Linux-libre 5.4.49-gnu
[librecmc/linux-libre.git] / drivers / pci / hotplug / cpqphp_ctrl.c
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Compaq Hot Plug Controller Driver
4  *
5  * Copyright (C) 1995,2001 Compaq Computer Corporation
6  * Copyright (C) 2001 Greg Kroah-Hartman (greg@kroah.com)
7  * Copyright (C) 2001 IBM Corp.
8  *
9  * All rights reserved.
10  *
11  * Send feedback to <greg@kroah.com>
12  *
13  */
14
15 #include <linux/module.h>
16 #include <linux/kernel.h>
17 #include <linux/types.h>
18 #include <linux/slab.h>
19 #include <linux/workqueue.h>
20 #include <linux/interrupt.h>
21 #include <linux/delay.h>
22 #include <linux/wait.h>
23 #include <linux/pci.h>
24 #include <linux/pci_hotplug.h>
25 #include <linux/kthread.h>
26 #include "cpqphp.h"
27
28 static u32 configure_new_device(struct controller *ctrl, struct pci_func *func,
29                         u8 behind_bridge, struct resource_lists *resources);
30 static int configure_new_function(struct controller *ctrl, struct pci_func *func,
31                         u8 behind_bridge, struct resource_lists *resources);
32 static void interrupt_event_handler(struct controller *ctrl);
33
34
35 static struct task_struct *cpqhp_event_thread;
36 static struct timer_list *pushbutton_pending;   /* = NULL */
37
38 /* delay is in jiffies to wait for */
39 static void long_delay(int delay)
40 {
41         /*
42          * XXX(hch): if someone is bored please convert all callers
43          * to call msleep_interruptible directly.  They really want
44          * to specify timeouts in natural units and spend a lot of
45          * effort converting them to jiffies..
46          */
47         msleep_interruptible(jiffies_to_msecs(delay));
48 }
49
50
51 /* FIXME: The following line needs to be somewhere else... */
52 #define WRONG_BUS_FREQUENCY 0x07
53 static u8 handle_switch_change(u8 change, struct controller *ctrl)
54 {
55         int hp_slot;
56         u8 rc = 0;
57         u16 temp_word;
58         struct pci_func *func;
59         struct event_info *taskInfo;
60
61         if (!change)
62                 return 0;
63
64         /* Switch Change */
65         dbg("cpqsbd:  Switch interrupt received.\n");
66
67         for (hp_slot = 0; hp_slot < 6; hp_slot++) {
68                 if (change & (0x1L << hp_slot)) {
69                         /*
70                          * this one changed.
71                          */
72                         func = cpqhp_slot_find(ctrl->bus,
73                                 (hp_slot + ctrl->slot_device_offset), 0);
74
75                         /* this is the structure that tells the worker thread
76                          * what to do
77                          */
78                         taskInfo = &(ctrl->event_queue[ctrl->next_event]);
79                         ctrl->next_event = (ctrl->next_event + 1) % 10;
80                         taskInfo->hp_slot = hp_slot;
81
82                         rc++;
83
84                         temp_word = ctrl->ctrl_int_comp >> 16;
85                         func->presence_save = (temp_word >> hp_slot) & 0x01;
86                         func->presence_save |= (temp_word >> (hp_slot + 7)) & 0x02;
87
88                         if (ctrl->ctrl_int_comp & (0x1L << hp_slot)) {
89                                 /*
90                                  * Switch opened
91                                  */
92
93                                 func->switch_save = 0;
94
95                                 taskInfo->event_type = INT_SWITCH_OPEN;
96                         } else {
97                                 /*
98                                  * Switch closed
99                                  */
100
101                                 func->switch_save = 0x10;
102
103                                 taskInfo->event_type = INT_SWITCH_CLOSE;
104                         }
105                 }
106         }
107
108         return rc;
109 }
110
111 /**
112  * cpqhp_find_slot - find the struct slot of given device
113  * @ctrl: scan lots of this controller
114  * @device: the device id to find
115  */
116 static struct slot *cpqhp_find_slot(struct controller *ctrl, u8 device)
117 {
118         struct slot *slot = ctrl->slot;
119
120         while (slot && (slot->device != device))
121                 slot = slot->next;
122
123         return slot;
124 }
125
126
127 static u8 handle_presence_change(u16 change, struct controller *ctrl)
128 {
129         int hp_slot;
130         u8 rc = 0;
131         u8 temp_byte;
132         u16 temp_word;
133         struct pci_func *func;
134         struct event_info *taskInfo;
135         struct slot *p_slot;
136
137         if (!change)
138                 return 0;
139
140         /*
141          * Presence Change
142          */
143         dbg("cpqsbd:  Presence/Notify input change.\n");
144         dbg("         Changed bits are 0x%4.4x\n", change);
145
146         for (hp_slot = 0; hp_slot < 6; hp_slot++) {
147                 if (change & (0x0101 << hp_slot)) {
148                         /*
149                          * this one changed.
150                          */
151                         func = cpqhp_slot_find(ctrl->bus,
152                                 (hp_slot + ctrl->slot_device_offset), 0);
153
154                         taskInfo = &(ctrl->event_queue[ctrl->next_event]);
155                         ctrl->next_event = (ctrl->next_event + 1) % 10;
156                         taskInfo->hp_slot = hp_slot;
157
158                         rc++;
159
160                         p_slot = cpqhp_find_slot(ctrl, hp_slot + (readb(ctrl->hpc_reg + SLOT_MASK) >> 4));
161                         if (!p_slot)
162                                 return 0;
163
164                         /* If the switch closed, must be a button
165                          * If not in button mode, nevermind
166                          */
167                         if (func->switch_save && (ctrl->push_button == 1)) {
168                                 temp_word = ctrl->ctrl_int_comp >> 16;
169                                 temp_byte = (temp_word >> hp_slot) & 0x01;
170                                 temp_byte |= (temp_word >> (hp_slot + 7)) & 0x02;
171
172                                 if (temp_byte != func->presence_save) {
173                                         /*
174                                          * button Pressed (doesn't do anything)
175                                          */
176                                         dbg("hp_slot %d button pressed\n", hp_slot);
177                                         taskInfo->event_type = INT_BUTTON_PRESS;
178                                 } else {
179                                         /*
180                                          * button Released - TAKE ACTION!!!!
181                                          */
182                                         dbg("hp_slot %d button released\n", hp_slot);
183                                         taskInfo->event_type = INT_BUTTON_RELEASE;
184
185                                         /* Cancel if we are still blinking */
186                                         if ((p_slot->state == BLINKINGON_STATE)
187                                             || (p_slot->state == BLINKINGOFF_STATE)) {
188                                                 taskInfo->event_type = INT_BUTTON_CANCEL;
189                                                 dbg("hp_slot %d button cancel\n", hp_slot);
190                                         } else if ((p_slot->state == POWERON_STATE)
191                                                    || (p_slot->state == POWEROFF_STATE)) {
192                                                 /* info(msg_button_ignore, p_slot->number); */
193                                                 taskInfo->event_type = INT_BUTTON_IGNORE;
194                                                 dbg("hp_slot %d button ignore\n", hp_slot);
195                                         }
196                                 }
197                         } else {
198                                 /* Switch is open, assume a presence change
199                                  * Save the presence state
200                                  */
201                                 temp_word = ctrl->ctrl_int_comp >> 16;
202                                 func->presence_save = (temp_word >> hp_slot) & 0x01;
203                                 func->presence_save |= (temp_word >> (hp_slot + 7)) & 0x02;
204
205                                 if ((!(ctrl->ctrl_int_comp & (0x010000 << hp_slot))) ||
206                                     (!(ctrl->ctrl_int_comp & (0x01000000 << hp_slot)))) {
207                                         /* Present */
208                                         taskInfo->event_type = INT_PRESENCE_ON;
209                                 } else {
210                                         /* Not Present */
211                                         taskInfo->event_type = INT_PRESENCE_OFF;
212                                 }
213                         }
214                 }
215         }
216
217         return rc;
218 }
219
220
221 static u8 handle_power_fault(u8 change, struct controller *ctrl)
222 {
223         int hp_slot;
224         u8 rc = 0;
225         struct pci_func *func;
226         struct event_info *taskInfo;
227
228         if (!change)
229                 return 0;
230
231         /*
232          * power fault
233          */
234
235         info("power fault interrupt\n");
236
237         for (hp_slot = 0; hp_slot < 6; hp_slot++) {
238                 if (change & (0x01 << hp_slot)) {
239                         /*
240                          * this one changed.
241                          */
242                         func = cpqhp_slot_find(ctrl->bus,
243                                 (hp_slot + ctrl->slot_device_offset), 0);
244
245                         taskInfo = &(ctrl->event_queue[ctrl->next_event]);
246                         ctrl->next_event = (ctrl->next_event + 1) % 10;
247                         taskInfo->hp_slot = hp_slot;
248
249                         rc++;
250
251                         if (ctrl->ctrl_int_comp & (0x00000100 << hp_slot)) {
252                                 /*
253                                  * power fault Cleared
254                                  */
255                                 func->status = 0x00;
256
257                                 taskInfo->event_type = INT_POWER_FAULT_CLEAR;
258                         } else {
259                                 /*
260                                  * power fault
261                                  */
262                                 taskInfo->event_type = INT_POWER_FAULT;
263
264                                 if (ctrl->rev < 4) {
265                                         amber_LED_on(ctrl, hp_slot);
266                                         green_LED_off(ctrl, hp_slot);
267                                         set_SOGO(ctrl);
268
269                                         /* this is a fatal condition, we want
270                                          * to crash the machine to protect from
271                                          * data corruption. simulated_NMI
272                                          * shouldn't ever return */
273                                         /* FIXME
274                                         simulated_NMI(hp_slot, ctrl); */
275
276                                         /* The following code causes a software
277                                          * crash just in case simulated_NMI did
278                                          * return */
279                                         /*FIXME
280                                         panic(msg_power_fault); */
281                                 } else {
282                                         /* set power fault status for this board */
283                                         func->status = 0xFF;
284                                         info("power fault bit %x set\n", hp_slot);
285                                 }
286                         }
287                 }
288         }
289
290         return rc;
291 }
292
293
294 /**
295  * sort_by_size - sort nodes on the list by their length, smallest first.
296  * @head: list to sort
297  */
298 static int sort_by_size(struct pci_resource **head)
299 {
300         struct pci_resource *current_res;
301         struct pci_resource *next_res;
302         int out_of_order = 1;
303
304         if (!(*head))
305                 return 1;
306
307         if (!((*head)->next))
308                 return 0;
309
310         while (out_of_order) {
311                 out_of_order = 0;
312
313                 /* Special case for swapping list head */
314                 if (((*head)->next) &&
315                     ((*head)->length > (*head)->next->length)) {
316                         out_of_order++;
317                         current_res = *head;
318                         *head = (*head)->next;
319                         current_res->next = (*head)->next;
320                         (*head)->next = current_res;
321                 }
322
323                 current_res = *head;
324
325                 while (current_res->next && current_res->next->next) {
326                         if (current_res->next->length > current_res->next->next->length) {
327                                 out_of_order++;
328                                 next_res = current_res->next;
329                                 current_res->next = current_res->next->next;
330                                 current_res = current_res->next;
331                                 next_res->next = current_res->next;
332                                 current_res->next = next_res;
333                         } else
334                                 current_res = current_res->next;
335                 }
336         }  /* End of out_of_order loop */
337
338         return 0;
339 }
340
341
342 /**
343  * sort_by_max_size - sort nodes on the list by their length, largest first.
344  * @head: list to sort
345  */
346 static int sort_by_max_size(struct pci_resource **head)
347 {
348         struct pci_resource *current_res;
349         struct pci_resource *next_res;
350         int out_of_order = 1;
351
352         if (!(*head))
353                 return 1;
354
355         if (!((*head)->next))
356                 return 0;
357
358         while (out_of_order) {
359                 out_of_order = 0;
360
361                 /* Special case for swapping list head */
362                 if (((*head)->next) &&
363                     ((*head)->length < (*head)->next->length)) {
364                         out_of_order++;
365                         current_res = *head;
366                         *head = (*head)->next;
367                         current_res->next = (*head)->next;
368                         (*head)->next = current_res;
369                 }
370
371                 current_res = *head;
372
373                 while (current_res->next && current_res->next->next) {
374                         if (current_res->next->length < current_res->next->next->length) {
375                                 out_of_order++;
376                                 next_res = current_res->next;
377                                 current_res->next = current_res->next->next;
378                                 current_res = current_res->next;
379                                 next_res->next = current_res->next;
380                                 current_res->next = next_res;
381                         } else
382                                 current_res = current_res->next;
383                 }
384         }  /* End of out_of_order loop */
385
386         return 0;
387 }
388
389
390 /**
391  * do_pre_bridge_resource_split - find node of resources that are unused
392  * @head: new list head
393  * @orig_head: original list head
394  * @alignment: max node size (?)
395  */
396 static struct pci_resource *do_pre_bridge_resource_split(struct pci_resource **head,
397                                 struct pci_resource **orig_head, u32 alignment)
398 {
399         struct pci_resource *prevnode = NULL;
400         struct pci_resource *node;
401         struct pci_resource *split_node;
402         u32 rc;
403         u32 temp_dword;
404         dbg("do_pre_bridge_resource_split\n");
405
406         if (!(*head) || !(*orig_head))
407                 return NULL;
408
409         rc = cpqhp_resource_sort_and_combine(head);
410
411         if (rc)
412                 return NULL;
413
414         if ((*head)->base != (*orig_head)->base)
415                 return NULL;
416
417         if ((*head)->length == (*orig_head)->length)
418                 return NULL;
419
420
421         /* If we got here, there the bridge requires some of the resource, but
422          * we may be able to split some off of the front
423          */
424
425         node = *head;
426
427         if (node->length & (alignment - 1)) {
428                 /* this one isn't an aligned length, so we'll make a new entry
429                  * and split it up.
430                  */
431                 split_node = kmalloc(sizeof(*split_node), GFP_KERNEL);
432
433                 if (!split_node)
434                         return NULL;
435
436                 temp_dword = (node->length | (alignment-1)) + 1 - alignment;
437
438                 split_node->base = node->base;
439                 split_node->length = temp_dword;
440
441                 node->length -= temp_dword;
442                 node->base += split_node->length;
443
444                 /* Put it in the list */
445                 *head = split_node;
446                 split_node->next = node;
447         }
448
449         if (node->length < alignment)
450                 return NULL;
451
452         /* Now unlink it */
453         if (*head == node) {
454                 *head = node->next;
455         } else {
456                 prevnode = *head;
457                 while (prevnode->next != node)
458                         prevnode = prevnode->next;
459
460                 prevnode->next = node->next;
461         }
462         node->next = NULL;
463
464         return node;
465 }
466
467
468 /**
469  * do_bridge_resource_split - find one node of resources that aren't in use
470  * @head: list head
471  * @alignment: max node size (?)
472  */
473 static struct pci_resource *do_bridge_resource_split(struct pci_resource **head, u32 alignment)
474 {
475         struct pci_resource *prevnode = NULL;
476         struct pci_resource *node;
477         u32 rc;
478         u32 temp_dword;
479
480         rc = cpqhp_resource_sort_and_combine(head);
481
482         if (rc)
483                 return NULL;
484
485         node = *head;
486
487         while (node->next) {
488                 prevnode = node;
489                 node = node->next;
490                 kfree(prevnode);
491         }
492
493         if (node->length < alignment)
494                 goto error;
495
496         if (node->base & (alignment - 1)) {
497                 /* Short circuit if adjusted size is too small */
498                 temp_dword = (node->base | (alignment-1)) + 1;
499                 if ((node->length - (temp_dword - node->base)) < alignment)
500                         goto error;
501
502                 node->length -= (temp_dword - node->base);
503                 node->base = temp_dword;
504         }
505
506         if (node->length & (alignment - 1))
507                 /* There's stuff in use after this node */
508                 goto error;
509
510         return node;
511 error:
512         kfree(node);
513         return NULL;
514 }
515
516
517 /**
518  * get_io_resource - find first node of given size not in ISA aliasing window.
519  * @head: list to search
520  * @size: size of node to find, must be a power of two.
521  *
522  * Description: This function sorts the resource list by size and then returns
523  * returns the first node of "size" length that is not in the ISA aliasing
524  * window.  If it finds a node larger than "size" it will split it up.
525  */
526 static struct pci_resource *get_io_resource(struct pci_resource **head, u32 size)
527 {
528         struct pci_resource *prevnode;
529         struct pci_resource *node;
530         struct pci_resource *split_node;
531         u32 temp_dword;
532
533         if (!(*head))
534                 return NULL;
535
536         if (cpqhp_resource_sort_and_combine(head))
537                 return NULL;
538
539         if (sort_by_size(head))
540                 return NULL;
541
542         for (node = *head; node; node = node->next) {
543                 if (node->length < size)
544                         continue;
545
546                 if (node->base & (size - 1)) {
547                         /* this one isn't base aligned properly
548                          * so we'll make a new entry and split it up
549                          */
550                         temp_dword = (node->base | (size-1)) + 1;
551
552                         /* Short circuit if adjusted size is too small */
553                         if ((node->length - (temp_dword - node->base)) < size)
554                                 continue;
555
556                         split_node = kmalloc(sizeof(*split_node), GFP_KERNEL);
557
558                         if (!split_node)
559                                 return NULL;
560
561                         split_node->base = node->base;
562                         split_node->length = temp_dword - node->base;
563                         node->base = temp_dword;
564                         node->length -= split_node->length;
565
566                         /* Put it in the list */
567                         split_node->next = node->next;
568                         node->next = split_node;
569                 } /* End of non-aligned base */
570
571                 /* Don't need to check if too small since we already did */
572                 if (node->length > size) {
573                         /* this one is longer than we need
574                          * so we'll make a new entry and split it up
575                          */
576                         split_node = kmalloc(sizeof(*split_node), GFP_KERNEL);
577
578                         if (!split_node)
579                                 return NULL;
580
581                         split_node->base = node->base + size;
582                         split_node->length = node->length - size;
583                         node->length = size;
584
585                         /* Put it in the list */
586                         split_node->next = node->next;
587                         node->next = split_node;
588                 }  /* End of too big on top end */
589
590                 /* For IO make sure it's not in the ISA aliasing space */
591                 if (node->base & 0x300L)
592                         continue;
593
594                 /* If we got here, then it is the right size
595                  * Now take it out of the list and break
596                  */
597                 if (*head == node) {
598                         *head = node->next;
599                 } else {
600                         prevnode = *head;
601                         while (prevnode->next != node)
602                                 prevnode = prevnode->next;
603
604                         prevnode->next = node->next;
605                 }
606                 node->next = NULL;
607                 break;
608         }
609
610         return node;
611 }
612
613
614 /**
615  * get_max_resource - get largest node which has at least the given size.
616  * @head: the list to search the node in
617  * @size: the minimum size of the node to find
618  *
619  * Description: Gets the largest node that is at least "size" big from the
620  * list pointed to by head.  It aligns the node on top and bottom
621  * to "size" alignment before returning it.
622  */
623 static struct pci_resource *get_max_resource(struct pci_resource **head, u32 size)
624 {
625         struct pci_resource *max;
626         struct pci_resource *temp;
627         struct pci_resource *split_node;
628         u32 temp_dword;
629
630         if (cpqhp_resource_sort_and_combine(head))
631                 return NULL;
632
633         if (sort_by_max_size(head))
634                 return NULL;
635
636         for (max = *head; max; max = max->next) {
637                 /* If not big enough we could probably just bail,
638                  * instead we'll continue to the next.
639                  */
640                 if (max->length < size)
641                         continue;
642
643                 if (max->base & (size - 1)) {
644                         /* this one isn't base aligned properly
645                          * so we'll make a new entry and split it up
646                          */
647                         temp_dword = (max->base | (size-1)) + 1;
648
649                         /* Short circuit if adjusted size is too small */
650                         if ((max->length - (temp_dword - max->base)) < size)
651                                 continue;
652
653                         split_node = kmalloc(sizeof(*split_node), GFP_KERNEL);
654
655                         if (!split_node)
656                                 return NULL;
657
658                         split_node->base = max->base;
659                         split_node->length = temp_dword - max->base;
660                         max->base = temp_dword;
661                         max->length -= split_node->length;
662
663                         split_node->next = max->next;
664                         max->next = split_node;
665                 }
666
667                 if ((max->base + max->length) & (size - 1)) {
668                         /* this one isn't end aligned properly at the top
669                          * so we'll make a new entry and split it up
670                          */
671                         split_node = kmalloc(sizeof(*split_node), GFP_KERNEL);
672
673                         if (!split_node)
674                                 return NULL;
675                         temp_dword = ((max->base + max->length) & ~(size - 1));
676                         split_node->base = temp_dword;
677                         split_node->length = max->length + max->base
678                                              - split_node->base;
679                         max->length -= split_node->length;
680
681                         split_node->next = max->next;
682                         max->next = split_node;
683                 }
684
685                 /* Make sure it didn't shrink too much when we aligned it */
686                 if (max->length < size)
687                         continue;
688
689                 /* Now take it out of the list */
690                 temp = *head;
691                 if (temp == max) {
692                         *head = max->next;
693                 } else {
694                         while (temp && temp->next != max)
695                                 temp = temp->next;
696
697                         if (temp)
698                                 temp->next = max->next;
699                 }
700
701                 max->next = NULL;
702                 break;
703         }
704
705         return max;
706 }
707
708
709 /**
710  * get_resource - find resource of given size and split up larger ones.
711  * @head: the list to search for resources
712  * @size: the size limit to use
713  *
714  * Description: This function sorts the resource list by size and then
715  * returns the first node of "size" length.  If it finds a node
716  * larger than "size" it will split it up.
717  *
718  * size must be a power of two.
719  */
720 static struct pci_resource *get_resource(struct pci_resource **head, u32 size)
721 {
722         struct pci_resource *prevnode;
723         struct pci_resource *node;
724         struct pci_resource *split_node;
725         u32 temp_dword;
726
727         if (cpqhp_resource_sort_and_combine(head))
728                 return NULL;
729
730         if (sort_by_size(head))
731                 return NULL;
732
733         for (node = *head; node; node = node->next) {
734                 dbg("%s: req_size =%x node=%p, base=%x, length=%x\n",
735                     __func__, size, node, node->base, node->length);
736                 if (node->length < size)
737                         continue;
738
739                 if (node->base & (size - 1)) {
740                         dbg("%s: not aligned\n", __func__);
741                         /* this one isn't base aligned properly
742                          * so we'll make a new entry and split it up
743                          */
744                         temp_dword = (node->base | (size-1)) + 1;
745
746                         /* Short circuit if adjusted size is too small */
747                         if ((node->length - (temp_dword - node->base)) < size)
748                                 continue;
749
750                         split_node = kmalloc(sizeof(*split_node), GFP_KERNEL);
751
752                         if (!split_node)
753                                 return NULL;
754
755                         split_node->base = node->base;
756                         split_node->length = temp_dword - node->base;
757                         node->base = temp_dword;
758                         node->length -= split_node->length;
759
760                         split_node->next = node->next;
761                         node->next = split_node;
762                 } /* End of non-aligned base */
763
764                 /* Don't need to check if too small since we already did */
765                 if (node->length > size) {
766                         dbg("%s: too big\n", __func__);
767                         /* this one is longer than we need
768                          * so we'll make a new entry and split it up
769                          */
770                         split_node = kmalloc(sizeof(*split_node), GFP_KERNEL);
771
772                         if (!split_node)
773                                 return NULL;
774
775                         split_node->base = node->base + size;
776                         split_node->length = node->length - size;
777                         node->length = size;
778
779                         /* Put it in the list */
780                         split_node->next = node->next;
781                         node->next = split_node;
782                 }  /* End of too big on top end */
783
784                 dbg("%s: got one!!!\n", __func__);
785                 /* If we got here, then it is the right size
786                  * Now take it out of the list */
787                 if (*head == node) {
788                         *head = node->next;
789                 } else {
790                         prevnode = *head;
791                         while (prevnode->next != node)
792                                 prevnode = prevnode->next;
793
794                         prevnode->next = node->next;
795                 }
796                 node->next = NULL;
797                 break;
798         }
799         return node;
800 }
801
802
803 /**
804  * cpqhp_resource_sort_and_combine - sort nodes by base addresses and clean up
805  * @head: the list to sort and clean up
806  *
807  * Description: Sorts all of the nodes in the list in ascending order by
808  * their base addresses.  Also does garbage collection by
809  * combining adjacent nodes.
810  *
811  * Returns %0 if success.
812  */
813 int cpqhp_resource_sort_and_combine(struct pci_resource **head)
814 {
815         struct pci_resource *node1;
816         struct pci_resource *node2;
817         int out_of_order = 1;
818
819         dbg("%s: head = %p, *head = %p\n", __func__, head, *head);
820
821         if (!(*head))
822                 return 1;
823
824         dbg("*head->next = %p\n", (*head)->next);
825
826         if (!(*head)->next)
827                 return 0;       /* only one item on the list, already sorted! */
828
829         dbg("*head->base = 0x%x\n", (*head)->base);
830         dbg("*head->next->base = 0x%x\n", (*head)->next->base);
831         while (out_of_order) {
832                 out_of_order = 0;
833
834                 /* Special case for swapping list head */
835                 if (((*head)->next) &&
836                     ((*head)->base > (*head)->next->base)) {
837                         node1 = *head;
838                         (*head) = (*head)->next;
839                         node1->next = (*head)->next;
840                         (*head)->next = node1;
841                         out_of_order++;
842                 }
843
844                 node1 = (*head);
845
846                 while (node1->next && node1->next->next) {
847                         if (node1->next->base > node1->next->next->base) {
848                                 out_of_order++;
849                                 node2 = node1->next;
850                                 node1->next = node1->next->next;
851                                 node1 = node1->next;
852                                 node2->next = node1->next;
853                                 node1->next = node2;
854                         } else
855                                 node1 = node1->next;
856                 }
857         }  /* End of out_of_order loop */
858
859         node1 = *head;
860
861         while (node1 && node1->next) {
862                 if ((node1->base + node1->length) == node1->next->base) {
863                         /* Combine */
864                         dbg("8..\n");
865                         node1->length += node1->next->length;
866                         node2 = node1->next;
867                         node1->next = node1->next->next;
868                         kfree(node2);
869                 } else
870                         node1 = node1->next;
871         }
872
873         return 0;
874 }
875
876
877 irqreturn_t cpqhp_ctrl_intr(int IRQ, void *data)
878 {
879         struct controller *ctrl = data;
880         u8 schedule_flag = 0;
881         u8 reset;
882         u16 misc;
883         u32 Diff;
884         u32 temp_dword;
885
886
887         misc = readw(ctrl->hpc_reg + MISC);
888         /*
889          * Check to see if it was our interrupt
890          */
891         if (!(misc & 0x000C))
892                 return IRQ_NONE;
893
894         if (misc & 0x0004) {
895                 /*
896                  * Serial Output interrupt Pending
897                  */
898
899                 /* Clear the interrupt */
900                 misc |= 0x0004;
901                 writew(misc, ctrl->hpc_reg + MISC);
902
903                 /* Read to clear posted writes */
904                 misc = readw(ctrl->hpc_reg + MISC);
905
906                 dbg("%s - waking up\n", __func__);
907                 wake_up_interruptible(&ctrl->queue);
908         }
909
910         if (misc & 0x0008) {
911                 /* General-interrupt-input interrupt Pending */
912                 Diff = readl(ctrl->hpc_reg + INT_INPUT_CLEAR) ^ ctrl->ctrl_int_comp;
913
914                 ctrl->ctrl_int_comp = readl(ctrl->hpc_reg + INT_INPUT_CLEAR);
915
916                 /* Clear the interrupt */
917                 writel(Diff, ctrl->hpc_reg + INT_INPUT_CLEAR);
918
919                 /* Read it back to clear any posted writes */
920                 temp_dword = readl(ctrl->hpc_reg + INT_INPUT_CLEAR);
921
922                 if (!Diff)
923                         /* Clear all interrupts */
924                         writel(0xFFFFFFFF, ctrl->hpc_reg + INT_INPUT_CLEAR);
925
926                 schedule_flag += handle_switch_change((u8)(Diff & 0xFFL), ctrl);
927                 schedule_flag += handle_presence_change((u16)((Diff & 0xFFFF0000L) >> 16), ctrl);
928                 schedule_flag += handle_power_fault((u8)((Diff & 0xFF00L) >> 8), ctrl);
929         }
930
931         reset = readb(ctrl->hpc_reg + RESET_FREQ_MODE);
932         if (reset & 0x40) {
933                 /* Bus reset has completed */
934                 reset &= 0xCF;
935                 writeb(reset, ctrl->hpc_reg + RESET_FREQ_MODE);
936                 reset = readb(ctrl->hpc_reg + RESET_FREQ_MODE);
937                 wake_up_interruptible(&ctrl->queue);
938         }
939
940         if (schedule_flag) {
941                 wake_up_process(cpqhp_event_thread);
942                 dbg("Waking even thread");
943         }
944         return IRQ_HANDLED;
945 }
946
947
948 /**
949  * cpqhp_slot_create - Creates a node and adds it to the proper bus.
950  * @busnumber: bus where new node is to be located
951  *
952  * Returns pointer to the new node or %NULL if unsuccessful.
953  */
954 struct pci_func *cpqhp_slot_create(u8 busnumber)
955 {
956         struct pci_func *new_slot;
957         struct pci_func *next;
958
959         new_slot = kzalloc(sizeof(*new_slot), GFP_KERNEL);
960         if (new_slot == NULL)
961                 return new_slot;
962
963         new_slot->next = NULL;
964         new_slot->configured = 1;
965
966         if (cpqhp_slot_list[busnumber] == NULL) {
967                 cpqhp_slot_list[busnumber] = new_slot;
968         } else {
969                 next = cpqhp_slot_list[busnumber];
970                 while (next->next != NULL)
971                         next = next->next;
972                 next->next = new_slot;
973         }
974         return new_slot;
975 }
976
977
978 /**
979  * slot_remove - Removes a node from the linked list of slots.
980  * @old_slot: slot to remove
981  *
982  * Returns %0 if successful, !0 otherwise.
983  */
984 static int slot_remove(struct pci_func *old_slot)
985 {
986         struct pci_func *next;
987
988         if (old_slot == NULL)
989                 return 1;
990
991         next = cpqhp_slot_list[old_slot->bus];
992         if (next == NULL)
993                 return 1;
994
995         if (next == old_slot) {
996                 cpqhp_slot_list[old_slot->bus] = old_slot->next;
997                 cpqhp_destroy_board_resources(old_slot);
998                 kfree(old_slot);
999                 return 0;
1000         }
1001
1002         while ((next->next != old_slot) && (next->next != NULL))
1003                 next = next->next;
1004
1005         if (next->next == old_slot) {
1006                 next->next = old_slot->next;
1007                 cpqhp_destroy_board_resources(old_slot);
1008                 kfree(old_slot);
1009                 return 0;
1010         } else
1011                 return 2;
1012 }
1013
1014
1015 /**
1016  * bridge_slot_remove - Removes a node from the linked list of slots.
1017  * @bridge: bridge to remove
1018  *
1019  * Returns %0 if successful, !0 otherwise.
1020  */
1021 static int bridge_slot_remove(struct pci_func *bridge)
1022 {
1023         u8 subordinateBus, secondaryBus;
1024         u8 tempBus;
1025         struct pci_func *next;
1026
1027         secondaryBus = (bridge->config_space[0x06] >> 8) & 0xFF;
1028         subordinateBus = (bridge->config_space[0x06] >> 16) & 0xFF;
1029
1030         for (tempBus = secondaryBus; tempBus <= subordinateBus; tempBus++) {
1031                 next = cpqhp_slot_list[tempBus];
1032
1033                 while (!slot_remove(next))
1034                         next = cpqhp_slot_list[tempBus];
1035         }
1036
1037         next = cpqhp_slot_list[bridge->bus];
1038
1039         if (next == NULL)
1040                 return 1;
1041
1042         if (next == bridge) {
1043                 cpqhp_slot_list[bridge->bus] = bridge->next;
1044                 goto out;
1045         }
1046
1047         while ((next->next != bridge) && (next->next != NULL))
1048                 next = next->next;
1049
1050         if (next->next != bridge)
1051                 return 2;
1052         next->next = bridge->next;
1053 out:
1054         kfree(bridge);
1055         return 0;
1056 }
1057
1058
1059 /**
1060  * cpqhp_slot_find - Looks for a node by bus, and device, multiple functions accessed
1061  * @bus: bus to find
1062  * @device: device to find
1063  * @index: is %0 for first function found, %1 for the second...
1064  *
1065  * Returns pointer to the node if successful, %NULL otherwise.
1066  */
1067 struct pci_func *cpqhp_slot_find(u8 bus, u8 device, u8 index)
1068 {
1069         int found = -1;
1070         struct pci_func *func;
1071
1072         func = cpqhp_slot_list[bus];
1073
1074         if ((func == NULL) || ((func->device == device) && (index == 0)))
1075                 return func;
1076
1077         if (func->device == device)
1078                 found++;
1079
1080         while (func->next != NULL) {
1081                 func = func->next;
1082
1083                 if (func->device == device)
1084                         found++;
1085
1086                 if (found == index)
1087                         return func;
1088         }
1089
1090         return NULL;
1091 }
1092
1093
1094 /* DJZ: I don't think is_bridge will work as is.
1095  * FIXME */
1096 static int is_bridge(struct pci_func *func)
1097 {
1098         /* Check the header type */
1099         if (((func->config_space[0x03] >> 16) & 0xFF) == 0x01)
1100                 return 1;
1101         else
1102                 return 0;
1103 }
1104
1105
1106 /**
1107  * set_controller_speed - set the frequency and/or mode of a specific controller segment.
1108  * @ctrl: controller to change frequency/mode for.
1109  * @adapter_speed: the speed of the adapter we want to match.
1110  * @hp_slot: the slot number where the adapter is installed.
1111  *
1112  * Returns %0 if we successfully change frequency and/or mode to match the
1113  * adapter speed.
1114  */
1115 static u8 set_controller_speed(struct controller *ctrl, u8 adapter_speed, u8 hp_slot)
1116 {
1117         struct slot *slot;
1118         struct pci_bus *bus = ctrl->pci_bus;
1119         u8 reg;
1120         u8 slot_power = readb(ctrl->hpc_reg + SLOT_POWER);
1121         u16 reg16;
1122         u32 leds = readl(ctrl->hpc_reg + LED_CONTROL);
1123
1124         if (bus->cur_bus_speed == adapter_speed)
1125                 return 0;
1126
1127         /* We don't allow freq/mode changes if we find another adapter running
1128          * in another slot on this controller
1129          */
1130         for (slot = ctrl->slot; slot; slot = slot->next) {
1131                 if (slot->device == (hp_slot + ctrl->slot_device_offset))
1132                         continue;
1133                 if (get_presence_status(ctrl, slot) == 0)
1134                         continue;
1135                 /* If another adapter is running on the same segment but at a
1136                  * lower speed/mode, we allow the new adapter to function at
1137                  * this rate if supported
1138                  */
1139                 if (bus->cur_bus_speed < adapter_speed)
1140                         return 0;
1141
1142                 return 1;
1143         }
1144
1145         /* If the controller doesn't support freq/mode changes and the
1146          * controller is running at a higher mode, we bail
1147          */
1148         if ((bus->cur_bus_speed > adapter_speed) && (!ctrl->pcix_speed_capability))
1149                 return 1;
1150
1151         /* But we allow the adapter to run at a lower rate if possible */
1152         if ((bus->cur_bus_speed < adapter_speed) && (!ctrl->pcix_speed_capability))
1153                 return 0;
1154
1155         /* We try to set the max speed supported by both the adapter and
1156          * controller
1157          */
1158         if (bus->max_bus_speed < adapter_speed) {
1159                 if (bus->cur_bus_speed == bus->max_bus_speed)
1160                         return 0;
1161                 adapter_speed = bus->max_bus_speed;
1162         }
1163
1164         writel(0x0L, ctrl->hpc_reg + LED_CONTROL);
1165         writeb(0x00, ctrl->hpc_reg + SLOT_ENABLE);
1166
1167         set_SOGO(ctrl);
1168         wait_for_ctrl_irq(ctrl);
1169
1170         if (adapter_speed != PCI_SPEED_133MHz_PCIX)
1171                 reg = 0xF5;
1172         else
1173                 reg = 0xF4;
1174         pci_write_config_byte(ctrl->pci_dev, 0x41, reg);
1175
1176         reg16 = readw(ctrl->hpc_reg + NEXT_CURR_FREQ);
1177         reg16 &= ~0x000F;
1178         switch (adapter_speed) {
1179                 case(PCI_SPEED_133MHz_PCIX):
1180                         reg = 0x75;
1181                         reg16 |= 0xB;
1182                         break;
1183                 case(PCI_SPEED_100MHz_PCIX):
1184                         reg = 0x74;
1185                         reg16 |= 0xA;
1186                         break;
1187                 case(PCI_SPEED_66MHz_PCIX):
1188                         reg = 0x73;
1189                         reg16 |= 0x9;
1190                         break;
1191                 case(PCI_SPEED_66MHz):
1192                         reg = 0x73;
1193                         reg16 |= 0x1;
1194                         break;
1195                 default: /* 33MHz PCI 2.2 */
1196                         reg = 0x71;
1197                         break;
1198
1199         }
1200         reg16 |= 0xB << 12;
1201         writew(reg16, ctrl->hpc_reg + NEXT_CURR_FREQ);
1202
1203         mdelay(5);
1204
1205         /* Reenable interrupts */
1206         writel(0, ctrl->hpc_reg + INT_MASK);
1207
1208         pci_write_config_byte(ctrl->pci_dev, 0x41, reg);
1209
1210         /* Restart state machine */
1211         reg = ~0xF;
1212         pci_read_config_byte(ctrl->pci_dev, 0x43, &reg);
1213         pci_write_config_byte(ctrl->pci_dev, 0x43, reg);
1214
1215         /* Only if mode change...*/
1216         if (((bus->cur_bus_speed == PCI_SPEED_66MHz) && (adapter_speed == PCI_SPEED_66MHz_PCIX)) ||
1217                 ((bus->cur_bus_speed == PCI_SPEED_66MHz_PCIX) && (adapter_speed == PCI_SPEED_66MHz)))
1218                         set_SOGO(ctrl);
1219
1220         wait_for_ctrl_irq(ctrl);
1221         mdelay(1100);
1222
1223         /* Restore LED/Slot state */
1224         writel(leds, ctrl->hpc_reg + LED_CONTROL);
1225         writeb(slot_power, ctrl->hpc_reg + SLOT_ENABLE);
1226
1227         set_SOGO(ctrl);
1228         wait_for_ctrl_irq(ctrl);
1229
1230         bus->cur_bus_speed = adapter_speed;
1231         slot = cpqhp_find_slot(ctrl, hp_slot + ctrl->slot_device_offset);
1232
1233         info("Successfully changed frequency/mode for adapter in slot %d\n",
1234                         slot->number);
1235         return 0;
1236 }
1237
1238 /* the following routines constitute the bulk of the
1239  * hotplug controller logic
1240  */
1241
1242
1243 /**
1244  * board_replaced - Called after a board has been replaced in the system.
1245  * @func: PCI device/function information
1246  * @ctrl: hotplug controller
1247  *
1248  * This is only used if we don't have resources for hot add.
1249  * Turns power on for the board.
1250  * Checks to see if board is the same.
1251  * If board is same, reconfigures it.
1252  * If board isn't same, turns it back off.
1253  */
1254 static u32 board_replaced(struct pci_func *func, struct controller *ctrl)
1255 {
1256         struct pci_bus *bus = ctrl->pci_bus;
1257         u8 hp_slot;
1258         u8 temp_byte;
1259         u8 adapter_speed;
1260         u32 rc = 0;
1261
1262         hp_slot = func->device - ctrl->slot_device_offset;
1263
1264         /*
1265          * The switch is open.
1266          */
1267         if (readl(ctrl->hpc_reg + INT_INPUT_CLEAR) & (0x01L << hp_slot))
1268                 rc = INTERLOCK_OPEN;
1269         /*
1270          * The board is already on
1271          */
1272         else if (is_slot_enabled(ctrl, hp_slot))
1273                 rc = CARD_FUNCTIONING;
1274         else {
1275                 mutex_lock(&ctrl->crit_sect);
1276
1277                 /* turn on board without attaching to the bus */
1278                 enable_slot_power(ctrl, hp_slot);
1279
1280                 set_SOGO(ctrl);
1281
1282                 /* Wait for SOBS to be unset */
1283                 wait_for_ctrl_irq(ctrl);
1284
1285                 /* Change bits in slot power register to force another shift out
1286                  * NOTE: this is to work around the timer bug */
1287                 temp_byte = readb(ctrl->hpc_reg + SLOT_POWER);
1288                 writeb(0x00, ctrl->hpc_reg + SLOT_POWER);
1289                 writeb(temp_byte, ctrl->hpc_reg + SLOT_POWER);
1290
1291                 set_SOGO(ctrl);
1292
1293                 /* Wait for SOBS to be unset */
1294                 wait_for_ctrl_irq(ctrl);
1295
1296                 adapter_speed = get_adapter_speed(ctrl, hp_slot);
1297                 if (bus->cur_bus_speed != adapter_speed)
1298                         if (set_controller_speed(ctrl, adapter_speed, hp_slot))
1299                                 rc = WRONG_BUS_FREQUENCY;
1300
1301                 /* turn off board without attaching to the bus */
1302                 disable_slot_power(ctrl, hp_slot);
1303
1304                 set_SOGO(ctrl);
1305
1306                 /* Wait for SOBS to be unset */
1307                 wait_for_ctrl_irq(ctrl);
1308
1309                 mutex_unlock(&ctrl->crit_sect);
1310
1311                 if (rc)
1312                         return rc;
1313
1314                 mutex_lock(&ctrl->crit_sect);
1315
1316                 slot_enable(ctrl, hp_slot);
1317                 green_LED_blink(ctrl, hp_slot);
1318
1319                 amber_LED_off(ctrl, hp_slot);
1320
1321                 set_SOGO(ctrl);
1322
1323                 /* Wait for SOBS to be unset */
1324                 wait_for_ctrl_irq(ctrl);
1325
1326                 mutex_unlock(&ctrl->crit_sect);
1327
1328                 /* Wait for ~1 second because of hot plug spec */
1329                 long_delay(1*HZ);
1330
1331                 /* Check for a power fault */
1332                 if (func->status == 0xFF) {
1333                         /* power fault occurred, but it was benign */
1334                         rc = POWER_FAILURE;
1335                         func->status = 0;
1336                 } else
1337                         rc = cpqhp_valid_replace(ctrl, func);
1338
1339                 if (!rc) {
1340                         /* It must be the same board */
1341
1342                         rc = cpqhp_configure_board(ctrl, func);
1343
1344                         /* If configuration fails, turn it off
1345                          * Get slot won't work for devices behind
1346                          * bridges, but in this case it will always be
1347                          * called for the "base" bus/dev/func of an
1348                          * adapter.
1349                          */
1350
1351                         mutex_lock(&ctrl->crit_sect);
1352
1353                         amber_LED_on(ctrl, hp_slot);
1354                         green_LED_off(ctrl, hp_slot);
1355                         slot_disable(ctrl, hp_slot);
1356
1357                         set_SOGO(ctrl);
1358
1359                         /* Wait for SOBS to be unset */
1360                         wait_for_ctrl_irq(ctrl);
1361
1362                         mutex_unlock(&ctrl->crit_sect);
1363
1364                         if (rc)
1365                                 return rc;
1366                         else
1367                                 return 1;
1368
1369                 } else {
1370                         /* Something is wrong
1371
1372                          * Get slot won't work for devices behind bridges, but
1373                          * in this case it will always be called for the "base"
1374                          * bus/dev/func of an adapter.
1375                          */
1376
1377                         mutex_lock(&ctrl->crit_sect);
1378
1379                         amber_LED_on(ctrl, hp_slot);
1380                         green_LED_off(ctrl, hp_slot);
1381                         slot_disable(ctrl, hp_slot);
1382
1383                         set_SOGO(ctrl);
1384
1385                         /* Wait for SOBS to be unset */
1386                         wait_for_ctrl_irq(ctrl);
1387
1388                         mutex_unlock(&ctrl->crit_sect);
1389                 }
1390
1391         }
1392         return rc;
1393
1394 }
1395
1396
1397 /**
1398  * board_added - Called after a board has been added to the system.
1399  * @func: PCI device/function info
1400  * @ctrl: hotplug controller
1401  *
1402  * Turns power on for the board.
1403  * Configures board.
1404  */
1405 static u32 board_added(struct pci_func *func, struct controller *ctrl)
1406 {
1407         u8 hp_slot;
1408         u8 temp_byte;
1409         u8 adapter_speed;
1410         int index;
1411         u32 temp_register = 0xFFFFFFFF;
1412         u32 rc = 0;
1413         struct pci_func *new_slot = NULL;
1414         struct pci_bus *bus = ctrl->pci_bus;
1415         struct slot *p_slot;
1416         struct resource_lists res_lists;
1417
1418         hp_slot = func->device - ctrl->slot_device_offset;
1419         dbg("%s: func->device, slot_offset, hp_slot = %d, %d ,%d\n",
1420             __func__, func->device, ctrl->slot_device_offset, hp_slot);
1421
1422         mutex_lock(&ctrl->crit_sect);
1423
1424         /* turn on board without attaching to the bus */
1425         enable_slot_power(ctrl, hp_slot);
1426
1427         set_SOGO(ctrl);
1428
1429         /* Wait for SOBS to be unset */
1430         wait_for_ctrl_irq(ctrl);
1431
1432         /* Change bits in slot power register to force another shift out
1433          * NOTE: this is to work around the timer bug
1434          */
1435         temp_byte = readb(ctrl->hpc_reg + SLOT_POWER);
1436         writeb(0x00, ctrl->hpc_reg + SLOT_POWER);
1437         writeb(temp_byte, ctrl->hpc_reg + SLOT_POWER);
1438
1439         set_SOGO(ctrl);
1440
1441         /* Wait for SOBS to be unset */
1442         wait_for_ctrl_irq(ctrl);
1443
1444         adapter_speed = get_adapter_speed(ctrl, hp_slot);
1445         if (bus->cur_bus_speed != adapter_speed)
1446                 if (set_controller_speed(ctrl, adapter_speed, hp_slot))
1447                         rc = WRONG_BUS_FREQUENCY;
1448
1449         /* turn off board without attaching to the bus */
1450         disable_slot_power(ctrl, hp_slot);
1451
1452         set_SOGO(ctrl);
1453
1454         /* Wait for SOBS to be unset */
1455         wait_for_ctrl_irq(ctrl);
1456
1457         mutex_unlock(&ctrl->crit_sect);
1458
1459         if (rc)
1460                 return rc;
1461
1462         p_slot = cpqhp_find_slot(ctrl, hp_slot + ctrl->slot_device_offset);
1463
1464         /* turn on board and blink green LED */
1465
1466         dbg("%s: before down\n", __func__);
1467         mutex_lock(&ctrl->crit_sect);
1468         dbg("%s: after down\n", __func__);
1469
1470         dbg("%s: before slot_enable\n", __func__);
1471         slot_enable(ctrl, hp_slot);
1472
1473         dbg("%s: before green_LED_blink\n", __func__);
1474         green_LED_blink(ctrl, hp_slot);
1475
1476         dbg("%s: before amber_LED_blink\n", __func__);
1477         amber_LED_off(ctrl, hp_slot);
1478
1479         dbg("%s: before set_SOGO\n", __func__);
1480         set_SOGO(ctrl);
1481
1482         /* Wait for SOBS to be unset */
1483         dbg("%s: before wait_for_ctrl_irq\n", __func__);
1484         wait_for_ctrl_irq(ctrl);
1485         dbg("%s: after wait_for_ctrl_irq\n", __func__);
1486
1487         dbg("%s: before up\n", __func__);
1488         mutex_unlock(&ctrl->crit_sect);
1489         dbg("%s: after up\n", __func__);
1490
1491         /* Wait for ~1 second because of hot plug spec */
1492         dbg("%s: before long_delay\n", __func__);
1493         long_delay(1*HZ);
1494         dbg("%s: after long_delay\n", __func__);
1495
1496         dbg("%s: func status = %x\n", __func__, func->status);
1497         /* Check for a power fault */
1498         if (func->status == 0xFF) {
1499                 /* power fault occurred, but it was benign */
1500                 temp_register = 0xFFFFFFFF;
1501                 dbg("%s: temp register set to %x by power fault\n", __func__, temp_register);
1502                 rc = POWER_FAILURE;
1503                 func->status = 0;
1504         } else {
1505                 /* Get vendor/device ID u32 */
1506                 ctrl->pci_bus->number = func->bus;
1507                 rc = pci_bus_read_config_dword(ctrl->pci_bus, PCI_DEVFN(func->device, func->function), PCI_VENDOR_ID, &temp_register);
1508                 dbg("%s: pci_read_config_dword returns %d\n", __func__, rc);
1509                 dbg("%s: temp_register is %x\n", __func__, temp_register);
1510
1511                 if (rc != 0) {
1512                         /* Something's wrong here */
1513                         temp_register = 0xFFFFFFFF;
1514                         dbg("%s: temp register set to %x by error\n", __func__, temp_register);
1515                 }
1516                 /* Preset return code.  It will be changed later if things go okay. */
1517                 rc = NO_ADAPTER_PRESENT;
1518         }
1519
1520         /* All F's is an empty slot or an invalid board */
1521         if (temp_register != 0xFFFFFFFF) {
1522                 res_lists.io_head = ctrl->io_head;
1523                 res_lists.mem_head = ctrl->mem_head;
1524                 res_lists.p_mem_head = ctrl->p_mem_head;
1525                 res_lists.bus_head = ctrl->bus_head;
1526                 res_lists.irqs = NULL;
1527
1528                 rc = configure_new_device(ctrl, func, 0, &res_lists);
1529
1530                 dbg("%s: back from configure_new_device\n", __func__);
1531                 ctrl->io_head = res_lists.io_head;
1532                 ctrl->mem_head = res_lists.mem_head;
1533                 ctrl->p_mem_head = res_lists.p_mem_head;
1534                 ctrl->bus_head = res_lists.bus_head;
1535
1536                 cpqhp_resource_sort_and_combine(&(ctrl->mem_head));
1537                 cpqhp_resource_sort_and_combine(&(ctrl->p_mem_head));
1538                 cpqhp_resource_sort_and_combine(&(ctrl->io_head));
1539                 cpqhp_resource_sort_and_combine(&(ctrl->bus_head));
1540
1541                 if (rc) {
1542                         mutex_lock(&ctrl->crit_sect);
1543
1544                         amber_LED_on(ctrl, hp_slot);
1545                         green_LED_off(ctrl, hp_slot);
1546                         slot_disable(ctrl, hp_slot);
1547
1548                         set_SOGO(ctrl);
1549
1550                         /* Wait for SOBS to be unset */
1551                         wait_for_ctrl_irq(ctrl);
1552
1553                         mutex_unlock(&ctrl->crit_sect);
1554                         return rc;
1555                 } else {
1556                         cpqhp_save_slot_config(ctrl, func);
1557                 }
1558
1559
1560                 func->status = 0;
1561                 func->switch_save = 0x10;
1562                 func->is_a_board = 0x01;
1563
1564                 /* next, we will instantiate the linux pci_dev structures (with
1565                  * appropriate driver notification, if already present) */
1566                 dbg("%s: configure linux pci_dev structure\n", __func__);
1567                 index = 0;
1568                 do {
1569                         new_slot = cpqhp_slot_find(ctrl->bus, func->device, index++);
1570                         if (new_slot && !new_slot->pci_dev)
1571                                 cpqhp_configure_device(ctrl, new_slot);
1572                 } while (new_slot);
1573
1574                 mutex_lock(&ctrl->crit_sect);
1575
1576                 green_LED_on(ctrl, hp_slot);
1577
1578                 set_SOGO(ctrl);
1579
1580                 /* Wait for SOBS to be unset */
1581                 wait_for_ctrl_irq(ctrl);
1582
1583                 mutex_unlock(&ctrl->crit_sect);
1584         } else {
1585                 mutex_lock(&ctrl->crit_sect);
1586
1587                 amber_LED_on(ctrl, hp_slot);
1588                 green_LED_off(ctrl, hp_slot);
1589                 slot_disable(ctrl, hp_slot);
1590
1591                 set_SOGO(ctrl);
1592
1593                 /* Wait for SOBS to be unset */
1594                 wait_for_ctrl_irq(ctrl);
1595
1596                 mutex_unlock(&ctrl->crit_sect);
1597
1598                 return rc;
1599         }
1600         return 0;
1601 }
1602
1603
1604 /**
1605  * remove_board - Turns off slot and LEDs
1606  * @func: PCI device/function info
1607  * @replace_flag: whether replacing or adding a new device
1608  * @ctrl: target controller
1609  */
1610 static u32 remove_board(struct pci_func *func, u32 replace_flag, struct controller *ctrl)
1611 {
1612         int index;
1613         u8 skip = 0;
1614         u8 device;
1615         u8 hp_slot;
1616         u8 temp_byte;
1617         u32 rc;
1618         struct resource_lists res_lists;
1619         struct pci_func *temp_func;
1620
1621         if (cpqhp_unconfigure_device(func))
1622                 return 1;
1623
1624         device = func->device;
1625
1626         hp_slot = func->device - ctrl->slot_device_offset;
1627         dbg("In %s, hp_slot = %d\n", __func__, hp_slot);
1628
1629         /* When we get here, it is safe to change base address registers.
1630          * We will attempt to save the base address register lengths */
1631         if (replace_flag || !ctrl->add_support)
1632                 rc = cpqhp_save_base_addr_length(ctrl, func);
1633         else if (!func->bus_head && !func->mem_head &&
1634                  !func->p_mem_head && !func->io_head) {
1635                 /* Here we check to see if we've saved any of the board's
1636                  * resources already.  If so, we'll skip the attempt to
1637                  * determine what's being used. */
1638                 index = 0;
1639                 temp_func = cpqhp_slot_find(func->bus, func->device, index++);
1640                 while (temp_func) {
1641                         if (temp_func->bus_head || temp_func->mem_head
1642                             || temp_func->p_mem_head || temp_func->io_head) {
1643                                 skip = 1;
1644                                 break;
1645                         }
1646                         temp_func = cpqhp_slot_find(temp_func->bus, temp_func->device, index++);
1647                 }
1648
1649                 if (!skip)
1650                         rc = cpqhp_save_used_resources(ctrl, func);
1651         }
1652         /* Change status to shutdown */
1653         if (func->is_a_board)
1654                 func->status = 0x01;
1655         func->configured = 0;
1656
1657         mutex_lock(&ctrl->crit_sect);
1658
1659         green_LED_off(ctrl, hp_slot);
1660         slot_disable(ctrl, hp_slot);
1661
1662         set_SOGO(ctrl);
1663
1664         /* turn off SERR for slot */
1665         temp_byte = readb(ctrl->hpc_reg + SLOT_SERR);
1666         temp_byte &= ~(0x01 << hp_slot);
1667         writeb(temp_byte, ctrl->hpc_reg + SLOT_SERR);
1668
1669         /* Wait for SOBS to be unset */
1670         wait_for_ctrl_irq(ctrl);
1671
1672         mutex_unlock(&ctrl->crit_sect);
1673
1674         if (!replace_flag && ctrl->add_support) {
1675                 while (func) {
1676                         res_lists.io_head = ctrl->io_head;
1677                         res_lists.mem_head = ctrl->mem_head;
1678                         res_lists.p_mem_head = ctrl->p_mem_head;
1679                         res_lists.bus_head = ctrl->bus_head;
1680
1681                         cpqhp_return_board_resources(func, &res_lists);
1682
1683                         ctrl->io_head = res_lists.io_head;
1684                         ctrl->mem_head = res_lists.mem_head;
1685                         ctrl->p_mem_head = res_lists.p_mem_head;
1686                         ctrl->bus_head = res_lists.bus_head;
1687
1688                         cpqhp_resource_sort_and_combine(&(ctrl->mem_head));
1689                         cpqhp_resource_sort_and_combine(&(ctrl->p_mem_head));
1690                         cpqhp_resource_sort_and_combine(&(ctrl->io_head));
1691                         cpqhp_resource_sort_and_combine(&(ctrl->bus_head));
1692
1693                         if (is_bridge(func)) {
1694                                 bridge_slot_remove(func);
1695                         } else
1696                                 slot_remove(func);
1697
1698                         func = cpqhp_slot_find(ctrl->bus, device, 0);
1699                 }
1700
1701                 /* Setup slot structure with entry for empty slot */
1702                 func = cpqhp_slot_create(ctrl->bus);
1703
1704                 if (func == NULL)
1705                         return 1;
1706
1707                 func->bus = ctrl->bus;
1708                 func->device = device;
1709                 func->function = 0;
1710                 func->configured = 0;
1711                 func->switch_save = 0x10;
1712                 func->is_a_board = 0;
1713                 func->p_task_event = NULL;
1714         }
1715
1716         return 0;
1717 }
1718
1719 static void pushbutton_helper_thread(struct timer_list *t)
1720 {
1721         pushbutton_pending = t;
1722
1723         wake_up_process(cpqhp_event_thread);
1724 }
1725
1726
1727 /* this is the main worker thread */
1728 static int event_thread(void *data)
1729 {
1730         struct controller *ctrl;
1731
1732         while (1) {
1733                 dbg("!!!!event_thread sleeping\n");
1734                 set_current_state(TASK_INTERRUPTIBLE);
1735                 schedule();
1736
1737                 if (kthread_should_stop())
1738                         break;
1739                 /* Do stuff here */
1740                 if (pushbutton_pending)
1741                         cpqhp_pushbutton_thread(pushbutton_pending);
1742                 else
1743                         for (ctrl = cpqhp_ctrl_list; ctrl; ctrl = ctrl->next)
1744                                 interrupt_event_handler(ctrl);
1745         }
1746         dbg("event_thread signals exit\n");
1747         return 0;
1748 }
1749
1750 int cpqhp_event_start_thread(void)
1751 {
1752         cpqhp_event_thread = kthread_run(event_thread, NULL, "phpd_event");
1753         if (IS_ERR(cpqhp_event_thread)) {
1754                 err("Can't start up our event thread\n");
1755                 return PTR_ERR(cpqhp_event_thread);
1756         }
1757
1758         return 0;
1759 }
1760
1761
1762 void cpqhp_event_stop_thread(void)
1763 {
1764         kthread_stop(cpqhp_event_thread);
1765 }
1766
1767
1768 static void interrupt_event_handler(struct controller *ctrl)
1769 {
1770         int loop = 0;
1771         int change = 1;
1772         struct pci_func *func;
1773         u8 hp_slot;
1774         struct slot *p_slot;
1775
1776         while (change) {
1777                 change = 0;
1778
1779                 for (loop = 0; loop < 10; loop++) {
1780                         /* dbg("loop %d\n", loop); */
1781                         if (ctrl->event_queue[loop].event_type != 0) {
1782                                 hp_slot = ctrl->event_queue[loop].hp_slot;
1783
1784                                 func = cpqhp_slot_find(ctrl->bus, (hp_slot + ctrl->slot_device_offset), 0);
1785                                 if (!func)
1786                                         return;
1787
1788                                 p_slot = cpqhp_find_slot(ctrl, hp_slot + ctrl->slot_device_offset);
1789                                 if (!p_slot)
1790                                         return;
1791
1792                                 dbg("hp_slot %d, func %p, p_slot %p\n",
1793                                     hp_slot, func, p_slot);
1794
1795                                 if (ctrl->event_queue[loop].event_type == INT_BUTTON_PRESS) {
1796                                         dbg("button pressed\n");
1797                                 } else if (ctrl->event_queue[loop].event_type ==
1798                                            INT_BUTTON_CANCEL) {
1799                                         dbg("button cancel\n");
1800                                         del_timer(&p_slot->task_event);
1801
1802                                         mutex_lock(&ctrl->crit_sect);
1803
1804                                         if (p_slot->state == BLINKINGOFF_STATE) {
1805                                                 /* slot is on */
1806                                                 dbg("turn on green LED\n");
1807                                                 green_LED_on(ctrl, hp_slot);
1808                                         } else if (p_slot->state == BLINKINGON_STATE) {
1809                                                 /* slot is off */
1810                                                 dbg("turn off green LED\n");
1811                                                 green_LED_off(ctrl, hp_slot);
1812                                         }
1813
1814                                         info(msg_button_cancel, p_slot->number);
1815
1816                                         p_slot->state = STATIC_STATE;
1817
1818                                         amber_LED_off(ctrl, hp_slot);
1819
1820                                         set_SOGO(ctrl);
1821
1822                                         /* Wait for SOBS to be unset */
1823                                         wait_for_ctrl_irq(ctrl);
1824
1825                                         mutex_unlock(&ctrl->crit_sect);
1826                                 }
1827                                 /*** button Released (No action on press...) */
1828                                 else if (ctrl->event_queue[loop].event_type == INT_BUTTON_RELEASE) {
1829                                         dbg("button release\n");
1830
1831                                         if (is_slot_enabled(ctrl, hp_slot)) {
1832                                                 dbg("slot is on\n");
1833                                                 p_slot->state = BLINKINGOFF_STATE;
1834                                                 info(msg_button_off, p_slot->number);
1835                                         } else {
1836                                                 dbg("slot is off\n");
1837                                                 p_slot->state = BLINKINGON_STATE;
1838                                                 info(msg_button_on, p_slot->number);
1839                                         }
1840                                         mutex_lock(&ctrl->crit_sect);
1841
1842                                         dbg("blink green LED and turn off amber\n");
1843
1844                                         amber_LED_off(ctrl, hp_slot);
1845                                         green_LED_blink(ctrl, hp_slot);
1846
1847                                         set_SOGO(ctrl);
1848
1849                                         /* Wait for SOBS to be unset */
1850                                         wait_for_ctrl_irq(ctrl);
1851
1852                                         mutex_unlock(&ctrl->crit_sect);
1853                                         timer_setup(&p_slot->task_event,
1854                                                     pushbutton_helper_thread,
1855                                                     0);
1856                                         p_slot->hp_slot = hp_slot;
1857                                         p_slot->ctrl = ctrl;
1858 /*                                      p_slot->physical_slot = physical_slot; */
1859                                         p_slot->task_event.expires = jiffies + 5 * HZ;   /* 5 second delay */
1860
1861                                         dbg("add_timer p_slot = %p\n", p_slot);
1862                                         add_timer(&p_slot->task_event);
1863                                 }
1864                                 /***********POWER FAULT */
1865                                 else if (ctrl->event_queue[loop].event_type == INT_POWER_FAULT) {
1866                                         dbg("power fault\n");
1867                                 }
1868
1869                                 ctrl->event_queue[loop].event_type = 0;
1870
1871                                 change = 1;
1872                         }
1873                 }               /* End of FOR loop */
1874         }
1875 }
1876
1877
1878 /**
1879  * cpqhp_pushbutton_thread - handle pushbutton events
1880  * @slot: target slot (struct)
1881  *
1882  * Scheduled procedure to handle blocking stuff for the pushbuttons.
1883  * Handles all pending events and exits.
1884  */
1885 void cpqhp_pushbutton_thread(struct timer_list *t)
1886 {
1887         u8 hp_slot;
1888         u8 device;
1889         struct pci_func *func;
1890         struct slot *p_slot = from_timer(p_slot, t, task_event);
1891         struct controller *ctrl = (struct controller *) p_slot->ctrl;
1892
1893         pushbutton_pending = NULL;
1894         hp_slot = p_slot->hp_slot;
1895
1896         device = p_slot->device;
1897
1898         if (is_slot_enabled(ctrl, hp_slot)) {
1899                 p_slot->state = POWEROFF_STATE;
1900                 /* power Down board */
1901                 func = cpqhp_slot_find(p_slot->bus, p_slot->device, 0);
1902                 dbg("In power_down_board, func = %p, ctrl = %p\n", func, ctrl);
1903                 if (!func) {
1904                         dbg("Error! func NULL in %s\n", __func__);
1905                         return;
1906                 }
1907
1908                 if (cpqhp_process_SS(ctrl, func) != 0) {
1909                         amber_LED_on(ctrl, hp_slot);
1910                         green_LED_on(ctrl, hp_slot);
1911
1912                         set_SOGO(ctrl);
1913
1914                         /* Wait for SOBS to be unset */
1915                         wait_for_ctrl_irq(ctrl);
1916                 }
1917
1918                 p_slot->state = STATIC_STATE;
1919         } else {
1920                 p_slot->state = POWERON_STATE;
1921                 /* slot is off */
1922
1923                 func = cpqhp_slot_find(p_slot->bus, p_slot->device, 0);
1924                 dbg("In add_board, func = %p, ctrl = %p\n", func, ctrl);
1925                 if (!func) {
1926                         dbg("Error! func NULL in %s\n", __func__);
1927                         return;
1928                 }
1929
1930                 if (ctrl != NULL) {
1931                         if (cpqhp_process_SI(ctrl, func) != 0) {
1932                                 amber_LED_on(ctrl, hp_slot);
1933                                 green_LED_off(ctrl, hp_slot);
1934
1935                                 set_SOGO(ctrl);
1936
1937                                 /* Wait for SOBS to be unset */
1938                                 wait_for_ctrl_irq(ctrl);
1939                         }
1940                 }
1941
1942                 p_slot->state = STATIC_STATE;
1943         }
1944 }
1945
1946
1947 int cpqhp_process_SI(struct controller *ctrl, struct pci_func *func)
1948 {
1949         u8 device, hp_slot;
1950         u16 temp_word;
1951         u32 tempdword;
1952         int rc;
1953         struct slot *p_slot;
1954         int physical_slot = 0;
1955
1956         tempdword = 0;
1957
1958         device = func->device;
1959         hp_slot = device - ctrl->slot_device_offset;
1960         p_slot = cpqhp_find_slot(ctrl, device);
1961         if (p_slot)
1962                 physical_slot = p_slot->number;
1963
1964         /* Check to see if the interlock is closed */
1965         tempdword = readl(ctrl->hpc_reg + INT_INPUT_CLEAR);
1966
1967         if (tempdword & (0x01 << hp_slot))
1968                 return 1;
1969
1970         if (func->is_a_board) {
1971                 rc = board_replaced(func, ctrl);
1972         } else {
1973                 /* add board */
1974                 slot_remove(func);
1975
1976                 func = cpqhp_slot_create(ctrl->bus);
1977                 if (func == NULL)
1978                         return 1;
1979
1980                 func->bus = ctrl->bus;
1981                 func->device = device;
1982                 func->function = 0;
1983                 func->configured = 0;
1984                 func->is_a_board = 1;
1985
1986                 /* We have to save the presence info for these slots */
1987                 temp_word = ctrl->ctrl_int_comp >> 16;
1988                 func->presence_save = (temp_word >> hp_slot) & 0x01;
1989                 func->presence_save |= (temp_word >> (hp_slot + 7)) & 0x02;
1990
1991                 if (ctrl->ctrl_int_comp & (0x1L << hp_slot)) {
1992                         func->switch_save = 0;
1993                 } else {
1994                         func->switch_save = 0x10;
1995                 }
1996
1997                 rc = board_added(func, ctrl);
1998                 if (rc) {
1999                         if (is_bridge(func)) {
2000                                 bridge_slot_remove(func);
2001                         } else
2002                                 slot_remove(func);
2003
2004                         /* Setup slot structure with entry for empty slot */
2005                         func = cpqhp_slot_create(ctrl->bus);
2006
2007                         if (func == NULL)
2008                                 return 1;
2009
2010                         func->bus = ctrl->bus;
2011                         func->device = device;
2012                         func->function = 0;
2013                         func->configured = 0;
2014                         func->is_a_board = 0;
2015
2016                         /* We have to save the presence info for these slots */
2017                         temp_word = ctrl->ctrl_int_comp >> 16;
2018                         func->presence_save = (temp_word >> hp_slot) & 0x01;
2019                         func->presence_save |=
2020                         (temp_word >> (hp_slot + 7)) & 0x02;
2021
2022                         if (ctrl->ctrl_int_comp & (0x1L << hp_slot)) {
2023                                 func->switch_save = 0;
2024                         } else {
2025                                 func->switch_save = 0x10;
2026                         }
2027                 }
2028         }
2029
2030         if (rc)
2031                 dbg("%s: rc = %d\n", __func__, rc);
2032
2033         return rc;
2034 }
2035
2036
2037 int cpqhp_process_SS(struct controller *ctrl, struct pci_func *func)
2038 {
2039         u8 device, class_code, header_type, BCR;
2040         u8 index = 0;
2041         u8 replace_flag;
2042         u32 rc = 0;
2043         unsigned int devfn;
2044         struct slot *p_slot;
2045         struct pci_bus *pci_bus = ctrl->pci_bus;
2046         int physical_slot = 0;
2047
2048         device = func->device;
2049         func = cpqhp_slot_find(ctrl->bus, device, index++);
2050         p_slot = cpqhp_find_slot(ctrl, device);
2051         if (p_slot)
2052                 physical_slot = p_slot->number;
2053
2054         /* Make sure there are no video controllers here */
2055         while (func && !rc) {
2056                 pci_bus->number = func->bus;
2057                 devfn = PCI_DEVFN(func->device, func->function);
2058
2059                 /* Check the Class Code */
2060                 rc = pci_bus_read_config_byte(pci_bus, devfn, 0x0B, &class_code);
2061                 if (rc)
2062                         return rc;
2063
2064                 if (class_code == PCI_BASE_CLASS_DISPLAY) {
2065                         /* Display/Video adapter (not supported) */
2066                         rc = REMOVE_NOT_SUPPORTED;
2067                 } else {
2068                         /* See if it's a bridge */
2069                         rc = pci_bus_read_config_byte(pci_bus, devfn, PCI_HEADER_TYPE, &header_type);
2070                         if (rc)
2071                                 return rc;
2072
2073                         /* If it's a bridge, check the VGA Enable bit */
2074                         if ((header_type & 0x7F) == PCI_HEADER_TYPE_BRIDGE) {
2075                                 rc = pci_bus_read_config_byte(pci_bus, devfn, PCI_BRIDGE_CONTROL, &BCR);
2076                                 if (rc)
2077                                         return rc;
2078
2079                                 /* If the VGA Enable bit is set, remove isn't
2080                                  * supported */
2081                                 if (BCR & PCI_BRIDGE_CTL_VGA)
2082                                         rc = REMOVE_NOT_SUPPORTED;
2083                         }
2084                 }
2085
2086                 func = cpqhp_slot_find(ctrl->bus, device, index++);
2087         }
2088
2089         func = cpqhp_slot_find(ctrl->bus, device, 0);
2090         if ((func != NULL) && !rc) {
2091                 /* FIXME: Replace flag should be passed into process_SS */
2092                 replace_flag = !(ctrl->add_support);
2093                 rc = remove_board(func, replace_flag, ctrl);
2094         } else if (!rc) {
2095                 rc = 1;
2096         }
2097
2098         return rc;
2099 }
2100
2101 /**
2102  * switch_leds - switch the leds, go from one site to the other.
2103  * @ctrl: controller to use
2104  * @num_of_slots: number of slots to use
2105  * @work_LED: LED control value
2106  * @direction: 1 to start from the left side, 0 to start right.
2107  */
2108 static void switch_leds(struct controller *ctrl, const int num_of_slots,
2109                         u32 *work_LED, const int direction)
2110 {
2111         int loop;
2112
2113         for (loop = 0; loop < num_of_slots; loop++) {
2114                 if (direction)
2115                         *work_LED = *work_LED >> 1;
2116                 else
2117                         *work_LED = *work_LED << 1;
2118                 writel(*work_LED, ctrl->hpc_reg + LED_CONTROL);
2119
2120                 set_SOGO(ctrl);
2121
2122                 /* Wait for SOGO interrupt */
2123                 wait_for_ctrl_irq(ctrl);
2124
2125                 /* Get ready for next iteration */
2126                 long_delay((2*HZ)/10);
2127         }
2128 }
2129
2130 /**
2131  * cpqhp_hardware_test - runs hardware tests
2132  * @ctrl: target controller
2133  * @test_num: the number written to the "test" file in sysfs.
2134  *
2135  * For hot plug ctrl folks to play with.
2136  */
2137 int cpqhp_hardware_test(struct controller *ctrl, int test_num)
2138 {
2139         u32 save_LED;
2140         u32 work_LED;
2141         int loop;
2142         int num_of_slots;
2143
2144         num_of_slots = readb(ctrl->hpc_reg + SLOT_MASK) & 0x0f;
2145
2146         switch (test_num) {
2147         case 1:
2148                 /* Do stuff here! */
2149
2150                 /* Do that funky LED thing */
2151                 /* so we can restore them later */
2152                 save_LED = readl(ctrl->hpc_reg + LED_CONTROL);
2153                 work_LED = 0x01010101;
2154                 switch_leds(ctrl, num_of_slots, &work_LED, 0);
2155                 switch_leds(ctrl, num_of_slots, &work_LED, 1);
2156                 switch_leds(ctrl, num_of_slots, &work_LED, 0);
2157                 switch_leds(ctrl, num_of_slots, &work_LED, 1);
2158
2159                 work_LED = 0x01010000;
2160                 writel(work_LED, ctrl->hpc_reg + LED_CONTROL);
2161                 switch_leds(ctrl, num_of_slots, &work_LED, 0);
2162                 switch_leds(ctrl, num_of_slots, &work_LED, 1);
2163                 work_LED = 0x00000101;
2164                 writel(work_LED, ctrl->hpc_reg + LED_CONTROL);
2165                 switch_leds(ctrl, num_of_slots, &work_LED, 0);
2166                 switch_leds(ctrl, num_of_slots, &work_LED, 1);
2167
2168                 work_LED = 0x01010000;
2169                 writel(work_LED, ctrl->hpc_reg + LED_CONTROL);
2170                 for (loop = 0; loop < num_of_slots; loop++) {
2171                         set_SOGO(ctrl);
2172
2173                         /* Wait for SOGO interrupt */
2174                         wait_for_ctrl_irq(ctrl);
2175
2176                         /* Get ready for next iteration */
2177                         long_delay((3*HZ)/10);
2178                         work_LED = work_LED >> 16;
2179                         writel(work_LED, ctrl->hpc_reg + LED_CONTROL);
2180
2181                         set_SOGO(ctrl);
2182
2183                         /* Wait for SOGO interrupt */
2184                         wait_for_ctrl_irq(ctrl);
2185
2186                         /* Get ready for next iteration */
2187                         long_delay((3*HZ)/10);
2188                         work_LED = work_LED << 16;
2189                         writel(work_LED, ctrl->hpc_reg + LED_CONTROL);
2190                         work_LED = work_LED << 1;
2191                         writel(work_LED, ctrl->hpc_reg + LED_CONTROL);
2192                 }
2193
2194                 /* put it back the way it was */
2195                 writel(save_LED, ctrl->hpc_reg + LED_CONTROL);
2196
2197                 set_SOGO(ctrl);
2198
2199                 /* Wait for SOBS to be unset */
2200                 wait_for_ctrl_irq(ctrl);
2201                 break;
2202         case 2:
2203                 /* Do other stuff here! */
2204                 break;
2205         case 3:
2206                 /* and more... */
2207                 break;
2208         }
2209         return 0;
2210 }
2211
2212
2213 /**
2214  * configure_new_device - Configures the PCI header information of one board.
2215  * @ctrl: pointer to controller structure
2216  * @func: pointer to function structure
2217  * @behind_bridge: 1 if this is a recursive call, 0 if not
2218  * @resources: pointer to set of resource lists
2219  *
2220  * Returns 0 if success.
2221  */
2222 static u32 configure_new_device(struct controller  *ctrl, struct pci_func  *func,
2223                                  u8 behind_bridge, struct resource_lists  *resources)
2224 {
2225         u8 temp_byte, function, max_functions, stop_it;
2226         int rc;
2227         u32 ID;
2228         struct pci_func *new_slot;
2229         int index;
2230
2231         new_slot = func;
2232
2233         dbg("%s\n", __func__);
2234         /* Check for Multi-function device */
2235         ctrl->pci_bus->number = func->bus;
2236         rc = pci_bus_read_config_byte(ctrl->pci_bus, PCI_DEVFN(func->device, func->function), 0x0E, &temp_byte);
2237         if (rc) {
2238                 dbg("%s: rc = %d\n", __func__, rc);
2239                 return rc;
2240         }
2241
2242         if (temp_byte & 0x80)   /* Multi-function device */
2243                 max_functions = 8;
2244         else
2245                 max_functions = 1;
2246
2247         function = 0;
2248
2249         do {
2250                 rc = configure_new_function(ctrl, new_slot, behind_bridge, resources);
2251
2252                 if (rc) {
2253                         dbg("configure_new_function failed %d\n", rc);
2254                         index = 0;
2255
2256                         while (new_slot) {
2257                                 new_slot = cpqhp_slot_find(new_slot->bus, new_slot->device, index++);
2258
2259                                 if (new_slot)
2260                                         cpqhp_return_board_resources(new_slot, resources);
2261                         }
2262
2263                         return rc;
2264                 }
2265
2266                 function++;
2267
2268                 stop_it = 0;
2269
2270                 /* The following loop skips to the next present function
2271                  * and creates a board structure */
2272
2273                 while ((function < max_functions) && (!stop_it)) {
2274                         pci_bus_read_config_dword(ctrl->pci_bus, PCI_DEVFN(func->device, function), 0x00, &ID);
2275
2276                         if (ID == 0xFFFFFFFF) {
2277                                 function++;
2278                         } else {
2279                                 /* Setup slot structure. */
2280                                 new_slot = cpqhp_slot_create(func->bus);
2281
2282                                 if (new_slot == NULL)
2283                                         return 1;
2284
2285                                 new_slot->bus = func->bus;
2286                                 new_slot->device = func->device;
2287                                 new_slot->function = function;
2288                                 new_slot->is_a_board = 1;
2289                                 new_slot->status = 0;
2290
2291                                 stop_it++;
2292                         }
2293                 }
2294
2295         } while (function < max_functions);
2296         dbg("returning from configure_new_device\n");
2297
2298         return 0;
2299 }
2300
2301
2302 /*
2303  * Configuration logic that involves the hotplug data structures and
2304  * their bookkeeping
2305  */
2306
2307
2308 /**
2309  * configure_new_function - Configures the PCI header information of one device
2310  * @ctrl: pointer to controller structure
2311  * @func: pointer to function structure
2312  * @behind_bridge: 1 if this is a recursive call, 0 if not
2313  * @resources: pointer to set of resource lists
2314  *
2315  * Calls itself recursively for bridged devices.
2316  * Returns 0 if success.
2317  */
2318 static int configure_new_function(struct controller *ctrl, struct pci_func *func,
2319                                    u8 behind_bridge,
2320                                    struct resource_lists *resources)
2321 {
2322         int cloop;
2323         u8 IRQ = 0;
2324         u8 temp_byte;
2325         u8 device;
2326         u8 class_code;
2327         u16 command;
2328         u16 temp_word;
2329         u32 temp_dword;
2330         u32 rc;
2331         u32 temp_register;
2332         u32 base;
2333         u32 ID;
2334         unsigned int devfn;
2335         struct pci_resource *mem_node;
2336         struct pci_resource *p_mem_node;
2337         struct pci_resource *io_node;
2338         struct pci_resource *bus_node;
2339         struct pci_resource *hold_mem_node;
2340         struct pci_resource *hold_p_mem_node;
2341         struct pci_resource *hold_IO_node;
2342         struct pci_resource *hold_bus_node;
2343         struct irq_mapping irqs;
2344         struct pci_func *new_slot;
2345         struct pci_bus *pci_bus;
2346         struct resource_lists temp_resources;
2347
2348         pci_bus = ctrl->pci_bus;
2349         pci_bus->number = func->bus;
2350         devfn = PCI_DEVFN(func->device, func->function);
2351
2352         /* Check for Bridge */
2353         rc = pci_bus_read_config_byte(pci_bus, devfn, PCI_HEADER_TYPE, &temp_byte);
2354         if (rc)
2355                 return rc;
2356
2357         if ((temp_byte & 0x7F) == PCI_HEADER_TYPE_BRIDGE) {
2358                 /* set Primary bus */
2359                 dbg("set Primary bus = %d\n", func->bus);
2360                 rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_PRIMARY_BUS, func->bus);
2361                 if (rc)
2362                         return rc;
2363
2364                 /* find range of buses to use */
2365                 dbg("find ranges of buses to use\n");
2366                 bus_node = get_max_resource(&(resources->bus_head), 1);
2367
2368                 /* If we don't have any buses to allocate, we can't continue */
2369                 if (!bus_node)
2370                         return -ENOMEM;
2371
2372                 /* set Secondary bus */
2373                 temp_byte = bus_node->base;
2374                 dbg("set Secondary bus = %d\n", bus_node->base);
2375                 rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_SECONDARY_BUS, temp_byte);
2376                 if (rc)
2377                         return rc;
2378
2379                 /* set subordinate bus */
2380                 temp_byte = bus_node->base + bus_node->length - 1;
2381                 dbg("set subordinate bus = %d\n", bus_node->base + bus_node->length - 1);
2382                 rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_SUBORDINATE_BUS, temp_byte);
2383                 if (rc)
2384                         return rc;
2385
2386                 /* set subordinate Latency Timer and base Latency Timer */
2387                 temp_byte = 0x40;
2388                 rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_SEC_LATENCY_TIMER, temp_byte);
2389                 if (rc)
2390                         return rc;
2391                 rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_LATENCY_TIMER, temp_byte);
2392                 if (rc)
2393                         return rc;
2394
2395                 /* set Cache Line size */
2396                 temp_byte = 0x08;
2397                 rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_CACHE_LINE_SIZE, temp_byte);
2398                 if (rc)
2399                         return rc;
2400
2401                 /* Setup the IO, memory, and prefetchable windows */
2402                 io_node = get_max_resource(&(resources->io_head), 0x1000);
2403                 if (!io_node)
2404                         return -ENOMEM;
2405                 mem_node = get_max_resource(&(resources->mem_head), 0x100000);
2406                 if (!mem_node)
2407                         return -ENOMEM;
2408                 p_mem_node = get_max_resource(&(resources->p_mem_head), 0x100000);
2409                 if (!p_mem_node)
2410                         return -ENOMEM;
2411                 dbg("Setup the IO, memory, and prefetchable windows\n");
2412                 dbg("io_node\n");
2413                 dbg("(base, len, next) (%x, %x, %p)\n", io_node->base,
2414                                         io_node->length, io_node->next);
2415                 dbg("mem_node\n");
2416                 dbg("(base, len, next) (%x, %x, %p)\n", mem_node->base,
2417                                         mem_node->length, mem_node->next);
2418                 dbg("p_mem_node\n");
2419                 dbg("(base, len, next) (%x, %x, %p)\n", p_mem_node->base,
2420                                         p_mem_node->length, p_mem_node->next);
2421
2422                 /* set up the IRQ info */
2423                 if (!resources->irqs) {
2424                         irqs.barber_pole = 0;
2425                         irqs.interrupt[0] = 0;
2426                         irqs.interrupt[1] = 0;
2427                         irqs.interrupt[2] = 0;
2428                         irqs.interrupt[3] = 0;
2429                         irqs.valid_INT = 0;
2430                 } else {
2431                         irqs.barber_pole = resources->irqs->barber_pole;
2432                         irqs.interrupt[0] = resources->irqs->interrupt[0];
2433                         irqs.interrupt[1] = resources->irqs->interrupt[1];
2434                         irqs.interrupt[2] = resources->irqs->interrupt[2];
2435                         irqs.interrupt[3] = resources->irqs->interrupt[3];
2436                         irqs.valid_INT = resources->irqs->valid_INT;
2437                 }
2438
2439                 /* set up resource lists that are now aligned on top and bottom
2440                  * for anything behind the bridge. */
2441                 temp_resources.bus_head = bus_node;
2442                 temp_resources.io_head = io_node;
2443                 temp_resources.mem_head = mem_node;
2444                 temp_resources.p_mem_head = p_mem_node;
2445                 temp_resources.irqs = &irqs;
2446
2447                 /* Make copies of the nodes we are going to pass down so that
2448                  * if there is a problem,we can just use these to free resources
2449                  */
2450                 hold_bus_node = kmalloc(sizeof(*hold_bus_node), GFP_KERNEL);
2451                 hold_IO_node = kmalloc(sizeof(*hold_IO_node), GFP_KERNEL);
2452                 hold_mem_node = kmalloc(sizeof(*hold_mem_node), GFP_KERNEL);
2453                 hold_p_mem_node = kmalloc(sizeof(*hold_p_mem_node), GFP_KERNEL);
2454
2455                 if (!hold_bus_node || !hold_IO_node || !hold_mem_node || !hold_p_mem_node) {
2456                         kfree(hold_bus_node);
2457                         kfree(hold_IO_node);
2458                         kfree(hold_mem_node);
2459                         kfree(hold_p_mem_node);
2460
2461                         return 1;
2462                 }
2463
2464                 memcpy(hold_bus_node, bus_node, sizeof(struct pci_resource));
2465
2466                 bus_node->base += 1;
2467                 bus_node->length -= 1;
2468                 bus_node->next = NULL;
2469
2470                 /* If we have IO resources copy them and fill in the bridge's
2471                  * IO range registers */
2472                 memcpy(hold_IO_node, io_node, sizeof(struct pci_resource));
2473                 io_node->next = NULL;
2474
2475                 /* set IO base and Limit registers */
2476                 temp_byte = io_node->base >> 8;
2477                 rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_IO_BASE, temp_byte);
2478
2479                 temp_byte = (io_node->base + io_node->length - 1) >> 8;
2480                 rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_IO_LIMIT, temp_byte);
2481
2482                 /* Copy the memory resources and fill in the bridge's memory
2483                  * range registers.
2484                  */
2485                 memcpy(hold_mem_node, mem_node, sizeof(struct pci_resource));
2486                 mem_node->next = NULL;
2487
2488                 /* set Mem base and Limit registers */
2489                 temp_word = mem_node->base >> 16;
2490                 rc = pci_bus_write_config_word(pci_bus, devfn, PCI_MEMORY_BASE, temp_word);
2491
2492                 temp_word = (mem_node->base + mem_node->length - 1) >> 16;
2493                 rc = pci_bus_write_config_word(pci_bus, devfn, PCI_MEMORY_LIMIT, temp_word);
2494
2495                 memcpy(hold_p_mem_node, p_mem_node, sizeof(struct pci_resource));
2496                 p_mem_node->next = NULL;
2497
2498                 /* set Pre Mem base and Limit registers */
2499                 temp_word = p_mem_node->base >> 16;
2500                 rc = pci_bus_write_config_word(pci_bus, devfn, PCI_PREF_MEMORY_BASE, temp_word);
2501
2502                 temp_word = (p_mem_node->base + p_mem_node->length - 1) >> 16;
2503                 rc = pci_bus_write_config_word(pci_bus, devfn, PCI_PREF_MEMORY_LIMIT, temp_word);
2504
2505                 /* Adjust this to compensate for extra adjustment in first loop
2506                  */
2507                 irqs.barber_pole--;
2508
2509                 rc = 0;
2510
2511                 /* Here we actually find the devices and configure them */
2512                 for (device = 0; (device <= 0x1F) && !rc; device++) {
2513                         irqs.barber_pole = (irqs.barber_pole + 1) & 0x03;
2514
2515                         ID = 0xFFFFFFFF;
2516                         pci_bus->number = hold_bus_node->base;
2517                         pci_bus_read_config_dword(pci_bus, PCI_DEVFN(device, 0), 0x00, &ID);
2518                         pci_bus->number = func->bus;
2519
2520                         if (ID != 0xFFFFFFFF) {   /*  device present */
2521                                 /* Setup slot structure. */
2522                                 new_slot = cpqhp_slot_create(hold_bus_node->base);
2523
2524                                 if (new_slot == NULL) {
2525                                         rc = -ENOMEM;
2526                                         continue;
2527                                 }
2528
2529                                 new_slot->bus = hold_bus_node->base;
2530                                 new_slot->device = device;
2531                                 new_slot->function = 0;
2532                                 new_slot->is_a_board = 1;
2533                                 new_slot->status = 0;
2534
2535                                 rc = configure_new_device(ctrl, new_slot, 1, &temp_resources);
2536                                 dbg("configure_new_device rc=0x%x\n", rc);
2537                         }       /* End of IF (device in slot?) */
2538                 }               /* End of FOR loop */
2539
2540                 if (rc)
2541                         goto free_and_out;
2542                 /* save the interrupt routing information */
2543                 if (resources->irqs) {
2544                         resources->irqs->interrupt[0] = irqs.interrupt[0];
2545                         resources->irqs->interrupt[1] = irqs.interrupt[1];
2546                         resources->irqs->interrupt[2] = irqs.interrupt[2];
2547                         resources->irqs->interrupt[3] = irqs.interrupt[3];
2548                         resources->irqs->valid_INT = irqs.valid_INT;
2549                 } else if (!behind_bridge) {
2550                         /* We need to hook up the interrupts here */
2551                         for (cloop = 0; cloop < 4; cloop++) {
2552                                 if (irqs.valid_INT & (0x01 << cloop)) {
2553                                         rc = cpqhp_set_irq(func->bus, func->device,
2554                                                            cloop + 1, irqs.interrupt[cloop]);
2555                                         if (rc)
2556                                                 goto free_and_out;
2557                                 }
2558                         }       /* end of for loop */
2559                 }
2560                 /* Return unused bus resources
2561                  * First use the temporary node to store information for
2562                  * the board */
2563                 if (bus_node && temp_resources.bus_head) {
2564                         hold_bus_node->length = bus_node->base - hold_bus_node->base;
2565
2566                         hold_bus_node->next = func->bus_head;
2567                         func->bus_head = hold_bus_node;
2568
2569                         temp_byte = temp_resources.bus_head->base - 1;
2570
2571                         /* set subordinate bus */
2572                         rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_SUBORDINATE_BUS, temp_byte);
2573
2574                         if (temp_resources.bus_head->length == 0) {
2575                                 kfree(temp_resources.bus_head);
2576                                 temp_resources.bus_head = NULL;
2577                         } else {
2578                                 return_resource(&(resources->bus_head), temp_resources.bus_head);
2579                         }
2580                 }
2581
2582                 /* If we have IO space available and there is some left,
2583                  * return the unused portion */
2584                 if (hold_IO_node && temp_resources.io_head) {
2585                         io_node = do_pre_bridge_resource_split(&(temp_resources.io_head),
2586                                                                &hold_IO_node, 0x1000);
2587
2588                         /* Check if we were able to split something off */
2589                         if (io_node) {
2590                                 hold_IO_node->base = io_node->base + io_node->length;
2591
2592                                 temp_byte = (hold_IO_node->base) >> 8;
2593                                 rc = pci_bus_write_config_word(pci_bus, devfn, PCI_IO_BASE, temp_byte);
2594
2595                                 return_resource(&(resources->io_head), io_node);
2596                         }
2597
2598                         io_node = do_bridge_resource_split(&(temp_resources.io_head), 0x1000);
2599
2600                         /* Check if we were able to split something off */
2601                         if (io_node) {
2602                                 /* First use the temporary node to store
2603                                  * information for the board */
2604                                 hold_IO_node->length = io_node->base - hold_IO_node->base;
2605
2606                                 /* If we used any, add it to the board's list */
2607                                 if (hold_IO_node->length) {
2608                                         hold_IO_node->next = func->io_head;
2609                                         func->io_head = hold_IO_node;
2610
2611                                         temp_byte = (io_node->base - 1) >> 8;
2612                                         rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_IO_LIMIT, temp_byte);
2613
2614                                         return_resource(&(resources->io_head), io_node);
2615                                 } else {
2616                                         /* it doesn't need any IO */
2617                                         temp_word = 0x0000;
2618                                         rc = pci_bus_write_config_word(pci_bus, devfn, PCI_IO_LIMIT, temp_word);
2619
2620                                         return_resource(&(resources->io_head), io_node);
2621                                         kfree(hold_IO_node);
2622                                 }
2623                         } else {
2624                                 /* it used most of the range */
2625                                 hold_IO_node->next = func->io_head;
2626                                 func->io_head = hold_IO_node;
2627                         }
2628                 } else if (hold_IO_node) {
2629                         /* it used the whole range */
2630                         hold_IO_node->next = func->io_head;
2631                         func->io_head = hold_IO_node;
2632                 }
2633                 /* If we have memory space available and there is some left,
2634                  * return the unused portion */
2635                 if (hold_mem_node && temp_resources.mem_head) {
2636                         mem_node = do_pre_bridge_resource_split(&(temp_resources.  mem_head),
2637                                                                 &hold_mem_node, 0x100000);
2638
2639                         /* Check if we were able to split something off */
2640                         if (mem_node) {
2641                                 hold_mem_node->base = mem_node->base + mem_node->length;
2642
2643                                 temp_word = (hold_mem_node->base) >> 16;
2644                                 rc = pci_bus_write_config_word(pci_bus, devfn, PCI_MEMORY_BASE, temp_word);
2645
2646                                 return_resource(&(resources->mem_head), mem_node);
2647                         }
2648
2649                         mem_node = do_bridge_resource_split(&(temp_resources.mem_head), 0x100000);
2650
2651                         /* Check if we were able to split something off */
2652                         if (mem_node) {
2653                                 /* First use the temporary node to store
2654                                  * information for the board */
2655                                 hold_mem_node->length = mem_node->base - hold_mem_node->base;
2656
2657                                 if (hold_mem_node->length) {
2658                                         hold_mem_node->next = func->mem_head;
2659                                         func->mem_head = hold_mem_node;
2660
2661                                         /* configure end address */
2662                                         temp_word = (mem_node->base - 1) >> 16;
2663                                         rc = pci_bus_write_config_word(pci_bus, devfn, PCI_MEMORY_LIMIT, temp_word);
2664
2665                                         /* Return unused resources to the pool */
2666                                         return_resource(&(resources->mem_head), mem_node);
2667                                 } else {
2668                                         /* it doesn't need any Mem */
2669                                         temp_word = 0x0000;
2670                                         rc = pci_bus_write_config_word(pci_bus, devfn, PCI_MEMORY_LIMIT, temp_word);
2671
2672                                         return_resource(&(resources->mem_head), mem_node);
2673                                         kfree(hold_mem_node);
2674                                 }
2675                         } else {
2676                                 /* it used most of the range */
2677                                 hold_mem_node->next = func->mem_head;
2678                                 func->mem_head = hold_mem_node;
2679                         }
2680                 } else if (hold_mem_node) {
2681                         /* it used the whole range */
2682                         hold_mem_node->next = func->mem_head;
2683                         func->mem_head = hold_mem_node;
2684                 }
2685                 /* If we have prefetchable memory space available and there
2686                  * is some left at the end, return the unused portion */
2687                 if (temp_resources.p_mem_head) {
2688                         p_mem_node = do_pre_bridge_resource_split(&(temp_resources.p_mem_head),
2689                                                                   &hold_p_mem_node, 0x100000);
2690
2691                         /* Check if we were able to split something off */
2692                         if (p_mem_node) {
2693                                 hold_p_mem_node->base = p_mem_node->base + p_mem_node->length;
2694
2695                                 temp_word = (hold_p_mem_node->base) >> 16;
2696                                 rc = pci_bus_write_config_word(pci_bus, devfn, PCI_PREF_MEMORY_BASE, temp_word);
2697
2698                                 return_resource(&(resources->p_mem_head), p_mem_node);
2699                         }
2700
2701                         p_mem_node = do_bridge_resource_split(&(temp_resources.p_mem_head), 0x100000);
2702
2703                         /* Check if we were able to split something off */
2704                         if (p_mem_node) {
2705                                 /* First use the temporary node to store
2706                                  * information for the board */
2707                                 hold_p_mem_node->length = p_mem_node->base - hold_p_mem_node->base;
2708
2709                                 /* If we used any, add it to the board's list */
2710                                 if (hold_p_mem_node->length) {
2711                                         hold_p_mem_node->next = func->p_mem_head;
2712                                         func->p_mem_head = hold_p_mem_node;
2713
2714                                         temp_word = (p_mem_node->base - 1) >> 16;
2715                                         rc = pci_bus_write_config_word(pci_bus, devfn, PCI_PREF_MEMORY_LIMIT, temp_word);
2716
2717                                         return_resource(&(resources->p_mem_head), p_mem_node);
2718                                 } else {
2719                                         /* it doesn't need any PMem */
2720                                         temp_word = 0x0000;
2721                                         rc = pci_bus_write_config_word(pci_bus, devfn, PCI_PREF_MEMORY_LIMIT, temp_word);
2722
2723                                         return_resource(&(resources->p_mem_head), p_mem_node);
2724                                         kfree(hold_p_mem_node);
2725                                 }
2726                         } else {
2727                                 /* it used the most of the range */
2728                                 hold_p_mem_node->next = func->p_mem_head;
2729                                 func->p_mem_head = hold_p_mem_node;
2730                         }
2731                 } else if (hold_p_mem_node) {
2732                         /* it used the whole range */
2733                         hold_p_mem_node->next = func->p_mem_head;
2734                         func->p_mem_head = hold_p_mem_node;
2735                 }
2736                 /* We should be configuring an IRQ and the bridge's base address
2737                  * registers if it needs them.  Although we have never seen such
2738                  * a device */
2739
2740                 /* enable card */
2741                 command = 0x0157;       /* = PCI_COMMAND_IO |
2742                                          *   PCI_COMMAND_MEMORY |
2743                                          *   PCI_COMMAND_MASTER |
2744                                          *   PCI_COMMAND_INVALIDATE |
2745                                          *   PCI_COMMAND_PARITY |
2746                                          *   PCI_COMMAND_SERR */
2747                 rc = pci_bus_write_config_word(pci_bus, devfn, PCI_COMMAND, command);
2748
2749                 /* set Bridge Control Register */
2750                 command = 0x07;         /* = PCI_BRIDGE_CTL_PARITY |
2751                                          *   PCI_BRIDGE_CTL_SERR |
2752                                          *   PCI_BRIDGE_CTL_NO_ISA */
2753                 rc = pci_bus_write_config_word(pci_bus, devfn, PCI_BRIDGE_CONTROL, command);
2754         } else if ((temp_byte & 0x7F) == PCI_HEADER_TYPE_NORMAL) {
2755                 /* Standard device */
2756                 rc = pci_bus_read_config_byte(pci_bus, devfn, 0x0B, &class_code);
2757
2758                 if (class_code == PCI_BASE_CLASS_DISPLAY) {
2759                         /* Display (video) adapter (not supported) */
2760                         return DEVICE_TYPE_NOT_SUPPORTED;
2761                 }
2762                 /* Figure out IO and memory needs */
2763                 for (cloop = 0x10; cloop <= 0x24; cloop += 4) {
2764                         temp_register = 0xFFFFFFFF;
2765
2766                         dbg("CND: bus=%d, devfn=%d, offset=%d\n", pci_bus->number, devfn, cloop);
2767                         rc = pci_bus_write_config_dword(pci_bus, devfn, cloop, temp_register);
2768
2769                         rc = pci_bus_read_config_dword(pci_bus, devfn, cloop, &temp_register);
2770                         dbg("CND: base = 0x%x\n", temp_register);
2771
2772                         if (temp_register) {      /* If this register is implemented */
2773                                 if ((temp_register & 0x03L) == 0x01) {
2774                                         /* Map IO */
2775
2776                                         /* set base = amount of IO space */
2777                                         base = temp_register & 0xFFFFFFFC;
2778                                         base = ~base + 1;
2779
2780                                         dbg("CND:      length = 0x%x\n", base);
2781                                         io_node = get_io_resource(&(resources->io_head), base);
2782                                         if (!io_node)
2783                                                 return -ENOMEM;
2784                                         dbg("Got io_node start = %8.8x, length = %8.8x next (%p)\n",
2785                                             io_node->base, io_node->length, io_node->next);
2786                                         dbg("func (%p) io_head (%p)\n", func, func->io_head);
2787
2788                                         /* allocate the resource to the board */
2789                                         base = io_node->base;
2790                                         io_node->next = func->io_head;
2791                                         func->io_head = io_node;
2792                                 } else if ((temp_register & 0x0BL) == 0x08) {
2793                                         /* Map prefetchable memory */
2794                                         base = temp_register & 0xFFFFFFF0;
2795                                         base = ~base + 1;
2796
2797                                         dbg("CND:      length = 0x%x\n", base);
2798                                         p_mem_node = get_resource(&(resources->p_mem_head), base);
2799
2800                                         /* allocate the resource to the board */
2801                                         if (p_mem_node) {
2802                                                 base = p_mem_node->base;
2803
2804                                                 p_mem_node->next = func->p_mem_head;
2805                                                 func->p_mem_head = p_mem_node;
2806                                         } else
2807                                                 return -ENOMEM;
2808                                 } else if ((temp_register & 0x0BL) == 0x00) {
2809                                         /* Map memory */
2810                                         base = temp_register & 0xFFFFFFF0;
2811                                         base = ~base + 1;
2812
2813                                         dbg("CND:      length = 0x%x\n", base);
2814                                         mem_node = get_resource(&(resources->mem_head), base);
2815
2816                                         /* allocate the resource to the board */
2817                                         if (mem_node) {
2818                                                 base = mem_node->base;
2819
2820                                                 mem_node->next = func->mem_head;
2821                                                 func->mem_head = mem_node;
2822                                         } else
2823                                                 return -ENOMEM;
2824                                 } else {
2825                                         /* Reserved bits or requesting space below 1M */
2826                                         return NOT_ENOUGH_RESOURCES;
2827                                 }
2828
2829                                 rc = pci_bus_write_config_dword(pci_bus, devfn, cloop, base);
2830
2831                                 /* Check for 64-bit base */
2832                                 if ((temp_register & 0x07L) == 0x04) {
2833                                         cloop += 4;
2834
2835                                         /* Upper 32 bits of address always zero
2836                                          * on today's systems */
2837                                         /* FIXME this is probably not true on
2838                                          * Alpha and ia64??? */
2839                                         base = 0;
2840                                         rc = pci_bus_write_config_dword(pci_bus, devfn, cloop, base);
2841                                 }
2842                         }
2843                 }               /* End of base register loop */
2844                 if (cpqhp_legacy_mode) {
2845                         /* Figure out which interrupt pin this function uses */
2846                         rc = pci_bus_read_config_byte(pci_bus, devfn,
2847                                 PCI_INTERRUPT_PIN, &temp_byte);
2848
2849                         /* If this function needs an interrupt and we are behind
2850                          * a bridge and the pin is tied to something that's
2851                          * already mapped, set this one the same */
2852                         if (temp_byte && resources->irqs &&
2853                             (resources->irqs->valid_INT &
2854                              (0x01 << ((temp_byte + resources->irqs->barber_pole - 1) & 0x03)))) {
2855                                 /* We have to share with something already set up */
2856                                 IRQ = resources->irqs->interrupt[(temp_byte +
2857                                         resources->irqs->barber_pole - 1) & 0x03];
2858                         } else {
2859                                 /* Program IRQ based on card type */
2860                                 rc = pci_bus_read_config_byte(pci_bus, devfn, 0x0B, &class_code);
2861
2862                                 if (class_code == PCI_BASE_CLASS_STORAGE)
2863                                         IRQ = cpqhp_disk_irq;
2864                                 else
2865                                         IRQ = cpqhp_nic_irq;
2866                         }
2867
2868                         /* IRQ Line */
2869                         rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_INTERRUPT_LINE, IRQ);
2870                 }
2871
2872                 if (!behind_bridge) {
2873                         rc = cpqhp_set_irq(func->bus, func->device, temp_byte, IRQ);
2874                         if (rc)
2875                                 return 1;
2876                 } else {
2877                         /* TBD - this code may also belong in the other clause
2878                          * of this If statement */
2879                         resources->irqs->interrupt[(temp_byte + resources->irqs->barber_pole - 1) & 0x03] = IRQ;
2880                         resources->irqs->valid_INT |= 0x01 << (temp_byte + resources->irqs->barber_pole - 1) & 0x03;
2881                 }
2882
2883                 /* Latency Timer */
2884                 temp_byte = 0x40;
2885                 rc = pci_bus_write_config_byte(pci_bus, devfn,
2886                                         PCI_LATENCY_TIMER, temp_byte);
2887
2888                 /* Cache Line size */
2889                 temp_byte = 0x08;
2890                 rc = pci_bus_write_config_byte(pci_bus, devfn,
2891                                         PCI_CACHE_LINE_SIZE, temp_byte);
2892
2893                 /* disable ROM base Address */
2894                 temp_dword = 0x00L;
2895                 rc = pci_bus_write_config_word(pci_bus, devfn,
2896                                         PCI_ROM_ADDRESS, temp_dword);
2897
2898                 /* enable card */
2899                 temp_word = 0x0157;     /* = PCI_COMMAND_IO |
2900                                          *   PCI_COMMAND_MEMORY |
2901                                          *   PCI_COMMAND_MASTER |
2902                                          *   PCI_COMMAND_INVALIDATE |
2903                                          *   PCI_COMMAND_PARITY |
2904                                          *   PCI_COMMAND_SERR */
2905                 rc = pci_bus_write_config_word(pci_bus, devfn,
2906                                         PCI_COMMAND, temp_word);
2907         } else {                /* End of Not-A-Bridge else */
2908                 /* It's some strange type of PCI adapter (Cardbus?) */
2909                 return DEVICE_TYPE_NOT_SUPPORTED;
2910         }
2911
2912         func->configured = 1;
2913
2914         return 0;
2915 free_and_out:
2916         cpqhp_destroy_resource_list(&temp_resources);
2917
2918         return_resource(&(resources->bus_head), hold_bus_node);
2919         return_resource(&(resources->io_head), hold_IO_node);
2920         return_resource(&(resources->mem_head), hold_mem_node);
2921         return_resource(&(resources->p_mem_head), hold_p_mem_node);
2922         return rc;
2923 }