Linux-libre 5.4.48-gnu
[librecmc/linux-libre.git] / drivers / nvme / target / core.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Common code for the NVMe target.
4  * Copyright (c) 2015-2016 HGST, a Western Digital Company.
5  */
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7 #include <linux/module.h>
8 #include <linux/random.h>
9 #include <linux/rculist.h>
10 #include <linux/pci-p2pdma.h>
11 #include <linux/scatterlist.h>
12
13 #define CREATE_TRACE_POINTS
14 #include "trace.h"
15
16 #include "nvmet.h"
17
18 struct workqueue_struct *buffered_io_wq;
19 static const struct nvmet_fabrics_ops *nvmet_transports[NVMF_TRTYPE_MAX];
20 static DEFINE_IDA(cntlid_ida);
21
22 /*
23  * This read/write semaphore is used to synchronize access to configuration
24  * information on a target system that will result in discovery log page
25  * information change for at least one host.
26  * The full list of resources to protected by this semaphore is:
27  *
28  *  - subsystems list
29  *  - per-subsystem allowed hosts list
30  *  - allow_any_host subsystem attribute
31  *  - nvmet_genctr
32  *  - the nvmet_transports array
33  *
34  * When updating any of those lists/structures write lock should be obtained,
35  * while when reading (popolating discovery log page or checking host-subsystem
36  * link) read lock is obtained to allow concurrent reads.
37  */
38 DECLARE_RWSEM(nvmet_config_sem);
39
40 u32 nvmet_ana_group_enabled[NVMET_MAX_ANAGRPS + 1];
41 u64 nvmet_ana_chgcnt;
42 DECLARE_RWSEM(nvmet_ana_sem);
43
44 inline u16 errno_to_nvme_status(struct nvmet_req *req, int errno)
45 {
46         u16 status;
47
48         switch (errno) {
49         case 0:
50                 status = NVME_SC_SUCCESS;
51                 break;
52         case -ENOSPC:
53                 req->error_loc = offsetof(struct nvme_rw_command, length);
54                 status = NVME_SC_CAP_EXCEEDED | NVME_SC_DNR;
55                 break;
56         case -EREMOTEIO:
57                 req->error_loc = offsetof(struct nvme_rw_command, slba);
58                 status = NVME_SC_LBA_RANGE | NVME_SC_DNR;
59                 break;
60         case -EOPNOTSUPP:
61                 req->error_loc = offsetof(struct nvme_common_command, opcode);
62                 switch (req->cmd->common.opcode) {
63                 case nvme_cmd_dsm:
64                 case nvme_cmd_write_zeroes:
65                         status = NVME_SC_ONCS_NOT_SUPPORTED | NVME_SC_DNR;
66                         break;
67                 default:
68                         status = NVME_SC_INVALID_OPCODE | NVME_SC_DNR;
69                 }
70                 break;
71         case -ENODATA:
72                 req->error_loc = offsetof(struct nvme_rw_command, nsid);
73                 status = NVME_SC_ACCESS_DENIED;
74                 break;
75         case -EIO:
76                 /* FALLTHRU */
77         default:
78                 req->error_loc = offsetof(struct nvme_common_command, opcode);
79                 status = NVME_SC_INTERNAL | NVME_SC_DNR;
80         }
81
82         return status;
83 }
84
85 static struct nvmet_subsys *nvmet_find_get_subsys(struct nvmet_port *port,
86                 const char *subsysnqn);
87
88 u16 nvmet_copy_to_sgl(struct nvmet_req *req, off_t off, const void *buf,
89                 size_t len)
90 {
91         if (sg_pcopy_from_buffer(req->sg, req->sg_cnt, buf, len, off) != len) {
92                 req->error_loc = offsetof(struct nvme_common_command, dptr);
93                 return NVME_SC_SGL_INVALID_DATA | NVME_SC_DNR;
94         }
95         return 0;
96 }
97
98 u16 nvmet_copy_from_sgl(struct nvmet_req *req, off_t off, void *buf, size_t len)
99 {
100         if (sg_pcopy_to_buffer(req->sg, req->sg_cnt, buf, len, off) != len) {
101                 req->error_loc = offsetof(struct nvme_common_command, dptr);
102                 return NVME_SC_SGL_INVALID_DATA | NVME_SC_DNR;
103         }
104         return 0;
105 }
106
107 u16 nvmet_zero_sgl(struct nvmet_req *req, off_t off, size_t len)
108 {
109         if (sg_zero_buffer(req->sg, req->sg_cnt, len, off) != len) {
110                 req->error_loc = offsetof(struct nvme_common_command, dptr);
111                 return NVME_SC_SGL_INVALID_DATA | NVME_SC_DNR;
112         }
113         return 0;
114 }
115
116 static unsigned int nvmet_max_nsid(struct nvmet_subsys *subsys)
117 {
118         struct nvmet_ns *ns;
119
120         if (list_empty(&subsys->namespaces))
121                 return 0;
122
123         ns = list_last_entry(&subsys->namespaces, struct nvmet_ns, dev_link);
124         return ns->nsid;
125 }
126
127 static u32 nvmet_async_event_result(struct nvmet_async_event *aen)
128 {
129         return aen->event_type | (aen->event_info << 8) | (aen->log_page << 16);
130 }
131
132 static void nvmet_async_events_free(struct nvmet_ctrl *ctrl)
133 {
134         struct nvmet_req *req;
135
136         while (1) {
137                 mutex_lock(&ctrl->lock);
138                 if (!ctrl->nr_async_event_cmds) {
139                         mutex_unlock(&ctrl->lock);
140                         return;
141                 }
142
143                 req = ctrl->async_event_cmds[--ctrl->nr_async_event_cmds];
144                 mutex_unlock(&ctrl->lock);
145                 nvmet_req_complete(req, NVME_SC_INTERNAL | NVME_SC_DNR);
146         }
147 }
148
149 static void nvmet_async_event_work(struct work_struct *work)
150 {
151         struct nvmet_ctrl *ctrl =
152                 container_of(work, struct nvmet_ctrl, async_event_work);
153         struct nvmet_async_event *aen;
154         struct nvmet_req *req;
155
156         while (1) {
157                 mutex_lock(&ctrl->lock);
158                 aen = list_first_entry_or_null(&ctrl->async_events,
159                                 struct nvmet_async_event, entry);
160                 if (!aen || !ctrl->nr_async_event_cmds) {
161                         mutex_unlock(&ctrl->lock);
162                         return;
163                 }
164
165                 req = ctrl->async_event_cmds[--ctrl->nr_async_event_cmds];
166                 nvmet_set_result(req, nvmet_async_event_result(aen));
167
168                 list_del(&aen->entry);
169                 kfree(aen);
170
171                 mutex_unlock(&ctrl->lock);
172                 nvmet_req_complete(req, 0);
173         }
174 }
175
176 void nvmet_add_async_event(struct nvmet_ctrl *ctrl, u8 event_type,
177                 u8 event_info, u8 log_page)
178 {
179         struct nvmet_async_event *aen;
180
181         aen = kmalloc(sizeof(*aen), GFP_KERNEL);
182         if (!aen)
183                 return;
184
185         aen->event_type = event_type;
186         aen->event_info = event_info;
187         aen->log_page = log_page;
188
189         mutex_lock(&ctrl->lock);
190         list_add_tail(&aen->entry, &ctrl->async_events);
191         mutex_unlock(&ctrl->lock);
192
193         schedule_work(&ctrl->async_event_work);
194 }
195
196 static void nvmet_add_to_changed_ns_log(struct nvmet_ctrl *ctrl, __le32 nsid)
197 {
198         u32 i;
199
200         mutex_lock(&ctrl->lock);
201         if (ctrl->nr_changed_ns > NVME_MAX_CHANGED_NAMESPACES)
202                 goto out_unlock;
203
204         for (i = 0; i < ctrl->nr_changed_ns; i++) {
205                 if (ctrl->changed_ns_list[i] == nsid)
206                         goto out_unlock;
207         }
208
209         if (ctrl->nr_changed_ns == NVME_MAX_CHANGED_NAMESPACES) {
210                 ctrl->changed_ns_list[0] = cpu_to_le32(0xffffffff);
211                 ctrl->nr_changed_ns = U32_MAX;
212                 goto out_unlock;
213         }
214
215         ctrl->changed_ns_list[ctrl->nr_changed_ns++] = nsid;
216 out_unlock:
217         mutex_unlock(&ctrl->lock);
218 }
219
220 void nvmet_ns_changed(struct nvmet_subsys *subsys, u32 nsid)
221 {
222         struct nvmet_ctrl *ctrl;
223
224         lockdep_assert_held(&subsys->lock);
225
226         list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry) {
227                 nvmet_add_to_changed_ns_log(ctrl, cpu_to_le32(nsid));
228                 if (nvmet_aen_bit_disabled(ctrl, NVME_AEN_BIT_NS_ATTR))
229                         continue;
230                 nvmet_add_async_event(ctrl, NVME_AER_TYPE_NOTICE,
231                                 NVME_AER_NOTICE_NS_CHANGED,
232                                 NVME_LOG_CHANGED_NS);
233         }
234 }
235
236 void nvmet_send_ana_event(struct nvmet_subsys *subsys,
237                 struct nvmet_port *port)
238 {
239         struct nvmet_ctrl *ctrl;
240
241         mutex_lock(&subsys->lock);
242         list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry) {
243                 if (port && ctrl->port != port)
244                         continue;
245                 if (nvmet_aen_bit_disabled(ctrl, NVME_AEN_BIT_ANA_CHANGE))
246                         continue;
247                 nvmet_add_async_event(ctrl, NVME_AER_TYPE_NOTICE,
248                                 NVME_AER_NOTICE_ANA, NVME_LOG_ANA);
249         }
250         mutex_unlock(&subsys->lock);
251 }
252
253 void nvmet_port_send_ana_event(struct nvmet_port *port)
254 {
255         struct nvmet_subsys_link *p;
256
257         down_read(&nvmet_config_sem);
258         list_for_each_entry(p, &port->subsystems, entry)
259                 nvmet_send_ana_event(p->subsys, port);
260         up_read(&nvmet_config_sem);
261 }
262
263 int nvmet_register_transport(const struct nvmet_fabrics_ops *ops)
264 {
265         int ret = 0;
266
267         down_write(&nvmet_config_sem);
268         if (nvmet_transports[ops->type])
269                 ret = -EINVAL;
270         else
271                 nvmet_transports[ops->type] = ops;
272         up_write(&nvmet_config_sem);
273
274         return ret;
275 }
276 EXPORT_SYMBOL_GPL(nvmet_register_transport);
277
278 void nvmet_unregister_transport(const struct nvmet_fabrics_ops *ops)
279 {
280         down_write(&nvmet_config_sem);
281         nvmet_transports[ops->type] = NULL;
282         up_write(&nvmet_config_sem);
283 }
284 EXPORT_SYMBOL_GPL(nvmet_unregister_transport);
285
286 void nvmet_port_del_ctrls(struct nvmet_port *port, struct nvmet_subsys *subsys)
287 {
288         struct nvmet_ctrl *ctrl;
289
290         mutex_lock(&subsys->lock);
291         list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry) {
292                 if (ctrl->port == port)
293                         ctrl->ops->delete_ctrl(ctrl);
294         }
295         mutex_unlock(&subsys->lock);
296 }
297
298 int nvmet_enable_port(struct nvmet_port *port)
299 {
300         const struct nvmet_fabrics_ops *ops;
301         int ret;
302
303         lockdep_assert_held(&nvmet_config_sem);
304
305         ops = nvmet_transports[port->disc_addr.trtype];
306         if (!ops) {
307                 up_write(&nvmet_config_sem);
308                 request_module("nvmet-transport-%d", port->disc_addr.trtype);
309                 down_write(&nvmet_config_sem);
310                 ops = nvmet_transports[port->disc_addr.trtype];
311                 if (!ops) {
312                         pr_err("transport type %d not supported\n",
313                                 port->disc_addr.trtype);
314                         return -EINVAL;
315                 }
316         }
317
318         if (!try_module_get(ops->owner))
319                 return -EINVAL;
320
321         ret = ops->add_port(port);
322         if (ret) {
323                 module_put(ops->owner);
324                 return ret;
325         }
326
327         /* If the transport didn't set inline_data_size, then disable it. */
328         if (port->inline_data_size < 0)
329                 port->inline_data_size = 0;
330
331         port->enabled = true;
332         port->tr_ops = ops;
333         return 0;
334 }
335
336 void nvmet_disable_port(struct nvmet_port *port)
337 {
338         const struct nvmet_fabrics_ops *ops;
339
340         lockdep_assert_held(&nvmet_config_sem);
341
342         port->enabled = false;
343         port->tr_ops = NULL;
344
345         ops = nvmet_transports[port->disc_addr.trtype];
346         ops->remove_port(port);
347         module_put(ops->owner);
348 }
349
350 static void nvmet_keep_alive_timer(struct work_struct *work)
351 {
352         struct nvmet_ctrl *ctrl = container_of(to_delayed_work(work),
353                         struct nvmet_ctrl, ka_work);
354         bool cmd_seen = ctrl->cmd_seen;
355
356         ctrl->cmd_seen = false;
357         if (cmd_seen) {
358                 pr_debug("ctrl %d reschedule traffic based keep-alive timer\n",
359                         ctrl->cntlid);
360                 schedule_delayed_work(&ctrl->ka_work, ctrl->kato * HZ);
361                 return;
362         }
363
364         pr_err("ctrl %d keep-alive timer (%d seconds) expired!\n",
365                 ctrl->cntlid, ctrl->kato);
366
367         nvmet_ctrl_fatal_error(ctrl);
368 }
369
370 static void nvmet_start_keep_alive_timer(struct nvmet_ctrl *ctrl)
371 {
372         pr_debug("ctrl %d start keep-alive timer for %d secs\n",
373                 ctrl->cntlid, ctrl->kato);
374
375         INIT_DELAYED_WORK(&ctrl->ka_work, nvmet_keep_alive_timer);
376         schedule_delayed_work(&ctrl->ka_work, ctrl->kato * HZ);
377 }
378
379 static void nvmet_stop_keep_alive_timer(struct nvmet_ctrl *ctrl)
380 {
381         pr_debug("ctrl %d stop keep-alive\n", ctrl->cntlid);
382
383         cancel_delayed_work_sync(&ctrl->ka_work);
384 }
385
386 static struct nvmet_ns *__nvmet_find_namespace(struct nvmet_ctrl *ctrl,
387                 __le32 nsid)
388 {
389         struct nvmet_ns *ns;
390
391         list_for_each_entry_rcu(ns, &ctrl->subsys->namespaces, dev_link) {
392                 if (ns->nsid == le32_to_cpu(nsid))
393                         return ns;
394         }
395
396         return NULL;
397 }
398
399 struct nvmet_ns *nvmet_find_namespace(struct nvmet_ctrl *ctrl, __le32 nsid)
400 {
401         struct nvmet_ns *ns;
402
403         rcu_read_lock();
404         ns = __nvmet_find_namespace(ctrl, nsid);
405         if (ns)
406                 percpu_ref_get(&ns->ref);
407         rcu_read_unlock();
408
409         return ns;
410 }
411
412 static void nvmet_destroy_namespace(struct percpu_ref *ref)
413 {
414         struct nvmet_ns *ns = container_of(ref, struct nvmet_ns, ref);
415
416         complete(&ns->disable_done);
417 }
418
419 void nvmet_put_namespace(struct nvmet_ns *ns)
420 {
421         percpu_ref_put(&ns->ref);
422 }
423
424 static void nvmet_ns_dev_disable(struct nvmet_ns *ns)
425 {
426         nvmet_bdev_ns_disable(ns);
427         nvmet_file_ns_disable(ns);
428 }
429
430 static int nvmet_p2pmem_ns_enable(struct nvmet_ns *ns)
431 {
432         int ret;
433         struct pci_dev *p2p_dev;
434
435         if (!ns->use_p2pmem)
436                 return 0;
437
438         if (!ns->bdev) {
439                 pr_err("peer-to-peer DMA is not supported by non-block device namespaces\n");
440                 return -EINVAL;
441         }
442
443         if (!blk_queue_pci_p2pdma(ns->bdev->bd_queue)) {
444                 pr_err("peer-to-peer DMA is not supported by the driver of %s\n",
445                        ns->device_path);
446                 return -EINVAL;
447         }
448
449         if (ns->p2p_dev) {
450                 ret = pci_p2pdma_distance(ns->p2p_dev, nvmet_ns_dev(ns), true);
451                 if (ret < 0)
452                         return -EINVAL;
453         } else {
454                 /*
455                  * Right now we just check that there is p2pmem available so
456                  * we can report an error to the user right away if there
457                  * is not. We'll find the actual device to use once we
458                  * setup the controller when the port's device is available.
459                  */
460
461                 p2p_dev = pci_p2pmem_find(nvmet_ns_dev(ns));
462                 if (!p2p_dev) {
463                         pr_err("no peer-to-peer memory is available for %s\n",
464                                ns->device_path);
465                         return -EINVAL;
466                 }
467
468                 pci_dev_put(p2p_dev);
469         }
470
471         return 0;
472 }
473
474 /*
475  * Note: ctrl->subsys->lock should be held when calling this function
476  */
477 static void nvmet_p2pmem_ns_add_p2p(struct nvmet_ctrl *ctrl,
478                                     struct nvmet_ns *ns)
479 {
480         struct device *clients[2];
481         struct pci_dev *p2p_dev;
482         int ret;
483
484         if (!ctrl->p2p_client || !ns->use_p2pmem)
485                 return;
486
487         if (ns->p2p_dev) {
488                 ret = pci_p2pdma_distance(ns->p2p_dev, ctrl->p2p_client, true);
489                 if (ret < 0)
490                         return;
491
492                 p2p_dev = pci_dev_get(ns->p2p_dev);
493         } else {
494                 clients[0] = ctrl->p2p_client;
495                 clients[1] = nvmet_ns_dev(ns);
496
497                 p2p_dev = pci_p2pmem_find_many(clients, ARRAY_SIZE(clients));
498                 if (!p2p_dev) {
499                         pr_err("no peer-to-peer memory is available that's supported by %s and %s\n",
500                                dev_name(ctrl->p2p_client), ns->device_path);
501                         return;
502                 }
503         }
504
505         ret = radix_tree_insert(&ctrl->p2p_ns_map, ns->nsid, p2p_dev);
506         if (ret < 0)
507                 pci_dev_put(p2p_dev);
508
509         pr_info("using p2pmem on %s for nsid %d\n", pci_name(p2p_dev),
510                 ns->nsid);
511 }
512
513 int nvmet_ns_enable(struct nvmet_ns *ns)
514 {
515         struct nvmet_subsys *subsys = ns->subsys;
516         struct nvmet_ctrl *ctrl;
517         int ret;
518
519         mutex_lock(&subsys->lock);
520         ret = 0;
521         if (ns->enabled)
522                 goto out_unlock;
523
524         ret = -EMFILE;
525         if (subsys->nr_namespaces == NVMET_MAX_NAMESPACES)
526                 goto out_unlock;
527
528         ret = nvmet_bdev_ns_enable(ns);
529         if (ret == -ENOTBLK)
530                 ret = nvmet_file_ns_enable(ns);
531         if (ret)
532                 goto out_unlock;
533
534         ret = nvmet_p2pmem_ns_enable(ns);
535         if (ret)
536                 goto out_dev_disable;
537
538         list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry)
539                 nvmet_p2pmem_ns_add_p2p(ctrl, ns);
540
541         ret = percpu_ref_init(&ns->ref, nvmet_destroy_namespace,
542                                 0, GFP_KERNEL);
543         if (ret)
544                 goto out_dev_put;
545
546         if (ns->nsid > subsys->max_nsid)
547                 subsys->max_nsid = ns->nsid;
548
549         /*
550          * The namespaces list needs to be sorted to simplify the implementation
551          * of the Identify Namepace List subcommand.
552          */
553         if (list_empty(&subsys->namespaces)) {
554                 list_add_tail_rcu(&ns->dev_link, &subsys->namespaces);
555         } else {
556                 struct nvmet_ns *old;
557
558                 list_for_each_entry_rcu(old, &subsys->namespaces, dev_link,
559                                         lockdep_is_held(&subsys->lock)) {
560                         BUG_ON(ns->nsid == old->nsid);
561                         if (ns->nsid < old->nsid)
562                                 break;
563                 }
564
565                 list_add_tail_rcu(&ns->dev_link, &old->dev_link);
566         }
567         subsys->nr_namespaces++;
568
569         nvmet_ns_changed(subsys, ns->nsid);
570         ns->enabled = true;
571         ret = 0;
572 out_unlock:
573         mutex_unlock(&subsys->lock);
574         return ret;
575 out_dev_put:
576         list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry)
577                 pci_dev_put(radix_tree_delete(&ctrl->p2p_ns_map, ns->nsid));
578 out_dev_disable:
579         nvmet_ns_dev_disable(ns);
580         goto out_unlock;
581 }
582
583 void nvmet_ns_disable(struct nvmet_ns *ns)
584 {
585         struct nvmet_subsys *subsys = ns->subsys;
586         struct nvmet_ctrl *ctrl;
587
588         mutex_lock(&subsys->lock);
589         if (!ns->enabled)
590                 goto out_unlock;
591
592         ns->enabled = false;
593         list_del_rcu(&ns->dev_link);
594         if (ns->nsid == subsys->max_nsid)
595                 subsys->max_nsid = nvmet_max_nsid(subsys);
596
597         list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry)
598                 pci_dev_put(radix_tree_delete(&ctrl->p2p_ns_map, ns->nsid));
599
600         mutex_unlock(&subsys->lock);
601
602         /*
603          * Now that we removed the namespaces from the lookup list, we
604          * can kill the per_cpu ref and wait for any remaining references
605          * to be dropped, as well as a RCU grace period for anyone only
606          * using the namepace under rcu_read_lock().  Note that we can't
607          * use call_rcu here as we need to ensure the namespaces have
608          * been fully destroyed before unloading the module.
609          */
610         percpu_ref_kill(&ns->ref);
611         synchronize_rcu();
612         wait_for_completion(&ns->disable_done);
613         percpu_ref_exit(&ns->ref);
614
615         mutex_lock(&subsys->lock);
616
617         subsys->nr_namespaces--;
618         nvmet_ns_changed(subsys, ns->nsid);
619         nvmet_ns_dev_disable(ns);
620 out_unlock:
621         mutex_unlock(&subsys->lock);
622 }
623
624 void nvmet_ns_free(struct nvmet_ns *ns)
625 {
626         nvmet_ns_disable(ns);
627
628         down_write(&nvmet_ana_sem);
629         nvmet_ana_group_enabled[ns->anagrpid]--;
630         up_write(&nvmet_ana_sem);
631
632         kfree(ns->device_path);
633         kfree(ns);
634 }
635
636 struct nvmet_ns *nvmet_ns_alloc(struct nvmet_subsys *subsys, u32 nsid)
637 {
638         struct nvmet_ns *ns;
639
640         ns = kzalloc(sizeof(*ns), GFP_KERNEL);
641         if (!ns)
642                 return NULL;
643
644         INIT_LIST_HEAD(&ns->dev_link);
645         init_completion(&ns->disable_done);
646
647         ns->nsid = nsid;
648         ns->subsys = subsys;
649
650         down_write(&nvmet_ana_sem);
651         ns->anagrpid = NVMET_DEFAULT_ANA_GRPID;
652         nvmet_ana_group_enabled[ns->anagrpid]++;
653         up_write(&nvmet_ana_sem);
654
655         uuid_gen(&ns->uuid);
656         ns->buffered_io = false;
657
658         return ns;
659 }
660
661 static void nvmet_update_sq_head(struct nvmet_req *req)
662 {
663         if (req->sq->size) {
664                 u32 old_sqhd, new_sqhd;
665
666                 do {
667                         old_sqhd = req->sq->sqhd;
668                         new_sqhd = (old_sqhd + 1) % req->sq->size;
669                 } while (cmpxchg(&req->sq->sqhd, old_sqhd, new_sqhd) !=
670                                         old_sqhd);
671         }
672         req->cqe->sq_head = cpu_to_le16(req->sq->sqhd & 0x0000FFFF);
673 }
674
675 static void nvmet_set_error(struct nvmet_req *req, u16 status)
676 {
677         struct nvmet_ctrl *ctrl = req->sq->ctrl;
678         struct nvme_error_slot *new_error_slot;
679         unsigned long flags;
680
681         req->cqe->status = cpu_to_le16(status << 1);
682
683         if (!ctrl || req->error_loc == NVMET_NO_ERROR_LOC)
684                 return;
685
686         spin_lock_irqsave(&ctrl->error_lock, flags);
687         ctrl->err_counter++;
688         new_error_slot =
689                 &ctrl->slots[ctrl->err_counter % NVMET_ERROR_LOG_SLOTS];
690
691         new_error_slot->error_count = cpu_to_le64(ctrl->err_counter);
692         new_error_slot->sqid = cpu_to_le16(req->sq->qid);
693         new_error_slot->cmdid = cpu_to_le16(req->cmd->common.command_id);
694         new_error_slot->status_field = cpu_to_le16(status << 1);
695         new_error_slot->param_error_location = cpu_to_le16(req->error_loc);
696         new_error_slot->lba = cpu_to_le64(req->error_slba);
697         new_error_slot->nsid = req->cmd->common.nsid;
698         spin_unlock_irqrestore(&ctrl->error_lock, flags);
699
700         /* set the more bit for this request */
701         req->cqe->status |= cpu_to_le16(1 << 14);
702 }
703
704 static void __nvmet_req_complete(struct nvmet_req *req, u16 status)
705 {
706         if (!req->sq->sqhd_disabled)
707                 nvmet_update_sq_head(req);
708         req->cqe->sq_id = cpu_to_le16(req->sq->qid);
709         req->cqe->command_id = req->cmd->common.command_id;
710
711         if (unlikely(status))
712                 nvmet_set_error(req, status);
713
714         trace_nvmet_req_complete(req);
715
716         if (req->ns)
717                 nvmet_put_namespace(req->ns);
718         req->ops->queue_response(req);
719 }
720
721 void nvmet_req_complete(struct nvmet_req *req, u16 status)
722 {
723         __nvmet_req_complete(req, status);
724         percpu_ref_put(&req->sq->ref);
725 }
726 EXPORT_SYMBOL_GPL(nvmet_req_complete);
727
728 void nvmet_cq_setup(struct nvmet_ctrl *ctrl, struct nvmet_cq *cq,
729                 u16 qid, u16 size)
730 {
731         cq->qid = qid;
732         cq->size = size;
733
734         ctrl->cqs[qid] = cq;
735 }
736
737 void nvmet_sq_setup(struct nvmet_ctrl *ctrl, struct nvmet_sq *sq,
738                 u16 qid, u16 size)
739 {
740         sq->sqhd = 0;
741         sq->qid = qid;
742         sq->size = size;
743
744         ctrl->sqs[qid] = sq;
745 }
746
747 static void nvmet_confirm_sq(struct percpu_ref *ref)
748 {
749         struct nvmet_sq *sq = container_of(ref, struct nvmet_sq, ref);
750
751         complete(&sq->confirm_done);
752 }
753
754 void nvmet_sq_destroy(struct nvmet_sq *sq)
755 {
756         /*
757          * If this is the admin queue, complete all AERs so that our
758          * queue doesn't have outstanding requests on it.
759          */
760         if (sq->ctrl && sq->ctrl->sqs && sq->ctrl->sqs[0] == sq)
761                 nvmet_async_events_free(sq->ctrl);
762         percpu_ref_kill_and_confirm(&sq->ref, nvmet_confirm_sq);
763         wait_for_completion(&sq->confirm_done);
764         wait_for_completion(&sq->free_done);
765         percpu_ref_exit(&sq->ref);
766
767         if (sq->ctrl) {
768                 nvmet_ctrl_put(sq->ctrl);
769                 sq->ctrl = NULL; /* allows reusing the queue later */
770         }
771 }
772 EXPORT_SYMBOL_GPL(nvmet_sq_destroy);
773
774 static void nvmet_sq_free(struct percpu_ref *ref)
775 {
776         struct nvmet_sq *sq = container_of(ref, struct nvmet_sq, ref);
777
778         complete(&sq->free_done);
779 }
780
781 int nvmet_sq_init(struct nvmet_sq *sq)
782 {
783         int ret;
784
785         ret = percpu_ref_init(&sq->ref, nvmet_sq_free, 0, GFP_KERNEL);
786         if (ret) {
787                 pr_err("percpu_ref init failed!\n");
788                 return ret;
789         }
790         init_completion(&sq->free_done);
791         init_completion(&sq->confirm_done);
792
793         return 0;
794 }
795 EXPORT_SYMBOL_GPL(nvmet_sq_init);
796
797 static inline u16 nvmet_check_ana_state(struct nvmet_port *port,
798                 struct nvmet_ns *ns)
799 {
800         enum nvme_ana_state state = port->ana_state[ns->anagrpid];
801
802         if (unlikely(state == NVME_ANA_INACCESSIBLE))
803                 return NVME_SC_ANA_INACCESSIBLE;
804         if (unlikely(state == NVME_ANA_PERSISTENT_LOSS))
805                 return NVME_SC_ANA_PERSISTENT_LOSS;
806         if (unlikely(state == NVME_ANA_CHANGE))
807                 return NVME_SC_ANA_TRANSITION;
808         return 0;
809 }
810
811 static inline u16 nvmet_io_cmd_check_access(struct nvmet_req *req)
812 {
813         if (unlikely(req->ns->readonly)) {
814                 switch (req->cmd->common.opcode) {
815                 case nvme_cmd_read:
816                 case nvme_cmd_flush:
817                         break;
818                 default:
819                         return NVME_SC_NS_WRITE_PROTECTED;
820                 }
821         }
822
823         return 0;
824 }
825
826 static u16 nvmet_parse_io_cmd(struct nvmet_req *req)
827 {
828         struct nvme_command *cmd = req->cmd;
829         u16 ret;
830
831         ret = nvmet_check_ctrl_status(req, cmd);
832         if (unlikely(ret))
833                 return ret;
834
835         req->ns = nvmet_find_namespace(req->sq->ctrl, cmd->rw.nsid);
836         if (unlikely(!req->ns)) {
837                 req->error_loc = offsetof(struct nvme_common_command, nsid);
838                 return NVME_SC_INVALID_NS | NVME_SC_DNR;
839         }
840         ret = nvmet_check_ana_state(req->port, req->ns);
841         if (unlikely(ret)) {
842                 req->error_loc = offsetof(struct nvme_common_command, nsid);
843                 return ret;
844         }
845         ret = nvmet_io_cmd_check_access(req);
846         if (unlikely(ret)) {
847                 req->error_loc = offsetof(struct nvme_common_command, nsid);
848                 return ret;
849         }
850
851         if (req->ns->file)
852                 return nvmet_file_parse_io_cmd(req);
853         else
854                 return nvmet_bdev_parse_io_cmd(req);
855 }
856
857 bool nvmet_req_init(struct nvmet_req *req, struct nvmet_cq *cq,
858                 struct nvmet_sq *sq, const struct nvmet_fabrics_ops *ops)
859 {
860         u8 flags = req->cmd->common.flags;
861         u16 status;
862
863         req->cq = cq;
864         req->sq = sq;
865         req->ops = ops;
866         req->sg = NULL;
867         req->sg_cnt = 0;
868         req->transfer_len = 0;
869         req->cqe->status = 0;
870         req->cqe->sq_head = 0;
871         req->ns = NULL;
872         req->error_loc = NVMET_NO_ERROR_LOC;
873         req->error_slba = 0;
874
875         trace_nvmet_req_init(req, req->cmd);
876
877         /* no support for fused commands yet */
878         if (unlikely(flags & (NVME_CMD_FUSE_FIRST | NVME_CMD_FUSE_SECOND))) {
879                 req->error_loc = offsetof(struct nvme_common_command, flags);
880                 status = NVME_SC_INVALID_FIELD | NVME_SC_DNR;
881                 goto fail;
882         }
883
884         /*
885          * For fabrics, PSDT field shall describe metadata pointer (MPTR) that
886          * contains an address of a single contiguous physical buffer that is
887          * byte aligned.
888          */
889         if (unlikely((flags & NVME_CMD_SGL_ALL) != NVME_CMD_SGL_METABUF)) {
890                 req->error_loc = offsetof(struct nvme_common_command, flags);
891                 status = NVME_SC_INVALID_FIELD | NVME_SC_DNR;
892                 goto fail;
893         }
894
895         if (unlikely(!req->sq->ctrl))
896                 /* will return an error for any Non-connect command: */
897                 status = nvmet_parse_connect_cmd(req);
898         else if (likely(req->sq->qid != 0))
899                 status = nvmet_parse_io_cmd(req);
900         else if (nvme_is_fabrics(req->cmd))
901                 status = nvmet_parse_fabrics_cmd(req);
902         else if (req->sq->ctrl->subsys->type == NVME_NQN_DISC)
903                 status = nvmet_parse_discovery_cmd(req);
904         else
905                 status = nvmet_parse_admin_cmd(req);
906
907         if (status)
908                 goto fail;
909
910         if (unlikely(!percpu_ref_tryget_live(&sq->ref))) {
911                 status = NVME_SC_INVALID_FIELD | NVME_SC_DNR;
912                 goto fail;
913         }
914
915         if (sq->ctrl)
916                 sq->ctrl->cmd_seen = true;
917
918         return true;
919
920 fail:
921         __nvmet_req_complete(req, status);
922         return false;
923 }
924 EXPORT_SYMBOL_GPL(nvmet_req_init);
925
926 void nvmet_req_uninit(struct nvmet_req *req)
927 {
928         percpu_ref_put(&req->sq->ref);
929         if (req->ns)
930                 nvmet_put_namespace(req->ns);
931 }
932 EXPORT_SYMBOL_GPL(nvmet_req_uninit);
933
934 void nvmet_req_execute(struct nvmet_req *req)
935 {
936         if (unlikely(req->data_len != req->transfer_len)) {
937                 req->error_loc = offsetof(struct nvme_common_command, dptr);
938                 nvmet_req_complete(req, NVME_SC_SGL_INVALID_DATA | NVME_SC_DNR);
939         } else
940                 req->execute(req);
941 }
942 EXPORT_SYMBOL_GPL(nvmet_req_execute);
943
944 int nvmet_req_alloc_sgl(struct nvmet_req *req)
945 {
946         struct pci_dev *p2p_dev = NULL;
947
948         if (IS_ENABLED(CONFIG_PCI_P2PDMA)) {
949                 if (req->sq->ctrl && req->ns)
950                         p2p_dev = radix_tree_lookup(&req->sq->ctrl->p2p_ns_map,
951                                                     req->ns->nsid);
952
953                 req->p2p_dev = NULL;
954                 if (req->sq->qid && p2p_dev) {
955                         req->sg = pci_p2pmem_alloc_sgl(p2p_dev, &req->sg_cnt,
956                                                        req->transfer_len);
957                         if (req->sg) {
958                                 req->p2p_dev = p2p_dev;
959                                 return 0;
960                         }
961                 }
962
963                 /*
964                  * If no P2P memory was available we fallback to using
965                  * regular memory
966                  */
967         }
968
969         req->sg = sgl_alloc(req->transfer_len, GFP_KERNEL, &req->sg_cnt);
970         if (!req->sg)
971                 return -ENOMEM;
972
973         return 0;
974 }
975 EXPORT_SYMBOL_GPL(nvmet_req_alloc_sgl);
976
977 void nvmet_req_free_sgl(struct nvmet_req *req)
978 {
979         if (req->p2p_dev)
980                 pci_p2pmem_free_sgl(req->p2p_dev, req->sg);
981         else
982                 sgl_free(req->sg);
983
984         req->sg = NULL;
985         req->sg_cnt = 0;
986 }
987 EXPORT_SYMBOL_GPL(nvmet_req_free_sgl);
988
989 static inline bool nvmet_cc_en(u32 cc)
990 {
991         return (cc >> NVME_CC_EN_SHIFT) & 0x1;
992 }
993
994 static inline u8 nvmet_cc_css(u32 cc)
995 {
996         return (cc >> NVME_CC_CSS_SHIFT) & 0x7;
997 }
998
999 static inline u8 nvmet_cc_mps(u32 cc)
1000 {
1001         return (cc >> NVME_CC_MPS_SHIFT) & 0xf;
1002 }
1003
1004 static inline u8 nvmet_cc_ams(u32 cc)
1005 {
1006         return (cc >> NVME_CC_AMS_SHIFT) & 0x7;
1007 }
1008
1009 static inline u8 nvmet_cc_shn(u32 cc)
1010 {
1011         return (cc >> NVME_CC_SHN_SHIFT) & 0x3;
1012 }
1013
1014 static inline u8 nvmet_cc_iosqes(u32 cc)
1015 {
1016         return (cc >> NVME_CC_IOSQES_SHIFT) & 0xf;
1017 }
1018
1019 static inline u8 nvmet_cc_iocqes(u32 cc)
1020 {
1021         return (cc >> NVME_CC_IOCQES_SHIFT) & 0xf;
1022 }
1023
1024 static void nvmet_start_ctrl(struct nvmet_ctrl *ctrl)
1025 {
1026         lockdep_assert_held(&ctrl->lock);
1027
1028         if (nvmet_cc_iosqes(ctrl->cc) != NVME_NVM_IOSQES ||
1029             nvmet_cc_iocqes(ctrl->cc) != NVME_NVM_IOCQES ||
1030             nvmet_cc_mps(ctrl->cc) != 0 ||
1031             nvmet_cc_ams(ctrl->cc) != 0 ||
1032             nvmet_cc_css(ctrl->cc) != 0) {
1033                 ctrl->csts = NVME_CSTS_CFS;
1034                 return;
1035         }
1036
1037         ctrl->csts = NVME_CSTS_RDY;
1038
1039         /*
1040          * Controllers that are not yet enabled should not really enforce the
1041          * keep alive timeout, but we still want to track a timeout and cleanup
1042          * in case a host died before it enabled the controller.  Hence, simply
1043          * reset the keep alive timer when the controller is enabled.
1044          */
1045         mod_delayed_work(system_wq, &ctrl->ka_work, ctrl->kato * HZ);
1046 }
1047
1048 static void nvmet_clear_ctrl(struct nvmet_ctrl *ctrl)
1049 {
1050         lockdep_assert_held(&ctrl->lock);
1051
1052         /* XXX: tear down queues? */
1053         ctrl->csts &= ~NVME_CSTS_RDY;
1054         ctrl->cc = 0;
1055 }
1056
1057 void nvmet_update_cc(struct nvmet_ctrl *ctrl, u32 new)
1058 {
1059         u32 old;
1060
1061         mutex_lock(&ctrl->lock);
1062         old = ctrl->cc;
1063         ctrl->cc = new;
1064
1065         if (nvmet_cc_en(new) && !nvmet_cc_en(old))
1066                 nvmet_start_ctrl(ctrl);
1067         if (!nvmet_cc_en(new) && nvmet_cc_en(old))
1068                 nvmet_clear_ctrl(ctrl);
1069         if (nvmet_cc_shn(new) && !nvmet_cc_shn(old)) {
1070                 nvmet_clear_ctrl(ctrl);
1071                 ctrl->csts |= NVME_CSTS_SHST_CMPLT;
1072         }
1073         if (!nvmet_cc_shn(new) && nvmet_cc_shn(old))
1074                 ctrl->csts &= ~NVME_CSTS_SHST_CMPLT;
1075         mutex_unlock(&ctrl->lock);
1076 }
1077
1078 static void nvmet_init_cap(struct nvmet_ctrl *ctrl)
1079 {
1080         /* command sets supported: NVMe command set: */
1081         ctrl->cap = (1ULL << 37);
1082         /* CC.EN timeout in 500msec units: */
1083         ctrl->cap |= (15ULL << 24);
1084         /* maximum queue entries supported: */
1085         ctrl->cap |= NVMET_QUEUE_SIZE - 1;
1086 }
1087
1088 u16 nvmet_ctrl_find_get(const char *subsysnqn, const char *hostnqn, u16 cntlid,
1089                 struct nvmet_req *req, struct nvmet_ctrl **ret)
1090 {
1091         struct nvmet_subsys *subsys;
1092         struct nvmet_ctrl *ctrl;
1093         u16 status = 0;
1094
1095         subsys = nvmet_find_get_subsys(req->port, subsysnqn);
1096         if (!subsys) {
1097                 pr_warn("connect request for invalid subsystem %s!\n",
1098                         subsysnqn);
1099                 req->cqe->result.u32 = IPO_IATTR_CONNECT_DATA(subsysnqn);
1100                 return NVME_SC_CONNECT_INVALID_PARAM | NVME_SC_DNR;
1101         }
1102
1103         mutex_lock(&subsys->lock);
1104         list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry) {
1105                 if (ctrl->cntlid == cntlid) {
1106                         if (strncmp(hostnqn, ctrl->hostnqn, NVMF_NQN_SIZE)) {
1107                                 pr_warn("hostnqn mismatch.\n");
1108                                 continue;
1109                         }
1110                         if (!kref_get_unless_zero(&ctrl->ref))
1111                                 continue;
1112
1113                         *ret = ctrl;
1114                         goto out;
1115                 }
1116         }
1117
1118         pr_warn("could not find controller %d for subsys %s / host %s\n",
1119                 cntlid, subsysnqn, hostnqn);
1120         req->cqe->result.u32 = IPO_IATTR_CONNECT_DATA(cntlid);
1121         status = NVME_SC_CONNECT_INVALID_PARAM | NVME_SC_DNR;
1122
1123 out:
1124         mutex_unlock(&subsys->lock);
1125         nvmet_subsys_put(subsys);
1126         return status;
1127 }
1128
1129 u16 nvmet_check_ctrl_status(struct nvmet_req *req, struct nvme_command *cmd)
1130 {
1131         if (unlikely(!(req->sq->ctrl->cc & NVME_CC_ENABLE))) {
1132                 pr_err("got cmd %d while CC.EN == 0 on qid = %d\n",
1133                        cmd->common.opcode, req->sq->qid);
1134                 return NVME_SC_CMD_SEQ_ERROR | NVME_SC_DNR;
1135         }
1136
1137         if (unlikely(!(req->sq->ctrl->csts & NVME_CSTS_RDY))) {
1138                 pr_err("got cmd %d while CSTS.RDY == 0 on qid = %d\n",
1139                        cmd->common.opcode, req->sq->qid);
1140                 return NVME_SC_CMD_SEQ_ERROR | NVME_SC_DNR;
1141         }
1142         return 0;
1143 }
1144
1145 bool nvmet_host_allowed(struct nvmet_subsys *subsys, const char *hostnqn)
1146 {
1147         struct nvmet_host_link *p;
1148
1149         lockdep_assert_held(&nvmet_config_sem);
1150
1151         if (subsys->allow_any_host)
1152                 return true;
1153
1154         if (subsys->type == NVME_NQN_DISC) /* allow all access to disc subsys */
1155                 return true;
1156
1157         list_for_each_entry(p, &subsys->hosts, entry) {
1158                 if (!strcmp(nvmet_host_name(p->host), hostnqn))
1159                         return true;
1160         }
1161
1162         return false;
1163 }
1164
1165 /*
1166  * Note: ctrl->subsys->lock should be held when calling this function
1167  */
1168 static void nvmet_setup_p2p_ns_map(struct nvmet_ctrl *ctrl,
1169                 struct nvmet_req *req)
1170 {
1171         struct nvmet_ns *ns;
1172
1173         if (!req->p2p_client)
1174                 return;
1175
1176         ctrl->p2p_client = get_device(req->p2p_client);
1177
1178         list_for_each_entry_rcu(ns, &ctrl->subsys->namespaces, dev_link,
1179                                 lockdep_is_held(&ctrl->subsys->lock))
1180                 nvmet_p2pmem_ns_add_p2p(ctrl, ns);
1181 }
1182
1183 /*
1184  * Note: ctrl->subsys->lock should be held when calling this function
1185  */
1186 static void nvmet_release_p2p_ns_map(struct nvmet_ctrl *ctrl)
1187 {
1188         struct radix_tree_iter iter;
1189         void __rcu **slot;
1190
1191         radix_tree_for_each_slot(slot, &ctrl->p2p_ns_map, &iter, 0)
1192                 pci_dev_put(radix_tree_deref_slot(slot));
1193
1194         put_device(ctrl->p2p_client);
1195 }
1196
1197 static void nvmet_fatal_error_handler(struct work_struct *work)
1198 {
1199         struct nvmet_ctrl *ctrl =
1200                         container_of(work, struct nvmet_ctrl, fatal_err_work);
1201
1202         pr_err("ctrl %d fatal error occurred!\n", ctrl->cntlid);
1203         ctrl->ops->delete_ctrl(ctrl);
1204 }
1205
1206 u16 nvmet_alloc_ctrl(const char *subsysnqn, const char *hostnqn,
1207                 struct nvmet_req *req, u32 kato, struct nvmet_ctrl **ctrlp)
1208 {
1209         struct nvmet_subsys *subsys;
1210         struct nvmet_ctrl *ctrl;
1211         int ret;
1212         u16 status;
1213
1214         status = NVME_SC_CONNECT_INVALID_PARAM | NVME_SC_DNR;
1215         subsys = nvmet_find_get_subsys(req->port, subsysnqn);
1216         if (!subsys) {
1217                 pr_warn("connect request for invalid subsystem %s!\n",
1218                         subsysnqn);
1219                 req->cqe->result.u32 = IPO_IATTR_CONNECT_DATA(subsysnqn);
1220                 goto out;
1221         }
1222
1223         status = NVME_SC_CONNECT_INVALID_PARAM | NVME_SC_DNR;
1224         down_read(&nvmet_config_sem);
1225         if (!nvmet_host_allowed(subsys, hostnqn)) {
1226                 pr_info("connect by host %s for subsystem %s not allowed\n",
1227                         hostnqn, subsysnqn);
1228                 req->cqe->result.u32 = IPO_IATTR_CONNECT_DATA(hostnqn);
1229                 up_read(&nvmet_config_sem);
1230                 status = NVME_SC_CONNECT_INVALID_HOST | NVME_SC_DNR;
1231                 goto out_put_subsystem;
1232         }
1233         up_read(&nvmet_config_sem);
1234
1235         status = NVME_SC_INTERNAL;
1236         ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL);
1237         if (!ctrl)
1238                 goto out_put_subsystem;
1239         mutex_init(&ctrl->lock);
1240
1241         nvmet_init_cap(ctrl);
1242
1243         ctrl->port = req->port;
1244
1245         INIT_WORK(&ctrl->async_event_work, nvmet_async_event_work);
1246         INIT_LIST_HEAD(&ctrl->async_events);
1247         INIT_RADIX_TREE(&ctrl->p2p_ns_map, GFP_KERNEL);
1248         INIT_WORK(&ctrl->fatal_err_work, nvmet_fatal_error_handler);
1249
1250         memcpy(ctrl->subsysnqn, subsysnqn, NVMF_NQN_SIZE);
1251         memcpy(ctrl->hostnqn, hostnqn, NVMF_NQN_SIZE);
1252
1253         kref_init(&ctrl->ref);
1254         ctrl->subsys = subsys;
1255         WRITE_ONCE(ctrl->aen_enabled, NVMET_AEN_CFG_OPTIONAL);
1256
1257         ctrl->changed_ns_list = kmalloc_array(NVME_MAX_CHANGED_NAMESPACES,
1258                         sizeof(__le32), GFP_KERNEL);
1259         if (!ctrl->changed_ns_list)
1260                 goto out_free_ctrl;
1261
1262         ctrl->cqs = kcalloc(subsys->max_qid + 1,
1263                         sizeof(struct nvmet_cq *),
1264                         GFP_KERNEL);
1265         if (!ctrl->cqs)
1266                 goto out_free_changed_ns_list;
1267
1268         ctrl->sqs = kcalloc(subsys->max_qid + 1,
1269                         sizeof(struct nvmet_sq *),
1270                         GFP_KERNEL);
1271         if (!ctrl->sqs)
1272                 goto out_free_cqs;
1273
1274         ret = ida_simple_get(&cntlid_ida,
1275                              NVME_CNTLID_MIN, NVME_CNTLID_MAX,
1276                              GFP_KERNEL);
1277         if (ret < 0) {
1278                 status = NVME_SC_CONNECT_CTRL_BUSY | NVME_SC_DNR;
1279                 goto out_free_sqs;
1280         }
1281         ctrl->cntlid = ret;
1282
1283         ctrl->ops = req->ops;
1284
1285         /*
1286          * Discovery controllers may use some arbitrary high value
1287          * in order to cleanup stale discovery sessions
1288          */
1289         if ((ctrl->subsys->type == NVME_NQN_DISC) && !kato)
1290                 kato = NVMET_DISC_KATO_MS;
1291
1292         /* keep-alive timeout in seconds */
1293         ctrl->kato = DIV_ROUND_UP(kato, 1000);
1294
1295         ctrl->err_counter = 0;
1296         spin_lock_init(&ctrl->error_lock);
1297
1298         nvmet_start_keep_alive_timer(ctrl);
1299
1300         mutex_lock(&subsys->lock);
1301         list_add_tail(&ctrl->subsys_entry, &subsys->ctrls);
1302         nvmet_setup_p2p_ns_map(ctrl, req);
1303         mutex_unlock(&subsys->lock);
1304
1305         *ctrlp = ctrl;
1306         return 0;
1307
1308 out_free_sqs:
1309         kfree(ctrl->sqs);
1310 out_free_cqs:
1311         kfree(ctrl->cqs);
1312 out_free_changed_ns_list:
1313         kfree(ctrl->changed_ns_list);
1314 out_free_ctrl:
1315         kfree(ctrl);
1316 out_put_subsystem:
1317         nvmet_subsys_put(subsys);
1318 out:
1319         return status;
1320 }
1321
1322 static void nvmet_ctrl_free(struct kref *ref)
1323 {
1324         struct nvmet_ctrl *ctrl = container_of(ref, struct nvmet_ctrl, ref);
1325         struct nvmet_subsys *subsys = ctrl->subsys;
1326
1327         mutex_lock(&subsys->lock);
1328         nvmet_release_p2p_ns_map(ctrl);
1329         list_del(&ctrl->subsys_entry);
1330         mutex_unlock(&subsys->lock);
1331
1332         nvmet_stop_keep_alive_timer(ctrl);
1333
1334         flush_work(&ctrl->async_event_work);
1335         cancel_work_sync(&ctrl->fatal_err_work);
1336
1337         ida_simple_remove(&cntlid_ida, ctrl->cntlid);
1338
1339         kfree(ctrl->sqs);
1340         kfree(ctrl->cqs);
1341         kfree(ctrl->changed_ns_list);
1342         kfree(ctrl);
1343
1344         nvmet_subsys_put(subsys);
1345 }
1346
1347 void nvmet_ctrl_put(struct nvmet_ctrl *ctrl)
1348 {
1349         kref_put(&ctrl->ref, nvmet_ctrl_free);
1350 }
1351
1352 void nvmet_ctrl_fatal_error(struct nvmet_ctrl *ctrl)
1353 {
1354         mutex_lock(&ctrl->lock);
1355         if (!(ctrl->csts & NVME_CSTS_CFS)) {
1356                 ctrl->csts |= NVME_CSTS_CFS;
1357                 schedule_work(&ctrl->fatal_err_work);
1358         }
1359         mutex_unlock(&ctrl->lock);
1360 }
1361 EXPORT_SYMBOL_GPL(nvmet_ctrl_fatal_error);
1362
1363 static struct nvmet_subsys *nvmet_find_get_subsys(struct nvmet_port *port,
1364                 const char *subsysnqn)
1365 {
1366         struct nvmet_subsys_link *p;
1367
1368         if (!port)
1369                 return NULL;
1370
1371         if (!strcmp(NVME_DISC_SUBSYS_NAME, subsysnqn)) {
1372                 if (!kref_get_unless_zero(&nvmet_disc_subsys->ref))
1373                         return NULL;
1374                 return nvmet_disc_subsys;
1375         }
1376
1377         down_read(&nvmet_config_sem);
1378         list_for_each_entry(p, &port->subsystems, entry) {
1379                 if (!strncmp(p->subsys->subsysnqn, subsysnqn,
1380                                 NVMF_NQN_SIZE)) {
1381                         if (!kref_get_unless_zero(&p->subsys->ref))
1382                                 break;
1383                         up_read(&nvmet_config_sem);
1384                         return p->subsys;
1385                 }
1386         }
1387         up_read(&nvmet_config_sem);
1388         return NULL;
1389 }
1390
1391 struct nvmet_subsys *nvmet_subsys_alloc(const char *subsysnqn,
1392                 enum nvme_subsys_type type)
1393 {
1394         struct nvmet_subsys *subsys;
1395
1396         subsys = kzalloc(sizeof(*subsys), GFP_KERNEL);
1397         if (!subsys)
1398                 return ERR_PTR(-ENOMEM);
1399
1400         subsys->ver = NVME_VS(1, 3, 0); /* NVMe 1.3.0 */
1401         /* generate a random serial number as our controllers are ephemeral: */
1402         get_random_bytes(&subsys->serial, sizeof(subsys->serial));
1403
1404         switch (type) {
1405         case NVME_NQN_NVME:
1406                 subsys->max_qid = NVMET_NR_QUEUES;
1407                 break;
1408         case NVME_NQN_DISC:
1409                 subsys->max_qid = 0;
1410                 break;
1411         default:
1412                 pr_err("%s: Unknown Subsystem type - %d\n", __func__, type);
1413                 kfree(subsys);
1414                 return ERR_PTR(-EINVAL);
1415         }
1416         subsys->type = type;
1417         subsys->subsysnqn = kstrndup(subsysnqn, NVMF_NQN_SIZE,
1418                         GFP_KERNEL);
1419         if (!subsys->subsysnqn) {
1420                 kfree(subsys);
1421                 return ERR_PTR(-ENOMEM);
1422         }
1423
1424         kref_init(&subsys->ref);
1425
1426         mutex_init(&subsys->lock);
1427         INIT_LIST_HEAD(&subsys->namespaces);
1428         INIT_LIST_HEAD(&subsys->ctrls);
1429         INIT_LIST_HEAD(&subsys->hosts);
1430
1431         return subsys;
1432 }
1433
1434 static void nvmet_subsys_free(struct kref *ref)
1435 {
1436         struct nvmet_subsys *subsys =
1437                 container_of(ref, struct nvmet_subsys, ref);
1438
1439         WARN_ON_ONCE(!list_empty(&subsys->namespaces));
1440
1441         kfree(subsys->subsysnqn);
1442         kfree(subsys);
1443 }
1444
1445 void nvmet_subsys_del_ctrls(struct nvmet_subsys *subsys)
1446 {
1447         struct nvmet_ctrl *ctrl;
1448
1449         mutex_lock(&subsys->lock);
1450         list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry)
1451                 ctrl->ops->delete_ctrl(ctrl);
1452         mutex_unlock(&subsys->lock);
1453 }
1454
1455 void nvmet_subsys_put(struct nvmet_subsys *subsys)
1456 {
1457         kref_put(&subsys->ref, nvmet_subsys_free);
1458 }
1459
1460 static int __init nvmet_init(void)
1461 {
1462         int error;
1463
1464         nvmet_ana_group_enabled[NVMET_DEFAULT_ANA_GRPID] = 1;
1465
1466         buffered_io_wq = alloc_workqueue("nvmet-buffered-io-wq",
1467                         WQ_MEM_RECLAIM, 0);
1468         if (!buffered_io_wq) {
1469                 error = -ENOMEM;
1470                 goto out;
1471         }
1472
1473         error = nvmet_init_discovery();
1474         if (error)
1475                 goto out_free_work_queue;
1476
1477         error = nvmet_init_configfs();
1478         if (error)
1479                 goto out_exit_discovery;
1480         return 0;
1481
1482 out_exit_discovery:
1483         nvmet_exit_discovery();
1484 out_free_work_queue:
1485         destroy_workqueue(buffered_io_wq);
1486 out:
1487         return error;
1488 }
1489
1490 static void __exit nvmet_exit(void)
1491 {
1492         nvmet_exit_configfs();
1493         nvmet_exit_discovery();
1494         ida_destroy(&cntlid_ida);
1495         destroy_workqueue(buffered_io_wq);
1496
1497         BUILD_BUG_ON(sizeof(struct nvmf_disc_rsp_page_entry) != 1024);
1498         BUILD_BUG_ON(sizeof(struct nvmf_disc_rsp_page_hdr) != 1024);
1499 }
1500
1501 module_init(nvmet_init);
1502 module_exit(nvmet_exit);
1503
1504 MODULE_LICENSE("GPL v2");