Linux-libre 5.7.3-gnu
[librecmc/linux-libre.git] / drivers / net / wireless / intel / iwlwifi / dvm / calib.c
1 /******************************************************************************
2  *
3  * This file is provided under a dual BSD/GPLv2 license.  When using or
4  * redistributing this file, you may do so under either license.
5  *
6  * GPL LICENSE SUMMARY
7  *
8  * Copyright(c) 2008 - 2014 Intel Corporation. All rights reserved.
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of version 2 of the GNU General Public License as
12  * published by the Free Software Foundation.
13  *
14  * This program is distributed in the hope that it will be useful, but
15  * WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * General Public License for more details.
18  *
19  * The full GNU General Public License is included in this distribution
20  * in the file called COPYING.
21  *
22  * Contact Information:
23  *  Intel Linux Wireless <linuxwifi@intel.com>
24  * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25  *
26  * BSD LICENSE
27  *
28  * Copyright(c) 2005 - 2014 Intel Corporation. All rights reserved.
29  * All rights reserved.
30  *
31  * Redistribution and use in source and binary forms, with or without
32  * modification, are permitted provided that the following conditions
33  * are met:
34  *
35  *  * Redistributions of source code must retain the above copyright
36  *    notice, this list of conditions and the following disclaimer.
37  *  * Redistributions in binary form must reproduce the above copyright
38  *    notice, this list of conditions and the following disclaimer in
39  *    the documentation and/or other materials provided with the
40  *    distribution.
41  *  * Neither the name Intel Corporation nor the names of its
42  *    contributors may be used to endorse or promote products derived
43  *    from this software without specific prior written permission.
44  *
45  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
46  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
47  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
48  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
49  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
50  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
51  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
52  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
53  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
54  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
55  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
56  *****************************************************************************/
57
58 #include <linux/slab.h>
59 #include <net/mac80211.h>
60
61 #include "iwl-trans.h"
62
63 #include "dev.h"
64 #include "calib.h"
65 #include "agn.h"
66
67 /*****************************************************************************
68  * INIT calibrations framework
69  *****************************************************************************/
70
71 /* Opaque calibration results */
72 struct iwl_calib_result {
73         struct list_head list;
74         size_t cmd_len;
75         struct iwl_calib_hdr hdr;
76         /* data follows */
77 };
78
79 struct statistics_general_data {
80         u32 beacon_silence_rssi_a;
81         u32 beacon_silence_rssi_b;
82         u32 beacon_silence_rssi_c;
83         u32 beacon_energy_a;
84         u32 beacon_energy_b;
85         u32 beacon_energy_c;
86 };
87
88 int iwl_send_calib_results(struct iwl_priv *priv)
89 {
90         struct iwl_host_cmd hcmd = {
91                 .id = REPLY_PHY_CALIBRATION_CMD,
92         };
93         struct iwl_calib_result *res;
94
95         list_for_each_entry(res, &priv->calib_results, list) {
96                 int ret;
97
98                 hcmd.len[0] = res->cmd_len;
99                 hcmd.data[0] = &res->hdr;
100                 hcmd.dataflags[0] = IWL_HCMD_DFL_NOCOPY;
101                 ret = iwl_dvm_send_cmd(priv, &hcmd);
102                 if (ret) {
103                         IWL_ERR(priv, "Error %d on calib cmd %d\n",
104                                 ret, res->hdr.op_code);
105                         return ret;
106                 }
107         }
108
109         return 0;
110 }
111
112 int iwl_calib_set(struct iwl_priv *priv,
113                   const struct iwl_calib_hdr *cmd, int len)
114 {
115         struct iwl_calib_result *res, *tmp;
116
117         res = kmalloc(sizeof(*res) + len - sizeof(struct iwl_calib_hdr),
118                       GFP_ATOMIC);
119         if (!res)
120                 return -ENOMEM;
121         memcpy(&res->hdr, cmd, len);
122         res->cmd_len = len;
123
124         list_for_each_entry(tmp, &priv->calib_results, list) {
125                 if (tmp->hdr.op_code == res->hdr.op_code) {
126                         list_replace(&tmp->list, &res->list);
127                         kfree(tmp);
128                         return 0;
129                 }
130         }
131
132         /* wasn't in list already */
133         list_add_tail(&res->list, &priv->calib_results);
134
135         return 0;
136 }
137
138 void iwl_calib_free_results(struct iwl_priv *priv)
139 {
140         struct iwl_calib_result *res, *tmp;
141
142         list_for_each_entry_safe(res, tmp, &priv->calib_results, list) {
143                 list_del(&res->list);
144                 kfree(res);
145         }
146 }
147
148 /*****************************************************************************
149  * RUNTIME calibrations framework
150  *****************************************************************************/
151
152 /* "false alarms" are signals that our DSP tries to lock onto,
153  *   but then determines that they are either noise, or transmissions
154  *   from a distant wireless network (also "noise", really) that get
155  *   "stepped on" by stronger transmissions within our own network.
156  * This algorithm attempts to set a sensitivity level that is high
157  *   enough to receive all of our own network traffic, but not so
158  *   high that our DSP gets too busy trying to lock onto non-network
159  *   activity/noise. */
160 static int iwl_sens_energy_cck(struct iwl_priv *priv,
161                                    u32 norm_fa,
162                                    u32 rx_enable_time,
163                                    struct statistics_general_data *rx_info)
164 {
165         u32 max_nrg_cck = 0;
166         int i = 0;
167         u8 max_silence_rssi = 0;
168         u32 silence_ref = 0;
169         u8 silence_rssi_a = 0;
170         u8 silence_rssi_b = 0;
171         u8 silence_rssi_c = 0;
172         u32 val;
173
174         /* "false_alarms" values below are cross-multiplications to assess the
175          *   numbers of false alarms within the measured period of actual Rx
176          *   (Rx is off when we're txing), vs the min/max expected false alarms
177          *   (some should be expected if rx is sensitive enough) in a
178          *   hypothetical listening period of 200 time units (TU), 204.8 msec:
179          *
180          * MIN_FA/fixed-time < false_alarms/actual-rx-time < MAX_FA/beacon-time
181          *
182          * */
183         u32 false_alarms = norm_fa * 200 * 1024;
184         u32 max_false_alarms = MAX_FA_CCK * rx_enable_time;
185         u32 min_false_alarms = MIN_FA_CCK * rx_enable_time;
186         struct iwl_sensitivity_data *data = NULL;
187         const struct iwl_sensitivity_ranges *ranges = priv->hw_params.sens;
188
189         data = &(priv->sensitivity_data);
190
191         data->nrg_auto_corr_silence_diff = 0;
192
193         /* Find max silence rssi among all 3 receivers.
194          * This is background noise, which may include transmissions from other
195          *    networks, measured during silence before our network's beacon */
196         silence_rssi_a = (u8)((rx_info->beacon_silence_rssi_a &
197                             ALL_BAND_FILTER) >> 8);
198         silence_rssi_b = (u8)((rx_info->beacon_silence_rssi_b &
199                             ALL_BAND_FILTER) >> 8);
200         silence_rssi_c = (u8)((rx_info->beacon_silence_rssi_c &
201                             ALL_BAND_FILTER) >> 8);
202
203         val = max(silence_rssi_b, silence_rssi_c);
204         max_silence_rssi = max(silence_rssi_a, (u8) val);
205
206         /* Store silence rssi in 20-beacon history table */
207         data->nrg_silence_rssi[data->nrg_silence_idx] = max_silence_rssi;
208         data->nrg_silence_idx++;
209         if (data->nrg_silence_idx >= NRG_NUM_PREV_STAT_L)
210                 data->nrg_silence_idx = 0;
211
212         /* Find max silence rssi across 20 beacon history */
213         for (i = 0; i < NRG_NUM_PREV_STAT_L; i++) {
214                 val = data->nrg_silence_rssi[i];
215                 silence_ref = max(silence_ref, val);
216         }
217         IWL_DEBUG_CALIB(priv, "silence a %u, b %u, c %u, 20-bcn max %u\n",
218                         silence_rssi_a, silence_rssi_b, silence_rssi_c,
219                         silence_ref);
220
221         /* Find max rx energy (min value!) among all 3 receivers,
222          *   measured during beacon frame.
223          * Save it in 10-beacon history table. */
224         i = data->nrg_energy_idx;
225         val = min(rx_info->beacon_energy_b, rx_info->beacon_energy_c);
226         data->nrg_value[i] = min(rx_info->beacon_energy_a, val);
227
228         data->nrg_energy_idx++;
229         if (data->nrg_energy_idx >= 10)
230                 data->nrg_energy_idx = 0;
231
232         /* Find min rx energy (max value) across 10 beacon history.
233          * This is the minimum signal level that we want to receive well.
234          * Add backoff (margin so we don't miss slightly lower energy frames).
235          * This establishes an upper bound (min value) for energy threshold. */
236         max_nrg_cck = data->nrg_value[0];
237         for (i = 1; i < 10; i++)
238                 max_nrg_cck = (u32) max(max_nrg_cck, (data->nrg_value[i]));
239         max_nrg_cck += 6;
240
241         IWL_DEBUG_CALIB(priv, "rx energy a %u, b %u, c %u, 10-bcn max/min %u\n",
242                         rx_info->beacon_energy_a, rx_info->beacon_energy_b,
243                         rx_info->beacon_energy_c, max_nrg_cck - 6);
244
245         /* Count number of consecutive beacons with fewer-than-desired
246          *   false alarms. */
247         if (false_alarms < min_false_alarms)
248                 data->num_in_cck_no_fa++;
249         else
250                 data->num_in_cck_no_fa = 0;
251         IWL_DEBUG_CALIB(priv, "consecutive bcns with few false alarms = %u\n",
252                         data->num_in_cck_no_fa);
253
254         /* If we got too many false alarms this time, reduce sensitivity */
255         if ((false_alarms > max_false_alarms) &&
256                 (data->auto_corr_cck > AUTO_CORR_MAX_TH_CCK)) {
257                 IWL_DEBUG_CALIB(priv, "norm FA %u > max FA %u\n",
258                      false_alarms, max_false_alarms);
259                 IWL_DEBUG_CALIB(priv, "... reducing sensitivity\n");
260                 data->nrg_curr_state = IWL_FA_TOO_MANY;
261                 /* Store for "fewer than desired" on later beacon */
262                 data->nrg_silence_ref = silence_ref;
263
264                 /* increase energy threshold (reduce nrg value)
265                  *   to decrease sensitivity */
266                 data->nrg_th_cck = data->nrg_th_cck - NRG_STEP_CCK;
267         /* Else if we got fewer than desired, increase sensitivity */
268         } else if (false_alarms < min_false_alarms) {
269                 data->nrg_curr_state = IWL_FA_TOO_FEW;
270
271                 /* Compare silence level with silence level for most recent
272                  *   healthy number or too many false alarms */
273                 data->nrg_auto_corr_silence_diff = (s32)data->nrg_silence_ref -
274                                                    (s32)silence_ref;
275
276                 IWL_DEBUG_CALIB(priv, "norm FA %u < min FA %u, silence diff %d\n",
277                          false_alarms, min_false_alarms,
278                          data->nrg_auto_corr_silence_diff);
279
280                 /* Increase value to increase sensitivity, but only if:
281                  * 1a) previous beacon did *not* have *too many* false alarms
282                  * 1b) AND there's a significant difference in Rx levels
283                  *      from a previous beacon with too many, or healthy # FAs
284                  * OR 2) We've seen a lot of beacons (100) with too few
285                  *       false alarms */
286                 if ((data->nrg_prev_state != IWL_FA_TOO_MANY) &&
287                         ((data->nrg_auto_corr_silence_diff > NRG_DIFF) ||
288                         (data->num_in_cck_no_fa > MAX_NUMBER_CCK_NO_FA))) {
289
290                         IWL_DEBUG_CALIB(priv, "... increasing sensitivity\n");
291                         /* Increase nrg value to increase sensitivity */
292                         val = data->nrg_th_cck + NRG_STEP_CCK;
293                         data->nrg_th_cck = min((u32)ranges->min_nrg_cck, val);
294                 } else {
295                         IWL_DEBUG_CALIB(priv, "... but not changing sensitivity\n");
296                 }
297
298         /* Else we got a healthy number of false alarms, keep status quo */
299         } else {
300                 IWL_DEBUG_CALIB(priv, " FA in safe zone\n");
301                 data->nrg_curr_state = IWL_FA_GOOD_RANGE;
302
303                 /* Store for use in "fewer than desired" with later beacon */
304                 data->nrg_silence_ref = silence_ref;
305
306                 /* If previous beacon had too many false alarms,
307                  *   give it some extra margin by reducing sensitivity again
308                  *   (but don't go below measured energy of desired Rx) */
309                 if (data->nrg_prev_state == IWL_FA_TOO_MANY) {
310                         IWL_DEBUG_CALIB(priv, "... increasing margin\n");
311                         if (data->nrg_th_cck > (max_nrg_cck + NRG_MARGIN))
312                                 data->nrg_th_cck -= NRG_MARGIN;
313                         else
314                                 data->nrg_th_cck = max_nrg_cck;
315                 }
316         }
317
318         /* Make sure the energy threshold does not go above the measured
319          * energy of the desired Rx signals (reduced by backoff margin),
320          * or else we might start missing Rx frames.
321          * Lower value is higher energy, so we use max()!
322          */
323         data->nrg_th_cck = max(max_nrg_cck, data->nrg_th_cck);
324         IWL_DEBUG_CALIB(priv, "new nrg_th_cck %u\n", data->nrg_th_cck);
325
326         data->nrg_prev_state = data->nrg_curr_state;
327
328         /* Auto-correlation CCK algorithm */
329         if (false_alarms > min_false_alarms) {
330
331                 /* increase auto_corr values to decrease sensitivity
332                  * so the DSP won't be disturbed by the noise
333                  */
334                 if (data->auto_corr_cck < AUTO_CORR_MAX_TH_CCK)
335                         data->auto_corr_cck = AUTO_CORR_MAX_TH_CCK + 1;
336                 else {
337                         val = data->auto_corr_cck + AUTO_CORR_STEP_CCK;
338                         data->auto_corr_cck =
339                                 min((u32)ranges->auto_corr_max_cck, val);
340                 }
341                 val = data->auto_corr_cck_mrc + AUTO_CORR_STEP_CCK;
342                 data->auto_corr_cck_mrc =
343                         min((u32)ranges->auto_corr_max_cck_mrc, val);
344         } else if ((false_alarms < min_false_alarms) &&
345            ((data->nrg_auto_corr_silence_diff > NRG_DIFF) ||
346            (data->num_in_cck_no_fa > MAX_NUMBER_CCK_NO_FA))) {
347
348                 /* Decrease auto_corr values to increase sensitivity */
349                 val = data->auto_corr_cck - AUTO_CORR_STEP_CCK;
350                 data->auto_corr_cck =
351                         max((u32)ranges->auto_corr_min_cck, val);
352                 val = data->auto_corr_cck_mrc - AUTO_CORR_STEP_CCK;
353                 data->auto_corr_cck_mrc =
354                         max((u32)ranges->auto_corr_min_cck_mrc, val);
355         }
356
357         return 0;
358 }
359
360
361 static int iwl_sens_auto_corr_ofdm(struct iwl_priv *priv,
362                                        u32 norm_fa,
363                                        u32 rx_enable_time)
364 {
365         u32 val;
366         u32 false_alarms = norm_fa * 200 * 1024;
367         u32 max_false_alarms = MAX_FA_OFDM * rx_enable_time;
368         u32 min_false_alarms = MIN_FA_OFDM * rx_enable_time;
369         struct iwl_sensitivity_data *data = NULL;
370         const struct iwl_sensitivity_ranges *ranges = priv->hw_params.sens;
371
372         data = &(priv->sensitivity_data);
373
374         /* If we got too many false alarms this time, reduce sensitivity */
375         if (false_alarms > max_false_alarms) {
376
377                 IWL_DEBUG_CALIB(priv, "norm FA %u > max FA %u)\n",
378                              false_alarms, max_false_alarms);
379
380                 val = data->auto_corr_ofdm + AUTO_CORR_STEP_OFDM;
381                 data->auto_corr_ofdm =
382                         min((u32)ranges->auto_corr_max_ofdm, val);
383
384                 val = data->auto_corr_ofdm_mrc + AUTO_CORR_STEP_OFDM;
385                 data->auto_corr_ofdm_mrc =
386                         min((u32)ranges->auto_corr_max_ofdm_mrc, val);
387
388                 val = data->auto_corr_ofdm_x1 + AUTO_CORR_STEP_OFDM;
389                 data->auto_corr_ofdm_x1 =
390                         min((u32)ranges->auto_corr_max_ofdm_x1, val);
391
392                 val = data->auto_corr_ofdm_mrc_x1 + AUTO_CORR_STEP_OFDM;
393                 data->auto_corr_ofdm_mrc_x1 =
394                         min((u32)ranges->auto_corr_max_ofdm_mrc_x1, val);
395         }
396
397         /* Else if we got fewer than desired, increase sensitivity */
398         else if (false_alarms < min_false_alarms) {
399
400                 IWL_DEBUG_CALIB(priv, "norm FA %u < min FA %u\n",
401                              false_alarms, min_false_alarms);
402
403                 val = data->auto_corr_ofdm - AUTO_CORR_STEP_OFDM;
404                 data->auto_corr_ofdm =
405                         max((u32)ranges->auto_corr_min_ofdm, val);
406
407                 val = data->auto_corr_ofdm_mrc - AUTO_CORR_STEP_OFDM;
408                 data->auto_corr_ofdm_mrc =
409                         max((u32)ranges->auto_corr_min_ofdm_mrc, val);
410
411                 val = data->auto_corr_ofdm_x1 - AUTO_CORR_STEP_OFDM;
412                 data->auto_corr_ofdm_x1 =
413                         max((u32)ranges->auto_corr_min_ofdm_x1, val);
414
415                 val = data->auto_corr_ofdm_mrc_x1 - AUTO_CORR_STEP_OFDM;
416                 data->auto_corr_ofdm_mrc_x1 =
417                         max((u32)ranges->auto_corr_min_ofdm_mrc_x1, val);
418         } else {
419                 IWL_DEBUG_CALIB(priv, "min FA %u < norm FA %u < max FA %u OK\n",
420                          min_false_alarms, false_alarms, max_false_alarms);
421         }
422         return 0;
423 }
424
425 static void iwl_prepare_legacy_sensitivity_tbl(struct iwl_priv *priv,
426                                 struct iwl_sensitivity_data *data,
427                                 __le16 *tbl)
428 {
429         tbl[HD_AUTO_CORR32_X4_TH_ADD_MIN_INDEX] =
430                                 cpu_to_le16((u16)data->auto_corr_ofdm);
431         tbl[HD_AUTO_CORR32_X4_TH_ADD_MIN_MRC_INDEX] =
432                                 cpu_to_le16((u16)data->auto_corr_ofdm_mrc);
433         tbl[HD_AUTO_CORR32_X1_TH_ADD_MIN_INDEX] =
434                                 cpu_to_le16((u16)data->auto_corr_ofdm_x1);
435         tbl[HD_AUTO_CORR32_X1_TH_ADD_MIN_MRC_INDEX] =
436                                 cpu_to_le16((u16)data->auto_corr_ofdm_mrc_x1);
437
438         tbl[HD_AUTO_CORR40_X4_TH_ADD_MIN_INDEX] =
439                                 cpu_to_le16((u16)data->auto_corr_cck);
440         tbl[HD_AUTO_CORR40_X4_TH_ADD_MIN_MRC_INDEX] =
441                                 cpu_to_le16((u16)data->auto_corr_cck_mrc);
442
443         tbl[HD_MIN_ENERGY_CCK_DET_INDEX] =
444                                 cpu_to_le16((u16)data->nrg_th_cck);
445         tbl[HD_MIN_ENERGY_OFDM_DET_INDEX] =
446                                 cpu_to_le16((u16)data->nrg_th_ofdm);
447
448         tbl[HD_BARKER_CORR_TH_ADD_MIN_INDEX] =
449                                 cpu_to_le16(data->barker_corr_th_min);
450         tbl[HD_BARKER_CORR_TH_ADD_MIN_MRC_INDEX] =
451                                 cpu_to_le16(data->barker_corr_th_min_mrc);
452         tbl[HD_OFDM_ENERGY_TH_IN_INDEX] =
453                                 cpu_to_le16(data->nrg_th_cca);
454
455         IWL_DEBUG_CALIB(priv, "ofdm: ac %u mrc %u x1 %u mrc_x1 %u thresh %u\n",
456                         data->auto_corr_ofdm, data->auto_corr_ofdm_mrc,
457                         data->auto_corr_ofdm_x1, data->auto_corr_ofdm_mrc_x1,
458                         data->nrg_th_ofdm);
459
460         IWL_DEBUG_CALIB(priv, "cck: ac %u mrc %u thresh %u\n",
461                         data->auto_corr_cck, data->auto_corr_cck_mrc,
462                         data->nrg_th_cck);
463 }
464
465 /* Prepare a SENSITIVITY_CMD, send to uCode if values have changed */
466 static int iwl_sensitivity_write(struct iwl_priv *priv)
467 {
468         struct iwl_sensitivity_cmd cmd;
469         struct iwl_sensitivity_data *data = NULL;
470         struct iwl_host_cmd cmd_out = {
471                 .id = SENSITIVITY_CMD,
472                 .len = { sizeof(struct iwl_sensitivity_cmd), },
473                 .flags = CMD_ASYNC,
474                 .data = { &cmd, },
475         };
476
477         data = &(priv->sensitivity_data);
478
479         memset(&cmd, 0, sizeof(cmd));
480
481         iwl_prepare_legacy_sensitivity_tbl(priv, data, &cmd.table[0]);
482
483         /* Update uCode's "work" table, and copy it to DSP */
484         cmd.control = SENSITIVITY_CMD_CONTROL_WORK_TABLE;
485
486         /* Don't send command to uCode if nothing has changed */
487         if (!memcmp(&cmd.table[0], &(priv->sensitivity_tbl[0]),
488                     sizeof(u16)*HD_TABLE_SIZE)) {
489                 IWL_DEBUG_CALIB(priv, "No change in SENSITIVITY_CMD\n");
490                 return 0;
491         }
492
493         /* Copy table for comparison next time */
494         memcpy(&(priv->sensitivity_tbl[0]), &(cmd.table[0]),
495                sizeof(u16)*HD_TABLE_SIZE);
496
497         return iwl_dvm_send_cmd(priv, &cmd_out);
498 }
499
500 /* Prepare a SENSITIVITY_CMD, send to uCode if values have changed */
501 static int iwl_enhance_sensitivity_write(struct iwl_priv *priv)
502 {
503         struct iwl_enhance_sensitivity_cmd cmd;
504         struct iwl_sensitivity_data *data = NULL;
505         struct iwl_host_cmd cmd_out = {
506                 .id = SENSITIVITY_CMD,
507                 .len = { sizeof(struct iwl_enhance_sensitivity_cmd), },
508                 .flags = CMD_ASYNC,
509                 .data = { &cmd, },
510         };
511
512         data = &(priv->sensitivity_data);
513
514         memset(&cmd, 0, sizeof(cmd));
515
516         iwl_prepare_legacy_sensitivity_tbl(priv, data, &cmd.enhance_table[0]);
517
518         if (priv->lib->hd_v2) {
519                 cmd.enhance_table[HD_INA_NON_SQUARE_DET_OFDM_INDEX] =
520                         HD_INA_NON_SQUARE_DET_OFDM_DATA_V2;
521                 cmd.enhance_table[HD_INA_NON_SQUARE_DET_CCK_INDEX] =
522                         HD_INA_NON_SQUARE_DET_CCK_DATA_V2;
523                 cmd.enhance_table[HD_CORR_11_INSTEAD_OF_CORR_9_EN_INDEX] =
524                         HD_CORR_11_INSTEAD_OF_CORR_9_EN_DATA_V2;
525                 cmd.enhance_table[HD_OFDM_NON_SQUARE_DET_SLOPE_MRC_INDEX] =
526                         HD_OFDM_NON_SQUARE_DET_SLOPE_MRC_DATA_V2;
527                 cmd.enhance_table[HD_OFDM_NON_SQUARE_DET_INTERCEPT_MRC_INDEX] =
528                         HD_OFDM_NON_SQUARE_DET_INTERCEPT_MRC_DATA_V2;
529                 cmd.enhance_table[HD_OFDM_NON_SQUARE_DET_SLOPE_INDEX] =
530                         HD_OFDM_NON_SQUARE_DET_SLOPE_DATA_V2;
531                 cmd.enhance_table[HD_OFDM_NON_SQUARE_DET_INTERCEPT_INDEX] =
532                         HD_OFDM_NON_SQUARE_DET_INTERCEPT_DATA_V2;
533                 cmd.enhance_table[HD_CCK_NON_SQUARE_DET_SLOPE_MRC_INDEX] =
534                         HD_CCK_NON_SQUARE_DET_SLOPE_MRC_DATA_V2;
535                 cmd.enhance_table[HD_CCK_NON_SQUARE_DET_INTERCEPT_MRC_INDEX] =
536                         HD_CCK_NON_SQUARE_DET_INTERCEPT_MRC_DATA_V2;
537                 cmd.enhance_table[HD_CCK_NON_SQUARE_DET_SLOPE_INDEX] =
538                         HD_CCK_NON_SQUARE_DET_SLOPE_DATA_V2;
539                 cmd.enhance_table[HD_CCK_NON_SQUARE_DET_INTERCEPT_INDEX] =
540                         HD_CCK_NON_SQUARE_DET_INTERCEPT_DATA_V2;
541         } else {
542                 cmd.enhance_table[HD_INA_NON_SQUARE_DET_OFDM_INDEX] =
543                         HD_INA_NON_SQUARE_DET_OFDM_DATA_V1;
544                 cmd.enhance_table[HD_INA_NON_SQUARE_DET_CCK_INDEX] =
545                         HD_INA_NON_SQUARE_DET_CCK_DATA_V1;
546                 cmd.enhance_table[HD_CORR_11_INSTEAD_OF_CORR_9_EN_INDEX] =
547                         HD_CORR_11_INSTEAD_OF_CORR_9_EN_DATA_V1;
548                 cmd.enhance_table[HD_OFDM_NON_SQUARE_DET_SLOPE_MRC_INDEX] =
549                         HD_OFDM_NON_SQUARE_DET_SLOPE_MRC_DATA_V1;
550                 cmd.enhance_table[HD_OFDM_NON_SQUARE_DET_INTERCEPT_MRC_INDEX] =
551                         HD_OFDM_NON_SQUARE_DET_INTERCEPT_MRC_DATA_V1;
552                 cmd.enhance_table[HD_OFDM_NON_SQUARE_DET_SLOPE_INDEX] =
553                         HD_OFDM_NON_SQUARE_DET_SLOPE_DATA_V1;
554                 cmd.enhance_table[HD_OFDM_NON_SQUARE_DET_INTERCEPT_INDEX] =
555                         HD_OFDM_NON_SQUARE_DET_INTERCEPT_DATA_V1;
556                 cmd.enhance_table[HD_CCK_NON_SQUARE_DET_SLOPE_MRC_INDEX] =
557                         HD_CCK_NON_SQUARE_DET_SLOPE_MRC_DATA_V1;
558                 cmd.enhance_table[HD_CCK_NON_SQUARE_DET_INTERCEPT_MRC_INDEX] =
559                         HD_CCK_NON_SQUARE_DET_INTERCEPT_MRC_DATA_V1;
560                 cmd.enhance_table[HD_CCK_NON_SQUARE_DET_SLOPE_INDEX] =
561                         HD_CCK_NON_SQUARE_DET_SLOPE_DATA_V1;
562                 cmd.enhance_table[HD_CCK_NON_SQUARE_DET_INTERCEPT_INDEX] =
563                         HD_CCK_NON_SQUARE_DET_INTERCEPT_DATA_V1;
564         }
565
566         /* Update uCode's "work" table, and copy it to DSP */
567         cmd.control = SENSITIVITY_CMD_CONTROL_WORK_TABLE;
568
569         /* Don't send command to uCode if nothing has changed */
570         if (!memcmp(&cmd.enhance_table[0], &(priv->sensitivity_tbl[0]),
571                     sizeof(u16)*HD_TABLE_SIZE) &&
572             !memcmp(&cmd.enhance_table[HD_INA_NON_SQUARE_DET_OFDM_INDEX],
573                     &(priv->enhance_sensitivity_tbl[0]),
574                     sizeof(u16)*ENHANCE_HD_TABLE_ENTRIES)) {
575                 IWL_DEBUG_CALIB(priv, "No change in SENSITIVITY_CMD\n");
576                 return 0;
577         }
578
579         /* Copy table for comparison next time */
580         memcpy(&(priv->sensitivity_tbl[0]), &(cmd.enhance_table[0]),
581                sizeof(u16)*HD_TABLE_SIZE);
582         memcpy(&(priv->enhance_sensitivity_tbl[0]),
583                &(cmd.enhance_table[HD_INA_NON_SQUARE_DET_OFDM_INDEX]),
584                sizeof(u16)*ENHANCE_HD_TABLE_ENTRIES);
585
586         return iwl_dvm_send_cmd(priv, &cmd_out);
587 }
588
589 void iwl_init_sensitivity(struct iwl_priv *priv)
590 {
591         int ret = 0;
592         int i;
593         struct iwl_sensitivity_data *data = NULL;
594         const struct iwl_sensitivity_ranges *ranges = priv->hw_params.sens;
595
596         if (priv->calib_disabled & IWL_SENSITIVITY_CALIB_DISABLED)
597                 return;
598
599         IWL_DEBUG_CALIB(priv, "Start iwl_init_sensitivity\n");
600
601         /* Clear driver's sensitivity algo data */
602         data = &(priv->sensitivity_data);
603
604         if (ranges == NULL)
605                 return;
606
607         memset(data, 0, sizeof(struct iwl_sensitivity_data));
608
609         data->num_in_cck_no_fa = 0;
610         data->nrg_curr_state = IWL_FA_TOO_MANY;
611         data->nrg_prev_state = IWL_FA_TOO_MANY;
612         data->nrg_silence_ref = 0;
613         data->nrg_silence_idx = 0;
614         data->nrg_energy_idx = 0;
615
616         for (i = 0; i < 10; i++)
617                 data->nrg_value[i] = 0;
618
619         for (i = 0; i < NRG_NUM_PREV_STAT_L; i++)
620                 data->nrg_silence_rssi[i] = 0;
621
622         data->auto_corr_ofdm =  ranges->auto_corr_min_ofdm;
623         data->auto_corr_ofdm_mrc = ranges->auto_corr_min_ofdm_mrc;
624         data->auto_corr_ofdm_x1  = ranges->auto_corr_min_ofdm_x1;
625         data->auto_corr_ofdm_mrc_x1 = ranges->auto_corr_min_ofdm_mrc_x1;
626         data->auto_corr_cck = AUTO_CORR_CCK_MIN_VAL_DEF;
627         data->auto_corr_cck_mrc = ranges->auto_corr_min_cck_mrc;
628         data->nrg_th_cck = ranges->nrg_th_cck;
629         data->nrg_th_ofdm = ranges->nrg_th_ofdm;
630         data->barker_corr_th_min = ranges->barker_corr_th_min;
631         data->barker_corr_th_min_mrc = ranges->barker_corr_th_min_mrc;
632         data->nrg_th_cca = ranges->nrg_th_cca;
633
634         data->last_bad_plcp_cnt_ofdm = 0;
635         data->last_fa_cnt_ofdm = 0;
636         data->last_bad_plcp_cnt_cck = 0;
637         data->last_fa_cnt_cck = 0;
638
639         if (priv->fw->enhance_sensitivity_table)
640                 ret |= iwl_enhance_sensitivity_write(priv);
641         else
642                 ret |= iwl_sensitivity_write(priv);
643         IWL_DEBUG_CALIB(priv, "<<return 0x%X\n", ret);
644 }
645
646 void iwl_sensitivity_calibration(struct iwl_priv *priv)
647 {
648         u32 rx_enable_time;
649         u32 fa_cck;
650         u32 fa_ofdm;
651         u32 bad_plcp_cck;
652         u32 bad_plcp_ofdm;
653         u32 norm_fa_ofdm;
654         u32 norm_fa_cck;
655         struct iwl_sensitivity_data *data = NULL;
656         struct statistics_rx_non_phy *rx_info;
657         struct statistics_rx_phy *ofdm, *cck;
658         struct statistics_general_data statis;
659
660         if (priv->calib_disabled & IWL_SENSITIVITY_CALIB_DISABLED)
661                 return;
662
663         data = &(priv->sensitivity_data);
664
665         if (!iwl_is_any_associated(priv)) {
666                 IWL_DEBUG_CALIB(priv, "<< - not associated\n");
667                 return;
668         }
669
670         spin_lock_bh(&priv->statistics.lock);
671         rx_info = &priv->statistics.rx_non_phy;
672         ofdm = &priv->statistics.rx_ofdm;
673         cck = &priv->statistics.rx_cck;
674         if (rx_info->interference_data_flag != INTERFERENCE_DATA_AVAILABLE) {
675                 IWL_DEBUG_CALIB(priv, "<< invalid data.\n");
676                 spin_unlock_bh(&priv->statistics.lock);
677                 return;
678         }
679
680         /* Extract Statistics: */
681         rx_enable_time = le32_to_cpu(rx_info->channel_load);
682         fa_cck = le32_to_cpu(cck->false_alarm_cnt);
683         fa_ofdm = le32_to_cpu(ofdm->false_alarm_cnt);
684         bad_plcp_cck = le32_to_cpu(cck->plcp_err);
685         bad_plcp_ofdm = le32_to_cpu(ofdm->plcp_err);
686
687         statis.beacon_silence_rssi_a =
688                         le32_to_cpu(rx_info->beacon_silence_rssi_a);
689         statis.beacon_silence_rssi_b =
690                         le32_to_cpu(rx_info->beacon_silence_rssi_b);
691         statis.beacon_silence_rssi_c =
692                         le32_to_cpu(rx_info->beacon_silence_rssi_c);
693         statis.beacon_energy_a =
694                         le32_to_cpu(rx_info->beacon_energy_a);
695         statis.beacon_energy_b =
696                         le32_to_cpu(rx_info->beacon_energy_b);
697         statis.beacon_energy_c =
698                         le32_to_cpu(rx_info->beacon_energy_c);
699
700         spin_unlock_bh(&priv->statistics.lock);
701
702         IWL_DEBUG_CALIB(priv, "rx_enable_time = %u usecs\n", rx_enable_time);
703
704         if (!rx_enable_time) {
705                 IWL_DEBUG_CALIB(priv, "<< RX Enable Time == 0!\n");
706                 return;
707         }
708
709         /* These statistics increase monotonically, and do not reset
710          *   at each beacon.  Calculate difference from last value, or just
711          *   use the new statistics value if it has reset or wrapped around. */
712         if (data->last_bad_plcp_cnt_cck > bad_plcp_cck)
713                 data->last_bad_plcp_cnt_cck = bad_plcp_cck;
714         else {
715                 bad_plcp_cck -= data->last_bad_plcp_cnt_cck;
716                 data->last_bad_plcp_cnt_cck += bad_plcp_cck;
717         }
718
719         if (data->last_bad_plcp_cnt_ofdm > bad_plcp_ofdm)
720                 data->last_bad_plcp_cnt_ofdm = bad_plcp_ofdm;
721         else {
722                 bad_plcp_ofdm -= data->last_bad_plcp_cnt_ofdm;
723                 data->last_bad_plcp_cnt_ofdm += bad_plcp_ofdm;
724         }
725
726         if (data->last_fa_cnt_ofdm > fa_ofdm)
727                 data->last_fa_cnt_ofdm = fa_ofdm;
728         else {
729                 fa_ofdm -= data->last_fa_cnt_ofdm;
730                 data->last_fa_cnt_ofdm += fa_ofdm;
731         }
732
733         if (data->last_fa_cnt_cck > fa_cck)
734                 data->last_fa_cnt_cck = fa_cck;
735         else {
736                 fa_cck -= data->last_fa_cnt_cck;
737                 data->last_fa_cnt_cck += fa_cck;
738         }
739
740         /* Total aborted signal locks */
741         norm_fa_ofdm = fa_ofdm + bad_plcp_ofdm;
742         norm_fa_cck = fa_cck + bad_plcp_cck;
743
744         IWL_DEBUG_CALIB(priv, "cck: fa %u badp %u  ofdm: fa %u badp %u\n", fa_cck,
745                         bad_plcp_cck, fa_ofdm, bad_plcp_ofdm);
746
747         iwl_sens_auto_corr_ofdm(priv, norm_fa_ofdm, rx_enable_time);
748         iwl_sens_energy_cck(priv, norm_fa_cck, rx_enable_time, &statis);
749         if (priv->fw->enhance_sensitivity_table)
750                 iwl_enhance_sensitivity_write(priv);
751         else
752                 iwl_sensitivity_write(priv);
753 }
754
755 static inline u8 find_first_chain(u8 mask)
756 {
757         if (mask & ANT_A)
758                 return CHAIN_A;
759         if (mask & ANT_B)
760                 return CHAIN_B;
761         return CHAIN_C;
762 }
763
764 /**
765  * Run disconnected antenna algorithm to find out which antennas are
766  * disconnected.
767  */
768 static void iwl_find_disconn_antenna(struct iwl_priv *priv, u32* average_sig,
769                                      struct iwl_chain_noise_data *data)
770 {
771         u32 active_chains = 0;
772         u32 max_average_sig;
773         u16 max_average_sig_antenna_i;
774         u8 num_tx_chains;
775         u8 first_chain;
776         u16 i = 0;
777
778         average_sig[0] = data->chain_signal_a / IWL_CAL_NUM_BEACONS;
779         average_sig[1] = data->chain_signal_b / IWL_CAL_NUM_BEACONS;
780         average_sig[2] = data->chain_signal_c / IWL_CAL_NUM_BEACONS;
781
782         if (average_sig[0] >= average_sig[1]) {
783                 max_average_sig = average_sig[0];
784                 max_average_sig_antenna_i = 0;
785                 active_chains = (1 << max_average_sig_antenna_i);
786         } else {
787                 max_average_sig = average_sig[1];
788                 max_average_sig_antenna_i = 1;
789                 active_chains = (1 << max_average_sig_antenna_i);
790         }
791
792         if (average_sig[2] >= max_average_sig) {
793                 max_average_sig = average_sig[2];
794                 max_average_sig_antenna_i = 2;
795                 active_chains = (1 << max_average_sig_antenna_i);
796         }
797
798         IWL_DEBUG_CALIB(priv, "average_sig: a %d b %d c %d\n",
799                      average_sig[0], average_sig[1], average_sig[2]);
800         IWL_DEBUG_CALIB(priv, "max_average_sig = %d, antenna %d\n",
801                      max_average_sig, max_average_sig_antenna_i);
802
803         /* Compare signal strengths for all 3 receivers. */
804         for (i = 0; i < NUM_RX_CHAINS; i++) {
805                 if (i != max_average_sig_antenna_i) {
806                         s32 rssi_delta = (max_average_sig - average_sig[i]);
807
808                         /* If signal is very weak, compared with
809                          * strongest, mark it as disconnected. */
810                         if (rssi_delta > MAXIMUM_ALLOWED_PATHLOSS)
811                                 data->disconn_array[i] = 1;
812                         else
813                                 active_chains |= (1 << i);
814                         IWL_DEBUG_CALIB(priv, "i = %d  rssiDelta = %d  "
815                              "disconn_array[i] = %d\n",
816                              i, rssi_delta, data->disconn_array[i]);
817                 }
818         }
819
820         /*
821          * The above algorithm sometimes fails when the ucode
822          * reports 0 for all chains. It's not clear why that
823          * happens to start with, but it is then causing trouble
824          * because this can make us enable more chains than the
825          * hardware really has.
826          *
827          * To be safe, simply mask out any chains that we know
828          * are not on the device.
829          */
830         active_chains &= priv->nvm_data->valid_rx_ant;
831
832         num_tx_chains = 0;
833         for (i = 0; i < NUM_RX_CHAINS; i++) {
834                 /* loops on all the bits of
835                  * priv->hw_setting.valid_tx_ant */
836                 u8 ant_msk = (1 << i);
837                 if (!(priv->nvm_data->valid_tx_ant & ant_msk))
838                         continue;
839
840                 num_tx_chains++;
841                 if (data->disconn_array[i] == 0)
842                         /* there is a Tx antenna connected */
843                         break;
844                 if (num_tx_chains == priv->hw_params.tx_chains_num &&
845                     data->disconn_array[i]) {
846                         /*
847                          * If all chains are disconnected
848                          * connect the first valid tx chain
849                          */
850                         first_chain =
851                                 find_first_chain(priv->nvm_data->valid_tx_ant);
852                         data->disconn_array[first_chain] = 0;
853                         active_chains |= BIT(first_chain);
854                         IWL_DEBUG_CALIB(priv,
855                                         "All Tx chains are disconnected W/A - declare %d as connected\n",
856                                         first_chain);
857                         break;
858                 }
859         }
860
861         if (active_chains != priv->nvm_data->valid_rx_ant &&
862             active_chains != priv->chain_noise_data.active_chains)
863                 IWL_DEBUG_CALIB(priv,
864                                 "Detected that not all antennas are connected! "
865                                 "Connected: %#x, valid: %#x.\n",
866                                 active_chains,
867                                 priv->nvm_data->valid_rx_ant);
868
869         /* Save for use within RXON, TX, SCAN commands, etc. */
870         data->active_chains = active_chains;
871         IWL_DEBUG_CALIB(priv, "active_chains (bitwise) = 0x%x\n",
872                         active_chains);
873 }
874
875 static void iwlagn_gain_computation(struct iwl_priv *priv,
876                                     u32 average_noise[NUM_RX_CHAINS],
877                                     u8 default_chain)
878 {
879         int i;
880         s32 delta_g;
881         struct iwl_chain_noise_data *data = &priv->chain_noise_data;
882
883         /*
884          * Find Gain Code for the chains based on "default chain"
885          */
886         for (i = default_chain + 1; i < NUM_RX_CHAINS; i++) {
887                 if ((data->disconn_array[i])) {
888                         data->delta_gain_code[i] = 0;
889                         continue;
890                 }
891
892                 delta_g = (priv->lib->chain_noise_scale *
893                         ((s32)average_noise[default_chain] -
894                         (s32)average_noise[i])) / 1500;
895
896                 /* bound gain by 2 bits value max, 3rd bit is sign */
897                 data->delta_gain_code[i] =
898                         min(abs(delta_g), CHAIN_NOISE_MAX_DELTA_GAIN_CODE);
899
900                 if (delta_g < 0)
901                         /*
902                          * set negative sign ...
903                          * note to Intel developers:  This is uCode API format,
904                          *   not the format of any internal device registers.
905                          *   Do not change this format for e.g. 6050 or similar
906                          *   devices.  Change format only if more resolution
907                          *   (i.e. more than 2 bits magnitude) is needed.
908                          */
909                         data->delta_gain_code[i] |= (1 << 2);
910         }
911
912         IWL_DEBUG_CALIB(priv, "Delta gains: ANT_B = %d  ANT_C = %d\n",
913                         data->delta_gain_code[1], data->delta_gain_code[2]);
914
915         if (!data->radio_write) {
916                 struct iwl_calib_chain_noise_gain_cmd cmd;
917
918                 memset(&cmd, 0, sizeof(cmd));
919
920                 iwl_set_calib_hdr(&cmd.hdr,
921                         priv->phy_calib_chain_noise_gain_cmd);
922                 cmd.delta_gain_1 = data->delta_gain_code[1];
923                 cmd.delta_gain_2 = data->delta_gain_code[2];
924                 iwl_dvm_send_cmd_pdu(priv, REPLY_PHY_CALIBRATION_CMD,
925                         CMD_ASYNC, sizeof(cmd), &cmd);
926
927                 data->radio_write = 1;
928                 data->state = IWL_CHAIN_NOISE_CALIBRATED;
929         }
930 }
931
932 /*
933  * Accumulate 16 beacons of signal and noise statistics for each of
934  *   3 receivers/antennas/rx-chains, then figure out:
935  * 1)  Which antennas are connected.
936  * 2)  Differential rx gain settings to balance the 3 receivers.
937  */
938 void iwl_chain_noise_calibration(struct iwl_priv *priv)
939 {
940         struct iwl_chain_noise_data *data = NULL;
941
942         u32 chain_noise_a;
943         u32 chain_noise_b;
944         u32 chain_noise_c;
945         u32 chain_sig_a;
946         u32 chain_sig_b;
947         u32 chain_sig_c;
948         u32 average_sig[NUM_RX_CHAINS] = {INITIALIZATION_VALUE};
949         u32 average_noise[NUM_RX_CHAINS] = {INITIALIZATION_VALUE};
950         u32 min_average_noise = MIN_AVERAGE_NOISE_MAX_VALUE;
951         u16 min_average_noise_antenna_i = INITIALIZATION_VALUE;
952         u16 i = 0;
953         u16 rxon_chnum = INITIALIZATION_VALUE;
954         u16 stat_chnum = INITIALIZATION_VALUE;
955         u8 rxon_band24;
956         u8 stat_band24;
957         struct statistics_rx_non_phy *rx_info;
958
959         /*
960          * MULTI-FIXME:
961          * When we support multiple interfaces on different channels,
962          * this must be modified/fixed.
963          */
964         struct iwl_rxon_context *ctx = &priv->contexts[IWL_RXON_CTX_BSS];
965
966         if (priv->calib_disabled & IWL_CHAIN_NOISE_CALIB_DISABLED)
967                 return;
968
969         data = &(priv->chain_noise_data);
970
971         /*
972          * Accumulate just the first "chain_noise_num_beacons" after
973          * the first association, then we're done forever.
974          */
975         if (data->state != IWL_CHAIN_NOISE_ACCUMULATE) {
976                 if (data->state == IWL_CHAIN_NOISE_ALIVE)
977                         IWL_DEBUG_CALIB(priv, "Wait for noise calib reset\n");
978                 return;
979         }
980
981         spin_lock_bh(&priv->statistics.lock);
982
983         rx_info = &priv->statistics.rx_non_phy;
984
985         if (rx_info->interference_data_flag != INTERFERENCE_DATA_AVAILABLE) {
986                 IWL_DEBUG_CALIB(priv, " << Interference data unavailable\n");
987                 spin_unlock_bh(&priv->statistics.lock);
988                 return;
989         }
990
991         rxon_band24 = !!(ctx->staging.flags & RXON_FLG_BAND_24G_MSK);
992         rxon_chnum = le16_to_cpu(ctx->staging.channel);
993         stat_band24 =
994                 !!(priv->statistics.flag & STATISTICS_REPLY_FLG_BAND_24G_MSK);
995         stat_chnum = le32_to_cpu(priv->statistics.flag) >> 16;
996
997         /* Make sure we accumulate data for just the associated channel
998          *   (even if scanning). */
999         if ((rxon_chnum != stat_chnum) || (rxon_band24 != stat_band24)) {
1000                 IWL_DEBUG_CALIB(priv, "Stats not from chan=%d, band24=%d\n",
1001                                 rxon_chnum, rxon_band24);
1002                 spin_unlock_bh(&priv->statistics.lock);
1003                 return;
1004         }
1005
1006         /*
1007          *  Accumulate beacon statistics values across
1008          * "chain_noise_num_beacons"
1009          */
1010         chain_noise_a = le32_to_cpu(rx_info->beacon_silence_rssi_a) &
1011                                 IN_BAND_FILTER;
1012         chain_noise_b = le32_to_cpu(rx_info->beacon_silence_rssi_b) &
1013                                 IN_BAND_FILTER;
1014         chain_noise_c = le32_to_cpu(rx_info->beacon_silence_rssi_c) &
1015                                 IN_BAND_FILTER;
1016
1017         chain_sig_a = le32_to_cpu(rx_info->beacon_rssi_a) & IN_BAND_FILTER;
1018         chain_sig_b = le32_to_cpu(rx_info->beacon_rssi_b) & IN_BAND_FILTER;
1019         chain_sig_c = le32_to_cpu(rx_info->beacon_rssi_c) & IN_BAND_FILTER;
1020
1021         spin_unlock_bh(&priv->statistics.lock);
1022
1023         data->beacon_count++;
1024
1025         data->chain_noise_a = (chain_noise_a + data->chain_noise_a);
1026         data->chain_noise_b = (chain_noise_b + data->chain_noise_b);
1027         data->chain_noise_c = (chain_noise_c + data->chain_noise_c);
1028
1029         data->chain_signal_a = (chain_sig_a + data->chain_signal_a);
1030         data->chain_signal_b = (chain_sig_b + data->chain_signal_b);
1031         data->chain_signal_c = (chain_sig_c + data->chain_signal_c);
1032
1033         IWL_DEBUG_CALIB(priv, "chan=%d, band24=%d, beacon=%d\n",
1034                         rxon_chnum, rxon_band24, data->beacon_count);
1035         IWL_DEBUG_CALIB(priv, "chain_sig: a %d b %d c %d\n",
1036                         chain_sig_a, chain_sig_b, chain_sig_c);
1037         IWL_DEBUG_CALIB(priv, "chain_noise: a %d b %d c %d\n",
1038                         chain_noise_a, chain_noise_b, chain_noise_c);
1039
1040         /* If this is the "chain_noise_num_beacons", determine:
1041          * 1)  Disconnected antennas (using signal strengths)
1042          * 2)  Differential gain (using silence noise) to balance receivers */
1043         if (data->beacon_count != IWL_CAL_NUM_BEACONS)
1044                 return;
1045
1046         /* Analyze signal for disconnected antenna */
1047         if (priv->lib->bt_params &&
1048             priv->lib->bt_params->advanced_bt_coexist) {
1049                 /* Disable disconnected antenna algorithm for advanced
1050                    bt coex, assuming valid antennas are connected */
1051                 data->active_chains = priv->nvm_data->valid_rx_ant;
1052                 for (i = 0; i < NUM_RX_CHAINS; i++)
1053                         if (!(data->active_chains & (1<<i)))
1054                                 data->disconn_array[i] = 1;
1055         } else
1056                 iwl_find_disconn_antenna(priv, average_sig, data);
1057
1058         /* Analyze noise for rx balance */
1059         average_noise[0] = data->chain_noise_a / IWL_CAL_NUM_BEACONS;
1060         average_noise[1] = data->chain_noise_b / IWL_CAL_NUM_BEACONS;
1061         average_noise[2] = data->chain_noise_c / IWL_CAL_NUM_BEACONS;
1062
1063         for (i = 0; i < NUM_RX_CHAINS; i++) {
1064                 if (!(data->disconn_array[i]) &&
1065                    (average_noise[i] <= min_average_noise)) {
1066                         /* This means that chain i is active and has
1067                          * lower noise values so far: */
1068                         min_average_noise = average_noise[i];
1069                         min_average_noise_antenna_i = i;
1070                 }
1071         }
1072
1073         IWL_DEBUG_CALIB(priv, "average_noise: a %d b %d c %d\n",
1074                         average_noise[0], average_noise[1],
1075                         average_noise[2]);
1076
1077         IWL_DEBUG_CALIB(priv, "min_average_noise = %d, antenna %d\n",
1078                         min_average_noise, min_average_noise_antenna_i);
1079
1080         iwlagn_gain_computation(
1081                 priv, average_noise,
1082                 find_first_chain(priv->nvm_data->valid_rx_ant));
1083
1084         /* Some power changes may have been made during the calibration.
1085          * Update and commit the RXON
1086          */
1087         iwl_update_chain_flags(priv);
1088
1089         data->state = IWL_CHAIN_NOISE_DONE;
1090         iwl_power_update_mode(priv, false);
1091 }
1092
1093 void iwl_reset_run_time_calib(struct iwl_priv *priv)
1094 {
1095         int i;
1096         memset(&(priv->sensitivity_data), 0,
1097                sizeof(struct iwl_sensitivity_data));
1098         memset(&(priv->chain_noise_data), 0,
1099                sizeof(struct iwl_chain_noise_data));
1100         for (i = 0; i < NUM_RX_CHAINS; i++)
1101                 priv->chain_noise_data.delta_gain_code[i] =
1102                                 CHAIN_NOISE_DELTA_GAIN_INIT_VAL;
1103
1104         /* Ask for statistics now, the uCode will send notification
1105          * periodically after association */
1106         iwl_send_statistics_request(priv, CMD_ASYNC, true);
1107 }