Linux-libre 5.4.48-gnu
[librecmc/linux-libre.git] / drivers / sbus / char / bbc_envctrl.c
1 // SPDX-License-Identifier: GPL-2.0
2 /* bbc_envctrl.c: UltraSPARC-III environment control driver.
3  *
4  * Copyright (C) 2001, 2008 David S. Miller (davem@davemloft.net)
5  */
6
7 #include <linux/kthread.h>
8 #include <linux/delay.h>
9 #include <linux/kmod.h>
10 #include <linux/reboot.h>
11 #include <linux/of.h>
12 #include <linux/slab.h>
13 #include <linux/of_device.h>
14 #include <asm/oplib.h>
15
16 #include "bbc_i2c.h"
17 #include "max1617.h"
18
19 #undef ENVCTRL_TRACE
20
21 /* WARNING: Making changes to this driver is very dangerous.
22  *          If you misprogram the sensor chips they can
23  *          cut the power on you instantly.
24  */
25
26 /* Two temperature sensors exist in the SunBLADE-1000 enclosure.
27  * Both are implemented using max1617 i2c devices.  Each max1617
28  * monitors 2 temperatures, one for one of the cpu dies and the other
29  * for the ambient temperature.
30  *
31  * The max1617 is capable of being programmed with power-off
32  * temperature values, one low limit and one high limit.  These
33  * can be controlled independently for the cpu or ambient temperature.
34  * If a limit is violated, the power is simply shut off.  The frequency
35  * with which the max1617 does temperature sampling can be controlled
36  * as well.
37  *
38  * Three fans exist inside the machine, all three are controlled with
39  * an i2c digital to analog converter.  There is a fan directed at the
40  * two processor slots, another for the rest of the enclosure, and the
41  * third is for the power supply.  The first two fans may be speed
42  * controlled by changing the voltage fed to them.  The third fan may
43  * only be completely off or on.  The third fan is meant to only be
44  * disabled/enabled when entering/exiting the lowest power-saving
45  * mode of the machine.
46  *
47  * An environmental control kernel thread periodically monitors all
48  * temperature sensors.  Based upon the samples it will adjust the
49  * fan speeds to try and keep the system within a certain temperature
50  * range (the goal being to make the fans as quiet as possible without
51  * allowing the system to get too hot).
52  *
53  * If the temperature begins to rise/fall outside of the acceptable
54  * operating range, a periodic warning will be sent to the kernel log.
55  * The fans will be put on full blast to attempt to deal with this
56  * situation.  After exceeding the acceptable operating range by a
57  * certain threshold, the kernel thread will shut down the system.
58  * Here, the thread is attempting to shut the machine down cleanly
59  * before the hardware based power-off event is triggered.
60  */
61
62 /* These settings are in Celsius.  We use these defaults only
63  * if we cannot interrogate the cpu-fru SEEPROM.
64  */
65 struct temp_limits {
66         s8 high_pwroff, high_shutdown, high_warn;
67         s8 low_warn, low_shutdown, low_pwroff;
68 };
69
70 static struct temp_limits cpu_temp_limits[2] = {
71         { 100, 85, 80, 5, -5, -10 },
72         { 100, 85, 80, 5, -5, -10 },
73 };
74
75 static struct temp_limits amb_temp_limits[2] = {
76         { 65, 55, 40, 5, -5, -10 },
77         { 65, 55, 40, 5, -5, -10 },
78 };
79
80 static LIST_HEAD(all_temps);
81 static LIST_HEAD(all_fans);
82
83 #define CPU_FAN_REG     0xf0
84 #define SYS_FAN_REG     0xf2
85 #define PSUPPLY_FAN_REG 0xf4
86
87 #define FAN_SPEED_MIN   0x0c
88 #define FAN_SPEED_MAX   0x3f
89
90 #define PSUPPLY_FAN_ON  0x1f
91 #define PSUPPLY_FAN_OFF 0x00
92
93 static void set_fan_speeds(struct bbc_fan_control *fp)
94 {
95         /* Put temperatures into range so we don't mis-program
96          * the hardware.
97          */
98         if (fp->cpu_fan_speed < FAN_SPEED_MIN)
99                 fp->cpu_fan_speed = FAN_SPEED_MIN;
100         if (fp->cpu_fan_speed > FAN_SPEED_MAX)
101                 fp->cpu_fan_speed = FAN_SPEED_MAX;
102         if (fp->system_fan_speed < FAN_SPEED_MIN)
103                 fp->system_fan_speed = FAN_SPEED_MIN;
104         if (fp->system_fan_speed > FAN_SPEED_MAX)
105                 fp->system_fan_speed = FAN_SPEED_MAX;
106 #ifdef ENVCTRL_TRACE
107         printk("fan%d: Changed fan speed to cpu(%02x) sys(%02x)\n",
108                fp->index,
109                fp->cpu_fan_speed, fp->system_fan_speed);
110 #endif
111
112         bbc_i2c_writeb(fp->client, fp->cpu_fan_speed, CPU_FAN_REG);
113         bbc_i2c_writeb(fp->client, fp->system_fan_speed, SYS_FAN_REG);
114         bbc_i2c_writeb(fp->client,
115                        (fp->psupply_fan_on ?
116                         PSUPPLY_FAN_ON : PSUPPLY_FAN_OFF),
117                        PSUPPLY_FAN_REG);
118 }
119
120 static void get_current_temps(struct bbc_cpu_temperature *tp)
121 {
122         tp->prev_amb_temp = tp->curr_amb_temp;
123         bbc_i2c_readb(tp->client,
124                       (unsigned char *) &tp->curr_amb_temp,
125                       MAX1617_AMB_TEMP);
126         tp->prev_cpu_temp = tp->curr_cpu_temp;
127         bbc_i2c_readb(tp->client,
128                       (unsigned char *) &tp->curr_cpu_temp,
129                       MAX1617_CPU_TEMP);
130 #ifdef ENVCTRL_TRACE
131         printk("temp%d: cpu(%d C) amb(%d C)\n",
132                tp->index,
133                (int) tp->curr_cpu_temp, (int) tp->curr_amb_temp);
134 #endif
135 }
136
137
138 static void do_envctrl_shutdown(struct bbc_cpu_temperature *tp)
139 {
140         static int shutting_down = 0;
141         char *type = "???";
142         s8 val = -1;
143
144         if (shutting_down != 0)
145                 return;
146
147         if (tp->curr_amb_temp >= amb_temp_limits[tp->index].high_shutdown ||
148             tp->curr_amb_temp < amb_temp_limits[tp->index].low_shutdown) {
149                 type = "ambient";
150                 val = tp->curr_amb_temp;
151         } else if (tp->curr_cpu_temp >= cpu_temp_limits[tp->index].high_shutdown ||
152                    tp->curr_cpu_temp < cpu_temp_limits[tp->index].low_shutdown) {
153                 type = "CPU";
154                 val = tp->curr_cpu_temp;
155         }
156
157         printk(KERN_CRIT "temp%d: Outside of safe %s "
158                "operating temperature, %d C.\n",
159                tp->index, type, val);
160
161         printk(KERN_CRIT "kenvctrld: Shutting down the system now.\n");
162
163         shutting_down = 1;
164         orderly_poweroff(true);
165 }
166
167 #define WARN_INTERVAL   (30 * HZ)
168
169 static void analyze_ambient_temp(struct bbc_cpu_temperature *tp, unsigned long *last_warn, int tick)
170 {
171         int ret = 0;
172
173         if (time_after(jiffies, (*last_warn + WARN_INTERVAL))) {
174                 if (tp->curr_amb_temp >=
175                     amb_temp_limits[tp->index].high_warn) {
176                         printk(KERN_WARNING "temp%d: "
177                                "Above safe ambient operating temperature, %d C.\n",
178                                tp->index, (int) tp->curr_amb_temp);
179                         ret = 1;
180                 } else if (tp->curr_amb_temp <
181                            amb_temp_limits[tp->index].low_warn) {
182                         printk(KERN_WARNING "temp%d: "
183                                "Below safe ambient operating temperature, %d C.\n",
184                                tp->index, (int) tp->curr_amb_temp);
185                         ret = 1;
186                 }
187                 if (ret)
188                         *last_warn = jiffies;
189         } else if (tp->curr_amb_temp >= amb_temp_limits[tp->index].high_warn ||
190                    tp->curr_amb_temp < amb_temp_limits[tp->index].low_warn)
191                 ret = 1;
192
193         /* Now check the shutdown limits. */
194         if (tp->curr_amb_temp >= amb_temp_limits[tp->index].high_shutdown ||
195             tp->curr_amb_temp < amb_temp_limits[tp->index].low_shutdown) {
196                 do_envctrl_shutdown(tp);
197                 ret = 1;
198         }
199
200         if (ret) {
201                 tp->fan_todo[FAN_AMBIENT] = FAN_FULLBLAST;
202         } else if ((tick & (8 - 1)) == 0) {
203                 s8 amb_goal_hi = amb_temp_limits[tp->index].high_warn - 10;
204                 s8 amb_goal_lo;
205
206                 amb_goal_lo = amb_goal_hi - 3;
207
208                 /* We do not try to avoid 'too cold' events.  Basically we
209                  * only try to deal with over-heating and fan noise reduction.
210                  */
211                 if (tp->avg_amb_temp < amb_goal_hi) {
212                         if (tp->avg_amb_temp >= amb_goal_lo)
213                                 tp->fan_todo[FAN_AMBIENT] = FAN_SAME;
214                         else
215                                 tp->fan_todo[FAN_AMBIENT] = FAN_SLOWER;
216                 } else {
217                         tp->fan_todo[FAN_AMBIENT] = FAN_FASTER;
218                 }
219         } else {
220                 tp->fan_todo[FAN_AMBIENT] = FAN_SAME;
221         }
222 }
223
224 static void analyze_cpu_temp(struct bbc_cpu_temperature *tp, unsigned long *last_warn, int tick)
225 {
226         int ret = 0;
227
228         if (time_after(jiffies, (*last_warn + WARN_INTERVAL))) {
229                 if (tp->curr_cpu_temp >=
230                     cpu_temp_limits[tp->index].high_warn) {
231                         printk(KERN_WARNING "temp%d: "
232                                "Above safe CPU operating temperature, %d C.\n",
233                                tp->index, (int) tp->curr_cpu_temp);
234                         ret = 1;
235                 } else if (tp->curr_cpu_temp <
236                            cpu_temp_limits[tp->index].low_warn) {
237                         printk(KERN_WARNING "temp%d: "
238                                "Below safe CPU operating temperature, %d C.\n",
239                                tp->index, (int) tp->curr_cpu_temp);
240                         ret = 1;
241                 }
242                 if (ret)
243                         *last_warn = jiffies;
244         } else if (tp->curr_cpu_temp >= cpu_temp_limits[tp->index].high_warn ||
245                    tp->curr_cpu_temp < cpu_temp_limits[tp->index].low_warn)
246                 ret = 1;
247
248         /* Now check the shutdown limits. */
249         if (tp->curr_cpu_temp >= cpu_temp_limits[tp->index].high_shutdown ||
250             tp->curr_cpu_temp < cpu_temp_limits[tp->index].low_shutdown) {
251                 do_envctrl_shutdown(tp);
252                 ret = 1;
253         }
254
255         if (ret) {
256                 tp->fan_todo[FAN_CPU] = FAN_FULLBLAST;
257         } else if ((tick & (8 - 1)) == 0) {
258                 s8 cpu_goal_hi = cpu_temp_limits[tp->index].high_warn - 10;
259                 s8 cpu_goal_lo;
260
261                 cpu_goal_lo = cpu_goal_hi - 3;
262
263                 /* We do not try to avoid 'too cold' events.  Basically we
264                  * only try to deal with over-heating and fan noise reduction.
265                  */
266                 if (tp->avg_cpu_temp < cpu_goal_hi) {
267                         if (tp->avg_cpu_temp >= cpu_goal_lo)
268                                 tp->fan_todo[FAN_CPU] = FAN_SAME;
269                         else
270                                 tp->fan_todo[FAN_CPU] = FAN_SLOWER;
271                 } else {
272                         tp->fan_todo[FAN_CPU] = FAN_FASTER;
273                 }
274         } else {
275                 tp->fan_todo[FAN_CPU] = FAN_SAME;
276         }
277 }
278
279 static void analyze_temps(struct bbc_cpu_temperature *tp, unsigned long *last_warn)
280 {
281         tp->avg_amb_temp = (s8)((int)((int)tp->avg_amb_temp + (int)tp->curr_amb_temp) / 2);
282         tp->avg_cpu_temp = (s8)((int)((int)tp->avg_cpu_temp + (int)tp->curr_cpu_temp) / 2);
283
284         analyze_ambient_temp(tp, last_warn, tp->sample_tick);
285         analyze_cpu_temp(tp, last_warn, tp->sample_tick);
286
287         tp->sample_tick++;
288 }
289
290 static enum fan_action prioritize_fan_action(int which_fan)
291 {
292         struct bbc_cpu_temperature *tp;
293         enum fan_action decision = FAN_STATE_MAX;
294
295         /* Basically, prioritize what the temperature sensors
296          * recommend we do, and perform that action on all the
297          * fans.
298          */
299         list_for_each_entry(tp, &all_temps, glob_list) {
300                 if (tp->fan_todo[which_fan] == FAN_FULLBLAST) {
301                         decision = FAN_FULLBLAST;
302                         break;
303                 }
304                 if (tp->fan_todo[which_fan] == FAN_SAME &&
305                     decision != FAN_FASTER)
306                         decision = FAN_SAME;
307                 else if (tp->fan_todo[which_fan] == FAN_FASTER)
308                         decision = FAN_FASTER;
309                 else if (decision != FAN_FASTER &&
310                          decision != FAN_SAME &&
311                          tp->fan_todo[which_fan] == FAN_SLOWER)
312                         decision = FAN_SLOWER;
313         }
314         if (decision == FAN_STATE_MAX)
315                 decision = FAN_SAME;
316
317         return decision;
318 }
319
320 static int maybe_new_ambient_fan_speed(struct bbc_fan_control *fp)
321 {
322         enum fan_action decision = prioritize_fan_action(FAN_AMBIENT);
323         int ret;
324
325         if (decision == FAN_SAME)
326                 return 0;
327
328         ret = 1;
329         if (decision == FAN_FULLBLAST) {
330                 if (fp->system_fan_speed >= FAN_SPEED_MAX)
331                         ret = 0;
332                 else
333                         fp->system_fan_speed = FAN_SPEED_MAX;
334         } else {
335                 if (decision == FAN_FASTER) {
336                         if (fp->system_fan_speed >= FAN_SPEED_MAX)
337                                 ret = 0;
338                         else
339                                 fp->system_fan_speed += 2;
340                 } else {
341                         int orig_speed = fp->system_fan_speed;
342
343                         if (orig_speed <= FAN_SPEED_MIN ||
344                             orig_speed <= (fp->cpu_fan_speed - 3))
345                                 ret = 0;
346                         else
347                                 fp->system_fan_speed -= 1;
348                 }
349         }
350
351         return ret;
352 }
353
354 static int maybe_new_cpu_fan_speed(struct bbc_fan_control *fp)
355 {
356         enum fan_action decision = prioritize_fan_action(FAN_CPU);
357         int ret;
358
359         if (decision == FAN_SAME)
360                 return 0;
361
362         ret = 1;
363         if (decision == FAN_FULLBLAST) {
364                 if (fp->cpu_fan_speed >= FAN_SPEED_MAX)
365                         ret = 0;
366                 else
367                         fp->cpu_fan_speed = FAN_SPEED_MAX;
368         } else {
369                 if (decision == FAN_FASTER) {
370                         if (fp->cpu_fan_speed >= FAN_SPEED_MAX)
371                                 ret = 0;
372                         else {
373                                 fp->cpu_fan_speed += 2;
374                                 if (fp->system_fan_speed <
375                                     (fp->cpu_fan_speed - 3))
376                                         fp->system_fan_speed =
377                                                 fp->cpu_fan_speed - 3;
378                         }
379                 } else {
380                         if (fp->cpu_fan_speed <= FAN_SPEED_MIN)
381                                 ret = 0;
382                         else
383                                 fp->cpu_fan_speed -= 1;
384                 }
385         }
386
387         return ret;
388 }
389
390 static void maybe_new_fan_speeds(struct bbc_fan_control *fp)
391 {
392         int new;
393
394         new  = maybe_new_ambient_fan_speed(fp);
395         new |= maybe_new_cpu_fan_speed(fp);
396
397         if (new)
398                 set_fan_speeds(fp);
399 }
400
401 static void fans_full_blast(void)
402 {
403         struct bbc_fan_control *fp;
404
405         /* Since we will not be monitoring things anymore, put
406          * the fans on full blast.
407          */
408         list_for_each_entry(fp, &all_fans, glob_list) {
409                 fp->cpu_fan_speed = FAN_SPEED_MAX;
410                 fp->system_fan_speed = FAN_SPEED_MAX;
411                 fp->psupply_fan_on = 1;
412                 set_fan_speeds(fp);
413         }
414 }
415
416 #define POLL_INTERVAL   (5 * 1000)
417 static unsigned long last_warning_jiffies;
418 static struct task_struct *kenvctrld_task;
419
420 static int kenvctrld(void *__unused)
421 {
422         printk(KERN_INFO "bbc_envctrl: kenvctrld starting...\n");
423         last_warning_jiffies = jiffies - WARN_INTERVAL;
424         for (;;) {
425                 struct bbc_cpu_temperature *tp;
426                 struct bbc_fan_control *fp;
427
428                 msleep_interruptible(POLL_INTERVAL);
429                 if (kthread_should_stop())
430                         break;
431
432                 list_for_each_entry(tp, &all_temps, glob_list) {
433                         get_current_temps(tp);
434                         analyze_temps(tp, &last_warning_jiffies);
435                 }
436                 list_for_each_entry(fp, &all_fans, glob_list)
437                         maybe_new_fan_speeds(fp);
438         }
439         printk(KERN_INFO "bbc_envctrl: kenvctrld exiting...\n");
440
441         fans_full_blast();
442
443         return 0;
444 }
445
446 static void attach_one_temp(struct bbc_i2c_bus *bp, struct platform_device *op,
447                             int temp_idx)
448 {
449         struct bbc_cpu_temperature *tp;
450
451         tp = kzalloc(sizeof(*tp), GFP_KERNEL);
452         if (!tp)
453                 return;
454
455         INIT_LIST_HEAD(&tp->bp_list);
456         INIT_LIST_HEAD(&tp->glob_list);
457
458         tp->client = bbc_i2c_attach(bp, op);
459         if (!tp->client) {
460                 kfree(tp);
461                 return;
462         }
463
464
465         tp->index = temp_idx;
466
467         list_add(&tp->glob_list, &all_temps);
468         list_add(&tp->bp_list, &bp->temps);
469
470         /* Tell it to convert once every 5 seconds, clear all cfg
471          * bits.
472          */
473         bbc_i2c_writeb(tp->client, 0x00, MAX1617_WR_CFG_BYTE);
474         bbc_i2c_writeb(tp->client, 0x02, MAX1617_WR_CVRATE_BYTE);
475
476         /* Program the hard temperature limits into the chip. */
477         bbc_i2c_writeb(tp->client, amb_temp_limits[tp->index].high_pwroff,
478                        MAX1617_WR_AMB_HIGHLIM);
479         bbc_i2c_writeb(tp->client, amb_temp_limits[tp->index].low_pwroff,
480                        MAX1617_WR_AMB_LOWLIM);
481         bbc_i2c_writeb(tp->client, cpu_temp_limits[tp->index].high_pwroff,
482                        MAX1617_WR_CPU_HIGHLIM);
483         bbc_i2c_writeb(tp->client, cpu_temp_limits[tp->index].low_pwroff,
484                        MAX1617_WR_CPU_LOWLIM);
485
486         get_current_temps(tp);
487         tp->prev_cpu_temp = tp->avg_cpu_temp = tp->curr_cpu_temp;
488         tp->prev_amb_temp = tp->avg_amb_temp = tp->curr_amb_temp;
489
490         tp->fan_todo[FAN_AMBIENT] = FAN_SAME;
491         tp->fan_todo[FAN_CPU] = FAN_SAME;
492 }
493
494 static void attach_one_fan(struct bbc_i2c_bus *bp, struct platform_device *op,
495                            int fan_idx)
496 {
497         struct bbc_fan_control *fp;
498
499         fp = kzalloc(sizeof(*fp), GFP_KERNEL);
500         if (!fp)
501                 return;
502
503         INIT_LIST_HEAD(&fp->bp_list);
504         INIT_LIST_HEAD(&fp->glob_list);
505
506         fp->client = bbc_i2c_attach(bp, op);
507         if (!fp->client) {
508                 kfree(fp);
509                 return;
510         }
511
512         fp->index = fan_idx;
513
514         list_add(&fp->glob_list, &all_fans);
515         list_add(&fp->bp_list, &bp->fans);
516
517         /* The i2c device controlling the fans is write-only.
518          * So the only way to keep track of the current power
519          * level fed to the fans is via software.  Choose half
520          * power for cpu/system and 'on' fo the powersupply fan
521          * and set it now.
522          */
523         fp->psupply_fan_on = 1;
524         fp->cpu_fan_speed = (FAN_SPEED_MAX - FAN_SPEED_MIN) / 2;
525         fp->cpu_fan_speed += FAN_SPEED_MIN;
526         fp->system_fan_speed = (FAN_SPEED_MAX - FAN_SPEED_MIN) / 2;
527         fp->system_fan_speed += FAN_SPEED_MIN;
528
529         set_fan_speeds(fp);
530 }
531
532 static void destroy_one_temp(struct bbc_cpu_temperature *tp)
533 {
534         bbc_i2c_detach(tp->client);
535         kfree(tp);
536 }
537
538 static void destroy_all_temps(struct bbc_i2c_bus *bp)
539 {
540         struct bbc_cpu_temperature *tp, *tpos;
541
542         list_for_each_entry_safe(tp, tpos, &bp->temps, bp_list) {
543                 list_del(&tp->bp_list);
544                 list_del(&tp->glob_list);
545                 destroy_one_temp(tp);
546         }
547 }
548
549 static void destroy_one_fan(struct bbc_fan_control *fp)
550 {
551         bbc_i2c_detach(fp->client);
552         kfree(fp);
553 }
554
555 static void destroy_all_fans(struct bbc_i2c_bus *bp)
556 {
557         struct bbc_fan_control *fp, *fpos;
558
559         list_for_each_entry_safe(fp, fpos, &bp->fans, bp_list) {
560                 list_del(&fp->bp_list);
561                 list_del(&fp->glob_list);
562                 destroy_one_fan(fp);
563         }
564 }
565
566 int bbc_envctrl_init(struct bbc_i2c_bus *bp)
567 {
568         struct platform_device *op;
569         int temp_index = 0;
570         int fan_index = 0;
571         int devidx = 0;
572
573         while ((op = bbc_i2c_getdev(bp, devidx++)) != NULL) {
574                 if (of_node_name_eq(op->dev.of_node, "temperature"))
575                         attach_one_temp(bp, op, temp_index++);
576                 if (of_node_name_eq(op->dev.of_node, "fan-control"))
577                         attach_one_fan(bp, op, fan_index++);
578         }
579         if (temp_index != 0 && fan_index != 0) {
580                 kenvctrld_task = kthread_run(kenvctrld, NULL, "kenvctrld");
581                 if (IS_ERR(kenvctrld_task)) {
582                         int err = PTR_ERR(kenvctrld_task);
583
584                         kenvctrld_task = NULL;
585                         destroy_all_temps(bp);
586                         destroy_all_fans(bp);
587                         return err;
588                 }
589         }
590
591         return 0;
592 }
593
594 void bbc_envctrl_cleanup(struct bbc_i2c_bus *bp)
595 {
596         if (kenvctrld_task)
597                 kthread_stop(kenvctrld_task);
598
599         destroy_all_temps(bp);
600         destroy_all_fans(bp);
601 }