Linux-libre 5.4.49-gnu
[librecmc/linux-libre.git] / drivers / tty / mips_ejtag_fdc.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * TTY driver for MIPS EJTAG Fast Debug Channels.
4  *
5  * Copyright (C) 2007-2015 Imagination Technologies Ltd
6  */
7
8 #include <linux/atomic.h>
9 #include <linux/bitops.h>
10 #include <linux/completion.h>
11 #include <linux/console.h>
12 #include <linux/delay.h>
13 #include <linux/export.h>
14 #include <linux/init.h>
15 #include <linux/interrupt.h>
16 #include <linux/kernel.h>
17 #include <linux/kgdb.h>
18 #include <linux/kthread.h>
19 #include <linux/sched.h>
20 #include <linux/serial.h>
21 #include <linux/serial_core.h>
22 #include <linux/slab.h>
23 #include <linux/spinlock.h>
24 #include <linux/string.h>
25 #include <linux/timer.h>
26 #include <linux/tty.h>
27 #include <linux/tty_driver.h>
28 #include <linux/tty_flip.h>
29 #include <linux/uaccess.h>
30
31 #include <asm/cdmm.h>
32 #include <asm/irq.h>
33
34 /* Register offsets */
35 #define REG_FDACSR      0x00    /* FDC Access Control and Status Register */
36 #define REG_FDCFG       0x08    /* FDC Configuration Register */
37 #define REG_FDSTAT      0x10    /* FDC Status Register */
38 #define REG_FDRX        0x18    /* FDC Receive Register */
39 #define REG_FDTX(N)     (0x20+0x8*(N))  /* FDC Transmit Register n (0..15) */
40
41 /* Register fields */
42
43 #define REG_FDCFG_TXINTTHRES_SHIFT      18
44 #define REG_FDCFG_TXINTTHRES            (0x3 << REG_FDCFG_TXINTTHRES_SHIFT)
45 #define REG_FDCFG_TXINTTHRES_DISABLED   (0x0 << REG_FDCFG_TXINTTHRES_SHIFT)
46 #define REG_FDCFG_TXINTTHRES_EMPTY      (0x1 << REG_FDCFG_TXINTTHRES_SHIFT)
47 #define REG_FDCFG_TXINTTHRES_NOTFULL    (0x2 << REG_FDCFG_TXINTTHRES_SHIFT)
48 #define REG_FDCFG_TXINTTHRES_NEAREMPTY  (0x3 << REG_FDCFG_TXINTTHRES_SHIFT)
49 #define REG_FDCFG_RXINTTHRES_SHIFT      16
50 #define REG_FDCFG_RXINTTHRES            (0x3 << REG_FDCFG_RXINTTHRES_SHIFT)
51 #define REG_FDCFG_RXINTTHRES_DISABLED   (0x0 << REG_FDCFG_RXINTTHRES_SHIFT)
52 #define REG_FDCFG_RXINTTHRES_FULL       (0x1 << REG_FDCFG_RXINTTHRES_SHIFT)
53 #define REG_FDCFG_RXINTTHRES_NOTEMPTY   (0x2 << REG_FDCFG_RXINTTHRES_SHIFT)
54 #define REG_FDCFG_RXINTTHRES_NEARFULL   (0x3 << REG_FDCFG_RXINTTHRES_SHIFT)
55 #define REG_FDCFG_TXFIFOSIZE_SHIFT      8
56 #define REG_FDCFG_TXFIFOSIZE            (0xff << REG_FDCFG_TXFIFOSIZE_SHIFT)
57 #define REG_FDCFG_RXFIFOSIZE_SHIFT      0
58 #define REG_FDCFG_RXFIFOSIZE            (0xff << REG_FDCFG_RXFIFOSIZE_SHIFT)
59
60 #define REG_FDSTAT_TXCOUNT_SHIFT        24
61 #define REG_FDSTAT_TXCOUNT              (0xff << REG_FDSTAT_TXCOUNT_SHIFT)
62 #define REG_FDSTAT_RXCOUNT_SHIFT        16
63 #define REG_FDSTAT_RXCOUNT              (0xff << REG_FDSTAT_RXCOUNT_SHIFT)
64 #define REG_FDSTAT_RXCHAN_SHIFT         4
65 #define REG_FDSTAT_RXCHAN               (0xf << REG_FDSTAT_RXCHAN_SHIFT)
66 #define REG_FDSTAT_RXE                  BIT(3)  /* Rx Empty */
67 #define REG_FDSTAT_RXF                  BIT(2)  /* Rx Full */
68 #define REG_FDSTAT_TXE                  BIT(1)  /* Tx Empty */
69 #define REG_FDSTAT_TXF                  BIT(0)  /* Tx Full */
70
71 /* Default channel for the early console */
72 #define CONSOLE_CHANNEL      1
73
74 #define NUM_TTY_CHANNELS     16
75
76 #define RX_BUF_SIZE 1024
77
78 /*
79  * When the IRQ is unavailable, the FDC state must be polled for incoming data
80  * and space becoming available in TX FIFO.
81  */
82 #define FDC_TTY_POLL (HZ / 50)
83
84 struct mips_ejtag_fdc_tty;
85
86 /**
87  * struct mips_ejtag_fdc_tty_port - Wrapper struct for FDC tty_port.
88  * @port:               TTY port data
89  * @driver:             TTY driver.
90  * @rx_lock:            Lock for rx_buf.
91  *                      This protects between the hard interrupt and user
92  *                      context. It's also held during read SWITCH operations.
93  * @rx_buf:             Read buffer.
94  * @xmit_lock:          Lock for xmit_*, and port.xmit_buf.
95  *                      This protects between user context and kernel thread.
96  *                      It is used from chars_in_buffer()/write_room() TTY
97  *                      callbacks which are used during wait operations, so a
98  *                      mutex is unsuitable.
99  * @xmit_cnt:           Size of xmit buffer contents.
100  * @xmit_head:          Head of xmit buffer where data is written.
101  * @xmit_tail:          Tail of xmit buffer where data is read.
102  * @xmit_empty:         Completion for xmit buffer being empty.
103  */
104 struct mips_ejtag_fdc_tty_port {
105         struct tty_port                  port;
106         struct mips_ejtag_fdc_tty       *driver;
107         raw_spinlock_t                   rx_lock;
108         void                            *rx_buf;
109         spinlock_t                       xmit_lock;
110         unsigned int                     xmit_cnt;
111         unsigned int                     xmit_head;
112         unsigned int                     xmit_tail;
113         struct completion                xmit_empty;
114 };
115
116 /**
117  * struct mips_ejtag_fdc_tty - Driver data for FDC as a whole.
118  * @dev:                FDC device (for dev_*() logging).
119  * @driver:             TTY driver.
120  * @cpu:                CPU number for this FDC.
121  * @fdc_name:           FDC name (not for base of channel names).
122  * @driver_name:        Base of driver name.
123  * @ports:              Per-channel data.
124  * @waitqueue:          Wait queue for waiting for TX data, or for space in TX
125  *                      FIFO.
126  * @lock:               Lock to protect FDCFG (interrupt enable).
127  * @thread:             KThread for writing out data to FDC.
128  * @reg:                FDC registers.
129  * @tx_fifo:            TX FIFO size.
130  * @xmit_size:          Size of each port's xmit buffer.
131  * @xmit_total:         Total number of bytes (from all ports) to transmit.
132  * @xmit_next:          Next port number to transmit from (round robin).
133  * @xmit_full:          Indicates TX FIFO is full, we're waiting for space.
134  * @irq:                IRQ number (negative if no IRQ).
135  * @removing:           Indicates the device is being removed and @poll_timer
136  *                      should not be restarted.
137  * @poll_timer:         Timer for polling for interrupt events when @irq < 0.
138  * @sysrq_pressed:      Whether the magic sysrq key combination has been
139  *                      detected. See mips_ejtag_fdc_handle().
140  */
141 struct mips_ejtag_fdc_tty {
142         struct device                   *dev;
143         struct tty_driver               *driver;
144         unsigned int                     cpu;
145         char                             fdc_name[16];
146         char                             driver_name[16];
147         struct mips_ejtag_fdc_tty_port   ports[NUM_TTY_CHANNELS];
148         wait_queue_head_t                waitqueue;
149         raw_spinlock_t                   lock;
150         struct task_struct              *thread;
151
152         void __iomem                    *reg;
153         u8                               tx_fifo;
154
155         unsigned int                     xmit_size;
156         atomic_t                         xmit_total;
157         unsigned int                     xmit_next;
158         bool                             xmit_full;
159
160         int                              irq;
161         bool                             removing;
162         struct timer_list                poll_timer;
163
164 #ifdef CONFIG_MAGIC_SYSRQ
165         bool                             sysrq_pressed;
166 #endif
167 };
168
169 /* Hardware access */
170
171 static inline void mips_ejtag_fdc_write(struct mips_ejtag_fdc_tty *priv,
172                                         unsigned int offs, unsigned int data)
173 {
174         __raw_writel(data, priv->reg + offs);
175 }
176
177 static inline unsigned int mips_ejtag_fdc_read(struct mips_ejtag_fdc_tty *priv,
178                                                unsigned int offs)
179 {
180         return __raw_readl(priv->reg + offs);
181 }
182
183 /* Encoding of byte stream in FDC words */
184
185 /**
186  * struct fdc_word - FDC word encoding some number of bytes of data.
187  * @word:               Raw FDC word.
188  * @bytes:              Number of bytes encoded by @word.
189  */
190 struct fdc_word {
191         u32             word;
192         unsigned int    bytes;
193 };
194
195 /*
196  * This is a compact encoding which allows every 1 byte, 2 byte, and 3 byte
197  * sequence to be encoded in a single word, while allowing the majority of 4
198  * byte sequences (including all ASCII and common binary data) to be encoded in
199  * a single word too.
200  *    _______________________ _____________
201  *   |       FDC Word        |             |
202  *   |31-24|23-16|15-8 | 7-0 |    Bytes    |
203  *   |_____|_____|_____|_____|_____________|
204  *   |     |     |     |     |             |
205  *   |0x80 |0x80 |0x80 |  WW | WW          |
206  *   |0x81 |0x81 |  XX |  WW | WW XX       |
207  *   |0x82 |  YY |  XX |  WW | WW XX YY    |
208  *   |  ZZ |  YY |  XX |  WW | WW XX YY ZZ |
209  *   |_____|_____|_____|_____|_____________|
210  *
211  * Note that the 4-byte encoding can only be used where none of the other 3
212  * encodings match, otherwise it must fall back to the 3 byte encoding.
213  */
214
215 /* ranges >= 1 && sizes[0] >= 1 */
216 static struct fdc_word mips_ejtag_fdc_encode(const char **ptrs,
217                                              unsigned int *sizes,
218                                              unsigned int ranges)
219 {
220         struct fdc_word word = { 0, 0 };
221         const char **ptrs_end = ptrs + ranges;
222
223         for (; ptrs < ptrs_end; ++ptrs) {
224                 const char *ptr = *(ptrs++);
225                 const char *end = ptr + *(sizes++);
226
227                 for (; ptr < end; ++ptr) {
228                         word.word |= (u8)*ptr << (8*word.bytes);
229                         ++word.bytes;
230                         if (word.bytes == 4)
231                                 goto done;
232                 }
233         }
234 done:
235         /* Choose the appropriate encoding */
236         switch (word.bytes) {
237         case 4:
238                 /* 4 byte encoding, but don't match the 1-3 byte encodings */
239                 if ((word.word >> 8) != 0x808080 &&
240                     (word.word >> 16) != 0x8181 &&
241                     (word.word >> 24) != 0x82)
242                         break;
243                 /* Fall back to a 3 byte encoding */
244                 word.bytes = 3;
245                 word.word &= 0x00ffffff;
246         case 3:
247                 /* 3 byte encoding */
248                 word.word |= 0x82000000;
249                 break;
250         case 2:
251                 /* 2 byte encoding */
252                 word.word |= 0x81810000;
253                 break;
254         case 1:
255                 /* 1 byte encoding */
256                 word.word |= 0x80808000;
257                 break;
258         }
259         return word;
260 }
261
262 static unsigned int mips_ejtag_fdc_decode(u32 word, char *buf)
263 {
264         buf[0] = (u8)word;
265         word >>= 8;
266         if (word == 0x808080)
267                 return 1;
268         buf[1] = (u8)word;
269         word >>= 8;
270         if (word == 0x8181)
271                 return 2;
272         buf[2] = (u8)word;
273         word >>= 8;
274         if (word == 0x82)
275                 return 3;
276         buf[3] = (u8)word;
277         return 4;
278 }
279
280 /* Console operations */
281
282 /**
283  * struct mips_ejtag_fdc_console - Wrapper struct for FDC consoles.
284  * @cons:               Console object.
285  * @tty_drv:            TTY driver associated with this console.
286  * @lock:               Lock to protect concurrent access to other fields.
287  *                      This is raw because it may be used very early.
288  * @initialised:        Whether the console is initialised.
289  * @regs:               Registers base address for each CPU.
290  */
291 struct mips_ejtag_fdc_console {
292         struct console           cons;
293         struct tty_driver       *tty_drv;
294         raw_spinlock_t           lock;
295         bool                     initialised;
296         void __iomem            *regs[NR_CPUS];
297 };
298
299 /* Low level console write shared by early console and normal console */
300 static void mips_ejtag_fdc_console_write(struct console *c, const char *s,
301                                          unsigned int count)
302 {
303         struct mips_ejtag_fdc_console *cons =
304                 container_of(c, struct mips_ejtag_fdc_console, cons);
305         void __iomem *regs;
306         struct fdc_word word;
307         unsigned long flags;
308         unsigned int i, buf_len, cpu;
309         bool done_cr = false;
310         char buf[4];
311         const char *buf_ptr = buf;
312         /* Number of bytes of input data encoded up to each byte in buf */
313         u8 inc[4];
314
315         local_irq_save(flags);
316         cpu = smp_processor_id();
317         regs = cons->regs[cpu];
318         /* First console output on this CPU? */
319         if (!regs) {
320                 regs = mips_cdmm_early_probe(0xfd);
321                 cons->regs[cpu] = regs;
322         }
323         /* Already tried and failed to find FDC on this CPU? */
324         if (IS_ERR(regs))
325                 goto out;
326         while (count) {
327                 /*
328                  * Copy the next few characters to a buffer so we can inject
329                  * carriage returns before newlines.
330                  */
331                 for (buf_len = 0, i = 0; buf_len < 4 && i < count; ++buf_len) {
332                         if (s[i] == '\n' && !done_cr) {
333                                 buf[buf_len] = '\r';
334                                 done_cr = true;
335                         } else {
336                                 buf[buf_len] = s[i];
337                                 done_cr = false;
338                                 ++i;
339                         }
340                         inc[buf_len] = i;
341                 }
342                 word = mips_ejtag_fdc_encode(&buf_ptr, &buf_len, 1);
343                 count -= inc[word.bytes - 1];
344                 s += inc[word.bytes - 1];
345
346                 /* Busy wait until there's space in fifo */
347                 while (__raw_readl(regs + REG_FDSTAT) & REG_FDSTAT_TXF)
348                         ;
349                 __raw_writel(word.word, regs + REG_FDTX(c->index));
350         }
351 out:
352         local_irq_restore(flags);
353 }
354
355 static struct tty_driver *mips_ejtag_fdc_console_device(struct console *c,
356                                                         int *index)
357 {
358         struct mips_ejtag_fdc_console *cons =
359                 container_of(c, struct mips_ejtag_fdc_console, cons);
360
361         *index = c->index;
362         return cons->tty_drv;
363 }
364
365 /* Initialise an FDC console (early or normal */
366 static int __init mips_ejtag_fdc_console_init(struct mips_ejtag_fdc_console *c)
367 {
368         void __iomem *regs;
369         unsigned long flags;
370         int ret = 0;
371
372         raw_spin_lock_irqsave(&c->lock, flags);
373         /* Don't init twice */
374         if (c->initialised)
375                 goto out;
376         /* Look for the FDC device */
377         regs = mips_cdmm_early_probe(0xfd);
378         if (IS_ERR(regs)) {
379                 ret = PTR_ERR(regs);
380                 goto out;
381         }
382
383         c->initialised = true;
384         c->regs[smp_processor_id()] = regs;
385         register_console(&c->cons);
386 out:
387         raw_spin_unlock_irqrestore(&c->lock, flags);
388         return ret;
389 }
390
391 static struct mips_ejtag_fdc_console mips_ejtag_fdc_con = {
392         .cons   = {
393                 .name   = "fdc",
394                 .write  = mips_ejtag_fdc_console_write,
395                 .device = mips_ejtag_fdc_console_device,
396                 .flags  = CON_PRINTBUFFER,
397                 .index  = -1,
398         },
399         .lock   = __RAW_SPIN_LOCK_UNLOCKED(mips_ejtag_fdc_con.lock),
400 };
401
402 /* TTY RX/TX operations */
403
404 /**
405  * mips_ejtag_fdc_put_chan() - Write out a block of channel data.
406  * @priv:       Pointer to driver private data.
407  * @chan:       Channel number.
408  *
409  * Write a single block of data out to the debug adapter. If the circular buffer
410  * is wrapped then only the first block is written.
411  *
412  * Returns:     The number of bytes that were written.
413  */
414 static unsigned int mips_ejtag_fdc_put_chan(struct mips_ejtag_fdc_tty *priv,
415                                             unsigned int chan)
416 {
417         struct mips_ejtag_fdc_tty_port *dport;
418         struct tty_struct *tty;
419         const char *ptrs[2];
420         unsigned int sizes[2] = { 0 };
421         struct fdc_word word = { .bytes = 0 };
422         unsigned long flags;
423
424         dport = &priv->ports[chan];
425         spin_lock(&dport->xmit_lock);
426         if (dport->xmit_cnt) {
427                 ptrs[0] = dport->port.xmit_buf + dport->xmit_tail;
428                 sizes[0] = min_t(unsigned int,
429                                  priv->xmit_size - dport->xmit_tail,
430                                  dport->xmit_cnt);
431                 ptrs[1] = dport->port.xmit_buf;
432                 sizes[1] = dport->xmit_cnt - sizes[0];
433                 word = mips_ejtag_fdc_encode(ptrs, sizes, 1 + !!sizes[1]);
434
435                 dev_dbg(priv->dev, "%s%u: out %08x: \"%*pE%*pE\"\n",
436                         priv->driver_name, chan, word.word,
437                         min_t(int, word.bytes, sizes[0]), ptrs[0],
438                         max_t(int, 0, word.bytes - sizes[0]), ptrs[1]);
439
440                 local_irq_save(flags);
441                 /* Maybe we raced with the console and TX FIFO is full */
442                 if (mips_ejtag_fdc_read(priv, REG_FDSTAT) & REG_FDSTAT_TXF)
443                         word.bytes = 0;
444                 else
445                         mips_ejtag_fdc_write(priv, REG_FDTX(chan), word.word);
446                 local_irq_restore(flags);
447
448                 dport->xmit_cnt -= word.bytes;
449                 if (!dport->xmit_cnt) {
450                         /* Reset pointers to avoid wraps */
451                         dport->xmit_head = 0;
452                         dport->xmit_tail = 0;
453                         complete(&dport->xmit_empty);
454                 } else {
455                         dport->xmit_tail += word.bytes;
456                         if (dport->xmit_tail >= priv->xmit_size)
457                                 dport->xmit_tail -= priv->xmit_size;
458                 }
459                 atomic_sub(word.bytes, &priv->xmit_total);
460         }
461         spin_unlock(&dport->xmit_lock);
462
463         /* If we've made more data available, wake up tty */
464         if (sizes[0] && word.bytes) {
465                 tty = tty_port_tty_get(&dport->port);
466                 if (tty) {
467                         tty_wakeup(tty);
468                         tty_kref_put(tty);
469                 }
470         }
471
472         return word.bytes;
473 }
474
475 /**
476  * mips_ejtag_fdc_put() - Kernel thread to write out channel data to FDC.
477  * @arg:        Driver pointer.
478  *
479  * This kernel thread runs while @priv->xmit_total != 0, and round robins the
480  * channels writing out blocks of buffered data to the FDC TX FIFO.
481  */
482 static int mips_ejtag_fdc_put(void *arg)
483 {
484         struct mips_ejtag_fdc_tty *priv = arg;
485         struct mips_ejtag_fdc_tty_port *dport;
486         unsigned int ret;
487         u32 cfg;
488
489         __set_current_state(TASK_RUNNING);
490         while (!kthread_should_stop()) {
491                 /* Wait for data to actually write */
492                 wait_event_interruptible(priv->waitqueue,
493                                          atomic_read(&priv->xmit_total) ||
494                                          kthread_should_stop());
495                 if (kthread_should_stop())
496                         break;
497
498                 /* Wait for TX FIFO space to write data */
499                 raw_spin_lock_irq(&priv->lock);
500                 if (mips_ejtag_fdc_read(priv, REG_FDSTAT) & REG_FDSTAT_TXF) {
501                         priv->xmit_full = true;
502                         if (priv->irq >= 0) {
503                                 /* Enable TX interrupt */
504                                 cfg = mips_ejtag_fdc_read(priv, REG_FDCFG);
505                                 cfg &= ~REG_FDCFG_TXINTTHRES;
506                                 cfg |= REG_FDCFG_TXINTTHRES_NOTFULL;
507                                 mips_ejtag_fdc_write(priv, REG_FDCFG, cfg);
508                         }
509                 }
510                 raw_spin_unlock_irq(&priv->lock);
511                 wait_event_interruptible(priv->waitqueue,
512                                          !(mips_ejtag_fdc_read(priv, REG_FDSTAT)
513                                            & REG_FDSTAT_TXF) ||
514                                          kthread_should_stop());
515                 if (kthread_should_stop())
516                         break;
517
518                 /* Find next channel with data to output */
519                 for (;;) {
520                         dport = &priv->ports[priv->xmit_next];
521                         spin_lock(&dport->xmit_lock);
522                         ret = dport->xmit_cnt;
523                         spin_unlock(&dport->xmit_lock);
524                         if (ret)
525                                 break;
526                         /* Round robin */
527                         ++priv->xmit_next;
528                         if (priv->xmit_next >= NUM_TTY_CHANNELS)
529                                 priv->xmit_next = 0;
530                 }
531
532                 /* Try writing data to the chosen channel */
533                 ret = mips_ejtag_fdc_put_chan(priv, priv->xmit_next);
534
535                 /*
536                  * If anything was output, move on to the next channel so as not
537                  * to starve other channels.
538                  */
539                 if (ret) {
540                         ++priv->xmit_next;
541                         if (priv->xmit_next >= NUM_TTY_CHANNELS)
542                                 priv->xmit_next = 0;
543                 }
544         }
545
546         return 0;
547 }
548
549 /**
550  * mips_ejtag_fdc_handle() - Handle FDC events.
551  * @priv:       Pointer to driver private data.
552  *
553  * Handle FDC events, such as new incoming data which needs draining out of the
554  * RX FIFO and feeding into the appropriate TTY ports, and space becoming
555  * available in the TX FIFO which would allow more data to be written out.
556  */
557 static void mips_ejtag_fdc_handle(struct mips_ejtag_fdc_tty *priv)
558 {
559         struct mips_ejtag_fdc_tty_port *dport;
560         unsigned int stat, channel, data, cfg, i, flipped;
561         int len;
562         char buf[4];
563
564         for (;;) {
565                 /* Find which channel the next FDC word is destined for */
566                 stat = mips_ejtag_fdc_read(priv, REG_FDSTAT);
567                 if (stat & REG_FDSTAT_RXE)
568                         break;
569                 channel = (stat & REG_FDSTAT_RXCHAN) >> REG_FDSTAT_RXCHAN_SHIFT;
570                 dport = &priv->ports[channel];
571
572                 /* Read out the FDC word, decode it, and pass to tty layer */
573                 raw_spin_lock(&dport->rx_lock);
574                 data = mips_ejtag_fdc_read(priv, REG_FDRX);
575
576                 len = mips_ejtag_fdc_decode(data, buf);
577                 dev_dbg(priv->dev, "%s%u: in  %08x: \"%*pE\"\n",
578                         priv->driver_name, channel, data, len, buf);
579
580                 flipped = 0;
581                 for (i = 0; i < len; ++i) {
582 #ifdef CONFIG_MAGIC_SYSRQ
583 #ifdef CONFIG_MIPS_EJTAG_FDC_KGDB
584                         /* Support just Ctrl+C with KGDB channel */
585                         if (channel == CONFIG_MIPS_EJTAG_FDC_KGDB_CHAN) {
586                                 if (buf[i] == '\x03') { /* ^C */
587                                         handle_sysrq('g');
588                                         continue;
589                                 }
590                         }
591 #endif
592                         /* Support Ctrl+O for console channel */
593                         if (channel == mips_ejtag_fdc_con.cons.index) {
594                                 if (buf[i] == '\x0f') { /* ^O */
595                                         priv->sysrq_pressed =
596                                                 !priv->sysrq_pressed;
597                                         if (priv->sysrq_pressed)
598                                                 continue;
599                                 } else if (priv->sysrq_pressed) {
600                                         handle_sysrq(buf[i]);
601                                         priv->sysrq_pressed = false;
602                                         continue;
603                                 }
604                         }
605 #endif /* CONFIG_MAGIC_SYSRQ */
606
607                         /* Check the port isn't being shut down */
608                         if (!dport->rx_buf)
609                                 continue;
610
611                         flipped += tty_insert_flip_char(&dport->port, buf[i],
612                                                         TTY_NORMAL);
613                 }
614                 if (flipped)
615                         tty_flip_buffer_push(&dport->port);
616
617                 raw_spin_unlock(&dport->rx_lock);
618         }
619
620         /* If TX FIFO no longer full we may be able to write more data */
621         raw_spin_lock(&priv->lock);
622         if (priv->xmit_full && !(stat & REG_FDSTAT_TXF)) {
623                 priv->xmit_full = false;
624
625                 /* Disable TX interrupt */
626                 cfg = mips_ejtag_fdc_read(priv, REG_FDCFG);
627                 cfg &= ~REG_FDCFG_TXINTTHRES;
628                 cfg |= REG_FDCFG_TXINTTHRES_DISABLED;
629                 mips_ejtag_fdc_write(priv, REG_FDCFG, cfg);
630
631                 /* Wait the kthread so it can try writing more data */
632                 wake_up_interruptible(&priv->waitqueue);
633         }
634         raw_spin_unlock(&priv->lock);
635 }
636
637 /**
638  * mips_ejtag_fdc_isr() - Interrupt handler.
639  * @irq:        IRQ number.
640  * @dev_id:     Pointer to driver private data.
641  *
642  * This is the interrupt handler, used when interrupts are enabled.
643  *
644  * It simply triggers the common FDC handler code.
645  *
646  * Returns:     IRQ_HANDLED if an FDC interrupt was pending.
647  *              IRQ_NONE otherwise.
648  */
649 static irqreturn_t mips_ejtag_fdc_isr(int irq, void *dev_id)
650 {
651         struct mips_ejtag_fdc_tty *priv = dev_id;
652
653         /*
654          * We're not using proper per-cpu IRQs, so we must be careful not to
655          * handle IRQs on CPUs we're not interested in.
656          *
657          * Ideally proper per-cpu IRQ handlers could be used, but that doesn't
658          * fit well with the whole sharing of the main CPU IRQ lines. When we
659          * have something with a GIC that routes the FDC IRQs (i.e. no sharing
660          * between handlers) then support could be added more easily.
661          */
662         if (smp_processor_id() != priv->cpu)
663                 return IRQ_NONE;
664
665         /* If no FDC interrupt pending, it wasn't for us */
666         if (!(read_c0_cause() & CAUSEF_FDCI))
667                 return IRQ_NONE;
668
669         mips_ejtag_fdc_handle(priv);
670         return IRQ_HANDLED;
671 }
672
673 /**
674  * mips_ejtag_fdc_tty_timer() - Poll FDC for incoming data.
675  * @opaque:     Pointer to driver private data.
676  *
677  * This is the timer handler for when interrupts are disabled and polling the
678  * FDC state is required.
679  *
680  * It simply triggers the common FDC handler code and arranges for further
681  * polling.
682  */
683 static void mips_ejtag_fdc_tty_timer(struct timer_list *t)
684 {
685         struct mips_ejtag_fdc_tty *priv = from_timer(priv, t, poll_timer);
686
687         mips_ejtag_fdc_handle(priv);
688         if (!priv->removing)
689                 mod_timer(&priv->poll_timer, jiffies + FDC_TTY_POLL);
690 }
691
692 /* TTY Port operations */
693
694 static int mips_ejtag_fdc_tty_port_activate(struct tty_port *port,
695                                             struct tty_struct *tty)
696 {
697         struct mips_ejtag_fdc_tty_port *dport =
698                 container_of(port, struct mips_ejtag_fdc_tty_port, port);
699         void *rx_buf;
700
701         /* Allocate the buffer we use for writing data */
702         if (tty_port_alloc_xmit_buf(port) < 0)
703                 goto err;
704
705         /* Allocate the buffer we use for reading data */
706         rx_buf = kzalloc(RX_BUF_SIZE, GFP_KERNEL);
707         if (!rx_buf)
708                 goto err_free_xmit;
709
710         raw_spin_lock_irq(&dport->rx_lock);
711         dport->rx_buf = rx_buf;
712         raw_spin_unlock_irq(&dport->rx_lock);
713
714         return 0;
715 err_free_xmit:
716         tty_port_free_xmit_buf(port);
717 err:
718         return -ENOMEM;
719 }
720
721 static void mips_ejtag_fdc_tty_port_shutdown(struct tty_port *port)
722 {
723         struct mips_ejtag_fdc_tty_port *dport =
724                 container_of(port, struct mips_ejtag_fdc_tty_port, port);
725         struct mips_ejtag_fdc_tty *priv = dport->driver;
726         void *rx_buf;
727         unsigned int count;
728
729         spin_lock(&dport->xmit_lock);
730         count = dport->xmit_cnt;
731         spin_unlock(&dport->xmit_lock);
732         if (count) {
733                 /*
734                  * There's still data to write out, so wake and wait for the
735                  * writer thread to drain the buffer.
736                  */
737                 wake_up_interruptible(&priv->waitqueue);
738                 wait_for_completion(&dport->xmit_empty);
739         }
740
741         /* Null the read buffer (timer could still be running!) */
742         raw_spin_lock_irq(&dport->rx_lock);
743         rx_buf = dport->rx_buf;
744         dport->rx_buf = NULL;
745         raw_spin_unlock_irq(&dport->rx_lock);
746         /* Free the read buffer */
747         kfree(rx_buf);
748
749         /* Free the write buffer */
750         tty_port_free_xmit_buf(port);
751 }
752
753 static const struct tty_port_operations mips_ejtag_fdc_tty_port_ops = {
754         .activate       = mips_ejtag_fdc_tty_port_activate,
755         .shutdown       = mips_ejtag_fdc_tty_port_shutdown,
756 };
757
758 /* TTY operations */
759
760 static int mips_ejtag_fdc_tty_install(struct tty_driver *driver,
761                                       struct tty_struct *tty)
762 {
763         struct mips_ejtag_fdc_tty *priv = driver->driver_state;
764
765         tty->driver_data = &priv->ports[tty->index];
766         return tty_port_install(&priv->ports[tty->index].port, driver, tty);
767 }
768
769 static int mips_ejtag_fdc_tty_open(struct tty_struct *tty, struct file *filp)
770 {
771         return tty_port_open(tty->port, tty, filp);
772 }
773
774 static void mips_ejtag_fdc_tty_close(struct tty_struct *tty, struct file *filp)
775 {
776         return tty_port_close(tty->port, tty, filp);
777 }
778
779 static void mips_ejtag_fdc_tty_hangup(struct tty_struct *tty)
780 {
781         struct mips_ejtag_fdc_tty_port *dport = tty->driver_data;
782         struct mips_ejtag_fdc_tty *priv = dport->driver;
783
784         /* Drop any data in the xmit buffer */
785         spin_lock(&dport->xmit_lock);
786         if (dport->xmit_cnt) {
787                 atomic_sub(dport->xmit_cnt, &priv->xmit_total);
788                 dport->xmit_cnt = 0;
789                 dport->xmit_head = 0;
790                 dport->xmit_tail = 0;
791                 complete(&dport->xmit_empty);
792         }
793         spin_unlock(&dport->xmit_lock);
794
795         tty_port_hangup(tty->port);
796 }
797
798 static int mips_ejtag_fdc_tty_write(struct tty_struct *tty,
799                                     const unsigned char *buf, int total)
800 {
801         int count, block;
802         struct mips_ejtag_fdc_tty_port *dport = tty->driver_data;
803         struct mips_ejtag_fdc_tty *priv = dport->driver;
804
805         /*
806          * Write to output buffer.
807          *
808          * The reason that we asynchronously write the buffer is because if we
809          * were to write the buffer synchronously then because the channels are
810          * per-CPU the buffer would be written to the channel of whatever CPU
811          * we're running on.
812          *
813          * What we actually want to happen is have all input and output done on
814          * one CPU.
815          */
816         spin_lock(&dport->xmit_lock);
817         /* Work out how many bytes we can write to the xmit buffer */
818         total = min(total, (int)(priv->xmit_size - dport->xmit_cnt));
819         atomic_add(total, &priv->xmit_total);
820         dport->xmit_cnt += total;
821         /* Write the actual bytes (may need splitting if it wraps) */
822         for (count = total; count; count -= block) {
823                 block = min(count, (int)(priv->xmit_size - dport->xmit_head));
824                 memcpy(dport->port.xmit_buf + dport->xmit_head, buf, block);
825                 dport->xmit_head += block;
826                 if (dport->xmit_head >= priv->xmit_size)
827                         dport->xmit_head -= priv->xmit_size;
828                 buf += block;
829         }
830         count = dport->xmit_cnt;
831         /* Xmit buffer no longer empty? */
832         if (count)
833                 reinit_completion(&dport->xmit_empty);
834         spin_unlock(&dport->xmit_lock);
835
836         /* Wake up the kthread */
837         if (total)
838                 wake_up_interruptible(&priv->waitqueue);
839         return total;
840 }
841
842 static int mips_ejtag_fdc_tty_write_room(struct tty_struct *tty)
843 {
844         struct mips_ejtag_fdc_tty_port *dport = tty->driver_data;
845         struct mips_ejtag_fdc_tty *priv = dport->driver;
846         int room;
847
848         /* Report the space in the xmit buffer */
849         spin_lock(&dport->xmit_lock);
850         room = priv->xmit_size - dport->xmit_cnt;
851         spin_unlock(&dport->xmit_lock);
852
853         return room;
854 }
855
856 static int mips_ejtag_fdc_tty_chars_in_buffer(struct tty_struct *tty)
857 {
858         struct mips_ejtag_fdc_tty_port *dport = tty->driver_data;
859         int chars;
860
861         /* Report the number of bytes in the xmit buffer */
862         spin_lock(&dport->xmit_lock);
863         chars = dport->xmit_cnt;
864         spin_unlock(&dport->xmit_lock);
865
866         return chars;
867 }
868
869 static const struct tty_operations mips_ejtag_fdc_tty_ops = {
870         .install                = mips_ejtag_fdc_tty_install,
871         .open                   = mips_ejtag_fdc_tty_open,
872         .close                  = mips_ejtag_fdc_tty_close,
873         .hangup                 = mips_ejtag_fdc_tty_hangup,
874         .write                  = mips_ejtag_fdc_tty_write,
875         .write_room             = mips_ejtag_fdc_tty_write_room,
876         .chars_in_buffer        = mips_ejtag_fdc_tty_chars_in_buffer,
877 };
878
879 int __weak get_c0_fdc_int(void)
880 {
881         return -1;
882 }
883
884 static int mips_ejtag_fdc_tty_probe(struct mips_cdmm_device *dev)
885 {
886         int ret, nport;
887         struct mips_ejtag_fdc_tty_port *dport;
888         struct mips_ejtag_fdc_tty *priv;
889         struct tty_driver *driver;
890         unsigned int cfg, tx_fifo;
891
892         priv = devm_kzalloc(&dev->dev, sizeof(*priv), GFP_KERNEL);
893         if (!priv)
894                 return -ENOMEM;
895         priv->cpu = dev->cpu;
896         priv->dev = &dev->dev;
897         mips_cdmm_set_drvdata(dev, priv);
898         atomic_set(&priv->xmit_total, 0);
899         raw_spin_lock_init(&priv->lock);
900
901         priv->reg = devm_ioremap_nocache(priv->dev, dev->res.start,
902                                          resource_size(&dev->res));
903         if (!priv->reg) {
904                 dev_err(priv->dev, "ioremap failed for resource %pR\n",
905                         &dev->res);
906                 return -ENOMEM;
907         }
908
909         cfg = mips_ejtag_fdc_read(priv, REG_FDCFG);
910         tx_fifo = (cfg & REG_FDCFG_TXFIFOSIZE) >> REG_FDCFG_TXFIFOSIZE_SHIFT;
911         /* Disable interrupts */
912         cfg &= ~(REG_FDCFG_TXINTTHRES | REG_FDCFG_RXINTTHRES);
913         cfg |= REG_FDCFG_TXINTTHRES_DISABLED;
914         cfg |= REG_FDCFG_RXINTTHRES_DISABLED;
915         mips_ejtag_fdc_write(priv, REG_FDCFG, cfg);
916
917         /* Make each port's xmit FIFO big enough to fill FDC TX FIFO */
918         priv->xmit_size = min(tx_fifo * 4, (unsigned int)SERIAL_XMIT_SIZE);
919
920         driver = tty_alloc_driver(NUM_TTY_CHANNELS, TTY_DRIVER_REAL_RAW);
921         if (IS_ERR(driver))
922                 return PTR_ERR(driver);
923         priv->driver = driver;
924
925         driver->driver_name = "ejtag_fdc";
926         snprintf(priv->fdc_name, sizeof(priv->fdc_name), "ttyFDC%u", dev->cpu);
927         snprintf(priv->driver_name, sizeof(priv->driver_name), "%sc",
928                  priv->fdc_name);
929         driver->name = priv->driver_name;
930         driver->major = 0; /* Auto-allocate */
931         driver->minor_start = 0;
932         driver->type = TTY_DRIVER_TYPE_SERIAL;
933         driver->subtype = SERIAL_TYPE_NORMAL;
934         driver->init_termios = tty_std_termios;
935         driver->init_termios.c_cflag |= CLOCAL;
936         driver->driver_state = priv;
937
938         tty_set_operations(driver, &mips_ejtag_fdc_tty_ops);
939         for (nport = 0; nport < NUM_TTY_CHANNELS; nport++) {
940                 dport = &priv->ports[nport];
941                 dport->driver = priv;
942                 tty_port_init(&dport->port);
943                 dport->port.ops = &mips_ejtag_fdc_tty_port_ops;
944                 raw_spin_lock_init(&dport->rx_lock);
945                 spin_lock_init(&dport->xmit_lock);
946                 /* The xmit buffer starts empty, i.e. completely written */
947                 init_completion(&dport->xmit_empty);
948                 complete(&dport->xmit_empty);
949         }
950
951         /* Set up the console */
952         mips_ejtag_fdc_con.regs[dev->cpu] = priv->reg;
953         if (dev->cpu == 0)
954                 mips_ejtag_fdc_con.tty_drv = driver;
955
956         init_waitqueue_head(&priv->waitqueue);
957         priv->thread = kthread_create(mips_ejtag_fdc_put, priv, priv->fdc_name);
958         if (IS_ERR(priv->thread)) {
959                 ret = PTR_ERR(priv->thread);
960                 dev_err(priv->dev, "Couldn't create kthread (%d)\n", ret);
961                 goto err_destroy_ports;
962         }
963         /*
964          * Bind the writer thread to the right CPU so it can't migrate.
965          * The channels are per-CPU and we want all channel I/O to be on a
966          * single predictable CPU.
967          */
968         kthread_bind(priv->thread, dev->cpu);
969         wake_up_process(priv->thread);
970
971         /* Look for an FDC IRQ */
972         priv->irq = get_c0_fdc_int();
973
974         /* Try requesting the IRQ */
975         if (priv->irq >= 0) {
976                 /*
977                  * IRQF_SHARED, IRQF_COND_SUSPEND: The FDC IRQ may be shared with
978                  * other local interrupts such as the timer which sets
979                  * IRQF_TIMER (including IRQF_NO_SUSPEND).
980                  *
981                  * IRQF_NO_THREAD: The FDC IRQ isn't individually maskable so it
982                  * cannot be deferred and handled by a thread on RT kernels. For
983                  * this reason any spinlocks used from the ISR are raw.
984                  */
985                 ret = devm_request_irq(priv->dev, priv->irq, mips_ejtag_fdc_isr,
986                                        IRQF_PERCPU | IRQF_SHARED |
987                                        IRQF_NO_THREAD | IRQF_COND_SUSPEND,
988                                        priv->fdc_name, priv);
989                 if (ret)
990                         priv->irq = -1;
991         }
992         if (priv->irq >= 0) {
993                 /* IRQ is usable, enable RX interrupt */
994                 raw_spin_lock_irq(&priv->lock);
995                 cfg = mips_ejtag_fdc_read(priv, REG_FDCFG);
996                 cfg &= ~REG_FDCFG_RXINTTHRES;
997                 cfg |= REG_FDCFG_RXINTTHRES_NOTEMPTY;
998                 mips_ejtag_fdc_write(priv, REG_FDCFG, cfg);
999                 raw_spin_unlock_irq(&priv->lock);
1000         } else {
1001                 /* If we didn't get an usable IRQ, poll instead */
1002                 timer_setup(&priv->poll_timer, mips_ejtag_fdc_tty_timer,
1003                             TIMER_PINNED);
1004                 priv->poll_timer.expires = jiffies + FDC_TTY_POLL;
1005                 /*
1006                  * Always attach the timer to the right CPU. The channels are
1007                  * per-CPU so all polling should be from a single CPU.
1008                  */
1009                 add_timer_on(&priv->poll_timer, dev->cpu);
1010
1011                 dev_info(priv->dev, "No usable IRQ, polling enabled\n");
1012         }
1013
1014         ret = tty_register_driver(driver);
1015         if (ret < 0) {
1016                 dev_err(priv->dev, "Couldn't install tty driver (%d)\n", ret);
1017                 goto err_stop_irq;
1018         }
1019
1020         return 0;
1021
1022 err_stop_irq:
1023         if (priv->irq >= 0) {
1024                 raw_spin_lock_irq(&priv->lock);
1025                 cfg = mips_ejtag_fdc_read(priv, REG_FDCFG);
1026                 /* Disable interrupts */
1027                 cfg &= ~(REG_FDCFG_TXINTTHRES | REG_FDCFG_RXINTTHRES);
1028                 cfg |= REG_FDCFG_TXINTTHRES_DISABLED;
1029                 cfg |= REG_FDCFG_RXINTTHRES_DISABLED;
1030                 mips_ejtag_fdc_write(priv, REG_FDCFG, cfg);
1031                 raw_spin_unlock_irq(&priv->lock);
1032         } else {
1033                 priv->removing = true;
1034                 del_timer_sync(&priv->poll_timer);
1035         }
1036         kthread_stop(priv->thread);
1037 err_destroy_ports:
1038         if (dev->cpu == 0)
1039                 mips_ejtag_fdc_con.tty_drv = NULL;
1040         for (nport = 0; nport < NUM_TTY_CHANNELS; nport++) {
1041                 dport = &priv->ports[nport];
1042                 tty_port_destroy(&dport->port);
1043         }
1044         put_tty_driver(priv->driver);
1045         return ret;
1046 }
1047
1048 static int mips_ejtag_fdc_tty_cpu_down(struct mips_cdmm_device *dev)
1049 {
1050         struct mips_ejtag_fdc_tty *priv = mips_cdmm_get_drvdata(dev);
1051         unsigned int cfg;
1052
1053         if (priv->irq >= 0) {
1054                 raw_spin_lock_irq(&priv->lock);
1055                 cfg = mips_ejtag_fdc_read(priv, REG_FDCFG);
1056                 /* Disable interrupts */
1057                 cfg &= ~(REG_FDCFG_TXINTTHRES | REG_FDCFG_RXINTTHRES);
1058                 cfg |= REG_FDCFG_TXINTTHRES_DISABLED;
1059                 cfg |= REG_FDCFG_RXINTTHRES_DISABLED;
1060                 mips_ejtag_fdc_write(priv, REG_FDCFG, cfg);
1061                 raw_spin_unlock_irq(&priv->lock);
1062         } else {
1063                 priv->removing = true;
1064                 del_timer_sync(&priv->poll_timer);
1065         }
1066         kthread_stop(priv->thread);
1067
1068         return 0;
1069 }
1070
1071 static int mips_ejtag_fdc_tty_cpu_up(struct mips_cdmm_device *dev)
1072 {
1073         struct mips_ejtag_fdc_tty *priv = mips_cdmm_get_drvdata(dev);
1074         unsigned int cfg;
1075         int ret = 0;
1076
1077         if (priv->irq >= 0) {
1078                 /*
1079                  * IRQ is usable, enable RX interrupt
1080                  * This must be before kthread is restarted, as kthread may
1081                  * enable TX interrupt.
1082                  */
1083                 raw_spin_lock_irq(&priv->lock);
1084                 cfg = mips_ejtag_fdc_read(priv, REG_FDCFG);
1085                 cfg &= ~(REG_FDCFG_TXINTTHRES | REG_FDCFG_RXINTTHRES);
1086                 cfg |= REG_FDCFG_TXINTTHRES_DISABLED;
1087                 cfg |= REG_FDCFG_RXINTTHRES_NOTEMPTY;
1088                 mips_ejtag_fdc_write(priv, REG_FDCFG, cfg);
1089                 raw_spin_unlock_irq(&priv->lock);
1090         } else {
1091                 /* Restart poll timer */
1092                 priv->removing = false;
1093                 add_timer_on(&priv->poll_timer, dev->cpu);
1094         }
1095
1096         /* Restart the kthread */
1097         priv->thread = kthread_create(mips_ejtag_fdc_put, priv, priv->fdc_name);
1098         if (IS_ERR(priv->thread)) {
1099                 ret = PTR_ERR(priv->thread);
1100                 dev_err(priv->dev, "Couldn't re-create kthread (%d)\n", ret);
1101                 goto out;
1102         }
1103         /* Bind it back to the right CPU and set it off */
1104         kthread_bind(priv->thread, dev->cpu);
1105         wake_up_process(priv->thread);
1106 out:
1107         return ret;
1108 }
1109
1110 static const struct mips_cdmm_device_id mips_ejtag_fdc_tty_ids[] = {
1111         { .type = 0xfd },
1112         { }
1113 };
1114
1115 static struct mips_cdmm_driver mips_ejtag_fdc_tty_driver = {
1116         .drv            = {
1117                 .name   = "mips_ejtag_fdc",
1118         },
1119         .probe          = mips_ejtag_fdc_tty_probe,
1120         .cpu_down       = mips_ejtag_fdc_tty_cpu_down,
1121         .cpu_up         = mips_ejtag_fdc_tty_cpu_up,
1122         .id_table       = mips_ejtag_fdc_tty_ids,
1123 };
1124 builtin_mips_cdmm_driver(mips_ejtag_fdc_tty_driver);
1125
1126 static int __init mips_ejtag_fdc_init_console(void)
1127 {
1128         return mips_ejtag_fdc_console_init(&mips_ejtag_fdc_con);
1129 }
1130 console_initcall(mips_ejtag_fdc_init_console);
1131
1132 #ifdef CONFIG_MIPS_EJTAG_FDC_EARLYCON
1133 static struct mips_ejtag_fdc_console mips_ejtag_fdc_earlycon = {
1134         .cons   = {
1135                 .name   = "early_fdc",
1136                 .write  = mips_ejtag_fdc_console_write,
1137                 .flags  = CON_PRINTBUFFER | CON_BOOT,
1138                 .index  = CONSOLE_CHANNEL,
1139         },
1140         .lock   = __RAW_SPIN_LOCK_UNLOCKED(mips_ejtag_fdc_earlycon.lock),
1141 };
1142
1143 int __init setup_early_fdc_console(void)
1144 {
1145         return mips_ejtag_fdc_console_init(&mips_ejtag_fdc_earlycon);
1146 }
1147 #endif
1148
1149 #ifdef CONFIG_MIPS_EJTAG_FDC_KGDB
1150
1151 /* read buffer to allow decompaction */
1152 static unsigned int kgdbfdc_rbuflen;
1153 static unsigned int kgdbfdc_rpos;
1154 static char kgdbfdc_rbuf[4];
1155
1156 /* write buffer to allow compaction */
1157 static unsigned int kgdbfdc_wbuflen;
1158 static char kgdbfdc_wbuf[4];
1159
1160 static void __iomem *kgdbfdc_setup(void)
1161 {
1162         void __iomem *regs;
1163         unsigned int cpu;
1164
1165         /* Find address, piggy backing off console percpu regs */
1166         cpu = smp_processor_id();
1167         regs = mips_ejtag_fdc_con.regs[cpu];
1168         /* First console output on this CPU? */
1169         if (!regs) {
1170                 regs = mips_cdmm_early_probe(0xfd);
1171                 mips_ejtag_fdc_con.regs[cpu] = regs;
1172         }
1173         /* Already tried and failed to find FDC on this CPU? */
1174         if (IS_ERR(regs))
1175                 return regs;
1176
1177         return regs;
1178 }
1179
1180 /* read a character from the read buffer, filling from FDC RX FIFO */
1181 static int kgdbfdc_read_char(void)
1182 {
1183         unsigned int stat, channel, data;
1184         void __iomem *regs;
1185
1186         /* No more data, try and read another FDC word from RX FIFO */
1187         if (kgdbfdc_rpos >= kgdbfdc_rbuflen) {
1188                 kgdbfdc_rpos = 0;
1189                 kgdbfdc_rbuflen = 0;
1190
1191                 regs = kgdbfdc_setup();
1192                 if (IS_ERR(regs))
1193                         return NO_POLL_CHAR;
1194
1195                 /* Read next word from KGDB channel */
1196                 do {
1197                         stat = __raw_readl(regs + REG_FDSTAT);
1198
1199                         /* No data waiting? */
1200                         if (stat & REG_FDSTAT_RXE)
1201                                 return NO_POLL_CHAR;
1202
1203                         /* Read next word */
1204                         channel = (stat & REG_FDSTAT_RXCHAN) >>
1205                                         REG_FDSTAT_RXCHAN_SHIFT;
1206                         data = __raw_readl(regs + REG_FDRX);
1207                 } while (channel != CONFIG_MIPS_EJTAG_FDC_KGDB_CHAN);
1208
1209                 /* Decode into rbuf */
1210                 kgdbfdc_rbuflen = mips_ejtag_fdc_decode(data, kgdbfdc_rbuf);
1211         }
1212         pr_devel("kgdbfdc r %c\n", kgdbfdc_rbuf[kgdbfdc_rpos]);
1213         return kgdbfdc_rbuf[kgdbfdc_rpos++];
1214 }
1215
1216 /* push an FDC word from write buffer to TX FIFO */
1217 static void kgdbfdc_push_one(void)
1218 {
1219         const char *bufs[1] = { kgdbfdc_wbuf };
1220         struct fdc_word word;
1221         void __iomem *regs;
1222         unsigned int i;
1223
1224         /* Construct a word from any data in buffer */
1225         word = mips_ejtag_fdc_encode(bufs, &kgdbfdc_wbuflen, 1);
1226         /* Relocate any remaining data to beginnning of buffer */
1227         kgdbfdc_wbuflen -= word.bytes;
1228         for (i = 0; i < kgdbfdc_wbuflen; ++i)
1229                 kgdbfdc_wbuf[i] = kgdbfdc_wbuf[i + word.bytes];
1230
1231         regs = kgdbfdc_setup();
1232         if (IS_ERR(regs))
1233                 return;
1234
1235         /* Busy wait until there's space in fifo */
1236         while (__raw_readl(regs + REG_FDSTAT) & REG_FDSTAT_TXF)
1237                 ;
1238         __raw_writel(word.word,
1239                      regs + REG_FDTX(CONFIG_MIPS_EJTAG_FDC_KGDB_CHAN));
1240 }
1241
1242 /* flush the whole write buffer to the TX FIFO */
1243 static void kgdbfdc_flush(void)
1244 {
1245         while (kgdbfdc_wbuflen)
1246                 kgdbfdc_push_one();
1247 }
1248
1249 /* write a character into the write buffer, writing out if full */
1250 static void kgdbfdc_write_char(u8 chr)
1251 {
1252         pr_devel("kgdbfdc w %c\n", chr);
1253         kgdbfdc_wbuf[kgdbfdc_wbuflen++] = chr;
1254         if (kgdbfdc_wbuflen >= sizeof(kgdbfdc_wbuf))
1255                 kgdbfdc_push_one();
1256 }
1257
1258 static struct kgdb_io kgdbfdc_io_ops = {
1259         .name           = "kgdbfdc",
1260         .read_char      = kgdbfdc_read_char,
1261         .write_char     = kgdbfdc_write_char,
1262         .flush          = kgdbfdc_flush,
1263 };
1264
1265 static int __init kgdbfdc_init(void)
1266 {
1267         kgdb_register_io_module(&kgdbfdc_io_ops);
1268         return 0;
1269 }
1270 early_initcall(kgdbfdc_init);
1271 #endif