCSCR]         = { 0x08, 16 },
438                 [SCxTDR]        = { 0x20,  8 },
439                 [SCxSR]         = { 0x14, 16 },
440                 [SCxRDR]        = { 0x24,  8 },
441                 [SCFCR]         = { 0x18, 16 },
442                 [SCFDR]         = { 0x1c, 16 },
443                 [SCTFDR]        = sci_reg_invalid,
444                 [SCRFDR]        = sci_reg_invalid,
445                 [SCSPTR]        = sci_reg_invalid,
446                 [SCLSR]         = sci_reg_invalid,
447                 [HSSRR]         = sci_reg_invalid,
448                 [SCPCR]         = sci_reg_invalid,
449                 [SCPDR]         = sci_reg_invalid,
450                 [SCDL]          = sci_reg_invalid,
451                 [SCCKS]         = sci_reg_invalid,
452         },
453 };
454
455 #define sci_getreg(up, offset)          (sci_regmap[to_sci_port(up)->cfg->regtype] + offset)
456
457 /*
458  * The "offset" here is rather misleading, in that it refers to an enum
459  * value relative to the port mapping rather than the fixed offset
460  * itself, which needs to be manually retrieved from the platform's
461  * register map for the given port.
462  */
463 static unsigned int sci_serial_in(struct uart_port *p, int offset)
464 {
465         const struct plat_sci_reg *reg = sci_getreg(p, offset);
466
467         if (reg->size == 8)
468                 return ioread8(p->membase + (reg->offset << p->regshift));
469         else if (reg->size == 16)
470                 return ioread16(p->membase + (reg->offset << p->regshift));
471         else
472                 WARN(1, "Invalid register access\n");
473
474         return 0;
475 }
476
477 static void sci_serial_out(struct uart_port *p, int offset, int value)
478 {
479         const struct plat_sci_reg *reg = sci_getreg(p, offset);
480
481         if (reg->size == 8)
482                 iowrite8(value, p->membase + (reg->offset << p->regshift));
483         else if (reg->size == 16)
484                 iowrite16(value, p->membase + (reg->offset << p->regshift));
485         else
486                 WARN(1, "Invalid register access\n");
487 }
488
489 static int sci_probe_regmap(struct plat_sci_port *cfg)
490 {
491         switch (cfg->type) {
492         case PORT_SCI:
493                 cfg->regtype = SCIx_SCI_REGTYPE;
494                 break;
495         case PORT_IRDA:
496                 cfg->regtype = SCIx_IRDA_REGTYPE;
497                 break;
498         case PORT_SCIFA:
499                 cfg->regtype = SCIx_SCIFA_REGTYPE;
500                 break;
501         case PORT_SCIFB:
502                 cfg->regtype = SCIx_SCIFB_REGTYPE;
503                 break;
504         case PORT_SCIF:
505                 /*
506                  * The SH-4 is a bit of a misnomer here, although that's
507                  * where this particular port layout originated. This
508                  * configuration (or some slight variation thereof)
509                  * remains the dominant model for all SCIFs.
510                  */
511                 cfg->regtype = SCIx_SH4_SCIF_REGTYPE;
512                 break;
513         case PORT_HSCIF:
514                 cfg->regtype = SCIx_HSCIF_REGTYPE;
515                 break;
516         default:
517                 pr_err("Can't probe register map for given port\n");
518                 return -EINVAL;
519         }
520
521         return 0;
522 }
523
524 static void sci_port_enable(struct sci_port *sci_port)
525 {
526         unsigned int i;
527
528         if (!sci_port->port.dev)
529                 return;
530
531         pm_runtime_get_sync(sci_port->port.dev);
532
533         for (i = 0; i < SCI_NUM_CLKS; i++) {
534                 clk_prepare_enable(sci_port->clks[i]);
535                 sci_port->clk_rates[i] = clk_get_rate(sci_port->clks[i]);
536         }
537         sci_port->port.uartclk = sci_port->clk_rates[SCI_FCK];
538 }
539
540 static void sci_port_disable(struct sci_port *sci_port)
541 {
542         unsigned int i;
543
544         if (!sci_port->port.dev)
545                 return;
546
547         /* Cancel the break timer to ensure that the timer handler will not try
548          * to access the hardware with clocks and power disabled. Reset the
549          * break flag to make the break debouncing state machine ready for the
550          * next break.
551          */
552         del_timer_sync(&sci_port->break_timer);
553         sci_port->break_flag = 0;
554
555         for (i = SCI_NUM_CLKS; i-- > 0; )
556                 clk_disable_unprepare(sci_port->clks[i]);
557
558         pm_runtime_put_sync(sci_port->port.dev);
559 }
560
561 static inline unsigned long port_rx_irq_mask(struct uart_port *port)
562 {
563         /*
564          * Not all ports (such as SCIFA) will support REIE. Rather than
565          * special-casing the port type, we check the port initialization
566          * IRQ enable mask to see whether the IRQ is desired at all. If
567          * it's unset, it's logically inferred that there's no point in
568          * testing for it.
569          */
570         return SCSCR_RIE | (to_sci_port(port)->cfg->scscr & SCSCR_REIE);
571 }
572
573 static void sci_start_tx(struct uart_port *port)
574 {
575         struct sci_port *s = to_sci_port(port);
576         unsigned short ctrl;
577
578 #ifdef CONFIG_SERIAL_SH_SCI_DMA
579         if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
580                 u16 new, scr = serial_port_in(port, SCSCR);
581                 if (s->chan_tx)
582                         new = scr | SCSCR_TDRQE;
583                 else
584                         new = scr & ~SCSCR_TDRQE;
585                 if (new != scr)
586                         serial_port_out(port, SCSCR, new);
587         }
588
589         if (s->chan_tx && !uart_circ_empty(&s->port.state->xmit) &&
590             dma_submit_error(s->cookie_tx)) {
591                 s->cookie_tx = 0;
592                 schedule_work(&s->work_tx);
593         }
594 #endif
595
596         if (!s->chan_tx || port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
597                 /* Set TIE (Transmit Interrupt Enable) bit in SCSCR */
598                 ctrl = serial_port_in(port, SCSCR);
599                 serial_port_out(port, SCSCR, ctrl | SCSCR_TIE);
600         }
601 }
602
603 static void sci_stop_tx(struct uart_port *port)
604 {
605         unsigned short ctrl;
606
607         /* Clear TIE (Transmit Interrupt Enable) bit in SCSCR */
608         ctrl = serial_port_in(port, SCSCR);
609
610         if (port->type == PORT_SCIFA || port->type == PORT_SCIFB)
611                 ctrl &= ~SCSCR_TDRQE;
612
613         ctrl &= ~SCSCR_TIE;
614
615         serial_port_out(port, SCSCR, ctrl);
616 }
617
618 static void sci_start_rx(struct uart_port *port)
619 {
620         unsigned short ctrl;
621
622         ctrl = serial_port_in(port, SCSCR) | port_rx_irq_mask(port);
623
624         if (port->type == PORT_SCIFA || port->type == PORT_SCIFB)
625                 ctrl &= ~SCSCR_RDRQE;
626
627         serial_port_out(port, SCSCR, ctrl);
628 }
629
630 static void sci_stop_rx(struct uart_port *port)
631 {
632         unsigned short ctrl;
633
634         ctrl = serial_port_in(port, SCSCR);
635
636         if (port->type == PORT_SCIFA || port->type == PORT_SCIFB)
637                 ctrl &= ~SCSCR_RDRQE;
638
639         ctrl &= ~port_rx_irq_mask(port);
640
641         serial_port_out(port, SCSCR, ctrl);
642 }
643
644 static void sci_clear_SCxSR(struct uart_port *port, unsigned int mask)
645 {
646         if (port->type == PORT_SCI) {
647                 /* Just store the mask */
648                 serial_port_out(port, SCxSR, mask);
649         } else if (to_sci_port(port)->overrun_mask == SCIFA_ORER) {
650                 /* SCIFA/SCIFB and SCIF on SH7705/SH7720/SH7721 */
651                 /* Only clear the status bits we want to clear */
652                 serial_port_out(port, SCxSR,
653                                 serial_port_in(port, SCxSR) & mask);
654         } else {
655                 /* Store the mask, clear parity/framing errors */
656                 serial_port_out(port, SCxSR, mask & ~(SCIF_FERC | SCIF_PERC));
657         }
658 }
659
660 #if defined(CONFIG_CONSOLE_POLL) || defined(CONFIG_SERIAL_SH_SCI_CONSOLE) || \
661     defined(CONFIG_SERIAL_SH_SCI_EARLYCON)
662
663 #ifdef CONFIG_CONSOLE_POLL
664 static int sci_poll_get_char(struct uart_port *port)
665 {
666         unsigned short status;
667         int c;
668
669         do {
670                 status = serial_port_in(port, SCxSR);
671                 if (status & SCxSR_ERRORS(port)) {
672                         sci_clear_SCxSR(port, SCxSR_ERROR_CLEAR(port));
673                         continue;
674                 }
675                 break;
676         } while (1);
677
678         if (!(status & SCxSR_RDxF(port)))
679                 return NO_POLL_CHAR;
680
681         c = serial_port_in(port, SCxRDR);
682
683         /* Dummy read */
684         serial_port_in(port, SCxSR);
685         sci_clear_SCxSR(port, SCxSR_RDxF_CLEAR(port));
686
687         return c;
688 }
689 #endif
690
691 static void sci_poll_put_char(struct uart_port *port, unsigned char c)
692 {
693         unsigned short status;
694
695         do {
696                 status = serial_port_in(port, SCxSR);
697         } while (!(status & SCxSR_TDxE(port)));
698
699         serial_port_out(port, SCxTDR, c);
700         sci_clear_SCxSR(port, SCxSR_TDxE_CLEAR(port) & ~SCxSR_TEND(port));
701 }
702 #endif /* CONFIG_CONSOLE_POLL || CONFIG_SERIAL_SH_SCI_CONSOLE ||
703           CONFIG_SERIAL_SH_SCI_EARLYCON */
704
705 static void sci_init_pins(struct uart_port *port, unsigned int cflag)
706 {
707         struct sci_port *s = to_sci_port(port);
708
709         /*
710          * Use port-specific handler if provided.
711          */
712         if (s->cfg->ops && s->cfg->ops->init_pins) {
713                 s->cfg->ops->init_pins(port, cflag);
714                 return;
715         }
716
717         if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
718                 u16 ctrl = serial_port_in(port, SCPCR);
719
720                 /* Enable RXD and TXD pin functions */
721                 ctrl &= ~(SCPCR_RXDC | SCPCR_TXDC);
722                 if (to_sci_port(port)->cfg->capabilities & SCIx_HAVE_RTSCTS) {
723                         /* RTS# is output, driven 1 */
724                         ctrl |= SCPCR_RTSC;
725                         serial_port_out(port, SCPDR,
726                                 serial_port_in(port, SCPDR) | SCPDR_RTSD);
727                         /* Enable CTS# pin function */
728                         ctrl &= ~SCPCR_CTSC;
729                 }
730                 serial_port_out(port, SCPCR, ctrl);
731         } else if (sci_getreg(port, SCSPTR)->size) {
732                 u16 status = serial_port_in(port, SCSPTR);
733
734                 /* RTS# is output, driven 1 */
735                 status |= SCSPTR_RTSIO | SCSPTR_RTSDT;
736                 /* CTS# and SCK are inputs */
737                 status &= ~(SCSPTR_CTSIO | SCSPTR_SCKIO);
738                 serial_port_out(port, SCSPTR, status);
739         }
740 }
741
742 static int sci_txfill(struct uart_port *port)
743 {
744         const struct plat_sci_reg *reg;
745
746         reg = sci_getreg(port, SCTFDR);
747         if (reg->size)
748                 return serial_port_in(port, SCTFDR) & ((port->fifosize << 1) - 1);
749
750         reg = sci_getreg(port, SCFDR);
751         if (reg->size)
752                 return serial_port_in(port, SCFDR) >> 8;
753
754         return !(serial_port_in(port, SCxSR) & SCI_TDRE);
755 }
756
757 static int sci_txroom(struct uart_port *port)
758 {
759         return port->fifosize - sci_txfill(port);
760 }
761
762 static int sci_rxfill(struct uart_port *port)
763 {
764         const struct plat_sci_reg *reg;
765
766         reg = sci_getreg(port, SCRFDR);
767         if (reg->size)
768                 return serial_port_in(port, SCRFDR) & ((port->fifosize << 1) - 1);
769
770         reg = sci_getreg(port, SCFDR);
771         if (reg->size)
772                 return serial_port_in(port, SCFDR) & ((port->fifosize << 1) - 1);
773
774         return (serial_port_in(port, SCxSR) & SCxSR_RDxF(port)) != 0;
775 }
776
777 /*
778  * SCI helper for checking the state of the muxed port/RXD pins.
779  */
780 static inline int sci_rxd_in(struct uart_port *port)
781 {
782         struct sci_port *s = to_sci_port(port);
783
784         if (s->cfg->port_reg <= 0)
785                 return 1;
786
787         /* Cast for ARM damage */
788         return !!__raw_readb((void __iomem *)(uintptr_t)s->cfg->port_reg);
789 }
790
791 /* ********************************************************************** *
792  *                   the interrupt related routines                       *
793  * ********************************************************************** */
794
795 static void sci_transmit_chars(struct uart_port *port)
796 {
797         struct circ_buf *xmit = &port->state->xmit;
798         unsigned int stopped = uart_tx_stopped(port);
799         unsigned short status;
800         unsigned short ctrl;
801         int count;
802
803         status = serial_port_in(port, SCxSR);
804         if (!(status & SCxSR_TDxE(port))) {
805                 ctrl = serial_port_in(port, SCSCR);
806                 if (uart_circ_empty(xmit))
807                         ctrl &= ~SCSCR_TIE;
808                 else
809                         ctrl |= SCSCR_TIE;
810                 serial_port_out(port, SCSCR, ctrl);
811                 return;
812         }
813
814         count = sci_txroom(port);
815
816         do {
817                 unsigned char c;
818
819                 if (port->x_char) {
820                         c = port->x_char;
821                         port->x_char = 0;
822                 } else if (!uart_circ_empty(xmit) && !stopped) {
823                         c = xmit->buf[xmit->tail];
824                         xmit->tail = (xmit->tail + 1) & (UART_XMIT_SIZE - 1);
825                 } else {
826                         break;
827                 }
828
829                 serial_port_out(port, SCxTDR, c);
830
831                 port->icount.tx++;
832         } while (--count > 0);
833
834         sci_clear_SCxSR(port, SCxSR_TDxE_CLEAR(port));
835
836         if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
837                 uart_write_wakeup(port);
838         if (uart_circ_empty(xmit)) {
839                 sci_stop_tx(port);
840         } else {
841                 ctrl = serial_port_in(port, SCSCR);
842
843                 if (port->type != PORT_SCI) {
844                         serial_port_in(port, SCxSR); /* Dummy read */
845                         sci_clear_SCxSR(port, SCxSR_TDxE_CLEAR(port));
846                 }
847
848                 ctrl |= SCSCR_TIE;
849                 serial_port_out(port, SCSCR, ctrl);
850         }
851 }
852
853 /* On SH3, SCIF may read end-of-break as a space->mark char */
854 #define STEPFN(c)  ({int __c = (c); (((__c-1)|(__c)) == -1); })
855
856 static void sci_receive_chars(struct uart_port *port)
857 {
858         struct sci_port *sci_port = to_sci_port(port);
859         struct tty_port *tport = &port->state->port;
860         int i, count, copied = 0;
861         unsigned short status;
862         unsigned char flag;
863
864         status = serial_port_in(port, SCxSR);
865         if (!(status & SCxSR_RDxF(port)))
866                 return;
867
868         while (1) {
869                 /* Don't copy more bytes than there is room for in the buffer */
870                 count = tty_buffer_request_room(tport, sci_rxfill(port));
871
872                 /* If for any reason we can't copy more data, we're done! */
873                 if (count == 0)
874                         break;
875
876                 if (port->type == PORT_SCI) {
877                         char c = serial_port_in(port, SCxRDR);
878                         if (uart_handle_sysrq_char(port, c) ||
879                             sci_port->break_flag)
880                                 count = 0;
881                         else
882                                 tty_insert_flip_char(tport, c, TTY_NORMAL);
883                 } else {
884                         for (i = 0; i < count; i++) {
885                                 char c = serial_port_in(port, SCxRDR);
886
887                                 status = serial_port_in(port, SCxSR);
888 #if defined(CONFIG_CPU_SH3)
889                                 /* Skip "chars" during break */
890                                 if (sci_port->break_flag) {
891                                         if ((c == 0) &&
892                                             (status & SCxSR_FER(port))) {
893                                                 count--; i--;
894                                                 continue;
895                                         }
896
897                                         /* Nonzero => end-of-break */
898                                         dev_dbg(port->dev, "debounce<%02x>\n", c);
899                                         sci_port->break_flag = 0;
900
901                                         if (STEPFN(c)) {
902                                                 count--; i--;
903                                                 continue;
904                                         }
905                                 }
906 #endif /* CONFIG_CPU_SH3 */
907                                 if (uart_handle_sysrq_char(port, c)) {
908                                         count--; i--;
909                                         continue;
910                                 }
911
912                                 /* Store data and status */
913                                 if (status & SCxSR_FER(port)) {
914                                         flag = TTY_FRAME;
915                                         port->icount.frame++;
916                                         dev_notice(port->dev, "frame error\n");
917                                 } else if (status & SCxSR_PER(port)) {
918                                         flag = TTY_PARITY;
919                                         port->icount.parity++;
920                                         dev_notice(port->dev, "parity error\n");
921                                 } else
922                                         flag = TTY_NORMAL;
923
924                                 tty_insert_flip_char(tport, c, flag);
925                         }
926                 }
927
928                 serial_port_in(port, SCxSR); /* dummy read */
929                 sci_clear_SCxSR(port, SCxSR_RDxF_CLEAR(port));
930
931                 copied += count;
932                 port->icount.rx += count;
933         }
934
935         if (copied) {
936                 /* Tell the rest of the system the news. New characters! */
937                 tty_flip_buffer_push(tport);
938         } else {
939                 serial_port_in(port, SCxSR); /* dummy read */
940                 sci_clear_SCxSR(port, SCxSR_RDxF_CLEAR(port));
941         }
942 }
943
944 #define SCI_BREAK_JIFFIES (HZ/20)
945
946 /*
947  * The sci generates interrupts during the break,
948  * 1 per millisecond or so during the break period, for 9600 baud.
949  * So dont bother disabling interrupts.
950  * But dont want more than 1 break event.
951  * Use a kernel timer to periodically poll the rx line until
952  * the break is finished.
953  */
954 static inline void sci_schedule_break_timer(struct sci_port *port)
955 {
956         mod_timer(&port->break_timer, jiffies + SCI_BREAK_JIFFIES);
957 }
958
959 /* Ensure that two consecutive samples find the break over. */
960 static void sci_break_timer(unsigned long data)
961 {
962         struct sci_port *port = (struct sci_port *)data;
963
964         if (sci_rxd_in(&port->port) == 0) {
965                 port->break_flag = 1;
966                 sci_schedule_break_timer(port);
967         } else if (port->break_flag == 1) {
968                 /* break is over. */
969                 port->break_flag = 2;
970                 sci_schedule_break_timer(port);
971         } else
972                 port->break_flag = 0;
973 }
974
975 static int sci_handle_errors(struct uart_port *port)
976 {
977         int copied = 0;
978         unsigned short status = serial_port_in(port, SCxSR);
979         struct tty_port *tport = &port->state->port;
980         struct sci_port *s = to_sci_port(port);
981
982         /* Handle overruns */
983         if (status & s->overrun_mask) {
984                 port->icount.overrun++;
985
986                 /* overrun error */
987                 if (tty_insert_flip_char(tport, 0, TTY_OVERRUN))
988                         copied++;
989
990                 dev_notice(port->dev, "overrun error\n");
991         }
992
993         if (status & SCxSR_FER(port)) {
994                 if (sci_rxd_in(port) == 0) {
995                         /* Notify of BREAK */
996                         struct sci_port *sci_port = to_sci_port(port);
997
998                         if (!sci_port->break_flag) {
999                                 port->icount.brk++;
1000
1001                                 sci_port->break_flag = 1;
1002                                 sci_schedule_break_timer(sci_port);
1003
1004                                 /* Do sysrq handling. */
1005                                 if (uart_handle_break(port))
1006                                         return 0;
1007
1008                                 dev_dbg(port->dev, "BREAK detected\n");
1009
1010                                 if (tty_insert_flip_char(tport, 0, TTY_BREAK))
1011                                         copied++;
1012                         }
1013
1014                 } else {
1015                         /* frame error */
1016                         port->icount.frame++;
1017
1018                         if (tty_insert_flip_char(tport, 0, TTY_FRAME))
1019                                 copied++;
1020
1021                         dev_notice(port->dev, "frame error\n");
1022                 }
1023         }
1024
1025         if (status & SCxSR_PER(port)) {
1026                 /* parity error */
1027                 port->icount.parity++;
1028
1029                 if (tty_insert_flip_char(tport, 0, TTY_PARITY))
1030                         copied++;
1031
1032                 dev_notice(port->dev, "parity error\n");
1033         }
1034
1035         if (copied)
1036                 tty_flip_buffer_push(tport);
1037
1038         return copied;
1039 }
1040
1041 static int sci_handle_fifo_overrun(struct uart_port *port)
1042 {
1043         struct tty_port *tport = &port->state->port;
1044         struct sci_port *s = to_sci_port(port);
1045         const struct plat_sci_reg *reg;
1046         int copied = 0;
1047         u16 status;
1048
1049         reg = sci_getreg(port, s->overrun_reg);
1050         if (!reg->size)
1051                 return 0;
1052
1053         status = serial_port_in(port, s->overrun_reg);
1054         if (status & s->overrun_mask) {
1055                 status &= ~s->overrun_mask;
1056                 serial_port_out(port, s->overrun_reg, status);
1057
1058                 port->icount.overrun++;
1059
1060                 tty_insert_flip_char(tport, 0, TTY_OVERRUN);
1061                 tty_flip_buffer_push(tport);
1062
1063                 dev_dbg(port->dev, "overrun error\n");
1064                 copied++;
1065         }
1066
1067         return copied;
1068 }
1069
1070 static int sci_handle_breaks(struct uart_port *port)
1071 {
1072         int copied = 0;
1073         unsigned short status = serial_port_in(port, SCxSR);
1074         struct tty_port *tport = &port->state->port;
1075         struct sci_port *s = to_sci_port(port);
1076
1077         if (uart_handle_break(port))
1078                 return 0;
1079
1080         if (!s->break_flag && status & SCxSR_BRK(port)) {
1081 #if defined(CONFIG_CPU_SH3)
1082                 /* Debounce break */
1083                 s->break_flag = 1;
1084 #endif
1085
1086                 port->icount.brk++;
1087
1088                 /* Notify of BREAK */
1089                 if (tty_insert_flip_char(tport, 0, TTY_BREAK))
1090                         copied++;
1091
1092                 dev_dbg(port->dev, "BREAK detected\n");
1093         }
1094
1095         if (copied)
1096                 tty_flip_buffer_push(tport);
1097
1098         copied += sci_handle_fifo_overrun(port);
1099
1100         return copied;
1101 }
1102
1103 #ifdef CONFIG_SERIAL_SH_SCI_DMA
1104 static void sci_dma_tx_complete(void *arg)
1105 {
1106         struct sci_port *s = arg;
1107         struct uart_port *port = &s->port;
1108         struct circ_buf *xmit = &port->state->xmit;
1109         unsigned long flags;
1110
1111         dev_dbg(port->dev, "%s(%d)\n", __func__, port->line);
1112
1113         spin_lock_irqsave(&port->lock, flags);
1114
1115         xmit->tail += s->tx_dma_len;
1116         xmit->tail &= UART_XMIT_SIZE - 1;
1117
1118         port->icount.tx += s->tx_dma_len;
1119
1120         if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
1121                 uart_write_wakeup(port);
1122
1123         if (!uart_circ_empty(xmit)) {
1124                 s->cookie_tx = 0;
1125                 schedule_work(&s->work_tx);
1126         } else {
1127                 s->cookie_tx = -EINVAL;
1128                 if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
1129                         u16 ctrl = serial_port_in(port, SCSCR);
1130                         serial_port_out(port, SCSCR, ctrl & ~SCSCR_TIE);
1131                 }
1132         }
1133
1134         spin_unlock_irqrestore(&port->lock, flags);
1135 }
1136
1137 /* Locking: called with port lock held */
1138 static int sci_dma_rx_push(struct sci_port *s, void *buf, size_t count)
1139 {
1140         struct uart_port *port = &s->port;
1141         struct tty_port *tport = &port->state->port;
1142         int copied;
1143
1144         copied = tty_insert_flip_string(tport, buf, count);
1145         if (copied < count) {
1146                 dev_warn(port->dev, "Rx overrun: dropping %zu bytes\n",
1147                          count - copied);
1148                 port->icount.buf_overrun++;
1149         }
1150
1151         port->icount.rx += copied;
1152
1153         return copied;
1154 }
1155
1156 static int sci_dma_rx_find_active(struct sci_port *s)
1157 {
1158         unsigned int i;
1159
1160         for (i = 0; i < ARRAY_SIZE(s->cookie_rx); i++)
1161                 if (s->active_rx == s->cookie_rx[i])
1162                         return i;
1163
1164         dev_err(s->port.dev, "%s: Rx cookie %d not found!\n", __func__,
1165                 s->active_rx);
1166         return -1;
1167 }
1168
1169 static void sci_rx_dma_release(struct sci_port *s, bool enable_pio)
1170 {
1171         struct dma_chan *chan = s->chan_rx;
1172         struct uart_port *port = &s->port;
1173         unsigned long flags;
1174
1175         spin_lock_irqsave(&port->lock, flags);
1176         s->chan_rx = NULL;
1177         s->cookie_rx[0] = s->cookie_rx[1] = -EINVAL;
1178         spin_unlock_irqrestore(&port->lock, flags);
1179         dmaengine_terminate_all(chan);
1180         dma_free_coherent(chan->device->dev, s->buf_len_rx * 2, s->rx_buf[0],
1181                           sg_dma_address(&s->sg_rx[0]));
1182         dma_release_channel(chan);
1183         if (enable_pio)
1184                 sci_start_rx(port);
1185 }
1186
1187 static void sci_dma_rx_complete(void *arg)
1188 {
1189         struct sci_port *s = arg;
1190         struct dma_chan *chan = s->chan_rx;
1191         struct uart_port *port = &s->port;
1192         struct dma_async_tx_descriptor *desc;
1193         unsigned long flags;
1194         int active, count = 0;
1195
1196         dev_dbg(port->dev, "%s(%d) active cookie %d\n", __func__, port->line,
1197                 s->active_rx);
1198
1199         spin_lock_irqsave(&port->lock, flags);
1200
1201         active = sci_dma_rx_find_active(s);
1202         if (active >= 0)
1203                 count = sci_dma_rx_push(s, s->rx_buf[active], s->buf_len_rx);
1204
1205         mod_timer(&s->rx_timer, jiffies + s->rx_timeout);
1206
1207         if (count)
1208                 tty_flip_buffer_push(&port->state->port);
1209
1210         desc = dmaengine_prep_slave_sg(s->chan_rx, &s->sg_rx[active], 1,
1211                                        DMA_DEV_TO_MEM,
1212                                        DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1213         if (!desc)
1214                 goto fail;
1215
1216         desc->callback = sci_dma_rx_complete;
1217         desc->callback_param = s;
1218         s->cookie_rx[active] = dmaengine_submit(desc);
1219         if (dma_submit_error(s->cookie_rx[active]))
1220                 goto fail;
1221
1222         s->active_rx = s->cookie_rx[!active];
1223
1224         dma_async_issue_pending(chan);
1225
1226         dev_dbg(port->dev, "%s: cookie %d #%d, new active cookie %d\n",
1227                 __func__, s->cookie_rx[active], active, s->active_rx);
1228         spin_unlock_irqrestore(&port->lock, flags);
1229         return;
1230
1231 fail:
1232         spin_unlock_irqrestore(&port->lock, flags);
1233         dev_warn(port->dev, "Failed submitting Rx DMA descriptor\n");
1234         sci_rx_dma_release(s, true);
1235 }
1236
1237 static void sci_tx_dma_release(struct sci_port *s, bool enable_pio)
1238 {
1239         struct dma_chan *chan = s->chan_tx;
1240         struct uart_port *port = &s->port;
1241         unsigned long flags;
1242
1243         spin_lock_irqsave(&port->lock, flags);
1244         s->chan_tx = NULL;
1245         s->cookie_tx = -EINVAL;
1246         spin_unlock_irqrestore(&port->lock, flags);
1247         dmaengine_terminate_all(chan);
1248         dma_unmap_single(chan->device->dev, s->tx_dma_addr, UART_XMIT_SIZE,
1249                          DMA_TO_DEVICE);
1250         dma_release_channel(chan);
1251         if (enable_pio)
1252                 sci_start_tx(port);
1253 }
1254
1255 static void sci_submit_rx(struct sci_port *s)
1256 {
1257         struct dma_chan *chan = s->chan_rx;
1258         int i;
1259
1260         for (i = 0; i < 2; i++) {
1261                 struct scatterlist *sg = &s->sg_rx[i];
1262                 struct dma_async_tx_descriptor *desc;
1263
1264                 desc = dmaengine_prep_slave_sg(chan,
1265                         sg, 1, DMA_DEV_TO_MEM,
1266                         DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1267                 if (!desc)
1268                         goto fail;
1269
1270                 desc->callback = sci_dma_rx_complete;
1271                 desc->callback_param = s;
1272                 s->cookie_rx[i] = dmaengine_submit(desc);
1273                 if (dma_submit_error(s->cookie_rx[i]))
1274                         goto fail;
1275
1276                 dev_dbg(s->port.dev, "%s(): cookie %d to #%d\n", __func__,
1277                         s->cookie_rx[i], i);
1278         }
1279
1280         s->active_rx = s->cookie_rx[0];
1281
1282         dma_async_issue_pending(chan);
1283         return;
1284
1285 fail:
1286         if (i)
1287                 dmaengine_terminate_all(chan);
1288         for (i = 0; i < 2; i++)
1289                 s->cookie_rx[i] = -EINVAL;
1290         s->active_rx = -EINVAL;
1291         dev_warn(s->port.dev, "Failed to re-start Rx DMA, using PIO\n");
1292         sci_rx_dma_release(s, true);
1293 }
1294
1295 static void work_fn_tx(struct work_struct *work)
1296 {
1297         struct sci_port *s = container_of(work, struct sci_port, work_tx);
1298         struct dma_async_tx_descriptor *desc;
1299         struct dma_chan *chan = s->chan_tx;
1300         struct uart_port *port = &s->port;
1301         struct circ_buf *xmit = &port->state->xmit;
1302         dma_addr_t buf;
1303
1304         /*
1305          * DMA is idle now.
1306          * Port xmit buffer is already mapped, and it is one page... Just adjust
1307          * offsets and lengths. Since it is a circular buffer, we have to
1308          * transmit till the end, and then the rest. Take the port lock to get a
1309          * consistent xmit buffer state.
1310          */
1311         spin_lock_irq(&port->lock);
1312         buf = s->tx_dma_addr + (xmit->tail & (UART_XMIT_SIZE - 1));
1313         s->tx_dma_len = min_t(unsigned int,
1314                 CIRC_CNT(xmit->head, xmit->tail, UART_XMIT_SIZE),
1315                 CIRC_CNT_TO_END(xmit->head, xmit->tail, UART_XMIT_SIZE));
1316         spin_unlock_irq(&port->lock);
1317
1318         desc = dmaengine_prep_slave_single(chan, buf, s->tx_dma_len,
1319                                            DMA_MEM_TO_DEV,
1320                                            DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1321         if (!desc) {
1322                 dev_warn(port->dev, "Failed preparing Tx DMA descriptor\n");
1323                 /* switch to PIO */
1324                 sci_tx_dma_release(s, true);
1325                 return;
1326         }
1327
1328         dma_sync_single_for_device(chan->device->dev, buf, s->tx_dma_len,
1329                                    DMA_TO_DEVICE);
1330
1331         spin_lock_irq(&port->lock);
1332         desc->callback = sci_dma_tx_complete;
1333         desc->callback_param = s;
1334         spin_unlock_irq(&port->lock);
1335         s->cookie_tx = dmaengine_submit(desc);
1336         if (dma_submit_error(s->cookie_tx)) {
1337                 dev_warn(port->dev, "Failed submitting Tx DMA descriptor\n");
1338                 /* switch to PIO */
1339                 sci_tx_dma_release(s, true);
1340                 return;
1341         }
1342
1343         dev_dbg(port->dev, "%s: %p: %d...%d, cookie %d\n",
1344                 __func__, xmit->buf, xmit->tail, xmit->head, s->cookie_tx);
1345
1346         dma_async_issue_pending(chan);
1347 }
1348
1349 static void rx_timer_fn(unsigned long arg)
1350 {
1351         struct sci_port *s = (struct sci_port *)arg;
1352         struct dma_chan *chan = s->chan_rx;
1353         struct uart_port *port = &s->port;
1354         struct dma_tx_state state;
1355         enum dma_status status;
1356         unsigned long flags;
1357         unsigned int read;
1358         int active, count;
1359         u16 scr;
1360
1361         spin_lock_irqsave(&port->lock, flags);
1362
1363         dev_dbg(port->dev, "DMA Rx timed out\n");
1364
1365         active = sci_dma_rx_find_active(s);
1366         if (active < 0) {
1367                 spin_unlock_irqrestore(&port->lock, flags);
1368                 return;
1369         }
1370
1371         status = dmaengine_tx_status(s->chan_rx, s->active_rx, &state);
1372         if (status == DMA_COMPLETE) {
1373                 dev_dbg(port->dev, "Cookie %d #%d has already completed\n",
1374                         s->active_rx, active);
1375                 spin_unlock_irqrestore(&port->lock, flags);
1376
1377                 /* Let packet complete handler take care of the packet */
1378                 return;
1379         }
1380
1381         dmaengine_pause(chan);
1382
1383         /*
1384          * sometimes DMA transfer doesn't stop even if it is stopped and
1385          * data keeps on coming until transaction is complete so check
1386          * for DMA_COMPLETE again
1387          * Let packet complete handler take care of the packet
1388          */
1389         status = dmaengine_tx_status(s->chan_rx, s->active_rx, &state);
1390         if (status == DMA_COMPLETE) {
1391                 spin_unlock_irqrestore(&port->lock, flags);
1392                 dev_dbg(port->dev, "Transaction complete after DMA engine was stopped");
1393                 return;
1394         }
1395
1396         /* Handle incomplete DMA receive */
1397         dmaengine_terminate_all(s->chan_rx);
1398         read = sg_dma_len(&s->sg_rx[active]) - state.residue;
1399         dev_dbg(port->dev, "Read %u bytes with cookie %d\n", read,
1400                 s->active_rx);
1401
1402         if (read) {
1403                 count = sci_dma_rx_push(s, s->rx_buf[active], read);
1404                 if (count)
1405                         tty_flip_buffer_push(&port->state->port);
1406         }
1407
1408         if (port->type == PORT_SCIFA || port->type == PORT_SCIFB)
1409                 sci_submit_rx(s);
1410
1411         /* Direct new serial port interrupts back to CPU */
1412         scr = serial_port_in(port, SCSCR);
1413         if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
1414                 scr &= ~SCSCR_RDRQE;
1415                 enable_irq(s->irqs[SCIx_RXI_IRQ]);
1416         }
1417         serial_port_out(port, SCSCR, scr | SCSCR_RIE);
1418
1419         spin_unlock_irqrestore(&port->lock, flags);
1420 }
1421
1422 static struct dma_chan *sci_request_dma_chan(struct uart_port *port,
1423                                              enum dma_transfer_direction dir,
1424                                              unsigned int id)
1425 {
1426         dma_cap_mask_t mask;
1427         struct dma_chan *chan;
1428         struct dma_slave_config cfg;
1429         int ret;
1430
1431         dma_cap_zero(mask);
1432         dma_cap_set(DMA_SLAVE, mask);
1433
1434         chan = dma_request_slave_channel_compat(mask, shdma_chan_filter,
1435                                         (void *)(unsigned long)id, port->dev,
1436                                         dir == DMA_MEM_TO_DEV ? "tx" : "rx");
1437         if (!chan) {
1438                 dev_warn(port->dev,
1439                          "dma_request_slave_channel_compat failed\n");
1440                 return NULL;
1441         }
1442
1443         memset(&cfg, 0, sizeof(cfg));
1444         cfg.direction = dir;
1445         if (dir == DMA_MEM_TO_DEV) {
1446                 cfg.dst_addr = port->mapbase +
1447                         (sci_getreg(port, SCxTDR)->offset << port->regshift);
1448                 cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
1449         } else {
1450                 cfg.src_addr = port->mapbase +
1451                         (sci_getreg(port, SCxRDR)->offset << port->regshift);
1452                 cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
1453         }
1454
1455         ret = dmaengine_slave_config(chan, &cfg);
1456         if (ret) {
1457                 dev_warn(port->dev, "dmaengine_slave_config failed %d\n", ret);
1458                 dma_release_channel(chan);
1459                 return NULL;
1460         }
1461
1462         return chan;
1463 }
1464
1465 static void sci_request_dma(struct uart_port *port)
1466 {
1467         struct sci_port *s = to_sci_port(port);
1468         struct dma_chan *chan;
1469
1470         dev_dbg(port->dev, "%s: port %d\n", __func__, port->line);
1471
1472         if (!port->dev->of_node &&
1473             (s->cfg->dma_slave_tx <= 0 || s->cfg->dma_slave_rx <= 0))
1474                 return;
1475
1476         s->cookie_tx = -EINVAL;
1477         chan = sci_request_dma_chan(port, DMA_MEM_TO_DEV, s->cfg->dma_slave_tx);
1478         dev_dbg(port->dev, "%s: TX: got channel %p\n", __func__, chan);
1479         if (chan) {
1480                 s->chan_tx = chan;
1481                 /* UART circular tx buffer is an aligned page. */
1482                 s->tx_dma_addr = dma_map_single(chan->device->dev,
1483                                                 port->state->xmit.buf,
1484                                                 UART_XMIT_SIZE,
1485                                                 DMA_TO_DEVICE);
1486                 if (dma_mapping_error(chan->device->dev, s->tx_dma_addr)) {
1487                         dev_warn(port->dev, "Failed mapping Tx DMA descriptor\n");
1488                         dma_release_channel(chan);
1489                         s->chan_tx = NULL;
1490                 } else {
1491                         dev_dbg(port->dev, "%s: mapped %lu@%p to %pad\n",
1492                                 __func__, UART_XMIT_SIZE,
1493                                 port->state->xmit.buf, &s->tx_dma_addr);
1494                 }
1495
1496                 INIT_WORK(&s->work_tx, work_fn_tx);
1497         }
1498
1499         chan = sci_request_dma_chan(port, DMA_DEV_TO_MEM, s->cfg->dma_slave_rx);
1500         dev_dbg(port->dev, "%s: RX: got channel %p\n", __func__, chan);
1501         if (chan) {
1502                 unsigned int i;
1503                 dma_addr_t dma;
1504                 void *buf;
1505
1506                 s->chan_rx = chan;
1507
1508                 s->buf_len_rx = 2 * max_t(size_t, 16, port->fifosize);
1509                 buf = dma_alloc_coherent(chan->device->dev, s->buf_len_rx * 2,
1510                                          &dma, GFP_KERNEL);
1511                 if (!buf) {
1512                         dev_warn(port->dev,
1513                                  "Failed to allocate Rx dma buffer, using PIO\n");
1514                         dma_release_channel(chan);
1515                         s->chan_rx = NULL;
1516                         return;
1517                 }
1518
1519                 for (i = 0; i < 2; i++) {
1520                         struct scatterlist *sg = &s->sg_rx[i];
1521
1522                         sg_init_table(sg, 1);
1523                         s->rx_buf[i] = buf;
1524                         sg_dma_address(sg) = dma;
1525                         sg_dma_len(sg) = s->buf_len_rx;
1526
1527                         buf += s->buf_len_rx;
1528                         dma += s->buf_len_rx;
1529                 }
1530
1531                 setup_timer(&s->rx_timer, rx_timer_fn, (unsigned long)s);
1532
1533                 if (port->type == PORT_SCIFA || port->type == PORT_SCIFB)
1534                         sci_submit_rx(s);
1535         }
1536 }
1537
1538 static void sci_free_dma(struct uart_port *port)
1539 {
1540         struct sci_port *s = to_sci_port(port);
1541
1542         if (s->chan_tx)
1543                 sci_tx_dma_release(s, false);
1544         if (s->chan_rx)
1545                 sci_rx_dma_release(s, false);
1546 }
1547 #else
1548 static inline void sci_request_dma(struct uart_port *port)
1549 {
1550 }
1551
1552 static inline void sci_free_dma(struct uart_port *port)
1553 {
1554 }
1555 #endif
1556
1557 static irqreturn_t sci_rx_interrupt(int irq, void *ptr)
1558 {
1559 #ifdef CONFIG_SERIAL_SH_SCI_DMA
1560         struct uart_port *port = ptr;
1561         struct sci_port *s = to_sci_port(port);
1562
1563         if (s->chan_rx) {
1564                 u16 scr = serial_port_in(port, SCSCR);
1565                 u16 ssr = serial_port_in(port, SCxSR);
1566
1567                 /* Disable future Rx interrupts */
1568                 if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
1569                         disable_irq_nosync(irq);
1570                         scr |= SCSCR_RDRQE;
1571                 } else {
1572                         scr &= ~SCSCR_RIE;
1573                         sci_submit_rx(s);
1574                 }
1575                 serial_port_out(port, SCSCR, scr);
1576                 /* Clear current interrupt */
1577                 serial_port_out(port, SCxSR,
1578                                 ssr & ~(SCIF_DR | SCxSR_RDxF(port)));
1579                 dev_dbg(port->dev, "Rx IRQ %lu: setup t-out in %u jiffies\n",
1580                         jiffies, s->rx_timeout);
1581                 mod_timer(&s->rx_timer, jiffies + s->rx_timeout);
1582
1583                 return IRQ_HANDLED;
1584         }
1585 #endif
1586
1587         /* I think sci_receive_chars has to be called irrespective
1588          * of whether the I_IXOFF is set, otherwise, how is the interrupt
1589          * to be disabled?
1590          */
1591         sci_receive_chars(ptr);
1592
1593         return IRQ_HANDLED;
1594 }
1595
1596 static irqreturn_t sci_tx_interrupt(int irq, void *ptr)
1597 {
1598         struct uart_port *port = ptr;
1599         unsigned long flags;
1600
1601         spin_lock_irqsave(&port->lock, flags);
1602         sci_transmit_chars(port);
1603         spin_unlock_irqrestore(&port->lock, flags);
1604
1605         return IRQ_HANDLED;
1606 }
1607
1608 static irqreturn_t sci_er_interrupt(int irq, void *ptr)
1609 {
1610         struct uart_port *port = ptr;
1611         struct sci_port *s = to_sci_port(port);
1612
1613         /* Handle errors */
1614         if (port->type == PORT_SCI) {
1615                 if (sci_handle_errors(port)) {
1616                         /* discard character in rx buffer */
1617                         serial_port_in(port, SCxSR);
1618                         sci_clear_SCxSR(port, SCxSR_RDxF_CLEAR(port));
1619                 }
1620         } else {
1621                 sci_handle_fifo_overrun(port);
1622                 if (!s->chan_rx)
1623                         sci_receive_chars(ptr);
1624         }
1625
1626         sci_clear_SCxSR(port, SCxSR_ERROR_CLEAR(port));
1627
1628         /* Kick the transmission */
1629         if (!s->chan_tx)
1630                 sci_tx_interrupt(irq, ptr);
1631
1632         return IRQ_HANDLED;
1633 }
1634
1635 static irqreturn_t sci_br_interrupt(int irq, void *ptr)
1636 {
1637         struct uart_port *port = ptr;
1638
1639         /* Handle BREAKs */
1640         sci_handle_breaks(port);
1641         sci_clear_SCxSR(port, SCxSR_BREAK_CLEAR(port));
1642
1643         return IRQ_HANDLED;
1644 }
1645
1646 static irqreturn_t sci_mpxed_interrupt(int irq, void *ptr)
1647 {
1648         unsigned short ssr_status, scr_status, err_enabled, orer_status = 0;
1649         struct uart_port *port = ptr;
1650         struct sci_port *s = to_sci_port(port);
1651         irqreturn_t ret = IRQ_NONE;
1652
1653         ssr_status = serial_port_in(port, SCxSR);
1654         scr_status = serial_port_in(port, SCSCR);
1655         if (s->overrun_reg == SCxSR)
1656                 orer_status = ssr_status;
1657         else {
1658                 if (sci_getreg(port, s->overrun_reg)->size)
1659                         orer_status = serial_port_in(port, s->overrun_reg);
1660         }
1661
1662         err_enabled = scr_status & port_rx_irq_mask(port);
1663
1664         /* Tx Interrupt */
1665         if ((ssr_status & SCxSR_TDxE(port)) && (scr_status & SCSCR_TIE) &&
1666             !s->chan_tx)
1667                 ret = sci_tx_interrupt(irq, ptr);
1668
1669         /*
1670          * Rx Interrupt: if we're using DMA, the DMA controller clears RDF /
1671          * DR flags
1672          */
1673         if (((ssr_status & SCxSR_RDxF(port)) || s->chan_rx) &&
1674             (scr_status & SCSCR_RIE))
1675                 ret = sci_rx_interrupt(irq, ptr);
1676
1677         /* Error Interrupt */
1678         if ((ssr_status & SCxSR_ERRORS(port)) && err_enabled)
1679                 ret = sci_er_interrupt(irq, ptr);
1680
1681         /* Break Interrupt */
1682         if ((ssr_status & SCxSR_BRK(port)) && err_enabled)
1683                 ret = sci_br_interrupt(irq, ptr);
1684
1685         /* Overrun Interrupt */
1686         if (orer_status & s->overrun_mask) {
1687                 sci_handle_fifo_overrun(port);
1688                 ret = IRQ_HANDLED;
1689         }
1690
1691         return ret;
1692 }
1693
1694 static const struct sci_irq_desc {
1695         const char      *desc;
1696         irq_handler_t   handler;
1697 } sci_irq_desc[] = {
1698         /*
1699          * Split out handlers, the default case.
1700          */
1701         [SCIx_ERI_IRQ] = {
1702                 .desc = "rx err",
1703                 .handler = sci_er_interrupt,
1704         },
1705
1706         [SCIx_RXI_IRQ] = {
1707                 .desc = "rx full",
1708                 .handler = sci_rx_interrupt,
1709         },
1710
1711         [SCIx_TXI_IRQ] = {
1712                 .desc = "tx empty",
1713                 .handler = sci_tx_interrupt,
1714         },
1715
1716         [SCIx_BRI_IRQ] = {
1717                 .desc = "break",
1718                 .handler = sci_br_interrupt,
1719         },
1720
1721         /*
1722          * Special muxed handler.
1723          */
1724         [SCIx_MUX_IRQ] = {
1725                 .desc = "mux",
1726                 .handler = sci_mpxed_interrupt,
1727         },
1728 };
1729
1730 static int sci_request_irq(struct sci_port *port)
1731 {
1732         struct uart_port *up = &port->port;
1733         int i, j, ret = 0;
1734
1735         for (i = j = 0; i < SCIx_NR_IRQS; i++, j++) {
1736                 const struct sci_irq_desc *desc;
1737                 int irq;
1738
1739                 if (SCIx_IRQ_IS_MUXED(port)) {
1740                         i = SCIx_MUX_IRQ;
1741                         irq = up->irq;
1742                 } else {
1743                         irq = port->irqs[i];
1744
1745                         /*
1746                          * Certain port types won't support all of the
1747                          * available interrupt sources.
1748                          */
1749                         if (unlikely(irq < 0))
1750                                 continue;
1751                 }
1752
1753                 desc = sci_irq_desc + i;
1754                 port->irqstr[j] = kasprintf(GFP_KERNEL, "%s:%s",
1755                                             dev_name(up->dev), desc->desc);
1756                 if (!port->irqstr[j])
1757                         goto out_nomem;
1758
1759                 ret = request_irq(irq, desc->handler, up->irqflags,
1760                                   port->irqstr[j], port);
1761                 if (unlikely(ret)) {
1762                         dev_err(up->dev, "Can't allocate %s IRQ\n", desc->desc);
1763                         goto out_noirq;
1764                 }
1765         }
1766
1767         return 0;
1768
1769 out_noirq:
1770         while (--i >= 0)
1771                 free_irq(port->irqs[i], port);
1772
1773 out_nomem:
1774         while (--j >= 0)
1775                 kfree(port->irqstr[j]);
1776
1777         return ret;
1778 }
1779
1780 static void sci_free_irq(struct sci_port *port)
1781 {
1782         int i;
1783
1784         /*
1785          * Intentionally in reverse order so we iterate over the muxed
1786          * IRQ first.
1787          */
1788         for (i = 0; i < SCIx_NR_IRQS; i++) {
1789                 int irq = port->irqs[i];
1790
1791                 /*
1792                  * Certain port types won't support all of the available
1793                  * interrupt sources.
1794                  */
1795                 if (unlikely(irq < 0))
1796                         continue;
1797
1798                 free_irq(port->irqs[i], port);
1799                 kfree(port->irqstr[i]);
1800
1801                 if (SCIx_IRQ_IS_MUXED(port)) {
1802                         /* If there's only one IRQ, we're done. */
1803                         return;
1804                 }
1805         }
1806 }
1807
1808 static unsigned int sci_tx_empty(struct uart_port *port)
1809 {
1810         unsigned short status = serial_port_in(port, SCxSR);
1811         unsigned short in_tx_fifo = sci_txfill(port);
1812
1813         return (status & SCxSR_TEND(port)) && !in_tx_fifo ? TIOCSER_TEMT : 0;
1814 }
1815
1816 static void sci_set_rts(struct uart_port *port, bool state)
1817 {
1818         if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
1819                 u16 data = serial_port_in(port, SCPDR);
1820
1821                 /* Active low */
1822                 if (state)
1823                         data &= ~SCPDR_RTSD;
1824                 else
1825                         data |= SCPDR_RTSD;
1826                 serial_port_out(port, SCPDR, data);
1827
1828                 /* RTS# is output */
1829                 serial_port_out(port, SCPCR,
1830                                 serial_port_in(port, SCPCR) | SCPCR_RTSC);
1831         } else if (sci_getreg(port, SCSPTR)->size) {
1832                 u16 ctrl = serial_port_in(port, SCSPTR);
1833
1834                 /* Active low */
1835                 if (state)
1836                         ctrl &= ~SCSPTR_RTSDT;
1837                 else
1838                         ctrl |= SCSPTR_RTSDT;
1839                 serial_port_out(port, SCSPTR, ctrl);
1840         }
1841 }
1842
1843 static bool sci_get_cts(struct uart_port *port)
1844 {
1845         if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
1846                 /* Active low */
1847                 return !(serial_port_in(port, SCPDR) & SCPDR_CTSD);
1848         } else if (sci_getreg(port, SCSPTR)->size) {
1849                 /* Active low */
1850                 return !(serial_port_in(port, SCSPTR) & SCSPTR_CTSDT);
1851         }
1852
1853         return true;
1854 }
1855
1856 /*
1857  * Modem control is a bit of a mixed bag for SCI(F) ports. Generally
1858  * CTS/RTS is supported in hardware by at least one port and controlled
1859  * via SCSPTR (SCxPCR for SCIFA/B parts), or external pins (presently
1860  * handled via the ->init_pins() op, which is a bit of a one-way street,
1861  * lacking any ability to defer pin control -- this will later be
1862  * converted over to the GPIO framework).
1863  *
1864  * Other modes (such as loopback) are supported generically on certain
1865  * port types, but not others. For these it's sufficient to test for the
1866  * existence of the support register and simply ignore the port type.
1867  */
1868 static void sci_set_mctrl(struct uart_port *port, unsigned int mctrl)
1869 {
1870         struct sci_port *s = to_sci_port(port);
1871
1872         if (mctrl & TIOCM_LOOP) {
1873                 const struct plat_sci_reg *reg;
1874
1875                 /*
1876                  * Standard loopback mode for SCFCR ports.
1877                  */
1878                 reg = sci_getreg(port, SCFCR);
1879                 if (reg->size)
1880                         serial_port_out(port, SCFCR,
1881                                         serial_port_in(port, SCFCR) |
1882                                         SCFCR_LOOP);
1883         }
1884
1885         mctrl_gpio_set(s->gpios, mctrl);
1886
1887         if (!(s->cfg->capabilities & SCIx_HAVE_RTSCTS))
1888                 return;
1889
1890         if (!(mctrl & TIOCM_RTS)) {
1891                 /* Disable Auto RTS */
1892                 serial_port_out(port, SCFCR,
1893                                 serial_port_in(port, SCFCR) & ~SCFCR_MCE);
1894
1895                 /* Clear RTS */
1896                 sci_set_rts(port, 0);
1897         } else if (s->autorts) {
1898                 if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
1899                         /* Enable RTS# pin function */
1900                         serial_port_out(port, SCPCR,
1901                                 serial_port_in(port, SCPCR) & ~SCPCR_RTSC);
1902                 }
1903
1904                 /* Enable Auto RTS */
1905                 serial_port_out(port, SCFCR,
1906                                 serial_port_in(port, SCFCR) | SCFCR_MCE);
1907         } else {
1908                 /* Set RTS */
1909                 sci_set_rts(port, 1);
1910         }
1911 }
1912
1913 static unsigned int sci_get_mctrl(struct uart_port *port)
1914 {
1915         struct sci_port *s = to_sci_port(port);
1916         struct mctrl_gpios *gpios = s->gpios;
1917         unsigned int mctrl = 0;
1918
1919         mctrl_gpio_get(gpios, &mctrl);
1920
1921         /*
1922          * CTS/RTS is handled in hardware when supported, while nothing
1923          * else is wired up.
1924          */
1925         if (s->autorts) {
1926                 if (sci_get_cts(port))
1927                         mctrl |= TIOCM_CTS;
1928         } else if (IS_ERR_OR_NULL(mctrl_gpio_to_gpiod(gpios, UART_GPIO_CTS))) {
1929                 mctrl |= TIOCM_CTS;
1930         }
1931         if (IS_ERR_OR_NULL(mctrl_gpio_to_gpiod(gpios, UART_GPIO_DSR)))
1932                 mctrl |= TIOCM_DSR;
1933         if (IS_ERR_OR_NULL(mctrl_gpio_to_gpiod(gpios, UART_GPIO_DCD)))
1934                 mctrl |= TIOCM_CAR;
1935
1936         return mctrl;
1937 }
1938
1939 static void sci_enable_ms(struct uart_port *port)
1940 {
1941         mctrl_gpio_enable_ms(to_sci_port(port)->gpios);
1942 }
1943
1944 static void sci_break_ctl(struct uart_port *port, int break_state)
1945 {
1946         unsigned short scscr, scsptr;
1947
1948         /* check wheter the port has SCSPTR */
1949         if (!sci_getreg(port, SCSPTR)->size) {
1950                 /*
1951                  * Not supported by hardware. Most parts couple break and rx
1952                  * interrupts together, with break detection always enabled.
1953                  */
1954                 return;
1955         }
1956
1957         scsptr = serial_port_in(port, SCSPTR);
1958         scscr = serial_port_in(port, SCSCR);
1959
1960         if (break_state == -1) {
1961                 scsptr = (scsptr | SCSPTR_SPB2IO) & ~SCSPTR_SPB2DT;
1962                 scscr &= ~SCSCR_TE;
1963         } else {
1964                 scsptr = (scsptr | SCSPTR_SPB2DT) & ~SCSPTR_SPB2IO;
1965                 scscr |= SCSCR_TE;
1966         }
1967
1968         serial_port_out(port, SCSPTR, scsptr);
1969         serial_port_out(port, SCSCR, scscr);
1970 }
1971
1972 static int sci_startup(struct uart_port *port)
1973 {
1974         struct sci_port *s = to_sci_port(port);
1975         int ret;
1976
1977         dev_dbg(port->dev, "%s(%d)\n", __func__, port->line);
1978
1979         ret = sci_request_irq(s);
1980         if (unlikely(ret < 0))
1981                 return ret;
1982
1983         sci_request_dma(port);
1984
1985         return 0;
1986 }
1987
1988 static void sci_shutdown(struct uart_port *port)
1989 {
1990         struct sci_port *s = to_sci_port(port);
1991         unsigned long flags;
1992         u16 scr;
1993
1994         dev_dbg(port->dev, "%s(%d)\n", __func__, port->line);
1995
1996         s->autorts = false;
1997         mctrl_gpio_disable_ms(to_sci_port(port)->gpios);
1998
1999         spin_lock_irqsave(&port->lock, flags);
2000         sci_stop_rx(port);
2001         sci_stop_tx(port);
2002         /* Stop RX and TX, disable related interrupts, keep clock source */
2003         scr = serial_port_in(port, SCSCR);
2004         serial_port_out(port, SCSCR, scr & (SCSCR_CKE1 | SCSCR_CKE0));
2005         spin_unlock_irqrestore(&port->lock, flags);
2006
2007 #ifdef CONFIG_SERIAL_SH_SCI_DMA
2008         if (s->chan_rx) {
2009                 dev_dbg(port->dev, "%s(%d) deleting rx_timer\n", __func__,
2010                         port->line);
2011                 del_timer_sync(&s->rx_timer);
2012         }
2013 #endif
2014
2015         sci_free_dma(port);
2016         sci_free_irq(s);
2017 }
2018
2019 static int sci_sck_calc(struct sci_port *s, unsigned int bps,
2020                         unsigned int *srr)
2021 {
2022         unsigned long freq = s->clk_rates[SCI_SCK];
2023         int err, min_err = INT_MAX;
2024         unsigned int sr;
2025
2026         if (s->port.type != PORT_HSCIF)
2027                 freq *= 2;
2028
2029         for_each_sr(sr, s) {
2030                 err = DIV_ROUND_CLOSEST(freq, sr) - bps;
2031                 if (abs(err) >= abs(min_err))
2032                         continue;
2033
2034                 min_err = err;
2035                 *srr = sr - 1;
2036
2037                 if (!err)
2038                         break;
2039         }
2040
2041         dev_dbg(s->port.dev, "SCK: %u%+d bps using SR %u\n", bps, min_err,
2042                 *srr + 1);
2043         return min_err;
2044 }
2045
2046 static int sci_brg_calc(struct sci_port *s, unsigned int bps,
2047                         unsigned long freq, unsigned int *dlr,
2048                         unsigned int *srr)
2049 {
2050         int err, min_err = INT_MAX;
2051         unsigned int sr, dl;
2052
2053         if (s->port.type != PORT_HSCIF)
2054                 freq *= 2;
2055
2056         for_each_sr(sr, s) {
2057                 dl = DIV_ROUND_CLOSEST(freq, sr * bps);
2058                 dl = clamp(dl, 1U, 65535U);
2059
2060                 err = DIV_ROUND_CLOSEST(freq, sr * dl) - bps;
2061                 if (abs(err) >= abs(min_err))
2062                         continue;
2063
2064                 min_err = err;
2065                 *dlr = dl;
2066                 *srr = sr - 1;
2067
2068                 if (!err)
2069                         break;
2070         }
2071
2072         dev_dbg(s->port.dev, "BRG: %u%+d bps using DL %u SR %u\n", bps,
2073                 min_err, *dlr, *srr + 1);
2074         return min_err;
2075 }
2076
2077 /* calculate sample rate, BRR, and clock select */
2078 static int sci_scbrr_calc(struct sci_port *s, unsigned int bps,
2079                           unsigned int *brr, unsigned int *srr,
2080                           unsigned int *cks)
2081 {
2082         unsigned long freq = s->clk_rates[SCI_FCK];
2083         unsigned int sr, br, prediv, scrate, c;
2084         int err, min_err = INT_MAX;
2085
2086         if (s->port.type != PORT_HSCIF)
2087                 freq *= 2;
2088
2089         /*
2090          * Find the combination of sample rate and clock select with the
2091          * smallest deviation from the desired baud rate.
2092          * Prefer high sample rates to maximise the receive margin.
2093          *
2094          * M: Receive margin (%)
2095          * N: Ratio of bit rate to clock (N = sampling rate)
2096          * D: Clock duty (D = 0 to 1.0)
2097          * L: Frame length (L = 9 to 12)
2098          * F: Absolute value of clock frequency deviation
2099          *
2100          *  M = |(0.5 - 1 / 2 * N) - ((L - 0.5) * F) -
2101          *      (|D - 0.5| / N * (1 + F))|
2102          *  NOTE: Usually, treat D for 0.5, F is 0 by this calculation.
2103          */
2104         for_each_sr(sr, s) {
2105                 for (c = 0; c <= 3; c++) {
2106                         /* integerized formulas from HSCIF documentation */
2107                         prediv = sr * (1 << (2 * c + 1));
2108
2109                         /*
2110                          * We need to calculate:
2111                          *
2112                          *     br = freq / (prediv * bps) clamped to [1..256]
2113                          *     err = freq / (br * prediv) - bps
2114                          *
2115                          * Watch out for overflow when calculating the desired
2116                          * sampling clock rate!
2117                          */
2118                         if (bps > UINT_MAX / prediv)
2119                                 break;
2120
2121                         scrate = prediv * bps;
2122                         br = DIV_ROUND_CLOSEST(freq, scrate);
2123                         br = clamp(br, 1U, 256U);
2124
2125                         err = DIV_ROUND_CLOSEST(freq, br * prediv) - bps;
2126                         if (abs(err) >= abs(min_err))
2127                                 continue;
2128
2129                         min_err = err;
2130                         *brr = br - 1;
2131                         *srr = sr - 1;
2132                         *cks = c;
2133
2134                         if (!err)
2135                                 goto found;
2136                 }
2137         }
2138
2139 found:
2140         dev_dbg(s->port.dev, "BRR: %u%+d bps using N %u SR %u cks %u\n", bps,
2141                 min_err, *brr, *srr + 1, *cks);
2142         return min_err;
2143 }
2144
2145 static void sci_reset(struct uart_port *port)
2146 {
2147         const struct plat_sci_reg *reg;
2148         unsigned int status;
2149
2150         do {
2151                 status = serial_port_in(port, SCxSR);
2152         } while (!(status & SCxSR_TEND(port)));
2153
2154         serial_port_out(port, SCSCR, 0x00);     /* TE=0, RE=0, CKE1=0 */
2155
2156         reg = sci_getreg(port, SCFCR);
2157         if (reg->size)
2158                 serial_port_out(port, SCFCR, SCFCR_RFRST | SCFCR_TFRST);
2159
2160         sci_clear_SCxSR(port,
2161                         SCxSR_RDxF_CLEAR(port) & SCxSR_ERROR_CLEAR(port) &
2162                         SCxSR_BREAK_CLEAR(port));
2163         if (sci_getreg(port, SCLSR)->size) {
2164                 status = serial_port_in(port, SCLSR);
2165                 status &= ~(SCLSR_TO | SCLSR_ORER);
2166                 serial_port_out(port, SCLSR, status);
2167         }
2168 }
2169
2170 static void sci_set_termios(struct uart_port *port, struct ktermios *termios,
2171                             struct ktermios *old)
2172 {
2173         unsigned int baud, smr_val = SCSMR_ASYNC, scr_val = 0, i;
2174         unsigned int brr = 255, cks = 0, srr = 15, dl = 0, sccks = 0;
2175         unsigned int brr1 = 255, cks1 = 0, srr1 = 15, dl1 = 0;
2176         struct sci_port *s = to_sci_port(port);
2177         const struct plat_sci_reg *reg;
2178         int min_err = INT_MAX, err;
2179         unsigned long max_freq = 0;
2180         int best_clk = -1;
2181
2182         if ((termios->c_cflag & CSIZE) == CS7)
2183                 smr_val |= SCSMR_CHR;
2184         if (termios->c_cflag & PARENB)
2185                 smr_val |= SCSMR_PE;
2186         if (termios->c_cflag & PARODD)
2187                 smr_val |= SCSMR_PE | SCSMR_ODD;
2188         if (termios->c_cflag & CSTOPB)
2189                 smr_val |= SCSMR_STOP;
2190
2191         /*
2192          * earlyprintk comes here early on with port->uartclk set to zero.
2193          * the clock framework is not up and running at this point so here
2194          * we assume that 115200 is the maximum baud rate. please note that
2195          * the baud rate is not programmed during earlyprintk - it is assumed
2196          * that the previous boot loader has enabled required clocks and
2197          * setup the baud rate generator hardware for us already.
2198          */
2199         if (!port->uartclk) {
2200                 baud = uart_get_baud_rate(port, termios, old, 0, 115200);
2201                 goto done;
2202         }
2203
2204         for (i = 0; i < SCI_NUM_CLKS; i++)
2205                 max_freq = max(max_freq, s->clk_rates[i]);
2206
2207         baud = uart_get_baud_rate(port, termios, old, 0, max_freq / min_sr(s));
2208         if (!baud)
2209                 goto done;
2210
2211         /*
2212          * There can be multiple sources for the sampling clock.  Find the one
2213          * that gives us the smallest deviation from the desired baud rate.
2214          */
2215
2216         /* Optional Undivided External Clock */
2217         if (s->clk_rates[SCI_SCK] && port->type != PORT_SCIFA &&
2218             port->type != PORT_SCIFB) {
2219                 err = sci_sck_calc(s, baud, &srr1);
2220                 if (abs(err) < abs(min_err)) {
2221                         best_clk = SCI_SCK;
2222                         scr_val = SCSCR_CKE1;
2223                         sccks = SCCKS_CKS;
2224                         min_err = err;
2225                         srr = srr1;
2226                         if (!err)
2227                                 goto done;
2228                 }
2229         }
2230
2231         /* Optional BRG Frequency Divided External Clock */
2232         if (s->clk_rates[SCI_SCIF_CLK] && sci_getreg(port, SCDL)->size) {
2233                 err = sci_brg_calc(s, baud, s->clk_rates[SCI_SCIF_CLK], &dl1,
2234                                    &srr1);
2235                 if (abs(err) < abs(min_err)) {
2236                         best_clk = SCI_SCIF_CLK;
2237                         scr_val = SCSCR_CKE1;
2238                         sccks = 0;
2239                         min_err = err;
2240                         dl = dl1;
2241                         srr = srr1;
2242                         if (!err)
2243                                 goto done;
2244                 }
2245         }
2246
2247         /* Optional BRG Frequency Divided Internal Clock */
2248         if (s->clk_rates[SCI_BRG_INT] && sci_getreg(port, SCDL)->size) {
2249                 err = sci_brg_calc(s, baud, s->clk_rates[SCI_BRG_INT], &dl1,
2250                                    &srr1);
2251                 if (abs(err) < abs(min_err)) {
2252                         best_clk = SCI_BRG_INT;
2253                         scr_val = SCSCR_CKE1;
2254                         sccks = SCCKS_XIN;
2255                         min_err = err;
2256                         dl = dl1;
2257                         srr = srr1;
2258                         if (!min_err)
2259                                 goto done;
2260                 }
2261         }
2262
2263         /* Divided Functional Clock using standard Bit Rate Register */
2264         err = sci_scbrr_calc(s, baud, &brr1, &srr1, &cks1);
2265         if (abs(err) < abs(min_err)) {
2266                 best_clk = SCI_FCK;
2267                 scr_val = 0;
2268                 min_err = err;
2269                 brr = brr1;
2270                 srr = srr1;
2271                 cks = cks1;
2272         }
2273
2274 done:
2275         if (best_clk >= 0)
2276                 dev_dbg(port->dev, "Using clk %pC for %u%+d bps\n",
2277                         s->clks[best_clk], baud, min_err);
2278
2279         sci_port_enable(s);
2280
2281         /*
2282          * Program the optional External Baud Rate Generator (BRG) first.
2283          * It controls the mux to select (H)SCK or frequency divided clock.
2284          */
2285         if (best_clk >= 0 && sci_getreg(port, SCCKS)->size) {
2286                 serial_port_out(port, SCDL, dl);
2287                 serial_port_out(port, SCCKS, sccks);
2288         }
2289
2290         sci_reset(port);
2291
2292         uart_update_timeout(port, termios->c_cflag, baud);
2293
2294         if (best_clk >= 0) {
2295                 if (port->type == PORT_SCIFA || port->type == PORT_SCIFB)
2296                         switch (srr + 1) {
2297                         case 5:  smr_val |= SCSMR_SRC_5;  break;
2298                         case 7:  smr_val |= SCSMR_SRC_7;  break;
2299                         case 11: smr_val |= SCSMR_SRC_11; break;
2300                         case 13: smr_val |= SCSMR_SRC_13; break;
2301                         case 16: smr_val |= SCSMR_SRC_16; break;
2302                         case 17: smr_val |= SCSMR_SRC_17; break;
2303                         case 19: smr_val |= SCSMR_SRC_19; break;
2304                         case 27: smr_val |= SCSMR_SRC_27; break;
2305                         }
2306                 smr_val |= cks;
2307                 dev_dbg(port->dev,
2308                          "SCR 0x%x SMR 0x%x BRR %u CKS 0x%x DL %u SRR %u\n",
2309                          scr_val, smr_val, brr, sccks, dl, srr);
2310                 serial_port_out(port, SCSCR, scr_val);
2311                 serial_port_out(port, SCSMR, smr_val);
2312                 serial_port_out(port, SCBRR, brr);
2313                 if (sci_getreg(port, HSSRR)->size)
2314                         serial_port_out(port, HSSRR, srr | HSCIF_SRE);
2315
2316                 /* Wait one bit interval */
2317                 udelay((1000000 + (baud - 1)) / baud);
2318         } else {
2319                 /* Don't touch the bit rate configuration */
2320                 scr_val = s->cfg->scscr & (SCSCR_CKE1 | SCSCR_CKE0);
2321                 smr_val |= serial_port_in(port, SCSMR) &
2322                            (SCSMR_CKEDG | SCSMR_SRC_MASK | SCSMR_CKS);
2323                 dev_dbg(port->dev, "SCR 0x%x SMR 0x%x\n", scr_val, smr_val);
2324                 serial_port_out(port, SCSCR, scr_val);
2325                 serial_port_out(port, SCSMR, smr_val);
2326         }
2327
2328         sci_init_pins(port, termios->c_cflag);
2329
2330         port->status &= ~UPSTAT_AUTOCTS;
2331         s->autorts = false;
2332         reg = sci_getreg(port, SCFCR);
2333         if (reg->size) {
2334                 unsigned short ctrl = serial_port_in(port, SCFCR);
2335
2336                 if ((port->flags & UPF_HARD_FLOW) &&
2337                     (termios->c_cflag & CRTSCTS)) {
2338                         /* There is no CTS interrupt to restart the hardware */
2339                         port->status |= UPSTAT_AUTOCTS;
2340                         /* MCE is enabled when RTS is raised */
2341                         s->autorts = true;
2342                 }
2343
2344                 /*
2345                  * As we've done a sci_reset() above, ensure we don't
2346                  * interfere with the FIFOs while toggling MCE. As the
2347                  * reset values could still be set, simply mask them out.
2348                  */
2349                 ctrl &= ~(SCFCR_RFRST | SCFCR_TFRST);
2350
2351                 serial_port_out(port, SCFCR, ctrl);
2352         }
2353
2354         scr_val |= s->cfg->scscr & ~(SCSCR_CKE1 | SCSCR_CKE0);
2355         dev_dbg(port->dev, "SCSCR 0x%x\n", scr_val);
2356         serial_port_out(port, SCSCR, scr_val);
2357         if ((srr + 1 == 5) &&
2358             (port->type == PORT_SCIFA || port->type == PORT_SCIFB)) {
2359                 /*
2360                  * In asynchronous mode, when the sampling rate is 1/5, first
2361                  * received data may become invalid on some SCIFA and SCIFB.
2362                  * To avoid this problem wait more than 1 serial data time (1
2363                  * bit time x serial data number) after setting SCSCR.RE = 1.
2364                  */
2365                 udelay(DIV_ROUND_UP(10 * 1000000, baud));
2366         }
2367
2368 #ifdef CONFIG_SERIAL_SH_SCI_DMA
2369         /*
2370          * Calculate delay for 2 DMA buffers (4 FIFO).
2371          * See serial_core.c::uart_update_timeout().
2372          * With 10 bits (CS8), 250Hz, 115200 baud and 64 bytes FIFO, the above
2373          * function calculates 1 jiffie for the data plus 5 jiffies for the
2374          * "slop(e)." Then below we calculate 5 jiffies (20ms) for 2 DMA
2375          * buffers (4 FIFO sizes), but when performing a faster transfer, the
2376          * value obtained by this formula is too small. Therefore, if the value
2377          * is smaller than 20ms, use 20ms as the timeout value for DMA.
2378          */
2379         if (s->chan_rx) {
2380                 unsigned int bits;
2381
2382                 /* byte size and parity */
2383                 switch (termios->c_cflag & CSIZE) {
2384                 case CS5:
2385                         bits = 7;
2386                         break;
2387                 case CS6:
2388                         bits = 8;
2389                         break;
2390                 case CS7:
2391                         bits = 9;
2392                         break;
2393                 default:
2394                         bits = 10;
2395                         break;
2396                 }
2397
2398                 if (termios->c_cflag & CSTOPB)
2399                         bits++;
2400                 if (termios->c_cflag & PARENB)
2401                         bits++;
2402                 s->rx_timeout = DIV_ROUND_UP((s->buf_len_rx * 2 * bits * HZ) /
2403                                              (baud / 10), 10);
2404                 dev_dbg(port->dev, "DMA Rx t-out %ums, tty t-out %u jiffies\n",
2405                         s->rx_timeout * 1000 / HZ, port->timeout);
2406                 if (s->rx_timeout < msecs_to_jiffies(20))
2407                         s->rx_timeout = msecs_to_jiffies(20);
2408         }
2409 #endif
2410
2411         if ((termios->c_cflag & CREAD) != 0)
2412                 sci_start_rx(port);
2413
2414         sci_port_disable(s);
2415
2416         if (UART_ENABLE_MS(port, termios->c_cflag))
2417                 sci_enable_ms(port);
2418 }
2419
2420 static void sci_pm(struct uart_port *port, unsigned int state,
2421                    unsigned int oldstate)
2422 {
2423         struct sci_port *sci_port = to_sci_port(port);
2424
2425         switch (state) {
2426         case UART_PM_STATE_OFF:
2427                 sci_port_disable(sci_port);
2428                 break;
2429         default:
2430                 sci_port_enable(sci_port);
2431                 break;
2432         }
2433 }
2434
2435 static const char *sci_type(struct uart_port *port)
2436 {
2437         switch (port->type) {
2438         case PORT_IRDA:
2439                 return "irda";
2440         case PORT_SCI:
2441                 return "sci";
2442         case PORT_SCIF:
2443                 return "scif";
2444         case PORT_SCIFA:
2445                 return "scifa";
2446         case PORT_SCIFB:
2447                 return "scifb";
2448         case PORT_HSCIF:
2449                 return "hscif";
2450         }
2451
2452         return NULL;
2453 }
2454
2455 static int sci_remap_port(struct uart_port *port)
2456 {
2457         struct sci_port *sport = to_sci_port(port);
2458
2459         /*
2460          * Nothing to do if there's already an established membase.
2461          */
2462         if (port->membase)
2463                 return 0;
2464
2465         if (port->flags & UPF_IOREMAP) {
2466                 port->membase = ioremap_nocache(port->mapbase, sport->reg_size);
2467                 if (unlikely(!port->membase)) {
2468                         dev_err(port->dev, "can't remap port#%d\n", port->line);
2469                         return -ENXIO;
2470                 }
2471         } else {
2472                 /*
2473                  * For the simple (and majority of) cases where we don't
2474                  * need to do any remapping, just cast the cookie
2475                  * directly.
2476                  */
2477                 port->membase = (void __iomem *)(uintptr_t)port->mapbase;
2478         }
2479
2480         return 0;
2481 }
2482
2483 static void sci_release_port(struct uart_port *port)
2484 {
2485         struct sci_port *sport = to_sci_port(port);
2486
2487         if (port->flags & UPF_IOREMAP) {
2488                 iounmap(port->membase);
2489                 port->membase = NULL;
2490         }
2491
2492         release_mem_region(port->mapbase, sport->reg_size);
2493 }
2494
2495 static int sci_request_port(struct uart_port *port)
2496 {
2497         struct resource *res;
2498         struct sci_port *sport = to_sci_port(port);
2499         int ret;
2500
2501         res = request_mem_region(port->mapbase, sport->reg_size,
2502                                  dev_name(port->dev));
2503         if (unlikely(res == NULL)) {
2504                 dev_err(port->dev, "request_mem_region failed.");
2505                 return -EBUSY;
2506         }
2507
2508         ret = sci_remap_port(port);
2509         if (unlikely(ret != 0)) {
2510                 release_resource(res);
2511                 return ret;
2512         }
2513
2514         return 0;
2515 }
2516
2517 static void sci_config_port(struct uart_port *port, int flags)
2518 {
2519         if (flags & UART_CONFIG_TYPE) {
2520                 struct sci_port *sport = to_sci_port(port);
2521
2522                 port->type = sport->cfg->type;
2523                 sci_request_port(port);
2524         }
2525 }
2526
2527 static int sci_verify_port(struct uart_port *port, struct serial_struct *ser)
2528 {
2529         if (ser->baud_base < 2400)
2530                 /* No paper tape reader for Mitch.. */
2531                 return -EINVAL;
2532
2533         return 0;
2534 }
2535
2536 static const struct uart_ops sci_uart_ops = {
2537         .tx_empty       = sci_tx_empty,
2538         .set_mctrl      = sci_set_mctrl,
2539         .get_mctrl      = sci_get_mctrl,
2540         .start_tx       = sci_start_tx,
2541         .stop_tx        = sci_stop_tx,
2542         .stop_rx        = sci_stop_rx,
2543         .enable_ms      = sci_enable_ms,
2544         .break_ctl      = sci_break_ctl,
2545         .startup        = sci_startup,
2546         .shutdown       = sci_shutdown,
2547         .set_termios    = sci_set_termios,
2548         .pm             = sci_pm,
2549         .type           = sci_type,
2550         .release_port   = sci_release_port,
2551         .request_port   = sci_request_port,
2552         .config_port    = sci_config_port,
2553         .verify_port    = sci_verify_port,
2554 #ifdef CONFIG_CONSOLE_POLL
2555         .poll_get_char  = sci_poll_get_char,
2556         .poll_put_char  = sci_poll_put_char,
2557 #endif
2558 };
2559
2560 static int sci_init_clocks(struct sci_port *sci_port, struct device *dev)
2561 {
2562         const char *clk_names[] = {
2563                 [SCI_FCK] = "fck",
2564                 [SCI_SCK] = "sck",
2565                 [SCI_BRG_INT] = "brg_int",
2566                 [SCI_SCIF_CLK] = "scif_clk",
2567         };
2568         struct clk *clk;
2569         unsigned int i;
2570
2571         if (sci_port->cfg->type == PORT_HSCIF)
2572                 clk_names[SCI_SCK] = "hsck";
2573
2574         for (i = 0; i < SCI_NUM_CLKS; i++) {
2575                 clk = devm_clk_get(dev, clk_names[i]);
2576                 if (PTR_ERR(clk) == -EPROBE_DEFER)
2577                         return -EPROBE_DEFER;
2578
2579                 if (IS_ERR(clk) && i == SCI_FCK) {
2580                         /*
2581                          * "fck" used to be called "sci_ick", and we need to
2582                          * maintain DT backward compatibility.
2583                          */
2584                         clk = devm_clk_get(dev, "sci_ick");
2585                         if (PTR_ERR(clk) == -EPROBE_DEFER)
2586                                 return -EPROBE_DEFER;
2587
2588                         if (!IS_ERR(clk))
2589                                 goto found;
2590
2591                         /*
2592                          * Not all SH platforms declare a clock lookup entry
2593                          * for SCI devices, in which case we need to get the
2594                          * global "peripheral_clk" clock.
2595                          */
2596                         clk = devm_clk_get(dev, "peripheral_clk");
2597                         if (!IS_ERR(clk))
2598                                 goto found;
2599
2600                         dev_err(dev, "failed to get %s (%ld)\n", clk_names[i],
2601                                 PTR_ERR(clk));
2602                         return PTR_ERR(clk);
2603                 }
2604
2605 found:
2606                 if (IS_ERR(clk))
2607                         dev_dbg(dev, "failed to get %s (%ld)\n", clk_names[i],
2608                                 PTR_ERR(clk));
2609                 else
2610                         dev_dbg(dev, "clk %s is %pC rate %pCr\n", clk_names[i],
2611                                 clk, clk);
2612                 sci_port->clks[i] = IS_ERR(clk) ? NULL : clk;
2613         }
2614         return 0;
2615 }
2616
2617 static int sci_init_single(struct platform_device *dev,
2618                            struct sci_port *sci_port, unsigned int index,
2619                            struct plat_sci_port *p, bool early)
2620 {
2621         struct uart_port *port = &sci_port->port;
2622         const struct resource *res;
2623         unsigned int i;
2624         int ret;
2625
2626         sci_port->cfg   = p;
2627
2628         port->ops       = &sci_uart_ops;
2629         port->iotype    = UPIO_MEM;
2630         port->line      = index;
2631
2632         res = platform_get_resource(dev, IORESOURCE_MEM, 0);
2633         if (res == NULL)
2634                 return -ENOMEM;
2635
2636         port->mapbase = res->start;
2637         sci_port->reg_size = resource_size(res);
2638
2639         for (i = 0; i < ARRAY_SIZE(sci_port->irqs); ++i)
2640                 sci_port->irqs[i] = platform_get_irq(dev, i);
2641
2642         /* The SCI generates several interrupts. They can be muxed together or
2643          * connected to different interrupt lines. In the muxed case only one
2644          * interrupt resource is specified. In the non-muxed case three or four
2645          * interrupt resources are specified, as the BRI interrupt is optional.
2646          */
2647         if (sci_port->irqs[0] < 0)
2648                 return -ENXIO;
2649
2650         if (sci_port->irqs[1] < 0) {
2651                 sci_port->irqs[1] = sci_port->irqs[0];
2652                 sci_port->irqs[2] = sci_port->irqs[0];
2653                 sci_port->irqs[3] = sci_port->irqs[0];
2654         }
2655
2656         if (p->regtype == SCIx_PROBE_REGTYPE) {
2657                 ret = sci_probe_regmap(p);
2658                 if (unlikely(ret))
2659                         return ret;
2660         }
2661
2662         switch (p->type) {
2663         case PORT_SCIFB:
2664                 port->fifosize = 256;
2665                 sci_port->overrun_reg = SCxSR;
2666                 sci_port->overrun_mask = SCIFA_ORER;
2667                 sci_port->sampling_rate_mask = SCI_SR_SCIFAB;
2668                 break;
2669         case PORT_HSCIF:
2670                 port->fifosize = 128;
2671                 sci_port->overrun_reg = SCLSR;
2672                 sci_port->overrun_mask = SCLSR_ORER;
2673                 sci_port->sampling_rate_mask = SCI_SR_RANGE(8, 32);
2674                 break;
2675         case PORT_SCIFA:
2676                 port->fifosize = 64;
2677                 sci_port->overrun_reg = SCxSR;
2678                 sci_port->overrun_mask = SCIFA_ORER;
2679                 sci_port->sampling_rate_mask = SCI_SR_SCIFAB;
2680                 break;
2681         case PORT_SCIF:
2682                 port->fifosize = 16;
2683                 if (p->regtype == SCIx_SH7705_SCIF_REGTYPE) {
2684                         sci_port->overrun_reg = SCxSR;
2685                         sci_port->overrun_mask = SCIFA_ORER;
2686                         sci_port->sampling_rate_mask = SCI_SR(16);
2687                 } else {
2688                         sci_port->overrun_reg = SCLSR;
2689                         sci_port->overrun_mask = SCLSR_ORER;
2690                         sci_port->sampling_rate_mask = SCI_SR(32);
2691                 }
2692                 break;
2693         default:
2694                 port->fifosize = 1;
2695                 sci_port->overrun_reg = SCxSR;
2696                 sci_port->overrun_mask = SCI_ORER;
2697                 sci_port->sampling_rate_mask = SCI_SR(32);
2698                 break;
2699         }
2700
2701         /* SCIFA on sh7723 and sh7724 need a custom sampling rate that doesn't
2702          * match the SoC datasheet, this should be investigated. Let platform
2703          * data override the sampling rate for now.
2704          */
2705         if (p->sampling_rate)
2706                 sci_port->sampling_rate_mask = SCI_SR(p->sampling_rate);
2707
2708         if (!early) {
2709                 ret = sci_init_clocks(sci_port, &dev->dev);
2710                 if (ret < 0)
2711                         return ret;
2712
2713                 port->dev = &dev->dev;
2714
2715                 pm_runtime_enable(&dev->dev);
2716         }
2717
2718         sci_port->break_timer.data = (unsigned long)sci_port;
2719         sci_port->break_timer.function = sci_break_timer;
2720         init_timer(&sci_port->break_timer);
2721
2722         /*
2723          * Establish some sensible defaults for the error detection.
2724          */
2725         if (p->type == PORT_SCI) {
2726                 sci_port->error_mask = SCI_DEFAULT_ERROR_MASK;
2727                 sci_port->error_clear = SCI_ERROR_CLEAR;
2728         } else {
2729                 sci_port->error_mask = SCIF_DEFAULT_ERROR_MASK;
2730                 sci_port->error_clear = SCIF_ERROR_CLEAR;
2731         }
2732
2733         /*
2734          * Make the error mask inclusive of overrun detection, if
2735          * supported.
2736          */
2737         if (sci_port->overrun_reg == SCxSR) {
2738                 sci_port->error_mask |= sci_port->overrun_mask;
2739                 sci_port->error_clear &= ~sci_port->overrun_mask;
2740         }
2741
2742         port->type              = p->type;
2743         port->flags             = UPF_FIXED_PORT | p->flags;
2744         port->regshift          = p->regshift;
2745
2746         /*
2747          * The UART port needs an IRQ value, so we peg this to the RX IRQ
2748          * for the multi-IRQ ports, which is where we are primarily
2749          * concerned with the shutdown path synchronization.
2750          *
2751          * For the muxed case there's nothing more to do.
2752          */
2753         port->irq               = sci_port->irqs[SCIx_RXI_IRQ];
2754         port->irqflags          = 0;
2755
2756         port->serial_in         = sci_serial_in;
2757         port->serial_out        = sci_serial_out;
2758
2759         if (p->dma_slave_tx > 0 && p->dma_slave_rx > 0)
2760                 dev_dbg(port->dev, "DMA tx %d, rx %d\n",
2761                         p->dma_slave_tx, p->dma_slave_rx);
2762
2763         return 0;
2764 }
2765
2766 static void sci_cleanup_single(struct sci_port *port)
2767 {
2768         pm_runtime_disable(port->port.dev);
2769 }
2770
2771 #if defined(CONFIG_SERIAL_SH_SCI_CONSOLE) || \
2772     defined(CONFIG_SERIAL_SH_SCI_EARLYCON)
2773 static void serial_console_putchar(struct uart_port *port, int ch)
2774 {
2775         sci_poll_put_char(port, ch);
2776 }
2777
2778 /*
2779  *      Print a string to the serial port trying not to disturb
2780  *      any possible real use of the port...
2781  */
2782 static void serial_console_write(struct console *co, const char *s,
2783                                  unsigned count)
2784 {
2785         struct sci_port *sci_port = &sci_ports[co->index];
2786         struct uart_port *port = &sci_port->port;
2787         unsigned short bits, ctrl, ctrl_temp;
2788         unsigned long flags;
2789         int locked = 1;
2790
2791         local_irq_save(flags);
2792 #if defined(SUPPORT_SYSRQ)
2793         if (port->sysrq)
2794                 locked = 0;
2795         else
2796 #endif
2797         if (oops_in_progress)
2798                 locked = spin_trylock(&port->lock);
2799         else
2800                 spin_lock(&port->lock);
2801
2802         /* first save SCSCR then disable interrupts, keep clock source */
2803         ctrl = serial_port_in(port, SCSCR);
2804         ctrl_temp = (sci_port->cfg->scscr & ~(SCSCR_CKE1 | SCSCR_CKE0)) |
2805                     (ctrl & (SCSCR_CKE1 | SCSCR_CKE0));
2806         serial_port_out(port, SCSCR, ctrl_temp);
2807
2808         uart_console_write(port, s, count, serial_console_putchar);
2809
2810         /* wait until fifo is empty and last bit has been transmitted */
2811         bits = SCxSR_TDxE(port) | SCxSR_TEND(port);
2812         while ((serial_port_in(port, SCxSR) & bits) != bits)
2813                 cpu_relax();
2814
2815         /* restore the SCSCR */
2816         serial_port_out(port, SCSCR, ctrl);
2817
2818         if (locked)
2819                 spin_unlock(&port->lock);
2820         local_irq_restore(flags);
2821 }
2822
2823 static int serial_console_setup(struct console *co, char *options)
2824 {
2825         struct sci_port *sci_port;
2826         struct uart_port *port;
2827         int baud = 115200;
2828         int bits = 8;
2829         int parity = 'n';
2830         int flow = 'n';
2831         int ret;
2832
2833         /*
2834          * Refuse to handle any bogus ports.
2835          */
2836         if (co->index < 0 || co->index >= SCI_NPORTS)
2837                 return -ENODEV;
2838
2839         sci_port = &sci_ports[co->index];
2840         port = &sci_port->port;
2841
2842         /*
2843          * Refuse to handle uninitialized ports.
2844          */
2845         if (!port->ops)
2846                 return -ENODEV;
2847
2848         ret = sci_remap_port(port);
2849         if (unlikely(ret != 0))
2850                 return ret;
2851
2852         if (options)
2853                 uart_parse_options(options, &baud, &parity, &bits, &flow);
2854
2855         return uart_set_options(port, co, baud, parity, bits, flow);
2856 }
2857
2858 static struct console serial_console = {
2859         .name           = "ttySC",
2860         .device         = uart_console_device,
2861         .write          = serial_console_write,
2862         .setup          = serial_console_setup,
2863         .flags          = CON_PRINTBUFFER,
2864         .index          = -1,
2865         .data           = &sci_uart_driver,
2866 };
2867
2868 static struct console early_serial_console = {
2869         .name           = "early_ttySC",
2870         .write          = serial_console_write,
2871         .flags          = CON_PRINTBUFFER,
2872         .index          = -1,
2873 };
2874
2875 static char early_serial_buf[32];
2876
2877 static int sci_probe_earlyprintk(struct platform_device *pdev)
2878 {
2879         struct plat_sci_port *cfg = dev_get_platdata(&pdev->dev);
2880
2881         if (early_serial_console.data)
2882                 return -EEXIST;
2883
2884         early_serial_console.index = pdev->id;
2885
2886         sci_init_single(pdev, &sci_ports[pdev->id], pdev->id, cfg, true);
2887
2888         serial_console_setup(&early_serial_console, early_serial_buf);
2889
2890         if (!strstr(early_serial_buf, "keep"))
2891                 early_serial_console.flags |= CON_BOOT;
2892
2893         register_console(&early_serial_console);
2894         return 0;
2895 }
2896
2897 #define SCI_CONSOLE     (&serial_console)
2898
2899 #else
2900 static inline int sci_probe_earlyprintk(struct platform_device *pdev)
2901 {
2902         return -EINVAL;
2903 }
2904
2905 #define SCI_CONSOLE     NULL
2906
2907 #endif /* CONFIG_SERIAL_SH_SCI_CONSOLE || CONFIG_SERIAL_SH_SCI_EARLYCON */
2908
2909 static const char banner[] __initconst = "SuperH (H)SCI(F) driver initialized";
2910
2911 static struct uart_driver sci_uart_driver = {
2912         .owner          = THIS_MODULE,
2913         .driver_name    = "sci",
2914         .dev_name       = "ttySC",
2915         .major          = SCI_MAJOR,
2916         .minor          = SCI_MINOR_START,
2917         .nr             = SCI_NPORTS,
2918         .cons           = SCI_CONSOLE,
2919 };
2920
2921 static int sci_remove(struct platform_device *dev)
2922 {
2923         struct sci_port *port = platform_get_drvdata(dev);
2924
2925         uart_remove_one_port(&sci_uart_driver, &port->port);
2926
2927         sci_cleanup_single(port);
2928
2929         return 0;
2930 }
2931
2932
2933 #define SCI_OF_DATA(type, regtype)      (void *)((type) << 16 | (regtype))
2934 #define SCI_OF_TYPE(data)               ((unsigned long)(data) >> 16)
2935 #define SCI_OF_REGTYPE(data)            ((unsigned long)(data) & 0xffff)
2936
2937 static const struct of_device_id of_sci_match[] = {
2938         /* SoC-specific types */
2939         {
2940                 .compatible = "renesas,scif-r7s72100",
2941                 .data = SCI_OF_DATA(PORT_SCIF, SCIx_SH2_SCIF_FIFODATA_REGTYPE),
2942         },
2943         /* Family-specific types */
2944         {
2945                 .compatible = "renesas,rcar-gen1-scif",
2946                 .data = SCI_OF_DATA(PORT_SCIF, SCIx_SH4_SCIF_BRG_REGTYPE),
2947         }, {
2948                 .compatible = "renesas,rcar-gen2-scif",
2949                 .data = SCI_OF_DATA(PORT_SCIF, SCIx_SH4_SCIF_BRG_REGTYPE),
2950         }, {
2951                 .compatible = "renesas,rcar-gen3-scif",
2952                 .data = SCI_OF_DATA(PORT_SCIF, SCIx_SH4_SCIF_BRG_REGTYPE),
2953         },
2954         /* Generic types */
2955         {
2956                 .compatible = "renesas,scif",
2957                 .data = SCI_OF_DATA(PORT_SCIF, SCIx_SH4_SCIF_REGTYPE),
2958         }, {
2959                 .compatible = "renesas,scifa",
2960                 .data = SCI_OF_DATA(PORT_SCIFA, SCIx_SCIFA_REGTYPE),
2961         }, {
2962                 .compatible = "renesas,scifb",
2963                 .data = SCI_OF_DATA(PORT_SCIFB, SCIx_SCIFB_REGTYPE),
2964         }, {
2965                 .compatible = "renesas,hscif",
2966                 .data = SCI_OF_DATA(PORT_HSCIF, SCIx_HSCIF_REGTYPE),
2967         }, {
2968                 .compatible = "renesas,sci",
2969                 .data = SCI_OF_DATA(PORT_SCI, SCIx_SCI_REGTYPE),
2970         }, {
2971                 /* Terminator */
2972         },
2973 };
2974 MODULE_DEVICE_TABLE(of, of_sci_match);
2975
2976 static struct plat_sci_port *
2977 sci_parse_dt(struct platform_device *pdev, unsigned int *dev_id)
2978 {
2979         struct device_node *np = pdev->dev.of_node;
2980         const struct of_device_id *match;
2981         struct plat_sci_port *p;
2982         int id;
2983
2984         if (!IS_ENABLED(CONFIG_OF) || !np)
2985                 return NULL;
2986
2987         match = of_match_node(of_sci_match, np);
2988         if (!match)
2989                 return NULL;
2990
2991         p = devm_kzalloc(&pdev->dev, sizeof(struct plat_sci_port), GFP_KERNEL);
2992         if (!p)
2993                 return NULL;
2994
2995         /* Get the line number from the aliases node. */
2996         id = of_alias_get_id(np, "serial");
2997         if (id < 0) {
2998                 dev_err(&pdev->dev, "failed to get alias id (%d)\n", id);
2999                 return NULL;
3000         }
3001
3002         *dev_id = id;
3003
3004         p->flags = UPF_IOREMAP | UPF_BOOT_AUTOCONF;
3005         p->type = SCI_OF_TYPE(match->data);
3006         p->regtype = SCI_OF_REGTYPE(match->data);
3007         p->scscr = SCSCR_RE | SCSCR_TE;
3008
3009         if (of_find_property(np, "uart-has-rtscts", NULL))
3010                 p->capabilities |= SCIx_HAVE_RTSCTS;
3011
3012         return p;
3013 }
3014
3015 static int sci_probe_single(struct platform_device *dev,
3016                                       unsigned int index,
3017                                       struct plat_sci_port *p,
3018                                       struct sci_port *sciport)
3019 {
3020         int ret;
3021
3022         /* Sanity check */
3023         if (unlikely(index >= SCI_NPORTS)) {
3024                 dev_notice(&dev->dev, "Attempting to register port %d when only %d are available\n",
3025                            index+1, SCI_NPORTS);
3026                 dev_notice(&dev->dev, "Consider bumping CONFIG_SERIAL_SH_SCI_NR_UARTS!\n");
3027                 return -EINVAL;
3028         }
3029
3030         ret = sci_init_single(dev, sciport, index, p, false);
3031         if (ret)
3032                 return ret;
3033
3034         sciport->gpios = mctrl_gpio_init(&sciport->port, 0);
3035         if (IS_ERR(sciport->gpios) && PTR_ERR(sciport->gpios) != -ENOSYS)
3036                 return PTR_ERR(sciport->gpios);
3037
3038         if (p->capabilities & SCIx_HAVE_RTSCTS) {
3039                 if (!IS_ERR_OR_NULL(mctrl_gpio_to_gpiod(sciport->gpios,
3040                                                         UART_GPIO_CTS)) ||
3041                     !IS_ERR_OR_NULL(mctrl_gpio_to_gpiod(sciport->gpios,
3042                                                         UART_GPIO_RTS))) {
3043                         dev_err(&dev->dev, "Conflicting RTS/CTS config\n");
3044                         return -EINVAL;
3045                 }
3046                 sciport->port.flags |= UPF_HARD_FLOW;
3047         }
3048
3049         ret = uart_add_one_port(&sci_uart_driver, &sciport->port);
3050         if (ret) {
3051                 sci_cleanup_single(sciport);
3052                 return ret;
3053         }
3054
3055         return 0;
3056 }
3057
3058 static int sci_probe(struct platform_device *dev)
3059 {
3060         struct plat_sci_port *p;
3061         struct sci_port *sp;
3062         unsigned int dev_id;
3063         int ret;
3064
3065         /*
3066          * If we've come here via earlyprintk initialization, head off to
3067          * the special early probe. We don't have sufficient device state
3068          * to make it beyond this yet.
3069          */
3070         if (is_early_platform_device(dev))
3071                 return sci_probe_earlyprintk(dev);
3072
3073         if (dev->dev.of_node) {
3074                 p = sci_parse_dt(dev, &dev_id);
3075                 if (p == NULL)
3076                         return -EINVAL;
3077         } else {
3078                 p = dev->dev.platform_data;
3079                 if (p == NULL) {
3080                         dev_err(&dev->dev, "no platform data supplied\n");
3081                         return -EINVAL;
3082                 }
3083
3084                 dev_id = dev->id;
3085         }
3086
3087         sp = &sci_ports[dev_id];
3088         platform_set_drvdata(dev, sp);
3089
3090         ret = sci_probe_single(dev, dev_id, p, sp);
3091         if (ret)
3092                 return ret;
3093
3094 #ifdef CONFIG_SH_STANDARD_BIOS
3095         sh_bios_gdb_detach();
3096 #endif
3097
3098         return 0;
3099 }
3100
3101 static __maybe_unused int sci_suspend(struct device *dev)
3102 {
3103         struct sci_port *sport = dev_get_drvdata(dev);
3104
3105         if (sport)
3106                 uart_suspend_port(&sci_uart_driver, &sport->port);
3107
3108         return 0;
3109 }
3110
3111 static __maybe_unused int sci_resume(struct device *dev)
3112 {
3113         struct sci_port *sport = dev_get_drvdata(dev);
3114
3115         if (sport)
3116                 uart_resume_port(&sci_uart_driver, &sport->port);
3117
3118         return 0;
3119 }
3120
3121 static SIMPLE_DEV_PM_OPS(sci_dev_pm_ops, sci_suspend, sci_resume);
3122
3123 static struct platform_driver sci_driver = {
3124         .probe          = sci_probe,
3125         .remove         = sci_remove,
3126         .driver         = {
3127                 .name   = "sh-sci",
3128                 .pm     = &sci_dev_pm_ops,
3129                 .of_match_table = of_match_ptr(of_sci_match),
3130         },
3131 };
3132
3133 static int __init sci_init(void)
3134 {
3135         int ret;
3136
3137         pr_info("%s\n", banner);
3138
3139         ret = uart_register_driver(&sci_uart_driver);
3140         if (likely(ret == 0)) {
3141                 ret = platform_driver_register(&sci_driver);
3142                 if (unlikely(ret))
3143                         uart_unregister_driver(&sci_uart_driver);
3144         }
3145
3146         return ret;
3147 }
3148
3149 static void __exit sci_exit(void)
3150 {
3151         platform_driver_unregister(&sci_driver);
3152         uart_unregister_driver(&sci_uart_driver);
3153 }
3154
3155 #ifdef CONFIG_SERIAL_SH_SCI_CONSOLE
3156 early_platform_init_buffer("earlyprintk", &sci_driver,
3157                            early_serial_buf, ARRAY_SIZE(early_serial_buf));
3158 #endif
3159 #ifdef CONFIG_SERIAL_SH_SCI_EARLYCON
3160 static struct __init plat_sci_port port_cfg;
3161
3162 static int __init early_console_setup(struct earlycon_device *device,
3163                                       int type)
3164 {
3165         if (!device->port.membase)
3166                 return -ENODEV;
3167
3168         device->port.serial_in = sci_serial_in;
3169         device->port.serial_out = sci_serial_out;
3170         device->port.type = type;
3171         memcpy(&sci_ports[0].port, &device->port, sizeof(struct uart_port));
3172         sci_ports[0].cfg = &port_cfg;
3173         sci_ports[0].cfg->type = type;
3174         sci_probe_regmap(sci_ports[0].cfg);
3175         port_cfg.scscr = sci_serial_in(&sci_ports[0].port, SCSCR) |
3176                          SCSCR_RE | SCSCR_TE;
3177         sci_serial_out(&sci_ports[0].port, SCSCR, port_cfg.scscr);
3178
3179         device->con->write = serial_console_write;
3180         return 0;
3181 }
3182 static int __init sci_early_console_setup(struct earlycon_device *device,
3183                                           const char *opt)
3184 {
3185         return early_console_setup(device, PORT_SCI);
3186 }
3187 static int __init scif_early_console_setup(struct earlycon_device *device,
3188                                           const char *opt)
3189 {
3190         return early_console_setup(device, PORT_SCIF);
3191 }
3192 static int __init scifa_early_console_setup(struct earlycon_device *device,
3193                                           const char *opt)
3194 {
3195         return early_console_setup(device, PORT_SCIFA);
3196 }
3197 static int __init scifb_early_console_setup(struct earlycon_device *device,
3198                                           const char *opt)
3199 {
3200         return early_console_setup(device, PORT_SCIFB);
3201 }
3202 static int __init hscif_early_console_setup(struct earlycon_device *device,
3203                                           const char *opt)
3204 {
3205         return early_console_setup(device, PORT_HSCIF);
3206 }
3207
3208 OF_EARLYCON_DECLARE(sci, "renesas,sci", sci_early_console_setup);
3209 OF_EARLYCON_DECLARE(scif, "renesas,scif", scif_early_console_setup);
3210 OF_EARLYCON_DECLARE(scifa, "renesas,scifa", scifa_early_console_setup);
3211 OF_EARLYCON_DECLARE(scifb, "renesas,scifb", scifb_early_console_setup);
3212 OF_EARLYCON_DECLARE(hscif, "renesas,hscif", hscif_early_console_setup);
3213 #endif /* CONFIG_SERIAL_SH_SCI_EARLYCON */
3214
3215 module_init(sci_init);
3216 module_exit(sci_exit);
3217
3218 MODULE_LICENSE("GPL");
3219 MODULE_ALIAS("platform:sh-sci");
3220 MODULE_AUTHOR("Paul Mundt");
3221 MODULE_DESCRIPTION("SuperH (H)SCI(F) serial driver");