Linux-libre 5.4.49-gnu
[librecmc/linux-libre.git] / drivers / pwm / pwm-lpss.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Intel Low Power Subsystem PWM controller driver
4  *
5  * Copyright (C) 2014, Intel Corporation
6  * Author: Mika Westerberg <mika.westerberg@linux.intel.com>
7  * Author: Chew Kean Ho <kean.ho.chew@intel.com>
8  * Author: Chang Rebecca Swee Fun <rebecca.swee.fun.chang@intel.com>
9  * Author: Chew Chiau Ee <chiau.ee.chew@intel.com>
10  * Author: Alan Cox <alan@linux.intel.com>
11  */
12
13 #include <linux/delay.h>
14 #include <linux/io.h>
15 #include <linux/iopoll.h>
16 #include <linux/kernel.h>
17 #include <linux/module.h>
18 #include <linux/pm_runtime.h>
19 #include <linux/time.h>
20
21 #include "pwm-lpss.h"
22
23 #define PWM                             0x00000000
24 #define PWM_ENABLE                      BIT(31)
25 #define PWM_SW_UPDATE                   BIT(30)
26 #define PWM_BASE_UNIT_SHIFT             8
27 #define PWM_ON_TIME_DIV_MASK            0x000000ff
28
29 /* Size of each PWM register space if multiple */
30 #define PWM_SIZE                        0x400
31
32 static inline struct pwm_lpss_chip *to_lpwm(struct pwm_chip *chip)
33 {
34         return container_of(chip, struct pwm_lpss_chip, chip);
35 }
36
37 static inline u32 pwm_lpss_read(const struct pwm_device *pwm)
38 {
39         struct pwm_lpss_chip *lpwm = to_lpwm(pwm->chip);
40
41         return readl(lpwm->regs + pwm->hwpwm * PWM_SIZE + PWM);
42 }
43
44 static inline void pwm_lpss_write(const struct pwm_device *pwm, u32 value)
45 {
46         struct pwm_lpss_chip *lpwm = to_lpwm(pwm->chip);
47
48         writel(value, lpwm->regs + pwm->hwpwm * PWM_SIZE + PWM);
49 }
50
51 static int pwm_lpss_wait_for_update(struct pwm_device *pwm)
52 {
53         struct pwm_lpss_chip *lpwm = to_lpwm(pwm->chip);
54         const void __iomem *addr = lpwm->regs + pwm->hwpwm * PWM_SIZE + PWM;
55         const unsigned int ms = 500 * USEC_PER_MSEC;
56         u32 val;
57         int err;
58
59         /*
60          * PWM Configuration register has SW_UPDATE bit that is set when a new
61          * configuration is written to the register. The bit is automatically
62          * cleared at the start of the next output cycle by the IP block.
63          *
64          * If one writes a new configuration to the register while it still has
65          * the bit enabled, PWM may freeze. That is, while one can still write
66          * to the register, it won't have an effect. Thus, we try to sleep long
67          * enough that the bit gets cleared and make sure the bit is not
68          * enabled while we update the configuration.
69          */
70         err = readl_poll_timeout(addr, val, !(val & PWM_SW_UPDATE), 40, ms);
71         if (err)
72                 dev_err(pwm->chip->dev, "PWM_SW_UPDATE was not cleared\n");
73
74         return err;
75 }
76
77 static inline int pwm_lpss_is_updating(struct pwm_device *pwm)
78 {
79         return (pwm_lpss_read(pwm) & PWM_SW_UPDATE) ? -EBUSY : 0;
80 }
81
82 static void pwm_lpss_prepare(struct pwm_lpss_chip *lpwm, struct pwm_device *pwm,
83                              int duty_ns, int period_ns)
84 {
85         unsigned long long on_time_div;
86         unsigned long c = lpwm->info->clk_rate, base_unit_range;
87         unsigned long long base_unit, freq = NSEC_PER_SEC;
88         u32 orig_ctrl, ctrl;
89
90         do_div(freq, period_ns);
91
92         /*
93          * The equation is:
94          * base_unit = round(base_unit_range * freq / c)
95          */
96         base_unit_range = BIT(lpwm->info->base_unit_bits) - 1;
97         freq *= base_unit_range;
98
99         base_unit = DIV_ROUND_CLOSEST_ULL(freq, c);
100
101         on_time_div = 255ULL * duty_ns;
102         do_div(on_time_div, period_ns);
103         on_time_div = 255ULL - on_time_div;
104
105         orig_ctrl = ctrl = pwm_lpss_read(pwm);
106         ctrl &= ~PWM_ON_TIME_DIV_MASK;
107         ctrl &= ~(base_unit_range << PWM_BASE_UNIT_SHIFT);
108         base_unit &= base_unit_range;
109         ctrl |= (u32) base_unit << PWM_BASE_UNIT_SHIFT;
110         ctrl |= on_time_div;
111
112         if (orig_ctrl != ctrl) {
113                 pwm_lpss_write(pwm, ctrl);
114                 pwm_lpss_write(pwm, ctrl | PWM_SW_UPDATE);
115         }
116 }
117
118 static inline void pwm_lpss_cond_enable(struct pwm_device *pwm, bool cond)
119 {
120         if (cond)
121                 pwm_lpss_write(pwm, pwm_lpss_read(pwm) | PWM_ENABLE);
122 }
123
124 static int pwm_lpss_apply(struct pwm_chip *chip, struct pwm_device *pwm,
125                           const struct pwm_state *state)
126 {
127         struct pwm_lpss_chip *lpwm = to_lpwm(chip);
128         int ret;
129
130         if (state->enabled) {
131                 if (!pwm_is_enabled(pwm)) {
132                         pm_runtime_get_sync(chip->dev);
133                         ret = pwm_lpss_is_updating(pwm);
134                         if (ret) {
135                                 pm_runtime_put(chip->dev);
136                                 return ret;
137                         }
138                         pwm_lpss_prepare(lpwm, pwm, state->duty_cycle, state->period);
139                         pwm_lpss_cond_enable(pwm, lpwm->info->bypass == false);
140                         ret = pwm_lpss_wait_for_update(pwm);
141                         if (ret) {
142                                 pm_runtime_put(chip->dev);
143                                 return ret;
144                         }
145                         pwm_lpss_cond_enable(pwm, lpwm->info->bypass == true);
146                 } else {
147                         ret = pwm_lpss_is_updating(pwm);
148                         if (ret)
149                                 return ret;
150                         pwm_lpss_prepare(lpwm, pwm, state->duty_cycle, state->period);
151                         return pwm_lpss_wait_for_update(pwm);
152                 }
153         } else if (pwm_is_enabled(pwm)) {
154                 pwm_lpss_write(pwm, pwm_lpss_read(pwm) & ~PWM_ENABLE);
155                 pm_runtime_put(chip->dev);
156         }
157
158         return 0;
159 }
160
161 /* This function gets called once from pwmchip_add to get the initial state */
162 static void pwm_lpss_get_state(struct pwm_chip *chip, struct pwm_device *pwm,
163                                struct pwm_state *state)
164 {
165         struct pwm_lpss_chip *lpwm = to_lpwm(chip);
166         unsigned long base_unit_range;
167         unsigned long long base_unit, freq, on_time_div;
168         u32 ctrl;
169
170         base_unit_range = BIT(lpwm->info->base_unit_bits);
171
172         ctrl = pwm_lpss_read(pwm);
173         on_time_div = 255 - (ctrl & PWM_ON_TIME_DIV_MASK);
174         base_unit = (ctrl >> PWM_BASE_UNIT_SHIFT) & (base_unit_range - 1);
175
176         freq = base_unit * lpwm->info->clk_rate;
177         do_div(freq, base_unit_range);
178         if (freq == 0)
179                 state->period = NSEC_PER_SEC;
180         else
181                 state->period = NSEC_PER_SEC / (unsigned long)freq;
182
183         on_time_div *= state->period;
184         do_div(on_time_div, 255);
185         state->duty_cycle = on_time_div;
186
187         state->polarity = PWM_POLARITY_NORMAL;
188         state->enabled = !!(ctrl & PWM_ENABLE);
189
190         if (state->enabled)
191                 pm_runtime_get(chip->dev);
192 }
193
194 static const struct pwm_ops pwm_lpss_ops = {
195         .apply = pwm_lpss_apply,
196         .get_state = pwm_lpss_get_state,
197         .owner = THIS_MODULE,
198 };
199
200 struct pwm_lpss_chip *pwm_lpss_probe(struct device *dev, struct resource *r,
201                                      const struct pwm_lpss_boardinfo *info)
202 {
203         struct pwm_lpss_chip *lpwm;
204         unsigned long c;
205         int ret;
206
207         if (WARN_ON(info->npwm > MAX_PWMS))
208                 return ERR_PTR(-ENODEV);
209
210         lpwm = devm_kzalloc(dev, sizeof(*lpwm), GFP_KERNEL);
211         if (!lpwm)
212                 return ERR_PTR(-ENOMEM);
213
214         lpwm->regs = devm_ioremap_resource(dev, r);
215         if (IS_ERR(lpwm->regs))
216                 return ERR_CAST(lpwm->regs);
217
218         lpwm->info = info;
219
220         c = lpwm->info->clk_rate;
221         if (!c)
222                 return ERR_PTR(-EINVAL);
223
224         lpwm->chip.dev = dev;
225         lpwm->chip.ops = &pwm_lpss_ops;
226         lpwm->chip.base = -1;
227         lpwm->chip.npwm = info->npwm;
228
229         ret = pwmchip_add(&lpwm->chip);
230         if (ret) {
231                 dev_err(dev, "failed to add PWM chip: %d\n", ret);
232                 return ERR_PTR(ret);
233         }
234
235         return lpwm;
236 }
237 EXPORT_SYMBOL_GPL(pwm_lpss_probe);
238
239 int pwm_lpss_remove(struct pwm_lpss_chip *lpwm)
240 {
241         int i;
242
243         for (i = 0; i < lpwm->info->npwm; i++) {
244                 if (pwm_is_enabled(&lpwm->chip.pwms[i]))
245                         pm_runtime_put(lpwm->chip.dev);
246         }
247         return pwmchip_remove(&lpwm->chip);
248 }
249 EXPORT_SYMBOL_GPL(pwm_lpss_remove);
250
251 int pwm_lpss_suspend(struct device *dev)
252 {
253         struct pwm_lpss_chip *lpwm = dev_get_drvdata(dev);
254         int i;
255
256         for (i = 0; i < lpwm->info->npwm; i++)
257                 lpwm->saved_ctrl[i] = readl(lpwm->regs + i * PWM_SIZE + PWM);
258
259         return 0;
260 }
261 EXPORT_SYMBOL_GPL(pwm_lpss_suspend);
262
263 int pwm_lpss_resume(struct device *dev)
264 {
265         struct pwm_lpss_chip *lpwm = dev_get_drvdata(dev);
266         int i;
267
268         for (i = 0; i < lpwm->info->npwm; i++)
269                 writel(lpwm->saved_ctrl[i], lpwm->regs + i * PWM_SIZE + PWM);
270
271         return 0;
272 }
273 EXPORT_SYMBOL_GPL(pwm_lpss_resume);
274
275 MODULE_DESCRIPTION("PWM driver for Intel LPSS");
276 MODULE_AUTHOR("Mika Westerberg <mika.westerberg@linux.intel.com>");
277 MODULE_LICENSE("GPL v2");