Linux-libre 3.16.85-gnu
[librecmc/linux-libre.git] / drivers / net / wireless / rt2x00 / rt2x00dev.c
1 /*
2         Copyright (C) 2010 Willow Garage <http://www.willowgarage.com>
3         Copyright (C) 2004 - 2010 Ivo van Doorn <IvDoorn@gmail.com>
4         <http://rt2x00.serialmonkey.com>
5
6         This program is free software; you can redistribute it and/or modify
7         it under the terms of the GNU General Public License as published by
8         the Free Software Foundation; either version 2 of the License, or
9         (at your option) any later version.
10
11         This program is distributed in the hope that it will be useful,
12         but WITHOUT ANY WARRANTY; without even the implied warranty of
13         MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14         GNU General Public License for more details.
15
16         You should have received a copy of the GNU General Public License
17         along with this program; if not, see <http://www.gnu.org/licenses/>.
18  */
19
20 /*
21         Module: rt2x00lib
22         Abstract: rt2x00 generic device routines.
23  */
24
25 #include <linux/kernel.h>
26 #include <linux/module.h>
27 #include <linux/slab.h>
28 #include <linux/log2.h>
29
30 #include "rt2x00.h"
31 #include "rt2x00lib.h"
32
33 /*
34  * Utility functions.
35  */
36 u32 rt2x00lib_get_bssidx(struct rt2x00_dev *rt2x00dev,
37                          struct ieee80211_vif *vif)
38 {
39         /*
40          * When in STA mode, bssidx is always 0 otherwise local_address[5]
41          * contains the bss number, see BSS_ID_MASK comments for details.
42          */
43         if (rt2x00dev->intf_sta_count)
44                 return 0;
45         return vif->addr[5] & (rt2x00dev->ops->max_ap_intf - 1);
46 }
47 EXPORT_SYMBOL_GPL(rt2x00lib_get_bssidx);
48
49 /*
50  * Radio control handlers.
51  */
52 int rt2x00lib_enable_radio(struct rt2x00_dev *rt2x00dev)
53 {
54         int status;
55
56         /*
57          * Don't enable the radio twice.
58          * And check if the hardware button has been disabled.
59          */
60         if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
61                 return 0;
62
63         /*
64          * Initialize all data queues.
65          */
66         rt2x00queue_init_queues(rt2x00dev);
67
68         /*
69          * Enable radio.
70          */
71         status =
72             rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_ON);
73         if (status)
74                 return status;
75
76         rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_IRQ_ON);
77
78         rt2x00leds_led_radio(rt2x00dev, true);
79         rt2x00led_led_activity(rt2x00dev, true);
80
81         set_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags);
82
83         /*
84          * Enable queues.
85          */
86         rt2x00queue_start_queues(rt2x00dev);
87         rt2x00link_start_tuner(rt2x00dev);
88         rt2x00link_start_agc(rt2x00dev);
89         if (rt2x00_has_cap_vco_recalibration(rt2x00dev))
90                 rt2x00link_start_vcocal(rt2x00dev);
91
92         /*
93          * Start watchdog monitoring.
94          */
95         rt2x00link_start_watchdog(rt2x00dev);
96
97         return 0;
98 }
99
100 void rt2x00lib_disable_radio(struct rt2x00_dev *rt2x00dev)
101 {
102         if (!test_and_clear_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
103                 return;
104
105         /*
106          * Stop watchdog monitoring.
107          */
108         rt2x00link_stop_watchdog(rt2x00dev);
109
110         /*
111          * Stop all queues
112          */
113         rt2x00link_stop_agc(rt2x00dev);
114         if (rt2x00_has_cap_vco_recalibration(rt2x00dev))
115                 rt2x00link_stop_vcocal(rt2x00dev);
116         rt2x00link_stop_tuner(rt2x00dev);
117         rt2x00queue_stop_queues(rt2x00dev);
118         rt2x00queue_flush_queues(rt2x00dev, true);
119
120         /*
121          * Disable radio.
122          */
123         rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_OFF);
124         rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_IRQ_OFF);
125         rt2x00led_led_activity(rt2x00dev, false);
126         rt2x00leds_led_radio(rt2x00dev, false);
127 }
128
129 static void rt2x00lib_intf_scheduled_iter(void *data, u8 *mac,
130                                           struct ieee80211_vif *vif)
131 {
132         struct rt2x00_dev *rt2x00dev = data;
133         struct rt2x00_intf *intf = vif_to_intf(vif);
134
135         /*
136          * It is possible the radio was disabled while the work had been
137          * scheduled. If that happens we should return here immediately,
138          * note that in the spinlock protected area above the delayed_flags
139          * have been cleared correctly.
140          */
141         if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
142                 return;
143
144         if (test_and_clear_bit(DELAYED_UPDATE_BEACON, &intf->delayed_flags))
145                 rt2x00queue_update_beacon(rt2x00dev, vif);
146 }
147
148 static void rt2x00lib_intf_scheduled(struct work_struct *work)
149 {
150         struct rt2x00_dev *rt2x00dev =
151             container_of(work, struct rt2x00_dev, intf_work);
152
153         /*
154          * Iterate over each interface and perform the
155          * requested configurations.
156          */
157         ieee80211_iterate_active_interfaces(rt2x00dev->hw,
158                                             IEEE80211_IFACE_ITER_RESUME_ALL,
159                                             rt2x00lib_intf_scheduled_iter,
160                                             rt2x00dev);
161 }
162
163 static void rt2x00lib_autowakeup(struct work_struct *work)
164 {
165         struct rt2x00_dev *rt2x00dev =
166             container_of(work, struct rt2x00_dev, autowakeup_work.work);
167
168         if (!test_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags))
169                 return;
170
171         if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
172                 rt2x00_err(rt2x00dev, "Device failed to wakeup\n");
173         clear_bit(CONFIG_POWERSAVING, &rt2x00dev->flags);
174 }
175
176 /*
177  * Interrupt context handlers.
178  */
179 static void rt2x00lib_bc_buffer_iter(void *data, u8 *mac,
180                                      struct ieee80211_vif *vif)
181 {
182         struct ieee80211_tx_control control = {};
183         struct rt2x00_dev *rt2x00dev = data;
184         struct sk_buff *skb;
185
186         /*
187          * Only AP mode interfaces do broad- and multicast buffering
188          */
189         if (vif->type != NL80211_IFTYPE_AP)
190                 return;
191
192         /*
193          * Send out buffered broad- and multicast frames
194          */
195         skb = ieee80211_get_buffered_bc(rt2x00dev->hw, vif);
196         while (skb) {
197                 rt2x00mac_tx(rt2x00dev->hw, &control, skb);
198                 skb = ieee80211_get_buffered_bc(rt2x00dev->hw, vif);
199         }
200 }
201
202 static void rt2x00lib_beaconupdate_iter(void *data, u8 *mac,
203                                         struct ieee80211_vif *vif)
204 {
205         struct rt2x00_dev *rt2x00dev = data;
206
207         if (vif->type != NL80211_IFTYPE_AP &&
208             vif->type != NL80211_IFTYPE_ADHOC &&
209             vif->type != NL80211_IFTYPE_MESH_POINT &&
210             vif->type != NL80211_IFTYPE_WDS)
211                 return;
212
213         /*
214          * Update the beacon without locking. This is safe on PCI devices
215          * as they only update the beacon periodically here. This should
216          * never be called for USB devices.
217          */
218         WARN_ON(rt2x00_is_usb(rt2x00dev));
219         rt2x00queue_update_beacon_locked(rt2x00dev, vif);
220 }
221
222 void rt2x00lib_beacondone(struct rt2x00_dev *rt2x00dev)
223 {
224         if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
225                 return;
226
227         /* send buffered bc/mc frames out for every bssid */
228         ieee80211_iterate_active_interfaces_atomic(
229                 rt2x00dev->hw, IEEE80211_IFACE_ITER_RESUME_ALL,
230                 rt2x00lib_bc_buffer_iter, rt2x00dev);
231         /*
232          * Devices with pre tbtt interrupt don't need to update the beacon
233          * here as they will fetch the next beacon directly prior to
234          * transmission.
235          */
236         if (rt2x00_has_cap_pre_tbtt_interrupt(rt2x00dev))
237                 return;
238
239         /* fetch next beacon */
240         ieee80211_iterate_active_interfaces_atomic(
241                 rt2x00dev->hw, IEEE80211_IFACE_ITER_RESUME_ALL,
242                 rt2x00lib_beaconupdate_iter, rt2x00dev);
243 }
244 EXPORT_SYMBOL_GPL(rt2x00lib_beacondone);
245
246 void rt2x00lib_pretbtt(struct rt2x00_dev *rt2x00dev)
247 {
248         if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
249                 return;
250
251         /* fetch next beacon */
252         ieee80211_iterate_active_interfaces_atomic(
253                 rt2x00dev->hw, IEEE80211_IFACE_ITER_RESUME_ALL,
254                 rt2x00lib_beaconupdate_iter, rt2x00dev);
255 }
256 EXPORT_SYMBOL_GPL(rt2x00lib_pretbtt);
257
258 void rt2x00lib_dmastart(struct queue_entry *entry)
259 {
260         set_bit(ENTRY_OWNER_DEVICE_DATA, &entry->flags);
261         rt2x00queue_index_inc(entry, Q_INDEX);
262 }
263 EXPORT_SYMBOL_GPL(rt2x00lib_dmastart);
264
265 void rt2x00lib_dmadone(struct queue_entry *entry)
266 {
267         set_bit(ENTRY_DATA_STATUS_PENDING, &entry->flags);
268         clear_bit(ENTRY_OWNER_DEVICE_DATA, &entry->flags);
269         rt2x00queue_index_inc(entry, Q_INDEX_DMA_DONE);
270 }
271 EXPORT_SYMBOL_GPL(rt2x00lib_dmadone);
272
273 static inline int rt2x00lib_txdone_bar_status(struct queue_entry *entry)
274 {
275         struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
276         struct ieee80211_bar *bar = (void *) entry->skb->data;
277         struct rt2x00_bar_list_entry *bar_entry;
278         int ret;
279
280         if (likely(!ieee80211_is_back_req(bar->frame_control)))
281                 return 0;
282
283         /*
284          * Unlike all other frames, the status report for BARs does
285          * not directly come from the hardware as it is incapable of
286          * matching a BA to a previously send BAR. The hardware will
287          * report all BARs as if they weren't acked at all.
288          *
289          * Instead the RX-path will scan for incoming BAs and set the
290          * block_acked flag if it sees one that was likely caused by
291          * a BAR from us.
292          *
293          * Remove remaining BARs here and return their status for
294          * TX done processing.
295          */
296         ret = 0;
297         rcu_read_lock();
298         list_for_each_entry_rcu(bar_entry, &rt2x00dev->bar_list, list) {
299                 if (bar_entry->entry != entry)
300                         continue;
301
302                 spin_lock_bh(&rt2x00dev->bar_list_lock);
303                 /* Return whether this BAR was blockacked or not */
304                 ret = bar_entry->block_acked;
305                 /* Remove the BAR from our checklist */
306                 list_del_rcu(&bar_entry->list);
307                 spin_unlock_bh(&rt2x00dev->bar_list_lock);
308                 kfree_rcu(bar_entry, head);
309
310                 break;
311         }
312         rcu_read_unlock();
313
314         return ret;
315 }
316
317 void rt2x00lib_txdone(struct queue_entry *entry,
318                       struct txdone_entry_desc *txdesc)
319 {
320         struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
321         struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(entry->skb);
322         struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
323         unsigned int header_length, i;
324         u8 rate_idx, rate_flags, retry_rates;
325         u8 skbdesc_flags = skbdesc->flags;
326         bool success;
327
328         /*
329          * Unmap the skb.
330          */
331         rt2x00queue_unmap_skb(entry);
332
333         /*
334          * Remove the extra tx headroom from the skb.
335          */
336         skb_pull(entry->skb, rt2x00dev->extra_tx_headroom);
337
338         /*
339          * Signal that the TX descriptor is no longer in the skb.
340          */
341         skbdesc->flags &= ~SKBDESC_DESC_IN_SKB;
342
343         /*
344          * Determine the length of 802.11 header.
345          */
346         header_length = ieee80211_get_hdrlen_from_skb(entry->skb);
347
348         /*
349          * Remove L2 padding which was added during
350          */
351         if (test_bit(REQUIRE_L2PAD, &rt2x00dev->cap_flags))
352                 rt2x00queue_remove_l2pad(entry->skb, header_length);
353
354         /*
355          * If the IV/EIV data was stripped from the frame before it was
356          * passed to the hardware, we should now reinsert it again because
357          * mac80211 will expect the same data to be present it the
358          * frame as it was passed to us.
359          */
360         if (rt2x00_has_cap_hw_crypto(rt2x00dev))
361                 rt2x00crypto_tx_insert_iv(entry->skb, header_length);
362
363         /*
364          * Send frame to debugfs immediately, after this call is completed
365          * we are going to overwrite the skb->cb array.
366          */
367         rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_TXDONE, entry->skb);
368
369         /*
370          * Determine if the frame has been successfully transmitted and
371          * remove BARs from our check list while checking for their
372          * TX status.
373          */
374         success =
375             rt2x00lib_txdone_bar_status(entry) ||
376             test_bit(TXDONE_SUCCESS, &txdesc->flags) ||
377             test_bit(TXDONE_UNKNOWN, &txdesc->flags);
378
379         /*
380          * Update TX statistics.
381          */
382         rt2x00dev->link.qual.tx_success += success;
383         rt2x00dev->link.qual.tx_failed += !success;
384
385         rate_idx = skbdesc->tx_rate_idx;
386         rate_flags = skbdesc->tx_rate_flags;
387         retry_rates = test_bit(TXDONE_FALLBACK, &txdesc->flags) ?
388             (txdesc->retry + 1) : 1;
389
390         /*
391          * Initialize TX status
392          */
393         memset(&tx_info->status, 0, sizeof(tx_info->status));
394         tx_info->status.ack_signal = 0;
395
396         /*
397          * Frame was send with retries, hardware tried
398          * different rates to send out the frame, at each
399          * retry it lowered the rate 1 step except when the
400          * lowest rate was used.
401          */
402         for (i = 0; i < retry_rates && i < IEEE80211_TX_MAX_RATES; i++) {
403                 tx_info->status.rates[i].idx = rate_idx - i;
404                 tx_info->status.rates[i].flags = rate_flags;
405
406                 if (rate_idx - i == 0) {
407                         /*
408                          * The lowest rate (index 0) was used until the
409                          * number of max retries was reached.
410                          */
411                         tx_info->status.rates[i].count = retry_rates - i;
412                         i++;
413                         break;
414                 }
415                 tx_info->status.rates[i].count = 1;
416         }
417         if (i < (IEEE80211_TX_MAX_RATES - 1))
418                 tx_info->status.rates[i].idx = -1; /* terminate */
419
420         if (!(tx_info->flags & IEEE80211_TX_CTL_NO_ACK)) {
421                 if (success)
422                         tx_info->flags |= IEEE80211_TX_STAT_ACK;
423                 else
424                         rt2x00dev->low_level_stats.dot11ACKFailureCount++;
425         }
426
427         /*
428          * Every single frame has it's own tx status, hence report
429          * every frame as ampdu of size 1.
430          *
431          * TODO: if we can find out how many frames were aggregated
432          * by the hw we could provide the real ampdu_len to mac80211
433          * which would allow the rc algorithm to better decide on
434          * which rates are suitable.
435          */
436         if (test_bit(TXDONE_AMPDU, &txdesc->flags) ||
437             tx_info->flags & IEEE80211_TX_CTL_AMPDU) {
438                 tx_info->flags |= IEEE80211_TX_STAT_AMPDU;
439                 tx_info->status.ampdu_len = 1;
440                 tx_info->status.ampdu_ack_len = success ? 1 : 0;
441
442                 if (!success)
443                         tx_info->flags |= IEEE80211_TX_STAT_AMPDU_NO_BACK;
444         }
445
446         if (rate_flags & IEEE80211_TX_RC_USE_RTS_CTS) {
447                 if (success)
448                         rt2x00dev->low_level_stats.dot11RTSSuccessCount++;
449                 else
450                         rt2x00dev->low_level_stats.dot11RTSFailureCount++;
451         }
452
453         /*
454          * Only send the status report to mac80211 when it's a frame
455          * that originated in mac80211. If this was a extra frame coming
456          * through a mac80211 library call (RTS/CTS) then we should not
457          * send the status report back.
458          */
459         if (!(skbdesc_flags & SKBDESC_NOT_MAC80211)) {
460                 if (test_bit(REQUIRE_TASKLET_CONTEXT, &rt2x00dev->cap_flags))
461                         ieee80211_tx_status(rt2x00dev->hw, entry->skb);
462                 else
463                         ieee80211_tx_status_ni(rt2x00dev->hw, entry->skb);
464         } else
465                 dev_kfree_skb_any(entry->skb);
466
467         /*
468          * Make this entry available for reuse.
469          */
470         entry->skb = NULL;
471         entry->flags = 0;
472
473         rt2x00dev->ops->lib->clear_entry(entry);
474
475         rt2x00queue_index_inc(entry, Q_INDEX_DONE);
476
477         /*
478          * If the data queue was below the threshold before the txdone
479          * handler we must make sure the packet queue in the mac80211 stack
480          * is reenabled when the txdone handler has finished. This has to be
481          * serialized with rt2x00mac_tx(), otherwise we can wake up queue
482          * before it was stopped.
483          */
484         spin_lock_bh(&entry->queue->tx_lock);
485         if (!rt2x00queue_threshold(entry->queue))
486                 rt2x00queue_unpause_queue(entry->queue);
487         spin_unlock_bh(&entry->queue->tx_lock);
488 }
489 EXPORT_SYMBOL_GPL(rt2x00lib_txdone);
490
491 void rt2x00lib_txdone_noinfo(struct queue_entry *entry, u32 status)
492 {
493         struct txdone_entry_desc txdesc;
494
495         txdesc.flags = 0;
496         __set_bit(status, &txdesc.flags);
497         txdesc.retry = 0;
498
499         rt2x00lib_txdone(entry, &txdesc);
500 }
501 EXPORT_SYMBOL_GPL(rt2x00lib_txdone_noinfo);
502
503 static u8 *rt2x00lib_find_ie(u8 *data, unsigned int len, u8 ie)
504 {
505         struct ieee80211_mgmt *mgmt = (void *)data;
506         u8 *pos, *end;
507
508         pos = (u8 *)mgmt->u.beacon.variable;
509         end = data + len;
510         while (pos < end) {
511                 if (pos + 2 + pos[1] > end)
512                         return NULL;
513
514                 if (pos[0] == ie)
515                         return pos;
516
517                 pos += 2 + pos[1];
518         }
519
520         return NULL;
521 }
522
523 static void rt2x00lib_sleep(struct work_struct *work)
524 {
525         struct rt2x00_dev *rt2x00dev =
526             container_of(work, struct rt2x00_dev, sleep_work);
527
528         if (!test_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags))
529                 return;
530
531         /*
532          * Check again is powersaving is enabled, to prevent races from delayed
533          * work execution.
534          */
535         if (!test_bit(CONFIG_POWERSAVING, &rt2x00dev->flags))
536                 rt2x00lib_config(rt2x00dev, &rt2x00dev->hw->conf,
537                                  IEEE80211_CONF_CHANGE_PS);
538 }
539
540 static void rt2x00lib_rxdone_check_ba(struct rt2x00_dev *rt2x00dev,
541                                       struct sk_buff *skb,
542                                       struct rxdone_entry_desc *rxdesc)
543 {
544         struct rt2x00_bar_list_entry *entry;
545         struct ieee80211_bar *ba = (void *)skb->data;
546
547         if (likely(!ieee80211_is_back(ba->frame_control)))
548                 return;
549
550         if (rxdesc->size < sizeof(*ba) + FCS_LEN)
551                 return;
552
553         rcu_read_lock();
554         list_for_each_entry_rcu(entry, &rt2x00dev->bar_list, list) {
555
556                 if (ba->start_seq_num != entry->start_seq_num)
557                         continue;
558
559 #define TID_CHECK(a, b) (                                               \
560         ((a) & cpu_to_le16(IEEE80211_BAR_CTRL_TID_INFO_MASK)) ==        \
561         ((b) & cpu_to_le16(IEEE80211_BAR_CTRL_TID_INFO_MASK)))          \
562
563                 if (!TID_CHECK(ba->control, entry->control))
564                         continue;
565
566 #undef TID_CHECK
567
568                 if (!ether_addr_equal_64bits(ba->ra, entry->ta))
569                         continue;
570
571                 if (!ether_addr_equal_64bits(ba->ta, entry->ra))
572                         continue;
573
574                 /* Mark BAR since we received the according BA */
575                 spin_lock_bh(&rt2x00dev->bar_list_lock);
576                 entry->block_acked = 1;
577                 spin_unlock_bh(&rt2x00dev->bar_list_lock);
578                 break;
579         }
580         rcu_read_unlock();
581
582 }
583
584 static void rt2x00lib_rxdone_check_ps(struct rt2x00_dev *rt2x00dev,
585                                       struct sk_buff *skb,
586                                       struct rxdone_entry_desc *rxdesc)
587 {
588         struct ieee80211_hdr *hdr = (void *) skb->data;
589         struct ieee80211_tim_ie *tim_ie;
590         u8 *tim;
591         u8 tim_len;
592         bool cam;
593
594         /* If this is not a beacon, or if mac80211 has no powersaving
595          * configured, or if the device is already in powersaving mode
596          * we can exit now. */
597         if (likely(!ieee80211_is_beacon(hdr->frame_control) ||
598                    !(rt2x00dev->hw->conf.flags & IEEE80211_CONF_PS)))
599                 return;
600
601         /* min. beacon length + FCS_LEN */
602         if (skb->len <= 40 + FCS_LEN)
603                 return;
604
605         /* and only beacons from the associated BSSID, please */
606         if (!(rxdesc->dev_flags & RXDONE_MY_BSS) ||
607             !rt2x00dev->aid)
608                 return;
609
610         rt2x00dev->last_beacon = jiffies;
611
612         tim = rt2x00lib_find_ie(skb->data, skb->len - FCS_LEN, WLAN_EID_TIM);
613         if (!tim)
614                 return;
615
616         if (tim[1] < sizeof(*tim_ie))
617                 return;
618
619         tim_len = tim[1];
620         tim_ie = (struct ieee80211_tim_ie *) &tim[2];
621
622         /* Check whenever the PHY can be turned off again. */
623
624         /* 1. What about buffered unicast traffic for our AID? */
625         cam = ieee80211_check_tim(tim_ie, tim_len, rt2x00dev->aid);
626
627         /* 2. Maybe the AP wants to send multicast/broadcast data? */
628         cam |= (tim_ie->bitmap_ctrl & 0x01);
629
630         if (!cam && !test_bit(CONFIG_POWERSAVING, &rt2x00dev->flags))
631                 queue_work(rt2x00dev->workqueue, &rt2x00dev->sleep_work);
632 }
633
634 static int rt2x00lib_rxdone_read_signal(struct rt2x00_dev *rt2x00dev,
635                                         struct rxdone_entry_desc *rxdesc)
636 {
637         struct ieee80211_supported_band *sband;
638         const struct rt2x00_rate *rate;
639         unsigned int i;
640         int signal = rxdesc->signal;
641         int type = (rxdesc->dev_flags & RXDONE_SIGNAL_MASK);
642
643         switch (rxdesc->rate_mode) {
644         case RATE_MODE_CCK:
645         case RATE_MODE_OFDM:
646                 /*
647                  * For non-HT rates the MCS value needs to contain the
648                  * actually used rate modulation (CCK or OFDM).
649                  */
650                 if (rxdesc->dev_flags & RXDONE_SIGNAL_MCS)
651                         signal = RATE_MCS(rxdesc->rate_mode, signal);
652
653                 sband = &rt2x00dev->bands[rt2x00dev->curr_band];
654                 for (i = 0; i < sband->n_bitrates; i++) {
655                         rate = rt2x00_get_rate(sband->bitrates[i].hw_value);
656                         if (((type == RXDONE_SIGNAL_PLCP) &&
657                              (rate->plcp == signal)) ||
658                             ((type == RXDONE_SIGNAL_BITRATE) &&
659                               (rate->bitrate == signal)) ||
660                             ((type == RXDONE_SIGNAL_MCS) &&
661                               (rate->mcs == signal))) {
662                                 return i;
663                         }
664                 }
665                 break;
666         case RATE_MODE_HT_MIX:
667         case RATE_MODE_HT_GREENFIELD:
668                 if (signal >= 0 && signal <= 76)
669                         return signal;
670                 break;
671         default:
672                 break;
673         }
674
675         rt2x00_warn(rt2x00dev, "Frame received with unrecognized signal, mode=0x%.4x, signal=0x%.4x, type=%d\n",
676                     rxdesc->rate_mode, signal, type);
677         return 0;
678 }
679
680 void rt2x00lib_rxdone(struct queue_entry *entry, gfp_t gfp)
681 {
682         struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
683         struct rxdone_entry_desc rxdesc;
684         struct sk_buff *skb;
685         struct ieee80211_rx_status *rx_status;
686         unsigned int header_length;
687         int rate_idx;
688
689         if (!test_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags) ||
690             !test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
691                 goto submit_entry;
692
693         if (test_bit(ENTRY_DATA_IO_FAILED, &entry->flags))
694                 goto submit_entry;
695
696         /*
697          * Allocate a new sk_buffer. If no new buffer available, drop the
698          * received frame and reuse the existing buffer.
699          */
700         skb = rt2x00queue_alloc_rxskb(entry, gfp);
701         if (!skb)
702                 goto submit_entry;
703
704         /*
705          * Unmap the skb.
706          */
707         rt2x00queue_unmap_skb(entry);
708
709         /*
710          * Extract the RXD details.
711          */
712         memset(&rxdesc, 0, sizeof(rxdesc));
713         rt2x00dev->ops->lib->fill_rxdone(entry, &rxdesc);
714
715         /*
716          * Check for valid size in case we get corrupted descriptor from
717          * hardware.
718          */
719         if (unlikely(rxdesc.size == 0 ||
720                      rxdesc.size > entry->queue->data_size)) {
721                 rt2x00_err(rt2x00dev, "Wrong frame size %d max %d\n",
722                            rxdesc.size, entry->queue->data_size);
723                 dev_kfree_skb(entry->skb);
724                 goto renew_skb;
725         }
726
727         /*
728          * The data behind the ieee80211 header must be
729          * aligned on a 4 byte boundary.
730          */
731         header_length = ieee80211_get_hdrlen_from_skb(entry->skb);
732
733         /*
734          * Hardware might have stripped the IV/EIV/ICV data,
735          * in that case it is possible that the data was
736          * provided separately (through hardware descriptor)
737          * in which case we should reinsert the data into the frame.
738          */
739         if ((rxdesc.dev_flags & RXDONE_CRYPTO_IV) &&
740             (rxdesc.flags & RX_FLAG_IV_STRIPPED))
741                 rt2x00crypto_rx_insert_iv(entry->skb, header_length,
742                                           &rxdesc);
743         else if (header_length &&
744                  (rxdesc.size > header_length) &&
745                  (rxdesc.dev_flags & RXDONE_L2PAD))
746                 rt2x00queue_remove_l2pad(entry->skb, header_length);
747
748         /* Trim buffer to correct size */
749         skb_trim(entry->skb, rxdesc.size);
750
751         /*
752          * Translate the signal to the correct bitrate index.
753          */
754         rate_idx = rt2x00lib_rxdone_read_signal(rt2x00dev, &rxdesc);
755         if (rxdesc.rate_mode == RATE_MODE_HT_MIX ||
756             rxdesc.rate_mode == RATE_MODE_HT_GREENFIELD)
757                 rxdesc.flags |= RX_FLAG_HT;
758
759         /*
760          * Check if this is a beacon, and more frames have been
761          * buffered while we were in powersaving mode.
762          */
763         rt2x00lib_rxdone_check_ps(rt2x00dev, entry->skb, &rxdesc);
764
765         /*
766          * Check for incoming BlockAcks to match to the BlockAckReqs
767          * we've send out.
768          */
769         rt2x00lib_rxdone_check_ba(rt2x00dev, entry->skb, &rxdesc);
770
771         /*
772          * Update extra components
773          */
774         rt2x00link_update_stats(rt2x00dev, entry->skb, &rxdesc);
775         rt2x00debug_update_crypto(rt2x00dev, &rxdesc);
776         rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_RXDONE, entry->skb);
777
778         /*
779          * Initialize RX status information, and send frame
780          * to mac80211.
781          */
782         rx_status = IEEE80211_SKB_RXCB(entry->skb);
783
784         /* Ensure that all fields of rx_status are initialized
785          * properly. The skb->cb array was used for driver
786          * specific informations, so rx_status might contain
787          * garbage.
788          */
789         memset(rx_status, 0, sizeof(*rx_status));
790
791         rx_status->mactime = rxdesc.timestamp;
792         rx_status->band = rt2x00dev->curr_band;
793         rx_status->freq = rt2x00dev->curr_freq;
794         rx_status->rate_idx = rate_idx;
795         rx_status->signal = rxdesc.rssi;
796         rx_status->flag = rxdesc.flags;
797         rx_status->antenna = rt2x00dev->link.ant.active.rx;
798
799         ieee80211_rx_ni(rt2x00dev->hw, entry->skb);
800
801 renew_skb:
802         /*
803          * Replace the skb with the freshly allocated one.
804          */
805         entry->skb = skb;
806
807 submit_entry:
808         entry->flags = 0;
809         rt2x00queue_index_inc(entry, Q_INDEX_DONE);
810         if (test_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags) &&
811             test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
812                 rt2x00dev->ops->lib->clear_entry(entry);
813 }
814 EXPORT_SYMBOL_GPL(rt2x00lib_rxdone);
815
816 /*
817  * Driver initialization handlers.
818  */
819 const struct rt2x00_rate rt2x00_supported_rates[12] = {
820         {
821                 .flags = DEV_RATE_CCK,
822                 .bitrate = 10,
823                 .ratemask = BIT(0),
824                 .plcp = 0x00,
825                 .mcs = RATE_MCS(RATE_MODE_CCK, 0),
826         },
827         {
828                 .flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE,
829                 .bitrate = 20,
830                 .ratemask = BIT(1),
831                 .plcp = 0x01,
832                 .mcs = RATE_MCS(RATE_MODE_CCK, 1),
833         },
834         {
835                 .flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE,
836                 .bitrate = 55,
837                 .ratemask = BIT(2),
838                 .plcp = 0x02,
839                 .mcs = RATE_MCS(RATE_MODE_CCK, 2),
840         },
841         {
842                 .flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE,
843                 .bitrate = 110,
844                 .ratemask = BIT(3),
845                 .plcp = 0x03,
846                 .mcs = RATE_MCS(RATE_MODE_CCK, 3),
847         },
848         {
849                 .flags = DEV_RATE_OFDM,
850                 .bitrate = 60,
851                 .ratemask = BIT(4),
852                 .plcp = 0x0b,
853                 .mcs = RATE_MCS(RATE_MODE_OFDM, 0),
854         },
855         {
856                 .flags = DEV_RATE_OFDM,
857                 .bitrate = 90,
858                 .ratemask = BIT(5),
859                 .plcp = 0x0f,
860                 .mcs = RATE_MCS(RATE_MODE_OFDM, 1),
861         },
862         {
863                 .flags = DEV_RATE_OFDM,
864                 .bitrate = 120,
865                 .ratemask = BIT(6),
866                 .plcp = 0x0a,
867                 .mcs = RATE_MCS(RATE_MODE_OFDM, 2),
868         },
869         {
870                 .flags = DEV_RATE_OFDM,
871                 .bitrate = 180,
872                 .ratemask = BIT(7),
873                 .plcp = 0x0e,
874                 .mcs = RATE_MCS(RATE_MODE_OFDM, 3),
875         },
876         {
877                 .flags = DEV_RATE_OFDM,
878                 .bitrate = 240,
879                 .ratemask = BIT(8),
880                 .plcp = 0x09,
881                 .mcs = RATE_MCS(RATE_MODE_OFDM, 4),
882         },
883         {
884                 .flags = DEV_RATE_OFDM,
885                 .bitrate = 360,
886                 .ratemask = BIT(9),
887                 .plcp = 0x0d,
888                 .mcs = RATE_MCS(RATE_MODE_OFDM, 5),
889         },
890         {
891                 .flags = DEV_RATE_OFDM,
892                 .bitrate = 480,
893                 .ratemask = BIT(10),
894                 .plcp = 0x08,
895                 .mcs = RATE_MCS(RATE_MODE_OFDM, 6),
896         },
897         {
898                 .flags = DEV_RATE_OFDM,
899                 .bitrate = 540,
900                 .ratemask = BIT(11),
901                 .plcp = 0x0c,
902                 .mcs = RATE_MCS(RATE_MODE_OFDM, 7),
903         },
904 };
905
906 static void rt2x00lib_channel(struct ieee80211_channel *entry,
907                               const int channel, const int tx_power,
908                               const int value)
909 {
910         /* XXX: this assumption about the band is wrong for 802.11j */
911         entry->band = channel <= 14 ? IEEE80211_BAND_2GHZ : IEEE80211_BAND_5GHZ;
912         entry->center_freq = ieee80211_channel_to_frequency(channel,
913                                                             entry->band);
914         entry->hw_value = value;
915         entry->max_power = tx_power;
916         entry->max_antenna_gain = 0xff;
917 }
918
919 static void rt2x00lib_rate(struct ieee80211_rate *entry,
920                            const u16 index, const struct rt2x00_rate *rate)
921 {
922         entry->flags = 0;
923         entry->bitrate = rate->bitrate;
924         entry->hw_value = index;
925         entry->hw_value_short = index;
926
927         if (rate->flags & DEV_RATE_SHORT_PREAMBLE)
928                 entry->flags |= IEEE80211_RATE_SHORT_PREAMBLE;
929 }
930
931 static int rt2x00lib_probe_hw_modes(struct rt2x00_dev *rt2x00dev,
932                                     struct hw_mode_spec *spec)
933 {
934         struct ieee80211_hw *hw = rt2x00dev->hw;
935         struct ieee80211_channel *channels;
936         struct ieee80211_rate *rates;
937         unsigned int num_rates;
938         unsigned int i;
939
940         num_rates = 0;
941         if (spec->supported_rates & SUPPORT_RATE_CCK)
942                 num_rates += 4;
943         if (spec->supported_rates & SUPPORT_RATE_OFDM)
944                 num_rates += 8;
945
946         channels = kcalloc(spec->num_channels, sizeof(*channels), GFP_KERNEL);
947         if (!channels)
948                 return -ENOMEM;
949
950         rates = kcalloc(num_rates, sizeof(*rates), GFP_KERNEL);
951         if (!rates)
952                 goto exit_free_channels;
953
954         /*
955          * Initialize Rate list.
956          */
957         for (i = 0; i < num_rates; i++)
958                 rt2x00lib_rate(&rates[i], i, rt2x00_get_rate(i));
959
960         /*
961          * Initialize Channel list.
962          */
963         for (i = 0; i < spec->num_channels; i++) {
964                 rt2x00lib_channel(&channels[i],
965                                   spec->channels[i].channel,
966                                   spec->channels_info[i].max_power, i);
967         }
968
969         /*
970          * Intitialize 802.11b, 802.11g
971          * Rates: CCK, OFDM.
972          * Channels: 2.4 GHz
973          */
974         if (spec->supported_bands & SUPPORT_BAND_2GHZ) {
975                 rt2x00dev->bands[IEEE80211_BAND_2GHZ].n_channels = 14;
976                 rt2x00dev->bands[IEEE80211_BAND_2GHZ].n_bitrates = num_rates;
977                 rt2x00dev->bands[IEEE80211_BAND_2GHZ].channels = channels;
978                 rt2x00dev->bands[IEEE80211_BAND_2GHZ].bitrates = rates;
979                 hw->wiphy->bands[IEEE80211_BAND_2GHZ] =
980                     &rt2x00dev->bands[IEEE80211_BAND_2GHZ];
981                 memcpy(&rt2x00dev->bands[IEEE80211_BAND_2GHZ].ht_cap,
982                        &spec->ht, sizeof(spec->ht));
983         }
984
985         /*
986          * Intitialize 802.11a
987          * Rates: OFDM.
988          * Channels: OFDM, UNII, HiperLAN2.
989          */
990         if (spec->supported_bands & SUPPORT_BAND_5GHZ) {
991                 rt2x00dev->bands[IEEE80211_BAND_5GHZ].n_channels =
992                     spec->num_channels - 14;
993                 rt2x00dev->bands[IEEE80211_BAND_5GHZ].n_bitrates =
994                     num_rates - 4;
995                 rt2x00dev->bands[IEEE80211_BAND_5GHZ].channels = &channels[14];
996                 rt2x00dev->bands[IEEE80211_BAND_5GHZ].bitrates = &rates[4];
997                 hw->wiphy->bands[IEEE80211_BAND_5GHZ] =
998                     &rt2x00dev->bands[IEEE80211_BAND_5GHZ];
999                 memcpy(&rt2x00dev->bands[IEEE80211_BAND_5GHZ].ht_cap,
1000                        &spec->ht, sizeof(spec->ht));
1001         }
1002
1003         return 0;
1004
1005  exit_free_channels:
1006         kfree(channels);
1007         rt2x00_err(rt2x00dev, "Allocation ieee80211 modes failed\n");
1008         return -ENOMEM;
1009 }
1010
1011 static void rt2x00lib_remove_hw(struct rt2x00_dev *rt2x00dev)
1012 {
1013         if (test_bit(DEVICE_STATE_REGISTERED_HW, &rt2x00dev->flags))
1014                 ieee80211_unregister_hw(rt2x00dev->hw);
1015
1016         if (likely(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ])) {
1017                 kfree(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ]->channels);
1018                 kfree(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ]->bitrates);
1019                 rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ] = NULL;
1020                 rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_5GHZ] = NULL;
1021         }
1022
1023         kfree(rt2x00dev->spec.channels_info);
1024 }
1025
1026 static int rt2x00lib_probe_hw(struct rt2x00_dev *rt2x00dev)
1027 {
1028         struct hw_mode_spec *spec = &rt2x00dev->spec;
1029         int status;
1030
1031         if (test_bit(DEVICE_STATE_REGISTERED_HW, &rt2x00dev->flags))
1032                 return 0;
1033
1034         /*
1035          * Initialize HW modes.
1036          */
1037         status = rt2x00lib_probe_hw_modes(rt2x00dev, spec);
1038         if (status)
1039                 return status;
1040
1041         /*
1042          * Initialize HW fields.
1043          */
1044         rt2x00dev->hw->queues = rt2x00dev->ops->tx_queues;
1045
1046         /*
1047          * Initialize extra TX headroom required.
1048          */
1049         rt2x00dev->hw->extra_tx_headroom =
1050                 max_t(unsigned int, IEEE80211_TX_STATUS_HEADROOM,
1051                       rt2x00dev->extra_tx_headroom);
1052
1053         /*
1054          * Take TX headroom required for alignment into account.
1055          */
1056         if (test_bit(REQUIRE_L2PAD, &rt2x00dev->cap_flags))
1057                 rt2x00dev->hw->extra_tx_headroom += RT2X00_L2PAD_SIZE;
1058         else if (test_bit(REQUIRE_DMA, &rt2x00dev->cap_flags))
1059                 rt2x00dev->hw->extra_tx_headroom += RT2X00_ALIGN_SIZE;
1060
1061         /*
1062          * Tell mac80211 about the size of our private STA structure.
1063          */
1064         rt2x00dev->hw->sta_data_size = sizeof(struct rt2x00_sta);
1065
1066         /*
1067          * Allocate tx status FIFO for driver use.
1068          */
1069         if (test_bit(REQUIRE_TXSTATUS_FIFO, &rt2x00dev->cap_flags)) {
1070                 /*
1071                  * Allocate the txstatus fifo. In the worst case the tx
1072                  * status fifo has to hold the tx status of all entries
1073                  * in all tx queues. Hence, calculate the kfifo size as
1074                  * tx_queues * entry_num and round up to the nearest
1075                  * power of 2.
1076                  */
1077                 int kfifo_size =
1078                         roundup_pow_of_two(rt2x00dev->ops->tx_queues *
1079                                            rt2x00dev->tx->limit *
1080                                            sizeof(u32));
1081
1082                 status = kfifo_alloc(&rt2x00dev->txstatus_fifo, kfifo_size,
1083                                      GFP_KERNEL);
1084                 if (status)
1085                         return status;
1086         }
1087
1088         /*
1089          * Initialize tasklets if used by the driver. Tasklets are
1090          * disabled until the interrupts are turned on. The driver
1091          * has to handle that.
1092          */
1093 #define RT2X00_TASKLET_INIT(taskletname) \
1094         if (rt2x00dev->ops->lib->taskletname) { \
1095                 tasklet_init(&rt2x00dev->taskletname, \
1096                              rt2x00dev->ops->lib->taskletname, \
1097                              (unsigned long)rt2x00dev); \
1098         }
1099
1100         RT2X00_TASKLET_INIT(txstatus_tasklet);
1101         RT2X00_TASKLET_INIT(pretbtt_tasklet);
1102         RT2X00_TASKLET_INIT(tbtt_tasklet);
1103         RT2X00_TASKLET_INIT(rxdone_tasklet);
1104         RT2X00_TASKLET_INIT(autowake_tasklet);
1105
1106 #undef RT2X00_TASKLET_INIT
1107
1108         /*
1109          * Register HW.
1110          */
1111         status = ieee80211_register_hw(rt2x00dev->hw);
1112         if (status)
1113                 return status;
1114
1115         set_bit(DEVICE_STATE_REGISTERED_HW, &rt2x00dev->flags);
1116
1117         return 0;
1118 }
1119
1120 /*
1121  * Initialization/uninitialization handlers.
1122  */
1123 static void rt2x00lib_uninitialize(struct rt2x00_dev *rt2x00dev)
1124 {
1125         if (!test_and_clear_bit(DEVICE_STATE_INITIALIZED, &rt2x00dev->flags))
1126                 return;
1127
1128         /*
1129          * Stop rfkill polling.
1130          */
1131         if (test_bit(REQUIRE_DELAYED_RFKILL, &rt2x00dev->cap_flags))
1132                 rt2x00rfkill_unregister(rt2x00dev);
1133
1134         /*
1135          * Allow the HW to uninitialize.
1136          */
1137         rt2x00dev->ops->lib->uninitialize(rt2x00dev);
1138
1139         /*
1140          * Free allocated queue entries.
1141          */
1142         rt2x00queue_uninitialize(rt2x00dev);
1143 }
1144
1145 static int rt2x00lib_initialize(struct rt2x00_dev *rt2x00dev)
1146 {
1147         int status;
1148
1149         if (test_bit(DEVICE_STATE_INITIALIZED, &rt2x00dev->flags))
1150                 return 0;
1151
1152         /*
1153          * Allocate all queue entries.
1154          */
1155         status = rt2x00queue_initialize(rt2x00dev);
1156         if (status)
1157                 return status;
1158
1159         /*
1160          * Initialize the device.
1161          */
1162         status = rt2x00dev->ops->lib->initialize(rt2x00dev);
1163         if (status) {
1164                 rt2x00queue_uninitialize(rt2x00dev);
1165                 return status;
1166         }
1167
1168         set_bit(DEVICE_STATE_INITIALIZED, &rt2x00dev->flags);
1169
1170         /*
1171          * Start rfkill polling.
1172          */
1173         if (test_bit(REQUIRE_DELAYED_RFKILL, &rt2x00dev->cap_flags))
1174                 rt2x00rfkill_register(rt2x00dev);
1175
1176         return 0;
1177 }
1178
1179 int rt2x00lib_start(struct rt2x00_dev *rt2x00dev)
1180 {
1181         int retval;
1182
1183         if (test_bit(DEVICE_STATE_STARTED, &rt2x00dev->flags))
1184                 return 0;
1185
1186         /*
1187          * If this is the first interface which is added,
1188          * we should load the firmware now.
1189          */
1190         retval = rt2x00lib_load_firmware(rt2x00dev);
1191         if (retval)
1192                 return retval;
1193
1194         /*
1195          * Initialize the device.
1196          */
1197         retval = rt2x00lib_initialize(rt2x00dev);
1198         if (retval)
1199                 return retval;
1200
1201         rt2x00dev->intf_ap_count = 0;
1202         rt2x00dev->intf_sta_count = 0;
1203         rt2x00dev->intf_associated = 0;
1204
1205         /* Enable the radio */
1206         retval = rt2x00lib_enable_radio(rt2x00dev);
1207         if (retval)
1208                 return retval;
1209
1210         set_bit(DEVICE_STATE_STARTED, &rt2x00dev->flags);
1211
1212         return 0;
1213 }
1214
1215 void rt2x00lib_stop(struct rt2x00_dev *rt2x00dev)
1216 {
1217         if (!test_and_clear_bit(DEVICE_STATE_STARTED, &rt2x00dev->flags))
1218                 return;
1219
1220         /*
1221          * Perhaps we can add something smarter here,
1222          * but for now just disabling the radio should do.
1223          */
1224         rt2x00lib_disable_radio(rt2x00dev);
1225
1226         rt2x00dev->intf_ap_count = 0;
1227         rt2x00dev->intf_sta_count = 0;
1228         rt2x00dev->intf_associated = 0;
1229 }
1230
1231 static inline void rt2x00lib_set_if_combinations(struct rt2x00_dev *rt2x00dev)
1232 {
1233         struct ieee80211_iface_limit *if_limit;
1234         struct ieee80211_iface_combination *if_combination;
1235
1236         if (rt2x00dev->ops->max_ap_intf < 2)
1237                 return;
1238
1239         /*
1240          * Build up AP interface limits structure.
1241          */
1242         if_limit = &rt2x00dev->if_limits_ap;
1243         if_limit->max = rt2x00dev->ops->max_ap_intf;
1244         if_limit->types = BIT(NL80211_IFTYPE_AP);
1245 #ifdef CONFIG_MAC80211_MESH
1246         if_limit->types |= BIT(NL80211_IFTYPE_MESH_POINT);
1247 #endif
1248
1249         /*
1250          * Build up AP interface combinations structure.
1251          */
1252         if_combination = &rt2x00dev->if_combinations[IF_COMB_AP];
1253         if_combination->limits = if_limit;
1254         if_combination->n_limits = 1;
1255         if_combination->max_interfaces = if_limit->max;
1256         if_combination->num_different_channels = 1;
1257
1258         /*
1259          * Finally, specify the possible combinations to mac80211.
1260          */
1261         rt2x00dev->hw->wiphy->iface_combinations = rt2x00dev->if_combinations;
1262         rt2x00dev->hw->wiphy->n_iface_combinations = 1;
1263 }
1264
1265 static unsigned int rt2x00dev_extra_tx_headroom(struct rt2x00_dev *rt2x00dev)
1266 {
1267         if (WARN_ON(!rt2x00dev->tx))
1268                 return 0;
1269
1270         if (rt2x00_is_usb(rt2x00dev))
1271                 return rt2x00dev->tx[0].winfo_size + rt2x00dev->tx[0].desc_size;
1272
1273         return rt2x00dev->tx[0].winfo_size;
1274 }
1275
1276 /*
1277  * driver allocation handlers.
1278  */
1279 int rt2x00lib_probe_dev(struct rt2x00_dev *rt2x00dev)
1280 {
1281         int retval = -ENOMEM;
1282
1283         /*
1284          * Set possible interface combinations.
1285          */
1286         rt2x00lib_set_if_combinations(rt2x00dev);
1287
1288         /*
1289          * Allocate the driver data memory, if necessary.
1290          */
1291         if (rt2x00dev->ops->drv_data_size > 0) {
1292                 rt2x00dev->drv_data = kzalloc(rt2x00dev->ops->drv_data_size,
1293                                               GFP_KERNEL);
1294                 if (!rt2x00dev->drv_data) {
1295                         retval = -ENOMEM;
1296                         goto exit;
1297                 }
1298         }
1299
1300         spin_lock_init(&rt2x00dev->irqmask_lock);
1301         mutex_init(&rt2x00dev->csr_mutex);
1302         INIT_LIST_HEAD(&rt2x00dev->bar_list);
1303         spin_lock_init(&rt2x00dev->bar_list_lock);
1304
1305         set_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags);
1306
1307         /*
1308          * Make room for rt2x00_intf inside the per-interface
1309          * structure ieee80211_vif.
1310          */
1311         rt2x00dev->hw->vif_data_size = sizeof(struct rt2x00_intf);
1312
1313         /*
1314          * rt2x00 devices can only use the last n bits of the MAC address
1315          * for virtual interfaces.
1316          */
1317         rt2x00dev->hw->wiphy->addr_mask[ETH_ALEN - 1] =
1318                 (rt2x00dev->ops->max_ap_intf - 1);
1319
1320         /*
1321          * Initialize work.
1322          */
1323         rt2x00dev->workqueue =
1324             alloc_ordered_workqueue("%s", 0, wiphy_name(rt2x00dev->hw->wiphy));
1325         if (!rt2x00dev->workqueue) {
1326                 retval = -ENOMEM;
1327                 goto exit;
1328         }
1329
1330         INIT_WORK(&rt2x00dev->intf_work, rt2x00lib_intf_scheduled);
1331         INIT_DELAYED_WORK(&rt2x00dev->autowakeup_work, rt2x00lib_autowakeup);
1332         INIT_WORK(&rt2x00dev->sleep_work, rt2x00lib_sleep);
1333
1334         /*
1335          * Let the driver probe the device to detect the capabilities.
1336          */
1337         retval = rt2x00dev->ops->lib->probe_hw(rt2x00dev);
1338         if (retval) {
1339                 rt2x00_err(rt2x00dev, "Failed to allocate device\n");
1340                 goto exit;
1341         }
1342
1343         /*
1344          * Allocate queue array.
1345          */
1346         retval = rt2x00queue_allocate(rt2x00dev);
1347         if (retval)
1348                 goto exit;
1349
1350         /* Cache TX headroom value */
1351         rt2x00dev->extra_tx_headroom = rt2x00dev_extra_tx_headroom(rt2x00dev);
1352
1353         /*
1354          * Determine which operating modes are supported, all modes
1355          * which require beaconing, depend on the availability of
1356          * beacon entries.
1357          */
1358         rt2x00dev->hw->wiphy->interface_modes = BIT(NL80211_IFTYPE_STATION);
1359         if (rt2x00dev->bcn->limit > 0)
1360                 rt2x00dev->hw->wiphy->interface_modes |=
1361                     BIT(NL80211_IFTYPE_ADHOC) |
1362                     BIT(NL80211_IFTYPE_AP) |
1363 #ifdef CONFIG_MAC80211_MESH
1364                     BIT(NL80211_IFTYPE_MESH_POINT) |
1365 #endif
1366                     BIT(NL80211_IFTYPE_WDS);
1367
1368         rt2x00dev->hw->wiphy->flags |= WIPHY_FLAG_IBSS_RSN;
1369
1370         /*
1371          * Initialize ieee80211 structure.
1372          */
1373         retval = rt2x00lib_probe_hw(rt2x00dev);
1374         if (retval) {
1375                 rt2x00_err(rt2x00dev, "Failed to initialize hw\n");
1376                 goto exit;
1377         }
1378
1379         /*
1380          * Register extra components.
1381          */
1382         rt2x00link_register(rt2x00dev);
1383         rt2x00leds_register(rt2x00dev);
1384         rt2x00debug_register(rt2x00dev);
1385
1386         /*
1387          * Start rfkill polling.
1388          */
1389         if (!test_bit(REQUIRE_DELAYED_RFKILL, &rt2x00dev->cap_flags))
1390                 rt2x00rfkill_register(rt2x00dev);
1391
1392         return 0;
1393
1394 exit:
1395         rt2x00lib_remove_dev(rt2x00dev);
1396
1397         return retval;
1398 }
1399 EXPORT_SYMBOL_GPL(rt2x00lib_probe_dev);
1400
1401 void rt2x00lib_remove_dev(struct rt2x00_dev *rt2x00dev)
1402 {
1403         clear_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags);
1404
1405         /*
1406          * Stop rfkill polling.
1407          */
1408         if (!test_bit(REQUIRE_DELAYED_RFKILL, &rt2x00dev->cap_flags))
1409                 rt2x00rfkill_unregister(rt2x00dev);
1410
1411         /*
1412          * Disable radio.
1413          */
1414         rt2x00lib_disable_radio(rt2x00dev);
1415
1416         /*
1417          * Stop all work.
1418          */
1419         cancel_work_sync(&rt2x00dev->intf_work);
1420         cancel_delayed_work_sync(&rt2x00dev->autowakeup_work);
1421         cancel_work_sync(&rt2x00dev->sleep_work);
1422         if (rt2x00_is_usb(rt2x00dev)) {
1423                 hrtimer_cancel(&rt2x00dev->txstatus_timer);
1424                 cancel_work_sync(&rt2x00dev->rxdone_work);
1425                 cancel_work_sync(&rt2x00dev->txdone_work);
1426         }
1427         if (rt2x00dev->workqueue)
1428                 destroy_workqueue(rt2x00dev->workqueue);
1429
1430         /*
1431          * Free the tx status fifo.
1432          */
1433         kfifo_free(&rt2x00dev->txstatus_fifo);
1434
1435         /*
1436          * Kill the tx status tasklet.
1437          */
1438         tasklet_kill(&rt2x00dev->txstatus_tasklet);
1439         tasklet_kill(&rt2x00dev->pretbtt_tasklet);
1440         tasklet_kill(&rt2x00dev->tbtt_tasklet);
1441         tasklet_kill(&rt2x00dev->rxdone_tasklet);
1442         tasklet_kill(&rt2x00dev->autowake_tasklet);
1443
1444         /*
1445          * Uninitialize device.
1446          */
1447         rt2x00lib_uninitialize(rt2x00dev);
1448
1449         /*
1450          * Free extra components
1451          */
1452         rt2x00debug_deregister(rt2x00dev);
1453         rt2x00leds_unregister(rt2x00dev);
1454
1455         /*
1456          * Free ieee80211_hw memory.
1457          */
1458         rt2x00lib_remove_hw(rt2x00dev);
1459
1460         /*
1461          * Free firmware image.
1462          */
1463         rt2x00lib_free_firmware(rt2x00dev);
1464
1465         /*
1466          * Free queue structures.
1467          */
1468         rt2x00queue_free(rt2x00dev);
1469
1470         /*
1471          * Free the driver data.
1472          */
1473         if (rt2x00dev->drv_data)
1474                 kfree(rt2x00dev->drv_data);
1475 }
1476 EXPORT_SYMBOL_GPL(rt2x00lib_remove_dev);
1477
1478 /*
1479  * Device state handlers
1480  */
1481 #ifdef CONFIG_PM
1482 int rt2x00lib_suspend(struct rt2x00_dev *rt2x00dev, pm_message_t state)
1483 {
1484         rt2x00_dbg(rt2x00dev, "Going to sleep\n");
1485
1486         /*
1487          * Prevent mac80211 from accessing driver while suspended.
1488          */
1489         if (!test_and_clear_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags))
1490                 return 0;
1491
1492         /*
1493          * Cleanup as much as possible.
1494          */
1495         rt2x00lib_uninitialize(rt2x00dev);
1496
1497         /*
1498          * Suspend/disable extra components.
1499          */
1500         rt2x00leds_suspend(rt2x00dev);
1501         rt2x00debug_deregister(rt2x00dev);
1502
1503         /*
1504          * Set device mode to sleep for power management,
1505          * on some hardware this call seems to consistently fail.
1506          * From the specifications it is hard to tell why it fails,
1507          * and if this is a "bad thing".
1508          * Overall it is safe to just ignore the failure and
1509          * continue suspending. The only downside is that the
1510          * device will not be in optimal power save mode, but with
1511          * the radio and the other components already disabled the
1512          * device is as good as disabled.
1513          */
1514         if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_SLEEP))
1515                 rt2x00_warn(rt2x00dev, "Device failed to enter sleep state, continue suspending\n");
1516
1517         return 0;
1518 }
1519 EXPORT_SYMBOL_GPL(rt2x00lib_suspend);
1520
1521 int rt2x00lib_resume(struct rt2x00_dev *rt2x00dev)
1522 {
1523         rt2x00_dbg(rt2x00dev, "Waking up\n");
1524
1525         /*
1526          * Restore/enable extra components.
1527          */
1528         rt2x00debug_register(rt2x00dev);
1529         rt2x00leds_resume(rt2x00dev);
1530
1531         /*
1532          * We are ready again to receive requests from mac80211.
1533          */
1534         set_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags);
1535
1536         return 0;
1537 }
1538 EXPORT_SYMBOL_GPL(rt2x00lib_resume);
1539 #endif /* CONFIG_PM */
1540
1541 /*
1542  * rt2x00lib module information.
1543  */
1544 MODULE_AUTHOR(DRV_PROJECT);
1545 MODULE_VERSION(DRV_VERSION);
1546 MODULE_DESCRIPTION("rt2x00 library");
1547 MODULE_LICENSE("GPL");