Linux-libre 4.4.228-gnu
[librecmc/linux-libre.git] / drivers / spi / spi-tegra114.c
1 /*
2  * SPI driver for NVIDIA's Tegra114 SPI Controller.
3  *
4  * Copyright (c) 2013, NVIDIA CORPORATION.  All rights reserved.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms and conditions of the GNU General Public License,
8  * version 2, as published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
17  */
18
19 #include <linux/clk.h>
20 #include <linux/completion.h>
21 #include <linux/delay.h>
22 #include <linux/dmaengine.h>
23 #include <linux/dma-mapping.h>
24 #include <linux/dmapool.h>
25 #include <linux/err.h>
26 #include <linux/interrupt.h>
27 #include <linux/io.h>
28 #include <linux/kernel.h>
29 #include <linux/kthread.h>
30 #include <linux/module.h>
31 #include <linux/platform_device.h>
32 #include <linux/pm_runtime.h>
33 #include <linux/of.h>
34 #include <linux/of_device.h>
35 #include <linux/reset.h>
36 #include <linux/spi/spi.h>
37
38 #define SPI_COMMAND1                            0x000
39 #define SPI_BIT_LENGTH(x)                       (((x) & 0x1f) << 0)
40 #define SPI_PACKED                              (1 << 5)
41 #define SPI_TX_EN                               (1 << 11)
42 #define SPI_RX_EN                               (1 << 12)
43 #define SPI_BOTH_EN_BYTE                        (1 << 13)
44 #define SPI_BOTH_EN_BIT                         (1 << 14)
45 #define SPI_LSBYTE_FE                           (1 << 15)
46 #define SPI_LSBIT_FE                            (1 << 16)
47 #define SPI_BIDIROE                             (1 << 17)
48 #define SPI_IDLE_SDA_DRIVE_LOW                  (0 << 18)
49 #define SPI_IDLE_SDA_DRIVE_HIGH                 (1 << 18)
50 #define SPI_IDLE_SDA_PULL_LOW                   (2 << 18)
51 #define SPI_IDLE_SDA_PULL_HIGH                  (3 << 18)
52 #define SPI_IDLE_SDA_MASK                       (3 << 18)
53 #define SPI_CS_SS_VAL                           (1 << 20)
54 #define SPI_CS_SW_HW                            (1 << 21)
55 /* SPI_CS_POL_INACTIVE bits are default high */
56                                                 /* n from 0 to 3 */
57 #define SPI_CS_POL_INACTIVE(n)                  (1 << (22 + (n)))
58 #define SPI_CS_POL_INACTIVE_MASK                (0xF << 22)
59
60 #define SPI_CS_SEL_0                            (0 << 26)
61 #define SPI_CS_SEL_1                            (1 << 26)
62 #define SPI_CS_SEL_2                            (2 << 26)
63 #define SPI_CS_SEL_3                            (3 << 26)
64 #define SPI_CS_SEL_MASK                         (3 << 26)
65 #define SPI_CS_SEL(x)                           (((x) & 0x3) << 26)
66 #define SPI_CONTROL_MODE_0                      (0 << 28)
67 #define SPI_CONTROL_MODE_1                      (1 << 28)
68 #define SPI_CONTROL_MODE_2                      (2 << 28)
69 #define SPI_CONTROL_MODE_3                      (3 << 28)
70 #define SPI_CONTROL_MODE_MASK                   (3 << 28)
71 #define SPI_MODE_SEL(x)                         (((x) & 0x3) << 28)
72 #define SPI_M_S                                 (1 << 30)
73 #define SPI_PIO                                 (1 << 31)
74
75 #define SPI_COMMAND2                            0x004
76 #define SPI_TX_TAP_DELAY(x)                     (((x) & 0x3F) << 6)
77 #define SPI_RX_TAP_DELAY(x)                     (((x) & 0x3F) << 0)
78
79 #define SPI_CS_TIMING1                          0x008
80 #define SPI_SETUP_HOLD(setup, hold)             (((setup) << 4) | (hold))
81 #define SPI_CS_SETUP_HOLD(reg, cs, val)                 \
82                 ((((val) & 0xFFu) << ((cs) * 8)) |      \
83                 ((reg) & ~(0xFFu << ((cs) * 8))))
84
85 #define SPI_CS_TIMING2                          0x00C
86 #define CYCLES_BETWEEN_PACKETS_0(x)             (((x) & 0x1F) << 0)
87 #define CS_ACTIVE_BETWEEN_PACKETS_0             (1 << 5)
88 #define CYCLES_BETWEEN_PACKETS_1(x)             (((x) & 0x1F) << 8)
89 #define CS_ACTIVE_BETWEEN_PACKETS_1             (1 << 13)
90 #define CYCLES_BETWEEN_PACKETS_2(x)             (((x) & 0x1F) << 16)
91 #define CS_ACTIVE_BETWEEN_PACKETS_2             (1 << 21)
92 #define CYCLES_BETWEEN_PACKETS_3(x)             (((x) & 0x1F) << 24)
93 #define CS_ACTIVE_BETWEEN_PACKETS_3             (1 << 29)
94 #define SPI_SET_CS_ACTIVE_BETWEEN_PACKETS(reg, cs, val)         \
95                 (reg = (((val) & 0x1) << ((cs) * 8 + 5)) |      \
96                         ((reg) & ~(1 << ((cs) * 8 + 5))))
97 #define SPI_SET_CYCLES_BETWEEN_PACKETS(reg, cs, val)            \
98                 (reg = (((val) & 0xF) << ((cs) * 8)) |          \
99                         ((reg) & ~(0xF << ((cs) * 8))))
100
101 #define SPI_TRANS_STATUS                        0x010
102 #define SPI_BLK_CNT(val)                        (((val) >> 0) & 0xFFFF)
103 #define SPI_SLV_IDLE_COUNT(val)                 (((val) >> 16) & 0xFF)
104 #define SPI_RDY                                 (1 << 30)
105
106 #define SPI_FIFO_STATUS                         0x014
107 #define SPI_RX_FIFO_EMPTY                       (1 << 0)
108 #define SPI_RX_FIFO_FULL                        (1 << 1)
109 #define SPI_TX_FIFO_EMPTY                       (1 << 2)
110 #define SPI_TX_FIFO_FULL                        (1 << 3)
111 #define SPI_RX_FIFO_UNF                         (1 << 4)
112 #define SPI_RX_FIFO_OVF                         (1 << 5)
113 #define SPI_TX_FIFO_UNF                         (1 << 6)
114 #define SPI_TX_FIFO_OVF                         (1 << 7)
115 #define SPI_ERR                                 (1 << 8)
116 #define SPI_TX_FIFO_FLUSH                       (1 << 14)
117 #define SPI_RX_FIFO_FLUSH                       (1 << 15)
118 #define SPI_TX_FIFO_EMPTY_COUNT(val)            (((val) >> 16) & 0x7F)
119 #define SPI_RX_FIFO_FULL_COUNT(val)             (((val) >> 23) & 0x7F)
120 #define SPI_FRAME_END                           (1 << 30)
121 #define SPI_CS_INACTIVE                         (1 << 31)
122
123 #define SPI_FIFO_ERROR                          (SPI_RX_FIFO_UNF | \
124                         SPI_RX_FIFO_OVF | SPI_TX_FIFO_UNF | SPI_TX_FIFO_OVF)
125 #define SPI_FIFO_EMPTY                  (SPI_RX_FIFO_EMPTY | SPI_TX_FIFO_EMPTY)
126
127 #define SPI_TX_DATA                             0x018
128 #define SPI_RX_DATA                             0x01C
129
130 #define SPI_DMA_CTL                             0x020
131 #define SPI_TX_TRIG_1                           (0 << 15)
132 #define SPI_TX_TRIG_4                           (1 << 15)
133 #define SPI_TX_TRIG_8                           (2 << 15)
134 #define SPI_TX_TRIG_16                          (3 << 15)
135 #define SPI_TX_TRIG_MASK                        (3 << 15)
136 #define SPI_RX_TRIG_1                           (0 << 19)
137 #define SPI_RX_TRIG_4                           (1 << 19)
138 #define SPI_RX_TRIG_8                           (2 << 19)
139 #define SPI_RX_TRIG_16                          (3 << 19)
140 #define SPI_RX_TRIG_MASK                        (3 << 19)
141 #define SPI_IE_TX                               (1 << 28)
142 #define SPI_IE_RX                               (1 << 29)
143 #define SPI_CONT                                (1 << 30)
144 #define SPI_DMA                                 (1 << 31)
145 #define SPI_DMA_EN                              SPI_DMA
146
147 #define SPI_DMA_BLK                             0x024
148 #define SPI_DMA_BLK_SET(x)                      (((x) & 0xFFFF) << 0)
149
150 #define SPI_TX_FIFO                             0x108
151 #define SPI_RX_FIFO                             0x188
152 #define MAX_CHIP_SELECT                         4
153 #define SPI_FIFO_DEPTH                          64
154 #define DATA_DIR_TX                             (1 << 0)
155 #define DATA_DIR_RX                             (1 << 1)
156
157 #define SPI_DMA_TIMEOUT                         (msecs_to_jiffies(1000))
158 #define DEFAULT_SPI_DMA_BUF_LEN                 (16*1024)
159 #define TX_FIFO_EMPTY_COUNT_MAX                 SPI_TX_FIFO_EMPTY_COUNT(0x40)
160 #define RX_FIFO_FULL_COUNT_ZERO                 SPI_RX_FIFO_FULL_COUNT(0)
161 #define MAX_HOLD_CYCLES                         16
162 #define SPI_DEFAULT_SPEED                       25000000
163
164 struct tegra_spi_data {
165         struct device                           *dev;
166         struct spi_master                       *master;
167         spinlock_t                              lock;
168
169         struct clk                              *clk;
170         struct reset_control                    *rst;
171         void __iomem                            *base;
172         phys_addr_t                             phys;
173         unsigned                                irq;
174         u32                                     cur_speed;
175
176         struct spi_device                       *cur_spi;
177         struct spi_device                       *cs_control;
178         unsigned                                cur_pos;
179         unsigned                                words_per_32bit;
180         unsigned                                bytes_per_word;
181         unsigned                                curr_dma_words;
182         unsigned                                cur_direction;
183
184         unsigned                                cur_rx_pos;
185         unsigned                                cur_tx_pos;
186
187         unsigned                                dma_buf_size;
188         unsigned                                max_buf_size;
189         bool                                    is_curr_dma_xfer;
190
191         struct completion                       rx_dma_complete;
192         struct completion                       tx_dma_complete;
193
194         u32                                     tx_status;
195         u32                                     rx_status;
196         u32                                     status_reg;
197         bool                                    is_packed;
198
199         u32                                     command1_reg;
200         u32                                     dma_control_reg;
201         u32                                     def_command1_reg;
202
203         struct completion                       xfer_completion;
204         struct spi_transfer                     *curr_xfer;
205         struct dma_chan                         *rx_dma_chan;
206         u32                                     *rx_dma_buf;
207         dma_addr_t                              rx_dma_phys;
208         struct dma_async_tx_descriptor          *rx_dma_desc;
209
210         struct dma_chan                         *tx_dma_chan;
211         u32                                     *tx_dma_buf;
212         dma_addr_t                              tx_dma_phys;
213         struct dma_async_tx_descriptor          *tx_dma_desc;
214 };
215
216 static int tegra_spi_runtime_suspend(struct device *dev);
217 static int tegra_spi_runtime_resume(struct device *dev);
218
219 static inline u32 tegra_spi_readl(struct tegra_spi_data *tspi,
220                 unsigned long reg)
221 {
222         return readl(tspi->base + reg);
223 }
224
225 static inline void tegra_spi_writel(struct tegra_spi_data *tspi,
226                 u32 val, unsigned long reg)
227 {
228         writel(val, tspi->base + reg);
229
230         /* Read back register to make sure that register writes completed */
231         if (reg != SPI_TX_FIFO)
232                 readl(tspi->base + SPI_COMMAND1);
233 }
234
235 static void tegra_spi_clear_status(struct tegra_spi_data *tspi)
236 {
237         u32 val;
238
239         /* Write 1 to clear status register */
240         val = tegra_spi_readl(tspi, SPI_TRANS_STATUS);
241         tegra_spi_writel(tspi, val, SPI_TRANS_STATUS);
242
243         /* Clear fifo status error if any */
244         val = tegra_spi_readl(tspi, SPI_FIFO_STATUS);
245         if (val & SPI_ERR)
246                 tegra_spi_writel(tspi, SPI_ERR | SPI_FIFO_ERROR,
247                                 SPI_FIFO_STATUS);
248 }
249
250 static unsigned tegra_spi_calculate_curr_xfer_param(
251         struct spi_device *spi, struct tegra_spi_data *tspi,
252         struct spi_transfer *t)
253 {
254         unsigned remain_len = t->len - tspi->cur_pos;
255         unsigned max_word;
256         unsigned bits_per_word = t->bits_per_word;
257         unsigned max_len;
258         unsigned total_fifo_words;
259
260         tspi->bytes_per_word = DIV_ROUND_UP(bits_per_word, 8);
261
262         if (bits_per_word == 8 || bits_per_word == 16) {
263                 tspi->is_packed = 1;
264                 tspi->words_per_32bit = 32/bits_per_word;
265         } else {
266                 tspi->is_packed = 0;
267                 tspi->words_per_32bit = 1;
268         }
269
270         if (tspi->is_packed) {
271                 max_len = min(remain_len, tspi->max_buf_size);
272                 tspi->curr_dma_words = max_len/tspi->bytes_per_word;
273                 total_fifo_words = (max_len + 3) / 4;
274         } else {
275                 max_word = (remain_len - 1) / tspi->bytes_per_word + 1;
276                 max_word = min(max_word, tspi->max_buf_size/4);
277                 tspi->curr_dma_words = max_word;
278                 total_fifo_words = max_word;
279         }
280         return total_fifo_words;
281 }
282
283 static unsigned tegra_spi_fill_tx_fifo_from_client_txbuf(
284         struct tegra_spi_data *tspi, struct spi_transfer *t)
285 {
286         unsigned nbytes;
287         unsigned tx_empty_count;
288         u32 fifo_status;
289         unsigned max_n_32bit;
290         unsigned i, count;
291         unsigned int written_words;
292         unsigned fifo_words_left;
293         u8 *tx_buf = (u8 *)t->tx_buf + tspi->cur_tx_pos;
294
295         fifo_status = tegra_spi_readl(tspi, SPI_FIFO_STATUS);
296         tx_empty_count = SPI_TX_FIFO_EMPTY_COUNT(fifo_status);
297
298         if (tspi->is_packed) {
299                 fifo_words_left = tx_empty_count * tspi->words_per_32bit;
300                 written_words = min(fifo_words_left, tspi->curr_dma_words);
301                 nbytes = written_words * tspi->bytes_per_word;
302                 max_n_32bit = DIV_ROUND_UP(nbytes, 4);
303                 for (count = 0; count < max_n_32bit; count++) {
304                         u32 x = 0;
305
306                         for (i = 0; (i < 4) && nbytes; i++, nbytes--)
307                                 x |= (u32)(*tx_buf++) << (i * 8);
308                         tegra_spi_writel(tspi, x, SPI_TX_FIFO);
309                 }
310
311                 tspi->cur_tx_pos += written_words * tspi->bytes_per_word;
312         } else {
313                 unsigned int write_bytes;
314                 max_n_32bit = min(tspi->curr_dma_words,  tx_empty_count);
315                 written_words = max_n_32bit;
316                 nbytes = written_words * tspi->bytes_per_word;
317                 if (nbytes > t->len - tspi->cur_pos)
318                         nbytes = t->len - tspi->cur_pos;
319                 write_bytes = nbytes;
320                 for (count = 0; count < max_n_32bit; count++) {
321                         u32 x = 0;
322
323                         for (i = 0; nbytes && (i < tspi->bytes_per_word);
324                                                         i++, nbytes--)
325                                 x |= (u32)(*tx_buf++) << (i * 8);
326                         tegra_spi_writel(tspi, x, SPI_TX_FIFO);
327                 }
328
329                 tspi->cur_tx_pos += write_bytes;
330         }
331
332         return written_words;
333 }
334
335 static unsigned int tegra_spi_read_rx_fifo_to_client_rxbuf(
336                 struct tegra_spi_data *tspi, struct spi_transfer *t)
337 {
338         unsigned rx_full_count;
339         u32 fifo_status;
340         unsigned i, count;
341         unsigned int read_words = 0;
342         unsigned len;
343         u8 *rx_buf = (u8 *)t->rx_buf + tspi->cur_rx_pos;
344
345         fifo_status = tegra_spi_readl(tspi, SPI_FIFO_STATUS);
346         rx_full_count = SPI_RX_FIFO_FULL_COUNT(fifo_status);
347         if (tspi->is_packed) {
348                 len = tspi->curr_dma_words * tspi->bytes_per_word;
349                 for (count = 0; count < rx_full_count; count++) {
350                         u32 x = tegra_spi_readl(tspi, SPI_RX_FIFO);
351
352                         for (i = 0; len && (i < 4); i++, len--)
353                                 *rx_buf++ = (x >> i*8) & 0xFF;
354                 }
355                 read_words += tspi->curr_dma_words;
356                 tspi->cur_rx_pos += tspi->curr_dma_words * tspi->bytes_per_word;
357         } else {
358                 u32 rx_mask = ((u32)1 << t->bits_per_word) - 1;
359                 u8 bytes_per_word = tspi->bytes_per_word;
360                 unsigned int read_bytes;
361
362                 len = rx_full_count * bytes_per_word;
363                 if (len > t->len - tspi->cur_pos)
364                         len = t->len - tspi->cur_pos;
365                 read_bytes = len;
366                 for (count = 0; count < rx_full_count; count++) {
367                         u32 x = tegra_spi_readl(tspi, SPI_RX_FIFO) & rx_mask;
368
369                         for (i = 0; len && (i < bytes_per_word); i++, len--)
370                                 *rx_buf++ = (x >> (i*8)) & 0xFF;
371                 }
372                 read_words += rx_full_count;
373                 tspi->cur_rx_pos += read_bytes;
374         }
375
376         return read_words;
377 }
378
379 static void tegra_spi_copy_client_txbuf_to_spi_txbuf(
380                 struct tegra_spi_data *tspi, struct spi_transfer *t)
381 {
382         /* Make the dma buffer to read by cpu */
383         dma_sync_single_for_cpu(tspi->dev, tspi->tx_dma_phys,
384                                 tspi->dma_buf_size, DMA_TO_DEVICE);
385
386         if (tspi->is_packed) {
387                 unsigned len = tspi->curr_dma_words * tspi->bytes_per_word;
388
389                 memcpy(tspi->tx_dma_buf, t->tx_buf + tspi->cur_pos, len);
390                 tspi->cur_tx_pos += tspi->curr_dma_words * tspi->bytes_per_word;
391         } else {
392                 unsigned int i;
393                 unsigned int count;
394                 u8 *tx_buf = (u8 *)t->tx_buf + tspi->cur_tx_pos;
395                 unsigned consume = tspi->curr_dma_words * tspi->bytes_per_word;
396                 unsigned int write_bytes;
397
398                 if (consume > t->len - tspi->cur_pos)
399                         consume = t->len - tspi->cur_pos;
400                 write_bytes = consume;
401                 for (count = 0; count < tspi->curr_dma_words; count++) {
402                         u32 x = 0;
403
404                         for (i = 0; consume && (i < tspi->bytes_per_word);
405                                                         i++, consume--)
406                                 x |= (u32)(*tx_buf++) << (i * 8);
407                         tspi->tx_dma_buf[count] = x;
408                 }
409
410                 tspi->cur_tx_pos += write_bytes;
411         }
412
413         /* Make the dma buffer to read by dma */
414         dma_sync_single_for_device(tspi->dev, tspi->tx_dma_phys,
415                                 tspi->dma_buf_size, DMA_TO_DEVICE);
416 }
417
418 static void tegra_spi_copy_spi_rxbuf_to_client_rxbuf(
419                 struct tegra_spi_data *tspi, struct spi_transfer *t)
420 {
421         /* Make the dma buffer to read by cpu */
422         dma_sync_single_for_cpu(tspi->dev, tspi->rx_dma_phys,
423                 tspi->dma_buf_size, DMA_FROM_DEVICE);
424
425         if (tspi->is_packed) {
426                 unsigned len = tspi->curr_dma_words * tspi->bytes_per_word;
427
428                 memcpy(t->rx_buf + tspi->cur_rx_pos, tspi->rx_dma_buf, len);
429                 tspi->cur_rx_pos += tspi->curr_dma_words * tspi->bytes_per_word;
430         } else {
431                 unsigned int i;
432                 unsigned int count;
433                 unsigned char *rx_buf = t->rx_buf + tspi->cur_rx_pos;
434                 u32 rx_mask = ((u32)1 << t->bits_per_word) - 1;
435                 unsigned consume = tspi->curr_dma_words * tspi->bytes_per_word;
436                 unsigned int read_bytes;
437
438                 if (consume > t->len - tspi->cur_pos)
439                         consume = t->len - tspi->cur_pos;
440                 read_bytes = consume;
441                 for (count = 0; count < tspi->curr_dma_words; count++) {
442                         u32 x = tspi->rx_dma_buf[count] & rx_mask;
443
444                         for (i = 0; consume && (i < tspi->bytes_per_word);
445                                                         i++, consume--)
446                                 *rx_buf++ = (x >> (i*8)) & 0xFF;
447                 }
448
449                 tspi->cur_rx_pos += read_bytes;
450         }
451
452         /* Make the dma buffer to read by dma */
453         dma_sync_single_for_device(tspi->dev, tspi->rx_dma_phys,
454                 tspi->dma_buf_size, DMA_FROM_DEVICE);
455 }
456
457 static void tegra_spi_dma_complete(void *args)
458 {
459         struct completion *dma_complete = args;
460
461         complete(dma_complete);
462 }
463
464 static int tegra_spi_start_tx_dma(struct tegra_spi_data *tspi, int len)
465 {
466         reinit_completion(&tspi->tx_dma_complete);
467         tspi->tx_dma_desc = dmaengine_prep_slave_single(tspi->tx_dma_chan,
468                                 tspi->tx_dma_phys, len, DMA_MEM_TO_DEV,
469                                 DMA_PREP_INTERRUPT |  DMA_CTRL_ACK);
470         if (!tspi->tx_dma_desc) {
471                 dev_err(tspi->dev, "Not able to get desc for Tx\n");
472                 return -EIO;
473         }
474
475         tspi->tx_dma_desc->callback = tegra_spi_dma_complete;
476         tspi->tx_dma_desc->callback_param = &tspi->tx_dma_complete;
477
478         dmaengine_submit(tspi->tx_dma_desc);
479         dma_async_issue_pending(tspi->tx_dma_chan);
480         return 0;
481 }
482
483 static int tegra_spi_start_rx_dma(struct tegra_spi_data *tspi, int len)
484 {
485         reinit_completion(&tspi->rx_dma_complete);
486         tspi->rx_dma_desc = dmaengine_prep_slave_single(tspi->rx_dma_chan,
487                                 tspi->rx_dma_phys, len, DMA_DEV_TO_MEM,
488                                 DMA_PREP_INTERRUPT |  DMA_CTRL_ACK);
489         if (!tspi->rx_dma_desc) {
490                 dev_err(tspi->dev, "Not able to get desc for Rx\n");
491                 return -EIO;
492         }
493
494         tspi->rx_dma_desc->callback = tegra_spi_dma_complete;
495         tspi->rx_dma_desc->callback_param = &tspi->rx_dma_complete;
496
497         dmaengine_submit(tspi->rx_dma_desc);
498         dma_async_issue_pending(tspi->rx_dma_chan);
499         return 0;
500 }
501
502 static int tegra_spi_start_dma_based_transfer(
503                 struct tegra_spi_data *tspi, struct spi_transfer *t)
504 {
505         u32 val;
506         unsigned int len;
507         int ret = 0;
508         u32 status;
509
510         /* Make sure that Rx and Tx fifo are empty */
511         status = tegra_spi_readl(tspi, SPI_FIFO_STATUS);
512         if ((status & SPI_FIFO_EMPTY) != SPI_FIFO_EMPTY) {
513                 dev_err(tspi->dev, "Rx/Tx fifo are not empty status 0x%08x\n",
514                         (unsigned)status);
515                 return -EIO;
516         }
517
518         val = SPI_DMA_BLK_SET(tspi->curr_dma_words - 1);
519         tegra_spi_writel(tspi, val, SPI_DMA_BLK);
520
521         if (tspi->is_packed)
522                 len = DIV_ROUND_UP(tspi->curr_dma_words * tspi->bytes_per_word,
523                                         4) * 4;
524         else
525                 len = tspi->curr_dma_words * 4;
526
527         /* Set attention level based on length of transfer */
528         if (len & 0xF)
529                 val |= SPI_TX_TRIG_1 | SPI_RX_TRIG_1;
530         else if (((len) >> 4) & 0x1)
531                 val |= SPI_TX_TRIG_4 | SPI_RX_TRIG_4;
532         else
533                 val |= SPI_TX_TRIG_8 | SPI_RX_TRIG_8;
534
535         if (tspi->cur_direction & DATA_DIR_TX)
536                 val |= SPI_IE_TX;
537
538         if (tspi->cur_direction & DATA_DIR_RX)
539                 val |= SPI_IE_RX;
540
541         tegra_spi_writel(tspi, val, SPI_DMA_CTL);
542         tspi->dma_control_reg = val;
543
544         if (tspi->cur_direction & DATA_DIR_TX) {
545                 tegra_spi_copy_client_txbuf_to_spi_txbuf(tspi, t);
546                 ret = tegra_spi_start_tx_dma(tspi, len);
547                 if (ret < 0) {
548                         dev_err(tspi->dev,
549                                 "Starting tx dma failed, err %d\n", ret);
550                         return ret;
551                 }
552         }
553
554         if (tspi->cur_direction & DATA_DIR_RX) {
555                 /* Make the dma buffer to read by dma */
556                 dma_sync_single_for_device(tspi->dev, tspi->rx_dma_phys,
557                                 tspi->dma_buf_size, DMA_FROM_DEVICE);
558
559                 ret = tegra_spi_start_rx_dma(tspi, len);
560                 if (ret < 0) {
561                         dev_err(tspi->dev,
562                                 "Starting rx dma failed, err %d\n", ret);
563                         if (tspi->cur_direction & DATA_DIR_TX)
564                                 dmaengine_terminate_all(tspi->tx_dma_chan);
565                         return ret;
566                 }
567         }
568         tspi->is_curr_dma_xfer = true;
569         tspi->dma_control_reg = val;
570
571         val |= SPI_DMA_EN;
572         tegra_spi_writel(tspi, val, SPI_DMA_CTL);
573         return ret;
574 }
575
576 static int tegra_spi_start_cpu_based_transfer(
577                 struct tegra_spi_data *tspi, struct spi_transfer *t)
578 {
579         u32 val;
580         unsigned cur_words;
581
582         if (tspi->cur_direction & DATA_DIR_TX)
583                 cur_words = tegra_spi_fill_tx_fifo_from_client_txbuf(tspi, t);
584         else
585                 cur_words = tspi->curr_dma_words;
586
587         val = SPI_DMA_BLK_SET(cur_words - 1);
588         tegra_spi_writel(tspi, val, SPI_DMA_BLK);
589
590         val = 0;
591         if (tspi->cur_direction & DATA_DIR_TX)
592                 val |= SPI_IE_TX;
593
594         if (tspi->cur_direction & DATA_DIR_RX)
595                 val |= SPI_IE_RX;
596
597         tegra_spi_writel(tspi, val, SPI_DMA_CTL);
598         tspi->dma_control_reg = val;
599
600         tspi->is_curr_dma_xfer = false;
601
602         val |= SPI_DMA_EN;
603         tegra_spi_writel(tspi, val, SPI_DMA_CTL);
604         return 0;
605 }
606
607 static int tegra_spi_init_dma_param(struct tegra_spi_data *tspi,
608                         bool dma_to_memory)
609 {
610         struct dma_chan *dma_chan;
611         u32 *dma_buf;
612         dma_addr_t dma_phys;
613         int ret;
614         struct dma_slave_config dma_sconfig;
615
616         dma_chan = dma_request_slave_channel_reason(tspi->dev,
617                                         dma_to_memory ? "rx" : "tx");
618         if (IS_ERR(dma_chan)) {
619                 ret = PTR_ERR(dma_chan);
620                 if (ret != -EPROBE_DEFER)
621                         dev_err(tspi->dev,
622                                 "Dma channel is not available: %d\n", ret);
623                 return ret;
624         }
625
626         dma_buf = dma_alloc_coherent(tspi->dev, tspi->dma_buf_size,
627                                 &dma_phys, GFP_KERNEL);
628         if (!dma_buf) {
629                 dev_err(tspi->dev, " Not able to allocate the dma buffer\n");
630                 dma_release_channel(dma_chan);
631                 return -ENOMEM;
632         }
633
634         if (dma_to_memory) {
635                 dma_sconfig.src_addr = tspi->phys + SPI_RX_FIFO;
636                 dma_sconfig.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
637                 dma_sconfig.src_maxburst = 0;
638         } else {
639                 dma_sconfig.dst_addr = tspi->phys + SPI_TX_FIFO;
640                 dma_sconfig.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
641                 dma_sconfig.dst_maxburst = 0;
642         }
643
644         ret = dmaengine_slave_config(dma_chan, &dma_sconfig);
645         if (ret)
646                 goto scrub;
647         if (dma_to_memory) {
648                 tspi->rx_dma_chan = dma_chan;
649                 tspi->rx_dma_buf = dma_buf;
650                 tspi->rx_dma_phys = dma_phys;
651         } else {
652                 tspi->tx_dma_chan = dma_chan;
653                 tspi->tx_dma_buf = dma_buf;
654                 tspi->tx_dma_phys = dma_phys;
655         }
656         return 0;
657
658 scrub:
659         dma_free_coherent(tspi->dev, tspi->dma_buf_size, dma_buf, dma_phys);
660         dma_release_channel(dma_chan);
661         return ret;
662 }
663
664 static void tegra_spi_deinit_dma_param(struct tegra_spi_data *tspi,
665         bool dma_to_memory)
666 {
667         u32 *dma_buf;
668         dma_addr_t dma_phys;
669         struct dma_chan *dma_chan;
670
671         if (dma_to_memory) {
672                 dma_buf = tspi->rx_dma_buf;
673                 dma_chan = tspi->rx_dma_chan;
674                 dma_phys = tspi->rx_dma_phys;
675                 tspi->rx_dma_chan = NULL;
676                 tspi->rx_dma_buf = NULL;
677         } else {
678                 dma_buf = tspi->tx_dma_buf;
679                 dma_chan = tspi->tx_dma_chan;
680                 dma_phys = tspi->tx_dma_phys;
681                 tspi->tx_dma_buf = NULL;
682                 tspi->tx_dma_chan = NULL;
683         }
684         if (!dma_chan)
685                 return;
686
687         dma_free_coherent(tspi->dev, tspi->dma_buf_size, dma_buf, dma_phys);
688         dma_release_channel(dma_chan);
689 }
690
691 static u32 tegra_spi_setup_transfer_one(struct spi_device *spi,
692                 struct spi_transfer *t, bool is_first_of_msg)
693 {
694         struct tegra_spi_data *tspi = spi_master_get_devdata(spi->master);
695         u32 speed = t->speed_hz;
696         u8 bits_per_word = t->bits_per_word;
697         u32 command1;
698         int req_mode;
699
700         if (speed != tspi->cur_speed) {
701                 clk_set_rate(tspi->clk, speed);
702                 tspi->cur_speed = speed;
703         }
704
705         tspi->cur_spi = spi;
706         tspi->cur_pos = 0;
707         tspi->cur_rx_pos = 0;
708         tspi->cur_tx_pos = 0;
709         tspi->curr_xfer = t;
710
711         if (is_first_of_msg) {
712                 tegra_spi_clear_status(tspi);
713
714                 command1 = tspi->def_command1_reg;
715                 command1 |= SPI_BIT_LENGTH(bits_per_word - 1);
716
717                 command1 &= ~SPI_CONTROL_MODE_MASK;
718                 req_mode = spi->mode & 0x3;
719                 if (req_mode == SPI_MODE_0)
720                         command1 |= SPI_CONTROL_MODE_0;
721                 else if (req_mode == SPI_MODE_1)
722                         command1 |= SPI_CONTROL_MODE_1;
723                 else if (req_mode == SPI_MODE_2)
724                         command1 |= SPI_CONTROL_MODE_2;
725                 else if (req_mode == SPI_MODE_3)
726                         command1 |= SPI_CONTROL_MODE_3;
727
728                 if (tspi->cs_control) {
729                         if (tspi->cs_control != spi)
730                                 tegra_spi_writel(tspi, command1, SPI_COMMAND1);
731                         tspi->cs_control = NULL;
732                 } else
733                         tegra_spi_writel(tspi, command1, SPI_COMMAND1);
734
735                 command1 |= SPI_CS_SW_HW;
736                 if (spi->mode & SPI_CS_HIGH)
737                         command1 |= SPI_CS_SS_VAL;
738                 else
739                         command1 &= ~SPI_CS_SS_VAL;
740
741                 tegra_spi_writel(tspi, 0, SPI_COMMAND2);
742         } else {
743                 command1 = tspi->command1_reg;
744                 command1 &= ~SPI_BIT_LENGTH(~0);
745                 command1 |= SPI_BIT_LENGTH(bits_per_word - 1);
746         }
747
748         return command1;
749 }
750
751 static int tegra_spi_start_transfer_one(struct spi_device *spi,
752                 struct spi_transfer *t, u32 command1)
753 {
754         struct tegra_spi_data *tspi = spi_master_get_devdata(spi->master);
755         unsigned total_fifo_words;
756         int ret;
757
758         total_fifo_words = tegra_spi_calculate_curr_xfer_param(spi, tspi, t);
759
760         if (tspi->is_packed)
761                 command1 |= SPI_PACKED;
762         else
763                 command1 &= ~SPI_PACKED;
764
765         command1 &= ~(SPI_CS_SEL_MASK | SPI_TX_EN | SPI_RX_EN);
766         tspi->cur_direction = 0;
767         if (t->rx_buf) {
768                 command1 |= SPI_RX_EN;
769                 tspi->cur_direction |= DATA_DIR_RX;
770         }
771         if (t->tx_buf) {
772                 command1 |= SPI_TX_EN;
773                 tspi->cur_direction |= DATA_DIR_TX;
774         }
775         command1 |= SPI_CS_SEL(spi->chip_select);
776         tegra_spi_writel(tspi, command1, SPI_COMMAND1);
777         tspi->command1_reg = command1;
778
779         dev_dbg(tspi->dev, "The def 0x%x and written 0x%x\n",
780                 tspi->def_command1_reg, (unsigned)command1);
781
782         if (total_fifo_words > SPI_FIFO_DEPTH)
783                 ret = tegra_spi_start_dma_based_transfer(tspi, t);
784         else
785                 ret = tegra_spi_start_cpu_based_transfer(tspi, t);
786         return ret;
787 }
788
789 static int tegra_spi_setup(struct spi_device *spi)
790 {
791         struct tegra_spi_data *tspi = spi_master_get_devdata(spi->master);
792         u32 val;
793         unsigned long flags;
794         int ret;
795
796         dev_dbg(&spi->dev, "setup %d bpw, %scpol, %scpha, %dHz\n",
797                 spi->bits_per_word,
798                 spi->mode & SPI_CPOL ? "" : "~",
799                 spi->mode & SPI_CPHA ? "" : "~",
800                 spi->max_speed_hz);
801
802         ret = pm_runtime_get_sync(tspi->dev);
803         if (ret < 0) {
804                 dev_err(tspi->dev, "pm runtime failed, e = %d\n", ret);
805                 return ret;
806         }
807
808         spin_lock_irqsave(&tspi->lock, flags);
809         val = tspi->def_command1_reg;
810         if (spi->mode & SPI_CS_HIGH)
811                 val &= ~SPI_CS_POL_INACTIVE(spi->chip_select);
812         else
813                 val |= SPI_CS_POL_INACTIVE(spi->chip_select);
814         tspi->def_command1_reg = val;
815         tegra_spi_writel(tspi, tspi->def_command1_reg, SPI_COMMAND1);
816         spin_unlock_irqrestore(&tspi->lock, flags);
817
818         pm_runtime_put(tspi->dev);
819         return 0;
820 }
821
822 static void tegra_spi_transfer_delay(int delay)
823 {
824         if (!delay)
825                 return;
826
827         if (delay >= 1000)
828                 mdelay(delay / 1000);
829
830         udelay(delay % 1000);
831 }
832
833 static int tegra_spi_transfer_one_message(struct spi_master *master,
834                         struct spi_message *msg)
835 {
836         bool is_first_msg = true;
837         struct tegra_spi_data *tspi = spi_master_get_devdata(master);
838         struct spi_transfer *xfer;
839         struct spi_device *spi = msg->spi;
840         int ret;
841         bool skip = false;
842
843         msg->status = 0;
844         msg->actual_length = 0;
845
846         list_for_each_entry(xfer, &msg->transfers, transfer_list) {
847                 u32 cmd1;
848
849                 reinit_completion(&tspi->xfer_completion);
850
851                 cmd1 = tegra_spi_setup_transfer_one(spi, xfer, is_first_msg);
852
853                 if (!xfer->len) {
854                         ret = 0;
855                         skip = true;
856                         goto complete_xfer;
857                 }
858
859                 ret = tegra_spi_start_transfer_one(spi, xfer, cmd1);
860                 if (ret < 0) {
861                         dev_err(tspi->dev,
862                                 "spi can not start transfer, err %d\n", ret);
863                         goto complete_xfer;
864                 }
865
866                 is_first_msg = false;
867                 ret = wait_for_completion_timeout(&tspi->xfer_completion,
868                                                 SPI_DMA_TIMEOUT);
869                 if (WARN_ON(ret == 0)) {
870                         dev_err(tspi->dev,
871                                 "spi trasfer timeout, err %d\n", ret);
872                         ret = -EIO;
873                         goto complete_xfer;
874                 }
875
876                 if (tspi->tx_status ||  tspi->rx_status) {
877                         dev_err(tspi->dev, "Error in Transfer\n");
878                         ret = -EIO;
879                         goto complete_xfer;
880                 }
881                 msg->actual_length += xfer->len;
882
883 complete_xfer:
884                 if (ret < 0 || skip) {
885                         tegra_spi_writel(tspi, tspi->def_command1_reg,
886                                         SPI_COMMAND1);
887                         tegra_spi_transfer_delay(xfer->delay_usecs);
888                         goto exit;
889                 } else if (list_is_last(&xfer->transfer_list,
890                                         &msg->transfers)) {
891                         if (xfer->cs_change)
892                                 tspi->cs_control = spi;
893                         else {
894                                 tegra_spi_writel(tspi, tspi->def_command1_reg,
895                                                 SPI_COMMAND1);
896                                 tegra_spi_transfer_delay(xfer->delay_usecs);
897                         }
898                 } else if (xfer->cs_change) {
899                         tegra_spi_writel(tspi, tspi->def_command1_reg,
900                                         SPI_COMMAND1);
901                         tegra_spi_transfer_delay(xfer->delay_usecs);
902                 }
903
904         }
905         ret = 0;
906 exit:
907         msg->status = ret;
908         spi_finalize_current_message(master);
909         return ret;
910 }
911
912 static irqreturn_t handle_cpu_based_xfer(struct tegra_spi_data *tspi)
913 {
914         struct spi_transfer *t = tspi->curr_xfer;
915         unsigned long flags;
916
917         spin_lock_irqsave(&tspi->lock, flags);
918         if (tspi->tx_status ||  tspi->rx_status) {
919                 dev_err(tspi->dev, "CpuXfer ERROR bit set 0x%x\n",
920                         tspi->status_reg);
921                 dev_err(tspi->dev, "CpuXfer 0x%08x:0x%08x\n",
922                         tspi->command1_reg, tspi->dma_control_reg);
923                 reset_control_assert(tspi->rst);
924                 udelay(2);
925                 reset_control_deassert(tspi->rst);
926                 complete(&tspi->xfer_completion);
927                 goto exit;
928         }
929
930         if (tspi->cur_direction & DATA_DIR_RX)
931                 tegra_spi_read_rx_fifo_to_client_rxbuf(tspi, t);
932
933         if (tspi->cur_direction & DATA_DIR_TX)
934                 tspi->cur_pos = tspi->cur_tx_pos;
935         else
936                 tspi->cur_pos = tspi->cur_rx_pos;
937
938         if (tspi->cur_pos == t->len) {
939                 complete(&tspi->xfer_completion);
940                 goto exit;
941         }
942
943         tegra_spi_calculate_curr_xfer_param(tspi->cur_spi, tspi, t);
944         tegra_spi_start_cpu_based_transfer(tspi, t);
945 exit:
946         spin_unlock_irqrestore(&tspi->lock, flags);
947         return IRQ_HANDLED;
948 }
949
950 static irqreturn_t handle_dma_based_xfer(struct tegra_spi_data *tspi)
951 {
952         struct spi_transfer *t = tspi->curr_xfer;
953         long wait_status;
954         int err = 0;
955         unsigned total_fifo_words;
956         unsigned long flags;
957
958         /* Abort dmas if any error */
959         if (tspi->cur_direction & DATA_DIR_TX) {
960                 if (tspi->tx_status) {
961                         dmaengine_terminate_all(tspi->tx_dma_chan);
962                         err += 1;
963                 } else {
964                         wait_status = wait_for_completion_interruptible_timeout(
965                                 &tspi->tx_dma_complete, SPI_DMA_TIMEOUT);
966                         if (wait_status <= 0) {
967                                 dmaengine_terminate_all(tspi->tx_dma_chan);
968                                 dev_err(tspi->dev, "TxDma Xfer failed\n");
969                                 err += 1;
970                         }
971                 }
972         }
973
974         if (tspi->cur_direction & DATA_DIR_RX) {
975                 if (tspi->rx_status) {
976                         dmaengine_terminate_all(tspi->rx_dma_chan);
977                         err += 2;
978                 } else {
979                         wait_status = wait_for_completion_interruptible_timeout(
980                                 &tspi->rx_dma_complete, SPI_DMA_TIMEOUT);
981                         if (wait_status <= 0) {
982                                 dmaengine_terminate_all(tspi->rx_dma_chan);
983                                 dev_err(tspi->dev, "RxDma Xfer failed\n");
984                                 err += 2;
985                         }
986                 }
987         }
988
989         spin_lock_irqsave(&tspi->lock, flags);
990         if (err) {
991                 dev_err(tspi->dev, "DmaXfer: ERROR bit set 0x%x\n",
992                         tspi->status_reg);
993                 dev_err(tspi->dev, "DmaXfer 0x%08x:0x%08x\n",
994                         tspi->command1_reg, tspi->dma_control_reg);
995                 reset_control_assert(tspi->rst);
996                 udelay(2);
997                 reset_control_deassert(tspi->rst);
998                 complete(&tspi->xfer_completion);
999                 spin_unlock_irqrestore(&tspi->lock, flags);
1000                 return IRQ_HANDLED;
1001         }
1002
1003         if (tspi->cur_direction & DATA_DIR_RX)
1004                 tegra_spi_copy_spi_rxbuf_to_client_rxbuf(tspi, t);
1005
1006         if (tspi->cur_direction & DATA_DIR_TX)
1007                 tspi->cur_pos = tspi->cur_tx_pos;
1008         else
1009                 tspi->cur_pos = tspi->cur_rx_pos;
1010
1011         if (tspi->cur_pos == t->len) {
1012                 complete(&tspi->xfer_completion);
1013                 goto exit;
1014         }
1015
1016         /* Continue transfer in current message */
1017         total_fifo_words = tegra_spi_calculate_curr_xfer_param(tspi->cur_spi,
1018                                                         tspi, t);
1019         if (total_fifo_words > SPI_FIFO_DEPTH)
1020                 err = tegra_spi_start_dma_based_transfer(tspi, t);
1021         else
1022                 err = tegra_spi_start_cpu_based_transfer(tspi, t);
1023
1024 exit:
1025         spin_unlock_irqrestore(&tspi->lock, flags);
1026         return IRQ_HANDLED;
1027 }
1028
1029 static irqreturn_t tegra_spi_isr_thread(int irq, void *context_data)
1030 {
1031         struct tegra_spi_data *tspi = context_data;
1032
1033         if (!tspi->is_curr_dma_xfer)
1034                 return handle_cpu_based_xfer(tspi);
1035         return handle_dma_based_xfer(tspi);
1036 }
1037
1038 static irqreturn_t tegra_spi_isr(int irq, void *context_data)
1039 {
1040         struct tegra_spi_data *tspi = context_data;
1041
1042         tspi->status_reg = tegra_spi_readl(tspi, SPI_FIFO_STATUS);
1043         if (tspi->cur_direction & DATA_DIR_TX)
1044                 tspi->tx_status = tspi->status_reg &
1045                                         (SPI_TX_FIFO_UNF | SPI_TX_FIFO_OVF);
1046
1047         if (tspi->cur_direction & DATA_DIR_RX)
1048                 tspi->rx_status = tspi->status_reg &
1049                                         (SPI_RX_FIFO_OVF | SPI_RX_FIFO_UNF);
1050         tegra_spi_clear_status(tspi);
1051
1052         return IRQ_WAKE_THREAD;
1053 }
1054
1055 static const struct of_device_id tegra_spi_of_match[] = {
1056         { .compatible = "nvidia,tegra114-spi", },
1057         {}
1058 };
1059 MODULE_DEVICE_TABLE(of, tegra_spi_of_match);
1060
1061 static int tegra_spi_probe(struct platform_device *pdev)
1062 {
1063         struct spi_master       *master;
1064         struct tegra_spi_data   *tspi;
1065         struct resource         *r;
1066         int ret, spi_irq;
1067
1068         master = spi_alloc_master(&pdev->dev, sizeof(*tspi));
1069         if (!master) {
1070                 dev_err(&pdev->dev, "master allocation failed\n");
1071                 return -ENOMEM;
1072         }
1073         platform_set_drvdata(pdev, master);
1074         tspi = spi_master_get_devdata(master);
1075
1076         if (of_property_read_u32(pdev->dev.of_node, "spi-max-frequency",
1077                                  &master->max_speed_hz))
1078                 master->max_speed_hz = 25000000; /* 25MHz */
1079
1080         /* the spi->mode bits understood by this driver: */
1081         master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
1082         master->setup = tegra_spi_setup;
1083         master->transfer_one_message = tegra_spi_transfer_one_message;
1084         master->num_chipselect = MAX_CHIP_SELECT;
1085         master->auto_runtime_pm = true;
1086
1087         tspi->master = master;
1088         tspi->dev = &pdev->dev;
1089         spin_lock_init(&tspi->lock);
1090
1091         r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1092         tspi->base = devm_ioremap_resource(&pdev->dev, r);
1093         if (IS_ERR(tspi->base)) {
1094                 ret = PTR_ERR(tspi->base);
1095                 goto exit_free_master;
1096         }
1097         tspi->phys = r->start;
1098
1099         spi_irq = platform_get_irq(pdev, 0);
1100         tspi->irq = spi_irq;
1101
1102         tspi->clk = devm_clk_get(&pdev->dev, "spi");
1103         if (IS_ERR(tspi->clk)) {
1104                 dev_err(&pdev->dev, "can not get clock\n");
1105                 ret = PTR_ERR(tspi->clk);
1106                 goto exit_free_master;
1107         }
1108
1109         tspi->rst = devm_reset_control_get(&pdev->dev, "spi");
1110         if (IS_ERR(tspi->rst)) {
1111                 dev_err(&pdev->dev, "can not get reset\n");
1112                 ret = PTR_ERR(tspi->rst);
1113                 goto exit_free_master;
1114         }
1115
1116         tspi->max_buf_size = SPI_FIFO_DEPTH << 2;
1117         tspi->dma_buf_size = DEFAULT_SPI_DMA_BUF_LEN;
1118
1119         ret = tegra_spi_init_dma_param(tspi, true);
1120         if (ret < 0)
1121                 goto exit_free_master;
1122         ret = tegra_spi_init_dma_param(tspi, false);
1123         if (ret < 0)
1124                 goto exit_rx_dma_free;
1125         tspi->max_buf_size = tspi->dma_buf_size;
1126         init_completion(&tspi->tx_dma_complete);
1127         init_completion(&tspi->rx_dma_complete);
1128
1129         init_completion(&tspi->xfer_completion);
1130
1131         pm_runtime_enable(&pdev->dev);
1132         if (!pm_runtime_enabled(&pdev->dev)) {
1133                 ret = tegra_spi_runtime_resume(&pdev->dev);
1134                 if (ret)
1135                         goto exit_pm_disable;
1136         }
1137
1138         ret = pm_runtime_get_sync(&pdev->dev);
1139         if (ret < 0) {
1140                 dev_err(&pdev->dev, "pm runtime get failed, e = %d\n", ret);
1141                 goto exit_pm_disable;
1142         }
1143
1144         reset_control_assert(tspi->rst);
1145         udelay(2);
1146         reset_control_deassert(tspi->rst);
1147         tspi->def_command1_reg  = SPI_M_S;
1148         tegra_spi_writel(tspi, tspi->def_command1_reg, SPI_COMMAND1);
1149         pm_runtime_put(&pdev->dev);
1150         ret = request_threaded_irq(tspi->irq, tegra_spi_isr,
1151                                    tegra_spi_isr_thread, IRQF_ONESHOT,
1152                                    dev_name(&pdev->dev), tspi);
1153         if (ret < 0) {
1154                 dev_err(&pdev->dev, "Failed to register ISR for IRQ %d\n",
1155                         tspi->irq);
1156                 goto exit_pm_disable;
1157         }
1158
1159         master->dev.of_node = pdev->dev.of_node;
1160         ret = devm_spi_register_master(&pdev->dev, master);
1161         if (ret < 0) {
1162                 dev_err(&pdev->dev, "can not register to master err %d\n", ret);
1163                 goto exit_free_irq;
1164         }
1165         return ret;
1166
1167 exit_free_irq:
1168         free_irq(spi_irq, tspi);
1169 exit_pm_disable:
1170         pm_runtime_disable(&pdev->dev);
1171         if (!pm_runtime_status_suspended(&pdev->dev))
1172                 tegra_spi_runtime_suspend(&pdev->dev);
1173         tegra_spi_deinit_dma_param(tspi, false);
1174 exit_rx_dma_free:
1175         tegra_spi_deinit_dma_param(tspi, true);
1176 exit_free_master:
1177         spi_master_put(master);
1178         return ret;
1179 }
1180
1181 static int tegra_spi_remove(struct platform_device *pdev)
1182 {
1183         struct spi_master *master = platform_get_drvdata(pdev);
1184         struct tegra_spi_data   *tspi = spi_master_get_devdata(master);
1185
1186         free_irq(tspi->irq, tspi);
1187
1188         if (tspi->tx_dma_chan)
1189                 tegra_spi_deinit_dma_param(tspi, false);
1190
1191         if (tspi->rx_dma_chan)
1192                 tegra_spi_deinit_dma_param(tspi, true);
1193
1194         pm_runtime_disable(&pdev->dev);
1195         if (!pm_runtime_status_suspended(&pdev->dev))
1196                 tegra_spi_runtime_suspend(&pdev->dev);
1197
1198         return 0;
1199 }
1200
1201 #ifdef CONFIG_PM_SLEEP
1202 static int tegra_spi_suspend(struct device *dev)
1203 {
1204         struct spi_master *master = dev_get_drvdata(dev);
1205
1206         return spi_master_suspend(master);
1207 }
1208
1209 static int tegra_spi_resume(struct device *dev)
1210 {
1211         struct spi_master *master = dev_get_drvdata(dev);
1212         struct tegra_spi_data *tspi = spi_master_get_devdata(master);
1213         int ret;
1214
1215         ret = pm_runtime_get_sync(dev);
1216         if (ret < 0) {
1217                 dev_err(dev, "pm runtime failed, e = %d\n", ret);
1218                 return ret;
1219         }
1220         tegra_spi_writel(tspi, tspi->command1_reg, SPI_COMMAND1);
1221         pm_runtime_put(dev);
1222
1223         return spi_master_resume(master);
1224 }
1225 #endif
1226
1227 static int tegra_spi_runtime_suspend(struct device *dev)
1228 {
1229         struct spi_master *master = dev_get_drvdata(dev);
1230         struct tegra_spi_data *tspi = spi_master_get_devdata(master);
1231
1232         /* Flush all write which are in PPSB queue by reading back */
1233         tegra_spi_readl(tspi, SPI_COMMAND1);
1234
1235         clk_disable_unprepare(tspi->clk);
1236         return 0;
1237 }
1238
1239 static int tegra_spi_runtime_resume(struct device *dev)
1240 {
1241         struct spi_master *master = dev_get_drvdata(dev);
1242         struct tegra_spi_data *tspi = spi_master_get_devdata(master);
1243         int ret;
1244
1245         ret = clk_prepare_enable(tspi->clk);
1246         if (ret < 0) {
1247                 dev_err(tspi->dev, "clk_prepare failed: %d\n", ret);
1248                 return ret;
1249         }
1250         return 0;
1251 }
1252
1253 static const struct dev_pm_ops tegra_spi_pm_ops = {
1254         SET_RUNTIME_PM_OPS(tegra_spi_runtime_suspend,
1255                 tegra_spi_runtime_resume, NULL)
1256         SET_SYSTEM_SLEEP_PM_OPS(tegra_spi_suspend, tegra_spi_resume)
1257 };
1258 static struct platform_driver tegra_spi_driver = {
1259         .driver = {
1260                 .name           = "spi-tegra114",
1261                 .pm             = &tegra_spi_pm_ops,
1262                 .of_match_table = tegra_spi_of_match,
1263         },
1264         .probe =        tegra_spi_probe,
1265         .remove =       tegra_spi_remove,
1266 };
1267 module_platform_driver(tegra_spi_driver);
1268
1269 MODULE_ALIAS("platform:spi-tegra114");
1270 MODULE_DESCRIPTION("NVIDIA Tegra114 SPI Controller Driver");
1271 MODULE_AUTHOR("Laxman Dewangan <ldewangan@nvidia.com>");
1272 MODULE_LICENSE("GPL v2");