Linux-libre 4.15.7-gnu
[librecmc/linux-libre.git] / drivers / net / wireless / ralink / rt2x00 / rt2500usb.c
1 /*
2         Copyright (C) 2004 - 2009 Ivo van Doorn <IvDoorn@gmail.com>
3         <http://rt2x00.serialmonkey.com>
4
5         This program is free software; you can redistribute it and/or modify
6         it under the terms of the GNU General Public License as published by
7         the Free Software Foundation; either version 2 of the License, or
8         (at your option) any later version.
9
10         This program is distributed in the hope that it will be useful,
11         but WITHOUT ANY WARRANTY; without even the implied warranty of
12         MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13         GNU General Public License for more details.
14
15         You should have received a copy of the GNU General Public License
16         along with this program; if not, see <http://www.gnu.org/licenses/>.
17  */
18
19 /*
20         Module: rt2500usb
21         Abstract: rt2500usb device specific routines.
22         Supported chipsets: RT2570.
23  */
24
25 #include <linux/delay.h>
26 #include <linux/etherdevice.h>
27 #include <linux/kernel.h>
28 #include <linux/module.h>
29 #include <linux/slab.h>
30 #include <linux/usb.h>
31
32 #include "rt2x00.h"
33 #include "rt2x00usb.h"
34 #include "rt2500usb.h"
35
36 /*
37  * Allow hardware encryption to be disabled.
38  */
39 static bool modparam_nohwcrypt;
40 module_param_named(nohwcrypt, modparam_nohwcrypt, bool, S_IRUGO);
41 MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption.");
42
43 /*
44  * Register access.
45  * All access to the CSR registers will go through the methods
46  * rt2500usb_register_read and rt2500usb_register_write.
47  * BBP and RF register require indirect register access,
48  * and use the CSR registers BBPCSR and RFCSR to achieve this.
49  * These indirect registers work with busy bits,
50  * and we will try maximal REGISTER_USB_BUSY_COUNT times to access
51  * the register while taking a REGISTER_BUSY_DELAY us delay
52  * between each attampt. When the busy bit is still set at that time,
53  * the access attempt is considered to have failed,
54  * and we will print an error.
55  * If the csr_mutex is already held then the _lock variants must
56  * be used instead.
57  */
58 static u16 rt2500usb_register_read(struct rt2x00_dev *rt2x00dev,
59                                    const unsigned int offset)
60 {
61         __le16 reg;
62         rt2x00usb_vendor_request_buff(rt2x00dev, USB_MULTI_READ,
63                                       USB_VENDOR_REQUEST_IN, offset,
64                                       &reg, sizeof(reg));
65         return le16_to_cpu(reg);
66 }
67
68 static u16 rt2500usb_register_read_lock(struct rt2x00_dev *rt2x00dev,
69                                         const unsigned int offset)
70 {
71         __le16 reg;
72         rt2x00usb_vendor_req_buff_lock(rt2x00dev, USB_MULTI_READ,
73                                        USB_VENDOR_REQUEST_IN, offset,
74                                        &reg, sizeof(reg), REGISTER_TIMEOUT);
75         return le16_to_cpu(reg);
76 }
77
78 static void rt2500usb_register_write(struct rt2x00_dev *rt2x00dev,
79                                             const unsigned int offset,
80                                             u16 value)
81 {
82         __le16 reg = cpu_to_le16(value);
83         rt2x00usb_vendor_request_buff(rt2x00dev, USB_MULTI_WRITE,
84                                       USB_VENDOR_REQUEST_OUT, offset,
85                                       &reg, sizeof(reg));
86 }
87
88 static void rt2500usb_register_write_lock(struct rt2x00_dev *rt2x00dev,
89                                                  const unsigned int offset,
90                                                  u16 value)
91 {
92         __le16 reg = cpu_to_le16(value);
93         rt2x00usb_vendor_req_buff_lock(rt2x00dev, USB_MULTI_WRITE,
94                                        USB_VENDOR_REQUEST_OUT, offset,
95                                        &reg, sizeof(reg), REGISTER_TIMEOUT);
96 }
97
98 static void rt2500usb_register_multiwrite(struct rt2x00_dev *rt2x00dev,
99                                                  const unsigned int offset,
100                                                  void *value, const u16 length)
101 {
102         rt2x00usb_vendor_request_buff(rt2x00dev, USB_MULTI_WRITE,
103                                       USB_VENDOR_REQUEST_OUT, offset,
104                                       value, length);
105 }
106
107 static int rt2500usb_regbusy_read(struct rt2x00_dev *rt2x00dev,
108                                   const unsigned int offset,
109                                   struct rt2x00_field16 field,
110                                   u16 *reg)
111 {
112         unsigned int i;
113
114         for (i = 0; i < REGISTER_USB_BUSY_COUNT; i++) {
115                 *reg = rt2500usb_register_read_lock(rt2x00dev, offset);
116                 if (!rt2x00_get_field16(*reg, field))
117                         return 1;
118                 udelay(REGISTER_BUSY_DELAY);
119         }
120
121         rt2x00_err(rt2x00dev, "Indirect register access failed: offset=0x%.08x, value=0x%.08x\n",
122                    offset, *reg);
123         *reg = ~0;
124
125         return 0;
126 }
127
128 #define WAIT_FOR_BBP(__dev, __reg) \
129         rt2500usb_regbusy_read((__dev), PHY_CSR8, PHY_CSR8_BUSY, (__reg))
130 #define WAIT_FOR_RF(__dev, __reg) \
131         rt2500usb_regbusy_read((__dev), PHY_CSR10, PHY_CSR10_RF_BUSY, (__reg))
132
133 static void rt2500usb_bbp_write(struct rt2x00_dev *rt2x00dev,
134                                 const unsigned int word, const u8 value)
135 {
136         u16 reg;
137
138         mutex_lock(&rt2x00dev->csr_mutex);
139
140         /*
141          * Wait until the BBP becomes available, afterwards we
142          * can safely write the new data into the register.
143          */
144         if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
145                 reg = 0;
146                 rt2x00_set_field16(&reg, PHY_CSR7_DATA, value);
147                 rt2x00_set_field16(&reg, PHY_CSR7_REG_ID, word);
148                 rt2x00_set_field16(&reg, PHY_CSR7_READ_CONTROL, 0);
149
150                 rt2500usb_register_write_lock(rt2x00dev, PHY_CSR7, reg);
151         }
152
153         mutex_unlock(&rt2x00dev->csr_mutex);
154 }
155
156 static u8 rt2500usb_bbp_read(struct rt2x00_dev *rt2x00dev,
157                              const unsigned int word)
158 {
159         u16 reg;
160         u8 value;
161
162         mutex_lock(&rt2x00dev->csr_mutex);
163
164         /*
165          * Wait until the BBP becomes available, afterwards we
166          * can safely write the read request into the register.
167          * After the data has been written, we wait until hardware
168          * returns the correct value, if at any time the register
169          * doesn't become available in time, reg will be 0xffffffff
170          * which means we return 0xff to the caller.
171          */
172         if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
173                 reg = 0;
174                 rt2x00_set_field16(&reg, PHY_CSR7_REG_ID, word);
175                 rt2x00_set_field16(&reg, PHY_CSR7_READ_CONTROL, 1);
176
177                 rt2500usb_register_write_lock(rt2x00dev, PHY_CSR7, reg);
178
179                 if (WAIT_FOR_BBP(rt2x00dev, &reg))
180                         reg = rt2500usb_register_read_lock(rt2x00dev, PHY_CSR7);
181         }
182
183         value = rt2x00_get_field16(reg, PHY_CSR7_DATA);
184
185         mutex_unlock(&rt2x00dev->csr_mutex);
186
187         return value;
188 }
189
190 static void rt2500usb_rf_write(struct rt2x00_dev *rt2x00dev,
191                                const unsigned int word, const u32 value)
192 {
193         u16 reg;
194
195         mutex_lock(&rt2x00dev->csr_mutex);
196
197         /*
198          * Wait until the RF becomes available, afterwards we
199          * can safely write the new data into the register.
200          */
201         if (WAIT_FOR_RF(rt2x00dev, &reg)) {
202                 reg = 0;
203                 rt2x00_set_field16(&reg, PHY_CSR9_RF_VALUE, value);
204                 rt2500usb_register_write_lock(rt2x00dev, PHY_CSR9, reg);
205
206                 reg = 0;
207                 rt2x00_set_field16(&reg, PHY_CSR10_RF_VALUE, value >> 16);
208                 rt2x00_set_field16(&reg, PHY_CSR10_RF_NUMBER_OF_BITS, 20);
209                 rt2x00_set_field16(&reg, PHY_CSR10_RF_IF_SELECT, 0);
210                 rt2x00_set_field16(&reg, PHY_CSR10_RF_BUSY, 1);
211
212                 rt2500usb_register_write_lock(rt2x00dev, PHY_CSR10, reg);
213                 rt2x00_rf_write(rt2x00dev, word, value);
214         }
215
216         mutex_unlock(&rt2x00dev->csr_mutex);
217 }
218
219 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
220 static u32 _rt2500usb_register_read(struct rt2x00_dev *rt2x00dev,
221                                      const unsigned int offset)
222 {
223         return rt2500usb_register_read(rt2x00dev, offset);
224 }
225
226 static void _rt2500usb_register_write(struct rt2x00_dev *rt2x00dev,
227                                       const unsigned int offset,
228                                       u32 value)
229 {
230         rt2500usb_register_write(rt2x00dev, offset, value);
231 }
232
233 static const struct rt2x00debug rt2500usb_rt2x00debug = {
234         .owner  = THIS_MODULE,
235         .csr    = {
236                 .read           = _rt2500usb_register_read,
237                 .write          = _rt2500usb_register_write,
238                 .flags          = RT2X00DEBUGFS_OFFSET,
239                 .word_base      = CSR_REG_BASE,
240                 .word_size      = sizeof(u16),
241                 .word_count     = CSR_REG_SIZE / sizeof(u16),
242         },
243         .eeprom = {
244                 .read           = rt2x00_eeprom_read,
245                 .write          = rt2x00_eeprom_write,
246                 .word_base      = EEPROM_BASE,
247                 .word_size      = sizeof(u16),
248                 .word_count     = EEPROM_SIZE / sizeof(u16),
249         },
250         .bbp    = {
251                 .read           = rt2500usb_bbp_read,
252                 .write          = rt2500usb_bbp_write,
253                 .word_base      = BBP_BASE,
254                 .word_size      = sizeof(u8),
255                 .word_count     = BBP_SIZE / sizeof(u8),
256         },
257         .rf     = {
258                 .read           = rt2x00_rf_read,
259                 .write          = rt2500usb_rf_write,
260                 .word_base      = RF_BASE,
261                 .word_size      = sizeof(u32),
262                 .word_count     = RF_SIZE / sizeof(u32),
263         },
264 };
265 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
266
267 static int rt2500usb_rfkill_poll(struct rt2x00_dev *rt2x00dev)
268 {
269         u16 reg;
270
271         reg = rt2500usb_register_read(rt2x00dev, MAC_CSR19);
272         return rt2x00_get_field16(reg, MAC_CSR19_VAL7);
273 }
274
275 #ifdef CONFIG_RT2X00_LIB_LEDS
276 static void rt2500usb_brightness_set(struct led_classdev *led_cdev,
277                                      enum led_brightness brightness)
278 {
279         struct rt2x00_led *led =
280             container_of(led_cdev, struct rt2x00_led, led_dev);
281         unsigned int enabled = brightness != LED_OFF;
282         u16 reg;
283
284         reg = rt2500usb_register_read(led->rt2x00dev, MAC_CSR20);
285
286         if (led->type == LED_TYPE_RADIO || led->type == LED_TYPE_ASSOC)
287                 rt2x00_set_field16(&reg, MAC_CSR20_LINK, enabled);
288         else if (led->type == LED_TYPE_ACTIVITY)
289                 rt2x00_set_field16(&reg, MAC_CSR20_ACTIVITY, enabled);
290
291         rt2500usb_register_write(led->rt2x00dev, MAC_CSR20, reg);
292 }
293
294 static int rt2500usb_blink_set(struct led_classdev *led_cdev,
295                                unsigned long *delay_on,
296                                unsigned long *delay_off)
297 {
298         struct rt2x00_led *led =
299             container_of(led_cdev, struct rt2x00_led, led_dev);
300         u16 reg;
301
302         reg = rt2500usb_register_read(led->rt2x00dev, MAC_CSR21);
303         rt2x00_set_field16(&reg, MAC_CSR21_ON_PERIOD, *delay_on);
304         rt2x00_set_field16(&reg, MAC_CSR21_OFF_PERIOD, *delay_off);
305         rt2500usb_register_write(led->rt2x00dev, MAC_CSR21, reg);
306
307         return 0;
308 }
309
310 static void rt2500usb_init_led(struct rt2x00_dev *rt2x00dev,
311                                struct rt2x00_led *led,
312                                enum led_type type)
313 {
314         led->rt2x00dev = rt2x00dev;
315         led->type = type;
316         led->led_dev.brightness_set = rt2500usb_brightness_set;
317         led->led_dev.blink_set = rt2500usb_blink_set;
318         led->flags = LED_INITIALIZED;
319 }
320 #endif /* CONFIG_RT2X00_LIB_LEDS */
321
322 /*
323  * Configuration handlers.
324  */
325
326 /*
327  * rt2500usb does not differentiate between shared and pairwise
328  * keys, so we should use the same function for both key types.
329  */
330 static int rt2500usb_config_key(struct rt2x00_dev *rt2x00dev,
331                                 struct rt2x00lib_crypto *crypto,
332                                 struct ieee80211_key_conf *key)
333 {
334         u32 mask;
335         u16 reg;
336         enum cipher curr_cipher;
337
338         if (crypto->cmd == SET_KEY) {
339                 /*
340                  * Disallow to set WEP key other than with index 0,
341                  * it is known that not work at least on some hardware.
342                  * SW crypto will be used in that case.
343                  */
344                 if ((key->cipher == WLAN_CIPHER_SUITE_WEP40 ||
345                      key->cipher == WLAN_CIPHER_SUITE_WEP104) &&
346                     key->keyidx != 0)
347                         return -EOPNOTSUPP;
348
349                 /*
350                  * Pairwise key will always be entry 0, but this
351                  * could collide with a shared key on the same
352                  * position...
353                  */
354                 mask = TXRX_CSR0_KEY_ID.bit_mask;
355
356                 reg = rt2500usb_register_read(rt2x00dev, TXRX_CSR0);
357                 curr_cipher = rt2x00_get_field16(reg, TXRX_CSR0_ALGORITHM);
358                 reg &= mask;
359
360                 if (reg && reg == mask)
361                         return -ENOSPC;
362
363                 reg = rt2x00_get_field16(reg, TXRX_CSR0_KEY_ID);
364
365                 key->hw_key_idx += reg ? ffz(reg) : 0;
366                 /*
367                  * Hardware requires that all keys use the same cipher
368                  * (e.g. TKIP-only, AES-only, but not TKIP+AES).
369                  * If this is not the first key, compare the cipher with the
370                  * first one and fall back to SW crypto if not the same.
371                  */
372                 if (key->hw_key_idx > 0 && crypto->cipher != curr_cipher)
373                         return -EOPNOTSUPP;
374
375                 rt2500usb_register_multiwrite(rt2x00dev, KEY_ENTRY(key->hw_key_idx),
376                                               crypto->key, sizeof(crypto->key));
377
378                 /*
379                  * The driver does not support the IV/EIV generation
380                  * in hardware. However it demands the data to be provided
381                  * both separately as well as inside the frame.
382                  * We already provided the CONFIG_CRYPTO_COPY_IV to rt2x00lib
383                  * to ensure rt2x00lib will not strip the data from the
384                  * frame after the copy, now we must tell mac80211
385                  * to generate the IV/EIV data.
386                  */
387                 key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV;
388                 key->flags |= IEEE80211_KEY_FLAG_GENERATE_MMIC;
389         }
390
391         /*
392          * TXRX_CSR0_KEY_ID contains only single-bit fields to indicate
393          * a particular key is valid.
394          */
395         reg = rt2500usb_register_read(rt2x00dev, TXRX_CSR0);
396         rt2x00_set_field16(&reg, TXRX_CSR0_ALGORITHM, crypto->cipher);
397         rt2x00_set_field16(&reg, TXRX_CSR0_IV_OFFSET, IEEE80211_HEADER);
398
399         mask = rt2x00_get_field16(reg, TXRX_CSR0_KEY_ID);
400         if (crypto->cmd == SET_KEY)
401                 mask |= 1 << key->hw_key_idx;
402         else if (crypto->cmd == DISABLE_KEY)
403                 mask &= ~(1 << key->hw_key_idx);
404         rt2x00_set_field16(&reg, TXRX_CSR0_KEY_ID, mask);
405         rt2500usb_register_write(rt2x00dev, TXRX_CSR0, reg);
406
407         return 0;
408 }
409
410 static void rt2500usb_config_filter(struct rt2x00_dev *rt2x00dev,
411                                     const unsigned int filter_flags)
412 {
413         u16 reg;
414
415         /*
416          * Start configuration steps.
417          * Note that the version error will always be dropped
418          * and broadcast frames will always be accepted since
419          * there is no filter for it at this time.
420          */
421         reg = rt2500usb_register_read(rt2x00dev, TXRX_CSR2);
422         rt2x00_set_field16(&reg, TXRX_CSR2_DROP_CRC,
423                            !(filter_flags & FIF_FCSFAIL));
424         rt2x00_set_field16(&reg, TXRX_CSR2_DROP_PHYSICAL,
425                            !(filter_flags & FIF_PLCPFAIL));
426         rt2x00_set_field16(&reg, TXRX_CSR2_DROP_CONTROL,
427                            !(filter_flags & FIF_CONTROL));
428         rt2x00_set_field16(&reg, TXRX_CSR2_DROP_NOT_TO_ME,
429                            !test_bit(CONFIG_MONITORING, &rt2x00dev->flags));
430         rt2x00_set_field16(&reg, TXRX_CSR2_DROP_TODS,
431                            !test_bit(CONFIG_MONITORING, &rt2x00dev->flags) &&
432                            !rt2x00dev->intf_ap_count);
433         rt2x00_set_field16(&reg, TXRX_CSR2_DROP_VERSION_ERROR, 1);
434         rt2x00_set_field16(&reg, TXRX_CSR2_DROP_MULTICAST,
435                            !(filter_flags & FIF_ALLMULTI));
436         rt2x00_set_field16(&reg, TXRX_CSR2_DROP_BROADCAST, 0);
437         rt2500usb_register_write(rt2x00dev, TXRX_CSR2, reg);
438 }
439
440 static void rt2500usb_config_intf(struct rt2x00_dev *rt2x00dev,
441                                   struct rt2x00_intf *intf,
442                                   struct rt2x00intf_conf *conf,
443                                   const unsigned int flags)
444 {
445         unsigned int bcn_preload;
446         u16 reg;
447
448         if (flags & CONFIG_UPDATE_TYPE) {
449                 /*
450                  * Enable beacon config
451                  */
452                 bcn_preload = PREAMBLE + GET_DURATION(IEEE80211_HEADER, 20);
453                 reg = rt2500usb_register_read(rt2x00dev, TXRX_CSR20);
454                 rt2x00_set_field16(&reg, TXRX_CSR20_OFFSET, bcn_preload >> 6);
455                 rt2x00_set_field16(&reg, TXRX_CSR20_BCN_EXPECT_WINDOW,
456                                    2 * (conf->type != NL80211_IFTYPE_STATION));
457                 rt2500usb_register_write(rt2x00dev, TXRX_CSR20, reg);
458
459                 /*
460                  * Enable synchronisation.
461                  */
462                 reg = rt2500usb_register_read(rt2x00dev, TXRX_CSR18);
463                 rt2x00_set_field16(&reg, TXRX_CSR18_OFFSET, 0);
464                 rt2500usb_register_write(rt2x00dev, TXRX_CSR18, reg);
465
466                 reg = rt2500usb_register_read(rt2x00dev, TXRX_CSR19);
467                 rt2x00_set_field16(&reg, TXRX_CSR19_TSF_SYNC, conf->sync);
468                 rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
469         }
470
471         if (flags & CONFIG_UPDATE_MAC)
472                 rt2500usb_register_multiwrite(rt2x00dev, MAC_CSR2, conf->mac,
473                                               (3 * sizeof(__le16)));
474
475         if (flags & CONFIG_UPDATE_BSSID)
476                 rt2500usb_register_multiwrite(rt2x00dev, MAC_CSR5, conf->bssid,
477                                               (3 * sizeof(__le16)));
478 }
479
480 static void rt2500usb_config_erp(struct rt2x00_dev *rt2x00dev,
481                                  struct rt2x00lib_erp *erp,
482                                  u32 changed)
483 {
484         u16 reg;
485
486         if (changed & BSS_CHANGED_ERP_PREAMBLE) {
487                 reg = rt2500usb_register_read(rt2x00dev, TXRX_CSR10);
488                 rt2x00_set_field16(&reg, TXRX_CSR10_AUTORESPOND_PREAMBLE,
489                                    !!erp->short_preamble);
490                 rt2500usb_register_write(rt2x00dev, TXRX_CSR10, reg);
491         }
492
493         if (changed & BSS_CHANGED_BASIC_RATES)
494                 rt2500usb_register_write(rt2x00dev, TXRX_CSR11,
495                                          erp->basic_rates);
496
497         if (changed & BSS_CHANGED_BEACON_INT) {
498                 reg = rt2500usb_register_read(rt2x00dev, TXRX_CSR18);
499                 rt2x00_set_field16(&reg, TXRX_CSR18_INTERVAL,
500                                    erp->beacon_int * 4);
501                 rt2500usb_register_write(rt2x00dev, TXRX_CSR18, reg);
502         }
503
504         if (changed & BSS_CHANGED_ERP_SLOT) {
505                 rt2500usb_register_write(rt2x00dev, MAC_CSR10, erp->slot_time);
506                 rt2500usb_register_write(rt2x00dev, MAC_CSR11, erp->sifs);
507                 rt2500usb_register_write(rt2x00dev, MAC_CSR12, erp->eifs);
508         }
509 }
510
511 static void rt2500usb_config_ant(struct rt2x00_dev *rt2x00dev,
512                                  struct antenna_setup *ant)
513 {
514         u8 r2;
515         u8 r14;
516         u16 csr5;
517         u16 csr6;
518
519         /*
520          * We should never come here because rt2x00lib is supposed
521          * to catch this and send us the correct antenna explicitely.
522          */
523         BUG_ON(ant->rx == ANTENNA_SW_DIVERSITY ||
524                ant->tx == ANTENNA_SW_DIVERSITY);
525
526         r2 = rt2500usb_bbp_read(rt2x00dev, 2);
527         r14 = rt2500usb_bbp_read(rt2x00dev, 14);
528         csr5 = rt2500usb_register_read(rt2x00dev, PHY_CSR5);
529         csr6 = rt2500usb_register_read(rt2x00dev, PHY_CSR6);
530
531         /*
532          * Configure the TX antenna.
533          */
534         switch (ant->tx) {
535         case ANTENNA_HW_DIVERSITY:
536                 rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 1);
537                 rt2x00_set_field16(&csr5, PHY_CSR5_CCK, 1);
538                 rt2x00_set_field16(&csr6, PHY_CSR6_OFDM, 1);
539                 break;
540         case ANTENNA_A:
541                 rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 0);
542                 rt2x00_set_field16(&csr5, PHY_CSR5_CCK, 0);
543                 rt2x00_set_field16(&csr6, PHY_CSR6_OFDM, 0);
544                 break;
545         case ANTENNA_B:
546         default:
547                 rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 2);
548                 rt2x00_set_field16(&csr5, PHY_CSR5_CCK, 2);
549                 rt2x00_set_field16(&csr6, PHY_CSR6_OFDM, 2);
550                 break;
551         }
552
553         /*
554          * Configure the RX antenna.
555          */
556         switch (ant->rx) {
557         case ANTENNA_HW_DIVERSITY:
558                 rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 1);
559                 break;
560         case ANTENNA_A:
561                 rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 0);
562                 break;
563         case ANTENNA_B:
564         default:
565                 rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 2);
566                 break;
567         }
568
569         /*
570          * RT2525E and RT5222 need to flip TX I/Q
571          */
572         if (rt2x00_rf(rt2x00dev, RF2525E) || rt2x00_rf(rt2x00dev, RF5222)) {
573                 rt2x00_set_field8(&r2, BBP_R2_TX_IQ_FLIP, 1);
574                 rt2x00_set_field16(&csr5, PHY_CSR5_CCK_FLIP, 1);
575                 rt2x00_set_field16(&csr6, PHY_CSR6_OFDM_FLIP, 1);
576
577                 /*
578                  * RT2525E does not need RX I/Q Flip.
579                  */
580                 if (rt2x00_rf(rt2x00dev, RF2525E))
581                         rt2x00_set_field8(&r14, BBP_R14_RX_IQ_FLIP, 0);
582         } else {
583                 rt2x00_set_field16(&csr5, PHY_CSR5_CCK_FLIP, 0);
584                 rt2x00_set_field16(&csr6, PHY_CSR6_OFDM_FLIP, 0);
585         }
586
587         rt2500usb_bbp_write(rt2x00dev, 2, r2);
588         rt2500usb_bbp_write(rt2x00dev, 14, r14);
589         rt2500usb_register_write(rt2x00dev, PHY_CSR5, csr5);
590         rt2500usb_register_write(rt2x00dev, PHY_CSR6, csr6);
591 }
592
593 static void rt2500usb_config_channel(struct rt2x00_dev *rt2x00dev,
594                                      struct rf_channel *rf, const int txpower)
595 {
596         /*
597          * Set TXpower.
598          */
599         rt2x00_set_field32(&rf->rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
600
601         /*
602          * For RT2525E we should first set the channel to half band higher.
603          */
604         if (rt2x00_rf(rt2x00dev, RF2525E)) {
605                 static const u32 vals[] = {
606                         0x000008aa, 0x000008ae, 0x000008ae, 0x000008b2,
607                         0x000008b2, 0x000008b6, 0x000008b6, 0x000008ba,
608                         0x000008ba, 0x000008be, 0x000008b7, 0x00000902,
609                         0x00000902, 0x00000906
610                 };
611
612                 rt2500usb_rf_write(rt2x00dev, 2, vals[rf->channel - 1]);
613                 if (rf->rf4)
614                         rt2500usb_rf_write(rt2x00dev, 4, rf->rf4);
615         }
616
617         rt2500usb_rf_write(rt2x00dev, 1, rf->rf1);
618         rt2500usb_rf_write(rt2x00dev, 2, rf->rf2);
619         rt2500usb_rf_write(rt2x00dev, 3, rf->rf3);
620         if (rf->rf4)
621                 rt2500usb_rf_write(rt2x00dev, 4, rf->rf4);
622 }
623
624 static void rt2500usb_config_txpower(struct rt2x00_dev *rt2x00dev,
625                                      const int txpower)
626 {
627         u32 rf3;
628
629         rf3 = rt2x00_rf_read(rt2x00dev, 3);
630         rt2x00_set_field32(&rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
631         rt2500usb_rf_write(rt2x00dev, 3, rf3);
632 }
633
634 static void rt2500usb_config_ps(struct rt2x00_dev *rt2x00dev,
635                                 struct rt2x00lib_conf *libconf)
636 {
637         enum dev_state state =
638             (libconf->conf->flags & IEEE80211_CONF_PS) ?
639                 STATE_SLEEP : STATE_AWAKE;
640         u16 reg;
641
642         if (state == STATE_SLEEP) {
643                 reg = rt2500usb_register_read(rt2x00dev, MAC_CSR18);
644                 rt2x00_set_field16(&reg, MAC_CSR18_DELAY_AFTER_BEACON,
645                                    rt2x00dev->beacon_int - 20);
646                 rt2x00_set_field16(&reg, MAC_CSR18_BEACONS_BEFORE_WAKEUP,
647                                    libconf->conf->listen_interval - 1);
648
649                 /* We must first disable autowake before it can be enabled */
650                 rt2x00_set_field16(&reg, MAC_CSR18_AUTO_WAKE, 0);
651                 rt2500usb_register_write(rt2x00dev, MAC_CSR18, reg);
652
653                 rt2x00_set_field16(&reg, MAC_CSR18_AUTO_WAKE, 1);
654                 rt2500usb_register_write(rt2x00dev, MAC_CSR18, reg);
655         } else {
656                 reg = rt2500usb_register_read(rt2x00dev, MAC_CSR18);
657                 rt2x00_set_field16(&reg, MAC_CSR18_AUTO_WAKE, 0);
658                 rt2500usb_register_write(rt2x00dev, MAC_CSR18, reg);
659         }
660
661         rt2x00dev->ops->lib->set_device_state(rt2x00dev, state);
662 }
663
664 static void rt2500usb_config(struct rt2x00_dev *rt2x00dev,
665                              struct rt2x00lib_conf *libconf,
666                              const unsigned int flags)
667 {
668         if (flags & IEEE80211_CONF_CHANGE_CHANNEL)
669                 rt2500usb_config_channel(rt2x00dev, &libconf->rf,
670                                          libconf->conf->power_level);
671         if ((flags & IEEE80211_CONF_CHANGE_POWER) &&
672             !(flags & IEEE80211_CONF_CHANGE_CHANNEL))
673                 rt2500usb_config_txpower(rt2x00dev,
674                                          libconf->conf->power_level);
675         if (flags & IEEE80211_CONF_CHANGE_PS)
676                 rt2500usb_config_ps(rt2x00dev, libconf);
677 }
678
679 /*
680  * Link tuning
681  */
682 static void rt2500usb_link_stats(struct rt2x00_dev *rt2x00dev,
683                                  struct link_qual *qual)
684 {
685         u16 reg;
686
687         /*
688          * Update FCS error count from register.
689          */
690         reg = rt2500usb_register_read(rt2x00dev, STA_CSR0);
691         qual->rx_failed = rt2x00_get_field16(reg, STA_CSR0_FCS_ERROR);
692
693         /*
694          * Update False CCA count from register.
695          */
696         reg = rt2500usb_register_read(rt2x00dev, STA_CSR3);
697         qual->false_cca = rt2x00_get_field16(reg, STA_CSR3_FALSE_CCA_ERROR);
698 }
699
700 static void rt2500usb_reset_tuner(struct rt2x00_dev *rt2x00dev,
701                                   struct link_qual *qual)
702 {
703         u16 eeprom;
704         u16 value;
705
706         eeprom = rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R24);
707         value = rt2x00_get_field16(eeprom, EEPROM_BBPTUNE_R24_LOW);
708         rt2500usb_bbp_write(rt2x00dev, 24, value);
709
710         eeprom = rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R25);
711         value = rt2x00_get_field16(eeprom, EEPROM_BBPTUNE_R25_LOW);
712         rt2500usb_bbp_write(rt2x00dev, 25, value);
713
714         eeprom = rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R61);
715         value = rt2x00_get_field16(eeprom, EEPROM_BBPTUNE_R61_LOW);
716         rt2500usb_bbp_write(rt2x00dev, 61, value);
717
718         eeprom = rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_VGC);
719         value = rt2x00_get_field16(eeprom, EEPROM_BBPTUNE_VGCUPPER);
720         rt2500usb_bbp_write(rt2x00dev, 17, value);
721
722         qual->vgc_level = value;
723 }
724
725 /*
726  * Queue handlers.
727  */
728 static void rt2500usb_start_queue(struct data_queue *queue)
729 {
730         struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
731         u16 reg;
732
733         switch (queue->qid) {
734         case QID_RX:
735                 reg = rt2500usb_register_read(rt2x00dev, TXRX_CSR2);
736                 rt2x00_set_field16(&reg, TXRX_CSR2_DISABLE_RX, 0);
737                 rt2500usb_register_write(rt2x00dev, TXRX_CSR2, reg);
738                 break;
739         case QID_BEACON:
740                 reg = rt2500usb_register_read(rt2x00dev, TXRX_CSR19);
741                 rt2x00_set_field16(&reg, TXRX_CSR19_TSF_COUNT, 1);
742                 rt2x00_set_field16(&reg, TXRX_CSR19_TBCN, 1);
743                 rt2x00_set_field16(&reg, TXRX_CSR19_BEACON_GEN, 1);
744                 rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
745                 break;
746         default:
747                 break;
748         }
749 }
750
751 static void rt2500usb_stop_queue(struct data_queue *queue)
752 {
753         struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
754         u16 reg;
755
756         switch (queue->qid) {
757         case QID_RX:
758                 reg = rt2500usb_register_read(rt2x00dev, TXRX_CSR2);
759                 rt2x00_set_field16(&reg, TXRX_CSR2_DISABLE_RX, 1);
760                 rt2500usb_register_write(rt2x00dev, TXRX_CSR2, reg);
761                 break;
762         case QID_BEACON:
763                 reg = rt2500usb_register_read(rt2x00dev, TXRX_CSR19);
764                 rt2x00_set_field16(&reg, TXRX_CSR19_TSF_COUNT, 0);
765                 rt2x00_set_field16(&reg, TXRX_CSR19_TBCN, 0);
766                 rt2x00_set_field16(&reg, TXRX_CSR19_BEACON_GEN, 0);
767                 rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
768                 break;
769         default:
770                 break;
771         }
772 }
773
774 /*
775  * Initialization functions.
776  */
777 static int rt2500usb_init_registers(struct rt2x00_dev *rt2x00dev)
778 {
779         u16 reg;
780
781         rt2x00usb_vendor_request_sw(rt2x00dev, USB_DEVICE_MODE, 0x0001,
782                                     USB_MODE_TEST, REGISTER_TIMEOUT);
783         rt2x00usb_vendor_request_sw(rt2x00dev, USB_SINGLE_WRITE, 0x0308,
784                                     0x00f0, REGISTER_TIMEOUT);
785
786         reg = rt2500usb_register_read(rt2x00dev, TXRX_CSR2);
787         rt2x00_set_field16(&reg, TXRX_CSR2_DISABLE_RX, 1);
788         rt2500usb_register_write(rt2x00dev, TXRX_CSR2, reg);
789
790         rt2500usb_register_write(rt2x00dev, MAC_CSR13, 0x1111);
791         rt2500usb_register_write(rt2x00dev, MAC_CSR14, 0x1e11);
792
793         reg = rt2500usb_register_read(rt2x00dev, MAC_CSR1);
794         rt2x00_set_field16(&reg, MAC_CSR1_SOFT_RESET, 1);
795         rt2x00_set_field16(&reg, MAC_CSR1_BBP_RESET, 1);
796         rt2x00_set_field16(&reg, MAC_CSR1_HOST_READY, 0);
797         rt2500usb_register_write(rt2x00dev, MAC_CSR1, reg);
798
799         reg = rt2500usb_register_read(rt2x00dev, MAC_CSR1);
800         rt2x00_set_field16(&reg, MAC_CSR1_SOFT_RESET, 0);
801         rt2x00_set_field16(&reg, MAC_CSR1_BBP_RESET, 0);
802         rt2x00_set_field16(&reg, MAC_CSR1_HOST_READY, 0);
803         rt2500usb_register_write(rt2x00dev, MAC_CSR1, reg);
804
805         reg = rt2500usb_register_read(rt2x00dev, TXRX_CSR5);
806         rt2x00_set_field16(&reg, TXRX_CSR5_BBP_ID0, 13);
807         rt2x00_set_field16(&reg, TXRX_CSR5_BBP_ID0_VALID, 1);
808         rt2x00_set_field16(&reg, TXRX_CSR5_BBP_ID1, 12);
809         rt2x00_set_field16(&reg, TXRX_CSR5_BBP_ID1_VALID, 1);
810         rt2500usb_register_write(rt2x00dev, TXRX_CSR5, reg);
811
812         reg = rt2500usb_register_read(rt2x00dev, TXRX_CSR6);
813         rt2x00_set_field16(&reg, TXRX_CSR6_BBP_ID0, 10);
814         rt2x00_set_field16(&reg, TXRX_CSR6_BBP_ID0_VALID, 1);
815         rt2x00_set_field16(&reg, TXRX_CSR6_BBP_ID1, 11);
816         rt2x00_set_field16(&reg, TXRX_CSR6_BBP_ID1_VALID, 1);
817         rt2500usb_register_write(rt2x00dev, TXRX_CSR6, reg);
818
819         reg = rt2500usb_register_read(rt2x00dev, TXRX_CSR7);
820         rt2x00_set_field16(&reg, TXRX_CSR7_BBP_ID0, 7);
821         rt2x00_set_field16(&reg, TXRX_CSR7_BBP_ID0_VALID, 1);
822         rt2x00_set_field16(&reg, TXRX_CSR7_BBP_ID1, 6);
823         rt2x00_set_field16(&reg, TXRX_CSR7_BBP_ID1_VALID, 1);
824         rt2500usb_register_write(rt2x00dev, TXRX_CSR7, reg);
825
826         reg = rt2500usb_register_read(rt2x00dev, TXRX_CSR8);
827         rt2x00_set_field16(&reg, TXRX_CSR8_BBP_ID0, 5);
828         rt2x00_set_field16(&reg, TXRX_CSR8_BBP_ID0_VALID, 1);
829         rt2x00_set_field16(&reg, TXRX_CSR8_BBP_ID1, 0);
830         rt2x00_set_field16(&reg, TXRX_CSR8_BBP_ID1_VALID, 0);
831         rt2500usb_register_write(rt2x00dev, TXRX_CSR8, reg);
832
833         reg = rt2500usb_register_read(rt2x00dev, TXRX_CSR19);
834         rt2x00_set_field16(&reg, TXRX_CSR19_TSF_COUNT, 0);
835         rt2x00_set_field16(&reg, TXRX_CSR19_TSF_SYNC, 0);
836         rt2x00_set_field16(&reg, TXRX_CSR19_TBCN, 0);
837         rt2x00_set_field16(&reg, TXRX_CSR19_BEACON_GEN, 0);
838         rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
839
840         rt2500usb_register_write(rt2x00dev, TXRX_CSR21, 0xe78f);
841         rt2500usb_register_write(rt2x00dev, MAC_CSR9, 0xff1d);
842
843         if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
844                 return -EBUSY;
845
846         reg = rt2500usb_register_read(rt2x00dev, MAC_CSR1);
847         rt2x00_set_field16(&reg, MAC_CSR1_SOFT_RESET, 0);
848         rt2x00_set_field16(&reg, MAC_CSR1_BBP_RESET, 0);
849         rt2x00_set_field16(&reg, MAC_CSR1_HOST_READY, 1);
850         rt2500usb_register_write(rt2x00dev, MAC_CSR1, reg);
851
852         if (rt2x00_rev(rt2x00dev) >= RT2570_VERSION_C) {
853                 reg = rt2500usb_register_read(rt2x00dev, PHY_CSR2);
854                 rt2x00_set_field16(&reg, PHY_CSR2_LNA, 0);
855         } else {
856                 reg = 0;
857                 rt2x00_set_field16(&reg, PHY_CSR2_LNA, 1);
858                 rt2x00_set_field16(&reg, PHY_CSR2_LNA_MODE, 3);
859         }
860         rt2500usb_register_write(rt2x00dev, PHY_CSR2, reg);
861
862         rt2500usb_register_write(rt2x00dev, MAC_CSR11, 0x0002);
863         rt2500usb_register_write(rt2x00dev, MAC_CSR22, 0x0053);
864         rt2500usb_register_write(rt2x00dev, MAC_CSR15, 0x01ee);
865         rt2500usb_register_write(rt2x00dev, MAC_CSR16, 0x0000);
866
867         reg = rt2500usb_register_read(rt2x00dev, MAC_CSR8);
868         rt2x00_set_field16(&reg, MAC_CSR8_MAX_FRAME_UNIT,
869                            rt2x00dev->rx->data_size);
870         rt2500usb_register_write(rt2x00dev, MAC_CSR8, reg);
871
872         reg = rt2500usb_register_read(rt2x00dev, TXRX_CSR0);
873         rt2x00_set_field16(&reg, TXRX_CSR0_ALGORITHM, CIPHER_NONE);
874         rt2x00_set_field16(&reg, TXRX_CSR0_IV_OFFSET, IEEE80211_HEADER);
875         rt2x00_set_field16(&reg, TXRX_CSR0_KEY_ID, 0);
876         rt2500usb_register_write(rt2x00dev, TXRX_CSR0, reg);
877
878         reg = rt2500usb_register_read(rt2x00dev, MAC_CSR18);
879         rt2x00_set_field16(&reg, MAC_CSR18_DELAY_AFTER_BEACON, 90);
880         rt2500usb_register_write(rt2x00dev, MAC_CSR18, reg);
881
882         reg = rt2500usb_register_read(rt2x00dev, PHY_CSR4);
883         rt2x00_set_field16(&reg, PHY_CSR4_LOW_RF_LE, 1);
884         rt2500usb_register_write(rt2x00dev, PHY_CSR4, reg);
885
886         reg = rt2500usb_register_read(rt2x00dev, TXRX_CSR1);
887         rt2x00_set_field16(&reg, TXRX_CSR1_AUTO_SEQUENCE, 1);
888         rt2500usb_register_write(rt2x00dev, TXRX_CSR1, reg);
889
890         return 0;
891 }
892
893 static int rt2500usb_wait_bbp_ready(struct rt2x00_dev *rt2x00dev)
894 {
895         unsigned int i;
896         u8 value;
897
898         for (i = 0; i < REGISTER_USB_BUSY_COUNT; i++) {
899                 value = rt2500usb_bbp_read(rt2x00dev, 0);
900                 if ((value != 0xff) && (value != 0x00))
901                         return 0;
902                 udelay(REGISTER_BUSY_DELAY);
903         }
904
905         rt2x00_err(rt2x00dev, "BBP register access failed, aborting\n");
906         return -EACCES;
907 }
908
909 static int rt2500usb_init_bbp(struct rt2x00_dev *rt2x00dev)
910 {
911         unsigned int i;
912         u16 eeprom;
913         u8 value;
914         u8 reg_id;
915
916         if (unlikely(rt2500usb_wait_bbp_ready(rt2x00dev)))
917                 return -EACCES;
918
919         rt2500usb_bbp_write(rt2x00dev, 3, 0x02);
920         rt2500usb_bbp_write(rt2x00dev, 4, 0x19);
921         rt2500usb_bbp_write(rt2x00dev, 14, 0x1c);
922         rt2500usb_bbp_write(rt2x00dev, 15, 0x30);
923         rt2500usb_bbp_write(rt2x00dev, 16, 0xac);
924         rt2500usb_bbp_write(rt2x00dev, 18, 0x18);
925         rt2500usb_bbp_write(rt2x00dev, 19, 0xff);
926         rt2500usb_bbp_write(rt2x00dev, 20, 0x1e);
927         rt2500usb_bbp_write(rt2x00dev, 21, 0x08);
928         rt2500usb_bbp_write(rt2x00dev, 22, 0x08);
929         rt2500usb_bbp_write(rt2x00dev, 23, 0x08);
930         rt2500usb_bbp_write(rt2x00dev, 24, 0x80);
931         rt2500usb_bbp_write(rt2x00dev, 25, 0x50);
932         rt2500usb_bbp_write(rt2x00dev, 26, 0x08);
933         rt2500usb_bbp_write(rt2x00dev, 27, 0x23);
934         rt2500usb_bbp_write(rt2x00dev, 30, 0x10);
935         rt2500usb_bbp_write(rt2x00dev, 31, 0x2b);
936         rt2500usb_bbp_write(rt2x00dev, 32, 0xb9);
937         rt2500usb_bbp_write(rt2x00dev, 34, 0x12);
938         rt2500usb_bbp_write(rt2x00dev, 35, 0x50);
939         rt2500usb_bbp_write(rt2x00dev, 39, 0xc4);
940         rt2500usb_bbp_write(rt2x00dev, 40, 0x02);
941         rt2500usb_bbp_write(rt2x00dev, 41, 0x60);
942         rt2500usb_bbp_write(rt2x00dev, 53, 0x10);
943         rt2500usb_bbp_write(rt2x00dev, 54, 0x18);
944         rt2500usb_bbp_write(rt2x00dev, 56, 0x08);
945         rt2500usb_bbp_write(rt2x00dev, 57, 0x10);
946         rt2500usb_bbp_write(rt2x00dev, 58, 0x08);
947         rt2500usb_bbp_write(rt2x00dev, 61, 0x60);
948         rt2500usb_bbp_write(rt2x00dev, 62, 0x10);
949         rt2500usb_bbp_write(rt2x00dev, 75, 0xff);
950
951         for (i = 0; i < EEPROM_BBP_SIZE; i++) {
952                 eeprom = rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i);
953
954                 if (eeprom != 0xffff && eeprom != 0x0000) {
955                         reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID);
956                         value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE);
957                         rt2500usb_bbp_write(rt2x00dev, reg_id, value);
958                 }
959         }
960
961         return 0;
962 }
963
964 /*
965  * Device state switch handlers.
966  */
967 static int rt2500usb_enable_radio(struct rt2x00_dev *rt2x00dev)
968 {
969         /*
970          * Initialize all registers.
971          */
972         if (unlikely(rt2500usb_init_registers(rt2x00dev) ||
973                      rt2500usb_init_bbp(rt2x00dev)))
974                 return -EIO;
975
976         return 0;
977 }
978
979 static void rt2500usb_disable_radio(struct rt2x00_dev *rt2x00dev)
980 {
981         rt2500usb_register_write(rt2x00dev, MAC_CSR13, 0x2121);
982         rt2500usb_register_write(rt2x00dev, MAC_CSR14, 0x2121);
983
984         /*
985          * Disable synchronisation.
986          */
987         rt2500usb_register_write(rt2x00dev, TXRX_CSR19, 0);
988
989         rt2x00usb_disable_radio(rt2x00dev);
990 }
991
992 static int rt2500usb_set_state(struct rt2x00_dev *rt2x00dev,
993                                enum dev_state state)
994 {
995         u16 reg;
996         u16 reg2;
997         unsigned int i;
998         char put_to_sleep;
999         char bbp_state;
1000         char rf_state;
1001
1002         put_to_sleep = (state != STATE_AWAKE);
1003
1004         reg = 0;
1005         rt2x00_set_field16(&reg, MAC_CSR17_BBP_DESIRE_STATE, state);
1006         rt2x00_set_field16(&reg, MAC_CSR17_RF_DESIRE_STATE, state);
1007         rt2x00_set_field16(&reg, MAC_CSR17_PUT_TO_SLEEP, put_to_sleep);
1008         rt2500usb_register_write(rt2x00dev, MAC_CSR17, reg);
1009         rt2x00_set_field16(&reg, MAC_CSR17_SET_STATE, 1);
1010         rt2500usb_register_write(rt2x00dev, MAC_CSR17, reg);
1011
1012         /*
1013          * Device is not guaranteed to be in the requested state yet.
1014          * We must wait until the register indicates that the
1015          * device has entered the correct state.
1016          */
1017         for (i = 0; i < REGISTER_USB_BUSY_COUNT; i++) {
1018                 reg2 = rt2500usb_register_read(rt2x00dev, MAC_CSR17);
1019                 bbp_state = rt2x00_get_field16(reg2, MAC_CSR17_BBP_CURR_STATE);
1020                 rf_state = rt2x00_get_field16(reg2, MAC_CSR17_RF_CURR_STATE);
1021                 if (bbp_state == state && rf_state == state)
1022                         return 0;
1023                 rt2500usb_register_write(rt2x00dev, MAC_CSR17, reg);
1024                 msleep(30);
1025         }
1026
1027         return -EBUSY;
1028 }
1029
1030 static int rt2500usb_set_device_state(struct rt2x00_dev *rt2x00dev,
1031                                       enum dev_state state)
1032 {
1033         int retval = 0;
1034
1035         switch (state) {
1036         case STATE_RADIO_ON:
1037                 retval = rt2500usb_enable_radio(rt2x00dev);
1038                 break;
1039         case STATE_RADIO_OFF:
1040                 rt2500usb_disable_radio(rt2x00dev);
1041                 break;
1042         case STATE_RADIO_IRQ_ON:
1043         case STATE_RADIO_IRQ_OFF:
1044                 /* No support, but no error either */
1045                 break;
1046         case STATE_DEEP_SLEEP:
1047         case STATE_SLEEP:
1048         case STATE_STANDBY:
1049         case STATE_AWAKE:
1050                 retval = rt2500usb_set_state(rt2x00dev, state);
1051                 break;
1052         default:
1053                 retval = -ENOTSUPP;
1054                 break;
1055         }
1056
1057         if (unlikely(retval))
1058                 rt2x00_err(rt2x00dev, "Device failed to enter state %d (%d)\n",
1059                            state, retval);
1060
1061         return retval;
1062 }
1063
1064 /*
1065  * TX descriptor initialization
1066  */
1067 static void rt2500usb_write_tx_desc(struct queue_entry *entry,
1068                                     struct txentry_desc *txdesc)
1069 {
1070         struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
1071         __le32 *txd = (__le32 *) entry->skb->data;
1072         u32 word;
1073
1074         /*
1075          * Start writing the descriptor words.
1076          */
1077         word = rt2x00_desc_read(txd, 0);
1078         rt2x00_set_field32(&word, TXD_W0_RETRY_LIMIT, txdesc->retry_limit);
1079         rt2x00_set_field32(&word, TXD_W0_MORE_FRAG,
1080                            test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
1081         rt2x00_set_field32(&word, TXD_W0_ACK,
1082                            test_bit(ENTRY_TXD_ACK, &txdesc->flags));
1083         rt2x00_set_field32(&word, TXD_W0_TIMESTAMP,
1084                            test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags));
1085         rt2x00_set_field32(&word, TXD_W0_OFDM,
1086                            (txdesc->rate_mode == RATE_MODE_OFDM));
1087         rt2x00_set_field32(&word, TXD_W0_NEW_SEQ,
1088                            test_bit(ENTRY_TXD_FIRST_FRAGMENT, &txdesc->flags));
1089         rt2x00_set_field32(&word, TXD_W0_IFS, txdesc->u.plcp.ifs);
1090         rt2x00_set_field32(&word, TXD_W0_DATABYTE_COUNT, txdesc->length);
1091         rt2x00_set_field32(&word, TXD_W0_CIPHER, !!txdesc->cipher);
1092         rt2x00_set_field32(&word, TXD_W0_KEY_ID, txdesc->key_idx);
1093         rt2x00_desc_write(txd, 0, word);
1094
1095         word = rt2x00_desc_read(txd, 1);
1096         rt2x00_set_field32(&word, TXD_W1_IV_OFFSET, txdesc->iv_offset);
1097         rt2x00_set_field32(&word, TXD_W1_AIFS, entry->queue->aifs);
1098         rt2x00_set_field32(&word, TXD_W1_CWMIN, entry->queue->cw_min);
1099         rt2x00_set_field32(&word, TXD_W1_CWMAX, entry->queue->cw_max);
1100         rt2x00_desc_write(txd, 1, word);
1101
1102         word = rt2x00_desc_read(txd, 2);
1103         rt2x00_set_field32(&word, TXD_W2_PLCP_SIGNAL, txdesc->u.plcp.signal);
1104         rt2x00_set_field32(&word, TXD_W2_PLCP_SERVICE, txdesc->u.plcp.service);
1105         rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_LOW,
1106                            txdesc->u.plcp.length_low);
1107         rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_HIGH,
1108                            txdesc->u.plcp.length_high);
1109         rt2x00_desc_write(txd, 2, word);
1110
1111         if (test_bit(ENTRY_TXD_ENCRYPT, &txdesc->flags)) {
1112                 _rt2x00_desc_write(txd, 3, skbdesc->iv[0]);
1113                 _rt2x00_desc_write(txd, 4, skbdesc->iv[1]);
1114         }
1115
1116         /*
1117          * Register descriptor details in skb frame descriptor.
1118          */
1119         skbdesc->flags |= SKBDESC_DESC_IN_SKB;
1120         skbdesc->desc = txd;
1121         skbdesc->desc_len = TXD_DESC_SIZE;
1122 }
1123
1124 /*
1125  * TX data initialization
1126  */
1127 static void rt2500usb_beacondone(struct urb *urb);
1128
1129 static void rt2500usb_write_beacon(struct queue_entry *entry,
1130                                    struct txentry_desc *txdesc)
1131 {
1132         struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
1133         struct usb_device *usb_dev = to_usb_device_intf(rt2x00dev->dev);
1134         struct queue_entry_priv_usb_bcn *bcn_priv = entry->priv_data;
1135         int pipe = usb_sndbulkpipe(usb_dev, entry->queue->usb_endpoint);
1136         int length;
1137         u16 reg, reg0;
1138
1139         /*
1140          * Disable beaconing while we are reloading the beacon data,
1141          * otherwise we might be sending out invalid data.
1142          */
1143         reg = rt2500usb_register_read(rt2x00dev, TXRX_CSR19);
1144         rt2x00_set_field16(&reg, TXRX_CSR19_BEACON_GEN, 0);
1145         rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
1146
1147         /*
1148          * Add space for the descriptor in front of the skb.
1149          */
1150         skb_push(entry->skb, TXD_DESC_SIZE);
1151         memset(entry->skb->data, 0, TXD_DESC_SIZE);
1152
1153         /*
1154          * Write the TX descriptor for the beacon.
1155          */
1156         rt2500usb_write_tx_desc(entry, txdesc);
1157
1158         /*
1159          * Dump beacon to userspace through debugfs.
1160          */
1161         rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_BEACON, entry);
1162
1163         /*
1164          * USB devices cannot blindly pass the skb->len as the
1165          * length of the data to usb_fill_bulk_urb. Pass the skb
1166          * to the driver to determine what the length should be.
1167          */
1168         length = rt2x00dev->ops->lib->get_tx_data_len(entry);
1169
1170         usb_fill_bulk_urb(bcn_priv->urb, usb_dev, pipe,
1171                           entry->skb->data, length, rt2500usb_beacondone,
1172                           entry);
1173
1174         /*
1175          * Second we need to create the guardian byte.
1176          * We only need a single byte, so lets recycle
1177          * the 'flags' field we are not using for beacons.
1178          */
1179         bcn_priv->guardian_data = 0;
1180         usb_fill_bulk_urb(bcn_priv->guardian_urb, usb_dev, pipe,
1181                           &bcn_priv->guardian_data, 1, rt2500usb_beacondone,
1182                           entry);
1183
1184         /*
1185          * Send out the guardian byte.
1186          */
1187         usb_submit_urb(bcn_priv->guardian_urb, GFP_ATOMIC);
1188
1189         /*
1190          * Enable beaconing again.
1191          */
1192         rt2x00_set_field16(&reg, TXRX_CSR19_TSF_COUNT, 1);
1193         rt2x00_set_field16(&reg, TXRX_CSR19_TBCN, 1);
1194         reg0 = reg;
1195         rt2x00_set_field16(&reg, TXRX_CSR19_BEACON_GEN, 1);
1196         /*
1197          * Beacon generation will fail initially.
1198          * To prevent this we need to change the TXRX_CSR19
1199          * register several times (reg0 is the same as reg
1200          * except for TXRX_CSR19_BEACON_GEN, which is 0 in reg0
1201          * and 1 in reg).
1202          */
1203         rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
1204         rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg0);
1205         rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
1206         rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg0);
1207         rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
1208 }
1209
1210 static int rt2500usb_get_tx_data_len(struct queue_entry *entry)
1211 {
1212         int length;
1213
1214         /*
1215          * The length _must_ be a multiple of 2,
1216          * but it must _not_ be a multiple of the USB packet size.
1217          */
1218         length = roundup(entry->skb->len, 2);
1219         length += (2 * !(length % entry->queue->usb_maxpacket));
1220
1221         return length;
1222 }
1223
1224 /*
1225  * RX control handlers
1226  */
1227 static void rt2500usb_fill_rxdone(struct queue_entry *entry,
1228                                   struct rxdone_entry_desc *rxdesc)
1229 {
1230         struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
1231         struct queue_entry_priv_usb *entry_priv = entry->priv_data;
1232         struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
1233         __le32 *rxd =
1234             (__le32 *)(entry->skb->data +
1235                        (entry_priv->urb->actual_length -
1236                         entry->queue->desc_size));
1237         u32 word0;
1238         u32 word1;
1239
1240         /*
1241          * Copy descriptor to the skbdesc->desc buffer, making it safe from moving of
1242          * frame data in rt2x00usb.
1243          */
1244         memcpy(skbdesc->desc, rxd, skbdesc->desc_len);
1245         rxd = (__le32 *)skbdesc->desc;
1246
1247         /*
1248          * It is now safe to read the descriptor on all architectures.
1249          */
1250         word0 = rt2x00_desc_read(rxd, 0);
1251         word1 = rt2x00_desc_read(rxd, 1);
1252
1253         if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR))
1254                 rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
1255         if (rt2x00_get_field32(word0, RXD_W0_PHYSICAL_ERROR))
1256                 rxdesc->flags |= RX_FLAG_FAILED_PLCP_CRC;
1257
1258         rxdesc->cipher = rt2x00_get_field32(word0, RXD_W0_CIPHER);
1259         if (rt2x00_get_field32(word0, RXD_W0_CIPHER_ERROR))
1260                 rxdesc->cipher_status = RX_CRYPTO_FAIL_KEY;
1261
1262         if (rxdesc->cipher != CIPHER_NONE) {
1263                 rxdesc->iv[0] = _rt2x00_desc_read(rxd, 2);
1264                 rxdesc->iv[1] = _rt2x00_desc_read(rxd, 3);
1265                 rxdesc->dev_flags |= RXDONE_CRYPTO_IV;
1266
1267                 /* ICV is located at the end of frame */
1268
1269                 rxdesc->flags |= RX_FLAG_MMIC_STRIPPED;
1270                 if (rxdesc->cipher_status == RX_CRYPTO_SUCCESS)
1271                         rxdesc->flags |= RX_FLAG_DECRYPTED;
1272                 else if (rxdesc->cipher_status == RX_CRYPTO_FAIL_MIC)
1273                         rxdesc->flags |= RX_FLAG_MMIC_ERROR;
1274         }
1275
1276         /*
1277          * Obtain the status about this packet.
1278          * When frame was received with an OFDM bitrate,
1279          * the signal is the PLCP value. If it was received with
1280          * a CCK bitrate the signal is the rate in 100kbit/s.
1281          */
1282         rxdesc->signal = rt2x00_get_field32(word1, RXD_W1_SIGNAL);
1283         rxdesc->rssi =
1284             rt2x00_get_field32(word1, RXD_W1_RSSI) - rt2x00dev->rssi_offset;
1285         rxdesc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT);
1286
1287         if (rt2x00_get_field32(word0, RXD_W0_OFDM))
1288                 rxdesc->dev_flags |= RXDONE_SIGNAL_PLCP;
1289         else
1290                 rxdesc->dev_flags |= RXDONE_SIGNAL_BITRATE;
1291         if (rt2x00_get_field32(word0, RXD_W0_MY_BSS))
1292                 rxdesc->dev_flags |= RXDONE_MY_BSS;
1293
1294         /*
1295          * Adjust the skb memory window to the frame boundaries.
1296          */
1297         skb_trim(entry->skb, rxdesc->size);
1298 }
1299
1300 /*
1301  * Interrupt functions.
1302  */
1303 static void rt2500usb_beacondone(struct urb *urb)
1304 {
1305         struct queue_entry *entry = (struct queue_entry *)urb->context;
1306         struct queue_entry_priv_usb_bcn *bcn_priv = entry->priv_data;
1307
1308         if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &entry->queue->rt2x00dev->flags))
1309                 return;
1310
1311         /*
1312          * Check if this was the guardian beacon,
1313          * if that was the case we need to send the real beacon now.
1314          * Otherwise we should free the sk_buffer, the device
1315          * should be doing the rest of the work now.
1316          */
1317         if (bcn_priv->guardian_urb == urb) {
1318                 usb_submit_urb(bcn_priv->urb, GFP_ATOMIC);
1319         } else if (bcn_priv->urb == urb) {
1320                 dev_kfree_skb(entry->skb);
1321                 entry->skb = NULL;
1322         }
1323 }
1324
1325 /*
1326  * Device probe functions.
1327  */
1328 static int rt2500usb_validate_eeprom(struct rt2x00_dev *rt2x00dev)
1329 {
1330         u16 word;
1331         u8 *mac;
1332         u8 bbp;
1333
1334         rt2x00usb_eeprom_read(rt2x00dev, rt2x00dev->eeprom, EEPROM_SIZE);
1335
1336         /*
1337          * Start validation of the data that has been read.
1338          */
1339         mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
1340         rt2x00lib_set_mac_address(rt2x00dev, mac);
1341
1342         word = rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA);
1343         if (word == 0xffff) {
1344                 rt2x00_set_field16(&word, EEPROM_ANTENNA_NUM, 2);
1345                 rt2x00_set_field16(&word, EEPROM_ANTENNA_TX_DEFAULT,
1346                                    ANTENNA_SW_DIVERSITY);
1347                 rt2x00_set_field16(&word, EEPROM_ANTENNA_RX_DEFAULT,
1348                                    ANTENNA_SW_DIVERSITY);
1349                 rt2x00_set_field16(&word, EEPROM_ANTENNA_LED_MODE,
1350                                    LED_MODE_DEFAULT);
1351                 rt2x00_set_field16(&word, EEPROM_ANTENNA_DYN_TXAGC, 0);
1352                 rt2x00_set_field16(&word, EEPROM_ANTENNA_HARDWARE_RADIO, 0);
1353                 rt2x00_set_field16(&word, EEPROM_ANTENNA_RF_TYPE, RF2522);
1354                 rt2x00_eeprom_write(rt2x00dev, EEPROM_ANTENNA, word);
1355                 rt2x00_eeprom_dbg(rt2x00dev, "Antenna: 0x%04x\n", word);
1356         }
1357
1358         word = rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC);
1359         if (word == 0xffff) {
1360                 rt2x00_set_field16(&word, EEPROM_NIC_CARDBUS_ACCEL, 0);
1361                 rt2x00_set_field16(&word, EEPROM_NIC_DYN_BBP_TUNE, 0);
1362                 rt2x00_set_field16(&word, EEPROM_NIC_CCK_TX_POWER, 0);
1363                 rt2x00_eeprom_write(rt2x00dev, EEPROM_NIC, word);
1364                 rt2x00_eeprom_dbg(rt2x00dev, "NIC: 0x%04x\n", word);
1365         }
1366
1367         word = rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET);
1368         if (word == 0xffff) {
1369                 rt2x00_set_field16(&word, EEPROM_CALIBRATE_OFFSET_RSSI,
1370                                    DEFAULT_RSSI_OFFSET);
1371                 rt2x00_eeprom_write(rt2x00dev, EEPROM_CALIBRATE_OFFSET, word);
1372                 rt2x00_eeprom_dbg(rt2x00dev, "Calibrate offset: 0x%04x\n",
1373                                   word);
1374         }
1375
1376         word = rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE);
1377         if (word == 0xffff) {
1378                 rt2x00_set_field16(&word, EEPROM_BBPTUNE_THRESHOLD, 45);
1379                 rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE, word);
1380                 rt2x00_eeprom_dbg(rt2x00dev, "BBPtune: 0x%04x\n", word);
1381         }
1382
1383         /*
1384          * Switch lower vgc bound to current BBP R17 value,
1385          * lower the value a bit for better quality.
1386          */
1387         bbp = rt2500usb_bbp_read(rt2x00dev, 17);
1388         bbp -= 6;
1389
1390         word = rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_VGC);
1391         if (word == 0xffff) {
1392                 rt2x00_set_field16(&word, EEPROM_BBPTUNE_VGCUPPER, 0x40);
1393                 rt2x00_set_field16(&word, EEPROM_BBPTUNE_VGCLOWER, bbp);
1394                 rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_VGC, word);
1395                 rt2x00_eeprom_dbg(rt2x00dev, "BBPtune vgc: 0x%04x\n", word);
1396         } else {
1397                 rt2x00_set_field16(&word, EEPROM_BBPTUNE_VGCLOWER, bbp);
1398                 rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_VGC, word);
1399         }
1400
1401         word = rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R17);
1402         if (word == 0xffff) {
1403                 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R17_LOW, 0x48);
1404                 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R17_HIGH, 0x41);
1405                 rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_R17, word);
1406                 rt2x00_eeprom_dbg(rt2x00dev, "BBPtune r17: 0x%04x\n", word);
1407         }
1408
1409         word = rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R24);
1410         if (word == 0xffff) {
1411                 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R24_LOW, 0x40);
1412                 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R24_HIGH, 0x80);
1413                 rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_R24, word);
1414                 rt2x00_eeprom_dbg(rt2x00dev, "BBPtune r24: 0x%04x\n", word);
1415         }
1416
1417         word = rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R25);
1418         if (word == 0xffff) {
1419                 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R25_LOW, 0x40);
1420                 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R25_HIGH, 0x50);
1421                 rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_R25, word);
1422                 rt2x00_eeprom_dbg(rt2x00dev, "BBPtune r25: 0x%04x\n", word);
1423         }
1424
1425         word = rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R61);
1426         if (word == 0xffff) {
1427                 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R61_LOW, 0x60);
1428                 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R61_HIGH, 0x6d);
1429                 rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_R61, word);
1430                 rt2x00_eeprom_dbg(rt2x00dev, "BBPtune r61: 0x%04x\n", word);
1431         }
1432
1433         return 0;
1434 }
1435
1436 static int rt2500usb_init_eeprom(struct rt2x00_dev *rt2x00dev)
1437 {
1438         u16 reg;
1439         u16 value;
1440         u16 eeprom;
1441
1442         /*
1443          * Read EEPROM word for configuration.
1444          */
1445         eeprom = rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA);
1446
1447         /*
1448          * Identify RF chipset.
1449          */
1450         value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE);
1451         reg = rt2500usb_register_read(rt2x00dev, MAC_CSR0);
1452         rt2x00_set_chip(rt2x00dev, RT2570, value, reg);
1453
1454         if (((reg & 0xfff0) != 0) || ((reg & 0x0000000f) == 0)) {
1455                 rt2x00_err(rt2x00dev, "Invalid RT chipset detected\n");
1456                 return -ENODEV;
1457         }
1458
1459         if (!rt2x00_rf(rt2x00dev, RF2522) &&
1460             !rt2x00_rf(rt2x00dev, RF2523) &&
1461             !rt2x00_rf(rt2x00dev, RF2524) &&
1462             !rt2x00_rf(rt2x00dev, RF2525) &&
1463             !rt2x00_rf(rt2x00dev, RF2525E) &&
1464             !rt2x00_rf(rt2x00dev, RF5222)) {
1465                 rt2x00_err(rt2x00dev, "Invalid RF chipset detected\n");
1466                 return -ENODEV;
1467         }
1468
1469         /*
1470          * Identify default antenna configuration.
1471          */
1472         rt2x00dev->default_ant.tx =
1473             rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT);
1474         rt2x00dev->default_ant.rx =
1475             rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT);
1476
1477         /*
1478          * When the eeprom indicates SW_DIVERSITY use HW_DIVERSITY instead.
1479          * I am not 100% sure about this, but the legacy drivers do not
1480          * indicate antenna swapping in software is required when
1481          * diversity is enabled.
1482          */
1483         if (rt2x00dev->default_ant.tx == ANTENNA_SW_DIVERSITY)
1484                 rt2x00dev->default_ant.tx = ANTENNA_HW_DIVERSITY;
1485         if (rt2x00dev->default_ant.rx == ANTENNA_SW_DIVERSITY)
1486                 rt2x00dev->default_ant.rx = ANTENNA_HW_DIVERSITY;
1487
1488         /*
1489          * Store led mode, for correct led behaviour.
1490          */
1491 #ifdef CONFIG_RT2X00_LIB_LEDS
1492         value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_LED_MODE);
1493
1494         rt2500usb_init_led(rt2x00dev, &rt2x00dev->led_radio, LED_TYPE_RADIO);
1495         if (value == LED_MODE_TXRX_ACTIVITY ||
1496             value == LED_MODE_DEFAULT ||
1497             value == LED_MODE_ASUS)
1498                 rt2500usb_init_led(rt2x00dev, &rt2x00dev->led_qual,
1499                                    LED_TYPE_ACTIVITY);
1500 #endif /* CONFIG_RT2X00_LIB_LEDS */
1501
1502         /*
1503          * Detect if this device has an hardware controlled radio.
1504          */
1505         if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_HARDWARE_RADIO))
1506                 __set_bit(CAPABILITY_HW_BUTTON, &rt2x00dev->cap_flags);
1507
1508         /*
1509          * Read the RSSI <-> dBm offset information.
1510          */
1511         eeprom = rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET);
1512         rt2x00dev->rssi_offset =
1513             rt2x00_get_field16(eeprom, EEPROM_CALIBRATE_OFFSET_RSSI);
1514
1515         return 0;
1516 }
1517
1518 /*
1519  * RF value list for RF2522
1520  * Supports: 2.4 GHz
1521  */
1522 static const struct rf_channel rf_vals_bg_2522[] = {
1523         { 1,  0x00002050, 0x000c1fda, 0x00000101, 0 },
1524         { 2,  0x00002050, 0x000c1fee, 0x00000101, 0 },
1525         { 3,  0x00002050, 0x000c2002, 0x00000101, 0 },
1526         { 4,  0x00002050, 0x000c2016, 0x00000101, 0 },
1527         { 5,  0x00002050, 0x000c202a, 0x00000101, 0 },
1528         { 6,  0x00002050, 0x000c203e, 0x00000101, 0 },
1529         { 7,  0x00002050, 0x000c2052, 0x00000101, 0 },
1530         { 8,  0x00002050, 0x000c2066, 0x00000101, 0 },
1531         { 9,  0x00002050, 0x000c207a, 0x00000101, 0 },
1532         { 10, 0x00002050, 0x000c208e, 0x00000101, 0 },
1533         { 11, 0x00002050, 0x000c20a2, 0x00000101, 0 },
1534         { 12, 0x00002050, 0x000c20b6, 0x00000101, 0 },
1535         { 13, 0x00002050, 0x000c20ca, 0x00000101, 0 },
1536         { 14, 0x00002050, 0x000c20fa, 0x00000101, 0 },
1537 };
1538
1539 /*
1540  * RF value list for RF2523
1541  * Supports: 2.4 GHz
1542  */
1543 static const struct rf_channel rf_vals_bg_2523[] = {
1544         { 1,  0x00022010, 0x00000c9e, 0x000e0111, 0x00000a1b },
1545         { 2,  0x00022010, 0x00000ca2, 0x000e0111, 0x00000a1b },
1546         { 3,  0x00022010, 0x00000ca6, 0x000e0111, 0x00000a1b },
1547         { 4,  0x00022010, 0x00000caa, 0x000e0111, 0x00000a1b },
1548         { 5,  0x00022010, 0x00000cae, 0x000e0111, 0x00000a1b },
1549         { 6,  0x00022010, 0x00000cb2, 0x000e0111, 0x00000a1b },
1550         { 7,  0x00022010, 0x00000cb6, 0x000e0111, 0x00000a1b },
1551         { 8,  0x00022010, 0x00000cba, 0x000e0111, 0x00000a1b },
1552         { 9,  0x00022010, 0x00000cbe, 0x000e0111, 0x00000a1b },
1553         { 10, 0x00022010, 0x00000d02, 0x000e0111, 0x00000a1b },
1554         { 11, 0x00022010, 0x00000d06, 0x000e0111, 0x00000a1b },
1555         { 12, 0x00022010, 0x00000d0a, 0x000e0111, 0x00000a1b },
1556         { 13, 0x00022010, 0x00000d0e, 0x000e0111, 0x00000a1b },
1557         { 14, 0x00022010, 0x00000d1a, 0x000e0111, 0x00000a03 },
1558 };
1559
1560 /*
1561  * RF value list for RF2524
1562  * Supports: 2.4 GHz
1563  */
1564 static const struct rf_channel rf_vals_bg_2524[] = {
1565         { 1,  0x00032020, 0x00000c9e, 0x00000101, 0x00000a1b },
1566         { 2,  0x00032020, 0x00000ca2, 0x00000101, 0x00000a1b },
1567         { 3,  0x00032020, 0x00000ca6, 0x00000101, 0x00000a1b },
1568         { 4,  0x00032020, 0x00000caa, 0x00000101, 0x00000a1b },
1569         { 5,  0x00032020, 0x00000cae, 0x00000101, 0x00000a1b },
1570         { 6,  0x00032020, 0x00000cb2, 0x00000101, 0x00000a1b },
1571         { 7,  0x00032020, 0x00000cb6, 0x00000101, 0x00000a1b },
1572         { 8,  0x00032020, 0x00000cba, 0x00000101, 0x00000a1b },
1573         { 9,  0x00032020, 0x00000cbe, 0x00000101, 0x00000a1b },
1574         { 10, 0x00032020, 0x00000d02, 0x00000101, 0x00000a1b },
1575         { 11, 0x00032020, 0x00000d06, 0x00000101, 0x00000a1b },
1576         { 12, 0x00032020, 0x00000d0a, 0x00000101, 0x00000a1b },
1577         { 13, 0x00032020, 0x00000d0e, 0x00000101, 0x00000a1b },
1578         { 14, 0x00032020, 0x00000d1a, 0x00000101, 0x00000a03 },
1579 };
1580
1581 /*
1582  * RF value list for RF2525
1583  * Supports: 2.4 GHz
1584  */
1585 static const struct rf_channel rf_vals_bg_2525[] = {
1586         { 1,  0x00022020, 0x00080c9e, 0x00060111, 0x00000a1b },
1587         { 2,  0x00022020, 0x00080ca2, 0x00060111, 0x00000a1b },
1588         { 3,  0x00022020, 0x00080ca6, 0x00060111, 0x00000a1b },
1589         { 4,  0x00022020, 0x00080caa, 0x00060111, 0x00000a1b },
1590         { 5,  0x00022020, 0x00080cae, 0x00060111, 0x00000a1b },
1591         { 6,  0x00022020, 0x00080cb2, 0x00060111, 0x00000a1b },
1592         { 7,  0x00022020, 0x00080cb6, 0x00060111, 0x00000a1b },
1593         { 8,  0x00022020, 0x00080cba, 0x00060111, 0x00000a1b },
1594         { 9,  0x00022020, 0x00080cbe, 0x00060111, 0x00000a1b },
1595         { 10, 0x00022020, 0x00080d02, 0x00060111, 0x00000a1b },
1596         { 11, 0x00022020, 0x00080d06, 0x00060111, 0x00000a1b },
1597         { 12, 0x00022020, 0x00080d0a, 0x00060111, 0x00000a1b },
1598         { 13, 0x00022020, 0x00080d0e, 0x00060111, 0x00000a1b },
1599         { 14, 0x00022020, 0x00080d1a, 0x00060111, 0x00000a03 },
1600 };
1601
1602 /*
1603  * RF value list for RF2525e
1604  * Supports: 2.4 GHz
1605  */
1606 static const struct rf_channel rf_vals_bg_2525e[] = {
1607         { 1,  0x00022010, 0x0000089a, 0x00060111, 0x00000e1b },
1608         { 2,  0x00022010, 0x0000089e, 0x00060111, 0x00000e07 },
1609         { 3,  0x00022010, 0x0000089e, 0x00060111, 0x00000e1b },
1610         { 4,  0x00022010, 0x000008a2, 0x00060111, 0x00000e07 },
1611         { 5,  0x00022010, 0x000008a2, 0x00060111, 0x00000e1b },
1612         { 6,  0x00022010, 0x000008a6, 0x00060111, 0x00000e07 },
1613         { 7,  0x00022010, 0x000008a6, 0x00060111, 0x00000e1b },
1614         { 8,  0x00022010, 0x000008aa, 0x00060111, 0x00000e07 },
1615         { 9,  0x00022010, 0x000008aa, 0x00060111, 0x00000e1b },
1616         { 10, 0x00022010, 0x000008ae, 0x00060111, 0x00000e07 },
1617         { 11, 0x00022010, 0x000008ae, 0x00060111, 0x00000e1b },
1618         { 12, 0x00022010, 0x000008b2, 0x00060111, 0x00000e07 },
1619         { 13, 0x00022010, 0x000008b2, 0x00060111, 0x00000e1b },
1620         { 14, 0x00022010, 0x000008b6, 0x00060111, 0x00000e23 },
1621 };
1622
1623 /*
1624  * RF value list for RF5222
1625  * Supports: 2.4 GHz & 5.2 GHz
1626  */
1627 static const struct rf_channel rf_vals_5222[] = {
1628         { 1,  0x00022020, 0x00001136, 0x00000101, 0x00000a0b },
1629         { 2,  0x00022020, 0x0000113a, 0x00000101, 0x00000a0b },
1630         { 3,  0x00022020, 0x0000113e, 0x00000101, 0x00000a0b },
1631         { 4,  0x00022020, 0x00001182, 0x00000101, 0x00000a0b },
1632         { 5,  0x00022020, 0x00001186, 0x00000101, 0x00000a0b },
1633         { 6,  0x00022020, 0x0000118a, 0x00000101, 0x00000a0b },
1634         { 7,  0x00022020, 0x0000118e, 0x00000101, 0x00000a0b },
1635         { 8,  0x00022020, 0x00001192, 0x00000101, 0x00000a0b },
1636         { 9,  0x00022020, 0x00001196, 0x00000101, 0x00000a0b },
1637         { 10, 0x00022020, 0x0000119a, 0x00000101, 0x00000a0b },
1638         { 11, 0x00022020, 0x0000119e, 0x00000101, 0x00000a0b },
1639         { 12, 0x00022020, 0x000011a2, 0x00000101, 0x00000a0b },
1640         { 13, 0x00022020, 0x000011a6, 0x00000101, 0x00000a0b },
1641         { 14, 0x00022020, 0x000011ae, 0x00000101, 0x00000a1b },
1642
1643         /* 802.11 UNI / HyperLan 2 */
1644         { 36, 0x00022010, 0x00018896, 0x00000101, 0x00000a1f },
1645         { 40, 0x00022010, 0x0001889a, 0x00000101, 0x00000a1f },
1646         { 44, 0x00022010, 0x0001889e, 0x00000101, 0x00000a1f },
1647         { 48, 0x00022010, 0x000188a2, 0x00000101, 0x00000a1f },
1648         { 52, 0x00022010, 0x000188a6, 0x00000101, 0x00000a1f },
1649         { 66, 0x00022010, 0x000188aa, 0x00000101, 0x00000a1f },
1650         { 60, 0x00022010, 0x000188ae, 0x00000101, 0x00000a1f },
1651         { 64, 0x00022010, 0x000188b2, 0x00000101, 0x00000a1f },
1652
1653         /* 802.11 HyperLan 2 */
1654         { 100, 0x00022010, 0x00008802, 0x00000101, 0x00000a0f },
1655         { 104, 0x00022010, 0x00008806, 0x00000101, 0x00000a0f },
1656         { 108, 0x00022010, 0x0000880a, 0x00000101, 0x00000a0f },
1657         { 112, 0x00022010, 0x0000880e, 0x00000101, 0x00000a0f },
1658         { 116, 0x00022010, 0x00008812, 0x00000101, 0x00000a0f },
1659         { 120, 0x00022010, 0x00008816, 0x00000101, 0x00000a0f },
1660         { 124, 0x00022010, 0x0000881a, 0x00000101, 0x00000a0f },
1661         { 128, 0x00022010, 0x0000881e, 0x00000101, 0x00000a0f },
1662         { 132, 0x00022010, 0x00008822, 0x00000101, 0x00000a0f },
1663         { 136, 0x00022010, 0x00008826, 0x00000101, 0x00000a0f },
1664
1665         /* 802.11 UNII */
1666         { 140, 0x00022010, 0x0000882a, 0x00000101, 0x00000a0f },
1667         { 149, 0x00022020, 0x000090a6, 0x00000101, 0x00000a07 },
1668         { 153, 0x00022020, 0x000090ae, 0x00000101, 0x00000a07 },
1669         { 157, 0x00022020, 0x000090b6, 0x00000101, 0x00000a07 },
1670         { 161, 0x00022020, 0x000090be, 0x00000101, 0x00000a07 },
1671 };
1672
1673 static int rt2500usb_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
1674 {
1675         struct hw_mode_spec *spec = &rt2x00dev->spec;
1676         struct channel_info *info;
1677         char *tx_power;
1678         unsigned int i;
1679
1680         /*
1681          * Initialize all hw fields.
1682          *
1683          * Don't set IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING unless we are
1684          * capable of sending the buffered frames out after the DTIM
1685          * transmission using rt2x00lib_beacondone. This will send out
1686          * multicast and broadcast traffic immediately instead of buffering it
1687          * infinitly and thus dropping it after some time.
1688          */
1689         ieee80211_hw_set(rt2x00dev->hw, PS_NULLFUNC_STACK);
1690         ieee80211_hw_set(rt2x00dev->hw, SUPPORTS_PS);
1691         ieee80211_hw_set(rt2x00dev->hw, RX_INCLUDES_FCS);
1692         ieee80211_hw_set(rt2x00dev->hw, SIGNAL_DBM);
1693
1694         /*
1695          * Disable powersaving as default.
1696          */
1697         rt2x00dev->hw->wiphy->flags &= ~WIPHY_FLAG_PS_ON_BY_DEFAULT;
1698
1699         SET_IEEE80211_DEV(rt2x00dev->hw, rt2x00dev->dev);
1700         SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
1701                                 rt2x00_eeprom_addr(rt2x00dev,
1702                                                    EEPROM_MAC_ADDR_0));
1703
1704         /*
1705          * Initialize hw_mode information.
1706          */
1707         spec->supported_bands = SUPPORT_BAND_2GHZ;
1708         spec->supported_rates = SUPPORT_RATE_CCK | SUPPORT_RATE_OFDM;
1709
1710         if (rt2x00_rf(rt2x00dev, RF2522)) {
1711                 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2522);
1712                 spec->channels = rf_vals_bg_2522;
1713         } else if (rt2x00_rf(rt2x00dev, RF2523)) {
1714                 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2523);
1715                 spec->channels = rf_vals_bg_2523;
1716         } else if (rt2x00_rf(rt2x00dev, RF2524)) {
1717                 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2524);
1718                 spec->channels = rf_vals_bg_2524;
1719         } else if (rt2x00_rf(rt2x00dev, RF2525)) {
1720                 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2525);
1721                 spec->channels = rf_vals_bg_2525;
1722         } else if (rt2x00_rf(rt2x00dev, RF2525E)) {
1723                 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2525e);
1724                 spec->channels = rf_vals_bg_2525e;
1725         } else if (rt2x00_rf(rt2x00dev, RF5222)) {
1726                 spec->supported_bands |= SUPPORT_BAND_5GHZ;
1727                 spec->num_channels = ARRAY_SIZE(rf_vals_5222);
1728                 spec->channels = rf_vals_5222;
1729         }
1730
1731         /*
1732          * Create channel information array
1733          */
1734         info = kcalloc(spec->num_channels, sizeof(*info), GFP_KERNEL);
1735         if (!info)
1736                 return -ENOMEM;
1737
1738         spec->channels_info = info;
1739
1740         tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_START);
1741         for (i = 0; i < 14; i++) {
1742                 info[i].max_power = MAX_TXPOWER;
1743                 info[i].default_power1 = TXPOWER_FROM_DEV(tx_power[i]);
1744         }
1745
1746         if (spec->num_channels > 14) {
1747                 for (i = 14; i < spec->num_channels; i++) {
1748                         info[i].max_power = MAX_TXPOWER;
1749                         info[i].default_power1 = DEFAULT_TXPOWER;
1750                 }
1751         }
1752
1753         return 0;
1754 }
1755
1756 static int rt2500usb_probe_hw(struct rt2x00_dev *rt2x00dev)
1757 {
1758         int retval;
1759         u16 reg;
1760
1761         /*
1762          * Allocate eeprom data.
1763          */
1764         retval = rt2500usb_validate_eeprom(rt2x00dev);
1765         if (retval)
1766                 return retval;
1767
1768         retval = rt2500usb_init_eeprom(rt2x00dev);
1769         if (retval)
1770                 return retval;
1771
1772         /*
1773          * Enable rfkill polling by setting GPIO direction of the
1774          * rfkill switch GPIO pin correctly.
1775          */
1776         reg = rt2500usb_register_read(rt2x00dev, MAC_CSR19);
1777         rt2x00_set_field16(&reg, MAC_CSR19_DIR0, 0);
1778         rt2500usb_register_write(rt2x00dev, MAC_CSR19, reg);
1779
1780         /*
1781          * Initialize hw specifications.
1782          */
1783         retval = rt2500usb_probe_hw_mode(rt2x00dev);
1784         if (retval)
1785                 return retval;
1786
1787         /*
1788          * This device requires the atim queue
1789          */
1790         __set_bit(REQUIRE_ATIM_QUEUE, &rt2x00dev->cap_flags);
1791         __set_bit(REQUIRE_BEACON_GUARD, &rt2x00dev->cap_flags);
1792         if (!modparam_nohwcrypt) {
1793                 __set_bit(CAPABILITY_HW_CRYPTO, &rt2x00dev->cap_flags);
1794                 __set_bit(REQUIRE_COPY_IV, &rt2x00dev->cap_flags);
1795         }
1796         __set_bit(REQUIRE_SW_SEQNO, &rt2x00dev->cap_flags);
1797         __set_bit(REQUIRE_PS_AUTOWAKE, &rt2x00dev->cap_flags);
1798
1799         /*
1800          * Set the rssi offset.
1801          */
1802         rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
1803
1804         return 0;
1805 }
1806
1807 static const struct ieee80211_ops rt2500usb_mac80211_ops = {
1808         .tx                     = rt2x00mac_tx,
1809         .start                  = rt2x00mac_start,
1810         .stop                   = rt2x00mac_stop,
1811         .add_interface          = rt2x00mac_add_interface,
1812         .remove_interface       = rt2x00mac_remove_interface,
1813         .config                 = rt2x00mac_config,
1814         .configure_filter       = rt2x00mac_configure_filter,
1815         .set_tim                = rt2x00mac_set_tim,
1816         .set_key                = rt2x00mac_set_key,
1817         .sw_scan_start          = rt2x00mac_sw_scan_start,
1818         .sw_scan_complete       = rt2x00mac_sw_scan_complete,
1819         .get_stats              = rt2x00mac_get_stats,
1820         .bss_info_changed       = rt2x00mac_bss_info_changed,
1821         .conf_tx                = rt2x00mac_conf_tx,
1822         .rfkill_poll            = rt2x00mac_rfkill_poll,
1823         .flush                  = rt2x00mac_flush,
1824         .set_antenna            = rt2x00mac_set_antenna,
1825         .get_antenna            = rt2x00mac_get_antenna,
1826         .get_ringparam          = rt2x00mac_get_ringparam,
1827         .tx_frames_pending      = rt2x00mac_tx_frames_pending,
1828 };
1829
1830 static const struct rt2x00lib_ops rt2500usb_rt2x00_ops = {
1831         .probe_hw               = rt2500usb_probe_hw,
1832         .initialize             = rt2x00usb_initialize,
1833         .uninitialize           = rt2x00usb_uninitialize,
1834         .clear_entry            = rt2x00usb_clear_entry,
1835         .set_device_state       = rt2500usb_set_device_state,
1836         .rfkill_poll            = rt2500usb_rfkill_poll,
1837         .link_stats             = rt2500usb_link_stats,
1838         .reset_tuner            = rt2500usb_reset_tuner,
1839         .watchdog               = rt2x00usb_watchdog,
1840         .start_queue            = rt2500usb_start_queue,
1841         .kick_queue             = rt2x00usb_kick_queue,
1842         .stop_queue             = rt2500usb_stop_queue,
1843         .flush_queue            = rt2x00usb_flush_queue,
1844         .write_tx_desc          = rt2500usb_write_tx_desc,
1845         .write_beacon           = rt2500usb_write_beacon,
1846         .get_tx_data_len        = rt2500usb_get_tx_data_len,
1847         .fill_rxdone            = rt2500usb_fill_rxdone,
1848         .config_shared_key      = rt2500usb_config_key,
1849         .config_pairwise_key    = rt2500usb_config_key,
1850         .config_filter          = rt2500usb_config_filter,
1851         .config_intf            = rt2500usb_config_intf,
1852         .config_erp             = rt2500usb_config_erp,
1853         .config_ant             = rt2500usb_config_ant,
1854         .config                 = rt2500usb_config,
1855 };
1856
1857 static void rt2500usb_queue_init(struct data_queue *queue)
1858 {
1859         switch (queue->qid) {
1860         case QID_RX:
1861                 queue->limit = 32;
1862                 queue->data_size = DATA_FRAME_SIZE;
1863                 queue->desc_size = RXD_DESC_SIZE;
1864                 queue->priv_size = sizeof(struct queue_entry_priv_usb);
1865                 break;
1866
1867         case QID_AC_VO:
1868         case QID_AC_VI:
1869         case QID_AC_BE:
1870         case QID_AC_BK:
1871                 queue->limit = 32;
1872                 queue->data_size = DATA_FRAME_SIZE;
1873                 queue->desc_size = TXD_DESC_SIZE;
1874                 queue->priv_size = sizeof(struct queue_entry_priv_usb);
1875                 break;
1876
1877         case QID_BEACON:
1878                 queue->limit = 1;
1879                 queue->data_size = MGMT_FRAME_SIZE;
1880                 queue->desc_size = TXD_DESC_SIZE;
1881                 queue->priv_size = sizeof(struct queue_entry_priv_usb_bcn);
1882                 break;
1883
1884         case QID_ATIM:
1885                 queue->limit = 8;
1886                 queue->data_size = DATA_FRAME_SIZE;
1887                 queue->desc_size = TXD_DESC_SIZE;
1888                 queue->priv_size = sizeof(struct queue_entry_priv_usb);
1889                 break;
1890
1891         default:
1892                 BUG();
1893                 break;
1894         }
1895 }
1896
1897 static const struct rt2x00_ops rt2500usb_ops = {
1898         .name                   = KBUILD_MODNAME,
1899         .max_ap_intf            = 1,
1900         .eeprom_size            = EEPROM_SIZE,
1901         .rf_size                = RF_SIZE,
1902         .tx_queues              = NUM_TX_QUEUES,
1903         .queue_init             = rt2500usb_queue_init,
1904         .lib                    = &rt2500usb_rt2x00_ops,
1905         .hw                     = &rt2500usb_mac80211_ops,
1906 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
1907         .debugfs                = &rt2500usb_rt2x00debug,
1908 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
1909 };
1910
1911 /*
1912  * rt2500usb module information.
1913  */
1914 static const struct usb_device_id rt2500usb_device_table[] = {
1915         /* ASUS */
1916         { USB_DEVICE(0x0b05, 0x1706) },
1917         { USB_DEVICE(0x0b05, 0x1707) },
1918         /* Belkin */
1919         { USB_DEVICE(0x050d, 0x7050) }, /* FCC ID: K7SF5D7050A ver. 2.x */
1920         { USB_DEVICE(0x050d, 0x7051) },
1921         /* Cisco Systems */
1922         { USB_DEVICE(0x13b1, 0x000d) },
1923         { USB_DEVICE(0x13b1, 0x0011) },
1924         { USB_DEVICE(0x13b1, 0x001a) },
1925         /* Conceptronic */
1926         { USB_DEVICE(0x14b2, 0x3c02) },
1927         /* D-LINK */
1928         { USB_DEVICE(0x2001, 0x3c00) },
1929         /* Gigabyte */
1930         { USB_DEVICE(0x1044, 0x8001) },
1931         { USB_DEVICE(0x1044, 0x8007) },
1932         /* Hercules */
1933         { USB_DEVICE(0x06f8, 0xe000) },
1934         /* Melco */
1935         { USB_DEVICE(0x0411, 0x005e) },
1936         { USB_DEVICE(0x0411, 0x0066) },
1937         { USB_DEVICE(0x0411, 0x0067) },
1938         { USB_DEVICE(0x0411, 0x008b) },
1939         { USB_DEVICE(0x0411, 0x0097) },
1940         /* MSI */
1941         { USB_DEVICE(0x0db0, 0x6861) },
1942         { USB_DEVICE(0x0db0, 0x6865) },
1943         { USB_DEVICE(0x0db0, 0x6869) },
1944         /* Ralink */
1945         { USB_DEVICE(0x148f, 0x1706) },
1946         { USB_DEVICE(0x148f, 0x2570) },
1947         { USB_DEVICE(0x148f, 0x9020) },
1948         /* Sagem */
1949         { USB_DEVICE(0x079b, 0x004b) },
1950         /* Siemens */
1951         { USB_DEVICE(0x0681, 0x3c06) },
1952         /* SMC */
1953         { USB_DEVICE(0x0707, 0xee13) },
1954         /* Spairon */
1955         { USB_DEVICE(0x114b, 0x0110) },
1956         /* SURECOM */
1957         { USB_DEVICE(0x0769, 0x11f3) },
1958         /* Trust */
1959         { USB_DEVICE(0x0eb0, 0x9020) },
1960         /* VTech */
1961         { USB_DEVICE(0x0f88, 0x3012) },
1962         /* Zinwell */
1963         { USB_DEVICE(0x5a57, 0x0260) },
1964         { 0, }
1965 };
1966
1967 MODULE_AUTHOR(DRV_PROJECT);
1968 MODULE_VERSION(DRV_VERSION);
1969 MODULE_DESCRIPTION("Ralink RT2500 USB Wireless LAN driver.");
1970 MODULE_SUPPORTED_DEVICE("Ralink RT2570 USB chipset based cards");
1971 MODULE_DEVICE_TABLE(usb, rt2500usb_device_table);
1972 MODULE_LICENSE("GPL");
1973
1974 static int rt2500usb_probe(struct usb_interface *usb_intf,
1975                            const struct usb_device_id *id)
1976 {
1977         return rt2x00usb_probe(usb_intf, &rt2500usb_ops);
1978 }
1979
1980 static struct usb_driver rt2500usb_driver = {
1981         .name           = KBUILD_MODNAME,
1982         .id_table       = rt2500usb_device_table,
1983         .probe          = rt2500usb_probe,
1984         .disconnect     = rt2x00usb_disconnect,
1985         .suspend        = rt2x00usb_suspend,
1986         .resume         = rt2x00usb_resume,
1987         .reset_resume   = rt2x00usb_resume,
1988         .disable_hub_initiated_lpm = 1,
1989 };
1990
1991 module_usb_driver(rt2500usb_driver);