Linux-libre 4.17.3-gnu
[librecmc/linux-libre.git] / drivers / staging / rtl8723bs / hal / rtl8723b_hal_init.c
1 /******************************************************************************
2  *
3  * Copyright(c) 2007 - 2013 Realtek Corporation. All rights reserved.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms of version 2 of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12  * more details.
13  *
14  ******************************************************************************/
15 #define _HAL_INIT_C_
16
17 #include <linux/firmware.h>
18 #include <linux/slab.h>
19 #include <drv_types.h>
20 #include <rtw_debug.h>
21 #include <rtl8723b_hal.h>
22 #include "hal_com_h2c.h"
23
24 static void _FWDownloadEnable(struct adapter *padapter, bool enable)
25 {
26         u8 tmp, count = 0;
27
28         if (enable) {
29                 /*  8051 enable */
30                 tmp = rtw_read8(padapter, REG_SYS_FUNC_EN+1);
31                 rtw_write8(padapter, REG_SYS_FUNC_EN+1, tmp|0x04);
32
33                 tmp = rtw_read8(padapter, REG_MCUFWDL);
34                 rtw_write8(padapter, REG_MCUFWDL, tmp|0x01);
35
36                 do {
37                         tmp = rtw_read8(padapter, REG_MCUFWDL);
38                         if (tmp & 0x01)
39                                 break;
40                         rtw_write8(padapter, REG_MCUFWDL, tmp|0x01);
41                         msleep(1);
42                 } while (count++ < 100);
43
44                 if (count > 0)
45                         DBG_871X("%s: !!!!!!!!Write 0x80 Fail!: count = %d\n", __func__, count);
46
47                 /*  8051 reset */
48                 tmp = rtw_read8(padapter, REG_MCUFWDL+2);
49                 rtw_write8(padapter, REG_MCUFWDL+2, tmp&0xf7);
50         } else {
51                 /*  MCU firmware download disable. */
52                 tmp = rtw_read8(padapter, REG_MCUFWDL);
53                 rtw_write8(padapter, REG_MCUFWDL, tmp&0xfe);
54         }
55 }
56
57 static int _BlockWrite(struct adapter *padapter, void *buffer, u32 buffSize)
58 {
59         int ret = _SUCCESS;
60
61         u32 blockSize_p1 = 4; /*  (Default) Phase #1 : PCI muse use 4-byte write to download FW */
62         u32 blockSize_p2 = 8; /*  Phase #2 : Use 8-byte, if Phase#1 use big size to write FW. */
63         u32 blockSize_p3 = 1; /*  Phase #3 : Use 1-byte, the remnant of FW image. */
64         u32 blockCount_p1 = 0, blockCount_p2 = 0, blockCount_p3 = 0;
65         u32 remainSize_p1 = 0, remainSize_p2 = 0;
66         u8 *bufferPtr = buffer;
67         u32 i = 0, offset = 0;
68
69 /*      printk("====>%s %d\n", __func__, __LINE__); */
70
71         /* 3 Phase #1 */
72         blockCount_p1 = buffSize / blockSize_p1;
73         remainSize_p1 = buffSize % blockSize_p1;
74
75         if (blockCount_p1) {
76                 RT_TRACE(
77                         _module_hal_init_c_,
78                         _drv_notice_,
79                         (
80                                 "_BlockWrite: [P1] buffSize(%d) blockSize_p1(%d) blockCount_p1(%d) remainSize_p1(%d)\n",
81                                 buffSize,
82                                 blockSize_p1,
83                                 blockCount_p1,
84                                 remainSize_p1
85                         )
86                 );
87         }
88
89         for (i = 0; i < blockCount_p1; i++) {
90                 ret = rtw_write32(padapter, (FW_8723B_START_ADDRESS + i * blockSize_p1), *((u32 *)(bufferPtr + i * blockSize_p1)));
91                 if (ret == _FAIL) {
92                         printk("====>%s %d i:%d\n", __func__, __LINE__, i);
93                         goto exit;
94                 }
95         }
96
97         /* 3 Phase #2 */
98         if (remainSize_p1) {
99                 offset = blockCount_p1 * blockSize_p1;
100
101                 blockCount_p2 = remainSize_p1/blockSize_p2;
102                 remainSize_p2 = remainSize_p1%blockSize_p2;
103
104                 if (blockCount_p2) {
105                                 RT_TRACE(
106                                         _module_hal_init_c_,
107                                         _drv_notice_,
108                                         (
109                                                 "_BlockWrite: [P2] buffSize_p2(%d) blockSize_p2(%d) blockCount_p2(%d) remainSize_p2(%d)\n",
110                                                 (buffSize-offset),
111                                                 blockSize_p2,
112                                                 blockCount_p2,
113                                                 remainSize_p2
114                                         )
115                                 );
116                 }
117
118         }
119
120         /* 3 Phase #3 */
121         if (remainSize_p2) {
122                 offset = (blockCount_p1 * blockSize_p1) + (blockCount_p2 * blockSize_p2);
123
124                 blockCount_p3 = remainSize_p2 / blockSize_p3;
125
126                 RT_TRACE(_module_hal_init_c_, _drv_notice_,
127                                 ("_BlockWrite: [P3] buffSize_p3(%d) blockSize_p3(%d) blockCount_p3(%d)\n",
128                                 (buffSize-offset), blockSize_p3, blockCount_p3));
129
130                 for (i = 0; i < blockCount_p3; i++) {
131                         ret = rtw_write8(padapter, (FW_8723B_START_ADDRESS + offset + i), *(bufferPtr + offset + i));
132
133                         if (ret == _FAIL) {
134                                 printk("====>%s %d i:%d\n", __func__, __LINE__, i);
135                                 goto exit;
136                         }
137                 }
138         }
139 exit:
140         return ret;
141 }
142
143 static int _PageWrite(
144         struct adapter *padapter,
145         u32 page,
146         void *buffer,
147         u32 size
148 )
149 {
150         u8 value8;
151         u8 u8Page = (u8) (page & 0x07);
152
153         value8 = (rtw_read8(padapter, REG_MCUFWDL+2) & 0xF8) | u8Page;
154         rtw_write8(padapter, REG_MCUFWDL+2, value8);
155
156         return _BlockWrite(padapter, buffer, size);
157 }
158
159 static int _WriteFW(struct adapter *padapter, void *buffer, u32 size)
160 {
161         /*  Since we need dynamic decide method of dwonload fw, so we call this function to get chip version. */
162         /*  We can remove _ReadChipVersion from ReadpadapterInfo8192C later. */
163         int ret = _SUCCESS;
164         u32 pageNums, remainSize;
165         u32 page, offset;
166         u8 *bufferPtr = buffer;
167
168         pageNums = size / MAX_DLFW_PAGE_SIZE;
169         /* RT_ASSERT((pageNums <= 4), ("Page numbers should not greater then 4\n")); */
170         remainSize = size % MAX_DLFW_PAGE_SIZE;
171
172         for (page = 0; page < pageNums; page++) {
173                 offset = page * MAX_DLFW_PAGE_SIZE;
174                 ret = _PageWrite(padapter, page, bufferPtr+offset, MAX_DLFW_PAGE_SIZE);
175
176                 if (ret == _FAIL) {
177                         printk("====>%s %d\n", __func__, __LINE__);
178                         goto exit;
179                 }
180         }
181
182         if (remainSize) {
183                 offset = pageNums * MAX_DLFW_PAGE_SIZE;
184                 page = pageNums;
185                 ret = _PageWrite(padapter, page, bufferPtr+offset, remainSize);
186
187                 if (ret == _FAIL) {
188                         printk("====>%s %d\n", __func__, __LINE__);
189                         goto exit;
190                 }
191         }
192         RT_TRACE(_module_hal_init_c_, _drv_info_, ("_WriteFW Done- for Normal chip.\n"));
193
194 exit:
195         return ret;
196 }
197
198 void _8051Reset8723(struct adapter *padapter)
199 {
200         u8 cpu_rst;
201         u8 io_rst;
202
203
204         /*  Reset 8051(WLMCU) IO wrapper */
205         /*  0x1c[8] = 0 */
206         /*  Suggested by Isaac@SD1 and Gimmy@SD1, coding by Lucas@20130624 */
207         io_rst = rtw_read8(padapter, REG_RSV_CTRL+1);
208         io_rst &= ~BIT(0);
209         rtw_write8(padapter, REG_RSV_CTRL+1, io_rst);
210
211         cpu_rst = rtw_read8(padapter, REG_SYS_FUNC_EN+1);
212         cpu_rst &= ~BIT(2);
213         rtw_write8(padapter, REG_SYS_FUNC_EN+1, cpu_rst);
214
215         /*  Enable 8051 IO wrapper */
216         /*  0x1c[8] = 1 */
217         io_rst = rtw_read8(padapter, REG_RSV_CTRL+1);
218         io_rst |= BIT(0);
219         rtw_write8(padapter, REG_RSV_CTRL+1, io_rst);
220
221         cpu_rst = rtw_read8(padapter, REG_SYS_FUNC_EN+1);
222         cpu_rst |= BIT(2);
223         rtw_write8(padapter, REG_SYS_FUNC_EN+1, cpu_rst);
224
225         DBG_8192C("%s: Finish\n", __func__);
226 }
227
228 u8 g_fwdl_chksum_fail = 0;
229
230 static s32 polling_fwdl_chksum(
231         struct adapter *adapter, u32 min_cnt, u32 timeout_ms
232 )
233 {
234         s32 ret = _FAIL;
235         u32 value32;
236         unsigned long start = jiffies;
237         u32 cnt = 0;
238
239         /* polling CheckSum report */
240         do {
241                 cnt++;
242                 value32 = rtw_read32(adapter, REG_MCUFWDL);
243                 if (value32 & FWDL_ChkSum_rpt || adapter->bSurpriseRemoved || adapter->bDriverStopped)
244                         break;
245                 yield();
246         } while (jiffies_to_msecs(jiffies-start) < timeout_ms || cnt < min_cnt);
247
248         if (!(value32 & FWDL_ChkSum_rpt)) {
249                 goto exit;
250         }
251
252         if (g_fwdl_chksum_fail) {
253                 DBG_871X("%s: fwdl test case: fwdl_chksum_fail\n", __func__);
254                 g_fwdl_chksum_fail--;
255                 goto exit;
256         }
257
258         ret = _SUCCESS;
259
260 exit:
261         DBG_871X(
262                 "%s: Checksum report %s! (%u, %dms), REG_MCUFWDL:0x%08x\n",
263                 __func__,
264                 (ret == _SUCCESS) ? "OK" : "Fail",
265                 cnt,
266                 jiffies_to_msecs(jiffies-start),
267                 value32
268         );
269
270         return ret;
271 }
272
273 u8 g_fwdl_wintint_rdy_fail = 0;
274
275 static s32 _FWFreeToGo(struct adapter *adapter, u32 min_cnt, u32 timeout_ms)
276 {
277         s32 ret = _FAIL;
278         u32 value32;
279         unsigned long start = jiffies;
280         u32 cnt = 0;
281
282         value32 = rtw_read32(adapter, REG_MCUFWDL);
283         value32 |= MCUFWDL_RDY;
284         value32 &= ~WINTINI_RDY;
285         rtw_write32(adapter, REG_MCUFWDL, value32);
286
287         _8051Reset8723(adapter);
288
289         /*  polling for FW ready */
290         do {
291                 cnt++;
292                 value32 = rtw_read32(adapter, REG_MCUFWDL);
293                 if (value32 & WINTINI_RDY || adapter->bSurpriseRemoved || adapter->bDriverStopped)
294                         break;
295                 yield();
296         } while (jiffies_to_msecs(jiffies - start) < timeout_ms || cnt < min_cnt);
297
298         if (!(value32 & WINTINI_RDY)) {
299                 goto exit;
300         }
301
302         if (g_fwdl_wintint_rdy_fail) {
303                 DBG_871X("%s: fwdl test case: wintint_rdy_fail\n", __func__);
304                 g_fwdl_wintint_rdy_fail--;
305                 goto exit;
306         }
307
308         ret = _SUCCESS;
309
310 exit:
311         DBG_871X(
312                 "%s: Polling FW ready %s! (%u, %dms), REG_MCUFWDL:0x%08x\n",
313                 __func__,
314                 (ret == _SUCCESS) ? "OK" : "Fail",
315                 cnt,
316                 jiffies_to_msecs(jiffies-start),
317                 value32
318         );
319
320         return ret;
321 }
322
323 #define IS_FW_81xxC(padapter)   (((GET_HAL_DATA(padapter))->FirmwareSignature & 0xFFF0) == 0x88C0)
324
325 void rtl8723b_FirmwareSelfReset(struct adapter *padapter)
326 {
327         struct hal_com_data *pHalData = GET_HAL_DATA(padapter);
328         u8 u1bTmp;
329         u8 Delay = 100;
330
331         if (
332                 !(IS_FW_81xxC(padapter) && ((pHalData->FirmwareVersion < 0x21) || (pHalData->FirmwareVersion == 0x21 && pHalData->FirmwareSubVersion < 0x01)))
333         ) { /*  after 88C Fw v33.1 */
334                 /* 0x1cf = 0x20. Inform 8051 to reset. 2009.12.25. tynli_test */
335                 rtw_write8(padapter, REG_HMETFR+3, 0x20);
336
337                 u1bTmp = rtw_read8(padapter, REG_SYS_FUNC_EN+1);
338                 while (u1bTmp & BIT2) {
339                         Delay--;
340                         if (Delay == 0)
341                                 break;
342                         udelay(50);
343                         u1bTmp = rtw_read8(padapter, REG_SYS_FUNC_EN+1);
344                 }
345                 RT_TRACE(_module_hal_init_c_, _drv_notice_, ("-%s: 8051 reset success (%d)\n", __func__, Delay));
346
347                 if (Delay == 0) {
348                         RT_TRACE(_module_hal_init_c_, _drv_notice_, ("%s: Force 8051 reset!!!\n", __func__));
349                         /* force firmware reset */
350                         u1bTmp = rtw_read8(padapter, REG_SYS_FUNC_EN+1);
351                         rtw_write8(padapter, REG_SYS_FUNC_EN+1, u1bTmp&(~BIT2));
352                 }
353         }
354 }
355
356 /*  */
357 /*      Description: */
358 /*              Download 8192C firmware code. */
359 /*  */
360 /*  */
361 s32 rtl8723b_FirmwareDownload(struct adapter *padapter, bool  bUsedWoWLANFw)
362 {
363         s32 rtStatus = _SUCCESS;
364         u8 write_fw = 0;
365         unsigned long fwdl_start_time;
366         struct hal_com_data *pHalData = GET_HAL_DATA(padapter);
367         struct rt_firmware *pFirmware;
368         struct rt_firmware *pBTFirmware;
369         struct rt_firmware_hdr *pFwHdr = NULL;
370         u8 *pFirmwareBuf;
371         u32 FirmwareLen;
372         const struct firmware *fw;
373         struct device *device = dvobj_to_dev(padapter->dvobj);
374         u8 *fwfilepath;
375         struct dvobj_priv *psdpriv = padapter->dvobj;
376         struct debug_priv *pdbgpriv = &psdpriv->drv_dbg;
377         u8 tmp_ps;
378
379         RT_TRACE(_module_hal_init_c_, _drv_info_, ("+%s\n", __func__));
380 #ifdef CONFIG_WOWLAN
381         RT_TRACE(_module_hal_init_c_, _drv_notice_, ("+%s, bUsedWoWLANFw:%d\n", __func__, bUsedWoWLANFw));
382 #endif
383         pFirmware = kzalloc(sizeof(struct rt_firmware), GFP_KERNEL);
384         if (!pFirmware)
385                 return _FAIL;
386         pBTFirmware = kzalloc(sizeof(struct rt_firmware), GFP_KERNEL);
387         if (!pBTFirmware) {
388                 kfree(pFirmware);
389                 return _FAIL;
390         }
391         tmp_ps = rtw_read8(padapter, 0xa3);
392         tmp_ps &= 0xf8;
393         tmp_ps |= 0x02;
394         /* 1. write 0xA3[:2:0] = 3b'010 */
395         rtw_write8(padapter, 0xa3, tmp_ps);
396         /* 2. read power_state = 0xA0[1:0] */
397         tmp_ps = rtw_read8(padapter, 0xa0);
398         tmp_ps &= 0x03;
399         if (tmp_ps != 0x01) {
400                 DBG_871X(FUNC_ADPT_FMT" tmp_ps =%x\n", FUNC_ADPT_ARG(padapter), tmp_ps);
401                 pdbgpriv->dbg_downloadfw_pwr_state_cnt++;
402         }
403
404 #ifdef CONFIG_WOWLAN
405         if (bUsedWoWLANFw)
406                 fwfilepath = "/*(DEBLOBBED)*/";
407         else
408 #endif /*  CONFIG_WOWLAN */
409                 fwfilepath = "/*(DEBLOBBED)*/";
410
411         pr_info("rtl8723bs: acquire FW from file:%s\n", fwfilepath);
412
413         rtStatus = reject_firmware(&fw, fwfilepath, device);
414         if (rtStatus) {
415                 pr_err("Request firmware failed with error 0x%x\n", rtStatus);
416                 rtStatus = _FAIL;
417                 goto exit;
418         }
419
420         if (!fw) {
421                 pr_err("Firmware %s not available\n", fwfilepath);
422                 rtStatus = _FAIL;
423                 goto exit;
424         }
425
426         if (fw->size > FW_8723B_SIZE) {
427                 rtStatus = _FAIL;
428                 RT_TRACE(
429                         _module_hal_init_c_,
430                         _drv_err_,
431                         ("Firmware size exceed 0x%X. Check it.\n", FW_8188E_SIZE)
432                 );
433                 goto exit;
434         }
435
436         pFirmware->szFwBuffer = kmemdup(fw->data, fw->size, GFP_KERNEL);
437         if (!pFirmware->szFwBuffer) {
438                 rtStatus = _FAIL;
439                 goto exit;
440         }
441
442         pFirmware->ulFwLength = fw->size;
443         release_firmware(fw);
444         if (pFirmware->ulFwLength > FW_8723B_SIZE) {
445                 rtStatus = _FAIL;
446                 DBG_871X_LEVEL(_drv_emerg_, "Firmware size:%u exceed %u\n", pFirmware->ulFwLength, FW_8723B_SIZE);
447                 goto release_fw1;
448         }
449
450         pFirmwareBuf = pFirmware->szFwBuffer;
451         FirmwareLen = pFirmware->ulFwLength;
452
453         /*  To Check Fw header. Added by tynli. 2009.12.04. */
454         pFwHdr = (struct rt_firmware_hdr *)pFirmwareBuf;
455
456         pHalData->FirmwareVersion =  le16_to_cpu(pFwHdr->Version);
457         pHalData->FirmwareSubVersion = le16_to_cpu(pFwHdr->Subversion);
458         pHalData->FirmwareSignature = le16_to_cpu(pFwHdr->Signature);
459
460         DBG_871X(
461                 "%s: fw_ver =%x fw_subver =%04x sig = 0x%x, Month =%02x, Date =%02x, Hour =%02x, Minute =%02x\n",
462                 __func__,
463                 pHalData->FirmwareVersion,
464                 pHalData->FirmwareSubVersion,
465                 pHalData->FirmwareSignature,
466                 pFwHdr->Month,
467                 pFwHdr->Date,
468                 pFwHdr->Hour,
469                 pFwHdr->Minute
470         );
471
472         if (IS_FW_HEADER_EXIST_8723B(pFwHdr)) {
473                 DBG_871X("%s(): Shift for fw header!\n", __func__);
474                 /*  Shift 32 bytes for FW header */
475                 pFirmwareBuf = pFirmwareBuf + 32;
476                 FirmwareLen = FirmwareLen - 32;
477         }
478
479         /*  Suggested by Filen. If 8051 is running in RAM code, driver should inform Fw to reset by itself, */
480         /*  or it will cause download Fw fail. 2010.02.01. by tynli. */
481         if (rtw_read8(padapter, REG_MCUFWDL) & RAM_DL_SEL) { /* 8051 RAM code */
482                 rtw_write8(padapter, REG_MCUFWDL, 0x00);
483                 rtl8723b_FirmwareSelfReset(padapter);
484         }
485
486         _FWDownloadEnable(padapter, true);
487         fwdl_start_time = jiffies;
488         while (
489                 !padapter->bDriverStopped &&
490                 !padapter->bSurpriseRemoved &&
491                 (write_fw++ < 3 || jiffies_to_msecs(jiffies - fwdl_start_time) < 500)
492         ) {
493                 /* reset FWDL chksum */
494                 rtw_write8(padapter, REG_MCUFWDL, rtw_read8(padapter, REG_MCUFWDL)|FWDL_ChkSum_rpt);
495
496                 rtStatus = _WriteFW(padapter, pFirmwareBuf, FirmwareLen);
497                 if (rtStatus != _SUCCESS)
498                         continue;
499
500                 rtStatus = polling_fwdl_chksum(padapter, 5, 50);
501                 if (rtStatus == _SUCCESS)
502                         break;
503         }
504         _FWDownloadEnable(padapter, false);
505         if (_SUCCESS != rtStatus)
506                 goto fwdl_stat;
507
508         rtStatus = _FWFreeToGo(padapter, 10, 200);
509         if (_SUCCESS != rtStatus)
510                 goto fwdl_stat;
511
512 fwdl_stat:
513         DBG_871X(
514                 "FWDL %s. write_fw:%u, %dms\n",
515                 (rtStatus == _SUCCESS)?"success":"fail",
516                 write_fw,
517                 jiffies_to_msecs(jiffies - fwdl_start_time)
518         );
519
520 exit:
521         kfree(pFirmware->szFwBuffer);
522         kfree(pFirmware);
523 release_fw1:
524         kfree(pBTFirmware);
525         DBG_871X(" <=== rtl8723b_FirmwareDownload()\n");
526         return rtStatus;
527 }
528
529 void rtl8723b_InitializeFirmwareVars(struct adapter *padapter)
530 {
531         struct hal_com_data *pHalData = GET_HAL_DATA(padapter);
532
533         /*  Init Fw LPS related. */
534         adapter_to_pwrctl(padapter)->bFwCurrentInPSMode = false;
535
536         /* Init H2C cmd. */
537         rtw_write8(padapter, REG_HMETFR, 0x0f);
538
539         /*  Init H2C counter. by tynli. 2009.12.09. */
540         pHalData->LastHMEBoxNum = 0;
541 /* pHalData->H2CQueueHead = 0; */
542 /* pHalData->H2CQueueTail = 0; */
543 /* pHalData->H2CStopInsertQueue = false; */
544 }
545
546 #if defined(CONFIG_WOWLAN) || defined(CONFIG_AP_WOWLAN)
547 /*  */
548
549 /*  */
550 /*  Description: Prepare some information to Fw for WoWLAN. */
551 /* (1) Download wowlan Fw. */
552 /* (2) Download RSVD page packets. */
553 /* (3) Enable AP offload if needed. */
554 /*  */
555 /*  2011.04.12 by tynli. */
556 /*  */
557 void SetFwRelatedForWoWLAN8723b(
558         struct adapter *padapter, u8 bHostIsGoingtoSleep
559 )
560 {
561         int     status = _FAIL;
562         /*  */
563         /*  1. Before WoWLAN we need to re-download WoWLAN Fw. */
564         /*  */
565         status = rtl8723b_FirmwareDownload(padapter, bHostIsGoingtoSleep);
566         if (status != _SUCCESS) {
567                 DBG_871X("SetFwRelatedForWoWLAN8723b(): Re-Download Firmware failed!!\n");
568                 return;
569         } else {
570                 DBG_871X("SetFwRelatedForWoWLAN8723b(): Re-Download Firmware Success !!\n");
571         }
572         /*  */
573         /*  2. Re-Init the variables about Fw related setting. */
574         /*  */
575         rtl8723b_InitializeFirmwareVars(padapter);
576 }
577 #endif /* CONFIG_WOWLAN */
578
579 static void rtl8723b_free_hal_data(struct adapter *padapter)
580 {
581 }
582
583 /*  */
584 /*                              Efuse related code */
585 /*  */
586 static u8 hal_EfuseSwitchToBank(
587         struct adapter *padapter, u8 bank, bool bPseudoTest
588 )
589 {
590         u8 bRet = false;
591         u32 value32 = 0;
592 #ifdef HAL_EFUSE_MEMORY
593         struct hal_com_data *pHalData = GET_HAL_DATA(padapter);
594         PEFUSE_HAL pEfuseHal = &pHalData->EfuseHal;
595 #endif
596
597
598         DBG_8192C("%s: Efuse switch bank to %d\n", __func__, bank);
599         if (bPseudoTest) {
600 #ifdef HAL_EFUSE_MEMORY
601                 pEfuseHal->fakeEfuseBank = bank;
602 #else
603                 fakeEfuseBank = bank;
604 #endif
605                 bRet = true;
606         } else {
607                 value32 = rtw_read32(padapter, EFUSE_TEST);
608                 bRet = true;
609                 switch (bank) {
610                 case 0:
611                         value32 = (value32 & ~EFUSE_SEL_MASK) | EFUSE_SEL(EFUSE_WIFI_SEL_0);
612                         break;
613                 case 1:
614                         value32 = (value32 & ~EFUSE_SEL_MASK) | EFUSE_SEL(EFUSE_BT_SEL_0);
615                         break;
616                 case 2:
617                         value32 = (value32 & ~EFUSE_SEL_MASK) | EFUSE_SEL(EFUSE_BT_SEL_1);
618                         break;
619                 case 3:
620                         value32 = (value32 & ~EFUSE_SEL_MASK) | EFUSE_SEL(EFUSE_BT_SEL_2);
621                         break;
622                 default:
623                         value32 = (value32 & ~EFUSE_SEL_MASK) | EFUSE_SEL(EFUSE_WIFI_SEL_0);
624                         bRet = false;
625                         break;
626                 }
627                 rtw_write32(padapter, EFUSE_TEST, value32);
628         }
629
630         return bRet;
631 }
632
633 static void Hal_GetEfuseDefinition(
634         struct adapter *padapter,
635         u8 efuseType,
636         u8 type,
637         void *pOut,
638         bool bPseudoTest
639 )
640 {
641         switch (type) {
642         case TYPE_EFUSE_MAX_SECTION:
643                 {
644                         u8 *pMax_section;
645                         pMax_section = pOut;
646
647                         if (efuseType == EFUSE_WIFI)
648                                 *pMax_section = EFUSE_MAX_SECTION_8723B;
649                         else
650                                 *pMax_section = EFUSE_BT_MAX_SECTION;
651                 }
652                 break;
653
654         case TYPE_EFUSE_REAL_CONTENT_LEN:
655                 {
656                         u16 *pu2Tmp;
657                         pu2Tmp = pOut;
658
659                         if (efuseType == EFUSE_WIFI)
660                                 *pu2Tmp = EFUSE_REAL_CONTENT_LEN_8723B;
661                         else
662                                 *pu2Tmp = EFUSE_BT_REAL_CONTENT_LEN;
663                 }
664                 break;
665
666         case TYPE_AVAILABLE_EFUSE_BYTES_BANK:
667                 {
668                         u16 *pu2Tmp;
669                         pu2Tmp = pOut;
670
671                         if (efuseType == EFUSE_WIFI)
672                                 *pu2Tmp = (EFUSE_REAL_CONTENT_LEN_8723B-EFUSE_OOB_PROTECT_BYTES);
673                         else
674                                 *pu2Tmp = (EFUSE_BT_REAL_BANK_CONTENT_LEN-EFUSE_PROTECT_BYTES_BANK);
675                 }
676                 break;
677
678         case TYPE_AVAILABLE_EFUSE_BYTES_TOTAL:
679                 {
680                         u16 *pu2Tmp;
681                         pu2Tmp = pOut;
682
683                         if (efuseType == EFUSE_WIFI)
684                                 *pu2Tmp = (EFUSE_REAL_CONTENT_LEN_8723B-EFUSE_OOB_PROTECT_BYTES);
685                         else
686                                 *pu2Tmp = (EFUSE_BT_REAL_CONTENT_LEN-(EFUSE_PROTECT_BYTES_BANK*3));
687                 }
688                 break;
689
690         case TYPE_EFUSE_MAP_LEN:
691                 {
692                         u16 *pu2Tmp;
693                         pu2Tmp = pOut;
694
695                         if (efuseType == EFUSE_WIFI)
696                                 *pu2Tmp = EFUSE_MAX_MAP_LEN;
697                         else
698                                 *pu2Tmp = EFUSE_BT_MAP_LEN;
699                 }
700                 break;
701
702         case TYPE_EFUSE_PROTECT_BYTES_BANK:
703                 {
704                         u8 *pu1Tmp;
705                         pu1Tmp = pOut;
706
707                         if (efuseType == EFUSE_WIFI)
708                                 *pu1Tmp = EFUSE_OOB_PROTECT_BYTES;
709                         else
710                                 *pu1Tmp = EFUSE_PROTECT_BYTES_BANK;
711                 }
712                 break;
713
714         case TYPE_EFUSE_CONTENT_LEN_BANK:
715                 {
716                         u16 *pu2Tmp;
717                         pu2Tmp = pOut;
718
719                         if (efuseType == EFUSE_WIFI)
720                                 *pu2Tmp = EFUSE_REAL_CONTENT_LEN_8723B;
721                         else
722                                 *pu2Tmp = EFUSE_BT_REAL_BANK_CONTENT_LEN;
723                 }
724                 break;
725
726         default:
727                 {
728                         u8 *pu1Tmp;
729                         pu1Tmp = pOut;
730                         *pu1Tmp = 0;
731                 }
732                 break;
733         }
734 }
735
736 #define VOLTAGE_V25             0x03
737 #define LDOE25_SHIFT    28
738
739 /*  */
740 /*      The following is for compile ok */
741 /*      That should be merged with the original in the future */
742 /*  */
743 #define EFUSE_ACCESS_ON_8723                    0x69    /*  For RTL8723 only. */
744 #define EFUSE_ACCESS_OFF_8723                   0x00    /*  For RTL8723 only. */
745 #define REG_EFUSE_ACCESS_8723                   0x00CF  /*  Efuse access protection for RTL8723 */
746
747 /*  */
748 static void Hal_BT_EfusePowerSwitch(
749         struct adapter *padapter, u8 bWrite, u8 PwrState
750 )
751 {
752         u8 tempval;
753         if (PwrState == true) {
754                 /*  enable BT power cut */
755                 /*  0x6A[14] = 1 */
756                 tempval = rtw_read8(padapter, 0x6B);
757                 tempval |= BIT(6);
758                 rtw_write8(padapter, 0x6B, tempval);
759
760                 /*  Attention!! Between 0x6A[14] and 0x6A[15] setting need 100us delay */
761                 /*  So don't wirte 0x6A[14]= 1 and 0x6A[15]= 0 together! */
762                 msleep(1);
763                 /*  disable BT output isolation */
764                 /*  0x6A[15] = 0 */
765                 tempval = rtw_read8(padapter, 0x6B);
766                 tempval &= ~BIT(7);
767                 rtw_write8(padapter, 0x6B, tempval);
768         } else {
769                 /*  enable BT output isolation */
770                 /*  0x6A[15] = 1 */
771                 tempval = rtw_read8(padapter, 0x6B);
772                 tempval |= BIT(7);
773                 rtw_write8(padapter, 0x6B, tempval);
774
775                 /*  Attention!! Between 0x6A[14] and 0x6A[15] setting need 100us delay */
776                 /*  So don't wirte 0x6A[14]= 1 and 0x6A[15]= 0 together! */
777
778                 /*  disable BT power cut */
779                 /*  0x6A[14] = 1 */
780                 tempval = rtw_read8(padapter, 0x6B);
781                 tempval &= ~BIT(6);
782                 rtw_write8(padapter, 0x6B, tempval);
783         }
784
785 }
786 static void Hal_EfusePowerSwitch(
787         struct adapter *padapter, u8 bWrite, u8 PwrState
788 )
789 {
790         u8 tempval;
791         u16 tmpV16;
792
793
794         if (PwrState == true) {
795                 /*  To avoid cannot access efuse regsiters after disable/enable several times during DTM test. */
796                 /*  Suggested by SD1 IsaacHsu. 2013.07.08, added by tynli. */
797                 tempval = rtw_read8(padapter, SDIO_LOCAL_BASE|SDIO_REG_HSUS_CTRL);
798                 if (tempval & BIT(0)) { /*  SDIO local register is suspend */
799                         u8 count = 0;
800
801
802                         tempval &= ~BIT(0);
803                         rtw_write8(padapter, SDIO_LOCAL_BASE|SDIO_REG_HSUS_CTRL, tempval);
804
805                         /*  check 0x86[1:0]= 10'2h, wait power state to leave suspend */
806                         do {
807                                 tempval = rtw_read8(padapter, SDIO_LOCAL_BASE|SDIO_REG_HSUS_CTRL);
808                                 tempval &= 0x3;
809                                 if (tempval == 0x02)
810                                         break;
811
812                                 count++;
813                                 if (count >= 100)
814                                         break;
815
816                                 mdelay(10);
817                         } while (1);
818
819                         if (count >= 100) {
820                                 DBG_8192C(FUNC_ADPT_FMT ": Leave SDIO local register suspend fail! Local 0x86 =%#X\n",
821                                         FUNC_ADPT_ARG(padapter), tempval);
822                         } else {
823                                 DBG_8192C(FUNC_ADPT_FMT ": Leave SDIO local register suspend OK! Local 0x86 =%#X\n",
824                                         FUNC_ADPT_ARG(padapter), tempval);
825                         }
826                 }
827
828                 rtw_write8(padapter, REG_EFUSE_ACCESS_8723, EFUSE_ACCESS_ON_8723);
829
830                 /*  Reset: 0x0000h[28], default valid */
831                 tmpV16 =  rtw_read16(padapter, REG_SYS_FUNC_EN);
832                 if (!(tmpV16 & FEN_ELDR)) {
833                         tmpV16 |= FEN_ELDR;
834                         rtw_write16(padapter, REG_SYS_FUNC_EN, tmpV16);
835                 }
836
837                 /*  Clock: Gated(0x0008h[5]) 8M(0x0008h[1]) clock from ANA, default valid */
838                 tmpV16 = rtw_read16(padapter, REG_SYS_CLKR);
839                 if ((!(tmpV16 & LOADER_CLK_EN))  || (!(tmpV16 & ANA8M))) {
840                         tmpV16 |= (LOADER_CLK_EN | ANA8M);
841                         rtw_write16(padapter, REG_SYS_CLKR, tmpV16);
842                 }
843
844                 if (bWrite == true) {
845                         /*  Enable LDO 2.5V before read/write action */
846                         tempval = rtw_read8(padapter, EFUSE_TEST+3);
847                         tempval &= 0x0F;
848                         tempval |= (VOLTAGE_V25 << 4);
849                         rtw_write8(padapter, EFUSE_TEST+3, (tempval | 0x80));
850
851                         /* rtw_write8(padapter, REG_EFUSE_ACCESS, EFUSE_ACCESS_ON); */
852                 }
853         } else {
854                 rtw_write8(padapter, REG_EFUSE_ACCESS, EFUSE_ACCESS_OFF);
855
856                 if (bWrite == true) {
857                         /*  Disable LDO 2.5V after read/write action */
858                         tempval = rtw_read8(padapter, EFUSE_TEST+3);
859                         rtw_write8(padapter, EFUSE_TEST+3, (tempval & 0x7F));
860                 }
861
862         }
863 }
864
865 static void hal_ReadEFuse_WiFi(
866         struct adapter *padapter,
867         u16 _offset,
868         u16 _size_byte,
869         u8 *pbuf,
870         bool bPseudoTest
871 )
872 {
873 #ifdef HAL_EFUSE_MEMORY
874         struct hal_com_data *pHalData = GET_HAL_DATA(padapter);
875         PEFUSE_HAL pEfuseHal = &pHalData->EfuseHal;
876 #endif
877         u8 *efuseTbl = NULL;
878         u16 eFuse_Addr = 0;
879         u8 offset, wden;
880         u8 efuseHeader, efuseExtHdr, efuseData;
881         u16 i, total, used;
882         u8 efuse_usage = 0;
883
884         /* DBG_871X("YJ: ====>%s():_offset =%d _size_byte =%d bPseudoTest =%d\n", __func__, _offset, _size_byte, bPseudoTest); */
885         /*  */
886         /*  Do NOT excess total size of EFuse table. Added by Roger, 2008.11.10. */
887         /*  */
888         if ((_offset+_size_byte) > EFUSE_MAX_MAP_LEN) {
889                 DBG_8192C("%s: Invalid offset(%#x) with read bytes(%#x)!!\n", __func__, _offset, _size_byte);
890                 return;
891         }
892
893         efuseTbl = rtw_malloc(EFUSE_MAX_MAP_LEN);
894         if (efuseTbl == NULL) {
895                 DBG_8192C("%s: alloc efuseTbl fail!\n", __func__);
896                 return;
897         }
898         /*  0xff will be efuse default value instead of 0x00. */
899         memset(efuseTbl, 0xFF, EFUSE_MAX_MAP_LEN);
900
901
902 #ifdef DEBUG
903 if (0) {
904         for (i = 0; i < 256; i++)
905                 efuse_OneByteRead(padapter, i, &efuseTbl[i], false);
906         DBG_871X("Efuse Content:\n");
907         for (i = 0; i < 256; i++) {
908                 if (i % 16 == 0)
909                         printk("\n");
910                 printk("%02X ", efuseTbl[i]);
911         }
912         printk("\n");
913 }
914 #endif
915
916
917         /*  switch bank back to bank 0 for later BT and wifi use. */
918         hal_EfuseSwitchToBank(padapter, 0, bPseudoTest);
919
920         while (AVAILABLE_EFUSE_ADDR(eFuse_Addr)) {
921                 efuse_OneByteRead(padapter, eFuse_Addr++, &efuseHeader, bPseudoTest);
922                 if (efuseHeader == 0xFF) {
923                         DBG_8192C("%s: data end at address =%#x\n", __func__, eFuse_Addr-1);
924                         break;
925                 }
926                 /* DBG_8192C("%s: efuse[0x%X]= 0x%02X\n", __func__, eFuse_Addr-1, efuseHeader); */
927
928                 /*  Check PG header for section num. */
929                 if (EXT_HEADER(efuseHeader)) { /* extended header */
930                         offset = GET_HDR_OFFSET_2_0(efuseHeader);
931                         /* DBG_8192C("%s: extended header offset = 0x%X\n", __func__, offset); */
932
933                         efuse_OneByteRead(padapter, eFuse_Addr++, &efuseExtHdr, bPseudoTest);
934                         /* DBG_8192C("%s: efuse[0x%X]= 0x%02X\n", __func__, eFuse_Addr-1, efuseExtHdr); */
935                         if (ALL_WORDS_DISABLED(efuseExtHdr))
936                                 continue;
937
938                         offset |= ((efuseExtHdr & 0xF0) >> 1);
939                         wden = (efuseExtHdr & 0x0F);
940                 } else {
941                         offset = ((efuseHeader >> 4) & 0x0f);
942                         wden = (efuseHeader & 0x0f);
943                 }
944                 /* DBG_8192C("%s: Offset =%d Worden = 0x%X\n", __func__, offset, wden); */
945
946                 if (offset < EFUSE_MAX_SECTION_8723B) {
947                         u16 addr;
948                         /*  Get word enable value from PG header */
949 /*                      DBG_8192C("%s: Offset =%d Worden = 0x%X\n", __func__, offset, wden); */
950
951                         addr = offset * PGPKT_DATA_SIZE;
952                         for (i = 0; i < EFUSE_MAX_WORD_UNIT; i++) {
953                                 /*  Check word enable condition in the section */
954                                 if (!(wden & (0x01<<i))) {
955                                         efuse_OneByteRead(padapter, eFuse_Addr++, &efuseData, bPseudoTest);
956 /*                                      DBG_8192C("%s: efuse[%#X]= 0x%02X\n", __func__, eFuse_Addr-1, efuseData); */
957                                         efuseTbl[addr] = efuseData;
958
959                                         efuse_OneByteRead(padapter, eFuse_Addr++, &efuseData, bPseudoTest);
960 /*                                      DBG_8192C("%s: efuse[%#X]= 0x%02X\n", __func__, eFuse_Addr-1, efuseData); */
961                                         efuseTbl[addr+1] = efuseData;
962                                 }
963                                 addr += 2;
964                         }
965                 } else {
966                         DBG_8192C(KERN_ERR "%s: offset(%d) is illegal!!\n", __func__, offset);
967                         eFuse_Addr += Efuse_CalculateWordCnts(wden)*2;
968                 }
969         }
970
971         /*  Copy from Efuse map to output pointer memory!!! */
972         for (i = 0; i < _size_byte; i++)
973                 pbuf[i] = efuseTbl[_offset+i];
974
975 #ifdef DEBUG
976 if (1) {
977         DBG_871X("Efuse Realmap:\n");
978         for (i = 0; i < _size_byte; i++) {
979                 if (i % 16 == 0)
980                         printk("\n");
981                 printk("%02X ", pbuf[i]);
982         }
983         printk("\n");
984 }
985 #endif
986         /*  Calculate Efuse utilization */
987         EFUSE_GetEfuseDefinition(padapter, EFUSE_WIFI, TYPE_AVAILABLE_EFUSE_BYTES_TOTAL, &total, bPseudoTest);
988         used = eFuse_Addr - 1;
989         efuse_usage = (u8)((used*100)/total);
990         if (bPseudoTest) {
991 #ifdef HAL_EFUSE_MEMORY
992                 pEfuseHal->fakeEfuseUsedBytes = used;
993 #else
994                 fakeEfuseUsedBytes = used;
995 #endif
996         } else {
997                 rtw_hal_set_hwreg(padapter, HW_VAR_EFUSE_BYTES, (u8 *)&used);
998                 rtw_hal_set_hwreg(padapter, HW_VAR_EFUSE_USAGE, (u8 *)&efuse_usage);
999         }
1000
1001         kfree(efuseTbl);
1002 }
1003
1004 static void hal_ReadEFuse_BT(
1005         struct adapter *padapter,
1006         u16 _offset,
1007         u16 _size_byte,
1008         u8 *pbuf,
1009         bool bPseudoTest
1010 )
1011 {
1012 #ifdef HAL_EFUSE_MEMORY
1013         struct hal_com_data *pHalData = GET_HAL_DATA(padapter);
1014         PEFUSE_HAL pEfuseHal = &pHalData->EfuseHal;
1015 #endif
1016         u8 *efuseTbl;
1017         u8 bank;
1018         u16 eFuse_Addr;
1019         u8 efuseHeader, efuseExtHdr, efuseData;
1020         u8 offset, wden;
1021         u16 i, total, used;
1022         u8 efuse_usage;
1023
1024
1025         /*  */
1026         /*  Do NOT excess total size of EFuse table. Added by Roger, 2008.11.10. */
1027         /*  */
1028         if ((_offset+_size_byte) > EFUSE_BT_MAP_LEN) {
1029                 DBG_8192C("%s: Invalid offset(%#x) with read bytes(%#x)!!\n", __func__, _offset, _size_byte);
1030                 return;
1031         }
1032
1033         efuseTbl = rtw_malloc(EFUSE_BT_MAP_LEN);
1034         if (efuseTbl == NULL) {
1035                 DBG_8192C("%s: efuseTbl malloc fail!\n", __func__);
1036                 return;
1037         }
1038         /*  0xff will be efuse default value instead of 0x00. */
1039         memset(efuseTbl, 0xFF, EFUSE_BT_MAP_LEN);
1040
1041         EFUSE_GetEfuseDefinition(padapter, EFUSE_BT, TYPE_AVAILABLE_EFUSE_BYTES_BANK, &total, bPseudoTest);
1042
1043         for (bank = 1; bank < 3; bank++) { /*  8723b Max bake 0~2 */
1044                 if (hal_EfuseSwitchToBank(padapter, bank, bPseudoTest) == false) {
1045                         DBG_8192C("%s: hal_EfuseSwitchToBank Fail!!\n", __func__);
1046                         goto exit;
1047                 }
1048
1049                 eFuse_Addr = 0;
1050
1051                 while (AVAILABLE_EFUSE_ADDR(eFuse_Addr)) {
1052                         efuse_OneByteRead(padapter, eFuse_Addr++, &efuseHeader, bPseudoTest);
1053                         if (efuseHeader == 0xFF)
1054                                 break;
1055                         DBG_8192C("%s: efuse[%#X]= 0x%02x (header)\n", __func__, (((bank-1)*EFUSE_REAL_CONTENT_LEN_8723B)+eFuse_Addr-1), efuseHeader);
1056
1057                         /*  Check PG header for section num. */
1058                         if (EXT_HEADER(efuseHeader)) { /* extended header */
1059                                 offset = GET_HDR_OFFSET_2_0(efuseHeader);
1060                                 DBG_8192C("%s: extended header offset_2_0 = 0x%X\n", __func__, offset);
1061
1062                                 efuse_OneByteRead(padapter, eFuse_Addr++, &efuseExtHdr, bPseudoTest);
1063                                 DBG_8192C("%s: efuse[%#X]= 0x%02x (ext header)\n", __func__, (((bank-1)*EFUSE_REAL_CONTENT_LEN_8723B)+eFuse_Addr-1), efuseExtHdr);
1064                                 if (ALL_WORDS_DISABLED(efuseExtHdr))
1065                                         continue;
1066
1067
1068                                 offset |= ((efuseExtHdr & 0xF0) >> 1);
1069                                 wden = (efuseExtHdr & 0x0F);
1070                         } else {
1071                                 offset = ((efuseHeader >> 4) & 0x0f);
1072                                 wden = (efuseHeader & 0x0f);
1073                         }
1074
1075                         if (offset < EFUSE_BT_MAX_SECTION) {
1076                                 u16 addr;
1077
1078                                 /*  Get word enable value from PG header */
1079                                 DBG_8192C("%s: Offset =%d Worden =%#X\n", __func__, offset, wden);
1080
1081                                 addr = offset * PGPKT_DATA_SIZE;
1082                                 for (i = 0; i < EFUSE_MAX_WORD_UNIT; i++) {
1083                                         /*  Check word enable condition in the section */
1084                                         if (!(wden & (0x01<<i))) {
1085                                                 efuse_OneByteRead(padapter, eFuse_Addr++, &efuseData, bPseudoTest);
1086                                                 DBG_8192C("%s: efuse[%#X]= 0x%02X\n", __func__, eFuse_Addr-1, efuseData);
1087                                                 efuseTbl[addr] = efuseData;
1088
1089                                                 efuse_OneByteRead(padapter, eFuse_Addr++, &efuseData, bPseudoTest);
1090                                                 DBG_8192C("%s: efuse[%#X]= 0x%02X\n", __func__, eFuse_Addr-1, efuseData);
1091                                                 efuseTbl[addr+1] = efuseData;
1092                                         }
1093                                         addr += 2;
1094                                 }
1095                         } else {
1096                                 DBG_8192C("%s: offset(%d) is illegal!!\n", __func__, offset);
1097                                 eFuse_Addr += Efuse_CalculateWordCnts(wden)*2;
1098                         }
1099                 }
1100
1101                 if ((eFuse_Addr-1) < total) {
1102                         DBG_8192C("%s: bank(%d) data end at %#x\n", __func__, bank, eFuse_Addr-1);
1103                         break;
1104                 }
1105         }
1106
1107         /*  switch bank back to bank 0 for later BT and wifi use. */
1108         hal_EfuseSwitchToBank(padapter, 0, bPseudoTest);
1109
1110         /*  Copy from Efuse map to output pointer memory!!! */
1111         for (i = 0; i < _size_byte; i++)
1112                 pbuf[i] = efuseTbl[_offset+i];
1113
1114         /*  */
1115         /*  Calculate Efuse utilization. */
1116         /*  */
1117         EFUSE_GetEfuseDefinition(padapter, EFUSE_BT, TYPE_AVAILABLE_EFUSE_BYTES_TOTAL, &total, bPseudoTest);
1118         used = (EFUSE_BT_REAL_BANK_CONTENT_LEN*(bank-1)) + eFuse_Addr - 1;
1119         DBG_8192C("%s: bank(%d) data end at %#x , used =%d\n", __func__, bank, eFuse_Addr-1, used);
1120         efuse_usage = (u8)((used*100)/total);
1121         if (bPseudoTest) {
1122 #ifdef HAL_EFUSE_MEMORY
1123                 pEfuseHal->fakeBTEfuseUsedBytes = used;
1124 #else
1125                 fakeBTEfuseUsedBytes = used;
1126 #endif
1127         } else {
1128                 rtw_hal_set_hwreg(padapter, HW_VAR_EFUSE_BT_BYTES, (u8 *)&used);
1129                 rtw_hal_set_hwreg(padapter, HW_VAR_EFUSE_BT_USAGE, (u8 *)&efuse_usage);
1130         }
1131
1132 exit:
1133         kfree(efuseTbl);
1134 }
1135
1136 static void Hal_ReadEFuse(
1137         struct adapter *padapter,
1138         u8 efuseType,
1139         u16 _offset,
1140         u16 _size_byte,
1141         u8 *pbuf,
1142         bool bPseudoTest
1143 )
1144 {
1145         if (efuseType == EFUSE_WIFI)
1146                 hal_ReadEFuse_WiFi(padapter, _offset, _size_byte, pbuf, bPseudoTest);
1147         else
1148                 hal_ReadEFuse_BT(padapter, _offset, _size_byte, pbuf, bPseudoTest);
1149 }
1150
1151 static u16 hal_EfuseGetCurrentSize_WiFi(
1152         struct adapter *padapter, bool bPseudoTest
1153 )
1154 {
1155 #ifdef HAL_EFUSE_MEMORY
1156         struct hal_com_data *pHalData = GET_HAL_DATA(padapter);
1157         PEFUSE_HAL              pEfuseHal = &pHalData->EfuseHal;
1158 #endif
1159         u16 efuse_addr = 0;
1160         u16 start_addr = 0; /*  for debug */
1161         u8 hoffset = 0, hworden = 0;
1162         u8 efuse_data, word_cnts = 0;
1163         u32 count = 0; /*  for debug */
1164
1165
1166         if (bPseudoTest) {
1167 #ifdef HAL_EFUSE_MEMORY
1168                 efuse_addr = (u16)pEfuseHal->fakeEfuseUsedBytes;
1169 #else
1170                 efuse_addr = (u16)fakeEfuseUsedBytes;
1171 #endif
1172         } else
1173                 rtw_hal_get_hwreg(padapter, HW_VAR_EFUSE_BYTES, (u8 *)&efuse_addr);
1174
1175         start_addr = efuse_addr;
1176         DBG_8192C("%s: start_efuse_addr = 0x%X\n", __func__, efuse_addr);
1177
1178         /*  switch bank back to bank 0 for later BT and wifi use. */
1179         hal_EfuseSwitchToBank(padapter, 0, bPseudoTest);
1180
1181         count = 0;
1182         while (AVAILABLE_EFUSE_ADDR(efuse_addr)) {
1183                 if (efuse_OneByteRead(padapter, efuse_addr, &efuse_data, bPseudoTest) == false) {
1184                         DBG_8192C(KERN_ERR "%s: efuse_OneByteRead Fail! addr = 0x%X !!\n", __func__, efuse_addr);
1185                         goto error;
1186                 }
1187
1188                 if (efuse_data == 0xFF)
1189                         break;
1190
1191                 if ((start_addr != 0) && (efuse_addr == start_addr)) {
1192                         count++;
1193                         DBG_8192C(FUNC_ADPT_FMT ": [WARNING] efuse raw 0x%X = 0x%02X not 0xFF!!(%d times)\n",
1194                                 FUNC_ADPT_ARG(padapter), efuse_addr, efuse_data, count);
1195
1196                         efuse_data = 0xFF;
1197                         if (count < 4) {
1198                                 /*  try again! */
1199
1200                                 if (count > 2) {
1201                                         /*  try again form address 0 */
1202                                         efuse_addr = 0;
1203                                         start_addr = 0;
1204                                 }
1205
1206                                 continue;
1207                         }
1208
1209                         goto error;
1210                 }
1211
1212                 if (EXT_HEADER(efuse_data)) {
1213                         hoffset = GET_HDR_OFFSET_2_0(efuse_data);
1214                         efuse_addr++;
1215                         efuse_OneByteRead(padapter, efuse_addr, &efuse_data, bPseudoTest);
1216                         if (ALL_WORDS_DISABLED(efuse_data))
1217                                 continue;
1218
1219                         hoffset |= ((efuse_data & 0xF0) >> 1);
1220                         hworden = efuse_data & 0x0F;
1221                 } else {
1222                         hoffset = (efuse_data>>4) & 0x0F;
1223                         hworden = efuse_data & 0x0F;
1224                 }
1225
1226                 word_cnts = Efuse_CalculateWordCnts(hworden);
1227                 efuse_addr += (word_cnts*2)+1;
1228         }
1229
1230         if (bPseudoTest) {
1231 #ifdef HAL_EFUSE_MEMORY
1232                 pEfuseHal->fakeEfuseUsedBytes = efuse_addr;
1233 #else
1234                 fakeEfuseUsedBytes = efuse_addr;
1235 #endif
1236         } else
1237                 rtw_hal_set_hwreg(padapter, HW_VAR_EFUSE_BYTES, (u8 *)&efuse_addr);
1238
1239         goto exit;
1240
1241 error:
1242         /*  report max size to prevent wirte efuse */
1243         EFUSE_GetEfuseDefinition(padapter, EFUSE_WIFI, TYPE_AVAILABLE_EFUSE_BYTES_TOTAL, &efuse_addr, bPseudoTest);
1244
1245 exit:
1246         DBG_8192C("%s: CurrentSize =%d\n", __func__, efuse_addr);
1247
1248         return efuse_addr;
1249 }
1250
1251 static u16 hal_EfuseGetCurrentSize_BT(struct adapter *padapter, u8 bPseudoTest)
1252 {
1253 #ifdef HAL_EFUSE_MEMORY
1254         struct hal_com_data *pHalData = GET_HAL_DATA(padapter);
1255         PEFUSE_HAL pEfuseHal = &pHalData->EfuseHal;
1256 #endif
1257         u16 btusedbytes;
1258         u16 efuse_addr;
1259         u8 bank, startBank;
1260         u8 hoffset = 0, hworden = 0;
1261         u8 efuse_data, word_cnts = 0;
1262         u16 retU2 = 0;
1263
1264         if (bPseudoTest) {
1265 #ifdef HAL_EFUSE_MEMORY
1266                 btusedbytes = pEfuseHal->fakeBTEfuseUsedBytes;
1267 #else
1268                 btusedbytes = fakeBTEfuseUsedBytes;
1269 #endif
1270         } else
1271                 rtw_hal_get_hwreg(padapter, HW_VAR_EFUSE_BT_BYTES, (u8 *)&btusedbytes);
1272
1273         efuse_addr = (u16)((btusedbytes%EFUSE_BT_REAL_BANK_CONTENT_LEN));
1274         startBank = (u8)(1+(btusedbytes/EFUSE_BT_REAL_BANK_CONTENT_LEN));
1275
1276         DBG_8192C("%s: start from bank =%d addr = 0x%X\n", __func__, startBank, efuse_addr);
1277
1278         EFUSE_GetEfuseDefinition(padapter, EFUSE_BT, TYPE_AVAILABLE_EFUSE_BYTES_BANK, &retU2, bPseudoTest);
1279
1280         for (bank = startBank; bank < 3; bank++) {
1281                 if (hal_EfuseSwitchToBank(padapter, bank, bPseudoTest) == false) {
1282                         DBG_8192C(KERN_ERR "%s: switch bank(%d) Fail!!\n", __func__, bank);
1283                         /* bank = EFUSE_MAX_BANK; */
1284                         break;
1285                 }
1286
1287                 /*  only when bank is switched we have to reset the efuse_addr. */
1288                 if (bank != startBank)
1289                         efuse_addr = 0;
1290 #if 1
1291
1292                 while (AVAILABLE_EFUSE_ADDR(efuse_addr)) {
1293                         if (efuse_OneByteRead(padapter, efuse_addr, &efuse_data, bPseudoTest) == false) {
1294                                 DBG_8192C(KERN_ERR "%s: efuse_OneByteRead Fail! addr = 0x%X !!\n", __func__, efuse_addr);
1295                                 /* bank = EFUSE_MAX_BANK; */
1296                                 break;
1297                         }
1298                         DBG_8192C("%s: efuse_OneByteRead ! addr = 0x%X !efuse_data = 0x%X! bank =%d\n", __func__, efuse_addr, efuse_data, bank);
1299
1300                         if (efuse_data == 0xFF)
1301                                 break;
1302
1303                         if (EXT_HEADER(efuse_data)) {
1304                                 hoffset = GET_HDR_OFFSET_2_0(efuse_data);
1305                                 efuse_addr++;
1306                                 efuse_OneByteRead(padapter, efuse_addr, &efuse_data, bPseudoTest);
1307                                 DBG_8192C("%s: efuse_OneByteRead EXT_HEADER ! addr = 0x%X !efuse_data = 0x%X! bank =%d\n", __func__, efuse_addr, efuse_data, bank);
1308
1309                                 if (ALL_WORDS_DISABLED(efuse_data)) {
1310                                         efuse_addr++;
1311                                         continue;
1312                                 }
1313
1314 /*                              hoffset = ((hoffset & 0xE0) >> 5) | ((efuse_data & 0xF0) >> 1); */
1315                                 hoffset |= ((efuse_data & 0xF0) >> 1);
1316                                 hworden = efuse_data & 0x0F;
1317                         } else {
1318                                 hoffset = (efuse_data>>4) & 0x0F;
1319                                 hworden =  efuse_data & 0x0F;
1320                         }
1321
1322                         DBG_8192C(FUNC_ADPT_FMT": Offset =%d Worden =%#X\n",
1323                                 FUNC_ADPT_ARG(padapter), hoffset, hworden);
1324
1325                         word_cnts = Efuse_CalculateWordCnts(hworden);
1326                         /* read next header */
1327                         efuse_addr += (word_cnts*2)+1;
1328                 }
1329 #else
1330         while (
1331                 bContinual &&
1332                 efuse_OneByteRead(padapter, efuse_addr, &efuse_data, bPseudoTest) &&
1333                 AVAILABLE_EFUSE_ADDR(efuse_addr)
1334         ) {
1335                         if (efuse_data != 0xFF) {
1336                                 if ((efuse_data&0x1F) == 0x0F) { /* extended header */
1337                                         hoffset = efuse_data;
1338                                         efuse_addr++;
1339                                         efuse_OneByteRead(padapter, efuse_addr, &efuse_data, bPseudoTest);
1340                                         if ((efuse_data & 0x0F) == 0x0F) {
1341                                                 efuse_addr++;
1342                                                 continue;
1343                                         } else {
1344                                                 hoffset = ((hoffset & 0xE0) >> 5) | ((efuse_data & 0xF0) >> 1);
1345                                                 hworden = efuse_data & 0x0F;
1346                                         }
1347                                 } else {
1348                                         hoffset = (efuse_data>>4) & 0x0F;
1349                                         hworden =  efuse_data & 0x0F;
1350                                 }
1351                                 word_cnts = Efuse_CalculateWordCnts(hworden);
1352                                 /* read next header */
1353                                 efuse_addr = efuse_addr + (word_cnts*2)+1;
1354                         } else
1355                                 bContinual = false;
1356                 }
1357 #endif
1358
1359
1360                 /*  Check if we need to check next bank efuse */
1361                 if (efuse_addr < retU2)
1362                         break; /*  don't need to check next bank. */
1363         }
1364
1365         retU2 = ((bank-1)*EFUSE_BT_REAL_BANK_CONTENT_LEN)+efuse_addr;
1366         if (bPseudoTest) {
1367                 pEfuseHal->fakeBTEfuseUsedBytes = retU2;
1368                 /* RT_DISP(FEEPROM, EFUSE_PG, ("Hal_EfuseGetCurrentSize_BT92C(), already use %u bytes\n", pEfuseHal->fakeBTEfuseUsedBytes)); */
1369         } else {
1370                 pEfuseHal->BTEfuseUsedBytes = retU2;
1371                 /* RT_DISP(FEEPROM, EFUSE_PG, ("Hal_EfuseGetCurrentSize_BT92C(), already use %u bytes\n", pEfuseHal->BTEfuseUsedBytes)); */
1372         }
1373
1374         DBG_8192C("%s: CurrentSize =%d\n", __func__, retU2);
1375         return retU2;
1376 }
1377
1378 static u16 Hal_EfuseGetCurrentSize(
1379         struct adapter *padapter, u8 efuseType, bool bPseudoTest
1380 )
1381 {
1382         u16 ret = 0;
1383
1384         if (efuseType == EFUSE_WIFI)
1385                 ret = hal_EfuseGetCurrentSize_WiFi(padapter, bPseudoTest);
1386         else
1387                 ret = hal_EfuseGetCurrentSize_BT(padapter, bPseudoTest);
1388
1389         return ret;
1390 }
1391
1392 static u8 Hal_EfuseWordEnableDataWrite(
1393         struct adapter *padapter,
1394         u16 efuse_addr,
1395         u8 word_en,
1396         u8 *data,
1397         bool bPseudoTest
1398 )
1399 {
1400         u16 tmpaddr = 0;
1401         u16 start_addr = efuse_addr;
1402         u8 badworden = 0x0F;
1403         u8 tmpdata[PGPKT_DATA_SIZE];
1404
1405
1406 /*      DBG_8192C("%s: efuse_addr =%#x word_en =%#x\n", __func__, efuse_addr, word_en); */
1407         memset(tmpdata, 0xFF, PGPKT_DATA_SIZE);
1408
1409         if (!(word_en & BIT(0))) {
1410                 tmpaddr = start_addr;
1411                 efuse_OneByteWrite(padapter, start_addr++, data[0], bPseudoTest);
1412                 efuse_OneByteWrite(padapter, start_addr++, data[1], bPseudoTest);
1413
1414                 efuse_OneByteRead(padapter, tmpaddr, &tmpdata[0], bPseudoTest);
1415                 efuse_OneByteRead(padapter, tmpaddr+1, &tmpdata[1], bPseudoTest);
1416                 if ((data[0] != tmpdata[0]) || (data[1] != tmpdata[1])) {
1417                         badworden &= (~BIT(0));
1418                 }
1419         }
1420         if (!(word_en & BIT(1))) {
1421                 tmpaddr = start_addr;
1422                 efuse_OneByteWrite(padapter, start_addr++, data[2], bPseudoTest);
1423                 efuse_OneByteWrite(padapter, start_addr++, data[3], bPseudoTest);
1424
1425                 efuse_OneByteRead(padapter, tmpaddr, &tmpdata[2], bPseudoTest);
1426                 efuse_OneByteRead(padapter, tmpaddr+1, &tmpdata[3], bPseudoTest);
1427                 if ((data[2] != tmpdata[2]) || (data[3] != tmpdata[3])) {
1428                         badworden &= (~BIT(1));
1429                 }
1430         }
1431
1432         if (!(word_en & BIT(2))) {
1433                 tmpaddr = start_addr;
1434                 efuse_OneByteWrite(padapter, start_addr++, data[4], bPseudoTest);
1435                 efuse_OneByteWrite(padapter, start_addr++, data[5], bPseudoTest);
1436
1437                 efuse_OneByteRead(padapter, tmpaddr, &tmpdata[4], bPseudoTest);
1438                 efuse_OneByteRead(padapter, tmpaddr+1, &tmpdata[5], bPseudoTest);
1439                 if ((data[4] != tmpdata[4]) || (data[5] != tmpdata[5])) {
1440                         badworden &= (~BIT(2));
1441                 }
1442         }
1443
1444         if (!(word_en & BIT(3))) {
1445                 tmpaddr = start_addr;
1446                 efuse_OneByteWrite(padapter, start_addr++, data[6], bPseudoTest);
1447                 efuse_OneByteWrite(padapter, start_addr++, data[7], bPseudoTest);
1448
1449                 efuse_OneByteRead(padapter, tmpaddr, &tmpdata[6], bPseudoTest);
1450                 efuse_OneByteRead(padapter, tmpaddr+1, &tmpdata[7], bPseudoTest);
1451                 if ((data[6] != tmpdata[6]) || (data[7] != tmpdata[7])) {
1452                         badworden &= (~BIT(3));
1453                 }
1454         }
1455
1456         return badworden;
1457 }
1458
1459 static s32 Hal_EfusePgPacketRead(
1460         struct adapter *padapter,
1461         u8 offset,
1462         u8 *data,
1463         bool bPseudoTest
1464 )
1465 {
1466         u8 efuse_data, word_cnts = 0;
1467         u16 efuse_addr = 0;
1468         u8 hoffset = 0, hworden = 0;
1469         u8 i;
1470         u8 max_section = 0;
1471         s32     ret;
1472
1473
1474         if (data == NULL)
1475                 return false;
1476
1477         EFUSE_GetEfuseDefinition(padapter, EFUSE_WIFI, TYPE_EFUSE_MAX_SECTION, &max_section, bPseudoTest);
1478         if (offset > max_section) {
1479                 DBG_8192C("%s: Packet offset(%d) is illegal(>%d)!\n", __func__, offset, max_section);
1480                 return false;
1481         }
1482
1483         memset(data, 0xFF, PGPKT_DATA_SIZE);
1484         ret = true;
1485
1486         /*  */
1487         /*  <Roger_TODO> Efuse has been pre-programmed dummy 5Bytes at the end of Efuse by CP. */
1488         /*  Skip dummy parts to prevent unexpected data read from Efuse. */
1489         /*  By pass right now. 2009.02.19. */
1490         /*  */
1491         while (AVAILABLE_EFUSE_ADDR(efuse_addr)) {
1492                 if (efuse_OneByteRead(padapter, efuse_addr++, &efuse_data, bPseudoTest) == false) {
1493                         ret = false;
1494                         break;
1495                 }
1496
1497                 if (efuse_data == 0xFF)
1498                         break;
1499
1500                 if (EXT_HEADER(efuse_data)) {
1501                         hoffset = GET_HDR_OFFSET_2_0(efuse_data);
1502                         efuse_OneByteRead(padapter, efuse_addr++, &efuse_data, bPseudoTest);
1503                         if (ALL_WORDS_DISABLED(efuse_data)) {
1504                                 DBG_8192C("%s: Error!! All words disabled!\n", __func__);
1505                                 continue;
1506                         }
1507
1508                         hoffset |= ((efuse_data & 0xF0) >> 1);
1509                         hworden = efuse_data & 0x0F;
1510                 } else {
1511                         hoffset = (efuse_data>>4) & 0x0F;
1512                         hworden =  efuse_data & 0x0F;
1513                 }
1514
1515                 if (hoffset == offset) {
1516                         for (i = 0; i < EFUSE_MAX_WORD_UNIT; i++) {
1517                                 /*  Check word enable condition in the section */
1518                                 if (!(hworden & (0x01<<i))) {
1519                                         efuse_OneByteRead(padapter, efuse_addr++, &efuse_data, bPseudoTest);
1520 /*                                      DBG_8192C("%s: efuse[%#X]= 0x%02X\n", __func__, efuse_addr+tmpidx, efuse_data); */
1521                                         data[i*2] = efuse_data;
1522
1523                                         efuse_OneByteRead(padapter, efuse_addr++, &efuse_data, bPseudoTest);
1524 /*                                      DBG_8192C("%s: efuse[%#X]= 0x%02X\n", __func__, efuse_addr+tmpidx, efuse_data); */
1525                                         data[(i*2)+1] = efuse_data;
1526                                 }
1527                         }
1528                 } else {
1529                         word_cnts = Efuse_CalculateWordCnts(hworden);
1530                         efuse_addr += word_cnts*2;
1531                 }
1532         }
1533
1534         return ret;
1535 }
1536
1537 static u8 hal_EfusePgCheckAvailableAddr(
1538         struct adapter *padapter, u8 efuseType, u8 bPseudoTest
1539 )
1540 {
1541         u16 max_available = 0;
1542         u16 current_size;
1543
1544
1545         EFUSE_GetEfuseDefinition(padapter, efuseType, TYPE_AVAILABLE_EFUSE_BYTES_TOTAL, &max_available, bPseudoTest);
1546 /*      DBG_8192C("%s: max_available =%d\n", __func__, max_available); */
1547
1548         current_size = Efuse_GetCurrentSize(padapter, efuseType, bPseudoTest);
1549         if (current_size >= max_available) {
1550                 DBG_8192C("%s: Error!! current_size(%d)>max_available(%d)\n", __func__, current_size, max_available);
1551                 return false;
1552         }
1553         return true;
1554 }
1555
1556 static void hal_EfuseConstructPGPkt(
1557         u8 offset,
1558         u8 word_en,
1559         u8 *pData,
1560         PPGPKT_STRUCT pTargetPkt
1561 )
1562 {
1563         memset(pTargetPkt->data, 0xFF, PGPKT_DATA_SIZE);
1564         pTargetPkt->offset = offset;
1565         pTargetPkt->word_en = word_en;
1566         efuse_WordEnableDataRead(word_en, pData, pTargetPkt->data);
1567         pTargetPkt->word_cnts = Efuse_CalculateWordCnts(pTargetPkt->word_en);
1568 }
1569
1570 static u8 hal_EfusePartialWriteCheck(
1571         struct adapter *padapter,
1572         u8 efuseType,
1573         u16 *pAddr,
1574         PPGPKT_STRUCT pTargetPkt,
1575         u8 bPseudoTest
1576 )
1577 {
1578         struct hal_com_data *pHalData = GET_HAL_DATA(padapter);
1579         PEFUSE_HAL pEfuseHal = &pHalData->EfuseHal;
1580         u8 bRet = false;
1581         u16 startAddr = 0, efuse_max_available_len = 0, efuse_max = 0;
1582         u8 efuse_data = 0;
1583
1584         EFUSE_GetEfuseDefinition(padapter, efuseType, TYPE_AVAILABLE_EFUSE_BYTES_TOTAL, &efuse_max_available_len, bPseudoTest);
1585         EFUSE_GetEfuseDefinition(padapter, efuseType, TYPE_EFUSE_CONTENT_LEN_BANK, &efuse_max, bPseudoTest);
1586
1587         if (efuseType == EFUSE_WIFI) {
1588                 if (bPseudoTest) {
1589 #ifdef HAL_EFUSE_MEMORY
1590                         startAddr = (u16)pEfuseHal->fakeEfuseUsedBytes;
1591 #else
1592                         startAddr = (u16)fakeEfuseUsedBytes;
1593 #endif
1594                 } else
1595                         rtw_hal_get_hwreg(padapter, HW_VAR_EFUSE_BYTES, (u8 *)&startAddr);
1596         } else {
1597                 if (bPseudoTest) {
1598 #ifdef HAL_EFUSE_MEMORY
1599                         startAddr = (u16)pEfuseHal->fakeBTEfuseUsedBytes;
1600 #else
1601                         startAddr = (u16)fakeBTEfuseUsedBytes;
1602 #endif
1603                 } else
1604                         rtw_hal_get_hwreg(padapter, HW_VAR_EFUSE_BT_BYTES, (u8 *)&startAddr);
1605         }
1606         startAddr %= efuse_max;
1607         DBG_8192C("%s: startAddr =%#X\n", __func__, startAddr);
1608
1609         while (1) {
1610                 if (startAddr >= efuse_max_available_len) {
1611                         bRet = false;
1612                         DBG_8192C("%s: startAddr(%d) >= efuse_max_available_len(%d)\n", __func__, startAddr, efuse_max_available_len);
1613                         break;
1614                 }
1615
1616                 if (efuse_OneByteRead(padapter, startAddr, &efuse_data, bPseudoTest) && (efuse_data != 0xFF)) {
1617 #if 1
1618                         bRet = false;
1619                         DBG_8192C("%s: Something Wrong! last bytes(%#X = 0x%02X) is not 0xFF\n",
1620                                 __func__, startAddr, efuse_data);
1621                         break;
1622 #else
1623                         if (EXT_HEADER(efuse_data)) {
1624                                 cur_header = efuse_data;
1625                                 startAddr++;
1626                                 efuse_OneByteRead(padapter, startAddr, &efuse_data, bPseudoTest);
1627                                 if (ALL_WORDS_DISABLED(efuse_data)) {
1628                                         DBG_8192C("%s: Error condition, all words disabled!", __func__);
1629                                         bRet = false;
1630                                         break;
1631                                 } else {
1632                                         curPkt.offset = ((cur_header & 0xE0) >> 5) | ((efuse_data & 0xF0) >> 1);
1633                                         curPkt.word_en = efuse_data & 0x0F;
1634                                 }
1635                         } else {
1636                                 cur_header  =  efuse_data;
1637                                 curPkt.offset = (cur_header>>4) & 0x0F;
1638                                 curPkt.word_en = cur_header & 0x0F;
1639                         }
1640
1641                         curPkt.word_cnts = Efuse_CalculateWordCnts(curPkt.word_en);
1642                         /*  if same header is found but no data followed */
1643                         /*  write some part of data followed by the header. */
1644                         if (
1645                                 (curPkt.offset == pTargetPkt->offset) &&
1646                                 (hal_EfuseCheckIfDatafollowed(padapter, curPkt.word_cnts, startAddr+1, bPseudoTest) == false) &&
1647                                 wordEnMatched(pTargetPkt, &curPkt, &matched_wden) == true
1648                         ) {
1649                                 DBG_8192C("%s: Need to partial write data by the previous wrote header\n", __func__);
1650                                 /*  Here to write partial data */
1651                                 badworden = Efuse_WordEnableDataWrite(padapter, startAddr+1, matched_wden, pTargetPkt->data, bPseudoTest);
1652                                 if (badworden != 0x0F) {
1653                                         u32 PgWriteSuccess = 0;
1654                                         /*  if write fail on some words, write these bad words again */
1655                                         if (efuseType == EFUSE_WIFI)
1656                                                 PgWriteSuccess = Efuse_PgPacketWrite(padapter, pTargetPkt->offset, badworden, pTargetPkt->data, bPseudoTest);
1657                                         else
1658                                                 PgWriteSuccess = Efuse_PgPacketWrite_BT(padapter, pTargetPkt->offset, badworden, pTargetPkt->data, bPseudoTest);
1659
1660                                         if (!PgWriteSuccess) {
1661                                                 bRet = false;   /*  write fail, return */
1662                                                 break;
1663                                         }
1664                                 }
1665                                 /*  partial write ok, update the target packet for later use */
1666                                 for (i = 0; i < 4; i++) {
1667                                         if ((matched_wden & (0x1<<i)) == 0) { /*  this word has been written */
1668                                                 pTargetPkt->word_en |= (0x1<<i);        /*  disable the word */
1669                                         }
1670                                 }
1671                                 pTargetPkt->word_cnts = Efuse_CalculateWordCnts(pTargetPkt->word_en);
1672                         }
1673                         /*  read from next header */
1674                         startAddr = startAddr + (curPkt.word_cnts*2) + 1;
1675 #endif
1676                 } else {
1677                         /*  not used header, 0xff */
1678                         *pAddr = startAddr;
1679 /*                      DBG_8192C("%s: Started from unused header offset =%d\n", __func__, startAddr)); */
1680                         bRet = true;
1681                         break;
1682                 }
1683         }
1684
1685         return bRet;
1686 }
1687
1688 static u8 hal_EfusePgPacketWrite1ByteHeader(
1689         struct adapter *padapter,
1690         u8 efuseType,
1691         u16 *pAddr,
1692         PPGPKT_STRUCT pTargetPkt,
1693         u8 bPseudoTest
1694 )
1695 {
1696         u8 pg_header = 0, tmp_header = 0;
1697         u16 efuse_addr = *pAddr;
1698         u8 repeatcnt = 0;
1699
1700
1701 /*      DBG_8192C("%s\n", __func__); */
1702         pg_header = ((pTargetPkt->offset << 4) & 0xf0) | pTargetPkt->word_en;
1703
1704         do {
1705                 efuse_OneByteWrite(padapter, efuse_addr, pg_header, bPseudoTest);
1706                 efuse_OneByteRead(padapter, efuse_addr, &tmp_header, bPseudoTest);
1707                 if (tmp_header != 0xFF)
1708                         break;
1709                 if (repeatcnt++ > EFUSE_REPEAT_THRESHOLD_) {
1710                         DBG_8192C("%s: Repeat over limit for pg_header!!\n", __func__);
1711                         return false;
1712                 }
1713         } while (1);
1714
1715         if (tmp_header != pg_header) {
1716                 DBG_8192C(KERN_ERR "%s: PG Header Fail!!(pg = 0x%02X read = 0x%02X)\n", __func__, pg_header, tmp_header);
1717                 return false;
1718         }
1719
1720         *pAddr = efuse_addr;
1721
1722         return true;
1723 }
1724
1725 static u8 hal_EfusePgPacketWrite2ByteHeader(
1726         struct adapter *padapter,
1727         u8 efuseType,
1728         u16 *pAddr,
1729         PPGPKT_STRUCT pTargetPkt,
1730         u8 bPseudoTest
1731 )
1732 {
1733         u16 efuse_addr, efuse_max_available_len = 0;
1734         u8 pg_header = 0, tmp_header = 0;
1735         u8 repeatcnt = 0;
1736
1737
1738 /*      DBG_8192C("%s\n", __func__); */
1739         EFUSE_GetEfuseDefinition(padapter, efuseType, TYPE_AVAILABLE_EFUSE_BYTES_BANK, &efuse_max_available_len, bPseudoTest);
1740
1741         efuse_addr = *pAddr;
1742         if (efuse_addr >= efuse_max_available_len) {
1743                 DBG_8192C("%s: addr(%d) over available (%d)!!\n", __func__,
1744                           efuse_addr, efuse_max_available_len);
1745                 return false;
1746         }
1747
1748         pg_header = ((pTargetPkt->offset & 0x07) << 5) | 0x0F;
1749 /*      DBG_8192C("%s: pg_header = 0x%x\n", __func__, pg_header); */
1750
1751         do {
1752                 efuse_OneByteWrite(padapter, efuse_addr, pg_header, bPseudoTest);
1753                 efuse_OneByteRead(padapter, efuse_addr, &tmp_header, bPseudoTest);
1754                 if (tmp_header != 0xFF)
1755                         break;
1756                 if (repeatcnt++ > EFUSE_REPEAT_THRESHOLD_) {
1757                         DBG_8192C("%s: Repeat over limit for pg_header!!\n", __func__);
1758                         return false;
1759                 }
1760         } while (1);
1761
1762         if (tmp_header != pg_header) {
1763                 DBG_8192C(KERN_ERR "%s: PG Header Fail!!(pg = 0x%02X read = 0x%02X)\n", __func__, pg_header, tmp_header);
1764                 return false;
1765         }
1766
1767         /*  to write ext_header */
1768         efuse_addr++;
1769         pg_header = ((pTargetPkt->offset & 0x78) << 1) | pTargetPkt->word_en;
1770
1771         do {
1772                 efuse_OneByteWrite(padapter, efuse_addr, pg_header, bPseudoTest);
1773                 efuse_OneByteRead(padapter, efuse_addr, &tmp_header, bPseudoTest);
1774                 if (tmp_header != 0xFF)
1775                         break;
1776                 if (repeatcnt++ > EFUSE_REPEAT_THRESHOLD_) {
1777                         DBG_8192C("%s: Repeat over limit for ext_header!!\n", __func__);
1778                         return false;
1779                 }
1780         } while (1);
1781
1782         if (tmp_header != pg_header) { /* offset PG fail */
1783                 DBG_8192C(KERN_ERR "%s: PG EXT Header Fail!!(pg = 0x%02X read = 0x%02X)\n", __func__, pg_header, tmp_header);
1784                 return false;
1785         }
1786
1787         *pAddr = efuse_addr;
1788
1789         return true;
1790 }
1791
1792 static u8 hal_EfusePgPacketWriteHeader(
1793         struct adapter *padapter,
1794         u8 efuseType,
1795         u16 *pAddr,
1796         PPGPKT_STRUCT pTargetPkt,
1797         u8 bPseudoTest
1798 )
1799 {
1800         u8 bRet = false;
1801
1802         if (pTargetPkt->offset >= EFUSE_MAX_SECTION_BASE)
1803                 bRet = hal_EfusePgPacketWrite2ByteHeader(padapter, efuseType, pAddr, pTargetPkt, bPseudoTest);
1804         else
1805                 bRet = hal_EfusePgPacketWrite1ByteHeader(padapter, efuseType, pAddr, pTargetPkt, bPseudoTest);
1806
1807         return bRet;
1808 }
1809
1810 static u8 hal_EfusePgPacketWriteData(
1811         struct adapter *padapter,
1812         u8 efuseType,
1813         u16 *pAddr,
1814         PPGPKT_STRUCT pTargetPkt,
1815         u8 bPseudoTest
1816 )
1817 {
1818         u16 efuse_addr;
1819         u8 badworden;
1820
1821
1822         efuse_addr = *pAddr;
1823         badworden = Efuse_WordEnableDataWrite(padapter, efuse_addr+1, pTargetPkt->word_en, pTargetPkt->data, bPseudoTest);
1824         if (badworden != 0x0F) {
1825                 DBG_8192C("%s: Fail!!\n", __func__);
1826                 return false;
1827         }
1828
1829 /*      DBG_8192C("%s: ok\n", __func__); */
1830         return true;
1831 }
1832
1833 static s32 Hal_EfusePgPacketWrite(
1834         struct adapter *padapter,
1835         u8 offset,
1836         u8 word_en,
1837         u8 *pData,
1838         bool bPseudoTest
1839 )
1840 {
1841         PGPKT_STRUCT targetPkt;
1842         u16 startAddr = 0;
1843         u8 efuseType = EFUSE_WIFI;
1844
1845         if (!hal_EfusePgCheckAvailableAddr(padapter, efuseType, bPseudoTest))
1846                 return false;
1847
1848         hal_EfuseConstructPGPkt(offset, word_en, pData, &targetPkt);
1849
1850         if (!hal_EfusePartialWriteCheck(padapter, efuseType, &startAddr, &targetPkt, bPseudoTest))
1851                 return false;
1852
1853         if (!hal_EfusePgPacketWriteHeader(padapter, efuseType, &startAddr, &targetPkt, bPseudoTest))
1854                 return false;
1855
1856         if (!hal_EfusePgPacketWriteData(padapter, efuseType, &startAddr, &targetPkt, bPseudoTest))
1857                 return false;
1858
1859         return true;
1860 }
1861
1862 static bool Hal_EfusePgPacketWrite_BT(
1863         struct adapter *padapter,
1864         u8 offset,
1865         u8 word_en,
1866         u8 *pData,
1867         bool bPseudoTest
1868 )
1869 {
1870         PGPKT_STRUCT targetPkt;
1871         u16 startAddr = 0;
1872         u8 efuseType = EFUSE_BT;
1873
1874         if (!hal_EfusePgCheckAvailableAddr(padapter, efuseType, bPseudoTest))
1875                 return false;
1876
1877         hal_EfuseConstructPGPkt(offset, word_en, pData, &targetPkt);
1878
1879         if (!hal_EfusePartialWriteCheck(padapter, efuseType, &startAddr, &targetPkt, bPseudoTest))
1880                 return false;
1881
1882         if (!hal_EfusePgPacketWriteHeader(padapter, efuseType, &startAddr, &targetPkt, bPseudoTest))
1883                 return false;
1884
1885         if (!hal_EfusePgPacketWriteData(padapter, efuseType, &startAddr, &targetPkt, bPseudoTest))
1886                 return false;
1887
1888         return true;
1889 }
1890
1891 static HAL_VERSION ReadChipVersion8723B(struct adapter *padapter)
1892 {
1893         u32 value32;
1894         HAL_VERSION ChipVersion;
1895         struct hal_com_data *pHalData;
1896
1897 /* YJ, TODO, move read chip type here */
1898         pHalData = GET_HAL_DATA(padapter);
1899
1900         value32 = rtw_read32(padapter, REG_SYS_CFG);
1901         ChipVersion.ICType = CHIP_8723B;
1902         ChipVersion.ChipType = ((value32 & RTL_ID) ? TEST_CHIP : NORMAL_CHIP);
1903         ChipVersion.RFType = RF_TYPE_1T1R;
1904         ChipVersion.VendorType = ((value32 & VENDOR_ID) ? CHIP_VENDOR_UMC : CHIP_VENDOR_TSMC);
1905         ChipVersion.CUTVersion = (value32 & CHIP_VER_RTL_MASK)>>CHIP_VER_RTL_SHIFT; /*  IC version (CUT) */
1906
1907         /*  For regulator mode. by tynli. 2011.01.14 */
1908         pHalData->RegulatorMode = ((value32 & SPS_SEL) ? RT_LDO_REGULATOR : RT_SWITCHING_REGULATOR);
1909
1910         value32 = rtw_read32(padapter, REG_GPIO_OUTSTS);
1911         ChipVersion.ROMVer = ((value32 & RF_RL_ID) >> 20);      /*  ROM code version. */
1912
1913         /*  For multi-function consideration. Added by Roger, 2010.10.06. */
1914         pHalData->MultiFunc = RT_MULTI_FUNC_NONE;
1915         value32 = rtw_read32(padapter, REG_MULTI_FUNC_CTRL);
1916         pHalData->MultiFunc |= ((value32 & WL_FUNC_EN) ? RT_MULTI_FUNC_WIFI : 0);
1917         pHalData->MultiFunc |= ((value32 & BT_FUNC_EN) ? RT_MULTI_FUNC_BT : 0);
1918         pHalData->MultiFunc |= ((value32 & GPS_FUNC_EN) ? RT_MULTI_FUNC_GPS : 0);
1919         pHalData->PolarityCtl = ((value32 & WL_HWPDN_SL) ? RT_POLARITY_HIGH_ACT : RT_POLARITY_LOW_ACT);
1920 #if 1
1921         dump_chip_info(ChipVersion);
1922 #endif
1923         pHalData->VersionID = ChipVersion;
1924         if (IS_1T2R(ChipVersion))
1925                 pHalData->rf_type = RF_1T2R;
1926         else if (IS_2T2R(ChipVersion))
1927                 pHalData->rf_type = RF_2T2R;
1928         else
1929                 pHalData->rf_type = RF_1T1R;
1930
1931         MSG_8192C("RF_Type is %x!!\n", pHalData->rf_type);
1932
1933         return ChipVersion;
1934 }
1935
1936 static void rtl8723b_read_chip_version(struct adapter *padapter)
1937 {
1938         ReadChipVersion8723B(padapter);
1939 }
1940
1941 void rtl8723b_InitBeaconParameters(struct adapter *padapter)
1942 {
1943         struct hal_com_data *pHalData = GET_HAL_DATA(padapter);
1944         u16 val16;
1945         u8 val8;
1946
1947
1948         val8 = DIS_TSF_UDT;
1949         val16 = val8 | (val8 << 8); /*  port0 and port1 */
1950
1951         /*  Enable prot0 beacon function for PSTDMA */
1952         val16 |= EN_BCN_FUNCTION;
1953
1954         rtw_write16(padapter, REG_BCN_CTRL, val16);
1955
1956         /*  TODO: Remove these magic number */
1957         rtw_write16(padapter, REG_TBTT_PROHIBIT, 0x6404);/*  ms */
1958         /*  Firmware will control REG_DRVERLYINT when power saving is enable, */
1959         /*  so don't set this register on STA mode. */
1960         if (check_fwstate(&padapter->mlmepriv, WIFI_STATION_STATE) == false)
1961                 rtw_write8(padapter, REG_DRVERLYINT, DRIVER_EARLY_INT_TIME_8723B); /*  5ms */
1962         rtw_write8(padapter, REG_BCNDMATIM, BCN_DMA_ATIME_INT_TIME_8723B); /*  2ms */
1963
1964         /*  Suggested by designer timchen. Change beacon AIFS to the largest number */
1965         /*  beacause test chip does not contension before sending beacon. by tynli. 2009.11.03 */
1966         rtw_write16(padapter, REG_BCNTCFG, 0x660F);
1967
1968         pHalData->RegBcnCtrlVal = rtw_read8(padapter, REG_BCN_CTRL);
1969         pHalData->RegTxPause = rtw_read8(padapter, REG_TXPAUSE);
1970         pHalData->RegFwHwTxQCtrl = rtw_read8(padapter, REG_FWHW_TXQ_CTRL+2);
1971         pHalData->RegReg542 = rtw_read8(padapter, REG_TBTT_PROHIBIT+2);
1972         pHalData->RegCR_1 = rtw_read8(padapter, REG_CR+1);
1973 }
1974
1975 void _InitBurstPktLen_8723BS(struct adapter *Adapter)
1976 {
1977         struct hal_com_data *pHalData = GET_HAL_DATA(Adapter);
1978
1979         rtw_write8(Adapter, 0x4c7, rtw_read8(Adapter, 0x4c7)|BIT(7)); /* enable single pkt ampdu */
1980         rtw_write8(Adapter, REG_RX_PKT_LIMIT_8723B, 0x18);              /* for VHT packet length 11K */
1981         rtw_write8(Adapter, REG_MAX_AGGR_NUM_8723B, 0x1F);
1982         rtw_write8(Adapter, REG_PIFS_8723B, 0x00);
1983         rtw_write8(Adapter, REG_FWHW_TXQ_CTRL_8723B, rtw_read8(Adapter, REG_FWHW_TXQ_CTRL)&(~BIT(7)));
1984         if (pHalData->AMPDUBurstMode)
1985                 rtw_write8(Adapter, REG_AMPDU_BURST_MODE_8723B,  0x5F);
1986         rtw_write8(Adapter, REG_AMPDU_MAX_TIME_8723B, 0x70);
1987
1988         /*  ARFB table 9 for 11ac 5G 2SS */
1989         rtw_write32(Adapter, REG_ARFR0_8723B, 0x00000010);
1990         if (IS_NORMAL_CHIP(pHalData->VersionID))
1991                 rtw_write32(Adapter, REG_ARFR0_8723B+4, 0xfffff000);
1992         else
1993                 rtw_write32(Adapter, REG_ARFR0_8723B+4, 0x3e0ff000);
1994
1995         /*  ARFB table 10 for 11ac 5G 1SS */
1996         rtw_write32(Adapter, REG_ARFR1_8723B, 0x00000010);
1997         rtw_write32(Adapter, REG_ARFR1_8723B+4, 0x003ff000);
1998 }
1999
2000 static void ResumeTxBeacon(struct adapter *padapter)
2001 {
2002         struct hal_com_data *pHalData = GET_HAL_DATA(padapter);
2003
2004
2005         /*  2010.03.01. Marked by tynli. No need to call workitem beacause we record the value */
2006         /*  which should be read from register to a global variable. */
2007
2008         RT_TRACE(_module_hci_hal_init_c_, _drv_info_, ("+ResumeTxBeacon\n"));
2009
2010         pHalData->RegFwHwTxQCtrl |= BIT(6);
2011         rtw_write8(padapter, REG_FWHW_TXQ_CTRL+2, pHalData->RegFwHwTxQCtrl);
2012         rtw_write8(padapter, REG_TBTT_PROHIBIT+1, 0xff);
2013         pHalData->RegReg542 |= BIT(0);
2014         rtw_write8(padapter, REG_TBTT_PROHIBIT+2, pHalData->RegReg542);
2015 }
2016
2017 static void StopTxBeacon(struct adapter *padapter)
2018 {
2019         struct hal_com_data *pHalData = GET_HAL_DATA(padapter);
2020
2021
2022         /*  2010.03.01. Marked by tynli. No need to call workitem beacause we record the value */
2023         /*  which should be read from register to a global variable. */
2024
2025         RT_TRACE(_module_hci_hal_init_c_, _drv_info_, ("+StopTxBeacon\n"));
2026
2027         pHalData->RegFwHwTxQCtrl &= ~BIT(6);
2028         rtw_write8(padapter, REG_FWHW_TXQ_CTRL+2, pHalData->RegFwHwTxQCtrl);
2029         rtw_write8(padapter, REG_TBTT_PROHIBIT+1, 0x64);
2030         pHalData->RegReg542 &= ~BIT(0);
2031         rtw_write8(padapter, REG_TBTT_PROHIBIT+2, pHalData->RegReg542);
2032
2033         CheckFwRsvdPageContent(padapter);  /*  2010.06.23. Added by tynli. */
2034 }
2035
2036 static void _BeaconFunctionEnable(struct adapter *padapter, u8 Enable, u8 Linked)
2037 {
2038         rtw_write8(padapter, REG_BCN_CTRL, DIS_TSF_UDT | EN_BCN_FUNCTION | DIS_BCNQ_SUB);
2039         rtw_write8(padapter, REG_RD_CTRL+1, 0x6F);
2040 }
2041
2042 static void rtl8723b_SetBeaconRelatedRegisters(struct adapter *padapter)
2043 {
2044         u8 val8;
2045         u32 value32;
2046         struct mlme_ext_priv *pmlmeext = &padapter->mlmeextpriv;
2047         struct mlme_ext_info *pmlmeinfo = &pmlmeext->mlmext_info;
2048         u32 bcn_ctrl_reg;
2049
2050         /* reset TSF, enable update TSF, correcting TSF On Beacon */
2051
2052         /* REG_BCN_INTERVAL */
2053         /* REG_BCNDMATIM */
2054         /* REG_ATIMWND */
2055         /* REG_TBTT_PROHIBIT */
2056         /* REG_DRVERLYINT */
2057         /* REG_BCN_MAX_ERR */
2058         /* REG_BCNTCFG (0x510) */
2059         /* REG_DUAL_TSF_RST */
2060         /* REG_BCN_CTRL (0x550) */
2061
2062
2063         bcn_ctrl_reg = REG_BCN_CTRL;
2064
2065         /*  */
2066         /*  ATIM window */
2067         /*  */
2068         rtw_write16(padapter, REG_ATIMWND, 2);
2069
2070         /*  */
2071         /*  Beacon interval (in unit of TU). */
2072         /*  */
2073         rtw_write16(padapter, REG_BCN_INTERVAL, pmlmeinfo->bcn_interval);
2074
2075         rtl8723b_InitBeaconParameters(padapter);
2076
2077         rtw_write8(padapter, REG_SLOT, 0x09);
2078
2079         /*  */
2080         /*  Reset TSF Timer to zero, added by Roger. 2008.06.24 */
2081         /*  */
2082         value32 = rtw_read32(padapter, REG_TCR);
2083         value32 &= ~TSFRST;
2084         rtw_write32(padapter, REG_TCR, value32);
2085
2086         value32 |= TSFRST;
2087         rtw_write32(padapter, REG_TCR, value32);
2088
2089         /*  NOTE: Fix test chip's bug (about contention windows's randomness) */
2090         if (check_fwstate(&padapter->mlmepriv, WIFI_ADHOC_STATE|WIFI_ADHOC_MASTER_STATE|WIFI_AP_STATE) == true) {
2091                 rtw_write8(padapter, REG_RXTSF_OFFSET_CCK, 0x50);
2092                 rtw_write8(padapter, REG_RXTSF_OFFSET_OFDM, 0x50);
2093         }
2094
2095         _BeaconFunctionEnable(padapter, true, true);
2096
2097         ResumeTxBeacon(padapter);
2098         val8 = rtw_read8(padapter, bcn_ctrl_reg);
2099         val8 |= DIS_BCNQ_SUB;
2100         rtw_write8(padapter, bcn_ctrl_reg, val8);
2101 }
2102
2103 static void rtl8723b_GetHalODMVar(
2104         struct adapter *Adapter,
2105         enum HAL_ODM_VARIABLE eVariable,
2106         void *pValue1,
2107         void *pValue2
2108 )
2109 {
2110         GetHalODMVar(Adapter, eVariable, pValue1, pValue2);
2111 }
2112
2113 static void rtl8723b_SetHalODMVar(
2114         struct adapter *Adapter,
2115         enum HAL_ODM_VARIABLE eVariable,
2116         void *pValue1,
2117         bool bSet
2118 )
2119 {
2120         SetHalODMVar(Adapter, eVariable, pValue1, bSet);
2121 }
2122
2123 static void hal_notch_filter_8723b(struct adapter *adapter, bool enable)
2124 {
2125         if (enable) {
2126                 DBG_871X("Enable notch filter\n");
2127                 rtw_write8(adapter, rOFDM0_RxDSP+1, rtw_read8(adapter, rOFDM0_RxDSP+1) | BIT1);
2128         } else {
2129                 DBG_871X("Disable notch filter\n");
2130                 rtw_write8(adapter, rOFDM0_RxDSP+1, rtw_read8(adapter, rOFDM0_RxDSP+1) & ~BIT1);
2131         }
2132 }
2133
2134 static void UpdateHalRAMask8723B(struct adapter *padapter, u32 mac_id, u8 rssi_level)
2135 {
2136         u32 mask, rate_bitmap;
2137         u8 shortGIrate = false;
2138         struct sta_info *psta;
2139         struct hal_com_data     *pHalData = GET_HAL_DATA(padapter);
2140         struct dm_priv *pdmpriv = &pHalData->dmpriv;
2141         struct mlme_ext_priv *pmlmeext = &padapter->mlmeextpriv;
2142         struct mlme_ext_info *pmlmeinfo = &(pmlmeext->mlmext_info);
2143
2144         DBG_871X("%s(): mac_id =%d rssi_level =%d\n", __func__, mac_id, rssi_level);
2145
2146         if (mac_id >= NUM_STA) /* CAM_SIZE */
2147                 return;
2148
2149         psta = pmlmeinfo->FW_sta_info[mac_id].psta;
2150         if (psta == NULL)
2151                 return;
2152
2153         shortGIrate = query_ra_short_GI(psta);
2154
2155         mask = psta->ra_mask;
2156
2157         rate_bitmap = 0xffffffff;
2158         rate_bitmap = ODM_Get_Rate_Bitmap(&pHalData->odmpriv, mac_id, mask, rssi_level);
2159         DBG_871X("%s => mac_id:%d, networkType:0x%02x, mask:0x%08x\n\t ==> rssi_level:%d, rate_bitmap:0x%08x\n",
2160                         __func__, mac_id, psta->wireless_mode, mask, rssi_level, rate_bitmap);
2161
2162         mask &= rate_bitmap;
2163
2164         rate_bitmap = rtw_btcoex_GetRaMask(padapter);
2165         mask &= ~rate_bitmap;
2166
2167 #ifdef CONFIG_CMCC_TEST
2168         if (pmlmeext->cur_wireless_mode & WIRELESS_11G) {
2169                 if (mac_id == 0) {
2170                         DBG_871X("CMCC_BT update raid entry, mask = 0x%x\n", mask);
2171                         mask &= 0xffffff00; /* disable CCK & <24M OFDM rate for 11G mode for CMCC */
2172                         DBG_871X("CMCC_BT update raid entry, mask = 0x%x\n", mask);
2173                 }
2174         }
2175 #endif
2176
2177         if (pHalData->fw_ractrl == true) {
2178                 rtl8723b_set_FwMacIdConfig_cmd(padapter, mac_id, psta->raid, psta->bw_mode, shortGIrate, mask);
2179         }
2180
2181         /* set correct initial date rate for each mac_id */
2182         pdmpriv->INIDATA_RATE[mac_id] = psta->init_rate;
2183         DBG_871X("%s(): mac_id =%d raid = 0x%x bw =%d mask = 0x%x init_rate = 0x%x\n", __func__, mac_id, psta->raid, psta->bw_mode, mask, psta->init_rate);
2184 }
2185
2186
2187 void rtl8723b_set_hal_ops(struct hal_ops *pHalFunc)
2188 {
2189         pHalFunc->free_hal_data = &rtl8723b_free_hal_data;
2190
2191         pHalFunc->dm_init = &rtl8723b_init_dm_priv;
2192
2193         pHalFunc->read_chip_version = &rtl8723b_read_chip_version;
2194
2195         pHalFunc->UpdateRAMaskHandler = &UpdateHalRAMask8723B;
2196
2197         pHalFunc->set_bwmode_handler = &PHY_SetBWMode8723B;
2198         pHalFunc->set_channel_handler = &PHY_SwChnl8723B;
2199         pHalFunc->set_chnl_bw_handler = &PHY_SetSwChnlBWMode8723B;
2200
2201         pHalFunc->set_tx_power_level_handler = &PHY_SetTxPowerLevel8723B;
2202         pHalFunc->get_tx_power_level_handler = &PHY_GetTxPowerLevel8723B;
2203
2204         pHalFunc->hal_dm_watchdog = &rtl8723b_HalDmWatchDog;
2205         pHalFunc->hal_dm_watchdog_in_lps = &rtl8723b_HalDmWatchDog_in_LPS;
2206
2207
2208         pHalFunc->SetBeaconRelatedRegistersHandler = &rtl8723b_SetBeaconRelatedRegisters;
2209
2210         pHalFunc->Add_RateATid = &rtl8723b_Add_RateATid;
2211
2212         pHalFunc->run_thread = &rtl8723b_start_thread;
2213         pHalFunc->cancel_thread = &rtl8723b_stop_thread;
2214
2215         pHalFunc->read_bbreg = &PHY_QueryBBReg_8723B;
2216         pHalFunc->write_bbreg = &PHY_SetBBReg_8723B;
2217         pHalFunc->read_rfreg = &PHY_QueryRFReg_8723B;
2218         pHalFunc->write_rfreg = &PHY_SetRFReg_8723B;
2219
2220         /*  Efuse related function */
2221         pHalFunc->BTEfusePowerSwitch = &Hal_BT_EfusePowerSwitch;
2222         pHalFunc->EfusePowerSwitch = &Hal_EfusePowerSwitch;
2223         pHalFunc->ReadEFuse = &Hal_ReadEFuse;
2224         pHalFunc->EFUSEGetEfuseDefinition = &Hal_GetEfuseDefinition;
2225         pHalFunc->EfuseGetCurrentSize = &Hal_EfuseGetCurrentSize;
2226         pHalFunc->Efuse_PgPacketRead = &Hal_EfusePgPacketRead;
2227         pHalFunc->Efuse_PgPacketWrite = &Hal_EfusePgPacketWrite;
2228         pHalFunc->Efuse_WordEnableDataWrite = &Hal_EfuseWordEnableDataWrite;
2229         pHalFunc->Efuse_PgPacketWrite_BT = &Hal_EfusePgPacketWrite_BT;
2230
2231         pHalFunc->GetHalODMVarHandler = &rtl8723b_GetHalODMVar;
2232         pHalFunc->SetHalODMVarHandler = &rtl8723b_SetHalODMVar;
2233
2234         pHalFunc->xmit_thread_handler = &hal_xmit_handler;
2235         pHalFunc->hal_notch_filter = &hal_notch_filter_8723b;
2236
2237         pHalFunc->c2h_handler = c2h_handler_8723b;
2238         pHalFunc->c2h_id_filter_ccx = c2h_id_filter_ccx_8723b;
2239
2240         pHalFunc->fill_h2c_cmd = &FillH2CCmd8723B;
2241 }
2242
2243 void rtl8723b_InitAntenna_Selection(struct adapter *padapter)
2244 {
2245         struct hal_com_data *pHalData;
2246         u8 val;
2247
2248
2249         pHalData = GET_HAL_DATA(padapter);
2250
2251         val = rtw_read8(padapter, REG_LEDCFG2);
2252         /*  Let 8051 take control antenna settting */
2253         val |= BIT(7); /*  DPDT_SEL_EN, 0x4C[23] */
2254         rtw_write8(padapter, REG_LEDCFG2, val);
2255 }
2256
2257 void rtl8723b_init_default_value(struct adapter *padapter)
2258 {
2259         struct hal_com_data *pHalData;
2260         struct dm_priv *pdmpriv;
2261         u8 i;
2262
2263
2264         pHalData = GET_HAL_DATA(padapter);
2265         pdmpriv = &pHalData->dmpriv;
2266
2267         padapter->registrypriv.wireless_mode = WIRELESS_11BG_24N;
2268
2269         /*  init default value */
2270         pHalData->fw_ractrl = false;
2271         pHalData->bIQKInitialized = false;
2272         if (!adapter_to_pwrctl(padapter)->bkeepfwalive)
2273                 pHalData->LastHMEBoxNum = 0;
2274
2275         pHalData->bIQKInitialized = false;
2276
2277         /*  init dm default value */
2278         pdmpriv->TM_Trigger = 0;/* for IQK */
2279 /*      pdmpriv->binitialized = false; */
2280 /*      pdmpriv->prv_traffic_idx = 3; */
2281 /*      pdmpriv->initialize = 0; */
2282
2283         pdmpriv->ThermalValue_HP_index = 0;
2284         for (i = 0; i < HP_THERMAL_NUM; i++)
2285                 pdmpriv->ThermalValue_HP[i] = 0;
2286
2287         /*  init Efuse variables */
2288         pHalData->EfuseUsedBytes = 0;
2289         pHalData->EfuseUsedPercentage = 0;
2290 #ifdef HAL_EFUSE_MEMORY
2291         pHalData->EfuseHal.fakeEfuseBank = 0;
2292         pHalData->EfuseHal.fakeEfuseUsedBytes = 0;
2293         memset(pHalData->EfuseHal.fakeEfuseContent, 0xFF, EFUSE_MAX_HW_SIZE);
2294         memset(pHalData->EfuseHal.fakeEfuseInitMap, 0xFF, EFUSE_MAX_MAP_LEN);
2295         memset(pHalData->EfuseHal.fakeEfuseModifiedMap, 0xFF, EFUSE_MAX_MAP_LEN);
2296         pHalData->EfuseHal.BTEfuseUsedBytes = 0;
2297         pHalData->EfuseHal.BTEfuseUsedPercentage = 0;
2298         memset(pHalData->EfuseHal.BTEfuseContent, 0xFF, EFUSE_MAX_BT_BANK*EFUSE_MAX_HW_SIZE);
2299         memset(pHalData->EfuseHal.BTEfuseInitMap, 0xFF, EFUSE_BT_MAX_MAP_LEN);
2300         memset(pHalData->EfuseHal.BTEfuseModifiedMap, 0xFF, EFUSE_BT_MAX_MAP_LEN);
2301         pHalData->EfuseHal.fakeBTEfuseUsedBytes = 0;
2302         memset(pHalData->EfuseHal.fakeBTEfuseContent, 0xFF, EFUSE_MAX_BT_BANK*EFUSE_MAX_HW_SIZE);
2303         memset(pHalData->EfuseHal.fakeBTEfuseInitMap, 0xFF, EFUSE_BT_MAX_MAP_LEN);
2304         memset(pHalData->EfuseHal.fakeBTEfuseModifiedMap, 0xFF, EFUSE_BT_MAX_MAP_LEN);
2305 #endif
2306 }
2307
2308 u8 GetEEPROMSize8723B(struct adapter *padapter)
2309 {
2310         u8 size = 0;
2311         u32 cr;
2312
2313         cr = rtw_read16(padapter, REG_9346CR);
2314         /*  6: EEPROM used is 93C46, 4: boot from E-Fuse. */
2315         size = (cr & BOOT_FROM_EEPROM) ? 6 : 4;
2316
2317         MSG_8192C("EEPROM type is %s\n", size == 4 ? "E-FUSE" : "93C46");
2318
2319         return size;
2320 }
2321
2322 /*  */
2323 /*  */
2324 /*  LLT R/W/Init function */
2325 /*  */
2326 /*  */
2327 s32 rtl8723b_InitLLTTable(struct adapter *padapter)
2328 {
2329         unsigned long start, passing_time;
2330         u32 val32;
2331         s32 ret;
2332
2333
2334         ret = _FAIL;
2335
2336         val32 = rtw_read32(padapter, REG_AUTO_LLT);
2337         val32 |= BIT_AUTO_INIT_LLT;
2338         rtw_write32(padapter, REG_AUTO_LLT, val32);
2339
2340         start = jiffies;
2341
2342         do {
2343                 val32 = rtw_read32(padapter, REG_AUTO_LLT);
2344                 if (!(val32 & BIT_AUTO_INIT_LLT)) {
2345                         ret = _SUCCESS;
2346                         break;
2347                 }
2348
2349                 passing_time = jiffies_to_msecs(jiffies - start);
2350                 if (passing_time > 1000) {
2351                         DBG_8192C(
2352                                 "%s: FAIL!! REG_AUTO_LLT(0x%X) =%08x\n",
2353                                 __func__,
2354                                 REG_AUTO_LLT,
2355                                 val32
2356                         );
2357                         break;
2358                 }
2359
2360                 msleep(1);
2361         } while (1);
2362
2363         return ret;
2364 }
2365
2366 static bool Hal_GetChnlGroup8723B(u8 Channel, u8 *pGroup)
2367 {
2368         bool bIn24G = true;
2369
2370         if (Channel <= 14) {
2371                 bIn24G = true;
2372
2373                 if (1  <= Channel && Channel <= 2)
2374                         *pGroup = 0;
2375                 else if (3  <= Channel && Channel <= 5)
2376                         *pGroup = 1;
2377                 else if (6  <= Channel && Channel <= 8)
2378                         *pGroup = 2;
2379                 else if (9  <= Channel && Channel <= 11)
2380                         *pGroup = 3;
2381                 else if (12 <= Channel && Channel <= 14)
2382                         *pGroup = 4;
2383                 else {
2384                         RT_TRACE(_module_hci_hal_init_c_, _drv_notice_, ("==>Hal_GetChnlGroup8723B in 2.4 G, but Channel %d in Group not found\n", Channel));
2385                 }
2386         } else {
2387                 bIn24G = false;
2388
2389                 if (36   <= Channel && Channel <=  42)
2390                         *pGroup = 0;
2391                 else if (44   <= Channel && Channel <=  48)
2392                         *pGroup = 1;
2393                 else if (50   <= Channel && Channel <=  58)
2394                         *pGroup = 2;
2395                 else if (60   <= Channel && Channel <=  64)
2396                         *pGroup = 3;
2397                 else if (100  <= Channel && Channel <= 106)
2398                         *pGroup = 4;
2399                 else if (108  <= Channel && Channel <= 114)
2400                         *pGroup = 5;
2401                 else if (116  <= Channel && Channel <= 122)
2402                         *pGroup = 6;
2403                 else if (124  <= Channel && Channel <= 130)
2404                         *pGroup = 7;
2405                 else if (132  <= Channel && Channel <= 138)
2406                         *pGroup = 8;
2407                 else if (140  <= Channel && Channel <= 144)
2408                         *pGroup = 9;
2409                 else if (149  <= Channel && Channel <= 155)
2410                         *pGroup = 10;
2411                 else if (157  <= Channel && Channel <= 161)
2412                         *pGroup = 11;
2413                 else if (165  <= Channel && Channel <= 171)
2414                         *pGroup = 12;
2415                 else if (173  <= Channel && Channel <= 177)
2416                         *pGroup = 13;
2417                 else {
2418                         RT_TRACE(_module_hci_hal_init_c_, _drv_notice_, ("==>Hal_GetChnlGroup8723B in 5G, but Channel %d in Group not found\n", Channel));
2419                 }
2420
2421         }
2422         RT_TRACE(
2423                 _module_hci_hal_init_c_,
2424                 _drv_info_,
2425                 (
2426                         "<==Hal_GetChnlGroup8723B,  (%s) Channel = %d, Group =%d,\n",
2427                         bIn24G ? "2.4G" : "5G",
2428                         Channel,
2429                         *pGroup
2430                 )
2431         );
2432         return bIn24G;
2433 }
2434
2435 void Hal_InitPGData(struct adapter *padapter, u8 *PROMContent)
2436 {
2437         struct eeprom_priv *pEEPROM = GET_EEPROM_EFUSE_PRIV(padapter);
2438
2439         if (false == pEEPROM->bautoload_fail_flag) { /*  autoload OK. */
2440                 if (!pEEPROM->EepromOrEfuse) {
2441                         /*  Read EFUSE real map to shadow. */
2442                         EFUSE_ShadowMapUpdate(padapter, EFUSE_WIFI, false);
2443                         memcpy((void *)PROMContent, (void *)pEEPROM->efuse_eeprom_data, HWSET_MAX_SIZE_8723B);
2444                 }
2445         } else {/* autoload fail */
2446                 RT_TRACE(_module_hci_hal_init_c_, _drv_notice_, ("AutoLoad Fail reported from CR9346!!\n"));
2447                 if (false == pEEPROM->EepromOrEfuse)
2448                         EFUSE_ShadowMapUpdate(padapter, EFUSE_WIFI, false);
2449                 memcpy((void *)PROMContent, (void *)pEEPROM->efuse_eeprom_data, HWSET_MAX_SIZE_8723B);
2450         }
2451 }
2452
2453 void Hal_EfuseParseIDCode(struct adapter *padapter, u8 *hwinfo)
2454 {
2455         struct eeprom_priv *pEEPROM = GET_EEPROM_EFUSE_PRIV(padapter);
2456 /*      struct hal_com_data     *pHalData = GET_HAL_DATA(padapter); */
2457         u16 EEPROMId;
2458
2459
2460         /*  Checl 0x8129 again for making sure autoload status!! */
2461         EEPROMId = le16_to_cpu(*((__le16 *)hwinfo));
2462         if (EEPROMId != RTL_EEPROM_ID) {
2463                 DBG_8192C("EEPROM ID(%#x) is invalid!!\n", EEPROMId);
2464                 pEEPROM->bautoload_fail_flag = true;
2465         } else
2466                 pEEPROM->bautoload_fail_flag = false;
2467
2468         RT_TRACE(_module_hal_init_c_, _drv_notice_, ("EEPROM ID = 0x%04x\n", EEPROMId));
2469 }
2470
2471 static void Hal_ReadPowerValueFromPROM_8723B(
2472         struct adapter *Adapter,
2473         struct TxPowerInfo24G *pwrInfo24G,
2474         u8 *PROMContent,
2475         bool AutoLoadFail
2476 )
2477 {
2478         struct hal_com_data *pHalData = GET_HAL_DATA(Adapter);
2479         u32 rfPath, eeAddr = EEPROM_TX_PWR_INX_8723B, group, TxCount = 0;
2480
2481         memset(pwrInfo24G, 0, sizeof(struct TxPowerInfo24G));
2482
2483         if (0xFF == PROMContent[eeAddr+1])
2484                 AutoLoadFail = true;
2485
2486         if (AutoLoadFail) {
2487                 DBG_871X("%s(): Use Default value!\n", __func__);
2488                 for (rfPath = 0; rfPath < MAX_RF_PATH; rfPath++) {
2489                         /* 2.4G default value */
2490                         for (group = 0; group < MAX_CHNL_GROUP_24G; group++) {
2491                                 pwrInfo24G->IndexCCK_Base[rfPath][group] = EEPROM_DEFAULT_24G_INDEX;
2492                                 pwrInfo24G->IndexBW40_Base[rfPath][group] = EEPROM_DEFAULT_24G_INDEX;
2493                         }
2494
2495                         for (TxCount = 0; TxCount < MAX_TX_COUNT; TxCount++) {
2496                                 if (TxCount == 0) {
2497                                         pwrInfo24G->BW20_Diff[rfPath][0] = EEPROM_DEFAULT_24G_HT20_DIFF;
2498                                         pwrInfo24G->OFDM_Diff[rfPath][0] = EEPROM_DEFAULT_24G_OFDM_DIFF;
2499                                 } else {
2500                                         pwrInfo24G->BW20_Diff[rfPath][TxCount] = EEPROM_DEFAULT_DIFF;
2501                                         pwrInfo24G->BW40_Diff[rfPath][TxCount] = EEPROM_DEFAULT_DIFF;
2502                                         pwrInfo24G->CCK_Diff[rfPath][TxCount] = EEPROM_DEFAULT_DIFF;
2503                                         pwrInfo24G->OFDM_Diff[rfPath][TxCount] = EEPROM_DEFAULT_DIFF;
2504                                 }
2505                         }
2506                 }
2507
2508                 return;
2509         }
2510
2511         pHalData->bTXPowerDataReadFromEEPORM = true;            /* YJ, move, 120316 */
2512
2513         for (rfPath = 0; rfPath < MAX_RF_PATH; rfPath++) {
2514                 /* 2 2.4G default value */
2515                 for (group = 0; group < MAX_CHNL_GROUP_24G; group++) {
2516                         pwrInfo24G->IndexCCK_Base[rfPath][group] =      PROMContent[eeAddr++];
2517                         if (pwrInfo24G->IndexCCK_Base[rfPath][group] == 0xFF)
2518                                 pwrInfo24G->IndexCCK_Base[rfPath][group] = EEPROM_DEFAULT_24G_INDEX;
2519                 }
2520
2521                 for (group = 0; group < MAX_CHNL_GROUP_24G-1; group++) {
2522                         pwrInfo24G->IndexBW40_Base[rfPath][group] =     PROMContent[eeAddr++];
2523                         if (pwrInfo24G->IndexBW40_Base[rfPath][group] == 0xFF)
2524                                 pwrInfo24G->IndexBW40_Base[rfPath][group] =     EEPROM_DEFAULT_24G_INDEX;
2525                 }
2526
2527                 for (TxCount = 0; TxCount < MAX_TX_COUNT; TxCount++) {
2528                         if (TxCount == 0) {
2529                                 pwrInfo24G->BW40_Diff[rfPath][TxCount] = 0;
2530                                 if (PROMContent[eeAddr] == 0xFF)
2531                                         pwrInfo24G->BW20_Diff[rfPath][TxCount] =        EEPROM_DEFAULT_24G_HT20_DIFF;
2532                                 else {
2533                                         pwrInfo24G->BW20_Diff[rfPath][TxCount] =        (PROMContent[eeAddr]&0xf0)>>4;
2534                                         if (pwrInfo24G->BW20_Diff[rfPath][TxCount] & BIT3)              /* 4bit sign number to 8 bit sign number */
2535                                                 pwrInfo24G->BW20_Diff[rfPath][TxCount] |= 0xF0;
2536                                 }
2537
2538                                 if (PROMContent[eeAddr] == 0xFF)
2539                                         pwrInfo24G->OFDM_Diff[rfPath][TxCount] = EEPROM_DEFAULT_24G_OFDM_DIFF;
2540                                 else {
2541                                         pwrInfo24G->OFDM_Diff[rfPath][TxCount] = (PROMContent[eeAddr]&0x0f);
2542                                         if (pwrInfo24G->OFDM_Diff[rfPath][TxCount] & BIT3)              /* 4bit sign number to 8 bit sign number */
2543                                                 pwrInfo24G->OFDM_Diff[rfPath][TxCount] |= 0xF0;
2544                                 }
2545                                 pwrInfo24G->CCK_Diff[rfPath][TxCount] = 0;
2546                                 eeAddr++;
2547                         } else {
2548                                 if (PROMContent[eeAddr] == 0xFF)
2549                                         pwrInfo24G->BW40_Diff[rfPath][TxCount] = EEPROM_DEFAULT_DIFF;
2550                                 else {
2551                                         pwrInfo24G->BW40_Diff[rfPath][TxCount] = (PROMContent[eeAddr]&0xf0)>>4;
2552                                         if (pwrInfo24G->BW40_Diff[rfPath][TxCount] & BIT3)              /* 4bit sign number to 8 bit sign number */
2553                                                 pwrInfo24G->BW40_Diff[rfPath][TxCount] |= 0xF0;
2554                                 }
2555
2556                                 if (PROMContent[eeAddr] == 0xFF)
2557                                         pwrInfo24G->BW20_Diff[rfPath][TxCount] = EEPROM_DEFAULT_DIFF;
2558                                 else {
2559                                         pwrInfo24G->BW20_Diff[rfPath][TxCount] = (PROMContent[eeAddr]&0x0f);
2560                                         if (pwrInfo24G->BW20_Diff[rfPath][TxCount] & BIT3)              /* 4bit sign number to 8 bit sign number */
2561                                                 pwrInfo24G->BW20_Diff[rfPath][TxCount] |= 0xF0;
2562                                 }
2563                                 eeAddr++;
2564
2565                                 if (PROMContent[eeAddr] == 0xFF)
2566                                         pwrInfo24G->OFDM_Diff[rfPath][TxCount] = EEPROM_DEFAULT_DIFF;
2567                                 else {
2568                                         pwrInfo24G->OFDM_Diff[rfPath][TxCount] = (PROMContent[eeAddr]&0xf0)>>4;
2569                                         if (pwrInfo24G->OFDM_Diff[rfPath][TxCount] & BIT3)              /* 4bit sign number to 8 bit sign number */
2570                                                 pwrInfo24G->OFDM_Diff[rfPath][TxCount] |= 0xF0;
2571                                 }
2572
2573                                 if (PROMContent[eeAddr] == 0xFF)
2574                                         pwrInfo24G->CCK_Diff[rfPath][TxCount] = EEPROM_DEFAULT_DIFF;
2575                                 else {
2576                                         pwrInfo24G->CCK_Diff[rfPath][TxCount] = (PROMContent[eeAddr]&0x0f);
2577                                         if (pwrInfo24G->CCK_Diff[rfPath][TxCount] & BIT3)               /* 4bit sign number to 8 bit sign number */
2578                                                 pwrInfo24G->CCK_Diff[rfPath][TxCount] |= 0xF0;
2579                                 }
2580                                 eeAddr++;
2581                         }
2582                 }
2583         }
2584 }
2585
2586
2587 void Hal_EfuseParseTxPowerInfo_8723B(
2588         struct adapter *padapter, u8 *PROMContent, bool AutoLoadFail
2589 )
2590 {
2591         struct hal_com_data     *pHalData = GET_HAL_DATA(padapter);
2592         struct TxPowerInfo24G   pwrInfo24G;
2593         u8      rfPath, ch, TxCount = 1;
2594
2595         Hal_ReadPowerValueFromPROM_8723B(padapter, &pwrInfo24G, PROMContent, AutoLoadFail);
2596         for (rfPath = 0 ; rfPath < MAX_RF_PATH ; rfPath++) {
2597                 for (ch = 0 ; ch < CHANNEL_MAX_NUMBER; ch++) {
2598                         u8 group = 0;
2599
2600                         Hal_GetChnlGroup8723B(ch+1, &group);
2601
2602                         if (ch == 14-1) {
2603                                 pHalData->Index24G_CCK_Base[rfPath][ch] = pwrInfo24G.IndexCCK_Base[rfPath][5];
2604                                 pHalData->Index24G_BW40_Base[rfPath][ch] = pwrInfo24G.IndexBW40_Base[rfPath][group];
2605                         } else {
2606                                 pHalData->Index24G_CCK_Base[rfPath][ch] = pwrInfo24G.IndexCCK_Base[rfPath][group];
2607                                 pHalData->Index24G_BW40_Base[rfPath][ch] = pwrInfo24G.IndexBW40_Base[rfPath][group];
2608                         }
2609 #ifdef DEBUG
2610                         RT_TRACE(_module_hci_hal_init_c_, _drv_info_, ("======= Path %d, ChannelIndex %d, Group %d =======\n", rfPath, ch, group));
2611                         RT_TRACE(_module_hci_hal_init_c_, _drv_info_, ("Index24G_CCK_Base[%d][%d] = 0x%x\n", rfPath, ch, pHalData->Index24G_CCK_Base[rfPath][ch]));
2612                         RT_TRACE(_module_hci_hal_init_c_, _drv_info_, ("Index24G_BW40_Base[%d][%d] = 0x%x\n", rfPath, ch, pHalData->Index24G_BW40_Base[rfPath][ch]));
2613 #endif
2614                 }
2615
2616                 for (TxCount = 0; TxCount < MAX_TX_COUNT; TxCount++) {
2617                         pHalData->CCK_24G_Diff[rfPath][TxCount] = pwrInfo24G.CCK_Diff[rfPath][TxCount];
2618                         pHalData->OFDM_24G_Diff[rfPath][TxCount] = pwrInfo24G.OFDM_Diff[rfPath][TxCount];
2619                         pHalData->BW20_24G_Diff[rfPath][TxCount] = pwrInfo24G.BW20_Diff[rfPath][TxCount];
2620                         pHalData->BW40_24G_Diff[rfPath][TxCount] = pwrInfo24G.BW40_Diff[rfPath][TxCount];
2621
2622 #ifdef DEBUG
2623                         RT_TRACE(_module_hci_hal_init_c_, _drv_info_, ("--------------------------------------- 2.4G ---------------------------------------\n"));
2624                         RT_TRACE(_module_hci_hal_init_c_, _drv_info_, ("CCK_24G_Diff[%d][%d]= %d\n", rfPath, TxCount, pHalData->CCK_24G_Diff[rfPath][TxCount]));
2625                         RT_TRACE(_module_hci_hal_init_c_, _drv_info_, ("OFDM_24G_Diff[%d][%d]= %d\n", rfPath, TxCount, pHalData->OFDM_24G_Diff[rfPath][TxCount]));
2626                         RT_TRACE(_module_hci_hal_init_c_, _drv_info_, ("BW20_24G_Diff[%d][%d]= %d\n", rfPath, TxCount, pHalData->BW20_24G_Diff[rfPath][TxCount]));
2627                         RT_TRACE(_module_hci_hal_init_c_, _drv_info_, ("BW40_24G_Diff[%d][%d]= %d\n", rfPath, TxCount, pHalData->BW40_24G_Diff[rfPath][TxCount]));
2628 #endif
2629                 }
2630         }
2631
2632         /*  2010/10/19 MH Add Regulator recognize for CU. */
2633         if (!AutoLoadFail) {
2634                 pHalData->EEPROMRegulatory = (PROMContent[EEPROM_RF_BOARD_OPTION_8723B]&0x7);   /* bit0~2 */
2635                 if (PROMContent[EEPROM_RF_BOARD_OPTION_8723B] == 0xFF)
2636                         pHalData->EEPROMRegulatory = (EEPROM_DEFAULT_BOARD_OPTION&0x7); /* bit0~2 */
2637         } else
2638                 pHalData->EEPROMRegulatory = 0;
2639
2640         RT_TRACE(_module_hci_hal_init_c_, _drv_notice_, ("EEPROMRegulatory = 0x%x\n", pHalData->EEPROMRegulatory));
2641 }
2642
2643 void Hal_EfuseParseBTCoexistInfo_8723B(
2644         struct adapter *padapter, u8 *hwinfo, bool AutoLoadFail
2645 )
2646 {
2647         struct hal_com_data *pHalData = GET_HAL_DATA(padapter);
2648         u8 tempval;
2649         u32 tmpu4;
2650
2651         if (!AutoLoadFail) {
2652                 tmpu4 = rtw_read32(padapter, REG_MULTI_FUNC_CTRL);
2653                 if (tmpu4 & BT_FUNC_EN)
2654                         pHalData->EEPROMBluetoothCoexist = true;
2655                 else
2656                         pHalData->EEPROMBluetoothCoexist = false;
2657
2658                 pHalData->EEPROMBluetoothType = BT_RTL8723B;
2659
2660                 tempval = hwinfo[EEPROM_RF_BT_SETTING_8723B];
2661                 if (tempval != 0xFF) {
2662                         pHalData->EEPROMBluetoothAntNum = tempval & BIT(0);
2663                         /*  EFUSE_0xC3[6] == 0, S1(Main)-ODM_RF_PATH_A; */
2664                         /*  EFUSE_0xC3[6] == 1, S0(Aux)-ODM_RF_PATH_B */
2665                         pHalData->ant_path = (tempval & BIT(6))?ODM_RF_PATH_B:ODM_RF_PATH_A;
2666                 } else {
2667                         pHalData->EEPROMBluetoothAntNum = Ant_x1;
2668                         if (pHalData->PackageType == PACKAGE_QFN68)
2669                                 pHalData->ant_path = ODM_RF_PATH_B;
2670                         else
2671                                 pHalData->ant_path = ODM_RF_PATH_A;
2672                 }
2673         } else {
2674                 pHalData->EEPROMBluetoothCoexist = false;
2675                 pHalData->EEPROMBluetoothType = BT_RTL8723B;
2676                 pHalData->EEPROMBluetoothAntNum = Ant_x1;
2677                 pHalData->ant_path = ODM_RF_PATH_A;
2678         }
2679
2680         if (padapter->registrypriv.ant_num > 0) {
2681                 DBG_8192C(
2682                         "%s: Apply driver defined antenna number(%d) to replace origin(%d)\n",
2683                         __func__,
2684                         padapter->registrypriv.ant_num,
2685                         pHalData->EEPROMBluetoothAntNum == Ant_x2 ? 2 : 1
2686                 );
2687
2688                 switch (padapter->registrypriv.ant_num) {
2689                 case 1:
2690                         pHalData->EEPROMBluetoothAntNum = Ant_x1;
2691                         break;
2692                 case 2:
2693                         pHalData->EEPROMBluetoothAntNum = Ant_x2;
2694                         break;
2695                 default:
2696                         DBG_8192C(
2697                                 "%s: Discard invalid driver defined antenna number(%d)!\n",
2698                                 __func__,
2699                                 padapter->registrypriv.ant_num
2700                         );
2701                         break;
2702                 }
2703         }
2704
2705         rtw_btcoex_SetBTCoexist(padapter, pHalData->EEPROMBluetoothCoexist);
2706         rtw_btcoex_SetChipType(padapter, pHalData->EEPROMBluetoothType);
2707         rtw_btcoex_SetPGAntNum(padapter, pHalData->EEPROMBluetoothAntNum == Ant_x2 ? 2 : 1);
2708         if (pHalData->EEPROMBluetoothAntNum == Ant_x1)
2709                 rtw_btcoex_SetSingleAntPath(padapter, pHalData->ant_path);
2710
2711         DBG_8192C(
2712                 "%s: %s BT-coex, ant_num =%d\n",
2713                 __func__,
2714                 pHalData->EEPROMBluetoothCoexist == true ? "Enable" : "Disable",
2715                 pHalData->EEPROMBluetoothAntNum == Ant_x2 ? 2 : 1
2716         );
2717 }
2718
2719 void Hal_EfuseParseEEPROMVer_8723B(
2720         struct adapter *padapter, u8 *hwinfo, bool AutoLoadFail
2721 )
2722 {
2723         struct hal_com_data     *pHalData = GET_HAL_DATA(padapter);
2724
2725 /*      RT_TRACE(_module_hci_hal_init_c_, _drv_notice_, ("%s(): AutoLoadFail = %d\n", __func__, AutoLoadFail)); */
2726         if (!AutoLoadFail)
2727                 pHalData->EEPROMVersion = hwinfo[EEPROM_VERSION_8723B];
2728         else
2729                 pHalData->EEPROMVersion = 1;
2730         RT_TRACE(_module_hci_hal_init_c_, _drv_notice_, ("Hal_EfuseParseEEPROMVer(), EEVer = %d\n",
2731                 pHalData->EEPROMVersion));
2732 }
2733
2734
2735
2736 void Hal_EfuseParsePackageType_8723B(
2737         struct adapter *padapter, u8 *hwinfo, bool AutoLoadFail
2738 )
2739 {
2740         struct hal_com_data *pHalData = GET_HAL_DATA(padapter);
2741         u8 package;
2742         u8 efuseContent;
2743
2744         Efuse_PowerSwitch(padapter, false, true);
2745         efuse_OneByteRead(padapter, 0x1FB, &efuseContent, false);
2746         DBG_871X("%s phy efuse read 0x1FB =%x\n", __func__, efuseContent);
2747         Efuse_PowerSwitch(padapter, false, false);
2748
2749         package = efuseContent & 0x7;
2750         switch (package) {
2751         case 0x4:
2752                 pHalData->PackageType = PACKAGE_TFBGA79;
2753                 break;
2754         case 0x5:
2755                 pHalData->PackageType = PACKAGE_TFBGA90;
2756                 break;
2757         case 0x6:
2758                 pHalData->PackageType = PACKAGE_QFN68;
2759                 break;
2760         case 0x7:
2761                 pHalData->PackageType = PACKAGE_TFBGA80;
2762                 break;
2763
2764         default:
2765                 pHalData->PackageType = PACKAGE_DEFAULT;
2766                 break;
2767         }
2768
2769         DBG_871X("PackageType = 0x%X\n", pHalData->PackageType);
2770 }
2771
2772
2773 void Hal_EfuseParseVoltage_8723B(
2774         struct adapter *padapter, u8 *hwinfo, bool AutoLoadFail
2775 )
2776 {
2777         struct eeprom_priv *pEEPROM = GET_EEPROM_EFUSE_PRIV(padapter);
2778
2779         /* memcpy(pEEPROM->adjuseVoltageVal, &hwinfo[EEPROM_Voltage_ADDR_8723B], 1); */
2780         DBG_871X("%s hwinfo[EEPROM_Voltage_ADDR_8723B] =%02x\n", __func__, hwinfo[EEPROM_Voltage_ADDR_8723B]);
2781         pEEPROM->adjuseVoltageVal = (hwinfo[EEPROM_Voltage_ADDR_8723B] & 0xf0) >> 4;
2782         DBG_871X("%s pEEPROM->adjuseVoltageVal =%x\n", __func__, pEEPROM->adjuseVoltageVal);
2783 }
2784
2785 void Hal_EfuseParseChnlPlan_8723B(
2786         struct adapter *padapter, u8 *hwinfo, bool AutoLoadFail
2787 )
2788 {
2789         padapter->mlmepriv.ChannelPlan = hal_com_config_channel_plan(
2790                 padapter,
2791                 hwinfo ? hwinfo[EEPROM_ChannelPlan_8723B] : 0xFF,
2792                 padapter->registrypriv.channel_plan,
2793                 RT_CHANNEL_DOMAIN_WORLD_NULL,
2794                 AutoLoadFail
2795         );
2796
2797         Hal_ChannelPlanToRegulation(padapter, padapter->mlmepriv.ChannelPlan);
2798
2799         RT_TRACE(_module_hci_hal_init_c_, _drv_notice_, ("EEPROM ChannelPlan = 0x%02x\n", padapter->mlmepriv.ChannelPlan));
2800 }
2801
2802 void Hal_EfuseParseCustomerID_8723B(
2803         struct adapter *padapter, u8 *hwinfo, bool AutoLoadFail
2804 )
2805 {
2806         struct hal_com_data     *pHalData = GET_HAL_DATA(padapter);
2807
2808 /*      RT_TRACE(_module_hci_hal_init_c_, _drv_notice_, ("%s(): AutoLoadFail = %d\n", __func__, AutoLoadFail)); */
2809         if (!AutoLoadFail)
2810                 pHalData->EEPROMCustomerID = hwinfo[EEPROM_CustomID_8723B];
2811         else
2812                 pHalData->EEPROMCustomerID = 0;
2813
2814         RT_TRACE(_module_hci_hal_init_c_, _drv_notice_, ("EEPROM Customer ID: 0x%2x\n", pHalData->EEPROMCustomerID));
2815 }
2816
2817 void Hal_EfuseParseAntennaDiversity_8723B(
2818         struct adapter *padapter,
2819         u8 *hwinfo,
2820         bool AutoLoadFail
2821 )
2822 {
2823 }
2824
2825 void Hal_EfuseParseXtal_8723B(
2826         struct adapter *padapter, u8 *hwinfo, bool AutoLoadFail
2827 )
2828 {
2829         struct hal_com_data     *pHalData = GET_HAL_DATA(padapter);
2830
2831 /*      RT_TRACE(_module_hci_hal_init_c_, _drv_notice_, ("%s(): AutoLoadFail = %d\n", __func__, AutoLoadFail)); */
2832         if (!AutoLoadFail) {
2833                 pHalData->CrystalCap = hwinfo[EEPROM_XTAL_8723B];
2834                 if (pHalData->CrystalCap == 0xFF)
2835                         pHalData->CrystalCap = EEPROM_Default_CrystalCap_8723B;    /* what value should 8812 set? */
2836         } else
2837                 pHalData->CrystalCap = EEPROM_Default_CrystalCap_8723B;
2838
2839         RT_TRACE(_module_hci_hal_init_c_, _drv_notice_, ("EEPROM CrystalCap: 0x%2x\n", pHalData->CrystalCap));
2840 }
2841
2842
2843 void Hal_EfuseParseThermalMeter_8723B(
2844         struct adapter *padapter, u8 *PROMContent, u8 AutoLoadFail
2845 )
2846 {
2847         struct hal_com_data *pHalData = GET_HAL_DATA(padapter);
2848
2849 /*      RT_TRACE(_module_hci_hal_init_c_, _drv_notice_, ("%s(): AutoLoadFail = %d\n", __func__, AutoLoadFail)); */
2850         /*  */
2851         /*  ThermalMeter from EEPROM */
2852         /*  */
2853         if (false == AutoLoadFail)
2854                 pHalData->EEPROMThermalMeter = PROMContent[EEPROM_THERMAL_METER_8723B];
2855         else
2856                 pHalData->EEPROMThermalMeter = EEPROM_Default_ThermalMeter_8723B;
2857
2858         if ((pHalData->EEPROMThermalMeter == 0xff) || (true == AutoLoadFail)) {
2859                 pHalData->bAPKThermalMeterIgnore = true;
2860                 pHalData->EEPROMThermalMeter = EEPROM_Default_ThermalMeter_8723B;
2861         }
2862
2863         RT_TRACE(_module_hci_hal_init_c_, _drv_notice_, ("EEPROM ThermalMeter = 0x%x\n", pHalData->EEPROMThermalMeter));
2864 }
2865
2866
2867 void Hal_ReadRFGainOffset(
2868         struct adapter *Adapter, u8 *PROMContent, bool AutoloadFail
2869 )
2870 {
2871         /*  */
2872         /*  BB_RF Gain Offset from EEPROM */
2873         /*  */
2874
2875         if (!AutoloadFail) {
2876                 Adapter->eeprompriv.EEPROMRFGainOffset = PROMContent[EEPROM_RF_GAIN_OFFSET];
2877                 DBG_871X("AutoloadFail =%x,\n", AutoloadFail);
2878                 Adapter->eeprompriv.EEPROMRFGainVal = EFUSE_Read1Byte(Adapter, EEPROM_RF_GAIN_VAL);
2879                 DBG_871X("Adapter->eeprompriv.EEPROMRFGainVal =%x\n", Adapter->eeprompriv.EEPROMRFGainVal);
2880         } else {
2881                 Adapter->eeprompriv.EEPROMRFGainOffset = 0;
2882                 Adapter->eeprompriv.EEPROMRFGainVal = 0xFF;
2883                 DBG_871X("else AutoloadFail =%x,\n", AutoloadFail);
2884         }
2885         DBG_871X("EEPRORFGainOffset = 0x%02x\n", Adapter->eeprompriv.EEPROMRFGainOffset);
2886 }
2887
2888 u8 BWMapping_8723B(struct adapter *Adapter, struct pkt_attrib *pattrib)
2889 {
2890         u8 BWSettingOfDesc = 0;
2891         struct hal_com_data *pHalData = GET_HAL_DATA(Adapter);
2892
2893         /* DBG_871X("BWMapping pHalData->CurrentChannelBW %d, pattrib->bwmode %d\n", pHalData->CurrentChannelBW, pattrib->bwmode); */
2894
2895         if (pHalData->CurrentChannelBW == CHANNEL_WIDTH_80) {
2896                 if (pattrib->bwmode == CHANNEL_WIDTH_80)
2897                         BWSettingOfDesc = 2;
2898                 else if (pattrib->bwmode == CHANNEL_WIDTH_40)
2899                         BWSettingOfDesc = 1;
2900                 else
2901                         BWSettingOfDesc = 0;
2902         } else if (pHalData->CurrentChannelBW == CHANNEL_WIDTH_40) {
2903                 if ((pattrib->bwmode == CHANNEL_WIDTH_40) || (pattrib->bwmode == CHANNEL_WIDTH_80))
2904                         BWSettingOfDesc = 1;
2905                 else
2906                         BWSettingOfDesc = 0;
2907         } else
2908                 BWSettingOfDesc = 0;
2909
2910         /* if (pTcb->bBTTxPacket) */
2911         /*      BWSettingOfDesc = 0; */
2912
2913         return BWSettingOfDesc;
2914 }
2915
2916 u8 SCMapping_8723B(struct adapter *Adapter, struct pkt_attrib *pattrib)
2917 {
2918         u8 SCSettingOfDesc = 0;
2919         struct hal_com_data *pHalData = GET_HAL_DATA(Adapter);
2920
2921         /* DBG_871X("SCMapping: pHalData->CurrentChannelBW %d, pHalData->nCur80MhzPrimeSC %d, pHalData->nCur40MhzPrimeSC %d\n", pHalData->CurrentChannelBW, pHalData->nCur80MhzPrimeSC, pHalData->nCur40MhzPrimeSC); */
2922
2923         if (pHalData->CurrentChannelBW == CHANNEL_WIDTH_80) {
2924                 if (pattrib->bwmode == CHANNEL_WIDTH_80) {
2925                         SCSettingOfDesc = VHT_DATA_SC_DONOT_CARE;
2926                 } else if (pattrib->bwmode == CHANNEL_WIDTH_40) {
2927                         if (pHalData->nCur80MhzPrimeSC == HAL_PRIME_CHNL_OFFSET_LOWER)
2928                                 SCSettingOfDesc = VHT_DATA_SC_40_LOWER_OF_80MHZ;
2929                         else if (pHalData->nCur80MhzPrimeSC == HAL_PRIME_CHNL_OFFSET_UPPER)
2930                                 SCSettingOfDesc = VHT_DATA_SC_40_UPPER_OF_80MHZ;
2931                         else
2932                                 DBG_871X("SCMapping: Not Correct Primary40MHz Setting\n");
2933                 } else {
2934                         if ((pHalData->nCur40MhzPrimeSC == HAL_PRIME_CHNL_OFFSET_LOWER) && (pHalData->nCur80MhzPrimeSC == HAL_PRIME_CHNL_OFFSET_LOWER))
2935                                 SCSettingOfDesc = VHT_DATA_SC_20_LOWEST_OF_80MHZ;
2936                         else if ((pHalData->nCur40MhzPrimeSC == HAL_PRIME_CHNL_OFFSET_UPPER) && (pHalData->nCur80MhzPrimeSC == HAL_PRIME_CHNL_OFFSET_LOWER))
2937                                 SCSettingOfDesc = VHT_DATA_SC_20_LOWER_OF_80MHZ;
2938                         else if ((pHalData->nCur40MhzPrimeSC == HAL_PRIME_CHNL_OFFSET_LOWER) && (pHalData->nCur80MhzPrimeSC == HAL_PRIME_CHNL_OFFSET_UPPER))
2939                                 SCSettingOfDesc = VHT_DATA_SC_20_UPPER_OF_80MHZ;
2940                         else if ((pHalData->nCur40MhzPrimeSC == HAL_PRIME_CHNL_OFFSET_UPPER) && (pHalData->nCur80MhzPrimeSC == HAL_PRIME_CHNL_OFFSET_UPPER))
2941                                 SCSettingOfDesc = VHT_DATA_SC_20_UPPERST_OF_80MHZ;
2942                         else
2943                                 DBG_871X("SCMapping: Not Correct Primary40MHz Setting\n");
2944                 }
2945         } else if (pHalData->CurrentChannelBW == CHANNEL_WIDTH_40) {
2946                 /* DBG_871X("SCMapping: HT Case: pHalData->CurrentChannelBW %d, pHalData->nCur40MhzPrimeSC %d\n", pHalData->CurrentChannelBW, pHalData->nCur40MhzPrimeSC); */
2947
2948                 if (pattrib->bwmode == CHANNEL_WIDTH_40) {
2949                         SCSettingOfDesc = VHT_DATA_SC_DONOT_CARE;
2950                 } else if (pattrib->bwmode == CHANNEL_WIDTH_20) {
2951                         if (pHalData->nCur40MhzPrimeSC == HAL_PRIME_CHNL_OFFSET_UPPER) {
2952                                 SCSettingOfDesc = VHT_DATA_SC_20_UPPER_OF_80MHZ;
2953                         } else if (pHalData->nCur40MhzPrimeSC == HAL_PRIME_CHNL_OFFSET_LOWER) {
2954                                 SCSettingOfDesc = VHT_DATA_SC_20_LOWER_OF_80MHZ;
2955                         } else {
2956                                 SCSettingOfDesc = VHT_DATA_SC_DONOT_CARE;
2957                         }
2958                 }
2959         } else {
2960                 SCSettingOfDesc = VHT_DATA_SC_DONOT_CARE;
2961         }
2962
2963         return SCSettingOfDesc;
2964 }
2965
2966 static void rtl8723b_cal_txdesc_chksum(struct tx_desc *ptxdesc)
2967 {
2968         u16 *usPtr = (u16 *)ptxdesc;
2969         u32 count;
2970         u32 index;
2971         u16 checksum = 0;
2972
2973
2974         /*  Clear first */
2975         ptxdesc->txdw7 &= cpu_to_le32(0xffff0000);
2976
2977         /*  checksume is always calculated by first 32 bytes, */
2978         /*  and it doesn't depend on TX DESC length. */
2979         /*  Thomas, Lucas@SD4, 20130515 */
2980         count = 16;
2981
2982         for (index = 0; index < count; index++) {
2983                 checksum |= le16_to_cpu(*(__le16 *)(usPtr + index));
2984         }
2985
2986         ptxdesc->txdw7 |= cpu_to_le32(checksum & 0x0000ffff);
2987 }
2988
2989 static u8 fill_txdesc_sectype(struct pkt_attrib *pattrib)
2990 {
2991         u8 sectype = 0;
2992         if ((pattrib->encrypt > 0) && !pattrib->bswenc) {
2993                 switch (pattrib->encrypt) {
2994                 /*  SEC_TYPE */
2995                 case _WEP40_:
2996                 case _WEP104_:
2997                 case _TKIP_:
2998                 case _TKIP_WTMIC_:
2999                         sectype = 1;
3000                         break;
3001
3002                 case _AES_:
3003                         sectype = 3;
3004                         break;
3005
3006                 case _NO_PRIVACY_:
3007                 default:
3008                         break;
3009                 }
3010         }
3011         return sectype;
3012 }
3013
3014 static void fill_txdesc_vcs_8723b(struct adapter *padapter, struct pkt_attrib *pattrib, PTXDESC_8723B ptxdesc)
3015 {
3016         /* DBG_8192C("cvs_mode =%d\n", pattrib->vcs_mode); */
3017
3018         if (pattrib->vcs_mode) {
3019                 switch (pattrib->vcs_mode) {
3020                 case RTS_CTS:
3021                         ptxdesc->rtsen = 1;
3022                         /*  ENABLE HW RTS */
3023                         ptxdesc->hw_rts_en = 1;
3024                         break;
3025
3026                 case CTS_TO_SELF:
3027                         ptxdesc->cts2self = 1;
3028                         break;
3029
3030                 case NONE_VCS:
3031                 default:
3032                         break;
3033                 }
3034
3035                 ptxdesc->rtsrate = 8; /*  RTS Rate =24M */
3036                 ptxdesc->rts_ratefb_lmt = 0xF;
3037
3038                 if (padapter->mlmeextpriv.mlmext_info.preamble_mode == PREAMBLE_SHORT)
3039                         ptxdesc->rts_short = 1;
3040
3041                 /*  Set RTS BW */
3042                 if (pattrib->ht_en)
3043                         ptxdesc->rts_sc = SCMapping_8723B(padapter, pattrib);
3044         }
3045 }
3046
3047 static void fill_txdesc_phy_8723b(struct adapter *padapter, struct pkt_attrib *pattrib, PTXDESC_8723B ptxdesc)
3048 {
3049         /* DBG_8192C("bwmode =%d, ch_off =%d\n", pattrib->bwmode, pattrib->ch_offset); */
3050
3051         if (pattrib->ht_en) {
3052                 ptxdesc->data_bw = BWMapping_8723B(padapter, pattrib);
3053
3054                 ptxdesc->data_sc = SCMapping_8723B(padapter, pattrib);
3055         }
3056 }
3057
3058 static void rtl8723b_fill_default_txdesc(
3059         struct xmit_frame *pxmitframe, u8 *pbuf
3060 )
3061 {
3062         struct adapter *padapter;
3063         struct hal_com_data *pHalData;
3064         struct dm_priv *pdmpriv;
3065         struct mlme_ext_priv *pmlmeext;
3066         struct mlme_ext_info *pmlmeinfo;
3067         struct pkt_attrib *pattrib;
3068         PTXDESC_8723B ptxdesc;
3069         s32 bmcst;
3070
3071         memset(pbuf, 0, TXDESC_SIZE);
3072
3073         padapter = pxmitframe->padapter;
3074         pHalData = GET_HAL_DATA(padapter);
3075         pdmpriv = &pHalData->dmpriv;
3076         pmlmeext = &padapter->mlmeextpriv;
3077         pmlmeinfo = &(pmlmeext->mlmext_info);
3078
3079         pattrib = &pxmitframe->attrib;
3080         bmcst = IS_MCAST(pattrib->ra);
3081
3082         ptxdesc = (PTXDESC_8723B)pbuf;
3083
3084         if (pxmitframe->frame_tag == DATA_FRAMETAG) {
3085                 u8 drv_userate = 0;
3086
3087                 ptxdesc->macid = pattrib->mac_id; /*  CAM_ID(MAC_ID) */
3088                 ptxdesc->rate_id = pattrib->raid;
3089                 ptxdesc->qsel = pattrib->qsel;
3090                 ptxdesc->seq = pattrib->seqnum;
3091
3092                 ptxdesc->sectype = fill_txdesc_sectype(pattrib);
3093                 fill_txdesc_vcs_8723b(padapter, pattrib, ptxdesc);
3094
3095                 if (pattrib->icmp_pkt == 1 && padapter->registrypriv.wifi_spec == 1)
3096                         drv_userate = 1;
3097
3098                 if (
3099                         (pattrib->ether_type != 0x888e) &&
3100                         (pattrib->ether_type != 0x0806) &&
3101                         (pattrib->ether_type != 0x88B4) &&
3102                         (pattrib->dhcp_pkt != 1) &&
3103                         (drv_userate != 1)
3104 #ifdef CONFIG_AUTO_AP_MODE
3105                         && (pattrib->pctrl != true)
3106 #endif
3107                 ) {
3108                         /*  Non EAP & ARP & DHCP type data packet */
3109
3110                         if (pattrib->ampdu_en == true) {
3111                                 ptxdesc->agg_en = 1; /*  AGG EN */
3112                                 ptxdesc->max_agg_num = 0x1f;
3113                                 ptxdesc->ampdu_density = pattrib->ampdu_spacing;
3114                         } else
3115                                 ptxdesc->bk = 1; /*  AGG BK */
3116
3117                         fill_txdesc_phy_8723b(padapter, pattrib, ptxdesc);
3118
3119                         ptxdesc->data_ratefb_lmt = 0x1F;
3120
3121                         if (pHalData->fw_ractrl == false) {
3122                                 ptxdesc->userate = 1;
3123
3124                                 if (pHalData->dmpriv.INIDATA_RATE[pattrib->mac_id] & BIT(7))
3125                                         ptxdesc->data_short = 1;
3126
3127                                 ptxdesc->datarate = pHalData->dmpriv.INIDATA_RATE[pattrib->mac_id] & 0x7F;
3128                         }
3129
3130                         if (padapter->fix_rate != 0xFF) { /*  modify data rate by iwpriv */
3131                                 ptxdesc->userate = 1;
3132                                 if (padapter->fix_rate & BIT(7))
3133                                         ptxdesc->data_short = 1;
3134
3135                                 ptxdesc->datarate = (padapter->fix_rate & 0x7F);
3136                                 ptxdesc->disdatafb = 1;
3137                         }
3138
3139                         if (pattrib->ldpc)
3140                                 ptxdesc->data_ldpc = 1;
3141                         if (pattrib->stbc)
3142                                 ptxdesc->data_stbc = 1;
3143
3144 #ifdef CONFIG_CMCC_TEST
3145                         ptxdesc->data_short = 1; /* use cck short premble */
3146 #endif
3147                 } else {
3148                         /*  EAP data packet and ARP packet. */
3149                         /*  Use the 1M data rate to send the EAP/ARP packet. */
3150                         /*  This will maybe make the handshake smooth. */
3151
3152                         ptxdesc->bk = 1; /*  AGG BK */
3153                         ptxdesc->userate = 1; /*  driver uses rate */
3154                         if (pmlmeinfo->preamble_mode == PREAMBLE_SHORT)
3155                                 ptxdesc->data_short = 1;/*  DATA_SHORT */
3156                         ptxdesc->datarate = MRateToHwRate(pmlmeext->tx_rate);
3157                         DBG_871X("YJ: %s(): ARP Data: userate =%d, datarate = 0x%x\n", __func__, ptxdesc->userate, ptxdesc->datarate);
3158                 }
3159
3160                 ptxdesc->usb_txagg_num = pxmitframe->agg_num;
3161         } else if (pxmitframe->frame_tag == MGNT_FRAMETAG) {
3162 /*              RT_TRACE(_module_hal_xmit_c_, _drv_notice_, ("%s: MGNT_FRAMETAG\n", __func__)); */
3163
3164                 ptxdesc->macid = pattrib->mac_id; /*  CAM_ID(MAC_ID) */
3165                 ptxdesc->qsel = pattrib->qsel;
3166                 ptxdesc->rate_id = pattrib->raid; /*  Rate ID */
3167                 ptxdesc->seq = pattrib->seqnum;
3168                 ptxdesc->userate = 1; /*  driver uses rate, 1M */
3169
3170                 ptxdesc->mbssid = pattrib->mbssid & 0xF;
3171
3172                 ptxdesc->rty_lmt_en = 1; /*  retry limit enable */
3173                 if (pattrib->retry_ctrl == true) {
3174                         ptxdesc->data_rt_lmt = 6;
3175                 } else {
3176                         ptxdesc->data_rt_lmt = 12;
3177                 }
3178
3179                 ptxdesc->datarate = MRateToHwRate(pmlmeext->tx_rate);
3180
3181                 /*  CCX-TXRPT ack for xmit mgmt frames. */
3182                 if (pxmitframe->ack_report) {
3183                         #ifdef DBG_CCX
3184                         DBG_8192C("%s set spe_rpt\n", __func__);
3185                         #endif
3186                         ptxdesc->spe_rpt = 1;
3187                         ptxdesc->sw_define = (u8)(GET_PRIMARY_ADAPTER(padapter)->xmitpriv.seq_no);
3188                 }
3189         } else if (pxmitframe->frame_tag == TXAGG_FRAMETAG) {
3190                 RT_TRACE(_module_hal_xmit_c_, _drv_warning_, ("%s: TXAGG_FRAMETAG\n", __func__));
3191         } else {
3192                 RT_TRACE(_module_hal_xmit_c_, _drv_warning_, ("%s: frame_tag = 0x%x\n", __func__, pxmitframe->frame_tag));
3193
3194                 ptxdesc->macid = pattrib->mac_id; /*  CAM_ID(MAC_ID) */
3195                 ptxdesc->rate_id = pattrib->raid; /*  Rate ID */
3196                 ptxdesc->qsel = pattrib->qsel;
3197                 ptxdesc->seq = pattrib->seqnum;
3198                 ptxdesc->userate = 1; /*  driver uses rate */
3199                 ptxdesc->datarate = MRateToHwRate(pmlmeext->tx_rate);
3200         }
3201
3202         ptxdesc->pktlen = pattrib->last_txcmdsz;
3203         ptxdesc->offset = TXDESC_SIZE + OFFSET_SZ;
3204
3205         if (bmcst)
3206                 ptxdesc->bmc = 1;
3207
3208         /*  2009.11.05. tynli_test. Suggested by SD4 Filen for FW LPS. */
3209         /*  (1) The sequence number of each non-Qos frame / broadcast / multicast / */
3210         /*  mgnt frame should be controled by Hw because Fw will also send null data */
3211         /*  which we cannot control when Fw LPS enable. */
3212         /*  --> default enable non-Qos data sequense number. 2010.06.23. by tynli. */
3213         /*  (2) Enable HW SEQ control for beacon packet, because we use Hw beacon. */
3214         /*  (3) Use HW Qos SEQ to control the seq num of Ext port non-Qos packets. */
3215         /*  2010.06.23. Added by tynli. */
3216         if (!pattrib->qos_en) /*  Hw set sequence number */
3217                 ptxdesc->en_hwseq = 1; /*  HWSEQ_EN */
3218 }
3219
3220 /*
3221  *Description:
3222  *
3223  *Parameters:
3224  *      pxmitframe      xmitframe
3225  *      pbuf            where to fill tx desc
3226  */
3227 void rtl8723b_update_txdesc(struct xmit_frame *pxmitframe, u8 *pbuf)
3228 {
3229         struct tx_desc *pdesc;
3230
3231         rtl8723b_fill_default_txdesc(pxmitframe, pbuf);
3232
3233         pdesc = (struct tx_desc *)pbuf;
3234         pdesc->txdw0 = pdesc->txdw0;
3235         pdesc->txdw1 = pdesc->txdw1;
3236         pdesc->txdw2 = pdesc->txdw2;
3237         pdesc->txdw3 = pdesc->txdw3;
3238         pdesc->txdw4 = pdesc->txdw4;
3239         pdesc->txdw5 = pdesc->txdw5;
3240         pdesc->txdw6 = pdesc->txdw6;
3241         pdesc->txdw7 = pdesc->txdw7;
3242         pdesc->txdw8 = pdesc->txdw8;
3243         pdesc->txdw9 = pdesc->txdw9;
3244
3245         rtl8723b_cal_txdesc_chksum(pdesc);
3246 }
3247
3248 /*  */
3249 /*  Description: In normal chip, we should send some packet to Hw which will be used by Fw */
3250 /*                      in FW LPS mode. The function is to fill the Tx descriptor of this packets, then */
3251 /*                      Fw can tell Hw to send these packet derectly. */
3252 /*  Added by tynli. 2009.10.15. */
3253 /*  */
3254 /* type1:pspoll, type2:null */
3255 void rtl8723b_fill_fake_txdesc(
3256         struct adapter *padapter,
3257         u8 *pDesc,
3258         u32 BufferLen,
3259         u8 IsPsPoll,
3260         u8 IsBTQosNull,
3261         u8 bDataFrame
3262 )
3263 {
3264         /*  Clear all status */
3265         memset(pDesc, 0, TXDESC_SIZE);
3266
3267         SET_TX_DESC_FIRST_SEG_8723B(pDesc, 1); /* bFirstSeg; */
3268         SET_TX_DESC_LAST_SEG_8723B(pDesc, 1); /* bLastSeg; */
3269
3270         SET_TX_DESC_OFFSET_8723B(pDesc, 0x28); /*  Offset = 32 */
3271
3272         SET_TX_DESC_PKT_SIZE_8723B(pDesc, BufferLen); /*  Buffer size + command header */
3273         SET_TX_DESC_QUEUE_SEL_8723B(pDesc, QSLT_MGNT); /*  Fixed queue of Mgnt queue */
3274
3275         /*  Set NAVUSEHDR to prevent Ps-poll AId filed to be changed to error vlaue by Hw. */
3276         if (true == IsPsPoll) {
3277                 SET_TX_DESC_NAV_USE_HDR_8723B(pDesc, 1);
3278         } else {
3279                 SET_TX_DESC_HWSEQ_EN_8723B(pDesc, 1); /*  Hw set sequence number */
3280                 SET_TX_DESC_HWSEQ_SEL_8723B(pDesc, 0);
3281         }
3282
3283         if (true == IsBTQosNull) {
3284                 SET_TX_DESC_BT_INT_8723B(pDesc, 1);
3285         }
3286
3287         SET_TX_DESC_USE_RATE_8723B(pDesc, 1); /*  use data rate which is set by Sw */
3288         SET_TX_DESC_OWN_8723B((u8 *)pDesc, 1);
3289
3290         SET_TX_DESC_TX_RATE_8723B(pDesc, DESC8723B_RATE1M);
3291
3292         /*  */
3293         /*  Encrypt the data frame if under security mode excepct null data. Suggested by CCW. */
3294         /*  */
3295         if (true == bDataFrame) {
3296                 u32 EncAlg;
3297
3298                 EncAlg = padapter->securitypriv.dot11PrivacyAlgrthm;
3299                 switch (EncAlg) {
3300                 case _NO_PRIVACY_:
3301                         SET_TX_DESC_SEC_TYPE_8723B(pDesc, 0x0);
3302                         break;
3303                 case _WEP40_:
3304                 case _WEP104_:
3305                 case _TKIP_:
3306                         SET_TX_DESC_SEC_TYPE_8723B(pDesc, 0x1);
3307                         break;
3308                 case _SMS4_:
3309                         SET_TX_DESC_SEC_TYPE_8723B(pDesc, 0x2);
3310                         break;
3311                 case _AES_:
3312                         SET_TX_DESC_SEC_TYPE_8723B(pDesc, 0x3);
3313                         break;
3314                 default:
3315                         SET_TX_DESC_SEC_TYPE_8723B(pDesc, 0x0);
3316                         break;
3317                 }
3318         }
3319
3320         /*  USB interface drop packet if the checksum of descriptor isn't correct. */
3321         /*  Using this checksum can let hardware recovery from packet bulk out error (e.g. Cancel URC, Bulk out error.). */
3322         rtl8723b_cal_txdesc_chksum((struct tx_desc *)pDesc);
3323 }
3324
3325 static void hw_var_set_opmode(struct adapter *padapter, u8 variable, u8 *val)
3326 {
3327         u8 val8;
3328         u8 mode = *((u8 *)val);
3329
3330         {
3331                 /*  disable Port0 TSF update */
3332                 val8 = rtw_read8(padapter, REG_BCN_CTRL);
3333                 val8 |= DIS_TSF_UDT;
3334                 rtw_write8(padapter, REG_BCN_CTRL, val8);
3335
3336                 /*  set net_type */
3337                 Set_MSR(padapter, mode);
3338                 DBG_871X("#### %s() -%d iface_type(0) mode = %d ####\n", __func__, __LINE__, mode);
3339
3340                 if ((mode == _HW_STATE_STATION_) || (mode == _HW_STATE_NOLINK_)) {
3341                         {
3342                                 StopTxBeacon(padapter);
3343 #ifdef CONFIG_INTERRUPT_BASED_TXBCN
3344 #ifdef CONFIG_INTERRUPT_BASED_TXBCN_EARLY_INT
3345                                 rtw_write8(padapter, REG_DRVERLYINT, 0x05); /*  restore early int time to 5ms */
3346                                 UpdateInterruptMask8812AU(padapter, true, 0, IMR_BCNDMAINT0_8723B);
3347 #endif /*  CONFIG_INTERRUPT_BASED_TXBCN_EARLY_INT */
3348
3349 #ifdef CONFIG_INTERRUPT_BASED_TXBCN_BCN_OK_ERR
3350                                 UpdateInterruptMask8812AU(padapter, true, 0, (IMR_TXBCN0ERR_8723B|IMR_TXBCN0OK_8723B));
3351 #endif /*  CONFIG_INTERRUPT_BASED_TXBCN_BCN_OK_ERR */
3352
3353 #endif /*  CONFIG_INTERRUPT_BASED_TXBCN */
3354                         }
3355
3356                         /*  disable atim wnd */
3357                         rtw_write8(padapter, REG_BCN_CTRL, DIS_TSF_UDT|EN_BCN_FUNCTION|DIS_ATIM);
3358                         /* rtw_write8(padapter, REG_BCN_CTRL, 0x18); */
3359                 } else if ((mode == _HW_STATE_ADHOC_) /*|| (mode == _HW_STATE_AP_)*/) {
3360                         ResumeTxBeacon(padapter);
3361                         rtw_write8(padapter, REG_BCN_CTRL, DIS_TSF_UDT|EN_BCN_FUNCTION|DIS_BCNQ_SUB);
3362                 } else if (mode == _HW_STATE_AP_) {
3363 #ifdef CONFIG_INTERRUPT_BASED_TXBCN
3364 #ifdef CONFIG_INTERRUPT_BASED_TXBCN_EARLY_INT
3365                         UpdateInterruptMask8723BU(padapter, true, IMR_BCNDMAINT0_8723B, 0);
3366 #endif /*  CONFIG_INTERRUPT_BASED_TXBCN_EARLY_INT */
3367
3368 #ifdef CONFIG_INTERRUPT_BASED_TXBCN_BCN_OK_ERR
3369                         UpdateInterruptMask8723BU(padapter, true, (IMR_TXBCN0ERR_8723B|IMR_TXBCN0OK_8723B), 0);
3370 #endif /*  CONFIG_INTERRUPT_BASED_TXBCN_BCN_OK_ERR */
3371
3372 #endif /*  CONFIG_INTERRUPT_BASED_TXBCN */
3373
3374                         ResumeTxBeacon(padapter);
3375
3376                         rtw_write8(padapter, REG_BCN_CTRL, DIS_TSF_UDT|DIS_BCNQ_SUB);
3377
3378                         /* Set RCR */
3379                         rtw_write32(padapter, REG_RCR, 0x7000208e);/* CBSSID_DATA must set to 0, reject ICV_ERR packet */
3380                         /* enable to rx data frame */
3381                         rtw_write16(padapter, REG_RXFLTMAP2, 0xFFFF);
3382                         /* enable to rx ps-poll */
3383                         rtw_write16(padapter, REG_RXFLTMAP1, 0x0400);
3384
3385                         /* Beacon Control related register for first time */
3386                         rtw_write8(padapter, REG_BCNDMATIM, 0x02); /*  2ms */
3387
3388                         /* rtw_write8(padapter, REG_BCN_MAX_ERR, 0xFF); */
3389                         rtw_write8(padapter, REG_ATIMWND, 0x0a); /*  10ms */
3390                         rtw_write16(padapter, REG_BCNTCFG, 0x00);
3391                         rtw_write16(padapter, REG_TBTT_PROHIBIT, 0xff04);
3392                         rtw_write16(padapter, REG_TSFTR_SYN_OFFSET, 0x7fff);/*  +32767 (~32ms) */
3393
3394                         /* reset TSF */
3395                         rtw_write8(padapter, REG_DUAL_TSF_RST, BIT(0));
3396
3397                         /* enable BCN0 Function for if1 */
3398                         /* don't enable update TSF0 for if1 (due to TSF update when beacon/probe rsp are received) */
3399                         rtw_write8(padapter, REG_BCN_CTRL, (DIS_TSF_UDT|EN_BCN_FUNCTION|EN_TXBCN_RPT|DIS_BCNQ_SUB));
3400
3401                         /* SW_BCN_SEL - Port0 */
3402                         /* rtw_write8(Adapter, REG_DWBCN1_CTRL_8192E+2, rtw_read8(Adapter, REG_DWBCN1_CTRL_8192E+2) & ~BIT4); */
3403                         rtw_hal_set_hwreg(padapter, HW_VAR_DL_BCN_SEL, NULL);
3404
3405                         /*  select BCN on port 0 */
3406                         rtw_write8(
3407                                 padapter,
3408                                 REG_CCK_CHECK_8723B,
3409                                 (rtw_read8(padapter, REG_CCK_CHECK_8723B)&~BIT_BCN_PORT_SEL)
3410                         );
3411
3412                         /*  dis BCN1 ATIM  WND if if2 is station */
3413                         val8 = rtw_read8(padapter, REG_BCN_CTRL_1);
3414                         val8 |= DIS_ATIM;
3415                         rtw_write8(padapter, REG_BCN_CTRL_1, val8);
3416                 }
3417         }
3418 }
3419
3420 static void hw_var_set_macaddr(struct adapter *padapter, u8 variable, u8 *val)
3421 {
3422         u8 idx = 0;
3423         u32 reg_macid;
3424
3425         reg_macid = REG_MACID;
3426
3427         for (idx = 0 ; idx < 6; idx++)
3428                 rtw_write8(GET_PRIMARY_ADAPTER(padapter), (reg_macid+idx), val[idx]);
3429 }
3430
3431 static void hw_var_set_bssid(struct adapter *padapter, u8 variable, u8 *val)
3432 {
3433         u8 idx = 0;
3434         u32 reg_bssid;
3435
3436         reg_bssid = REG_BSSID;
3437
3438         for (idx = 0 ; idx < 6; idx++)
3439                 rtw_write8(padapter, (reg_bssid+idx), val[idx]);
3440 }
3441
3442 static void hw_var_set_bcn_func(struct adapter *padapter, u8 variable, u8 *val)
3443 {
3444         u32 bcn_ctrl_reg;
3445
3446         bcn_ctrl_reg = REG_BCN_CTRL;
3447
3448         if (*(u8 *)val)
3449                 rtw_write8(padapter, bcn_ctrl_reg, (EN_BCN_FUNCTION | EN_TXBCN_RPT));
3450         else {
3451                 u8 val8;
3452                 val8 = rtw_read8(padapter, bcn_ctrl_reg);
3453                 val8 &= ~(EN_BCN_FUNCTION | EN_TXBCN_RPT);
3454
3455                 /*  Always enable port0 beacon function for PSTDMA */
3456                 if (REG_BCN_CTRL == bcn_ctrl_reg)
3457                         val8 |= EN_BCN_FUNCTION;
3458
3459                 rtw_write8(padapter, bcn_ctrl_reg, val8);
3460         }
3461 }
3462
3463 static void hw_var_set_correct_tsf(struct adapter *padapter, u8 variable, u8 *val)
3464 {
3465         u8 val8;
3466         u64 tsf;
3467         struct mlme_ext_priv *pmlmeext;
3468         struct mlme_ext_info *pmlmeinfo;
3469
3470
3471         pmlmeext = &padapter->mlmeextpriv;
3472         pmlmeinfo = &pmlmeext->mlmext_info;
3473
3474         tsf = pmlmeext->TSFValue-rtw_modular64(pmlmeext->TSFValue, (pmlmeinfo->bcn_interval*1024))-1024; /* us */
3475
3476         if (
3477                 ((pmlmeinfo->state&0x03) == WIFI_FW_ADHOC_STATE) ||
3478                 ((pmlmeinfo->state&0x03) == WIFI_FW_AP_STATE)
3479         )
3480                 StopTxBeacon(padapter);
3481
3482         {
3483                 /*  disable related TSF function */
3484                 val8 = rtw_read8(padapter, REG_BCN_CTRL);
3485                 val8 &= ~EN_BCN_FUNCTION;
3486                 rtw_write8(padapter, REG_BCN_CTRL, val8);
3487
3488                 rtw_write32(padapter, REG_TSFTR, tsf);
3489                 rtw_write32(padapter, REG_TSFTR+4, tsf>>32);
3490
3491                 /*  enable related TSF function */
3492                 val8 = rtw_read8(padapter, REG_BCN_CTRL);
3493                 val8 |= EN_BCN_FUNCTION;
3494                 rtw_write8(padapter, REG_BCN_CTRL, val8);
3495         }
3496
3497         if (
3498                 ((pmlmeinfo->state&0x03) == WIFI_FW_ADHOC_STATE) ||
3499                 ((pmlmeinfo->state&0x03) == WIFI_FW_AP_STATE)
3500         )
3501                 ResumeTxBeacon(padapter);
3502 }
3503
3504 static void hw_var_set_mlme_disconnect(struct adapter *padapter, u8 variable, u8 *val)
3505 {
3506         u8 val8;
3507
3508         /*  Set RCR to not to receive data frame when NO LINK state */
3509         /* rtw_write32(padapter, REG_RCR, rtw_read32(padapter, REG_RCR) & ~RCR_ADF); */
3510         /*  reject all data frames */
3511         rtw_write16(padapter, REG_RXFLTMAP2, 0);
3512
3513         /*  reset TSF */
3514         rtw_write8(padapter, REG_DUAL_TSF_RST, BIT(0));
3515
3516         /*  disable update TSF */
3517         val8 = rtw_read8(padapter, REG_BCN_CTRL);
3518         val8 |= DIS_TSF_UDT;
3519         rtw_write8(padapter, REG_BCN_CTRL, val8);
3520 }
3521
3522 static void hw_var_set_mlme_sitesurvey(struct adapter *padapter, u8 variable, u8 *val)
3523 {
3524         u32 value_rcr, rcr_clear_bit, reg_bcn_ctl;
3525         u16 value_rxfltmap2;
3526         u8 val8;
3527         struct hal_com_data *pHalData;
3528         struct mlme_priv *pmlmepriv;
3529
3530
3531         pHalData = GET_HAL_DATA(padapter);
3532         pmlmepriv = &padapter->mlmepriv;
3533
3534         reg_bcn_ctl = REG_BCN_CTRL;
3535
3536         rcr_clear_bit = RCR_CBSSID_BCN;
3537
3538         /*  config RCR to receive different BSSID & not to receive data frame */
3539         value_rxfltmap2 = 0;
3540
3541         if ((check_fwstate(pmlmepriv, WIFI_AP_STATE) == true))
3542                 rcr_clear_bit = RCR_CBSSID_BCN;
3543
3544         value_rcr = rtw_read32(padapter, REG_RCR);
3545
3546         if (*((u8 *)val)) {
3547                 /*  under sitesurvey */
3548                 value_rcr &= ~(rcr_clear_bit);
3549                 rtw_write32(padapter, REG_RCR, value_rcr);
3550
3551                 rtw_write16(padapter, REG_RXFLTMAP2, value_rxfltmap2);
3552
3553                 if (check_fwstate(pmlmepriv, WIFI_STATION_STATE | WIFI_ADHOC_STATE | WIFI_ADHOC_MASTER_STATE)) {
3554                         /*  disable update TSF */
3555                         val8 = rtw_read8(padapter, reg_bcn_ctl);
3556                         val8 |= DIS_TSF_UDT;
3557                         rtw_write8(padapter, reg_bcn_ctl, val8);
3558                 }
3559
3560                 /*  Save orignal RRSR setting. */
3561                 pHalData->RegRRSR = rtw_read16(padapter, REG_RRSR);
3562         } else {
3563                 /*  sitesurvey done */
3564                 if (check_fwstate(pmlmepriv, (_FW_LINKED|WIFI_AP_STATE)))
3565                         /*  enable to rx data frame */
3566                         rtw_write16(padapter, REG_RXFLTMAP2, 0xFFFF);
3567
3568                 if (check_fwstate(pmlmepriv, WIFI_STATION_STATE | WIFI_ADHOC_STATE | WIFI_ADHOC_MASTER_STATE)) {
3569                         /*  enable update TSF */
3570                         val8 = rtw_read8(padapter, reg_bcn_ctl);
3571                         val8 &= ~DIS_TSF_UDT;
3572                         rtw_write8(padapter, reg_bcn_ctl, val8);
3573                 }
3574
3575                 value_rcr |= rcr_clear_bit;
3576                 rtw_write32(padapter, REG_RCR, value_rcr);
3577
3578                 /*  Restore orignal RRSR setting. */
3579                 rtw_write16(padapter, REG_RRSR, pHalData->RegRRSR);
3580         }
3581 }
3582
3583 static void hw_var_set_mlme_join(struct adapter *padapter, u8 variable, u8 *val)
3584 {
3585         u8 val8;
3586         u16 val16;
3587         u32 val32;
3588         u8 RetryLimit;
3589         u8 type;
3590         struct hal_com_data *pHalData;
3591         struct mlme_priv *pmlmepriv;
3592         struct eeprom_priv *pEEPROM;
3593
3594
3595         RetryLimit = 0x30;
3596         type = *(u8 *)val;
3597         pHalData = GET_HAL_DATA(padapter);
3598         pmlmepriv = &padapter->mlmepriv;
3599         pEEPROM = GET_EEPROM_EFUSE_PRIV(padapter);
3600
3601         if (type == 0) { /*  prepare to join */
3602                 /* enable to rx data frame.Accept all data frame */
3603                 /* rtw_write32(padapter, REG_RCR, rtw_read32(padapter, REG_RCR)|RCR_ADF); */
3604                 rtw_write16(padapter, REG_RXFLTMAP2, 0xFFFF);
3605
3606                 val32 = rtw_read32(padapter, REG_RCR);
3607                 if (padapter->in_cta_test)
3608                         val32 &= ~(RCR_CBSSID_DATA | RCR_CBSSID_BCN);/*  RCR_ADF */
3609                 else
3610                         val32 |= RCR_CBSSID_DATA|RCR_CBSSID_BCN;
3611                 rtw_write32(padapter, REG_RCR, val32);
3612
3613                 if (check_fwstate(pmlmepriv, WIFI_STATION_STATE) == true)
3614                         RetryLimit = (pEEPROM->CustomerID == RT_CID_CCX) ? 7 : 48;
3615                 else /*  Ad-hoc Mode */
3616                         RetryLimit = 0x7;
3617         } else if (type == 1) /* joinbss_event call back when join res < 0 */
3618                 rtw_write16(padapter, REG_RXFLTMAP2, 0x00);
3619         else if (type == 2) { /* sta add event call back */
3620                 /* enable update TSF */
3621                 val8 = rtw_read8(padapter, REG_BCN_CTRL);
3622                 val8 &= ~DIS_TSF_UDT;
3623                 rtw_write8(padapter, REG_BCN_CTRL, val8);
3624
3625                 if (check_fwstate(pmlmepriv, WIFI_ADHOC_STATE|WIFI_ADHOC_MASTER_STATE))
3626                         RetryLimit = 0x7;
3627         }
3628
3629         val16 = (RetryLimit << RETRY_LIMIT_SHORT_SHIFT) | (RetryLimit << RETRY_LIMIT_LONG_SHIFT);
3630         rtw_write16(padapter, REG_RL, val16);
3631 }
3632
3633 void CCX_FwC2HTxRpt_8723b(struct adapter *padapter, u8 *pdata, u8 len)
3634 {
3635         u8 seq_no;
3636
3637 #define GET_8723B_C2H_TX_RPT_LIFE_TIME_OVER(_Header)    LE_BITS_TO_1BYTE((_Header + 0), 6, 1)
3638 #define GET_8723B_C2H_TX_RPT_RETRY_OVER(_Header)        LE_BITS_TO_1BYTE((_Header + 0), 7, 1)
3639
3640         /* DBG_871X("%s, 0x%x, 0x%x, 0x%x, 0x%x, 0x%x, 0x%x, 0x%x, 0x%x\n", __func__, */
3641         /*              *pdata, *(pdata+1), *(pdata+2), *(pdata+3), *(pdata+4), *(pdata+5), *(pdata+6), *(pdata+7)); */
3642
3643         seq_no = *(pdata+6);
3644
3645         if (GET_8723B_C2H_TX_RPT_RETRY_OVER(pdata) | GET_8723B_C2H_TX_RPT_LIFE_TIME_OVER(pdata)) {
3646                 rtw_ack_tx_done(&padapter->xmitpriv, RTW_SCTX_DONE_CCX_PKT_FAIL);
3647         }
3648 /*
3649         else if (seq_no != padapter->xmitpriv.seq_no) {
3650                 DBG_871X("tx_seq_no =%d, rpt_seq_no =%d\n", padapter->xmitpriv.seq_no, seq_no);
3651                 rtw_ack_tx_done(&padapter->xmitpriv, RTW_SCTX_DONE_CCX_PKT_FAIL);
3652         }
3653 */
3654         else
3655                 rtw_ack_tx_done(&padapter->xmitpriv, RTW_SCTX_DONE_SUCCESS);
3656 }
3657
3658 s32 c2h_id_filter_ccx_8723b(u8 *buf)
3659 {
3660         struct c2h_evt_hdr_88xx *c2h_evt = (struct c2h_evt_hdr_88xx *)buf;
3661         s32 ret = false;
3662         if (c2h_evt->id == C2H_CCX_TX_RPT)
3663                 ret = true;
3664
3665         return ret;
3666 }
3667
3668
3669 s32 c2h_handler_8723b(struct adapter *padapter, u8 *buf)
3670 {
3671         struct c2h_evt_hdr_88xx *pC2hEvent = (struct c2h_evt_hdr_88xx *)buf;
3672         s32 ret = _SUCCESS;
3673         u8 index = 0;
3674
3675         if (pC2hEvent == NULL) {
3676                 DBG_8192C("%s(): pC2hEventis NULL\n", __func__);
3677                 ret = _FAIL;
3678                 goto exit;
3679         }
3680
3681         switch (pC2hEvent->id) {
3682         case C2H_AP_RPT_RSP:
3683                 break;
3684         case C2H_DBG:
3685                 {
3686                         RT_TRACE(_module_hal_init_c_, _drv_info_, ("c2h_handler_8723b: %s\n", pC2hEvent->payload));
3687                 }
3688                 break;
3689
3690         case C2H_CCX_TX_RPT:
3691 /*                      CCX_FwC2HTxRpt(padapter, QueueID, pC2hEvent->payload); */
3692                 break;
3693
3694         case C2H_EXT_RA_RPT:
3695 /*                      C2HExtRaRptHandler(padapter, pC2hEvent->payload, C2hEvent.CmdLen); */
3696                 break;
3697
3698         case C2H_HW_INFO_EXCH:
3699                 RT_TRACE(_module_hal_init_c_, _drv_info_, ("[BT], C2H_HW_INFO_EXCH\n"));
3700                 for (index = 0; index < pC2hEvent->plen; index++) {
3701                         RT_TRACE(_module_hal_init_c_, _drv_info_, ("[BT], tmpBuf[%d]= 0x%x\n", index, pC2hEvent->payload[index]));
3702                 }
3703                 break;
3704
3705         case C2H_8723B_BT_INFO:
3706                 rtw_btcoex_BtInfoNotify(padapter, pC2hEvent->plen, pC2hEvent->payload);
3707                 break;
3708
3709         default:
3710                 break;
3711         }
3712
3713         /*  Clear event to notify FW we have read the command. */
3714         /*  Note: */
3715         /*      If this field isn't clear, the FW won't update the next command message. */
3716 /*      rtw_write8(padapter, REG_C2HEVT_CLEAR, C2H_EVT_HOST_CLOSE); */
3717 exit:
3718         return ret;
3719 }
3720
3721 static void process_c2h_event(struct adapter *padapter, PC2H_EVT_HDR pC2hEvent, u8 *c2hBuf)
3722 {
3723         u8 index = 0;
3724
3725         if (c2hBuf == NULL) {
3726                 DBG_8192C("%s c2hbuff is NULL\n", __func__);
3727                 return;
3728         }
3729
3730         switch (pC2hEvent->CmdID) {
3731         case C2H_AP_RPT_RSP:
3732                 break;
3733         case C2H_DBG:
3734                 {
3735                         RT_TRACE(_module_hal_init_c_, _drv_info_, ("C2HCommandHandler: %s\n", c2hBuf));
3736                 }
3737                 break;
3738
3739         case C2H_CCX_TX_RPT:
3740 /*                      CCX_FwC2HTxRpt(padapter, QueueID, tmpBuf); */
3741                 break;
3742
3743         case C2H_EXT_RA_RPT:
3744 /*                      C2HExtRaRptHandler(padapter, tmpBuf, C2hEvent.CmdLen); */
3745                 break;
3746
3747         case C2H_HW_INFO_EXCH:
3748                 RT_TRACE(_module_hal_init_c_, _drv_info_, ("[BT], C2H_HW_INFO_EXCH\n"));
3749                 for (index = 0; index < pC2hEvent->CmdLen; index++) {
3750                         RT_TRACE(_module_hal_init_c_, _drv_info_, ("[BT], tmpBuf[%d]= 0x%x\n", index, c2hBuf[index]));
3751                 }
3752                 break;
3753
3754         case C2H_8723B_BT_INFO:
3755                 rtw_btcoex_BtInfoNotify(padapter, pC2hEvent->CmdLen, c2hBuf);
3756                 break;
3757
3758         default:
3759                 break;
3760         }
3761 }
3762
3763 void C2HPacketHandler_8723B(struct adapter *padapter, u8 *pbuffer, u16 length)
3764 {
3765         C2H_EVT_HDR     C2hEvent;
3766         u8 *tmpBuf = NULL;
3767 #ifdef CONFIG_WOWLAN
3768         struct pwrctrl_priv *pwrpriv = adapter_to_pwrctl(padapter);
3769
3770         if (pwrpriv->wowlan_mode == true) {
3771                 DBG_871X("%s(): return because wowolan_mode ==true! CMDID =%d\n", __func__, pbuffer[0]);
3772                 return;
3773         }
3774 #endif
3775         C2hEvent.CmdID = pbuffer[0];
3776         C2hEvent.CmdSeq = pbuffer[1];
3777         C2hEvent.CmdLen = length-2;
3778         tmpBuf = pbuffer+2;
3779
3780         /* DBG_871X("%s C2hEvent.CmdID:%x C2hEvent.CmdLen:%x C2hEvent.CmdSeq:%x\n", */
3781         /*              __func__, C2hEvent.CmdID, C2hEvent.CmdLen, C2hEvent.CmdSeq); */
3782         RT_PRINT_DATA(_module_hal_init_c_, _drv_notice_, "C2HPacketHandler_8723B(): Command Content:\n", tmpBuf, C2hEvent.CmdLen);
3783
3784         process_c2h_event(padapter, &C2hEvent, tmpBuf);
3785         /* c2h_handler_8723b(padapter,&C2hEvent); */
3786         return;
3787 }
3788
3789 void SetHwReg8723B(struct adapter *padapter, u8 variable, u8 *val)
3790 {
3791         struct hal_com_data *pHalData = GET_HAL_DATA(padapter);
3792         u8 val8;
3793         u32 val32;
3794
3795         switch (variable) {
3796         case HW_VAR_MEDIA_STATUS:
3797                 val8 = rtw_read8(padapter, MSR) & 0x0c;
3798                 val8 |= *val;
3799                 rtw_write8(padapter, MSR, val8);
3800                 break;
3801
3802         case HW_VAR_MEDIA_STATUS1:
3803                 val8 = rtw_read8(padapter, MSR) & 0x03;
3804                 val8 |= *val << 2;
3805                 rtw_write8(padapter, MSR, val8);
3806                 break;
3807
3808         case HW_VAR_SET_OPMODE:
3809                 hw_var_set_opmode(padapter, variable, val);
3810                 break;
3811
3812         case HW_VAR_MAC_ADDR:
3813                 hw_var_set_macaddr(padapter, variable, val);
3814                 break;
3815
3816         case HW_VAR_BSSID:
3817                 hw_var_set_bssid(padapter, variable, val);
3818                 break;
3819
3820         case HW_VAR_BASIC_RATE:
3821         {
3822                 struct mlme_ext_info *mlmext_info = &padapter->mlmeextpriv.mlmext_info;
3823                 u16 input_b = 0, masked = 0, ioted = 0, BrateCfg = 0;
3824                 u16 rrsr_2g_force_mask = (RRSR_11M|RRSR_5_5M|RRSR_1M);
3825                 u16 rrsr_2g_allow_mask = (RRSR_24M|RRSR_12M|RRSR_6M|RRSR_CCK_RATES);
3826
3827                 HalSetBrateCfg(padapter, val, &BrateCfg);
3828                 input_b = BrateCfg;
3829
3830                 /* apply force and allow mask */
3831                 BrateCfg |= rrsr_2g_force_mask;
3832                 BrateCfg &= rrsr_2g_allow_mask;
3833                 masked = BrateCfg;
3834
3835                 #ifdef CONFIG_CMCC_TEST
3836                 BrateCfg |= (RRSR_11M|RRSR_5_5M|RRSR_1M); /* use 11M to send ACK */
3837                 BrateCfg |= (RRSR_24M|RRSR_18M|RRSR_12M); /* CMCC_OFDM_ACK 12/18/24M */
3838                 #endif
3839
3840                 /* IOT consideration */
3841                 if (mlmext_info->assoc_AP_vendor == HT_IOT_PEER_CISCO) {
3842                         /* if peer is cisco and didn't use ofdm rate, we enable 6M ack */
3843                         if ((BrateCfg & (RRSR_24M|RRSR_12M|RRSR_6M)) == 0)
3844                                 BrateCfg |= RRSR_6M;
3845                 }
3846                 ioted = BrateCfg;
3847
3848                 pHalData->BasicRateSet = BrateCfg;
3849
3850                 DBG_8192C("HW_VAR_BASIC_RATE: %#x -> %#x -> %#x\n", input_b, masked, ioted);
3851
3852                 /*  Set RRSR rate table. */
3853                 rtw_write16(padapter, REG_RRSR, BrateCfg);
3854                 rtw_write8(padapter, REG_RRSR+2, rtw_read8(padapter, REG_RRSR+2)&0xf0);
3855         }
3856                 break;
3857
3858         case HW_VAR_TXPAUSE:
3859                 rtw_write8(padapter, REG_TXPAUSE, *val);
3860                 break;
3861
3862         case HW_VAR_BCN_FUNC:
3863                 hw_var_set_bcn_func(padapter, variable, val);
3864                 break;
3865
3866         case HW_VAR_CORRECT_TSF:
3867                 hw_var_set_correct_tsf(padapter, variable, val);
3868                 break;
3869
3870         case HW_VAR_CHECK_BSSID:
3871                 {
3872                         u32 val32;
3873                         val32 = rtw_read32(padapter, REG_RCR);
3874                         if (*val)
3875                                 val32 |= RCR_CBSSID_DATA|RCR_CBSSID_BCN;
3876                         else
3877                                 val32 &= ~(RCR_CBSSID_DATA|RCR_CBSSID_BCN);
3878                         rtw_write32(padapter, REG_RCR, val32);
3879                 }
3880                 break;
3881
3882         case HW_VAR_MLME_DISCONNECT:
3883                 hw_var_set_mlme_disconnect(padapter, variable, val);
3884                 break;
3885
3886         case HW_VAR_MLME_SITESURVEY:
3887                 hw_var_set_mlme_sitesurvey(padapter, variable,  val);
3888
3889                 rtw_btcoex_ScanNotify(padapter, *val?true:false);
3890                 break;
3891
3892         case HW_VAR_MLME_JOIN:
3893                 hw_var_set_mlme_join(padapter, variable, val);
3894
3895                 switch (*val) {
3896                 case 0:
3897                         /*  prepare to join */
3898                         rtw_btcoex_ConnectNotify(padapter, true);
3899                         break;
3900                 case 1:
3901                         /*  joinbss_event callback when join res < 0 */
3902                         rtw_btcoex_ConnectNotify(padapter, false);
3903                         break;
3904                 case 2:
3905                         /*  sta add event callback */
3906 /*                              rtw_btcoex_MediaStatusNotify(padapter, RT_MEDIA_CONNECT); */
3907                         break;
3908                 }
3909                 break;
3910
3911         case HW_VAR_ON_RCR_AM:
3912                 val32 = rtw_read32(padapter, REG_RCR);
3913                 val32 |= RCR_AM;
3914                 rtw_write32(padapter, REG_RCR, val32);
3915                 DBG_8192C("%s, %d, RCR = %x\n", __func__, __LINE__, rtw_read32(padapter, REG_RCR));
3916                 break;
3917
3918         case HW_VAR_OFF_RCR_AM:
3919                 val32 = rtw_read32(padapter, REG_RCR);
3920                 val32 &= ~RCR_AM;
3921                 rtw_write32(padapter, REG_RCR, val32);
3922                 DBG_8192C("%s, %d, RCR = %x\n", __func__, __LINE__, rtw_read32(padapter, REG_RCR));
3923                 break;
3924
3925         case HW_VAR_BEACON_INTERVAL:
3926                 rtw_write16(padapter, REG_BCN_INTERVAL, *((u16 *)val));
3927                 break;
3928
3929         case HW_VAR_SLOT_TIME:
3930                 rtw_write8(padapter, REG_SLOT, *val);
3931                 break;
3932
3933         case HW_VAR_RESP_SIFS:
3934                 /* SIFS_Timer = 0x0a0a0808; */
3935                 /* RESP_SIFS for CCK */
3936                 rtw_write8(padapter, REG_RESP_SIFS_CCK, val[0]); /*  SIFS_T2T_CCK (0x08) */
3937                 rtw_write8(padapter, REG_RESP_SIFS_CCK+1, val[1]); /* SIFS_R2T_CCK(0x08) */
3938                 /* RESP_SIFS for OFDM */
3939                 rtw_write8(padapter, REG_RESP_SIFS_OFDM, val[2]); /* SIFS_T2T_OFDM (0x0a) */
3940                 rtw_write8(padapter, REG_RESP_SIFS_OFDM+1, val[3]); /* SIFS_R2T_OFDM(0x0a) */
3941                 break;
3942
3943         case HW_VAR_ACK_PREAMBLE:
3944                 {
3945                         u8 regTmp;
3946                         u8 bShortPreamble = *val;
3947
3948                         /*  Joseph marked out for Netgear 3500 TKIP channel 7 issue.(Temporarily) */
3949                         /* regTmp = (pHalData->nCur40MhzPrimeSC)<<5; */
3950                         regTmp = 0;
3951                         if (bShortPreamble)
3952                                 regTmp |= 0x80;
3953                         rtw_write8(padapter, REG_RRSR+2, regTmp);
3954                 }
3955                 break;
3956
3957         case HW_VAR_CAM_EMPTY_ENTRY:
3958                 {
3959                         u8 ucIndex = *val;
3960                         u8 i;
3961                         u32 ulCommand = 0;
3962                         u32 ulContent = 0;
3963                         u32 ulEncAlgo = CAM_AES;
3964
3965                         for (i = 0; i < CAM_CONTENT_COUNT; i++) {
3966                                 /*  filled id in CAM config 2 byte */
3967                                 if (i == 0) {
3968                                         ulContent |= (ucIndex & 0x03) | ((u16)(ulEncAlgo)<<2);
3969                                         /* ulContent |= CAM_VALID; */
3970                                 } else
3971                                         ulContent = 0;
3972
3973                                 /*  polling bit, and No Write enable, and address */
3974                                 ulCommand = CAM_CONTENT_COUNT*ucIndex+i;
3975                                 ulCommand = ulCommand | CAM_POLLINIG | CAM_WRITE;
3976                                 /*  write content 0 is equall to mark invalid */
3977                                 rtw_write32(padapter, WCAMI, ulContent);  /* mdelay(40); */
3978                                 /* RT_TRACE(COMP_SEC, DBG_LOUD, ("CAM_empty_entry(): WRITE A4: %lx\n", ulContent)); */
3979                                 rtw_write32(padapter, RWCAM, ulCommand);  /* mdelay(40); */
3980                                 /* RT_TRACE(COMP_SEC, DBG_LOUD, ("CAM_empty_entry(): WRITE A0: %lx\n", ulCommand)); */
3981                         }
3982                 }
3983                 break;
3984
3985         case HW_VAR_CAM_INVALID_ALL:
3986                 rtw_write32(padapter, RWCAM, BIT(31)|BIT(30));
3987                 break;
3988
3989         case HW_VAR_CAM_WRITE:
3990                 {
3991                         u32 cmd;
3992                         u32 *cam_val = (u32 *)val;
3993
3994                         rtw_write32(padapter, WCAMI, cam_val[0]);
3995
3996                         cmd = CAM_POLLINIG | CAM_WRITE | cam_val[1];
3997                         rtw_write32(padapter, RWCAM, cmd);
3998                 }
3999                 break;
4000
4001         case HW_VAR_AC_PARAM_VO:
4002                 rtw_write32(padapter, REG_EDCA_VO_PARAM, *((u32 *)val));
4003                 break;
4004
4005         case HW_VAR_AC_PARAM_VI:
4006                 rtw_write32(padapter, REG_EDCA_VI_PARAM, *((u32 *)val));
4007                 break;
4008
4009         case HW_VAR_AC_PARAM_BE:
4010                 pHalData->AcParam_BE = ((u32 *)(val))[0];
4011                 rtw_write32(padapter, REG_EDCA_BE_PARAM, *((u32 *)val));
4012                 break;
4013
4014         case HW_VAR_AC_PARAM_BK:
4015                 rtw_write32(padapter, REG_EDCA_BK_PARAM, *((u32 *)val));
4016                 break;
4017
4018         case HW_VAR_ACM_CTRL:
4019                 {
4020                         u8 ctrl = *((u8 *)val);
4021                         u8 hwctrl = 0;
4022
4023                         if (ctrl != 0) {
4024                                 hwctrl |= AcmHw_HwEn;
4025
4026                                 if (ctrl & BIT(1)) /*  BE */
4027                                         hwctrl |= AcmHw_BeqEn;
4028
4029                                 if (ctrl & BIT(2)) /*  VI */
4030                                         hwctrl |= AcmHw_ViqEn;
4031
4032                                 if (ctrl & BIT(3)) /*  VO */
4033                                         hwctrl |= AcmHw_VoqEn;
4034                         }
4035
4036                         DBG_8192C("[HW_VAR_ACM_CTRL] Write 0x%02X\n", hwctrl);
4037                         rtw_write8(padapter, REG_ACMHWCTRL, hwctrl);
4038                 }
4039                 break;
4040
4041         case HW_VAR_AMPDU_FACTOR:
4042                 {
4043                         u32 AMPDULen =  (*((u8 *)val));
4044
4045                         if (AMPDULen < HT_AGG_SIZE_32K)
4046                                 AMPDULen = (0x2000 << (*((u8 *)val)))-1;
4047                         else
4048                                 AMPDULen = 0x7fff;
4049
4050                         rtw_write32(padapter, REG_AMPDU_MAX_LENGTH_8723B, AMPDULen);
4051                 }
4052                 break;
4053
4054         case HW_VAR_H2C_FW_PWRMODE:
4055                 {
4056                         u8 psmode = *val;
4057
4058                         /*  Forece leave RF low power mode for 1T1R to prevent conficting setting in Fw power */
4059                         /*  saving sequence. 2010.06.07. Added by tynli. Suggested by SD3 yschang. */
4060                         if (psmode != PS_MODE_ACTIVE) {
4061                                 ODM_RF_Saving(&pHalData->odmpriv, true);
4062                         }
4063
4064                         /* if (psmode != PS_MODE_ACTIVE)        { */
4065                         /*      rtl8723b_set_lowpwr_lps_cmd(padapter, true); */
4066                         /*  else { */
4067                         /*      rtl8723b_set_lowpwr_lps_cmd(padapter, false); */
4068                         /*  */
4069                         rtl8723b_set_FwPwrMode_cmd(padapter, psmode);
4070                 }
4071                 break;
4072         case HW_VAR_H2C_PS_TUNE_PARAM:
4073                 rtl8723b_set_FwPsTuneParam_cmd(padapter);
4074                 break;
4075
4076         case HW_VAR_H2C_FW_JOINBSSRPT:
4077                 rtl8723b_set_FwJoinBssRpt_cmd(padapter, *val);
4078                 break;
4079
4080         case HW_VAR_INITIAL_GAIN:
4081                 {
4082                         DIG_T *pDigTable = &pHalData->odmpriv.DM_DigTable;
4083                         u32 rx_gain = *(u32 *)val;
4084
4085                         if (rx_gain == 0xff) {/* restore rx gain */
4086                                 ODM_Write_DIG(&pHalData->odmpriv, pDigTable->BackupIGValue);
4087                         } else {
4088                                 pDigTable->BackupIGValue = pDigTable->CurIGValue;
4089                                 ODM_Write_DIG(&pHalData->odmpriv, rx_gain);
4090                         }
4091                 }
4092                 break;
4093
4094         case HW_VAR_EFUSE_USAGE:
4095                 pHalData->EfuseUsedPercentage = *val;
4096                 break;
4097
4098         case HW_VAR_EFUSE_BYTES:
4099                 pHalData->EfuseUsedBytes = *((u16 *)val);
4100                 break;
4101
4102         case HW_VAR_EFUSE_BT_USAGE:
4103 #ifdef HAL_EFUSE_MEMORY
4104                 pHalData->EfuseHal.BTEfuseUsedPercentage = *val;
4105 #endif
4106                 break;
4107
4108         case HW_VAR_EFUSE_BT_BYTES:
4109 #ifdef HAL_EFUSE_MEMORY
4110                 pHalData->EfuseHal.BTEfuseUsedBytes = *((u16 *)val);
4111 #else
4112                 BTEfuseUsedBytes = *((u16 *)val);
4113 #endif
4114                 break;
4115
4116         case HW_VAR_FIFO_CLEARN_UP:
4117                 {
4118                         #define RW_RELEASE_EN           BIT(18)
4119                         #define RXDMA_IDLE                      BIT(17)
4120
4121                         struct pwrctrl_priv *pwrpriv = adapter_to_pwrctl(padapter);
4122                         u8 trycnt = 100;
4123
4124                         /*  pause tx */
4125                         rtw_write8(padapter, REG_TXPAUSE, 0xff);
4126
4127                         /*  keep sn */
4128                         padapter->xmitpriv.nqos_ssn = rtw_read16(padapter, REG_NQOS_SEQ);
4129
4130                         if (pwrpriv->bkeepfwalive != true) {
4131                                 /* RX DMA stop */
4132                                 val32 = rtw_read32(padapter, REG_RXPKT_NUM);
4133                                 val32 |= RW_RELEASE_EN;
4134                                 rtw_write32(padapter, REG_RXPKT_NUM, val32);
4135                                 do {
4136                                         val32 = rtw_read32(padapter, REG_RXPKT_NUM);
4137                                         val32 &= RXDMA_IDLE;
4138                                         if (val32)
4139                                                 break;
4140
4141                                         DBG_871X("%s: [HW_VAR_FIFO_CLEARN_UP] val =%x times:%d\n", __func__, val32, trycnt);
4142                                 } while (--trycnt);
4143
4144                                 if (trycnt == 0) {
4145                                         DBG_8192C("[HW_VAR_FIFO_CLEARN_UP] Stop RX DMA failed......\n");
4146                                 }
4147
4148                                 /*  RQPN Load 0 */
4149                                 rtw_write16(padapter, REG_RQPN_NPQ, 0);
4150                                 rtw_write32(padapter, REG_RQPN, 0x80000000);
4151                                 mdelay(2);
4152                         }
4153                 }
4154                 break;
4155
4156         case HW_VAR_APFM_ON_MAC:
4157                 pHalData->bMacPwrCtrlOn = *val;
4158                 DBG_8192C("%s: bMacPwrCtrlOn =%d\n", __func__, pHalData->bMacPwrCtrlOn);
4159                 break;
4160
4161         case HW_VAR_NAV_UPPER:
4162                 {
4163                         u32 usNavUpper = *((u32 *)val);
4164
4165                         if (usNavUpper > HAL_NAV_UPPER_UNIT_8723B * 0xFF) {
4166                                 RT_TRACE(_module_hal_init_c_, _drv_notice_, ("The setting value (0x%08X us) of NAV_UPPER is larger than (%d * 0xFF)!!!\n", usNavUpper, HAL_NAV_UPPER_UNIT_8723B));
4167                                 break;
4168                         }
4169
4170                         /*  The value of ((usNavUpper + HAL_NAV_UPPER_UNIT_8723B - 1) / HAL_NAV_UPPER_UNIT_8723B) */
4171                         /*  is getting the upper integer. */
4172                         usNavUpper = (usNavUpper + HAL_NAV_UPPER_UNIT_8723B - 1) / HAL_NAV_UPPER_UNIT_8723B;
4173                         rtw_write8(padapter, REG_NAV_UPPER, (u8)usNavUpper);
4174                 }
4175                 break;
4176
4177         case HW_VAR_H2C_MEDIA_STATUS_RPT:
4178                 {
4179                         u16 mstatus_rpt = (*(u16 *)val);
4180                         u8 mstatus, macId;
4181
4182                         mstatus = (u8) (mstatus_rpt & 0xFF);
4183                         macId = (u8)(mstatus_rpt >> 8);
4184                         rtl8723b_set_FwMediaStatusRpt_cmd(padapter, mstatus, macId);
4185                 }
4186                 break;
4187         case HW_VAR_BCN_VALID:
4188                 {
4189                         /*  BCN_VALID, BIT16 of REG_TDECTRL = BIT0 of REG_TDECTRL+2, write 1 to clear, Clear by sw */
4190                         val8 = rtw_read8(padapter, REG_TDECTRL+2);
4191                         val8 |= BIT(0);
4192                         rtw_write8(padapter, REG_TDECTRL+2, val8);
4193                 }
4194                 break;
4195
4196         case HW_VAR_DL_BCN_SEL:
4197                 {
4198                         /*  SW_BCN_SEL - Port0 */
4199                         val8 = rtw_read8(padapter, REG_DWBCN1_CTRL_8723B+2);
4200                         val8 &= ~BIT(4);
4201                         rtw_write8(padapter, REG_DWBCN1_CTRL_8723B+2, val8);
4202                 }
4203                 break;
4204
4205         case HW_VAR_DO_IQK:
4206                 pHalData->bNeedIQK = true;
4207                 break;
4208
4209         case HW_VAR_DL_RSVD_PAGE:
4210                 if (check_fwstate(&padapter->mlmepriv, WIFI_AP_STATE) == true)
4211                         rtl8723b_download_BTCoex_AP_mode_rsvd_page(padapter);
4212                 else
4213                         rtl8723b_download_rsvd_page(padapter, RT_MEDIA_CONNECT);
4214                 break;
4215
4216         case HW_VAR_MACID_SLEEP:
4217                 /*  Input is MACID */
4218                 val32 = *(u32 *)val;
4219                 if (val32 > 31) {
4220                         DBG_8192C(FUNC_ADPT_FMT ": [HW_VAR_MACID_SLEEP] Invalid macid(%d)\n",
4221                                 FUNC_ADPT_ARG(padapter), val32);
4222                         break;
4223                 }
4224                 val8 = (u8)val32; /*  macid is between 0~31 */
4225
4226                 val32 = rtw_read32(padapter, REG_MACID_SLEEP);
4227                 DBG_8192C(FUNC_ADPT_FMT ": [HW_VAR_MACID_SLEEP] macid =%d, org MACID_SLEEP = 0x%08X\n",
4228                         FUNC_ADPT_ARG(padapter), val8, val32);
4229                 if (val32 & BIT(val8))
4230                         break;
4231                 val32 |= BIT(val8);
4232                 rtw_write32(padapter, REG_MACID_SLEEP, val32);
4233                 break;
4234
4235         case HW_VAR_MACID_WAKEUP:
4236                 /*  Input is MACID */
4237                 val32 = *(u32 *)val;
4238                 if (val32 > 31) {
4239                         DBG_8192C(FUNC_ADPT_FMT ": [HW_VAR_MACID_WAKEUP] Invalid macid(%d)\n",
4240                                 FUNC_ADPT_ARG(padapter), val32);
4241                         break;
4242                 }
4243                 val8 = (u8)val32; /*  macid is between 0~31 */
4244
4245                 val32 = rtw_read32(padapter, REG_MACID_SLEEP);
4246                 DBG_8192C(FUNC_ADPT_FMT ": [HW_VAR_MACID_WAKEUP] macid =%d, org MACID_SLEEP = 0x%08X\n",
4247                         FUNC_ADPT_ARG(padapter), val8, val32);
4248                 if (!(val32 & BIT(val8)))
4249                         break;
4250                 val32 &= ~BIT(val8);
4251                 rtw_write32(padapter, REG_MACID_SLEEP, val32);
4252                 break;
4253
4254         default:
4255                 SetHwReg(padapter, variable, val);
4256                 break;
4257         }
4258 }
4259
4260 void GetHwReg8723B(struct adapter *padapter, u8 variable, u8 *val)
4261 {
4262         struct hal_com_data *pHalData = GET_HAL_DATA(padapter);
4263         u8 val8;
4264         u16 val16;
4265
4266         switch (variable) {
4267         case HW_VAR_TXPAUSE:
4268                 *val = rtw_read8(padapter, REG_TXPAUSE);
4269                 break;
4270
4271         case HW_VAR_BCN_VALID:
4272                 {
4273                         /*  BCN_VALID, BIT16 of REG_TDECTRL = BIT0 of REG_TDECTRL+2 */
4274                         val8 = rtw_read8(padapter, REG_TDECTRL+2);
4275                         *val = (BIT(0) & val8) ? true : false;
4276                 }
4277                 break;
4278
4279         case HW_VAR_FWLPS_RF_ON:
4280                 {
4281                         /*  When we halt NIC, we should check if FW LPS is leave. */
4282                         u32 valRCR;
4283
4284                         if (
4285                                 (padapter->bSurpriseRemoved == true) ||
4286                                 (adapter_to_pwrctl(padapter)->rf_pwrstate == rf_off)
4287                         ) {
4288                                 /*  If it is in HW/SW Radio OFF or IPS state, we do not check Fw LPS Leave, */
4289                                 /*  because Fw is unload. */
4290                                 *val = true;
4291                         } else {
4292                                 valRCR = rtw_read32(padapter, REG_RCR);
4293                                 valRCR &= 0x00070000;
4294                                 if (valRCR)
4295                                         *val = false;
4296                                 else
4297                                         *val = true;
4298                         }
4299                 }
4300                 break;
4301
4302         case HW_VAR_EFUSE_USAGE:
4303                 *val = pHalData->EfuseUsedPercentage;
4304                 break;
4305
4306         case HW_VAR_EFUSE_BYTES:
4307                 *((u16 *)val) = pHalData->EfuseUsedBytes;
4308                 break;
4309
4310         case HW_VAR_EFUSE_BT_USAGE:
4311 #ifdef HAL_EFUSE_MEMORY
4312                 *val = pHalData->EfuseHal.BTEfuseUsedPercentage;
4313 #endif
4314                 break;
4315
4316         case HW_VAR_EFUSE_BT_BYTES:
4317 #ifdef HAL_EFUSE_MEMORY
4318                 *((u16 *)val) = pHalData->EfuseHal.BTEfuseUsedBytes;
4319 #else
4320                 *((u16 *)val) = BTEfuseUsedBytes;
4321 #endif
4322                 break;
4323
4324         case HW_VAR_APFM_ON_MAC:
4325                 *val = pHalData->bMacPwrCtrlOn;
4326                 break;
4327         case HW_VAR_CHK_HI_QUEUE_EMPTY:
4328                 val16 = rtw_read16(padapter, REG_TXPKT_EMPTY);
4329                 *val = (val16 & BIT(10)) ? true:false;
4330                 break;
4331 #ifdef CONFIG_WOWLAN
4332         case HW_VAR_RPWM_TOG:
4333                 *val = rtw_read8(padapter, SDIO_LOCAL_BASE|SDIO_REG_HRPWM1) & BIT7;
4334                 break;
4335         case HW_VAR_WAKEUP_REASON:
4336                 *val = rtw_read8(padapter, REG_WOWLAN_WAKE_REASON);
4337                 if (*val == 0xEA)
4338                         *val = 0;
4339                 break;
4340         case HW_VAR_SYS_CLKR:
4341                 *val = rtw_read8(padapter, REG_SYS_CLKR);
4342                 break;
4343 #endif
4344         default:
4345                 GetHwReg(padapter, variable, val);
4346                 break;
4347         }
4348 }
4349
4350 /*
4351  *Description:
4352  *      Change default setting of specified variable.
4353  */
4354 u8 SetHalDefVar8723B(struct adapter *padapter, enum HAL_DEF_VARIABLE variable, void *pval)
4355 {
4356         struct hal_com_data *pHalData;
4357         u8 bResult;
4358
4359
4360         pHalData = GET_HAL_DATA(padapter);
4361         bResult = _SUCCESS;
4362
4363         switch (variable) {
4364         default:
4365                 bResult = SetHalDefVar(padapter, variable, pval);
4366                 break;
4367         }
4368
4369         return bResult;
4370 }
4371
4372 /*
4373  *Description:
4374  *      Query setting of specified variable.
4375  */
4376 u8 GetHalDefVar8723B(struct adapter *padapter, enum HAL_DEF_VARIABLE variable, void *pval)
4377 {
4378         struct hal_com_data *pHalData;
4379         u8 bResult;
4380
4381
4382         pHalData = GET_HAL_DATA(padapter);
4383         bResult = _SUCCESS;
4384
4385         switch (variable) {
4386         case HAL_DEF_MAX_RECVBUF_SZ:
4387                 *((u32 *)pval) = MAX_RECVBUF_SZ;
4388                 break;
4389
4390         case HAL_DEF_RX_PACKET_OFFSET:
4391                 *((u32 *)pval) = RXDESC_SIZE + DRVINFO_SZ*8;
4392                 break;
4393
4394         case HW_VAR_MAX_RX_AMPDU_FACTOR:
4395                 /*  Stanley@BB.SD3 suggests 16K can get stable performance */
4396                 /*  The experiment was done on SDIO interface */
4397                 /*  coding by Lucas@20130730 */
4398                 *(u32 *)pval = MAX_AMPDU_FACTOR_16K;
4399                 break;
4400         case HAL_DEF_TX_LDPC:
4401         case HAL_DEF_RX_LDPC:
4402                 *((u8 *)pval) = false;
4403                 break;
4404         case HAL_DEF_TX_STBC:
4405                 *((u8 *)pval) = 0;
4406                 break;
4407         case HAL_DEF_RX_STBC:
4408                 *((u8 *)pval) = 1;
4409                 break;
4410         case HAL_DEF_EXPLICIT_BEAMFORMER:
4411         case HAL_DEF_EXPLICIT_BEAMFORMEE:
4412                 *((u8 *)pval) = false;
4413                 break;
4414
4415         case HW_DEF_RA_INFO_DUMP:
4416                 {
4417                         u8 mac_id = *(u8 *)pval;
4418                         u32 cmd;
4419                         u32 ra_info1, ra_info2;
4420                         u32 rate_mask1, rate_mask2;
4421                         u8 curr_tx_rate, curr_tx_sgi, hight_rate, lowest_rate;
4422
4423                         DBG_8192C("============ RA status check  Mac_id:%d ===================\n", mac_id);
4424
4425                         cmd = 0x40000100 | mac_id;
4426                         rtw_write32(padapter, REG_HMEBOX_DBG_2_8723B, cmd);
4427                         msleep(10);
4428                         ra_info1 = rtw_read32(padapter, 0x2F0);
4429                         curr_tx_rate = ra_info1&0x7F;
4430                         curr_tx_sgi = (ra_info1>>7)&0x01;
4431                         DBG_8192C("[ ra_info1:0x%08x ] =>cur_tx_rate = %s, cur_sgi:%d, PWRSTS = 0x%02x \n",
4432                                 ra_info1,
4433                                 HDATA_RATE(curr_tx_rate),
4434                                 curr_tx_sgi,
4435                                 (ra_info1>>8)  & 0x07);
4436
4437                         cmd = 0x40000400 | mac_id;
4438                         rtw_write32(padapter, REG_HMEBOX_DBG_2_8723B, cmd);
4439                         msleep(10);
4440                         ra_info1 = rtw_read32(padapter, 0x2F0);
4441                         ra_info2 = rtw_read32(padapter, 0x2F4);
4442                         rate_mask1 = rtw_read32(padapter, 0x2F8);
4443                         rate_mask2 = rtw_read32(padapter, 0x2FC);
4444                         hight_rate = ra_info2&0xFF;
4445                         lowest_rate = (ra_info2>>8)  & 0xFF;
4446
4447                         DBG_8192C("[ ra_info1:0x%08x ] =>RSSI =%d, BW_setting = 0x%02x, DISRA = 0x%02x, VHT_EN = 0x%02x\n",
4448                                 ra_info1,
4449                                 ra_info1&0xFF,
4450                                 (ra_info1>>8)  & 0xFF,
4451                                 (ra_info1>>16) & 0xFF,
4452                                 (ra_info1>>24) & 0xFF);
4453
4454                         DBG_8192C("[ ra_info2:0x%08x ] =>hight_rate =%s, lowest_rate =%s, SGI = 0x%02x, RateID =%d\n",
4455                                 ra_info2,
4456                                 HDATA_RATE(hight_rate),
4457                                 HDATA_RATE(lowest_rate),
4458                                 (ra_info2>>16) & 0xFF,
4459                                 (ra_info2>>24) & 0xFF);
4460
4461                         DBG_8192C("rate_mask2 = 0x%08x, rate_mask1 = 0x%08x\n", rate_mask2, rate_mask1);
4462
4463                 }
4464                 break;
4465
4466         case HAL_DEF_TX_PAGE_BOUNDARY:
4467                 if (!padapter->registrypriv.wifi_spec) {
4468                         *(u8 *)pval = TX_PAGE_BOUNDARY_8723B;
4469                 } else {
4470                         *(u8 *)pval = WMM_NORMAL_TX_PAGE_BOUNDARY_8723B;
4471                 }
4472                 break;
4473
4474         case HAL_DEF_MACID_SLEEP:
4475                 *(u8 *)pval = true; /*  support macid sleep */
4476                 break;
4477
4478         default:
4479                 bResult = GetHalDefVar(padapter, variable, pval);
4480                 break;
4481         }
4482
4483         return bResult;
4484 }
4485
4486 #ifdef CONFIG_WOWLAN
4487 void Hal_DetectWoWMode(struct adapter *padapter)
4488 {
4489         adapter_to_pwrctl(padapter)->bSupportRemoteWakeup = true;
4490         DBG_871X("%s\n", __func__);
4491 }
4492 #endif /* CONFIG_WOWLAN */
4493
4494 void rtl8723b_start_thread(struct adapter *padapter)
4495 {
4496 #ifndef CONFIG_SDIO_TX_TASKLET
4497         struct xmit_priv *xmitpriv = &padapter->xmitpriv;
4498
4499         xmitpriv->SdioXmitThread = kthread_run(rtl8723bs_xmit_thread, padapter, "RTWHALXT");
4500         if (IS_ERR(xmitpriv->SdioXmitThread)) {
4501                 RT_TRACE(_module_hal_xmit_c_, _drv_err_, ("%s: start rtl8723bs_xmit_thread FAIL!!\n", __func__));
4502         }
4503 #endif
4504 }
4505
4506 void rtl8723b_stop_thread(struct adapter *padapter)
4507 {
4508 #ifndef CONFIG_SDIO_TX_TASKLET
4509         struct xmit_priv *xmitpriv = &padapter->xmitpriv;
4510
4511         /*  stop xmit_buf_thread */
4512         if (xmitpriv->SdioXmitThread) {
4513                 up(&xmitpriv->SdioXmitSema);
4514                 down(&xmitpriv->SdioXmitTerminateSema);
4515                 xmitpriv->SdioXmitThread = NULL;
4516         }
4517 #endif
4518 }
4519
4520 #if defined(CONFIG_CHECK_BT_HANG)
4521 extern void check_bt_status_work(void *data);
4522 void rtl8723bs_init_checkbthang_workqueue(struct adapter *adapter)
4523 {
4524         adapter->priv_checkbt_wq = alloc_workqueue("sdio_wq", 0, 0);
4525         INIT_DELAYED_WORK(&adapter->checkbt_work, (void *)check_bt_status_work);
4526 }
4527
4528 void rtl8723bs_free_checkbthang_workqueue(struct adapter *adapter)
4529 {
4530         if (adapter->priv_checkbt_wq) {
4531                 cancel_delayed_work_sync(&adapter->checkbt_work);
4532                 flush_workqueue(adapter->priv_checkbt_wq);
4533                 destroy_workqueue(adapter->priv_checkbt_wq);
4534                 adapter->priv_checkbt_wq = NULL;
4535         }
4536 }
4537
4538 void rtl8723bs_cancle_checkbthang_workqueue(struct adapter *adapter)
4539 {
4540         if (adapter->priv_checkbt_wq)
4541                 cancel_delayed_work_sync(&adapter->checkbt_work);
4542 }
4543
4544 void rtl8723bs_hal_check_bt_hang(struct adapter *adapter)
4545 {
4546         if (adapter->priv_checkbt_wq)
4547                 queue_delayed_work(adapter->priv_checkbt_wq, &(adapter->checkbt_work), 0);
4548 }
4549 #endif