Linux-libre 2.6.34.3-gnu1
[librecmc/linux-libre.git] / drivers / net / wireless / zd1211rw / zd_usb.c
1 /* ZD1211 USB-WLAN driver for Linux
2  *
3  * Copyright (C) 2005-2007 Ulrich Kunitz <kune@deine-taler.de>
4  * Copyright (C) 2006-2007 Daniel Drake <dsd@gentoo.org>
5  * Copyright (C) 2006-2007 Michael Wu <flamingice@sourmilk.net>
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License as published by
9  * the Free Software Foundation; either version 2 of the License, or
10  * (at your option) any later version.
11  *
12  * This program is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15  * GNU General Public License for more details.
16  *
17  * You should have received a copy of the GNU General Public License
18  * along with this program; if not, write to the Free Software
19  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
20  */
21
22 #include <linux/kernel.h>
23 #include <linux/init.h>
24 #include <linux/firmware.h>
25 #include <linux/device.h>
26 #include <linux/errno.h>
27 #include <linux/slab.h>
28 #include <linux/skbuff.h>
29 #include <linux/usb.h>
30 #include <linux/workqueue.h>
31 #include <net/mac80211.h>
32 #include <asm/unaligned.h>
33
34 #include "zd_def.h"
35 #include "zd_mac.h"
36 #include "zd_usb.h"
37
38 static struct usb_device_id usb_ids[] = {
39         /* ZD1211 */
40         { USB_DEVICE(0x0105, 0x145f), .driver_info = DEVICE_ZD1211 },
41         { USB_DEVICE(0x0586, 0x3401), .driver_info = DEVICE_ZD1211 },
42         { USB_DEVICE(0x0586, 0x3402), .driver_info = DEVICE_ZD1211 },
43         { USB_DEVICE(0x0586, 0x3407), .driver_info = DEVICE_ZD1211 },
44         { USB_DEVICE(0x0586, 0x3409), .driver_info = DEVICE_ZD1211 },
45         { USB_DEVICE(0x079b, 0x004a), .driver_info = DEVICE_ZD1211 },
46         { USB_DEVICE(0x07b8, 0x6001), .driver_info = DEVICE_ZD1211 },
47         { USB_DEVICE(0x0ace, 0x1211), .driver_info = DEVICE_ZD1211 },
48         { USB_DEVICE(0x0ace, 0xa211), .driver_info = DEVICE_ZD1211 },
49         { USB_DEVICE(0x0b05, 0x170c), .driver_info = DEVICE_ZD1211 },
50         { USB_DEVICE(0x0b3b, 0x1630), .driver_info = DEVICE_ZD1211 },
51         { USB_DEVICE(0x0b3b, 0x5630), .driver_info = DEVICE_ZD1211 },
52         { USB_DEVICE(0x0df6, 0x9071), .driver_info = DEVICE_ZD1211 },
53         { USB_DEVICE(0x0df6, 0x9075), .driver_info = DEVICE_ZD1211 },
54         { USB_DEVICE(0x126f, 0xa006), .driver_info = DEVICE_ZD1211 },
55         { USB_DEVICE(0x129b, 0x1666), .driver_info = DEVICE_ZD1211 },
56         { USB_DEVICE(0x13b1, 0x001e), .driver_info = DEVICE_ZD1211 },
57         { USB_DEVICE(0x1435, 0x0711), .driver_info = DEVICE_ZD1211 },
58         { USB_DEVICE(0x14ea, 0xab13), .driver_info = DEVICE_ZD1211 },
59         { USB_DEVICE(0x157e, 0x300a), .driver_info = DEVICE_ZD1211 },
60         { USB_DEVICE(0x157e, 0x300b), .driver_info = DEVICE_ZD1211 },
61         { USB_DEVICE(0x157e, 0x3204), .driver_info = DEVICE_ZD1211 },
62         { USB_DEVICE(0x1740, 0x2000), .driver_info = DEVICE_ZD1211 },
63         { USB_DEVICE(0x6891, 0xa727), .driver_info = DEVICE_ZD1211 },
64         /* ZD1211B */
65         { USB_DEVICE(0x0053, 0x5301), .driver_info = DEVICE_ZD1211B },
66         { USB_DEVICE(0x0409, 0x0248), .driver_info = DEVICE_ZD1211B },
67         { USB_DEVICE(0x0411, 0x00da), .driver_info = DEVICE_ZD1211B },
68         { USB_DEVICE(0x0471, 0x1236), .driver_info = DEVICE_ZD1211B },
69         { USB_DEVICE(0x0471, 0x1237), .driver_info = DEVICE_ZD1211B },
70         { USB_DEVICE(0x050d, 0x705c), .driver_info = DEVICE_ZD1211B },
71         { USB_DEVICE(0x054c, 0x0257), .driver_info = DEVICE_ZD1211B },
72         { USB_DEVICE(0x0586, 0x340a), .driver_info = DEVICE_ZD1211B },
73         { USB_DEVICE(0x0586, 0x340f), .driver_info = DEVICE_ZD1211B },
74         { USB_DEVICE(0x0586, 0x3410), .driver_info = DEVICE_ZD1211B },
75         { USB_DEVICE(0x0586, 0x3412), .driver_info = DEVICE_ZD1211B },
76         { USB_DEVICE(0x0586, 0x3413), .driver_info = DEVICE_ZD1211B },
77         { USB_DEVICE(0x079b, 0x0062), .driver_info = DEVICE_ZD1211B },
78         { USB_DEVICE(0x07b8, 0x6001), .driver_info = DEVICE_ZD1211B },
79         { USB_DEVICE(0x07fa, 0x1196), .driver_info = DEVICE_ZD1211B },
80         { USB_DEVICE(0x083a, 0x4505), .driver_info = DEVICE_ZD1211B },
81         { USB_DEVICE(0x083a, 0xe501), .driver_info = DEVICE_ZD1211B },
82         { USB_DEVICE(0x083a, 0xe503), .driver_info = DEVICE_ZD1211B },
83         { USB_DEVICE(0x083a, 0xe506), .driver_info = DEVICE_ZD1211B },
84         { USB_DEVICE(0x0ace, 0x1215), .driver_info = DEVICE_ZD1211B },
85         { USB_DEVICE(0x0ace, 0xb215), .driver_info = DEVICE_ZD1211B },
86         { USB_DEVICE(0x0b05, 0x171b), .driver_info = DEVICE_ZD1211B },
87         { USB_DEVICE(0x0baf, 0x0121), .driver_info = DEVICE_ZD1211B },
88         { USB_DEVICE(0x0cde, 0x001a), .driver_info = DEVICE_ZD1211B },
89         { USB_DEVICE(0x0df6, 0x0036), .driver_info = DEVICE_ZD1211B },
90         { USB_DEVICE(0x129b, 0x1667), .driver_info = DEVICE_ZD1211B },
91         { USB_DEVICE(0x13b1, 0x0024), .driver_info = DEVICE_ZD1211B },
92         { USB_DEVICE(0x157e, 0x300d), .driver_info = DEVICE_ZD1211B },
93         { USB_DEVICE(0x1582, 0x6003), .driver_info = DEVICE_ZD1211B },
94         { USB_DEVICE(0x2019, 0x5303), .driver_info = DEVICE_ZD1211B },
95         /* "Driverless" devices that need ejecting */
96         { USB_DEVICE(0x0ace, 0x2011), .driver_info = DEVICE_INSTALLER },
97         { USB_DEVICE(0x0ace, 0x20ff), .driver_info = DEVICE_INSTALLER },
98         {}
99 };
100
101 MODULE_LICENSE("GPL");
102 MODULE_DESCRIPTION("USB driver for devices with the ZD1211 chip.");
103 MODULE_AUTHOR("Ulrich Kunitz");
104 MODULE_AUTHOR("Daniel Drake");
105 MODULE_VERSION("1.0");
106 MODULE_DEVICE_TABLE(usb, usb_ids);
107
108 #define FW_ZD1211_PREFIX        "/*(DEBLOBBED)*/"
109 #define FW_ZD1211B_PREFIX       "/*(DEBLOBBED)*/"
110
111 /* USB device initialization */
112 static void int_urb_complete(struct urb *urb);
113
114 static int request_fw_file(
115         const struct firmware **fw, const char *name, struct device *device)
116 {
117         int r;
118
119         dev_dbg_f(device, "fw name %s\n", name);
120
121         r = reject_firmware(fw, name, device);
122         if (r)
123                 dev_err(device,
124                        "Could not load firmware file %s. Error number %d\n",
125                        name, r);
126         return r;
127 }
128
129 static inline u16 get_bcdDevice(const struct usb_device *udev)
130 {
131         return le16_to_cpu(udev->descriptor.bcdDevice);
132 }
133
134 enum upload_code_flags {
135         REBOOT = 1,
136 };
137
138 /* Ensures that MAX_TRANSFER_SIZE is even. */
139 #define MAX_TRANSFER_SIZE (USB_MAX_TRANSFER_SIZE & ~1)
140
141 static int upload_code(struct usb_device *udev,
142         const u8 *data, size_t size, u16 code_offset, int flags)
143 {
144         u8 *p;
145         int r;
146
147         /* USB request blocks need "kmalloced" buffers.
148          */
149         p = kmalloc(MAX_TRANSFER_SIZE, GFP_KERNEL);
150         if (!p) {
151                 dev_err(&udev->dev, "out of memory\n");
152                 r = -ENOMEM;
153                 goto error;
154         }
155
156         size &= ~1;
157         while (size > 0) {
158                 size_t transfer_size = size <= MAX_TRANSFER_SIZE ?
159                         size : MAX_TRANSFER_SIZE;
160
161                 dev_dbg_f(&udev->dev, "transfer size %zu\n", transfer_size);
162
163                 memcpy(p, data, transfer_size);
164                 r = usb_control_msg(udev, usb_sndctrlpipe(udev, 0),
165                         USB_REQ_FIRMWARE_DOWNLOAD,
166                         USB_DIR_OUT | USB_TYPE_VENDOR,
167                         code_offset, 0, p, transfer_size, 1000 /* ms */);
168                 if (r < 0) {
169                         dev_err(&udev->dev,
170                                "USB control request for firmware upload"
171                                " failed. Error number %d\n", r);
172                         goto error;
173                 }
174                 transfer_size = r & ~1;
175
176                 size -= transfer_size;
177                 data += transfer_size;
178                 code_offset += transfer_size/sizeof(u16);
179         }
180
181         if (flags & REBOOT) {
182                 u8 ret;
183
184                 /* Use "DMA-aware" buffer. */
185                 r = usb_control_msg(udev, usb_rcvctrlpipe(udev, 0),
186                         USB_REQ_FIRMWARE_CONFIRM,
187                         USB_DIR_IN | USB_TYPE_VENDOR,
188                         0, 0, p, sizeof(ret), 5000 /* ms */);
189                 if (r != sizeof(ret)) {
190                         dev_err(&udev->dev,
191                                 "control request firmeware confirmation failed."
192                                 " Return value %d\n", r);
193                         if (r >= 0)
194                                 r = -ENODEV;
195                         goto error;
196                 }
197                 ret = p[0];
198                 if (ret & 0x80) {
199                         dev_err(&udev->dev,
200                                 "Internal error while downloading."
201                                 " Firmware confirm return value %#04x\n",
202                                 (unsigned int)ret);
203                         r = -ENODEV;
204                         goto error;
205                 }
206                 dev_dbg_f(&udev->dev, "firmware confirm return value %#04x\n",
207                         (unsigned int)ret);
208         }
209
210         r = 0;
211 error:
212         kfree(p);
213         return r;
214 }
215
216 static u16 get_word(const void *data, u16 offset)
217 {
218         const __le16 *p = data;
219         return le16_to_cpu(p[offset]);
220 }
221
222 static char *get_fw_name(struct zd_usb *usb, char *buffer, size_t size,
223                        const char* postfix)
224 {
225         scnprintf(buffer, size, "%s%s",
226                 usb->is_zd1211b ?
227                         FW_ZD1211B_PREFIX : FW_ZD1211_PREFIX,
228                 postfix);
229         return buffer;
230 }
231
232 static int handle_version_mismatch(struct zd_usb *usb,
233         const struct firmware *ub_fw)
234 {
235         struct usb_device *udev = zd_usb_to_usbdev(usb);
236         const struct firmware *ur_fw = NULL;
237         int offset;
238         int r = 0;
239         char fw_name[128];
240
241         r = request_fw_file(&ur_fw,
242                 get_fw_name(usb, fw_name, sizeof(fw_name), "ur"),
243                 &udev->dev);
244         if (r)
245                 goto error;
246
247         r = upload_code(udev, ur_fw->data, ur_fw->size, FW_START, REBOOT);
248         if (r)
249                 goto error;
250
251         offset = (E2P_BOOT_CODE_OFFSET * sizeof(u16));
252         r = upload_code(udev, ub_fw->data + offset, ub_fw->size - offset,
253                 E2P_START + E2P_BOOT_CODE_OFFSET, REBOOT);
254
255         /* At this point, the vendor driver downloads the whole firmware
256          * image, hacks around with version IDs, and uploads it again,
257          * completely overwriting the boot code. We do not do this here as
258          * it is not required on any tested devices, and it is suspected to
259          * cause problems. */
260 error:
261         release_firmware(ur_fw);
262         return r;
263 }
264
265 static int upload_firmware(struct zd_usb *usb)
266 {
267         int r;
268         u16 fw_bcdDevice;
269         u16 bcdDevice;
270         struct usb_device *udev = zd_usb_to_usbdev(usb);
271         const struct firmware *ub_fw = NULL;
272         const struct firmware *uph_fw = NULL;
273         char fw_name[128];
274
275         bcdDevice = get_bcdDevice(udev);
276
277         r = request_fw_file(&ub_fw,
278                 get_fw_name(usb, fw_name, sizeof(fw_name), "ub"),
279                 &udev->dev);
280         if (r)
281                 goto error;
282
283         fw_bcdDevice = get_word(ub_fw->data, E2P_DATA_OFFSET);
284
285         if (fw_bcdDevice != bcdDevice) {
286                 dev_info(&udev->dev,
287                         "firmware version %#06x and device bootcode version "
288                         "%#06x differ\n", fw_bcdDevice, bcdDevice);
289                 if (bcdDevice <= 0x4313)
290                         dev_warn(&udev->dev, "device has old bootcode, please "
291                                 "report success or failure\n");
292
293                 r = handle_version_mismatch(usb, ub_fw);
294                 if (r)
295                         goto error;
296         } else {
297                 dev_dbg_f(&udev->dev,
298                         "firmware device id %#06x is equal to the "
299                         "actual device id\n", fw_bcdDevice);
300         }
301
302
303         r = request_fw_file(&uph_fw,
304                 get_fw_name(usb, fw_name, sizeof(fw_name), "uphr"),
305                 &udev->dev);
306         if (r)
307                 goto error;
308
309         r = upload_code(udev, uph_fw->data, uph_fw->size, FW_START, REBOOT);
310         if (r) {
311                 dev_err(&udev->dev,
312                         "Could not upload firmware code uph. Error number %d\n",
313                         r);
314         }
315
316         /* FALL-THROUGH */
317 error:
318         release_firmware(ub_fw);
319         release_firmware(uph_fw);
320         return r;
321 }
322
323 /*(DEBLOBBED)*/
324
325 /* Read data from device address space using "firmware interface" which does
326  * not require firmware to be loaded. */
327 int zd_usb_read_fw(struct zd_usb *usb, zd_addr_t addr, u8 *data, u16 len)
328 {
329         int r;
330         struct usb_device *udev = zd_usb_to_usbdev(usb);
331         u8 *buf;
332
333         /* Use "DMA-aware" buffer. */
334         buf = kmalloc(len, GFP_KERNEL);
335         if (!buf)
336                 return -ENOMEM;
337         r = usb_control_msg(udev, usb_rcvctrlpipe(udev, 0),
338                 USB_REQ_FIRMWARE_READ_DATA, USB_DIR_IN | 0x40, addr, 0,
339                 buf, len, 5000);
340         if (r < 0) {
341                 dev_err(&udev->dev,
342                         "read over firmware interface failed: %d\n", r);
343                 goto exit;
344         } else if (r != len) {
345                 dev_err(&udev->dev,
346                         "incomplete read over firmware interface: %d/%d\n",
347                         r, len);
348                 r = -EIO;
349                 goto exit;
350         }
351         r = 0;
352         memcpy(data, buf, len);
353 exit:
354         kfree(buf);
355         return r;
356 }
357
358 #define urb_dev(urb) (&(urb)->dev->dev)
359
360 static inline void handle_regs_int(struct urb *urb)
361 {
362         struct zd_usb *usb = urb->context;
363         struct zd_usb_interrupt *intr = &usb->intr;
364         int len;
365         u16 int_num;
366
367         ZD_ASSERT(in_interrupt());
368         spin_lock(&intr->lock);
369
370         int_num = le16_to_cpu(*(__le16 *)(urb->transfer_buffer+2));
371         if (int_num == CR_INTERRUPT) {
372                 struct zd_mac *mac = zd_hw_mac(zd_usb_to_hw(urb->context));
373                 memcpy(&mac->intr_buffer, urb->transfer_buffer,
374                                 USB_MAX_EP_INT_BUFFER);
375                 schedule_work(&mac->process_intr);
376         } else if (intr->read_regs_enabled) {
377                 intr->read_regs.length = len = urb->actual_length;
378
379                 if (len > sizeof(intr->read_regs.buffer))
380                         len = sizeof(intr->read_regs.buffer);
381                 memcpy(intr->read_regs.buffer, urb->transfer_buffer, len);
382                 intr->read_regs_enabled = 0;
383                 complete(&intr->read_regs.completion);
384                 goto out;
385         }
386
387 out:
388         spin_unlock(&intr->lock);
389 }
390
391 static void int_urb_complete(struct urb *urb)
392 {
393         int r;
394         struct usb_int_header *hdr;
395
396         switch (urb->status) {
397         case 0:
398                 break;
399         case -ESHUTDOWN:
400         case -EINVAL:
401         case -ENODEV:
402         case -ENOENT:
403         case -ECONNRESET:
404         case -EPIPE:
405                 goto kfree;
406         default:
407                 goto resubmit;
408         }
409
410         if (urb->actual_length < sizeof(hdr)) {
411                 dev_dbg_f(urb_dev(urb), "error: urb %p to small\n", urb);
412                 goto resubmit;
413         }
414
415         hdr = urb->transfer_buffer;
416         if (hdr->type != USB_INT_TYPE) {
417                 dev_dbg_f(urb_dev(urb), "error: urb %p wrong type\n", urb);
418                 goto resubmit;
419         }
420
421         switch (hdr->id) {
422         case USB_INT_ID_REGS:
423                 handle_regs_int(urb);
424                 break;
425         case USB_INT_ID_RETRY_FAILED:
426                 zd_mac_tx_failed(urb);
427                 break;
428         default:
429                 dev_dbg_f(urb_dev(urb), "error: urb %p unknown id %x\n", urb,
430                         (unsigned int)hdr->id);
431                 goto resubmit;
432         }
433
434 resubmit:
435         r = usb_submit_urb(urb, GFP_ATOMIC);
436         if (r) {
437                 dev_dbg_f(urb_dev(urb), "resubmit urb %p\n", urb);
438                 goto kfree;
439         }
440         return;
441 kfree:
442         kfree(urb->transfer_buffer);
443 }
444
445 static inline int int_urb_interval(struct usb_device *udev)
446 {
447         switch (udev->speed) {
448         case USB_SPEED_HIGH:
449                 return 4;
450         case USB_SPEED_LOW:
451                 return 10;
452         case USB_SPEED_FULL:
453         default:
454                 return 1;
455         }
456 }
457
458 static inline int usb_int_enabled(struct zd_usb *usb)
459 {
460         unsigned long flags;
461         struct zd_usb_interrupt *intr = &usb->intr;
462         struct urb *urb;
463
464         spin_lock_irqsave(&intr->lock, flags);
465         urb = intr->urb;
466         spin_unlock_irqrestore(&intr->lock, flags);
467         return urb != NULL;
468 }
469
470 int zd_usb_enable_int(struct zd_usb *usb)
471 {
472         int r;
473         struct usb_device *udev;
474         struct zd_usb_interrupt *intr = &usb->intr;
475         void *transfer_buffer = NULL;
476         struct urb *urb;
477
478         dev_dbg_f(zd_usb_dev(usb), "\n");
479
480         urb = usb_alloc_urb(0, GFP_KERNEL);
481         if (!urb) {
482                 r = -ENOMEM;
483                 goto out;
484         }
485
486         ZD_ASSERT(!irqs_disabled());
487         spin_lock_irq(&intr->lock);
488         if (intr->urb) {
489                 spin_unlock_irq(&intr->lock);
490                 r = 0;
491                 goto error_free_urb;
492         }
493         intr->urb = urb;
494         spin_unlock_irq(&intr->lock);
495
496         /* TODO: make it a DMA buffer */
497         r = -ENOMEM;
498         transfer_buffer = kmalloc(USB_MAX_EP_INT_BUFFER, GFP_KERNEL);
499         if (!transfer_buffer) {
500                 dev_dbg_f(zd_usb_dev(usb),
501                         "couldn't allocate transfer_buffer\n");
502                 goto error_set_urb_null;
503         }
504
505         udev = zd_usb_to_usbdev(usb);
506         usb_fill_int_urb(urb, udev, usb_rcvintpipe(udev, EP_INT_IN),
507                          transfer_buffer, USB_MAX_EP_INT_BUFFER,
508                          int_urb_complete, usb,
509                          intr->interval);
510
511         dev_dbg_f(zd_usb_dev(usb), "submit urb %p\n", intr->urb);
512         r = usb_submit_urb(urb, GFP_KERNEL);
513         if (r) {
514                 dev_dbg_f(zd_usb_dev(usb),
515                          "Couldn't submit urb. Error number %d\n", r);
516                 goto error;
517         }
518
519         return 0;
520 error:
521         kfree(transfer_buffer);
522 error_set_urb_null:
523         spin_lock_irq(&intr->lock);
524         intr->urb = NULL;
525         spin_unlock_irq(&intr->lock);
526 error_free_urb:
527         usb_free_urb(urb);
528 out:
529         return r;
530 }
531
532 void zd_usb_disable_int(struct zd_usb *usb)
533 {
534         unsigned long flags;
535         struct zd_usb_interrupt *intr = &usb->intr;
536         struct urb *urb;
537
538         spin_lock_irqsave(&intr->lock, flags);
539         urb = intr->urb;
540         if (!urb) {
541                 spin_unlock_irqrestore(&intr->lock, flags);
542                 return;
543         }
544         intr->urb = NULL;
545         spin_unlock_irqrestore(&intr->lock, flags);
546
547         usb_kill_urb(urb);
548         dev_dbg_f(zd_usb_dev(usb), "urb %p killed\n", urb);
549         usb_free_urb(urb);
550 }
551
552 static void handle_rx_packet(struct zd_usb *usb, const u8 *buffer,
553                              unsigned int length)
554 {
555         int i;
556         const struct rx_length_info *length_info;
557
558         if (length < sizeof(struct rx_length_info)) {
559                 /* It's not a complete packet anyhow. */
560                 printk("%s: invalid, small RX packet : %d\n",
561                        __func__, length);
562                 return;
563         }
564         length_info = (struct rx_length_info *)
565                 (buffer + length - sizeof(struct rx_length_info));
566
567         /* It might be that three frames are merged into a single URB
568          * transaction. We have to check for the length info tag.
569          *
570          * While testing we discovered that length_info might be unaligned,
571          * because if USB transactions are merged, the last packet will not
572          * be padded. Unaligned access might also happen if the length_info
573          * structure is not present.
574          */
575         if (get_unaligned_le16(&length_info->tag) == RX_LENGTH_INFO_TAG)
576         {
577                 unsigned int l, k, n;
578                 for (i = 0, l = 0;; i++) {
579                         k = get_unaligned_le16(&length_info->length[i]);
580                         if (k == 0)
581                                 return;
582                         n = l+k;
583                         if (n > length)
584                                 return;
585                         zd_mac_rx(zd_usb_to_hw(usb), buffer+l, k);
586                         if (i >= 2)
587                                 return;
588                         l = (n+3) & ~3;
589                 }
590         } else {
591                 zd_mac_rx(zd_usb_to_hw(usb), buffer, length);
592         }
593 }
594
595 static void rx_urb_complete(struct urb *urb)
596 {
597         struct zd_usb *usb;
598         struct zd_usb_rx *rx;
599         const u8 *buffer;
600         unsigned int length;
601
602         switch (urb->status) {
603         case 0:
604                 break;
605         case -ESHUTDOWN:
606         case -EINVAL:
607         case -ENODEV:
608         case -ENOENT:
609         case -ECONNRESET:
610         case -EPIPE:
611                 return;
612         default:
613                 dev_dbg_f(urb_dev(urb), "urb %p error %d\n", urb, urb->status);
614                 goto resubmit;
615         }
616
617         buffer = urb->transfer_buffer;
618         length = urb->actual_length;
619         usb = urb->context;
620         rx = &usb->rx;
621
622         if (length%rx->usb_packet_size > rx->usb_packet_size-4) {
623                 /* If there is an old first fragment, we don't care. */
624                 dev_dbg_f(urb_dev(urb), "*** first fragment ***\n");
625                 ZD_ASSERT(length <= ARRAY_SIZE(rx->fragment));
626                 spin_lock(&rx->lock);
627                 memcpy(rx->fragment, buffer, length);
628                 rx->fragment_length = length;
629                 spin_unlock(&rx->lock);
630                 goto resubmit;
631         }
632
633         spin_lock(&rx->lock);
634         if (rx->fragment_length > 0) {
635                 /* We are on a second fragment, we believe */
636                 ZD_ASSERT(length + rx->fragment_length <=
637                           ARRAY_SIZE(rx->fragment));
638                 dev_dbg_f(urb_dev(urb), "*** second fragment ***\n");
639                 memcpy(rx->fragment+rx->fragment_length, buffer, length);
640                 handle_rx_packet(usb, rx->fragment,
641                                  rx->fragment_length + length);
642                 rx->fragment_length = 0;
643                 spin_unlock(&rx->lock);
644         } else {
645                 spin_unlock(&rx->lock);
646                 handle_rx_packet(usb, buffer, length);
647         }
648
649 resubmit:
650         usb_submit_urb(urb, GFP_ATOMIC);
651 }
652
653 static struct urb *alloc_rx_urb(struct zd_usb *usb)
654 {
655         struct usb_device *udev = zd_usb_to_usbdev(usb);
656         struct urb *urb;
657         void *buffer;
658
659         urb = usb_alloc_urb(0, GFP_KERNEL);
660         if (!urb)
661                 return NULL;
662         buffer = usb_buffer_alloc(udev, USB_MAX_RX_SIZE, GFP_KERNEL,
663                                   &urb->transfer_dma);
664         if (!buffer) {
665                 usb_free_urb(urb);
666                 return NULL;
667         }
668
669         usb_fill_bulk_urb(urb, udev, usb_rcvbulkpipe(udev, EP_DATA_IN),
670                           buffer, USB_MAX_RX_SIZE,
671                           rx_urb_complete, usb);
672         urb->transfer_flags |= URB_NO_TRANSFER_DMA_MAP;
673
674         return urb;
675 }
676
677 static void free_rx_urb(struct urb *urb)
678 {
679         if (!urb)
680                 return;
681         usb_buffer_free(urb->dev, urb->transfer_buffer_length,
682                         urb->transfer_buffer, urb->transfer_dma);
683         usb_free_urb(urb);
684 }
685
686 int zd_usb_enable_rx(struct zd_usb *usb)
687 {
688         int i, r;
689         struct zd_usb_rx *rx = &usb->rx;
690         struct urb **urbs;
691
692         dev_dbg_f(zd_usb_dev(usb), "\n");
693
694         r = -ENOMEM;
695         urbs = kcalloc(RX_URBS_COUNT, sizeof(struct urb *), GFP_KERNEL);
696         if (!urbs)
697                 goto error;
698         for (i = 0; i < RX_URBS_COUNT; i++) {
699                 urbs[i] = alloc_rx_urb(usb);
700                 if (!urbs[i])
701                         goto error;
702         }
703
704         ZD_ASSERT(!irqs_disabled());
705         spin_lock_irq(&rx->lock);
706         if (rx->urbs) {
707                 spin_unlock_irq(&rx->lock);
708                 r = 0;
709                 goto error;
710         }
711         rx->urbs = urbs;
712         rx->urbs_count = RX_URBS_COUNT;
713         spin_unlock_irq(&rx->lock);
714
715         for (i = 0; i < RX_URBS_COUNT; i++) {
716                 r = usb_submit_urb(urbs[i], GFP_KERNEL);
717                 if (r)
718                         goto error_submit;
719         }
720
721         return 0;
722 error_submit:
723         for (i = 0; i < RX_URBS_COUNT; i++) {
724                 usb_kill_urb(urbs[i]);
725         }
726         spin_lock_irq(&rx->lock);
727         rx->urbs = NULL;
728         rx->urbs_count = 0;
729         spin_unlock_irq(&rx->lock);
730 error:
731         if (urbs) {
732                 for (i = 0; i < RX_URBS_COUNT; i++)
733                         free_rx_urb(urbs[i]);
734         }
735         return r;
736 }
737
738 void zd_usb_disable_rx(struct zd_usb *usb)
739 {
740         int i;
741         unsigned long flags;
742         struct urb **urbs;
743         unsigned int count;
744         struct zd_usb_rx *rx = &usb->rx;
745
746         spin_lock_irqsave(&rx->lock, flags);
747         urbs = rx->urbs;
748         count = rx->urbs_count;
749         spin_unlock_irqrestore(&rx->lock, flags);
750         if (!urbs)
751                 return;
752
753         for (i = 0; i < count; i++) {
754                 usb_kill_urb(urbs[i]);
755                 free_rx_urb(urbs[i]);
756         }
757         kfree(urbs);
758
759         spin_lock_irqsave(&rx->lock, flags);
760         rx->urbs = NULL;
761         rx->urbs_count = 0;
762         spin_unlock_irqrestore(&rx->lock, flags);
763 }
764
765 /**
766  * zd_usb_disable_tx - disable transmission
767  * @usb: the zd1211rw-private USB structure
768  *
769  * Frees all URBs in the free list and marks the transmission as disabled.
770  */
771 void zd_usb_disable_tx(struct zd_usb *usb)
772 {
773         struct zd_usb_tx *tx = &usb->tx;
774         unsigned long flags;
775         struct list_head *pos, *n;
776
777         spin_lock_irqsave(&tx->lock, flags);
778         list_for_each_safe(pos, n, &tx->free_urb_list) {
779                 list_del(pos);
780                 usb_free_urb(list_entry(pos, struct urb, urb_list));
781         }
782         tx->enabled = 0;
783         tx->submitted_urbs = 0;
784         /* The stopped state is ignored, relying on ieee80211_wake_queues()
785          * in a potentionally following zd_usb_enable_tx().
786          */
787         spin_unlock_irqrestore(&tx->lock, flags);
788 }
789
790 /**
791  * zd_usb_enable_tx - enables transmission
792  * @usb: a &struct zd_usb pointer
793  *
794  * This function enables transmission and prepares the &zd_usb_tx data
795  * structure.
796  */
797 void zd_usb_enable_tx(struct zd_usb *usb)
798 {
799         unsigned long flags;
800         struct zd_usb_tx *tx = &usb->tx;
801
802         spin_lock_irqsave(&tx->lock, flags);
803         tx->enabled = 1;
804         tx->submitted_urbs = 0;
805         ieee80211_wake_queues(zd_usb_to_hw(usb));
806         tx->stopped = 0;
807         spin_unlock_irqrestore(&tx->lock, flags);
808 }
809
810 /**
811  * alloc_tx_urb - provides an tx URB
812  * @usb: a &struct zd_usb pointer
813  *
814  * Allocates a new URB. If possible takes the urb from the free list in
815  * usb->tx.
816  */
817 static struct urb *alloc_tx_urb(struct zd_usb *usb)
818 {
819         struct zd_usb_tx *tx = &usb->tx;
820         unsigned long flags;
821         struct list_head *entry;
822         struct urb *urb;
823
824         spin_lock_irqsave(&tx->lock, flags);
825         if (list_empty(&tx->free_urb_list)) {
826                 urb = usb_alloc_urb(0, GFP_ATOMIC);
827                 goto out;
828         }
829         entry = tx->free_urb_list.next;
830         list_del(entry);
831         urb = list_entry(entry, struct urb, urb_list);
832 out:
833         spin_unlock_irqrestore(&tx->lock, flags);
834         return urb;
835 }
836
837 /**
838  * free_tx_urb - frees a used tx URB
839  * @usb: a &struct zd_usb pointer
840  * @urb: URB to be freed
841  *
842  * Frees the the transmission URB, which means to put it on the free URB
843  * list.
844  */
845 static void free_tx_urb(struct zd_usb *usb, struct urb *urb)
846 {
847         struct zd_usb_tx *tx = &usb->tx;
848         unsigned long flags;
849
850         spin_lock_irqsave(&tx->lock, flags);
851         if (!tx->enabled) {
852                 usb_free_urb(urb);
853                 goto out;
854         }
855         list_add(&urb->urb_list, &tx->free_urb_list);
856 out:
857         spin_unlock_irqrestore(&tx->lock, flags);
858 }
859
860 static void tx_dec_submitted_urbs(struct zd_usb *usb)
861 {
862         struct zd_usb_tx *tx = &usb->tx;
863         unsigned long flags;
864
865         spin_lock_irqsave(&tx->lock, flags);
866         --tx->submitted_urbs;
867         if (tx->stopped && tx->submitted_urbs <= ZD_USB_TX_LOW) {
868                 ieee80211_wake_queues(zd_usb_to_hw(usb));
869                 tx->stopped = 0;
870         }
871         spin_unlock_irqrestore(&tx->lock, flags);
872 }
873
874 static void tx_inc_submitted_urbs(struct zd_usb *usb)
875 {
876         struct zd_usb_tx *tx = &usb->tx;
877         unsigned long flags;
878
879         spin_lock_irqsave(&tx->lock, flags);
880         ++tx->submitted_urbs;
881         if (!tx->stopped && tx->submitted_urbs > ZD_USB_TX_HIGH) {
882                 ieee80211_stop_queues(zd_usb_to_hw(usb));
883                 tx->stopped = 1;
884         }
885         spin_unlock_irqrestore(&tx->lock, flags);
886 }
887
888 /**
889  * tx_urb_complete - completes the execution of an URB
890  * @urb: a URB
891  *
892  * This function is called if the URB has been transferred to a device or an
893  * error has happened.
894  */
895 static void tx_urb_complete(struct urb *urb)
896 {
897         int r;
898         struct sk_buff *skb;
899         struct ieee80211_tx_info *info;
900         struct zd_usb *usb;
901
902         switch (urb->status) {
903         case 0:
904                 break;
905         case -ESHUTDOWN:
906         case -EINVAL:
907         case -ENODEV:
908         case -ENOENT:
909         case -ECONNRESET:
910         case -EPIPE:
911                 dev_dbg_f(urb_dev(urb), "urb %p error %d\n", urb, urb->status);
912                 break;
913         default:
914                 dev_dbg_f(urb_dev(urb), "urb %p error %d\n", urb, urb->status);
915                 goto resubmit;
916         }
917 free_urb:
918         skb = (struct sk_buff *)urb->context;
919         /*
920          * grab 'usb' pointer before handing off the skb (since
921          * it might be freed by zd_mac_tx_to_dev or mac80211)
922          */
923         info = IEEE80211_SKB_CB(skb);
924         usb = &zd_hw_mac(info->rate_driver_data[0])->chip.usb;
925         zd_mac_tx_to_dev(skb, urb->status);
926         free_tx_urb(usb, urb);
927         tx_dec_submitted_urbs(usb);
928         return;
929 resubmit:
930         r = usb_submit_urb(urb, GFP_ATOMIC);
931         if (r) {
932                 dev_dbg_f(urb_dev(urb), "error resubmit urb %p %d\n", urb, r);
933                 goto free_urb;
934         }
935 }
936
937 /**
938  * zd_usb_tx: initiates transfer of a frame of the device
939  *
940  * @usb: the zd1211rw-private USB structure
941  * @skb: a &struct sk_buff pointer
942  *
943  * This function tranmits a frame to the device. It doesn't wait for
944  * completion. The frame must contain the control set and have all the
945  * control set information available.
946  *
947  * The function returns 0 if the transfer has been successfully initiated.
948  */
949 int zd_usb_tx(struct zd_usb *usb, struct sk_buff *skb)
950 {
951         int r;
952         struct usb_device *udev = zd_usb_to_usbdev(usb);
953         struct urb *urb;
954
955         urb = alloc_tx_urb(usb);
956         if (!urb) {
957                 r = -ENOMEM;
958                 goto out;
959         }
960
961         usb_fill_bulk_urb(urb, udev, usb_sndbulkpipe(udev, EP_DATA_OUT),
962                           skb->data, skb->len, tx_urb_complete, skb);
963
964         r = usb_submit_urb(urb, GFP_ATOMIC);
965         if (r)
966                 goto error;
967         tx_inc_submitted_urbs(usb);
968         return 0;
969 error:
970         free_tx_urb(usb, urb);
971 out:
972         return r;
973 }
974
975 static inline void init_usb_interrupt(struct zd_usb *usb)
976 {
977         struct zd_usb_interrupt *intr = &usb->intr;
978
979         spin_lock_init(&intr->lock);
980         intr->interval = int_urb_interval(zd_usb_to_usbdev(usb));
981         init_completion(&intr->read_regs.completion);
982         intr->read_regs.cr_int_addr = cpu_to_le16((u16)CR_INTERRUPT);
983 }
984
985 static inline void init_usb_rx(struct zd_usb *usb)
986 {
987         struct zd_usb_rx *rx = &usb->rx;
988         spin_lock_init(&rx->lock);
989         if (interface_to_usbdev(usb->intf)->speed == USB_SPEED_HIGH) {
990                 rx->usb_packet_size = 512;
991         } else {
992                 rx->usb_packet_size = 64;
993         }
994         ZD_ASSERT(rx->fragment_length == 0);
995 }
996
997 static inline void init_usb_tx(struct zd_usb *usb)
998 {
999         struct zd_usb_tx *tx = &usb->tx;
1000         spin_lock_init(&tx->lock);
1001         tx->enabled = 0;
1002         tx->stopped = 0;
1003         INIT_LIST_HEAD(&tx->free_urb_list);
1004         tx->submitted_urbs = 0;
1005 }
1006
1007 void zd_usb_init(struct zd_usb *usb, struct ieee80211_hw *hw,
1008                  struct usb_interface *intf)
1009 {
1010         memset(usb, 0, sizeof(*usb));
1011         usb->intf = usb_get_intf(intf);
1012         usb_set_intfdata(usb->intf, hw);
1013         init_usb_interrupt(usb);
1014         init_usb_tx(usb);
1015         init_usb_rx(usb);
1016 }
1017
1018 void zd_usb_clear(struct zd_usb *usb)
1019 {
1020         usb_set_intfdata(usb->intf, NULL);
1021         usb_put_intf(usb->intf);
1022         ZD_MEMCLEAR(usb, sizeof(*usb));
1023         /* FIXME: usb_interrupt, usb_tx, usb_rx? */
1024 }
1025
1026 static const char *speed(enum usb_device_speed speed)
1027 {
1028         switch (speed) {
1029         case USB_SPEED_LOW:
1030                 return "low";
1031         case USB_SPEED_FULL:
1032                 return "full";
1033         case USB_SPEED_HIGH:
1034                 return "high";
1035         default:
1036                 return "unknown speed";
1037         }
1038 }
1039
1040 static int scnprint_id(struct usb_device *udev, char *buffer, size_t size)
1041 {
1042         return scnprintf(buffer, size, "%04hx:%04hx v%04hx %s",
1043                 le16_to_cpu(udev->descriptor.idVendor),
1044                 le16_to_cpu(udev->descriptor.idProduct),
1045                 get_bcdDevice(udev),
1046                 speed(udev->speed));
1047 }
1048
1049 int zd_usb_scnprint_id(struct zd_usb *usb, char *buffer, size_t size)
1050 {
1051         struct usb_device *udev = interface_to_usbdev(usb->intf);
1052         return scnprint_id(udev, buffer, size);
1053 }
1054
1055 #ifdef DEBUG
1056 static void print_id(struct usb_device *udev)
1057 {
1058         char buffer[40];
1059
1060         scnprint_id(udev, buffer, sizeof(buffer));
1061         buffer[sizeof(buffer)-1] = 0;
1062         dev_dbg_f(&udev->dev, "%s\n", buffer);
1063 }
1064 #else
1065 #define print_id(udev) do { } while (0)
1066 #endif
1067
1068 static int eject_installer(struct usb_interface *intf)
1069 {
1070         struct usb_device *udev = interface_to_usbdev(intf);
1071         struct usb_host_interface *iface_desc = &intf->altsetting[0];
1072         struct usb_endpoint_descriptor *endpoint;
1073         unsigned char *cmd;
1074         u8 bulk_out_ep;
1075         int r;
1076
1077         /* Find bulk out endpoint */
1078         for (r = 1; r >= 0; r--) {
1079                 endpoint = &iface_desc->endpoint[r].desc;
1080                 if (usb_endpoint_dir_out(endpoint) &&
1081                     usb_endpoint_xfer_bulk(endpoint)) {
1082                         bulk_out_ep = endpoint->bEndpointAddress;
1083                         break;
1084                 }
1085         }
1086         if (r == -1) {
1087                 dev_err(&udev->dev,
1088                         "zd1211rw: Could not find bulk out endpoint\n");
1089                 return -ENODEV;
1090         }
1091
1092         cmd = kzalloc(31, GFP_KERNEL);
1093         if (cmd == NULL)
1094                 return -ENODEV;
1095
1096         /* USB bulk command block */
1097         cmd[0] = 0x55;  /* bulk command signature */
1098         cmd[1] = 0x53;  /* bulk command signature */
1099         cmd[2] = 0x42;  /* bulk command signature */
1100         cmd[3] = 0x43;  /* bulk command signature */
1101         cmd[14] = 6;    /* command length */
1102
1103         cmd[15] = 0x1b; /* SCSI command: START STOP UNIT */
1104         cmd[19] = 0x2;  /* eject disc */
1105
1106         dev_info(&udev->dev, "Ejecting virtual installer media...\n");
1107         r = usb_bulk_msg(udev, usb_sndbulkpipe(udev, bulk_out_ep),
1108                 cmd, 31, NULL, 2000);
1109         kfree(cmd);
1110         if (r)
1111                 return r;
1112
1113         /* At this point, the device disconnects and reconnects with the real
1114          * ID numbers. */
1115
1116         usb_set_intfdata(intf, NULL);
1117         return 0;
1118 }
1119
1120 int zd_usb_init_hw(struct zd_usb *usb)
1121 {
1122         int r;
1123         struct zd_mac *mac = zd_usb_to_mac(usb);
1124
1125         dev_dbg_f(zd_usb_dev(usb), "\n");
1126
1127         r = upload_firmware(usb);
1128         if (r) {
1129                 dev_err(zd_usb_dev(usb),
1130                        "couldn't load firmware. Error number %d\n", r);
1131                 return r;
1132         }
1133
1134         r = usb_reset_configuration(zd_usb_to_usbdev(usb));
1135         if (r) {
1136                 dev_dbg_f(zd_usb_dev(usb),
1137                         "couldn't reset configuration. Error number %d\n", r);
1138                 return r;
1139         }
1140
1141         r = zd_mac_init_hw(mac->hw);
1142         if (r) {
1143                 dev_dbg_f(zd_usb_dev(usb),
1144                          "couldn't initialize mac. Error number %d\n", r);
1145                 return r;
1146         }
1147
1148         usb->initialized = 1;
1149         return 0;
1150 }
1151
1152 static int probe(struct usb_interface *intf, const struct usb_device_id *id)
1153 {
1154         int r;
1155         struct usb_device *udev = interface_to_usbdev(intf);
1156         struct zd_usb *usb;
1157         struct ieee80211_hw *hw = NULL;
1158
1159         print_id(udev);
1160
1161         if (id->driver_info & DEVICE_INSTALLER)
1162                 return eject_installer(intf);
1163
1164         switch (udev->speed) {
1165         case USB_SPEED_LOW:
1166         case USB_SPEED_FULL:
1167         case USB_SPEED_HIGH:
1168                 break;
1169         default:
1170                 dev_dbg_f(&intf->dev, "Unknown USB speed\n");
1171                 r = -ENODEV;
1172                 goto error;
1173         }
1174
1175         r = usb_reset_device(udev);
1176         if (r) {
1177                 dev_err(&intf->dev,
1178                         "couldn't reset usb device. Error number %d\n", r);
1179                 goto error;
1180         }
1181
1182         hw = zd_mac_alloc_hw(intf);
1183         if (hw == NULL) {
1184                 r = -ENOMEM;
1185                 goto error;
1186         }
1187
1188         usb = &zd_hw_mac(hw)->chip.usb;
1189         usb->is_zd1211b = (id->driver_info == DEVICE_ZD1211B) != 0;
1190
1191         r = zd_mac_preinit_hw(hw);
1192         if (r) {
1193                 dev_dbg_f(&intf->dev,
1194                          "couldn't initialize mac. Error number %d\n", r);
1195                 goto error;
1196         }
1197
1198         r = ieee80211_register_hw(hw);
1199         if (r) {
1200                 dev_dbg_f(&intf->dev,
1201                          "couldn't register device. Error number %d\n", r);
1202                 goto error;
1203         }
1204
1205         dev_dbg_f(&intf->dev, "successful\n");
1206         dev_info(&intf->dev, "%s\n", wiphy_name(hw->wiphy));
1207         return 0;
1208 error:
1209         usb_reset_device(interface_to_usbdev(intf));
1210         if (hw) {
1211                 zd_mac_clear(zd_hw_mac(hw));
1212                 ieee80211_free_hw(hw);
1213         }
1214         return r;
1215 }
1216
1217 static void disconnect(struct usb_interface *intf)
1218 {
1219         struct ieee80211_hw *hw = zd_intf_to_hw(intf);
1220         struct zd_mac *mac;
1221         struct zd_usb *usb;
1222
1223         /* Either something really bad happened, or we're just dealing with
1224          * a DEVICE_INSTALLER. */
1225         if (hw == NULL)
1226                 return;
1227
1228         mac = zd_hw_mac(hw);
1229         usb = &mac->chip.usb;
1230
1231         dev_dbg_f(zd_usb_dev(usb), "\n");
1232
1233         ieee80211_unregister_hw(hw);
1234
1235         /* Just in case something has gone wrong! */
1236         zd_usb_disable_rx(usb);
1237         zd_usb_disable_int(usb);
1238
1239         /* If the disconnect has been caused by a removal of the
1240          * driver module, the reset allows reloading of the driver. If the
1241          * reset will not be executed here, the upload of the firmware in the
1242          * probe function caused by the reloading of the driver will fail.
1243          */
1244         usb_reset_device(interface_to_usbdev(intf));
1245
1246         zd_mac_clear(mac);
1247         ieee80211_free_hw(hw);
1248         dev_dbg(&intf->dev, "disconnected\n");
1249 }
1250
1251 static struct usb_driver driver = {
1252         .name           = KBUILD_MODNAME,
1253         .id_table       = usb_ids,
1254         .probe          = probe,
1255         .disconnect     = disconnect,
1256 };
1257
1258 struct workqueue_struct *zd_workqueue;
1259
1260 static int __init usb_init(void)
1261 {
1262         int r;
1263
1264         pr_debug("%s usb_init()\n", driver.name);
1265
1266         zd_workqueue = create_singlethread_workqueue(driver.name);
1267         if (zd_workqueue == NULL) {
1268                 printk(KERN_ERR "%s couldn't create workqueue\n", driver.name);
1269                 return -ENOMEM;
1270         }
1271
1272         r = usb_register(&driver);
1273         if (r) {
1274                 destroy_workqueue(zd_workqueue);
1275                 printk(KERN_ERR "%s usb_register() failed. Error number %d\n",
1276                        driver.name, r);
1277                 return r;
1278         }
1279
1280         pr_debug("%s initialized\n", driver.name);
1281         return 0;
1282 }
1283
1284 static void __exit usb_exit(void)
1285 {
1286         pr_debug("%s usb_exit()\n", driver.name);
1287         usb_deregister(&driver);
1288         destroy_workqueue(zd_workqueue);
1289 }
1290
1291 module_init(usb_init);
1292 module_exit(usb_exit);
1293
1294 static int usb_int_regs_length(unsigned int count)
1295 {
1296         return sizeof(struct usb_int_regs) + count * sizeof(struct reg_data);
1297 }
1298
1299 static void prepare_read_regs_int(struct zd_usb *usb)
1300 {
1301         struct zd_usb_interrupt *intr = &usb->intr;
1302
1303         spin_lock_irq(&intr->lock);
1304         intr->read_regs_enabled = 1;
1305         INIT_COMPLETION(intr->read_regs.completion);
1306         spin_unlock_irq(&intr->lock);
1307 }
1308
1309 static void disable_read_regs_int(struct zd_usb *usb)
1310 {
1311         struct zd_usb_interrupt *intr = &usb->intr;
1312
1313         spin_lock_irq(&intr->lock);
1314         intr->read_regs_enabled = 0;
1315         spin_unlock_irq(&intr->lock);
1316 }
1317
1318 static int get_results(struct zd_usb *usb, u16 *values,
1319                        struct usb_req_read_regs *req, unsigned int count)
1320 {
1321         int r;
1322         int i;
1323         struct zd_usb_interrupt *intr = &usb->intr;
1324         struct read_regs_int *rr = &intr->read_regs;
1325         struct usb_int_regs *regs = (struct usb_int_regs *)rr->buffer;
1326
1327         spin_lock_irq(&intr->lock);
1328
1329         r = -EIO;
1330         /* The created block size seems to be larger than expected.
1331          * However results appear to be correct.
1332          */
1333         if (rr->length < usb_int_regs_length(count)) {
1334                 dev_dbg_f(zd_usb_dev(usb),
1335                          "error: actual length %d less than expected %d\n",
1336                          rr->length, usb_int_regs_length(count));
1337                 goto error_unlock;
1338         }
1339         if (rr->length > sizeof(rr->buffer)) {
1340                 dev_dbg_f(zd_usb_dev(usb),
1341                          "error: actual length %d exceeds buffer size %zu\n",
1342                          rr->length, sizeof(rr->buffer));
1343                 goto error_unlock;
1344         }
1345
1346         for (i = 0; i < count; i++) {
1347                 struct reg_data *rd = &regs->regs[i];
1348                 if (rd->addr != req->addr[i]) {
1349                         dev_dbg_f(zd_usb_dev(usb),
1350                                  "rd[%d] addr %#06hx expected %#06hx\n", i,
1351                                  le16_to_cpu(rd->addr),
1352                                  le16_to_cpu(req->addr[i]));
1353                         goto error_unlock;
1354                 }
1355                 values[i] = le16_to_cpu(rd->value);
1356         }
1357
1358         r = 0;
1359 error_unlock:
1360         spin_unlock_irq(&intr->lock);
1361         return r;
1362 }
1363
1364 int zd_usb_ioread16v(struct zd_usb *usb, u16 *values,
1365                      const zd_addr_t *addresses, unsigned int count)
1366 {
1367         int r;
1368         int i, req_len, actual_req_len;
1369         struct usb_device *udev;
1370         struct usb_req_read_regs *req = NULL;
1371         unsigned long timeout;
1372
1373         if (count < 1) {
1374                 dev_dbg_f(zd_usb_dev(usb), "error: count is zero\n");
1375                 return -EINVAL;
1376         }
1377         if (count > USB_MAX_IOREAD16_COUNT) {
1378                 dev_dbg_f(zd_usb_dev(usb),
1379                          "error: count %u exceeds possible max %u\n",
1380                          count, USB_MAX_IOREAD16_COUNT);
1381                 return -EINVAL;
1382         }
1383         if (in_atomic()) {
1384                 dev_dbg_f(zd_usb_dev(usb),
1385                          "error: io in atomic context not supported\n");
1386                 return -EWOULDBLOCK;
1387         }
1388         if (!usb_int_enabled(usb)) {
1389                  dev_dbg_f(zd_usb_dev(usb),
1390                           "error: usb interrupt not enabled\n");
1391                 return -EWOULDBLOCK;
1392         }
1393
1394         req_len = sizeof(struct usb_req_read_regs) + count * sizeof(__le16);
1395         req = kmalloc(req_len, GFP_KERNEL);
1396         if (!req)
1397                 return -ENOMEM;
1398         req->id = cpu_to_le16(USB_REQ_READ_REGS);
1399         for (i = 0; i < count; i++)
1400                 req->addr[i] = cpu_to_le16((u16)addresses[i]);
1401
1402         udev = zd_usb_to_usbdev(usb);
1403         prepare_read_regs_int(usb);
1404         r = usb_bulk_msg(udev, usb_sndbulkpipe(udev, EP_REGS_OUT),
1405                          req, req_len, &actual_req_len, 1000 /* ms */);
1406         if (r) {
1407                 dev_dbg_f(zd_usb_dev(usb),
1408                         "error in usb_bulk_msg(). Error number %d\n", r);
1409                 goto error;
1410         }
1411         if (req_len != actual_req_len) {
1412                 dev_dbg_f(zd_usb_dev(usb), "error in usb_bulk_msg()\n"
1413                         " req_len %d != actual_req_len %d\n",
1414                         req_len, actual_req_len);
1415                 r = -EIO;
1416                 goto error;
1417         }
1418
1419         timeout = wait_for_completion_timeout(&usb->intr.read_regs.completion,
1420                                               msecs_to_jiffies(1000));
1421         if (!timeout) {
1422                 disable_read_regs_int(usb);
1423                 dev_dbg_f(zd_usb_dev(usb), "read timed out\n");
1424                 r = -ETIMEDOUT;
1425                 goto error;
1426         }
1427
1428         r = get_results(usb, values, req, count);
1429 error:
1430         kfree(req);
1431         return r;
1432 }
1433
1434 int zd_usb_iowrite16v(struct zd_usb *usb, const struct zd_ioreq16 *ioreqs,
1435                       unsigned int count)
1436 {
1437         int r;
1438         struct usb_device *udev;
1439         struct usb_req_write_regs *req = NULL;
1440         int i, req_len, actual_req_len;
1441
1442         if (count == 0)
1443                 return 0;
1444         if (count > USB_MAX_IOWRITE16_COUNT) {
1445                 dev_dbg_f(zd_usb_dev(usb),
1446                         "error: count %u exceeds possible max %u\n",
1447                         count, USB_MAX_IOWRITE16_COUNT);
1448                 return -EINVAL;
1449         }
1450         if (in_atomic()) {
1451                 dev_dbg_f(zd_usb_dev(usb),
1452                         "error: io in atomic context not supported\n");
1453                 return -EWOULDBLOCK;
1454         }
1455
1456         req_len = sizeof(struct usb_req_write_regs) +
1457                   count * sizeof(struct reg_data);
1458         req = kmalloc(req_len, GFP_KERNEL);
1459         if (!req)
1460                 return -ENOMEM;
1461
1462         req->id = cpu_to_le16(USB_REQ_WRITE_REGS);
1463         for (i = 0; i < count; i++) {
1464                 struct reg_data *rw  = &req->reg_writes[i];
1465                 rw->addr = cpu_to_le16((u16)ioreqs[i].addr);
1466                 rw->value = cpu_to_le16(ioreqs[i].value);
1467         }
1468
1469         udev = zd_usb_to_usbdev(usb);
1470         r = usb_bulk_msg(udev, usb_sndbulkpipe(udev, EP_REGS_OUT),
1471                          req, req_len, &actual_req_len, 1000 /* ms */);
1472         if (r) {
1473                 dev_dbg_f(zd_usb_dev(usb),
1474                         "error in usb_bulk_msg(). Error number %d\n", r);
1475                 goto error;
1476         }
1477         if (req_len != actual_req_len) {
1478                 dev_dbg_f(zd_usb_dev(usb),
1479                         "error in usb_bulk_msg()"
1480                         " req_len %d != actual_req_len %d\n",
1481                         req_len, actual_req_len);
1482                 r = -EIO;
1483                 goto error;
1484         }
1485
1486         /* FALL-THROUGH with r == 0 */
1487 error:
1488         kfree(req);
1489         return r;
1490 }
1491
1492 int zd_usb_rfwrite(struct zd_usb *usb, u32 value, u8 bits)
1493 {
1494         int r;
1495         struct usb_device *udev;
1496         struct usb_req_rfwrite *req = NULL;
1497         int i, req_len, actual_req_len;
1498         u16 bit_value_template;
1499
1500         if (in_atomic()) {
1501                 dev_dbg_f(zd_usb_dev(usb),
1502                         "error: io in atomic context not supported\n");
1503                 return -EWOULDBLOCK;
1504         }
1505         if (bits < USB_MIN_RFWRITE_BIT_COUNT) {
1506                 dev_dbg_f(zd_usb_dev(usb),
1507                         "error: bits %d are smaller than"
1508                         " USB_MIN_RFWRITE_BIT_COUNT %d\n",
1509                         bits, USB_MIN_RFWRITE_BIT_COUNT);
1510                 return -EINVAL;
1511         }
1512         if (bits > USB_MAX_RFWRITE_BIT_COUNT) {
1513                 dev_dbg_f(zd_usb_dev(usb),
1514                         "error: bits %d exceed USB_MAX_RFWRITE_BIT_COUNT %d\n",
1515                         bits, USB_MAX_RFWRITE_BIT_COUNT);
1516                 return -EINVAL;
1517         }
1518 #ifdef DEBUG
1519         if (value & (~0UL << bits)) {
1520                 dev_dbg_f(zd_usb_dev(usb),
1521                         "error: value %#09x has bits >= %d set\n",
1522                         value, bits);
1523                 return -EINVAL;
1524         }
1525 #endif /* DEBUG */
1526
1527         dev_dbg_f(zd_usb_dev(usb), "value %#09x bits %d\n", value, bits);
1528
1529         r = zd_usb_ioread16(usb, &bit_value_template, CR203);
1530         if (r) {
1531                 dev_dbg_f(zd_usb_dev(usb),
1532                         "error %d: Couldn't read CR203\n", r);
1533                 goto out;
1534         }
1535         bit_value_template &= ~(RF_IF_LE|RF_CLK|RF_DATA);
1536
1537         req_len = sizeof(struct usb_req_rfwrite) + bits * sizeof(__le16);
1538         req = kmalloc(req_len, GFP_KERNEL);
1539         if (!req)
1540                 return -ENOMEM;
1541
1542         req->id = cpu_to_le16(USB_REQ_WRITE_RF);
1543         /* 1: 3683a, but not used in ZYDAS driver */
1544         req->value = cpu_to_le16(2);
1545         req->bits = cpu_to_le16(bits);
1546
1547         for (i = 0; i < bits; i++) {
1548                 u16 bv = bit_value_template;
1549                 if (value & (1 << (bits-1-i)))
1550                         bv |= RF_DATA;
1551                 req->bit_values[i] = cpu_to_le16(bv);
1552         }
1553
1554         udev = zd_usb_to_usbdev(usb);
1555         r = usb_bulk_msg(udev, usb_sndbulkpipe(udev, EP_REGS_OUT),
1556                          req, req_len, &actual_req_len, 1000 /* ms */);
1557         if (r) {
1558                 dev_dbg_f(zd_usb_dev(usb),
1559                         "error in usb_bulk_msg(). Error number %d\n", r);
1560                 goto out;
1561         }
1562         if (req_len != actual_req_len) {
1563                 dev_dbg_f(zd_usb_dev(usb), "error in usb_bulk_msg()"
1564                         " req_len %d != actual_req_len %d\n",
1565                         req_len, actual_req_len);
1566                 r = -EIO;
1567                 goto out;
1568         }
1569
1570         /* FALL-THROUGH with r == 0 */
1571 out:
1572         kfree(req);
1573         return r;
1574 }