Linux-libre 3.16.85-gnu
[librecmc/linux-libre.git] / drivers / staging / tidspbridge / rmgr / rmm.c
1 /*
2  * rmm.c
3  *
4  * DSP-BIOS Bridge driver support functions for TI OMAP processors.
5  *
6  * Copyright (C) 2005-2006 Texas Instruments, Inc.
7  *
8  * This package is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License version 2 as
10  * published by the Free Software Foundation.
11  *
12  * THIS PACKAGE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR
13  * IMPLIED WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED
14  * WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR A PARTICULAR PURPOSE.
15  */
16
17 /*
18  *  This memory manager provides general heap management and arbitrary
19  *  alignment for any number of memory segments.
20  *
21  *  Notes:
22  *
23  *  Memory blocks are allocated from the end of the first free memory
24  *  block large enough to satisfy the request.  Alignment requirements
25  *  are satisfied by "sliding" the block forward until its base satisfies
26  *  the alignment specification; if this is not possible then the next
27  *  free block large enough to hold the request is tried.
28  *
29  *  Since alignment can cause the creation of a new free block - the
30  *  unused memory formed between the start of the original free block
31  *  and the start of the allocated block - the memory manager must free
32  *  this memory to prevent a memory leak.
33  *
34  *  Overlay memory is managed by reserving through rmm_alloc, and freeing
35  *  it through rmm_free. The memory manager prevents DSP code/data that is
36  *  overlayed from being overwritten as long as the memory it runs at has
37  *  been allocated, and not yet freed.
38  */
39
40 #include <linux/types.h>
41 #include <linux/list.h>
42
43 /*  ----------------------------------- Host OS */
44 #include <dspbridge/host_os.h>
45
46 /*  ----------------------------------- DSP/BIOS Bridge */
47 #include <dspbridge/dbdefs.h>
48
49 /*  ----------------------------------- This */
50 #include <dspbridge/rmm.h>
51
52 /*
53  *  ======== rmm_header ========
54  *  This header is used to maintain a list of free memory blocks.
55  */
56 struct rmm_header {
57         struct rmm_header *next;        /* form a free memory link list */
58         u32 size;               /* size of the free memory */
59         u32 addr;               /* DSP address of memory block */
60 };
61
62 /*
63  *  ======== rmm_ovly_sect ========
64  *  Keeps track of memory occupied by overlay section.
65  */
66 struct rmm_ovly_sect {
67         struct list_head list_elem;
68         u32 addr;               /* Start of memory section */
69         u32 size;               /* Length (target MAUs) of section */
70         s32 page;               /* Memory page */
71 };
72
73 /*
74  *  ======== rmm_target_obj ========
75  */
76 struct rmm_target_obj {
77         struct rmm_segment *seg_tab;
78         struct rmm_header **free_list;
79         u32 num_segs;
80         struct list_head ovly_list;     /* List of overlay memory in use */
81 };
82
83 static bool alloc_block(struct rmm_target_obj *target, u32 segid, u32 size,
84                         u32 align, u32 *dsp_address);
85 static bool free_block(struct rmm_target_obj *target, u32 segid, u32 addr,
86                        u32 size);
87
88 /*
89  *  ======== rmm_alloc ========
90  */
91 int rmm_alloc(struct rmm_target_obj *target, u32 segid, u32 size,
92                      u32 align, u32 *dsp_address, bool reserve)
93 {
94         struct rmm_ovly_sect *sect, *prev_sect = NULL;
95         struct rmm_ovly_sect *new_sect;
96         u32 addr;
97         int status = 0;
98
99         if (!reserve) {
100                 if (!alloc_block(target, segid, size, align, dsp_address)) {
101                         status = -ENOMEM;
102                 } else {
103                         /* Increment the number of allocated blocks in this
104                          * segment */
105                         target->seg_tab[segid].number++;
106                 }
107                 goto func_end;
108         }
109         /* An overlay section - See if block is already in use. If not,
110          * insert into the list in ascending address size. */
111         addr = *dsp_address;
112         /*  Find place to insert new list element. List is sorted from
113          *  smallest to largest address. */
114         list_for_each_entry(sect, &target->ovly_list, list_elem) {
115                 if (addr <= sect->addr) {
116                         /* Check for overlap with sect */
117                         if ((addr + size > sect->addr) || (prev_sect &&
118                                                            (prev_sect->addr +
119                                                             prev_sect->size >
120                                                             addr))) {
121                                 status = -ENXIO;
122                         }
123                         break;
124                 }
125                 prev_sect = sect;
126         }
127         if (!status) {
128                 /* No overlap - allocate list element for new section. */
129                 new_sect = kzalloc(sizeof(struct rmm_ovly_sect), GFP_KERNEL);
130                 if (new_sect == NULL) {
131                         status = -ENOMEM;
132                 } else {
133                         new_sect->addr = addr;
134                         new_sect->size = size;
135                         new_sect->page = segid;
136                         if (list_is_last(&sect->list_elem, &target->ovly_list))
137                                 /* Put new section at the end of the list */
138                                 list_add_tail(&new_sect->list_elem,
139                                                 &target->ovly_list);
140                         else
141                                 /* Put new section just before sect */
142                                 list_add_tail(&new_sect->list_elem,
143                                                 &sect->list_elem);
144                 }
145         }
146 func_end:
147         return status;
148 }
149
150 /*
151  *  ======== rmm_create ========
152  */
153 int rmm_create(struct rmm_target_obj **target_obj,
154                       struct rmm_segment seg_tab[], u32 num_segs)
155 {
156         struct rmm_header *hptr;
157         struct rmm_segment *sptr, *tmp;
158         struct rmm_target_obj *target;
159         s32 i;
160         int status = 0;
161
162         /* Allocate DBL target object */
163         target = kzalloc(sizeof(struct rmm_target_obj), GFP_KERNEL);
164
165         if (target == NULL)
166                 status = -ENOMEM;
167
168         if (status)
169                 goto func_cont;
170
171         target->num_segs = num_segs;
172         if (!(num_segs > 0))
173                 goto func_cont;
174
175         /* Allocate the memory for freelist from host's memory */
176         target->free_list = kzalloc(num_segs * sizeof(struct rmm_header *),
177                                                         GFP_KERNEL);
178         if (target->free_list == NULL) {
179                 status = -ENOMEM;
180         } else {
181                 /* Allocate headers for each element on the free list */
182                 for (i = 0; i < (s32) num_segs; i++) {
183                         target->free_list[i] =
184                                 kzalloc(sizeof(struct rmm_header), GFP_KERNEL);
185                         if (target->free_list[i] == NULL) {
186                                 status = -ENOMEM;
187                                 break;
188                         }
189                 }
190                 /* Allocate memory for initial segment table */
191                 target->seg_tab = kzalloc(num_segs * sizeof(struct rmm_segment),
192                                                                 GFP_KERNEL);
193                 if (target->seg_tab == NULL) {
194                         status = -ENOMEM;
195                 } else {
196                         /* Initialize segment table and free list */
197                         sptr = target->seg_tab;
198                         for (i = 0, tmp = seg_tab; num_segs > 0;
199                              num_segs--, i++) {
200                                 *sptr = *tmp;
201                                 hptr = target->free_list[i];
202                                 hptr->addr = tmp->base;
203                                 hptr->size = tmp->length;
204                                 hptr->next = NULL;
205                                 tmp++;
206                                 sptr++;
207                         }
208                 }
209         }
210 func_cont:
211         /* Initialize overlay memory list */
212         if (!status)
213                 INIT_LIST_HEAD(&target->ovly_list);
214
215         if (!status) {
216                 *target_obj = target;
217         } else {
218                 *target_obj = NULL;
219                 if (target)
220                         rmm_delete(target);
221
222         }
223
224         return status;
225 }
226
227 /*
228  *  ======== rmm_delete ========
229  */
230 void rmm_delete(struct rmm_target_obj *target)
231 {
232         struct rmm_ovly_sect *sect, *tmp;
233         struct rmm_header *hptr;
234         struct rmm_header *next;
235         u32 i;
236
237         kfree(target->seg_tab);
238
239         list_for_each_entry_safe(sect, tmp, &target->ovly_list, list_elem) {
240                 list_del(&sect->list_elem);
241                 kfree(sect);
242         }
243
244         if (target->free_list != NULL) {
245                 /* Free elements on freelist */
246                 for (i = 0; i < target->num_segs; i++) {
247                         hptr = next = target->free_list[i];
248                         while (next) {
249                                 hptr = next;
250                                 next = hptr->next;
251                                 kfree(hptr);
252                         }
253                 }
254                 kfree(target->free_list);
255         }
256
257         kfree(target);
258 }
259
260 /*
261  *  ======== rmm_free ========
262  */
263 bool rmm_free(struct rmm_target_obj *target, u32 segid, u32 dsp_addr, u32 size,
264               bool reserved)
265 {
266         struct rmm_ovly_sect *sect, *tmp;
267         bool ret = false;
268
269         /*
270          *  Free or unreserve memory.
271          */
272         if (!reserved) {
273                 ret = free_block(target, segid, dsp_addr, size);
274                 if (ret)
275                         target->seg_tab[segid].number--;
276
277         } else {
278                 /* Unreserve memory */
279                 list_for_each_entry_safe(sect, tmp, &target->ovly_list,
280                                 list_elem) {
281                         if (dsp_addr == sect->addr) {
282                                 /* Remove from list */
283                                 list_del(&sect->list_elem);
284                                 kfree(sect);
285                                 return true;
286                         }
287                 }
288         }
289         return ret;
290 }
291
292 /*
293  *  ======== rmm_stat ========
294  */
295 bool rmm_stat(struct rmm_target_obj *target, enum dsp_memtype segid,
296               struct dsp_memstat *mem_stat_buf)
297 {
298         struct rmm_header *head;
299         bool ret = false;
300         u32 max_free_size = 0;
301         u32 total_free_size = 0;
302         u32 free_blocks = 0;
303
304         if ((u32) segid < target->num_segs) {
305                 head = target->free_list[segid];
306
307                 /* Collect data from free_list */
308                 while (head != NULL) {
309                         max_free_size = max(max_free_size, head->size);
310                         total_free_size += head->size;
311                         free_blocks++;
312                         head = head->next;
313                 }
314
315                 /* ul_size */
316                 mem_stat_buf->size = target->seg_tab[segid].length;
317
318                 /* num_free_blocks */
319                 mem_stat_buf->num_free_blocks = free_blocks;
320
321                 /* total_free_size */
322                 mem_stat_buf->total_free_size = total_free_size;
323
324                 /* len_max_free_block */
325                 mem_stat_buf->len_max_free_block = max_free_size;
326
327                 /* num_alloc_blocks */
328                 mem_stat_buf->num_alloc_blocks =
329                     target->seg_tab[segid].number;
330
331                 ret = true;
332         }
333
334         return ret;
335 }
336
337 /*
338  *  ======== balloc ========
339  *  This allocation function allocates memory from the lowest addresses
340  *  first.
341  */
342 static bool alloc_block(struct rmm_target_obj *target, u32 segid, u32 size,
343                         u32 align, u32 *dsp_address)
344 {
345         struct rmm_header *head;
346         struct rmm_header *prevhead = NULL;
347         struct rmm_header *next;
348         u32 tmpalign;
349         u32 alignbytes;
350         u32 hsize;
351         u32 allocsize;
352         u32 addr;
353
354         alignbytes = (align == 0) ? 1 : align;
355         prevhead = NULL;
356         head = target->free_list[segid];
357
358         do {
359                 hsize = head->size;
360                 next = head->next;
361
362                 addr = head->addr;      /* alloc from the bottom */
363
364                 /* align allocation */
365                 (tmpalign = (u32) addr % alignbytes);
366                 if (tmpalign != 0)
367                         tmpalign = alignbytes - tmpalign;
368
369                 allocsize = size + tmpalign;
370
371                 if (hsize >= allocsize) {       /* big enough */
372                         if (hsize == allocsize && prevhead != NULL) {
373                                 prevhead->next = next;
374                                 kfree(head);
375                         } else {
376                                 head->size = hsize - allocsize;
377                                 head->addr += allocsize;
378                         }
379
380                         /* free up any hole created by alignment */
381                         if (tmpalign)
382                                 free_block(target, segid, addr, tmpalign);
383
384                         *dsp_address = addr + tmpalign;
385                         return true;
386                 }
387
388                 prevhead = head;
389                 head = next;
390
391         } while (head != NULL);
392
393         return false;
394 }
395
396 /*
397  *  ======== free_block ========
398  *  TO DO: free_block() allocates memory, which could result in failure.
399  *  Could allocate an rmm_header in rmm_alloc(), to be kept in a pool.
400  *  free_block() could use an rmm_header from the pool, freeing as blocks
401  *  are coalesced.
402  */
403 static bool free_block(struct rmm_target_obj *target, u32 segid, u32 addr,
404                        u32 size)
405 {
406         struct rmm_header *head;
407         struct rmm_header *thead;
408         struct rmm_header *rhead;
409         bool ret = true;
410
411         /* Create a memory header to hold the newly free'd block. */
412         rhead = kzalloc(sizeof(struct rmm_header), GFP_KERNEL);
413         if (rhead == NULL) {
414                 ret = false;
415         } else {
416                 /* search down the free list to find the right place for addr */
417                 head = target->free_list[segid];
418
419                 if (addr >= head->addr) {
420                         while (head->next != NULL && addr > head->next->addr)
421                                 head = head->next;
422
423                         thead = head->next;
424
425                         head->next = rhead;
426                         rhead->next = thead;
427                         rhead->addr = addr;
428                         rhead->size = size;
429                 } else {
430                         *rhead = *head;
431                         head->next = rhead;
432                         head->addr = addr;
433                         head->size = size;
434                         thead = rhead->next;
435                 }
436
437                 /* join with upper block, if possible */
438                 if (thead != NULL && (rhead->addr + rhead->size) ==
439                     thead->addr) {
440                         head->next = rhead->next;
441                         thead->size = size + thead->size;
442                         thead->addr = addr;
443                         kfree(rhead);
444                         rhead = thead;
445                 }
446
447                 /* join with the lower block, if possible */
448                 if ((head->addr + head->size) == rhead->addr) {
449                         head->next = rhead->next;
450                         head->size = head->size + rhead->size;
451                         kfree(rhead);
452                 }
453         }
454
455         return ret;
456 }