Linux-libre 4.19.123-gnu
[librecmc/linux-libre.git] / drivers / net / wireless / zydas / zd1211rw / zd_usb.c
1 /* ZD1211 USB-WLAN driver for Linux
2  *
3  * Copyright (C) 2005-2007 Ulrich Kunitz <kune@deine-taler.de>
4  * Copyright (C) 2006-2007 Daniel Drake <dsd@gentoo.org>
5  * Copyright (C) 2006-2007 Michael Wu <flamingice@sourmilk.net>
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License as published by
9  * the Free Software Foundation; either version 2 of the License, or
10  * (at your option) any later version.
11  *
12  * This program is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15  * GNU General Public License for more details.
16  *
17  * You should have received a copy of the GNU General Public License
18  * along with this program; if not, see <http://www.gnu.org/licenses/>.
19  */
20
21 #include <linux/kernel.h>
22 #include <linux/init.h>
23 #include <linux/firmware.h>
24 #include <linux/device.h>
25 #include <linux/errno.h>
26 #include <linux/slab.h>
27 #include <linux/skbuff.h>
28 #include <linux/usb.h>
29 #include <linux/workqueue.h>
30 #include <linux/module.h>
31 #include <net/mac80211.h>
32 #include <asm/unaligned.h>
33
34 #include "zd_def.h"
35 #include "zd_mac.h"
36 #include "zd_usb.h"
37
38 static const struct usb_device_id usb_ids[] = {
39         /* ZD1211 */
40         { USB_DEVICE(0x0105, 0x145f), .driver_info = DEVICE_ZD1211 },
41         { USB_DEVICE(0x0586, 0x3401), .driver_info = DEVICE_ZD1211 },
42         { USB_DEVICE(0x0586, 0x3402), .driver_info = DEVICE_ZD1211 },
43         { USB_DEVICE(0x0586, 0x3407), .driver_info = DEVICE_ZD1211 },
44         { USB_DEVICE(0x0586, 0x3409), .driver_info = DEVICE_ZD1211 },
45         { USB_DEVICE(0x079b, 0x004a), .driver_info = DEVICE_ZD1211 },
46         { USB_DEVICE(0x07b8, 0x6001), .driver_info = DEVICE_ZD1211 },
47         { USB_DEVICE(0x0ace, 0x1211), .driver_info = DEVICE_ZD1211 },
48         { USB_DEVICE(0x0ace, 0xa211), .driver_info = DEVICE_ZD1211 },
49         { USB_DEVICE(0x0b05, 0x170c), .driver_info = DEVICE_ZD1211 },
50         { USB_DEVICE(0x0b3b, 0x1630), .driver_info = DEVICE_ZD1211 },
51         { USB_DEVICE(0x0b3b, 0x5630), .driver_info = DEVICE_ZD1211 },
52         { USB_DEVICE(0x0df6, 0x9071), .driver_info = DEVICE_ZD1211 },
53         { USB_DEVICE(0x0df6, 0x9075), .driver_info = DEVICE_ZD1211 },
54         { USB_DEVICE(0x126f, 0xa006), .driver_info = DEVICE_ZD1211 },
55         { USB_DEVICE(0x129b, 0x1666), .driver_info = DEVICE_ZD1211 },
56         { USB_DEVICE(0x13b1, 0x001e), .driver_info = DEVICE_ZD1211 },
57         { USB_DEVICE(0x1435, 0x0711), .driver_info = DEVICE_ZD1211 },
58         { USB_DEVICE(0x14ea, 0xab10), .driver_info = DEVICE_ZD1211 },
59         { USB_DEVICE(0x14ea, 0xab13), .driver_info = DEVICE_ZD1211 },
60         { USB_DEVICE(0x157e, 0x300a), .driver_info = DEVICE_ZD1211 },
61         { USB_DEVICE(0x157e, 0x300b), .driver_info = DEVICE_ZD1211 },
62         { USB_DEVICE(0x157e, 0x3204), .driver_info = DEVICE_ZD1211 },
63         { USB_DEVICE(0x157e, 0x3207), .driver_info = DEVICE_ZD1211 },
64         { USB_DEVICE(0x1740, 0x2000), .driver_info = DEVICE_ZD1211 },
65         { USB_DEVICE(0x6891, 0xa727), .driver_info = DEVICE_ZD1211 },
66         /* ZD1211B */
67         { USB_DEVICE(0x0053, 0x5301), .driver_info = DEVICE_ZD1211B },
68         { USB_DEVICE(0x0409, 0x0248), .driver_info = DEVICE_ZD1211B },
69         { USB_DEVICE(0x0411, 0x00da), .driver_info = DEVICE_ZD1211B },
70         { USB_DEVICE(0x0471, 0x1236), .driver_info = DEVICE_ZD1211B },
71         { USB_DEVICE(0x0471, 0x1237), .driver_info = DEVICE_ZD1211B },
72         { USB_DEVICE(0x050d, 0x705c), .driver_info = DEVICE_ZD1211B },
73         { USB_DEVICE(0x054c, 0x0257), .driver_info = DEVICE_ZD1211B },
74         { USB_DEVICE(0x0586, 0x340a), .driver_info = DEVICE_ZD1211B },
75         { USB_DEVICE(0x0586, 0x340f), .driver_info = DEVICE_ZD1211B },
76         { USB_DEVICE(0x0586, 0x3410), .driver_info = DEVICE_ZD1211B },
77         { USB_DEVICE(0x0586, 0x3412), .driver_info = DEVICE_ZD1211B },
78         { USB_DEVICE(0x0586, 0x3413), .driver_info = DEVICE_ZD1211B },
79         { USB_DEVICE(0x079b, 0x0062), .driver_info = DEVICE_ZD1211B },
80         { USB_DEVICE(0x07b8, 0x6001), .driver_info = DEVICE_ZD1211B },
81         { USB_DEVICE(0x07fa, 0x1196), .driver_info = DEVICE_ZD1211B },
82         { USB_DEVICE(0x083a, 0x4505), .driver_info = DEVICE_ZD1211B },
83         { USB_DEVICE(0x083a, 0xe501), .driver_info = DEVICE_ZD1211B },
84         { USB_DEVICE(0x083a, 0xe503), .driver_info = DEVICE_ZD1211B },
85         { USB_DEVICE(0x083a, 0xe506), .driver_info = DEVICE_ZD1211B },
86         { USB_DEVICE(0x0ace, 0x1215), .driver_info = DEVICE_ZD1211B },
87         { USB_DEVICE(0x0ace, 0xb215), .driver_info = DEVICE_ZD1211B },
88         { USB_DEVICE(0x0b05, 0x171b), .driver_info = DEVICE_ZD1211B },
89         { USB_DEVICE(0x0baf, 0x0121), .driver_info = DEVICE_ZD1211B },
90         { USB_DEVICE(0x0cde, 0x001a), .driver_info = DEVICE_ZD1211B },
91         { USB_DEVICE(0x0df6, 0x0036), .driver_info = DEVICE_ZD1211B },
92         { USB_DEVICE(0x129b, 0x1667), .driver_info = DEVICE_ZD1211B },
93         { USB_DEVICE(0x13b1, 0x0024), .driver_info = DEVICE_ZD1211B },
94         { USB_DEVICE(0x157e, 0x300d), .driver_info = DEVICE_ZD1211B },
95         { USB_DEVICE(0x1582, 0x6003), .driver_info = DEVICE_ZD1211B },
96         { USB_DEVICE(0x2019, 0x5303), .driver_info = DEVICE_ZD1211B },
97         { USB_DEVICE(0x2019, 0xed01), .driver_info = DEVICE_ZD1211B },
98         /* "Driverless" devices that need ejecting */
99         { USB_DEVICE(0x0ace, 0x2011), .driver_info = DEVICE_INSTALLER },
100         { USB_DEVICE(0x0ace, 0x20ff), .driver_info = DEVICE_INSTALLER },
101         {}
102 };
103
104 MODULE_LICENSE("GPL");
105 MODULE_DESCRIPTION("USB driver for devices with the ZD1211 chip.");
106 MODULE_AUTHOR("Ulrich Kunitz");
107 MODULE_AUTHOR("Daniel Drake");
108 MODULE_VERSION("1.0");
109 MODULE_DEVICE_TABLE(usb, usb_ids);
110
111 #define FW_ZD1211_PREFIX        "/*(DEBLOBBED)*/"
112 #define FW_ZD1211B_PREFIX       "/*(DEBLOBBED)*/"
113
114 static bool check_read_regs(struct zd_usb *usb, struct usb_req_read_regs *req,
115                             unsigned int count);
116
117 /* USB device initialization */
118 static void int_urb_complete(struct urb *urb);
119
120 static int request_fw_file(
121         const struct firmware **fw, const char *name, struct device *device)
122 {
123         int r;
124
125         dev_dbg_f(device, "fw name %s\n", name);
126
127         r = reject_firmware(fw, name, device);
128         if (r)
129                 dev_err(device,
130                        "Could not load firmware file %s. Error number %d\n",
131                        name, r);
132         return r;
133 }
134
135 static inline u16 get_bcdDevice(const struct usb_device *udev)
136 {
137         return le16_to_cpu(udev->descriptor.bcdDevice);
138 }
139
140 enum upload_code_flags {
141         REBOOT = 1,
142 };
143
144 /* Ensures that MAX_TRANSFER_SIZE is even. */
145 #define MAX_TRANSFER_SIZE (USB_MAX_TRANSFER_SIZE & ~1)
146
147 static int upload_code(struct usb_device *udev,
148         const u8 *data, size_t size, u16 code_offset, int flags)
149 {
150         u8 *p;
151         int r;
152
153         /* USB request blocks need "kmalloced" buffers.
154          */
155         p = kmalloc(MAX_TRANSFER_SIZE, GFP_KERNEL);
156         if (!p) {
157                 r = -ENOMEM;
158                 goto error;
159         }
160
161         size &= ~1;
162         while (size > 0) {
163                 size_t transfer_size = size <= MAX_TRANSFER_SIZE ?
164                         size : MAX_TRANSFER_SIZE;
165
166                 dev_dbg_f(&udev->dev, "transfer size %zu\n", transfer_size);
167
168                 memcpy(p, data, transfer_size);
169                 r = usb_control_msg(udev, usb_sndctrlpipe(udev, 0),
170                         USB_REQ_FIRMWARE_DOWNLOAD,
171                         USB_DIR_OUT | USB_TYPE_VENDOR,
172                         code_offset, 0, p, transfer_size, 1000 /* ms */);
173                 if (r < 0) {
174                         dev_err(&udev->dev,
175                                "USB control request for firmware upload"
176                                " failed. Error number %d\n", r);
177                         goto error;
178                 }
179                 transfer_size = r & ~1;
180
181                 size -= transfer_size;
182                 data += transfer_size;
183                 code_offset += transfer_size/sizeof(u16);
184         }
185
186         if (flags & REBOOT) {
187                 u8 ret;
188
189                 /* Use "DMA-aware" buffer. */
190                 r = usb_control_msg(udev, usb_rcvctrlpipe(udev, 0),
191                         USB_REQ_FIRMWARE_CONFIRM,
192                         USB_DIR_IN | USB_TYPE_VENDOR,
193                         0, 0, p, sizeof(ret), 5000 /* ms */);
194                 if (r != sizeof(ret)) {
195                         dev_err(&udev->dev,
196                                 "control request firmware confirmation failed."
197                                 " Return value %d\n", r);
198                         if (r >= 0)
199                                 r = -ENODEV;
200                         goto error;
201                 }
202                 ret = p[0];
203                 if (ret & 0x80) {
204                         dev_err(&udev->dev,
205                                 "Internal error while downloading."
206                                 " Firmware confirm return value %#04x\n",
207                                 (unsigned int)ret);
208                         r = -ENODEV;
209                         goto error;
210                 }
211                 dev_dbg_f(&udev->dev, "firmware confirm return value %#04x\n",
212                         (unsigned int)ret);
213         }
214
215         r = 0;
216 error:
217         kfree(p);
218         return r;
219 }
220
221 static u16 get_word(const void *data, u16 offset)
222 {
223         const __le16 *p = data;
224         return le16_to_cpu(p[offset]);
225 }
226
227 static char *get_fw_name(struct zd_usb *usb, char *buffer, size_t size,
228                        const char* postfix)
229 {
230         scnprintf(buffer, size, "%s%s",
231                 usb->is_zd1211b ?
232                         FW_ZD1211B_PREFIX : FW_ZD1211_PREFIX,
233                 postfix);
234         return buffer;
235 }
236
237 static int handle_version_mismatch(struct zd_usb *usb,
238         const struct firmware *ub_fw)
239 {
240         struct usb_device *udev = zd_usb_to_usbdev(usb);
241         const struct firmware *ur_fw = NULL;
242         int offset;
243         int r = 0;
244         char fw_name[128];
245
246         r = request_fw_file(&ur_fw,
247                 get_fw_name(usb, fw_name, sizeof(fw_name), "ur"),
248                 &udev->dev);
249         if (r)
250                 goto error;
251
252         r = upload_code(udev, ur_fw->data, ur_fw->size, FW_START, REBOOT);
253         if (r)
254                 goto error;
255
256         offset = (E2P_BOOT_CODE_OFFSET * sizeof(u16));
257         r = upload_code(udev, ub_fw->data + offset, ub_fw->size - offset,
258                 E2P_START + E2P_BOOT_CODE_OFFSET, REBOOT);
259
260         /* At this point, the vendor driver downloads the whole firmware
261          * image, hacks around with version IDs, and uploads it again,
262          * completely overwriting the boot code. We do not do this here as
263          * it is not required on any tested devices, and it is suspected to
264          * cause problems. */
265 error:
266         release_firmware(ur_fw);
267         return r;
268 }
269
270 static int upload_firmware(struct zd_usb *usb)
271 {
272         int r;
273         u16 fw_bcdDevice;
274         u16 bcdDevice;
275         struct usb_device *udev = zd_usb_to_usbdev(usb);
276         const struct firmware *ub_fw = NULL;
277         const struct firmware *uph_fw = NULL;
278         char fw_name[128];
279
280         bcdDevice = get_bcdDevice(udev);
281
282         r = request_fw_file(&ub_fw,
283                 get_fw_name(usb, fw_name, sizeof(fw_name), "ub"),
284                 &udev->dev);
285         if (r)
286                 goto error;
287
288         fw_bcdDevice = get_word(ub_fw->data, E2P_DATA_OFFSET);
289
290         if (fw_bcdDevice != bcdDevice) {
291                 dev_info(&udev->dev,
292                         "firmware version %#06x and device bootcode version "
293                         "%#06x differ\n", fw_bcdDevice, bcdDevice);
294                 if (bcdDevice <= 0x4313)
295                         dev_warn(&udev->dev, "device has old bootcode, please "
296                                 "report success or failure\n");
297
298                 r = handle_version_mismatch(usb, ub_fw);
299                 if (r)
300                         goto error;
301         } else {
302                 dev_dbg_f(&udev->dev,
303                         "firmware device id %#06x is equal to the "
304                         "actual device id\n", fw_bcdDevice);
305         }
306
307
308         r = request_fw_file(&uph_fw,
309                 get_fw_name(usb, fw_name, sizeof(fw_name), "uphr"),
310                 &udev->dev);
311         if (r)
312                 goto error;
313
314         r = upload_code(udev, uph_fw->data, uph_fw->size, FW_START, REBOOT);
315         if (r) {
316                 dev_err(&udev->dev,
317                         "Could not upload firmware code uph. Error number %d\n",
318                         r);
319         }
320
321         /* FALL-THROUGH */
322 error:
323         release_firmware(ub_fw);
324         release_firmware(uph_fw);
325         return r;
326 }
327
328 /*(DEBLOBBED)*/
329
330 /* Read data from device address space using "firmware interface" which does
331  * not require firmware to be loaded. */
332 int zd_usb_read_fw(struct zd_usb *usb, zd_addr_t addr, u8 *data, u16 len)
333 {
334         int r;
335         struct usb_device *udev = zd_usb_to_usbdev(usb);
336         u8 *buf;
337
338         /* Use "DMA-aware" buffer. */
339         buf = kmalloc(len, GFP_KERNEL);
340         if (!buf)
341                 return -ENOMEM;
342         r = usb_control_msg(udev, usb_rcvctrlpipe(udev, 0),
343                 USB_REQ_FIRMWARE_READ_DATA, USB_DIR_IN | 0x40, addr, 0,
344                 buf, len, 5000);
345         if (r < 0) {
346                 dev_err(&udev->dev,
347                         "read over firmware interface failed: %d\n", r);
348                 goto exit;
349         } else if (r != len) {
350                 dev_err(&udev->dev,
351                         "incomplete read over firmware interface: %d/%d\n",
352                         r, len);
353                 r = -EIO;
354                 goto exit;
355         }
356         r = 0;
357         memcpy(data, buf, len);
358 exit:
359         kfree(buf);
360         return r;
361 }
362
363 #define urb_dev(urb) (&(urb)->dev->dev)
364
365 static inline void handle_regs_int_override(struct urb *urb)
366 {
367         struct zd_usb *usb = urb->context;
368         struct zd_usb_interrupt *intr = &usb->intr;
369         unsigned long flags;
370
371         spin_lock_irqsave(&intr->lock, flags);
372         if (atomic_read(&intr->read_regs_enabled)) {
373                 atomic_set(&intr->read_regs_enabled, 0);
374                 intr->read_regs_int_overridden = 1;
375                 complete(&intr->read_regs.completion);
376         }
377         spin_unlock_irqrestore(&intr->lock, flags);
378 }
379
380 static inline void handle_regs_int(struct urb *urb)
381 {
382         struct zd_usb *usb = urb->context;
383         struct zd_usb_interrupt *intr = &usb->intr;
384         unsigned long flags;
385         int len;
386         u16 int_num;
387
388         ZD_ASSERT(in_interrupt());
389         spin_lock_irqsave(&intr->lock, flags);
390
391         int_num = le16_to_cpu(*(__le16 *)(urb->transfer_buffer+2));
392         if (int_num == CR_INTERRUPT) {
393                 struct zd_mac *mac = zd_hw_mac(zd_usb_to_hw(urb->context));
394                 spin_lock(&mac->lock);
395                 memcpy(&mac->intr_buffer, urb->transfer_buffer,
396                                 USB_MAX_EP_INT_BUFFER);
397                 spin_unlock(&mac->lock);
398                 schedule_work(&mac->process_intr);
399         } else if (atomic_read(&intr->read_regs_enabled)) {
400                 len = urb->actual_length;
401                 intr->read_regs.length = urb->actual_length;
402                 if (len > sizeof(intr->read_regs.buffer))
403                         len = sizeof(intr->read_regs.buffer);
404
405                 memcpy(intr->read_regs.buffer, urb->transfer_buffer, len);
406
407                 /* Sometimes USB_INT_ID_REGS is not overridden, but comes after
408                  * USB_INT_ID_RETRY_FAILED. Read-reg retry then gets this
409                  * delayed USB_INT_ID_REGS, but leaves USB_INT_ID_REGS of
410                  * retry unhandled. Next read-reg command then might catch
411                  * this wrong USB_INT_ID_REGS. Fix by ignoring wrong reads.
412                  */
413                 if (!check_read_regs(usb, intr->read_regs.req,
414                                                 intr->read_regs.req_count))
415                         goto out;
416
417                 atomic_set(&intr->read_regs_enabled, 0);
418                 intr->read_regs_int_overridden = 0;
419                 complete(&intr->read_regs.completion);
420
421                 goto out;
422         }
423
424 out:
425         spin_unlock_irqrestore(&intr->lock, flags);
426
427         /* CR_INTERRUPT might override read_reg too. */
428         if (int_num == CR_INTERRUPT && atomic_read(&intr->read_regs_enabled))
429                 handle_regs_int_override(urb);
430 }
431
432 static void int_urb_complete(struct urb *urb)
433 {
434         int r;
435         struct usb_int_header *hdr;
436         struct zd_usb *usb;
437         struct zd_usb_interrupt *intr;
438
439         switch (urb->status) {
440         case 0:
441                 break;
442         case -ESHUTDOWN:
443         case -EINVAL:
444         case -ENODEV:
445         case -ENOENT:
446         case -ECONNRESET:
447         case -EPIPE:
448                 dev_dbg_f(urb_dev(urb), "urb %p error %d\n", urb, urb->status);
449                 return;
450         default:
451                 dev_dbg_f(urb_dev(urb), "urb %p error %d\n", urb, urb->status);
452                 goto resubmit;
453         }
454
455         if (urb->actual_length < sizeof(hdr)) {
456                 dev_dbg_f(urb_dev(urb), "error: urb %p to small\n", urb);
457                 goto resubmit;
458         }
459
460         hdr = urb->transfer_buffer;
461         if (hdr->type != USB_INT_TYPE) {
462                 dev_dbg_f(urb_dev(urb), "error: urb %p wrong type\n", urb);
463                 goto resubmit;
464         }
465
466         /* USB_INT_ID_RETRY_FAILED triggered by tx-urb submit can override
467          * pending USB_INT_ID_REGS causing read command timeout.
468          */
469         usb = urb->context;
470         intr = &usb->intr;
471         if (hdr->id != USB_INT_ID_REGS && atomic_read(&intr->read_regs_enabled))
472                 handle_regs_int_override(urb);
473
474         switch (hdr->id) {
475         case USB_INT_ID_REGS:
476                 handle_regs_int(urb);
477                 break;
478         case USB_INT_ID_RETRY_FAILED:
479                 zd_mac_tx_failed(urb);
480                 break;
481         default:
482                 dev_dbg_f(urb_dev(urb), "error: urb %p unknown id %x\n", urb,
483                         (unsigned int)hdr->id);
484                 goto resubmit;
485         }
486
487 resubmit:
488         r = usb_submit_urb(urb, GFP_ATOMIC);
489         if (r) {
490                 dev_dbg_f(urb_dev(urb), "error: resubmit urb %p err code %d\n",
491                           urb, r);
492                 /* TODO: add worker to reset intr->urb */
493         }
494         return;
495 }
496
497 static inline int int_urb_interval(struct usb_device *udev)
498 {
499         switch (udev->speed) {
500         case USB_SPEED_HIGH:
501                 return 4;
502         case USB_SPEED_LOW:
503                 return 10;
504         case USB_SPEED_FULL:
505         default:
506                 return 1;
507         }
508 }
509
510 static inline int usb_int_enabled(struct zd_usb *usb)
511 {
512         unsigned long flags;
513         struct zd_usb_interrupt *intr = &usb->intr;
514         struct urb *urb;
515
516         spin_lock_irqsave(&intr->lock, flags);
517         urb = intr->urb;
518         spin_unlock_irqrestore(&intr->lock, flags);
519         return urb != NULL;
520 }
521
522 int zd_usb_enable_int(struct zd_usb *usb)
523 {
524         int r;
525         struct usb_device *udev = zd_usb_to_usbdev(usb);
526         struct zd_usb_interrupt *intr = &usb->intr;
527         struct urb *urb;
528
529         dev_dbg_f(zd_usb_dev(usb), "\n");
530
531         urb = usb_alloc_urb(0, GFP_KERNEL);
532         if (!urb) {
533                 r = -ENOMEM;
534                 goto out;
535         }
536
537         ZD_ASSERT(!irqs_disabled());
538         spin_lock_irq(&intr->lock);
539         if (intr->urb) {
540                 spin_unlock_irq(&intr->lock);
541                 r = 0;
542                 goto error_free_urb;
543         }
544         intr->urb = urb;
545         spin_unlock_irq(&intr->lock);
546
547         r = -ENOMEM;
548         intr->buffer = usb_alloc_coherent(udev, USB_MAX_EP_INT_BUFFER,
549                                           GFP_KERNEL, &intr->buffer_dma);
550         if (!intr->buffer) {
551                 dev_dbg_f(zd_usb_dev(usb),
552                         "couldn't allocate transfer_buffer\n");
553                 goto error_set_urb_null;
554         }
555
556         usb_fill_int_urb(urb, udev, usb_rcvintpipe(udev, EP_INT_IN),
557                          intr->buffer, USB_MAX_EP_INT_BUFFER,
558                          int_urb_complete, usb,
559                          intr->interval);
560         urb->transfer_dma = intr->buffer_dma;
561         urb->transfer_flags |= URB_NO_TRANSFER_DMA_MAP;
562
563         dev_dbg_f(zd_usb_dev(usb), "submit urb %p\n", intr->urb);
564         r = usb_submit_urb(urb, GFP_KERNEL);
565         if (r) {
566                 dev_dbg_f(zd_usb_dev(usb),
567                          "Couldn't submit urb. Error number %d\n", r);
568                 goto error;
569         }
570
571         return 0;
572 error:
573         usb_free_coherent(udev, USB_MAX_EP_INT_BUFFER,
574                           intr->buffer, intr->buffer_dma);
575 error_set_urb_null:
576         spin_lock_irq(&intr->lock);
577         intr->urb = NULL;
578         spin_unlock_irq(&intr->lock);
579 error_free_urb:
580         usb_free_urb(urb);
581 out:
582         return r;
583 }
584
585 void zd_usb_disable_int(struct zd_usb *usb)
586 {
587         unsigned long flags;
588         struct usb_device *udev = zd_usb_to_usbdev(usb);
589         struct zd_usb_interrupt *intr = &usb->intr;
590         struct urb *urb;
591         void *buffer;
592         dma_addr_t buffer_dma;
593
594         spin_lock_irqsave(&intr->lock, flags);
595         urb = intr->urb;
596         if (!urb) {
597                 spin_unlock_irqrestore(&intr->lock, flags);
598                 return;
599         }
600         intr->urb = NULL;
601         buffer = intr->buffer;
602         buffer_dma = intr->buffer_dma;
603         intr->buffer = NULL;
604         spin_unlock_irqrestore(&intr->lock, flags);
605
606         usb_kill_urb(urb);
607         dev_dbg_f(zd_usb_dev(usb), "urb %p killed\n", urb);
608         usb_free_urb(urb);
609
610         if (buffer)
611                 usb_free_coherent(udev, USB_MAX_EP_INT_BUFFER,
612                                   buffer, buffer_dma);
613 }
614
615 static void handle_rx_packet(struct zd_usb *usb, const u8 *buffer,
616                              unsigned int length)
617 {
618         int i;
619         const struct rx_length_info *length_info;
620
621         if (length < sizeof(struct rx_length_info)) {
622                 /* It's not a complete packet anyhow. */
623                 dev_dbg_f(zd_usb_dev(usb), "invalid, small RX packet : %d\n",
624                                            length);
625                 return;
626         }
627         length_info = (struct rx_length_info *)
628                 (buffer + length - sizeof(struct rx_length_info));
629
630         /* It might be that three frames are merged into a single URB
631          * transaction. We have to check for the length info tag.
632          *
633          * While testing we discovered that length_info might be unaligned,
634          * because if USB transactions are merged, the last packet will not
635          * be padded. Unaligned access might also happen if the length_info
636          * structure is not present.
637          */
638         if (get_unaligned_le16(&length_info->tag) == RX_LENGTH_INFO_TAG)
639         {
640                 unsigned int l, k, n;
641                 for (i = 0, l = 0;; i++) {
642                         k = get_unaligned_le16(&length_info->length[i]);
643                         if (k == 0)
644                                 return;
645                         n = l+k;
646                         if (n > length)
647                                 return;
648                         zd_mac_rx(zd_usb_to_hw(usb), buffer+l, k);
649                         if (i >= 2)
650                                 return;
651                         l = (n+3) & ~3;
652                 }
653         } else {
654                 zd_mac_rx(zd_usb_to_hw(usb), buffer, length);
655         }
656 }
657
658 static void rx_urb_complete(struct urb *urb)
659 {
660         int r;
661         struct zd_usb *usb;
662         struct zd_usb_rx *rx;
663         const u8 *buffer;
664         unsigned int length;
665         unsigned long flags;
666
667         switch (urb->status) {
668         case 0:
669                 break;
670         case -ESHUTDOWN:
671         case -EINVAL:
672         case -ENODEV:
673         case -ENOENT:
674         case -ECONNRESET:
675         case -EPIPE:
676                 dev_dbg_f(urb_dev(urb), "urb %p error %d\n", urb, urb->status);
677                 return;
678         default:
679                 dev_dbg_f(urb_dev(urb), "urb %p error %d\n", urb, urb->status);
680                 goto resubmit;
681         }
682
683         buffer = urb->transfer_buffer;
684         length = urb->actual_length;
685         usb = urb->context;
686         rx = &usb->rx;
687
688         tasklet_schedule(&rx->reset_timer_tasklet);
689
690         if (length%rx->usb_packet_size > rx->usb_packet_size-4) {
691                 /* If there is an old first fragment, we don't care. */
692                 dev_dbg_f(urb_dev(urb), "*** first fragment ***\n");
693                 ZD_ASSERT(length <= ARRAY_SIZE(rx->fragment));
694                 spin_lock_irqsave(&rx->lock, flags);
695                 memcpy(rx->fragment, buffer, length);
696                 rx->fragment_length = length;
697                 spin_unlock_irqrestore(&rx->lock, flags);
698                 goto resubmit;
699         }
700
701         spin_lock_irqsave(&rx->lock, flags);
702         if (rx->fragment_length > 0) {
703                 /* We are on a second fragment, we believe */
704                 ZD_ASSERT(length + rx->fragment_length <=
705                           ARRAY_SIZE(rx->fragment));
706                 dev_dbg_f(urb_dev(urb), "*** second fragment ***\n");
707                 memcpy(rx->fragment+rx->fragment_length, buffer, length);
708                 handle_rx_packet(usb, rx->fragment,
709                                  rx->fragment_length + length);
710                 rx->fragment_length = 0;
711                 spin_unlock_irqrestore(&rx->lock, flags);
712         } else {
713                 spin_unlock_irqrestore(&rx->lock, flags);
714                 handle_rx_packet(usb, buffer, length);
715         }
716
717 resubmit:
718         r = usb_submit_urb(urb, GFP_ATOMIC);
719         if (r)
720                 dev_dbg_f(urb_dev(urb), "urb %p resubmit error %d\n", urb, r);
721 }
722
723 static struct urb *alloc_rx_urb(struct zd_usb *usb)
724 {
725         struct usb_device *udev = zd_usb_to_usbdev(usb);
726         struct urb *urb;
727         void *buffer;
728
729         urb = usb_alloc_urb(0, GFP_KERNEL);
730         if (!urb)
731                 return NULL;
732         buffer = usb_alloc_coherent(udev, USB_MAX_RX_SIZE, GFP_KERNEL,
733                                     &urb->transfer_dma);
734         if (!buffer) {
735                 usb_free_urb(urb);
736                 return NULL;
737         }
738
739         usb_fill_bulk_urb(urb, udev, usb_rcvbulkpipe(udev, EP_DATA_IN),
740                           buffer, USB_MAX_RX_SIZE,
741                           rx_urb_complete, usb);
742         urb->transfer_flags |= URB_NO_TRANSFER_DMA_MAP;
743
744         return urb;
745 }
746
747 static void free_rx_urb(struct urb *urb)
748 {
749         if (!urb)
750                 return;
751         usb_free_coherent(urb->dev, urb->transfer_buffer_length,
752                           urb->transfer_buffer, urb->transfer_dma);
753         usb_free_urb(urb);
754 }
755
756 static int __zd_usb_enable_rx(struct zd_usb *usb)
757 {
758         int i, r;
759         struct zd_usb_rx *rx = &usb->rx;
760         struct urb **urbs;
761
762         dev_dbg_f(zd_usb_dev(usb), "\n");
763
764         r = -ENOMEM;
765         urbs = kcalloc(RX_URBS_COUNT, sizeof(struct urb *), GFP_KERNEL);
766         if (!urbs)
767                 goto error;
768         for (i = 0; i < RX_URBS_COUNT; i++) {
769                 urbs[i] = alloc_rx_urb(usb);
770                 if (!urbs[i])
771                         goto error;
772         }
773
774         ZD_ASSERT(!irqs_disabled());
775         spin_lock_irq(&rx->lock);
776         if (rx->urbs) {
777                 spin_unlock_irq(&rx->lock);
778                 r = 0;
779                 goto error;
780         }
781         rx->urbs = urbs;
782         rx->urbs_count = RX_URBS_COUNT;
783         spin_unlock_irq(&rx->lock);
784
785         for (i = 0; i < RX_URBS_COUNT; i++) {
786                 r = usb_submit_urb(urbs[i], GFP_KERNEL);
787                 if (r)
788                         goto error_submit;
789         }
790
791         return 0;
792 error_submit:
793         for (i = 0; i < RX_URBS_COUNT; i++) {
794                 usb_kill_urb(urbs[i]);
795         }
796         spin_lock_irq(&rx->lock);
797         rx->urbs = NULL;
798         rx->urbs_count = 0;
799         spin_unlock_irq(&rx->lock);
800 error:
801         if (urbs) {
802                 for (i = 0; i < RX_URBS_COUNT; i++)
803                         free_rx_urb(urbs[i]);
804         }
805         return r;
806 }
807
808 int zd_usb_enable_rx(struct zd_usb *usb)
809 {
810         int r;
811         struct zd_usb_rx *rx = &usb->rx;
812
813         mutex_lock(&rx->setup_mutex);
814         r = __zd_usb_enable_rx(usb);
815         mutex_unlock(&rx->setup_mutex);
816
817         zd_usb_reset_rx_idle_timer(usb);
818
819         return r;
820 }
821
822 static void __zd_usb_disable_rx(struct zd_usb *usb)
823 {
824         int i;
825         unsigned long flags;
826         struct urb **urbs;
827         unsigned int count;
828         struct zd_usb_rx *rx = &usb->rx;
829
830         spin_lock_irqsave(&rx->lock, flags);
831         urbs = rx->urbs;
832         count = rx->urbs_count;
833         spin_unlock_irqrestore(&rx->lock, flags);
834         if (!urbs)
835                 return;
836
837         for (i = 0; i < count; i++) {
838                 usb_kill_urb(urbs[i]);
839                 free_rx_urb(urbs[i]);
840         }
841         kfree(urbs);
842
843         spin_lock_irqsave(&rx->lock, flags);
844         rx->urbs = NULL;
845         rx->urbs_count = 0;
846         spin_unlock_irqrestore(&rx->lock, flags);
847 }
848
849 void zd_usb_disable_rx(struct zd_usb *usb)
850 {
851         struct zd_usb_rx *rx = &usb->rx;
852
853         mutex_lock(&rx->setup_mutex);
854         __zd_usb_disable_rx(usb);
855         mutex_unlock(&rx->setup_mutex);
856
857         tasklet_kill(&rx->reset_timer_tasklet);
858         cancel_delayed_work_sync(&rx->idle_work);
859 }
860
861 static void zd_usb_reset_rx(struct zd_usb *usb)
862 {
863         bool do_reset;
864         struct zd_usb_rx *rx = &usb->rx;
865         unsigned long flags;
866
867         mutex_lock(&rx->setup_mutex);
868
869         spin_lock_irqsave(&rx->lock, flags);
870         do_reset = rx->urbs != NULL;
871         spin_unlock_irqrestore(&rx->lock, flags);
872
873         if (do_reset) {
874                 __zd_usb_disable_rx(usb);
875                 __zd_usb_enable_rx(usb);
876         }
877
878         mutex_unlock(&rx->setup_mutex);
879
880         if (do_reset)
881                 zd_usb_reset_rx_idle_timer(usb);
882 }
883
884 /**
885  * zd_usb_disable_tx - disable transmission
886  * @usb: the zd1211rw-private USB structure
887  *
888  * Frees all URBs in the free list and marks the transmission as disabled.
889  */
890 void zd_usb_disable_tx(struct zd_usb *usb)
891 {
892         struct zd_usb_tx *tx = &usb->tx;
893         unsigned long flags;
894
895         atomic_set(&tx->enabled, 0);
896
897         /* kill all submitted tx-urbs */
898         usb_kill_anchored_urbs(&tx->submitted);
899
900         spin_lock_irqsave(&tx->lock, flags);
901         WARN_ON(!skb_queue_empty(&tx->submitted_skbs));
902         WARN_ON(tx->submitted_urbs != 0);
903         tx->submitted_urbs = 0;
904         spin_unlock_irqrestore(&tx->lock, flags);
905
906         /* The stopped state is ignored, relying on ieee80211_wake_queues()
907          * in a potentionally following zd_usb_enable_tx().
908          */
909 }
910
911 /**
912  * zd_usb_enable_tx - enables transmission
913  * @usb: a &struct zd_usb pointer
914  *
915  * This function enables transmission and prepares the &zd_usb_tx data
916  * structure.
917  */
918 void zd_usb_enable_tx(struct zd_usb *usb)
919 {
920         unsigned long flags;
921         struct zd_usb_tx *tx = &usb->tx;
922
923         spin_lock_irqsave(&tx->lock, flags);
924         atomic_set(&tx->enabled, 1);
925         tx->submitted_urbs = 0;
926         ieee80211_wake_queues(zd_usb_to_hw(usb));
927         tx->stopped = 0;
928         spin_unlock_irqrestore(&tx->lock, flags);
929 }
930
931 static void tx_dec_submitted_urbs(struct zd_usb *usb)
932 {
933         struct zd_usb_tx *tx = &usb->tx;
934         unsigned long flags;
935
936         spin_lock_irqsave(&tx->lock, flags);
937         --tx->submitted_urbs;
938         if (tx->stopped && tx->submitted_urbs <= ZD_USB_TX_LOW) {
939                 ieee80211_wake_queues(zd_usb_to_hw(usb));
940                 tx->stopped = 0;
941         }
942         spin_unlock_irqrestore(&tx->lock, flags);
943 }
944
945 static void tx_inc_submitted_urbs(struct zd_usb *usb)
946 {
947         struct zd_usb_tx *tx = &usb->tx;
948         unsigned long flags;
949
950         spin_lock_irqsave(&tx->lock, flags);
951         ++tx->submitted_urbs;
952         if (!tx->stopped && tx->submitted_urbs > ZD_USB_TX_HIGH) {
953                 ieee80211_stop_queues(zd_usb_to_hw(usb));
954                 tx->stopped = 1;
955         }
956         spin_unlock_irqrestore(&tx->lock, flags);
957 }
958
959 /**
960  * tx_urb_complete - completes the execution of an URB
961  * @urb: a URB
962  *
963  * This function is called if the URB has been transferred to a device or an
964  * error has happened.
965  */
966 static void tx_urb_complete(struct urb *urb)
967 {
968         int r;
969         struct sk_buff *skb;
970         struct ieee80211_tx_info *info;
971         struct zd_usb *usb;
972         struct zd_usb_tx *tx;
973
974         skb = (struct sk_buff *)urb->context;
975         info = IEEE80211_SKB_CB(skb);
976         /*
977          * grab 'usb' pointer before handing off the skb (since
978          * it might be freed by zd_mac_tx_to_dev or mac80211)
979          */
980         usb = &zd_hw_mac(info->rate_driver_data[0])->chip.usb;
981         tx = &usb->tx;
982
983         switch (urb->status) {
984         case 0:
985                 break;
986         case -ESHUTDOWN:
987         case -EINVAL:
988         case -ENODEV:
989         case -ENOENT:
990         case -ECONNRESET:
991         case -EPIPE:
992                 dev_dbg_f(urb_dev(urb), "urb %p error %d\n", urb, urb->status);
993                 break;
994         default:
995                 dev_dbg_f(urb_dev(urb), "urb %p error %d\n", urb, urb->status);
996                 goto resubmit;
997         }
998 free_urb:
999         skb_unlink(skb, &usb->tx.submitted_skbs);
1000         zd_mac_tx_to_dev(skb, urb->status);
1001         usb_free_urb(urb);
1002         tx_dec_submitted_urbs(usb);
1003         return;
1004 resubmit:
1005         usb_anchor_urb(urb, &tx->submitted);
1006         r = usb_submit_urb(urb, GFP_ATOMIC);
1007         if (r) {
1008                 usb_unanchor_urb(urb);
1009                 dev_dbg_f(urb_dev(urb), "error resubmit urb %p %d\n", urb, r);
1010                 goto free_urb;
1011         }
1012 }
1013
1014 /**
1015  * zd_usb_tx: initiates transfer of a frame of the device
1016  *
1017  * @usb: the zd1211rw-private USB structure
1018  * @skb: a &struct sk_buff pointer
1019  *
1020  * This function tranmits a frame to the device. It doesn't wait for
1021  * completion. The frame must contain the control set and have all the
1022  * control set information available.
1023  *
1024  * The function returns 0 if the transfer has been successfully initiated.
1025  */
1026 int zd_usb_tx(struct zd_usb *usb, struct sk_buff *skb)
1027 {
1028         int r;
1029         struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
1030         struct usb_device *udev = zd_usb_to_usbdev(usb);
1031         struct urb *urb;
1032         struct zd_usb_tx *tx = &usb->tx;
1033
1034         if (!atomic_read(&tx->enabled)) {
1035                 r = -ENOENT;
1036                 goto out;
1037         }
1038
1039         urb = usb_alloc_urb(0, GFP_ATOMIC);
1040         if (!urb) {
1041                 r = -ENOMEM;
1042                 goto out;
1043         }
1044
1045         usb_fill_bulk_urb(urb, udev, usb_sndbulkpipe(udev, EP_DATA_OUT),
1046                           skb->data, skb->len, tx_urb_complete, skb);
1047
1048         info->rate_driver_data[1] = (void *)jiffies;
1049         skb_queue_tail(&tx->submitted_skbs, skb);
1050         usb_anchor_urb(urb, &tx->submitted);
1051
1052         r = usb_submit_urb(urb, GFP_ATOMIC);
1053         if (r) {
1054                 dev_dbg_f(zd_usb_dev(usb), "error submit urb %p %d\n", urb, r);
1055                 usb_unanchor_urb(urb);
1056                 skb_unlink(skb, &tx->submitted_skbs);
1057                 goto error;
1058         }
1059         tx_inc_submitted_urbs(usb);
1060         return 0;
1061 error:
1062         usb_free_urb(urb);
1063 out:
1064         return r;
1065 }
1066
1067 static bool zd_tx_timeout(struct zd_usb *usb)
1068 {
1069         struct zd_usb_tx *tx = &usb->tx;
1070         struct sk_buff_head *q = &tx->submitted_skbs;
1071         struct sk_buff *skb, *skbnext;
1072         struct ieee80211_tx_info *info;
1073         unsigned long flags, trans_start;
1074         bool have_timedout = false;
1075
1076         spin_lock_irqsave(&q->lock, flags);
1077         skb_queue_walk_safe(q, skb, skbnext) {
1078                 info = IEEE80211_SKB_CB(skb);
1079                 trans_start = (unsigned long)info->rate_driver_data[1];
1080
1081                 if (time_is_before_jiffies(trans_start + ZD_TX_TIMEOUT)) {
1082                         have_timedout = true;
1083                         break;
1084                 }
1085         }
1086         spin_unlock_irqrestore(&q->lock, flags);
1087
1088         return have_timedout;
1089 }
1090
1091 static void zd_tx_watchdog_handler(struct work_struct *work)
1092 {
1093         struct zd_usb *usb =
1094                 container_of(work, struct zd_usb, tx.watchdog_work.work);
1095         struct zd_usb_tx *tx = &usb->tx;
1096
1097         if (!atomic_read(&tx->enabled) || !tx->watchdog_enabled)
1098                 goto out;
1099         if (!zd_tx_timeout(usb))
1100                 goto out;
1101
1102         /* TX halted, try reset */
1103         dev_warn(zd_usb_dev(usb), "TX-stall detected, resetting device...");
1104
1105         usb_queue_reset_device(usb->intf);
1106
1107         /* reset will stop this worker, don't rearm */
1108         return;
1109 out:
1110         queue_delayed_work(zd_workqueue, &tx->watchdog_work,
1111                            ZD_TX_WATCHDOG_INTERVAL);
1112 }
1113
1114 void zd_tx_watchdog_enable(struct zd_usb *usb)
1115 {
1116         struct zd_usb_tx *tx = &usb->tx;
1117
1118         if (!tx->watchdog_enabled) {
1119                 dev_dbg_f(zd_usb_dev(usb), "\n");
1120                 queue_delayed_work(zd_workqueue, &tx->watchdog_work,
1121                                    ZD_TX_WATCHDOG_INTERVAL);
1122                 tx->watchdog_enabled = 1;
1123         }
1124 }
1125
1126 void zd_tx_watchdog_disable(struct zd_usb *usb)
1127 {
1128         struct zd_usb_tx *tx = &usb->tx;
1129
1130         if (tx->watchdog_enabled) {
1131                 dev_dbg_f(zd_usb_dev(usb), "\n");
1132                 tx->watchdog_enabled = 0;
1133                 cancel_delayed_work_sync(&tx->watchdog_work);
1134         }
1135 }
1136
1137 static void zd_rx_idle_timer_handler(struct work_struct *work)
1138 {
1139         struct zd_usb *usb =
1140                 container_of(work, struct zd_usb, rx.idle_work.work);
1141         struct zd_mac *mac = zd_usb_to_mac(usb);
1142
1143         if (!test_bit(ZD_DEVICE_RUNNING, &mac->flags))
1144                 return;
1145
1146         dev_dbg_f(zd_usb_dev(usb), "\n");
1147
1148         /* 30 seconds since last rx, reset rx */
1149         zd_usb_reset_rx(usb);
1150 }
1151
1152 static void zd_usb_reset_rx_idle_timer_tasklet(unsigned long param)
1153 {
1154         struct zd_usb *usb = (struct zd_usb *)param;
1155
1156         zd_usb_reset_rx_idle_timer(usb);
1157 }
1158
1159 void zd_usb_reset_rx_idle_timer(struct zd_usb *usb)
1160 {
1161         struct zd_usb_rx *rx = &usb->rx;
1162
1163         mod_delayed_work(zd_workqueue, &rx->idle_work, ZD_RX_IDLE_INTERVAL);
1164 }
1165
1166 static inline void init_usb_interrupt(struct zd_usb *usb)
1167 {
1168         struct zd_usb_interrupt *intr = &usb->intr;
1169
1170         spin_lock_init(&intr->lock);
1171         intr->interval = int_urb_interval(zd_usb_to_usbdev(usb));
1172         init_completion(&intr->read_regs.completion);
1173         atomic_set(&intr->read_regs_enabled, 0);
1174         intr->read_regs.cr_int_addr = cpu_to_le16((u16)CR_INTERRUPT);
1175 }
1176
1177 static inline void init_usb_rx(struct zd_usb *usb)
1178 {
1179         struct zd_usb_rx *rx = &usb->rx;
1180
1181         spin_lock_init(&rx->lock);
1182         mutex_init(&rx->setup_mutex);
1183         if (interface_to_usbdev(usb->intf)->speed == USB_SPEED_HIGH) {
1184                 rx->usb_packet_size = 512;
1185         } else {
1186                 rx->usb_packet_size = 64;
1187         }
1188         ZD_ASSERT(rx->fragment_length == 0);
1189         INIT_DELAYED_WORK(&rx->idle_work, zd_rx_idle_timer_handler);
1190         rx->reset_timer_tasklet.func = zd_usb_reset_rx_idle_timer_tasklet;
1191         rx->reset_timer_tasklet.data = (unsigned long)usb;
1192 }
1193
1194 static inline void init_usb_tx(struct zd_usb *usb)
1195 {
1196         struct zd_usb_tx *tx = &usb->tx;
1197
1198         spin_lock_init(&tx->lock);
1199         atomic_set(&tx->enabled, 0);
1200         tx->stopped = 0;
1201         skb_queue_head_init(&tx->submitted_skbs);
1202         init_usb_anchor(&tx->submitted);
1203         tx->submitted_urbs = 0;
1204         tx->watchdog_enabled = 0;
1205         INIT_DELAYED_WORK(&tx->watchdog_work, zd_tx_watchdog_handler);
1206 }
1207
1208 void zd_usb_init(struct zd_usb *usb, struct ieee80211_hw *hw,
1209                  struct usb_interface *intf)
1210 {
1211         memset(usb, 0, sizeof(*usb));
1212         usb->intf = usb_get_intf(intf);
1213         usb_set_intfdata(usb->intf, hw);
1214         init_usb_anchor(&usb->submitted_cmds);
1215         init_usb_interrupt(usb);
1216         init_usb_tx(usb);
1217         init_usb_rx(usb);
1218 }
1219
1220 void zd_usb_clear(struct zd_usb *usb)
1221 {
1222         usb_set_intfdata(usb->intf, NULL);
1223         usb_put_intf(usb->intf);
1224         ZD_MEMCLEAR(usb, sizeof(*usb));
1225         /* FIXME: usb_interrupt, usb_tx, usb_rx? */
1226 }
1227
1228 static const char *speed(enum usb_device_speed speed)
1229 {
1230         switch (speed) {
1231         case USB_SPEED_LOW:
1232                 return "low";
1233         case USB_SPEED_FULL:
1234                 return "full";
1235         case USB_SPEED_HIGH:
1236                 return "high";
1237         default:
1238                 return "unknown speed";
1239         }
1240 }
1241
1242 static int scnprint_id(struct usb_device *udev, char *buffer, size_t size)
1243 {
1244         return scnprintf(buffer, size, "%04hx:%04hx v%04hx %s",
1245                 le16_to_cpu(udev->descriptor.idVendor),
1246                 le16_to_cpu(udev->descriptor.idProduct),
1247                 get_bcdDevice(udev),
1248                 speed(udev->speed));
1249 }
1250
1251 int zd_usb_scnprint_id(struct zd_usb *usb, char *buffer, size_t size)
1252 {
1253         struct usb_device *udev = interface_to_usbdev(usb->intf);
1254         return scnprint_id(udev, buffer, size);
1255 }
1256
1257 #ifdef DEBUG
1258 static void print_id(struct usb_device *udev)
1259 {
1260         char buffer[40];
1261
1262         scnprint_id(udev, buffer, sizeof(buffer));
1263         buffer[sizeof(buffer)-1] = 0;
1264         dev_dbg_f(&udev->dev, "%s\n", buffer);
1265 }
1266 #else
1267 #define print_id(udev) do { } while (0)
1268 #endif
1269
1270 static int eject_installer(struct usb_interface *intf)
1271 {
1272         struct usb_device *udev = interface_to_usbdev(intf);
1273         struct usb_host_interface *iface_desc = intf->cur_altsetting;
1274         struct usb_endpoint_descriptor *endpoint;
1275         unsigned char *cmd;
1276         u8 bulk_out_ep;
1277         int r;
1278
1279         if (iface_desc->desc.bNumEndpoints < 2)
1280                 return -ENODEV;
1281
1282         /* Find bulk out endpoint */
1283         for (r = 1; r >= 0; r--) {
1284                 endpoint = &iface_desc->endpoint[r].desc;
1285                 if (usb_endpoint_dir_out(endpoint) &&
1286                     usb_endpoint_xfer_bulk(endpoint)) {
1287                         bulk_out_ep = endpoint->bEndpointAddress;
1288                         break;
1289                 }
1290         }
1291         if (r == -1) {
1292                 dev_err(&udev->dev,
1293                         "zd1211rw: Could not find bulk out endpoint\n");
1294                 return -ENODEV;
1295         }
1296
1297         cmd = kzalloc(31, GFP_KERNEL);
1298         if (cmd == NULL)
1299                 return -ENODEV;
1300
1301         /* USB bulk command block */
1302         cmd[0] = 0x55;  /* bulk command signature */
1303         cmd[1] = 0x53;  /* bulk command signature */
1304         cmd[2] = 0x42;  /* bulk command signature */
1305         cmd[3] = 0x43;  /* bulk command signature */
1306         cmd[14] = 6;    /* command length */
1307
1308         cmd[15] = 0x1b; /* SCSI command: START STOP UNIT */
1309         cmd[19] = 0x2;  /* eject disc */
1310
1311         dev_info(&udev->dev, "Ejecting virtual installer media...\n");
1312         r = usb_bulk_msg(udev, usb_sndbulkpipe(udev, bulk_out_ep),
1313                 cmd, 31, NULL, 2000);
1314         kfree(cmd);
1315         if (r)
1316                 return r;
1317
1318         /* At this point, the device disconnects and reconnects with the real
1319          * ID numbers. */
1320
1321         usb_set_intfdata(intf, NULL);
1322         return 0;
1323 }
1324
1325 int zd_usb_init_hw(struct zd_usb *usb)
1326 {
1327         int r;
1328         struct zd_mac *mac = zd_usb_to_mac(usb);
1329
1330         dev_dbg_f(zd_usb_dev(usb), "\n");
1331
1332         r = upload_firmware(usb);
1333         if (r) {
1334                 dev_err(zd_usb_dev(usb),
1335                        "couldn't load firmware. Error number %d\n", r);
1336                 return r;
1337         }
1338
1339         r = usb_reset_configuration(zd_usb_to_usbdev(usb));
1340         if (r) {
1341                 dev_dbg_f(zd_usb_dev(usb),
1342                         "couldn't reset configuration. Error number %d\n", r);
1343                 return r;
1344         }
1345
1346         r = zd_mac_init_hw(mac->hw);
1347         if (r) {
1348                 dev_dbg_f(zd_usb_dev(usb),
1349                          "couldn't initialize mac. Error number %d\n", r);
1350                 return r;
1351         }
1352
1353         usb->initialized = 1;
1354         return 0;
1355 }
1356
1357 static int probe(struct usb_interface *intf, const struct usb_device_id *id)
1358 {
1359         int r;
1360         struct usb_device *udev = interface_to_usbdev(intf);
1361         struct zd_usb *usb;
1362         struct ieee80211_hw *hw = NULL;
1363
1364         print_id(udev);
1365
1366         if (id->driver_info & DEVICE_INSTALLER)
1367                 return eject_installer(intf);
1368
1369         switch (udev->speed) {
1370         case USB_SPEED_LOW:
1371         case USB_SPEED_FULL:
1372         case USB_SPEED_HIGH:
1373                 break;
1374         default:
1375                 dev_dbg_f(&intf->dev, "Unknown USB speed\n");
1376                 r = -ENODEV;
1377                 goto error;
1378         }
1379
1380         r = usb_reset_device(udev);
1381         if (r) {
1382                 dev_err(&intf->dev,
1383                         "couldn't reset usb device. Error number %d\n", r);
1384                 goto error;
1385         }
1386
1387         hw = zd_mac_alloc_hw(intf);
1388         if (hw == NULL) {
1389                 r = -ENOMEM;
1390                 goto error;
1391         }
1392
1393         usb = &zd_hw_mac(hw)->chip.usb;
1394         usb->is_zd1211b = (id->driver_info == DEVICE_ZD1211B) != 0;
1395
1396         r = zd_mac_preinit_hw(hw);
1397         if (r) {
1398                 dev_dbg_f(&intf->dev,
1399                          "couldn't initialize mac. Error number %d\n", r);
1400                 goto error;
1401         }
1402
1403         r = ieee80211_register_hw(hw);
1404         if (r) {
1405                 dev_dbg_f(&intf->dev,
1406                          "couldn't register device. Error number %d\n", r);
1407                 goto error;
1408         }
1409
1410         dev_dbg_f(&intf->dev, "successful\n");
1411         dev_info(&intf->dev, "%s\n", wiphy_name(hw->wiphy));
1412         return 0;
1413 error:
1414         usb_reset_device(interface_to_usbdev(intf));
1415         if (hw) {
1416                 zd_mac_clear(zd_hw_mac(hw));
1417                 ieee80211_free_hw(hw);
1418         }
1419         return r;
1420 }
1421
1422 static void disconnect(struct usb_interface *intf)
1423 {
1424         struct ieee80211_hw *hw = zd_intf_to_hw(intf);
1425         struct zd_mac *mac;
1426         struct zd_usb *usb;
1427
1428         /* Either something really bad happened, or we're just dealing with
1429          * a DEVICE_INSTALLER. */
1430         if (hw == NULL)
1431                 return;
1432
1433         mac = zd_hw_mac(hw);
1434         usb = &mac->chip.usb;
1435
1436         dev_dbg_f(zd_usb_dev(usb), "\n");
1437
1438         ieee80211_unregister_hw(hw);
1439
1440         /* Just in case something has gone wrong! */
1441         zd_usb_disable_tx(usb);
1442         zd_usb_disable_rx(usb);
1443         zd_usb_disable_int(usb);
1444
1445         /* If the disconnect has been caused by a removal of the
1446          * driver module, the reset allows reloading of the driver. If the
1447          * reset will not be executed here, the upload of the firmware in the
1448          * probe function caused by the reloading of the driver will fail.
1449          */
1450         usb_reset_device(interface_to_usbdev(intf));
1451
1452         zd_mac_clear(mac);
1453         ieee80211_free_hw(hw);
1454         dev_dbg(&intf->dev, "disconnected\n");
1455 }
1456
1457 static void zd_usb_resume(struct zd_usb *usb)
1458 {
1459         struct zd_mac *mac = zd_usb_to_mac(usb);
1460         int r;
1461
1462         dev_dbg_f(zd_usb_dev(usb), "\n");
1463
1464         r = zd_op_start(zd_usb_to_hw(usb));
1465         if (r < 0) {
1466                 dev_warn(zd_usb_dev(usb), "Device resume failed "
1467                          "with error code %d. Retrying...\n", r);
1468                 if (usb->was_running)
1469                         set_bit(ZD_DEVICE_RUNNING, &mac->flags);
1470                 usb_queue_reset_device(usb->intf);
1471                 return;
1472         }
1473
1474         if (mac->type != NL80211_IFTYPE_UNSPECIFIED) {
1475                 r = zd_restore_settings(mac);
1476                 if (r < 0) {
1477                         dev_dbg(zd_usb_dev(usb),
1478                                 "failed to restore settings, %d\n", r);
1479                         return;
1480                 }
1481         }
1482 }
1483
1484 static void zd_usb_stop(struct zd_usb *usb)
1485 {
1486         dev_dbg_f(zd_usb_dev(usb), "\n");
1487
1488         zd_op_stop(zd_usb_to_hw(usb));
1489
1490         zd_usb_disable_tx(usb);
1491         zd_usb_disable_rx(usb);
1492         zd_usb_disable_int(usb);
1493
1494         usb->initialized = 0;
1495 }
1496
1497 static int pre_reset(struct usb_interface *intf)
1498 {
1499         struct ieee80211_hw *hw = usb_get_intfdata(intf);
1500         struct zd_mac *mac;
1501         struct zd_usb *usb;
1502
1503         if (!hw || intf->condition != USB_INTERFACE_BOUND)
1504                 return 0;
1505
1506         mac = zd_hw_mac(hw);
1507         usb = &mac->chip.usb;
1508
1509         usb->was_running = test_bit(ZD_DEVICE_RUNNING, &mac->flags);
1510
1511         zd_usb_stop(usb);
1512
1513         mutex_lock(&mac->chip.mutex);
1514         return 0;
1515 }
1516
1517 static int post_reset(struct usb_interface *intf)
1518 {
1519         struct ieee80211_hw *hw = usb_get_intfdata(intf);
1520         struct zd_mac *mac;
1521         struct zd_usb *usb;
1522
1523         if (!hw || intf->condition != USB_INTERFACE_BOUND)
1524                 return 0;
1525
1526         mac = zd_hw_mac(hw);
1527         usb = &mac->chip.usb;
1528
1529         mutex_unlock(&mac->chip.mutex);
1530
1531         if (usb->was_running)
1532                 zd_usb_resume(usb);
1533         return 0;
1534 }
1535
1536 static struct usb_driver driver = {
1537         .name           = KBUILD_MODNAME,
1538         .id_table       = usb_ids,
1539         .probe          = probe,
1540         .disconnect     = disconnect,
1541         .pre_reset      = pre_reset,
1542         .post_reset     = post_reset,
1543         .disable_hub_initiated_lpm = 1,
1544 };
1545
1546 struct workqueue_struct *zd_workqueue;
1547
1548 static int __init usb_init(void)
1549 {
1550         int r;
1551
1552         pr_debug("%s usb_init()\n", driver.name);
1553
1554         zd_workqueue = create_singlethread_workqueue(driver.name);
1555         if (zd_workqueue == NULL) {
1556                 printk(KERN_ERR "%s couldn't create workqueue\n", driver.name);
1557                 return -ENOMEM;
1558         }
1559
1560         r = usb_register(&driver);
1561         if (r) {
1562                 destroy_workqueue(zd_workqueue);
1563                 printk(KERN_ERR "%s usb_register() failed. Error number %d\n",
1564                        driver.name, r);
1565                 return r;
1566         }
1567
1568         pr_debug("%s initialized\n", driver.name);
1569         return 0;
1570 }
1571
1572 static void __exit usb_exit(void)
1573 {
1574         pr_debug("%s usb_exit()\n", driver.name);
1575         usb_deregister(&driver);
1576         destroy_workqueue(zd_workqueue);
1577 }
1578
1579 module_init(usb_init);
1580 module_exit(usb_exit);
1581
1582 static int zd_ep_regs_out_msg(struct usb_device *udev, void *data, int len,
1583                               int *actual_length, int timeout)
1584 {
1585         /* In USB 2.0 mode EP_REGS_OUT endpoint is interrupt type. However in
1586          * USB 1.1 mode endpoint is bulk. Select correct type URB by endpoint
1587          * descriptor.
1588          */
1589         struct usb_host_endpoint *ep;
1590         unsigned int pipe;
1591
1592         pipe = usb_sndintpipe(udev, EP_REGS_OUT);
1593         ep = usb_pipe_endpoint(udev, pipe);
1594         if (!ep)
1595                 return -EINVAL;
1596
1597         if (usb_endpoint_xfer_int(&ep->desc)) {
1598                 return usb_interrupt_msg(udev, pipe, data, len,
1599                                          actual_length, timeout);
1600         } else {
1601                 pipe = usb_sndbulkpipe(udev, EP_REGS_OUT);
1602                 return usb_bulk_msg(udev, pipe, data, len, actual_length,
1603                                     timeout);
1604         }
1605 }
1606
1607 static int usb_int_regs_length(unsigned int count)
1608 {
1609         return sizeof(struct usb_int_regs) + count * sizeof(struct reg_data);
1610 }
1611
1612 static void prepare_read_regs_int(struct zd_usb *usb,
1613                                   struct usb_req_read_regs *req,
1614                                   unsigned int count)
1615 {
1616         struct zd_usb_interrupt *intr = &usb->intr;
1617
1618         spin_lock_irq(&intr->lock);
1619         atomic_set(&intr->read_regs_enabled, 1);
1620         intr->read_regs.req = req;
1621         intr->read_regs.req_count = count;
1622         reinit_completion(&intr->read_regs.completion);
1623         spin_unlock_irq(&intr->lock);
1624 }
1625
1626 static void disable_read_regs_int(struct zd_usb *usb)
1627 {
1628         struct zd_usb_interrupt *intr = &usb->intr;
1629
1630         spin_lock_irq(&intr->lock);
1631         atomic_set(&intr->read_regs_enabled, 0);
1632         spin_unlock_irq(&intr->lock);
1633 }
1634
1635 static bool check_read_regs(struct zd_usb *usb, struct usb_req_read_regs *req,
1636                             unsigned int count)
1637 {
1638         int i;
1639         struct zd_usb_interrupt *intr = &usb->intr;
1640         struct read_regs_int *rr = &intr->read_regs;
1641         struct usb_int_regs *regs = (struct usb_int_regs *)rr->buffer;
1642
1643         /* The created block size seems to be larger than expected.
1644          * However results appear to be correct.
1645          */
1646         if (rr->length < usb_int_regs_length(count)) {
1647                 dev_dbg_f(zd_usb_dev(usb),
1648                          "error: actual length %d less than expected %d\n",
1649                          rr->length, usb_int_regs_length(count));
1650                 return false;
1651         }
1652
1653         if (rr->length > sizeof(rr->buffer)) {
1654                 dev_dbg_f(zd_usb_dev(usb),
1655                          "error: actual length %d exceeds buffer size %zu\n",
1656                          rr->length, sizeof(rr->buffer));
1657                 return false;
1658         }
1659
1660         for (i = 0; i < count; i++) {
1661                 struct reg_data *rd = &regs->regs[i];
1662                 if (rd->addr != req->addr[i]) {
1663                         dev_dbg_f(zd_usb_dev(usb),
1664                                  "rd[%d] addr %#06hx expected %#06hx\n", i,
1665                                  le16_to_cpu(rd->addr),
1666                                  le16_to_cpu(req->addr[i]));
1667                         return false;
1668                 }
1669         }
1670
1671         return true;
1672 }
1673
1674 static int get_results(struct zd_usb *usb, u16 *values,
1675                        struct usb_req_read_regs *req, unsigned int count,
1676                        bool *retry)
1677 {
1678         int r;
1679         int i;
1680         struct zd_usb_interrupt *intr = &usb->intr;
1681         struct read_regs_int *rr = &intr->read_regs;
1682         struct usb_int_regs *regs = (struct usb_int_regs *)rr->buffer;
1683
1684         spin_lock_irq(&intr->lock);
1685
1686         r = -EIO;
1687
1688         /* Read failed because firmware bug? */
1689         *retry = !!intr->read_regs_int_overridden;
1690         if (*retry)
1691                 goto error_unlock;
1692
1693         if (!check_read_regs(usb, req, count)) {
1694                 dev_dbg_f(zd_usb_dev(usb), "error: invalid read regs\n");
1695                 goto error_unlock;
1696         }
1697
1698         for (i = 0; i < count; i++) {
1699                 struct reg_data *rd = &regs->regs[i];
1700                 values[i] = le16_to_cpu(rd->value);
1701         }
1702
1703         r = 0;
1704 error_unlock:
1705         spin_unlock_irq(&intr->lock);
1706         return r;
1707 }
1708
1709 int zd_usb_ioread16v(struct zd_usb *usb, u16 *values,
1710                      const zd_addr_t *addresses, unsigned int count)
1711 {
1712         int r, i, req_len, actual_req_len, try_count = 0;
1713         struct usb_device *udev;
1714         struct usb_req_read_regs *req = NULL;
1715         unsigned long timeout;
1716         bool retry = false;
1717
1718         if (count < 1) {
1719                 dev_dbg_f(zd_usb_dev(usb), "error: count is zero\n");
1720                 return -EINVAL;
1721         }
1722         if (count > USB_MAX_IOREAD16_COUNT) {
1723                 dev_dbg_f(zd_usb_dev(usb),
1724                          "error: count %u exceeds possible max %u\n",
1725                          count, USB_MAX_IOREAD16_COUNT);
1726                 return -EINVAL;
1727         }
1728         if (in_atomic()) {
1729                 dev_dbg_f(zd_usb_dev(usb),
1730                          "error: io in atomic context not supported\n");
1731                 return -EWOULDBLOCK;
1732         }
1733         if (!usb_int_enabled(usb)) {
1734                 dev_dbg_f(zd_usb_dev(usb),
1735                           "error: usb interrupt not enabled\n");
1736                 return -EWOULDBLOCK;
1737         }
1738
1739         ZD_ASSERT(mutex_is_locked(&zd_usb_to_chip(usb)->mutex));
1740         BUILD_BUG_ON(sizeof(struct usb_req_read_regs) + USB_MAX_IOREAD16_COUNT *
1741                      sizeof(__le16) > sizeof(usb->req_buf));
1742         BUG_ON(sizeof(struct usb_req_read_regs) + count * sizeof(__le16) >
1743                sizeof(usb->req_buf));
1744
1745         req_len = sizeof(struct usb_req_read_regs) + count * sizeof(__le16);
1746         req = (void *)usb->req_buf;
1747
1748         req->id = cpu_to_le16(USB_REQ_READ_REGS);
1749         for (i = 0; i < count; i++)
1750                 req->addr[i] = cpu_to_le16((u16)addresses[i]);
1751
1752 retry_read:
1753         try_count++;
1754         udev = zd_usb_to_usbdev(usb);
1755         prepare_read_regs_int(usb, req, count);
1756         r = zd_ep_regs_out_msg(udev, req, req_len, &actual_req_len, 50 /*ms*/);
1757         if (r) {
1758                 dev_dbg_f(zd_usb_dev(usb),
1759                         "error in zd_ep_regs_out_msg(). Error number %d\n", r);
1760                 goto error;
1761         }
1762         if (req_len != actual_req_len) {
1763                 dev_dbg_f(zd_usb_dev(usb), "error in zd_ep_regs_out_msg()\n"
1764                         " req_len %d != actual_req_len %d\n",
1765                         req_len, actual_req_len);
1766                 r = -EIO;
1767                 goto error;
1768         }
1769
1770         timeout = wait_for_completion_timeout(&usb->intr.read_regs.completion,
1771                                               msecs_to_jiffies(50));
1772         if (!timeout) {
1773                 disable_read_regs_int(usb);
1774                 dev_dbg_f(zd_usb_dev(usb), "read timed out\n");
1775                 r = -ETIMEDOUT;
1776                 goto error;
1777         }
1778
1779         r = get_results(usb, values, req, count, &retry);
1780         if (retry && try_count < 20) {
1781                 dev_dbg_f(zd_usb_dev(usb), "read retry, tries so far: %d\n",
1782                                 try_count);
1783                 goto retry_read;
1784         }
1785 error:
1786         return r;
1787 }
1788
1789 static void iowrite16v_urb_complete(struct urb *urb)
1790 {
1791         struct zd_usb *usb = urb->context;
1792
1793         if (urb->status && !usb->cmd_error)
1794                 usb->cmd_error = urb->status;
1795
1796         if (!usb->cmd_error &&
1797                         urb->actual_length != urb->transfer_buffer_length)
1798                 usb->cmd_error = -EIO;
1799 }
1800
1801 static int zd_submit_waiting_urb(struct zd_usb *usb, bool last)
1802 {
1803         int r = 0;
1804         struct urb *urb = usb->urb_async_waiting;
1805
1806         if (!urb)
1807                 return 0;
1808
1809         usb->urb_async_waiting = NULL;
1810
1811         if (!last)
1812                 urb->transfer_flags |= URB_NO_INTERRUPT;
1813
1814         usb_anchor_urb(urb, &usb->submitted_cmds);
1815         r = usb_submit_urb(urb, GFP_KERNEL);
1816         if (r) {
1817                 usb_unanchor_urb(urb);
1818                 dev_dbg_f(zd_usb_dev(usb),
1819                         "error in usb_submit_urb(). Error number %d\n", r);
1820                 goto error;
1821         }
1822
1823         /* fall-through with r == 0 */
1824 error:
1825         usb_free_urb(urb);
1826         return r;
1827 }
1828
1829 void zd_usb_iowrite16v_async_start(struct zd_usb *usb)
1830 {
1831         ZD_ASSERT(usb_anchor_empty(&usb->submitted_cmds));
1832         ZD_ASSERT(usb->urb_async_waiting == NULL);
1833         ZD_ASSERT(!usb->in_async);
1834
1835         ZD_ASSERT(mutex_is_locked(&zd_usb_to_chip(usb)->mutex));
1836
1837         usb->in_async = 1;
1838         usb->cmd_error = 0;
1839         usb->urb_async_waiting = NULL;
1840 }
1841
1842 int zd_usb_iowrite16v_async_end(struct zd_usb *usb, unsigned int timeout)
1843 {
1844         int r;
1845
1846         ZD_ASSERT(mutex_is_locked(&zd_usb_to_chip(usb)->mutex));
1847         ZD_ASSERT(usb->in_async);
1848
1849         /* Submit last iowrite16v URB */
1850         r = zd_submit_waiting_urb(usb, true);
1851         if (r) {
1852                 dev_dbg_f(zd_usb_dev(usb),
1853                         "error in zd_submit_waiting_usb(). "
1854                         "Error number %d\n", r);
1855
1856                 usb_kill_anchored_urbs(&usb->submitted_cmds);
1857                 goto error;
1858         }
1859
1860         if (timeout)
1861                 timeout = usb_wait_anchor_empty_timeout(&usb->submitted_cmds,
1862                                                         timeout);
1863         if (!timeout) {
1864                 usb_kill_anchored_urbs(&usb->submitted_cmds);
1865                 if (usb->cmd_error == -ENOENT) {
1866                         dev_dbg_f(zd_usb_dev(usb), "timed out");
1867                         r = -ETIMEDOUT;
1868                         goto error;
1869                 }
1870         }
1871
1872         r = usb->cmd_error;
1873 error:
1874         usb->in_async = 0;
1875         return r;
1876 }
1877
1878 int zd_usb_iowrite16v_async(struct zd_usb *usb, const struct zd_ioreq16 *ioreqs,
1879                             unsigned int count)
1880 {
1881         int r;
1882         struct usb_device *udev;
1883         struct usb_req_write_regs *req = NULL;
1884         int i, req_len;
1885         struct urb *urb;
1886         struct usb_host_endpoint *ep;
1887
1888         ZD_ASSERT(mutex_is_locked(&zd_usb_to_chip(usb)->mutex));
1889         ZD_ASSERT(usb->in_async);
1890
1891         if (count == 0)
1892                 return 0;
1893         if (count > USB_MAX_IOWRITE16_COUNT) {
1894                 dev_dbg_f(zd_usb_dev(usb),
1895                         "error: count %u exceeds possible max %u\n",
1896                         count, USB_MAX_IOWRITE16_COUNT);
1897                 return -EINVAL;
1898         }
1899         if (in_atomic()) {
1900                 dev_dbg_f(zd_usb_dev(usb),
1901                         "error: io in atomic context not supported\n");
1902                 return -EWOULDBLOCK;
1903         }
1904
1905         udev = zd_usb_to_usbdev(usb);
1906
1907         ep = usb_pipe_endpoint(udev, usb_sndintpipe(udev, EP_REGS_OUT));
1908         if (!ep)
1909                 return -ENOENT;
1910
1911         urb = usb_alloc_urb(0, GFP_KERNEL);
1912         if (!urb)
1913                 return -ENOMEM;
1914
1915         req_len = sizeof(struct usb_req_write_regs) +
1916                   count * sizeof(struct reg_data);
1917         req = kmalloc(req_len, GFP_KERNEL);
1918         if (!req) {
1919                 r = -ENOMEM;
1920                 goto error;
1921         }
1922
1923         req->id = cpu_to_le16(USB_REQ_WRITE_REGS);
1924         for (i = 0; i < count; i++) {
1925                 struct reg_data *rw  = &req->reg_writes[i];
1926                 rw->addr = cpu_to_le16((u16)ioreqs[i].addr);
1927                 rw->value = cpu_to_le16(ioreqs[i].value);
1928         }
1929
1930         /* In USB 2.0 mode endpoint is interrupt type. However in USB 1.1 mode
1931          * endpoint is bulk. Select correct type URB by endpoint descriptor.
1932          */
1933         if (usb_endpoint_xfer_int(&ep->desc))
1934                 usb_fill_int_urb(urb, udev, usb_sndintpipe(udev, EP_REGS_OUT),
1935                                  req, req_len, iowrite16v_urb_complete, usb,
1936                                  ep->desc.bInterval);
1937         else
1938                 usb_fill_bulk_urb(urb, udev, usb_sndbulkpipe(udev, EP_REGS_OUT),
1939                                   req, req_len, iowrite16v_urb_complete, usb);
1940
1941         urb->transfer_flags |= URB_FREE_BUFFER;
1942
1943         /* Submit previous URB */
1944         r = zd_submit_waiting_urb(usb, false);
1945         if (r) {
1946                 dev_dbg_f(zd_usb_dev(usb),
1947                         "error in zd_submit_waiting_usb(). "
1948                         "Error number %d\n", r);
1949                 goto error;
1950         }
1951
1952         /* Delay submit so that URB_NO_INTERRUPT flag can be set for all URBs
1953          * of currect batch except for very last.
1954          */
1955         usb->urb_async_waiting = urb;
1956         return 0;
1957 error:
1958         usb_free_urb(urb);
1959         return r;
1960 }
1961
1962 int zd_usb_iowrite16v(struct zd_usb *usb, const struct zd_ioreq16 *ioreqs,
1963                         unsigned int count)
1964 {
1965         int r;
1966
1967         zd_usb_iowrite16v_async_start(usb);
1968         r = zd_usb_iowrite16v_async(usb, ioreqs, count);
1969         if (r) {
1970                 zd_usb_iowrite16v_async_end(usb, 0);
1971                 return r;
1972         }
1973         return zd_usb_iowrite16v_async_end(usb, 50 /* ms */);
1974 }
1975
1976 int zd_usb_rfwrite(struct zd_usb *usb, u32 value, u8 bits)
1977 {
1978         int r;
1979         struct usb_device *udev;
1980         struct usb_req_rfwrite *req = NULL;
1981         int i, req_len, actual_req_len;
1982         u16 bit_value_template;
1983
1984         if (in_atomic()) {
1985                 dev_dbg_f(zd_usb_dev(usb),
1986                         "error: io in atomic context not supported\n");
1987                 return -EWOULDBLOCK;
1988         }
1989         if (bits < USB_MIN_RFWRITE_BIT_COUNT) {
1990                 dev_dbg_f(zd_usb_dev(usb),
1991                         "error: bits %d are smaller than"
1992                         " USB_MIN_RFWRITE_BIT_COUNT %d\n",
1993                         bits, USB_MIN_RFWRITE_BIT_COUNT);
1994                 return -EINVAL;
1995         }
1996         if (bits > USB_MAX_RFWRITE_BIT_COUNT) {
1997                 dev_dbg_f(zd_usb_dev(usb),
1998                         "error: bits %d exceed USB_MAX_RFWRITE_BIT_COUNT %d\n",
1999                         bits, USB_MAX_RFWRITE_BIT_COUNT);
2000                 return -EINVAL;
2001         }
2002 #ifdef DEBUG
2003         if (value & (~0UL << bits)) {
2004                 dev_dbg_f(zd_usb_dev(usb),
2005                         "error: value %#09x has bits >= %d set\n",
2006                         value, bits);
2007                 return -EINVAL;
2008         }
2009 #endif /* DEBUG */
2010
2011         dev_dbg_f(zd_usb_dev(usb), "value %#09x bits %d\n", value, bits);
2012
2013         r = zd_usb_ioread16(usb, &bit_value_template, ZD_CR203);
2014         if (r) {
2015                 dev_dbg_f(zd_usb_dev(usb),
2016                         "error %d: Couldn't read ZD_CR203\n", r);
2017                 return r;
2018         }
2019         bit_value_template &= ~(RF_IF_LE|RF_CLK|RF_DATA);
2020
2021         ZD_ASSERT(mutex_is_locked(&zd_usb_to_chip(usb)->mutex));
2022         BUILD_BUG_ON(sizeof(struct usb_req_rfwrite) +
2023                      USB_MAX_RFWRITE_BIT_COUNT * sizeof(__le16) >
2024                      sizeof(usb->req_buf));
2025         BUG_ON(sizeof(struct usb_req_rfwrite) + bits * sizeof(__le16) >
2026                sizeof(usb->req_buf));
2027
2028         req_len = sizeof(struct usb_req_rfwrite) + bits * sizeof(__le16);
2029         req = (void *)usb->req_buf;
2030
2031         req->id = cpu_to_le16(USB_REQ_WRITE_RF);
2032         /* 1: 3683a, but not used in ZYDAS driver */
2033         req->value = cpu_to_le16(2);
2034         req->bits = cpu_to_le16(bits);
2035
2036         for (i = 0; i < bits; i++) {
2037                 u16 bv = bit_value_template;
2038                 if (value & (1 << (bits-1-i)))
2039                         bv |= RF_DATA;
2040                 req->bit_values[i] = cpu_to_le16(bv);
2041         }
2042
2043         udev = zd_usb_to_usbdev(usb);
2044         r = zd_ep_regs_out_msg(udev, req, req_len, &actual_req_len, 50 /*ms*/);
2045         if (r) {
2046                 dev_dbg_f(zd_usb_dev(usb),
2047                         "error in zd_ep_regs_out_msg(). Error number %d\n", r);
2048                 goto out;
2049         }
2050         if (req_len != actual_req_len) {
2051                 dev_dbg_f(zd_usb_dev(usb), "error in zd_ep_regs_out_msg()"
2052                         " req_len %d != actual_req_len %d\n",
2053                         req_len, actual_req_len);
2054                 r = -EIO;
2055                 goto out;
2056         }
2057
2058         /* FALL-THROUGH with r == 0 */
2059 out:
2060         return r;
2061 }