Linux-libre 4.14.2-gnu
[librecmc/linux-libre.git] / drivers / net / wireless / intel / ipw2x00 / ipw2200.c
1 /******************************************************************************
2
3   Copyright(c) 2003 - 2006 Intel Corporation. All rights reserved.
4
5   802.11 status code portion of this file from ethereal-0.10.6:
6     Copyright 2000, Axis Communications AB
7     Ethereal - Network traffic analyzer
8     By Gerald Combs <gerald@ethereal.com>
9     Copyright 1998 Gerald Combs
10
11   This program is free software; you can redistribute it and/or modify it
12   under the terms of version 2 of the GNU General Public License as
13   published by the Free Software Foundation.
14
15   This program is distributed in the hope that it will be useful, but WITHOUT
16   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
17   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
18   more details.
19
20   You should have received a copy of the GNU General Public License along with
21   this program; if not, write to the Free Software Foundation, Inc., 59
22   Temple Place - Suite 330, Boston, MA  02111-1307, USA.
23
24   The full GNU General Public License is included in this distribution in the
25   file called LICENSE.
26
27   Contact Information:
28   Intel Linux Wireless <ilw@linux.intel.com>
29   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
30
31 ******************************************************************************/
32
33 #include <linux/sched.h>
34 #include <linux/slab.h>
35 #include <net/cfg80211-wext.h>
36 #include "ipw2200.h"
37 #include "ipw.h"
38
39
40 #ifndef KBUILD_EXTMOD
41 #define VK "k"
42 #else
43 #define VK
44 #endif
45
46 #ifdef CONFIG_IPW2200_DEBUG
47 #define VD "d"
48 #else
49 #define VD
50 #endif
51
52 #ifdef CONFIG_IPW2200_MONITOR
53 #define VM "m"
54 #else
55 #define VM
56 #endif
57
58 #ifdef CONFIG_IPW2200_PROMISCUOUS
59 #define VP "p"
60 #else
61 #define VP
62 #endif
63
64 #ifdef CONFIG_IPW2200_RADIOTAP
65 #define VR "r"
66 #else
67 #define VR
68 #endif
69
70 #ifdef CONFIG_IPW2200_QOS
71 #define VQ "q"
72 #else
73 #define VQ
74 #endif
75
76 #define IPW2200_VERSION "1.2.2" VK VD VM VP VR VQ
77 #define DRV_DESCRIPTION "Intel(R) PRO/Wireless 2200/2915 Network Driver"
78 #define DRV_COPYRIGHT   "Copyright(c) 2003-2006 Intel Corporation"
79 #define DRV_VERSION     IPW2200_VERSION
80
81 #define ETH_P_80211_STATS (ETH_P_80211_RAW + 1)
82
83 MODULE_DESCRIPTION(DRV_DESCRIPTION);
84 MODULE_VERSION(DRV_VERSION);
85 MODULE_AUTHOR(DRV_COPYRIGHT);
86 MODULE_LICENSE("GPL");
87 /*(DEBLOBBED)*/
88 #ifdef CONFIG_IPW2200_MONITOR
89 /*(DEBLOBBED)*/
90 #endif
91 /*(DEBLOBBED)*/
92
93 static int cmdlog = 0;
94 static int debug = 0;
95 static int default_channel = 0;
96 static int network_mode = 0;
97
98 static u32 ipw_debug_level;
99 static int associate;
100 static int auto_create = 1;
101 static int led_support = 1;
102 static int disable = 0;
103 static int bt_coexist = 0;
104 static int hwcrypto = 0;
105 static int roaming = 1;
106 static const char ipw_modes[] = {
107         'a', 'b', 'g', '?'
108 };
109 static int antenna = CFG_SYS_ANTENNA_BOTH;
110
111 #ifdef CONFIG_IPW2200_PROMISCUOUS
112 static int rtap_iface = 0;     /* def: 0 -- do not create rtap interface */
113 #endif
114
115 static struct ieee80211_rate ipw2200_rates[] = {
116         { .bitrate = 10 },
117         { .bitrate = 20, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
118         { .bitrate = 55, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
119         { .bitrate = 110, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
120         { .bitrate = 60 },
121         { .bitrate = 90 },
122         { .bitrate = 120 },
123         { .bitrate = 180 },
124         { .bitrate = 240 },
125         { .bitrate = 360 },
126         { .bitrate = 480 },
127         { .bitrate = 540 }
128 };
129
130 #define ipw2200_a_rates         (ipw2200_rates + 4)
131 #define ipw2200_num_a_rates     8
132 #define ipw2200_bg_rates        (ipw2200_rates + 0)
133 #define ipw2200_num_bg_rates    12
134
135 /* Ugly macro to convert literal channel numbers into their mhz equivalents
136  * There are certianly some conditions that will break this (like feeding it '30')
137  * but they shouldn't arise since nothing talks on channel 30. */
138 #define ieee80211chan2mhz(x) \
139         (((x) <= 14) ? \
140         (((x) == 14) ? 2484 : ((x) * 5) + 2407) : \
141         ((x) + 1000) * 5)
142
143 #ifdef CONFIG_IPW2200_QOS
144 static int qos_enable = 0;
145 static int qos_burst_enable = 0;
146 static int qos_no_ack_mask = 0;
147 static int burst_duration_CCK = 0;
148 static int burst_duration_OFDM = 0;
149
150 static struct libipw_qos_parameters def_qos_parameters_OFDM = {
151         {QOS_TX0_CW_MIN_OFDM, QOS_TX1_CW_MIN_OFDM, QOS_TX2_CW_MIN_OFDM,
152          QOS_TX3_CW_MIN_OFDM},
153         {QOS_TX0_CW_MAX_OFDM, QOS_TX1_CW_MAX_OFDM, QOS_TX2_CW_MAX_OFDM,
154          QOS_TX3_CW_MAX_OFDM},
155         {QOS_TX0_AIFS, QOS_TX1_AIFS, QOS_TX2_AIFS, QOS_TX3_AIFS},
156         {QOS_TX0_ACM, QOS_TX1_ACM, QOS_TX2_ACM, QOS_TX3_ACM},
157         {QOS_TX0_TXOP_LIMIT_OFDM, QOS_TX1_TXOP_LIMIT_OFDM,
158          QOS_TX2_TXOP_LIMIT_OFDM, QOS_TX3_TXOP_LIMIT_OFDM}
159 };
160
161 static struct libipw_qos_parameters def_qos_parameters_CCK = {
162         {QOS_TX0_CW_MIN_CCK, QOS_TX1_CW_MIN_CCK, QOS_TX2_CW_MIN_CCK,
163          QOS_TX3_CW_MIN_CCK},
164         {QOS_TX0_CW_MAX_CCK, QOS_TX1_CW_MAX_CCK, QOS_TX2_CW_MAX_CCK,
165          QOS_TX3_CW_MAX_CCK},
166         {QOS_TX0_AIFS, QOS_TX1_AIFS, QOS_TX2_AIFS, QOS_TX3_AIFS},
167         {QOS_TX0_ACM, QOS_TX1_ACM, QOS_TX2_ACM, QOS_TX3_ACM},
168         {QOS_TX0_TXOP_LIMIT_CCK, QOS_TX1_TXOP_LIMIT_CCK, QOS_TX2_TXOP_LIMIT_CCK,
169          QOS_TX3_TXOP_LIMIT_CCK}
170 };
171
172 static struct libipw_qos_parameters def_parameters_OFDM = {
173         {DEF_TX0_CW_MIN_OFDM, DEF_TX1_CW_MIN_OFDM, DEF_TX2_CW_MIN_OFDM,
174          DEF_TX3_CW_MIN_OFDM},
175         {DEF_TX0_CW_MAX_OFDM, DEF_TX1_CW_MAX_OFDM, DEF_TX2_CW_MAX_OFDM,
176          DEF_TX3_CW_MAX_OFDM},
177         {DEF_TX0_AIFS, DEF_TX1_AIFS, DEF_TX2_AIFS, DEF_TX3_AIFS},
178         {DEF_TX0_ACM, DEF_TX1_ACM, DEF_TX2_ACM, DEF_TX3_ACM},
179         {DEF_TX0_TXOP_LIMIT_OFDM, DEF_TX1_TXOP_LIMIT_OFDM,
180          DEF_TX2_TXOP_LIMIT_OFDM, DEF_TX3_TXOP_LIMIT_OFDM}
181 };
182
183 static struct libipw_qos_parameters def_parameters_CCK = {
184         {DEF_TX0_CW_MIN_CCK, DEF_TX1_CW_MIN_CCK, DEF_TX2_CW_MIN_CCK,
185          DEF_TX3_CW_MIN_CCK},
186         {DEF_TX0_CW_MAX_CCK, DEF_TX1_CW_MAX_CCK, DEF_TX2_CW_MAX_CCK,
187          DEF_TX3_CW_MAX_CCK},
188         {DEF_TX0_AIFS, DEF_TX1_AIFS, DEF_TX2_AIFS, DEF_TX3_AIFS},
189         {DEF_TX0_ACM, DEF_TX1_ACM, DEF_TX2_ACM, DEF_TX3_ACM},
190         {DEF_TX0_TXOP_LIMIT_CCK, DEF_TX1_TXOP_LIMIT_CCK, DEF_TX2_TXOP_LIMIT_CCK,
191          DEF_TX3_TXOP_LIMIT_CCK}
192 };
193
194 static u8 qos_oui[QOS_OUI_LEN] = { 0x00, 0x50, 0xF2 };
195
196 static int from_priority_to_tx_queue[] = {
197         IPW_TX_QUEUE_1, IPW_TX_QUEUE_2, IPW_TX_QUEUE_2, IPW_TX_QUEUE_1,
198         IPW_TX_QUEUE_3, IPW_TX_QUEUE_3, IPW_TX_QUEUE_4, IPW_TX_QUEUE_4
199 };
200
201 static u32 ipw_qos_get_burst_duration(struct ipw_priv *priv);
202
203 static int ipw_send_qos_params_command(struct ipw_priv *priv, struct libipw_qos_parameters
204                                        *qos_param);
205 static int ipw_send_qos_info_command(struct ipw_priv *priv, struct libipw_qos_information_element
206                                      *qos_param);
207 #endif                          /* CONFIG_IPW2200_QOS */
208
209 static struct iw_statistics *ipw_get_wireless_stats(struct net_device *dev);
210 static void ipw_remove_current_network(struct ipw_priv *priv);
211 static void ipw_rx(struct ipw_priv *priv);
212 static int ipw_queue_tx_reclaim(struct ipw_priv *priv,
213                                 struct clx2_tx_queue *txq, int qindex);
214 static int ipw_queue_reset(struct ipw_priv *priv);
215
216 static int ipw_queue_tx_hcmd(struct ipw_priv *priv, int hcmd, void *buf,
217                              int len, int sync);
218
219 static void ipw_tx_queue_free(struct ipw_priv *);
220
221 static struct ipw_rx_queue *ipw_rx_queue_alloc(struct ipw_priv *);
222 static void ipw_rx_queue_free(struct ipw_priv *, struct ipw_rx_queue *);
223 static void ipw_rx_queue_replenish(void *);
224 static int ipw_up(struct ipw_priv *);
225 static void ipw_bg_up(struct work_struct *work);
226 static void ipw_down(struct ipw_priv *);
227 static void ipw_bg_down(struct work_struct *work);
228 static int ipw_config(struct ipw_priv *);
229 static int init_supported_rates(struct ipw_priv *priv,
230                                 struct ipw_supported_rates *prates);
231 static void ipw_set_hwcrypto_keys(struct ipw_priv *);
232 static void ipw_send_wep_keys(struct ipw_priv *, int);
233
234 static int snprint_line(char *buf, size_t count,
235                         const u8 * data, u32 len, u32 ofs)
236 {
237         int out, i, j, l;
238         char c;
239
240         out = snprintf(buf, count, "%08X", ofs);
241
242         for (l = 0, i = 0; i < 2; i++) {
243                 out += snprintf(buf + out, count - out, " ");
244                 for (j = 0; j < 8 && l < len; j++, l++)
245                         out += snprintf(buf + out, count - out, "%02X ",
246                                         data[(i * 8 + j)]);
247                 for (; j < 8; j++)
248                         out += snprintf(buf + out, count - out, "   ");
249         }
250
251         out += snprintf(buf + out, count - out, " ");
252         for (l = 0, i = 0; i < 2; i++) {
253                 out += snprintf(buf + out, count - out, " ");
254                 for (j = 0; j < 8 && l < len; j++, l++) {
255                         c = data[(i * 8 + j)];
256                         if (!isascii(c) || !isprint(c))
257                                 c = '.';
258
259                         out += snprintf(buf + out, count - out, "%c", c);
260                 }
261
262                 for (; j < 8; j++)
263                         out += snprintf(buf + out, count - out, " ");
264         }
265
266         return out;
267 }
268
269 static void printk_buf(int level, const u8 * data, u32 len)
270 {
271         char line[81];
272         u32 ofs = 0;
273         if (!(ipw_debug_level & level))
274                 return;
275
276         while (len) {
277                 snprint_line(line, sizeof(line), &data[ofs],
278                              min(len, 16U), ofs);
279                 printk(KERN_DEBUG "%s\n", line);
280                 ofs += 16;
281                 len -= min(len, 16U);
282         }
283 }
284
285 static int snprintk_buf(u8 * output, size_t size, const u8 * data, size_t len)
286 {
287         size_t out = size;
288         u32 ofs = 0;
289         int total = 0;
290
291         while (size && len) {
292                 out = snprint_line(output, size, &data[ofs],
293                                    min_t(size_t, len, 16U), ofs);
294
295                 ofs += 16;
296                 output += out;
297                 size -= out;
298                 len -= min_t(size_t, len, 16U);
299                 total += out;
300         }
301         return total;
302 }
303
304 /* alias for 32-bit indirect read (for SRAM/reg above 4K), with debug wrapper */
305 static u32 _ipw_read_reg32(struct ipw_priv *priv, u32 reg);
306 #define ipw_read_reg32(a, b) _ipw_read_reg32(a, b)
307
308 /* alias for 8-bit indirect read (for SRAM/reg above 4K), with debug wrapper */
309 static u8 _ipw_read_reg8(struct ipw_priv *ipw, u32 reg);
310 #define ipw_read_reg8(a, b) _ipw_read_reg8(a, b)
311
312 /* 8-bit indirect write (for SRAM/reg above 4K), with debug wrapper */
313 static void _ipw_write_reg8(struct ipw_priv *priv, u32 reg, u8 value);
314 static inline void ipw_write_reg8(struct ipw_priv *a, u32 b, u8 c)
315 {
316         IPW_DEBUG_IO("%s %d: write_indirect8(0x%08X, 0x%08X)\n", __FILE__,
317                      __LINE__, (u32) (b), (u32) (c));
318         _ipw_write_reg8(a, b, c);
319 }
320
321 /* 16-bit indirect write (for SRAM/reg above 4K), with debug wrapper */
322 static void _ipw_write_reg16(struct ipw_priv *priv, u32 reg, u16 value);
323 static inline void ipw_write_reg16(struct ipw_priv *a, u32 b, u16 c)
324 {
325         IPW_DEBUG_IO("%s %d: write_indirect16(0x%08X, 0x%08X)\n", __FILE__,
326                      __LINE__, (u32) (b), (u32) (c));
327         _ipw_write_reg16(a, b, c);
328 }
329
330 /* 32-bit indirect write (for SRAM/reg above 4K), with debug wrapper */
331 static void _ipw_write_reg32(struct ipw_priv *priv, u32 reg, u32 value);
332 static inline void ipw_write_reg32(struct ipw_priv *a, u32 b, u32 c)
333 {
334         IPW_DEBUG_IO("%s %d: write_indirect32(0x%08X, 0x%08X)\n", __FILE__,
335                      __LINE__, (u32) (b), (u32) (c));
336         _ipw_write_reg32(a, b, c);
337 }
338
339 /* 8-bit direct write (low 4K) */
340 static inline void _ipw_write8(struct ipw_priv *ipw, unsigned long ofs,
341                 u8 val)
342 {
343         writeb(val, ipw->hw_base + ofs);
344 }
345
346 /* 8-bit direct write (for low 4K of SRAM/regs), with debug wrapper */
347 #define ipw_write8(ipw, ofs, val) do { \
348         IPW_DEBUG_IO("%s %d: write_direct8(0x%08X, 0x%08X)\n", __FILE__, \
349                         __LINE__, (u32)(ofs), (u32)(val)); \
350         _ipw_write8(ipw, ofs, val); \
351 } while (0)
352
353 /* 16-bit direct write (low 4K) */
354 static inline void _ipw_write16(struct ipw_priv *ipw, unsigned long ofs,
355                 u16 val)
356 {
357         writew(val, ipw->hw_base + ofs);
358 }
359
360 /* 16-bit direct write (for low 4K of SRAM/regs), with debug wrapper */
361 #define ipw_write16(ipw, ofs, val) do { \
362         IPW_DEBUG_IO("%s %d: write_direct16(0x%08X, 0x%08X)\n", __FILE__, \
363                         __LINE__, (u32)(ofs), (u32)(val)); \
364         _ipw_write16(ipw, ofs, val); \
365 } while (0)
366
367 /* 32-bit direct write (low 4K) */
368 static inline void _ipw_write32(struct ipw_priv *ipw, unsigned long ofs,
369                 u32 val)
370 {
371         writel(val, ipw->hw_base + ofs);
372 }
373
374 /* 32-bit direct write (for low 4K of SRAM/regs), with debug wrapper */
375 #define ipw_write32(ipw, ofs, val) do { \
376         IPW_DEBUG_IO("%s %d: write_direct32(0x%08X, 0x%08X)\n", __FILE__, \
377                         __LINE__, (u32)(ofs), (u32)(val)); \
378         _ipw_write32(ipw, ofs, val); \
379 } while (0)
380
381 /* 8-bit direct read (low 4K) */
382 static inline u8 _ipw_read8(struct ipw_priv *ipw, unsigned long ofs)
383 {
384         return readb(ipw->hw_base + ofs);
385 }
386
387 /* alias to 8-bit direct read (low 4K of SRAM/regs), with debug wrapper */
388 #define ipw_read8(ipw, ofs) ({ \
389         IPW_DEBUG_IO("%s %d: read_direct8(0x%08X)\n", __FILE__, __LINE__, \
390                         (u32)(ofs)); \
391         _ipw_read8(ipw, ofs); \
392 })
393
394 /* 16-bit direct read (low 4K) */
395 static inline u16 _ipw_read16(struct ipw_priv *ipw, unsigned long ofs)
396 {
397         return readw(ipw->hw_base + ofs);
398 }
399
400 /* alias to 16-bit direct read (low 4K of SRAM/regs), with debug wrapper */
401 #define ipw_read16(ipw, ofs) ({ \
402         IPW_DEBUG_IO("%s %d: read_direct16(0x%08X)\n", __FILE__, __LINE__, \
403                         (u32)(ofs)); \
404         _ipw_read16(ipw, ofs); \
405 })
406
407 /* 32-bit direct read (low 4K) */
408 static inline u32 _ipw_read32(struct ipw_priv *ipw, unsigned long ofs)
409 {
410         return readl(ipw->hw_base + ofs);
411 }
412
413 /* alias to 32-bit direct read (low 4K of SRAM/regs), with debug wrapper */
414 #define ipw_read32(ipw, ofs) ({ \
415         IPW_DEBUG_IO("%s %d: read_direct32(0x%08X)\n", __FILE__, __LINE__, \
416                         (u32)(ofs)); \
417         _ipw_read32(ipw, ofs); \
418 })
419
420 static void _ipw_read_indirect(struct ipw_priv *, u32, u8 *, int);
421 /* alias to multi-byte read (SRAM/regs above 4K), with debug wrapper */
422 #define ipw_read_indirect(a, b, c, d) ({ \
423         IPW_DEBUG_IO("%s %d: read_indirect(0x%08X) %u bytes\n", __FILE__, \
424                         __LINE__, (u32)(b), (u32)(d)); \
425         _ipw_read_indirect(a, b, c, d); \
426 })
427
428 /* alias to multi-byte read (SRAM/regs above 4K), with debug wrapper */
429 static void _ipw_write_indirect(struct ipw_priv *priv, u32 addr, u8 * data,
430                                 int num);
431 #define ipw_write_indirect(a, b, c, d) do { \
432         IPW_DEBUG_IO("%s %d: write_indirect(0x%08X) %u bytes\n", __FILE__, \
433                         __LINE__, (u32)(b), (u32)(d)); \
434         _ipw_write_indirect(a, b, c, d); \
435 } while (0)
436
437 /* 32-bit indirect write (above 4K) */
438 static void _ipw_write_reg32(struct ipw_priv *priv, u32 reg, u32 value)
439 {
440         IPW_DEBUG_IO(" %p : reg = 0x%8X : value = 0x%8X\n", priv, reg, value);
441         _ipw_write32(priv, IPW_INDIRECT_ADDR, reg);
442         _ipw_write32(priv, IPW_INDIRECT_DATA, value);
443 }
444
445 /* 8-bit indirect write (above 4K) */
446 static void _ipw_write_reg8(struct ipw_priv *priv, u32 reg, u8 value)
447 {
448         u32 aligned_addr = reg & IPW_INDIRECT_ADDR_MASK;        /* dword align */
449         u32 dif_len = reg - aligned_addr;
450
451         IPW_DEBUG_IO(" reg = 0x%8X : value = 0x%8X\n", reg, value);
452         _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
453         _ipw_write8(priv, IPW_INDIRECT_DATA + dif_len, value);
454 }
455
456 /* 16-bit indirect write (above 4K) */
457 static void _ipw_write_reg16(struct ipw_priv *priv, u32 reg, u16 value)
458 {
459         u32 aligned_addr = reg & IPW_INDIRECT_ADDR_MASK;        /* dword align */
460         u32 dif_len = (reg - aligned_addr) & (~0x1ul);
461
462         IPW_DEBUG_IO(" reg = 0x%8X : value = 0x%8X\n", reg, value);
463         _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
464         _ipw_write16(priv, IPW_INDIRECT_DATA + dif_len, value);
465 }
466
467 /* 8-bit indirect read (above 4K) */
468 static u8 _ipw_read_reg8(struct ipw_priv *priv, u32 reg)
469 {
470         u32 word;
471         _ipw_write32(priv, IPW_INDIRECT_ADDR, reg & IPW_INDIRECT_ADDR_MASK);
472         IPW_DEBUG_IO(" reg = 0x%8X :\n", reg);
473         word = _ipw_read32(priv, IPW_INDIRECT_DATA);
474         return (word >> ((reg & 0x3) * 8)) & 0xff;
475 }
476
477 /* 32-bit indirect read (above 4K) */
478 static u32 _ipw_read_reg32(struct ipw_priv *priv, u32 reg)
479 {
480         u32 value;
481
482         IPW_DEBUG_IO("%p : reg = 0x%08x\n", priv, reg);
483
484         _ipw_write32(priv, IPW_INDIRECT_ADDR, reg);
485         value = _ipw_read32(priv, IPW_INDIRECT_DATA);
486         IPW_DEBUG_IO(" reg = 0x%4X : value = 0x%4x\n", reg, value);
487         return value;
488 }
489
490 /* General purpose, no alignment requirement, iterative (multi-byte) read, */
491 /*    for area above 1st 4K of SRAM/reg space */
492 static void _ipw_read_indirect(struct ipw_priv *priv, u32 addr, u8 * buf,
493                                int num)
494 {
495         u32 aligned_addr = addr & IPW_INDIRECT_ADDR_MASK;       /* dword align */
496         u32 dif_len = addr - aligned_addr;
497         u32 i;
498
499         IPW_DEBUG_IO("addr = %i, buf = %p, num = %i\n", addr, buf, num);
500
501         if (num <= 0) {
502                 return;
503         }
504
505         /* Read the first dword (or portion) byte by byte */
506         if (unlikely(dif_len)) {
507                 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
508                 /* Start reading at aligned_addr + dif_len */
509                 for (i = dif_len; ((i < 4) && (num > 0)); i++, num--)
510                         *buf++ = _ipw_read8(priv, IPW_INDIRECT_DATA + i);
511                 aligned_addr += 4;
512         }
513
514         /* Read all of the middle dwords as dwords, with auto-increment */
515         _ipw_write32(priv, IPW_AUTOINC_ADDR, aligned_addr);
516         for (; num >= 4; buf += 4, aligned_addr += 4, num -= 4)
517                 *(u32 *) buf = _ipw_read32(priv, IPW_AUTOINC_DATA);
518
519         /* Read the last dword (or portion) byte by byte */
520         if (unlikely(num)) {
521                 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
522                 for (i = 0; num > 0; i++, num--)
523                         *buf++ = ipw_read8(priv, IPW_INDIRECT_DATA + i);
524         }
525 }
526
527 /* General purpose, no alignment requirement, iterative (multi-byte) write, */
528 /*    for area above 1st 4K of SRAM/reg space */
529 static void _ipw_write_indirect(struct ipw_priv *priv, u32 addr, u8 * buf,
530                                 int num)
531 {
532         u32 aligned_addr = addr & IPW_INDIRECT_ADDR_MASK;       /* dword align */
533         u32 dif_len = addr - aligned_addr;
534         u32 i;
535
536         IPW_DEBUG_IO("addr = %i, buf = %p, num = %i\n", addr, buf, num);
537
538         if (num <= 0) {
539                 return;
540         }
541
542         /* Write the first dword (or portion) byte by byte */
543         if (unlikely(dif_len)) {
544                 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
545                 /* Start writing at aligned_addr + dif_len */
546                 for (i = dif_len; ((i < 4) && (num > 0)); i++, num--, buf++)
547                         _ipw_write8(priv, IPW_INDIRECT_DATA + i, *buf);
548                 aligned_addr += 4;
549         }
550
551         /* Write all of the middle dwords as dwords, with auto-increment */
552         _ipw_write32(priv, IPW_AUTOINC_ADDR, aligned_addr);
553         for (; num >= 4; buf += 4, aligned_addr += 4, num -= 4)
554                 _ipw_write32(priv, IPW_AUTOINC_DATA, *(u32 *) buf);
555
556         /* Write the last dword (or portion) byte by byte */
557         if (unlikely(num)) {
558                 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
559                 for (i = 0; num > 0; i++, num--, buf++)
560                         _ipw_write8(priv, IPW_INDIRECT_DATA + i, *buf);
561         }
562 }
563
564 /* General purpose, no alignment requirement, iterative (multi-byte) write, */
565 /*    for 1st 4K of SRAM/regs space */
566 static void ipw_write_direct(struct ipw_priv *priv, u32 addr, void *buf,
567                              int num)
568 {
569         memcpy_toio((priv->hw_base + addr), buf, num);
570 }
571
572 /* Set bit(s) in low 4K of SRAM/regs */
573 static inline void ipw_set_bit(struct ipw_priv *priv, u32 reg, u32 mask)
574 {
575         ipw_write32(priv, reg, ipw_read32(priv, reg) | mask);
576 }
577
578 /* Clear bit(s) in low 4K of SRAM/regs */
579 static inline void ipw_clear_bit(struct ipw_priv *priv, u32 reg, u32 mask)
580 {
581         ipw_write32(priv, reg, ipw_read32(priv, reg) & ~mask);
582 }
583
584 static inline void __ipw_enable_interrupts(struct ipw_priv *priv)
585 {
586         if (priv->status & STATUS_INT_ENABLED)
587                 return;
588         priv->status |= STATUS_INT_ENABLED;
589         ipw_write32(priv, IPW_INTA_MASK_R, IPW_INTA_MASK_ALL);
590 }
591
592 static inline void __ipw_disable_interrupts(struct ipw_priv *priv)
593 {
594         if (!(priv->status & STATUS_INT_ENABLED))
595                 return;
596         priv->status &= ~STATUS_INT_ENABLED;
597         ipw_write32(priv, IPW_INTA_MASK_R, ~IPW_INTA_MASK_ALL);
598 }
599
600 static inline void ipw_enable_interrupts(struct ipw_priv *priv)
601 {
602         unsigned long flags;
603
604         spin_lock_irqsave(&priv->irq_lock, flags);
605         __ipw_enable_interrupts(priv);
606         spin_unlock_irqrestore(&priv->irq_lock, flags);
607 }
608
609 static inline void ipw_disable_interrupts(struct ipw_priv *priv)
610 {
611         unsigned long flags;
612
613         spin_lock_irqsave(&priv->irq_lock, flags);
614         __ipw_disable_interrupts(priv);
615         spin_unlock_irqrestore(&priv->irq_lock, flags);
616 }
617
618 static char *ipw_error_desc(u32 val)
619 {
620         switch (val) {
621         case IPW_FW_ERROR_OK:
622                 return "ERROR_OK";
623         case IPW_FW_ERROR_FAIL:
624                 return "ERROR_FAIL";
625         case IPW_FW_ERROR_MEMORY_UNDERFLOW:
626                 return "MEMORY_UNDERFLOW";
627         case IPW_FW_ERROR_MEMORY_OVERFLOW:
628                 return "MEMORY_OVERFLOW";
629         case IPW_FW_ERROR_BAD_PARAM:
630                 return "BAD_PARAM";
631         case IPW_FW_ERROR_BAD_CHECKSUM:
632                 return "BAD_CHECKSUM";
633         case IPW_FW_ERROR_NMI_INTERRUPT:
634                 return "NMI_INTERRUPT";
635         case IPW_FW_ERROR_BAD_DATABASE:
636                 return "BAD_DATABASE";
637         case IPW_FW_ERROR_ALLOC_FAIL:
638                 return "ALLOC_FAIL";
639         case IPW_FW_ERROR_DMA_UNDERRUN:
640                 return "DMA_UNDERRUN";
641         case IPW_FW_ERROR_DMA_STATUS:
642                 return "DMA_STATUS";
643         case IPW_FW_ERROR_DINO_ERROR:
644                 return "DINO_ERROR";
645         case IPW_FW_ERROR_EEPROM_ERROR:
646                 return "EEPROM_ERROR";
647         case IPW_FW_ERROR_SYSASSERT:
648                 return "SYSASSERT";
649         case IPW_FW_ERROR_FATAL_ERROR:
650                 return "FATAL_ERROR";
651         default:
652                 return "UNKNOWN_ERROR";
653         }
654 }
655
656 static void ipw_dump_error_log(struct ipw_priv *priv,
657                                struct ipw_fw_error *error)
658 {
659         u32 i;
660
661         if (!error) {
662                 IPW_ERROR("Error allocating and capturing error log.  "
663                           "Nothing to dump.\n");
664                 return;
665         }
666
667         IPW_ERROR("Start IPW Error Log Dump:\n");
668         IPW_ERROR("Status: 0x%08X, Config: %08X\n",
669                   error->status, error->config);
670
671         for (i = 0; i < error->elem_len; i++)
672                 IPW_ERROR("%s %i 0x%08x  0x%08x  0x%08x  0x%08x  0x%08x\n",
673                           ipw_error_desc(error->elem[i].desc),
674                           error->elem[i].time,
675                           error->elem[i].blink1,
676                           error->elem[i].blink2,
677                           error->elem[i].link1,
678                           error->elem[i].link2, error->elem[i].data);
679         for (i = 0; i < error->log_len; i++)
680                 IPW_ERROR("%i\t0x%08x\t%i\n",
681                           error->log[i].time,
682                           error->log[i].data, error->log[i].event);
683 }
684
685 static inline int ipw_is_init(struct ipw_priv *priv)
686 {
687         return (priv->status & STATUS_INIT) ? 1 : 0;
688 }
689
690 static int ipw_get_ordinal(struct ipw_priv *priv, u32 ord, void *val, u32 * len)
691 {
692         u32 addr, field_info, field_len, field_count, total_len;
693
694         IPW_DEBUG_ORD("ordinal = %i\n", ord);
695
696         if (!priv || !val || !len) {
697                 IPW_DEBUG_ORD("Invalid argument\n");
698                 return -EINVAL;
699         }
700
701         /* verify device ordinal tables have been initialized */
702         if (!priv->table0_addr || !priv->table1_addr || !priv->table2_addr) {
703                 IPW_DEBUG_ORD("Access ordinals before initialization\n");
704                 return -EINVAL;
705         }
706
707         switch (IPW_ORD_TABLE_ID_MASK & ord) {
708         case IPW_ORD_TABLE_0_MASK:
709                 /*
710                  * TABLE 0: Direct access to a table of 32 bit values
711                  *
712                  * This is a very simple table with the data directly
713                  * read from the table
714                  */
715
716                 /* remove the table id from the ordinal */
717                 ord &= IPW_ORD_TABLE_VALUE_MASK;
718
719                 /* boundary check */
720                 if (ord > priv->table0_len) {
721                         IPW_DEBUG_ORD("ordinal value (%i) longer then "
722                                       "max (%i)\n", ord, priv->table0_len);
723                         return -EINVAL;
724                 }
725
726                 /* verify we have enough room to store the value */
727                 if (*len < sizeof(u32)) {
728                         IPW_DEBUG_ORD("ordinal buffer length too small, "
729                                       "need %zd\n", sizeof(u32));
730                         return -EINVAL;
731                 }
732
733                 IPW_DEBUG_ORD("Reading TABLE0[%i] from offset 0x%08x\n",
734                               ord, priv->table0_addr + (ord << 2));
735
736                 *len = sizeof(u32);
737                 ord <<= 2;
738                 *((u32 *) val) = ipw_read32(priv, priv->table0_addr + ord);
739                 break;
740
741         case IPW_ORD_TABLE_1_MASK:
742                 /*
743                  * TABLE 1: Indirect access to a table of 32 bit values
744                  *
745                  * This is a fairly large table of u32 values each
746                  * representing starting addr for the data (which is
747                  * also a u32)
748                  */
749
750                 /* remove the table id from the ordinal */
751                 ord &= IPW_ORD_TABLE_VALUE_MASK;
752
753                 /* boundary check */
754                 if (ord > priv->table1_len) {
755                         IPW_DEBUG_ORD("ordinal value too long\n");
756                         return -EINVAL;
757                 }
758
759                 /* verify we have enough room to store the value */
760                 if (*len < sizeof(u32)) {
761                         IPW_DEBUG_ORD("ordinal buffer length too small, "
762                                       "need %zd\n", sizeof(u32));
763                         return -EINVAL;
764                 }
765
766                 *((u32 *) val) =
767                     ipw_read_reg32(priv, (priv->table1_addr + (ord << 2)));
768                 *len = sizeof(u32);
769                 break;
770
771         case IPW_ORD_TABLE_2_MASK:
772                 /*
773                  * TABLE 2: Indirect access to a table of variable sized values
774                  *
775                  * This table consist of six values, each containing
776                  *     - dword containing the starting offset of the data
777                  *     - dword containing the lengh in the first 16bits
778                  *       and the count in the second 16bits
779                  */
780
781                 /* remove the table id from the ordinal */
782                 ord &= IPW_ORD_TABLE_VALUE_MASK;
783
784                 /* boundary check */
785                 if (ord > priv->table2_len) {
786                         IPW_DEBUG_ORD("ordinal value too long\n");
787                         return -EINVAL;
788                 }
789
790                 /* get the address of statistic */
791                 addr = ipw_read_reg32(priv, priv->table2_addr + (ord << 3));
792
793                 /* get the second DW of statistics ;
794                  * two 16-bit words - first is length, second is count */
795                 field_info =
796                     ipw_read_reg32(priv,
797                                    priv->table2_addr + (ord << 3) +
798                                    sizeof(u32));
799
800                 /* get each entry length */
801                 field_len = *((u16 *) & field_info);
802
803                 /* get number of entries */
804                 field_count = *(((u16 *) & field_info) + 1);
805
806                 /* abort if not enough memory */
807                 total_len = field_len * field_count;
808                 if (total_len > *len) {
809                         *len = total_len;
810                         return -EINVAL;
811                 }
812
813                 *len = total_len;
814                 if (!total_len)
815                         return 0;
816
817                 IPW_DEBUG_ORD("addr = 0x%08x, total_len = %i, "
818                               "field_info = 0x%08x\n",
819                               addr, total_len, field_info);
820                 ipw_read_indirect(priv, addr, val, total_len);
821                 break;
822
823         default:
824                 IPW_DEBUG_ORD("Invalid ordinal!\n");
825                 return -EINVAL;
826
827         }
828
829         return 0;
830 }
831
832 static void ipw_init_ordinals(struct ipw_priv *priv)
833 {
834         priv->table0_addr = IPW_ORDINALS_TABLE_LOWER;
835         priv->table0_len = ipw_read32(priv, priv->table0_addr);
836
837         IPW_DEBUG_ORD("table 0 offset at 0x%08x, len = %i\n",
838                       priv->table0_addr, priv->table0_len);
839
840         priv->table1_addr = ipw_read32(priv, IPW_ORDINALS_TABLE_1);
841         priv->table1_len = ipw_read_reg32(priv, priv->table1_addr);
842
843         IPW_DEBUG_ORD("table 1 offset at 0x%08x, len = %i\n",
844                       priv->table1_addr, priv->table1_len);
845
846         priv->table2_addr = ipw_read32(priv, IPW_ORDINALS_TABLE_2);
847         priv->table2_len = ipw_read_reg32(priv, priv->table2_addr);
848         priv->table2_len &= 0x0000ffff; /* use first two bytes */
849
850         IPW_DEBUG_ORD("table 2 offset at 0x%08x, len = %i\n",
851                       priv->table2_addr, priv->table2_len);
852
853 }
854
855 static u32 ipw_register_toggle(u32 reg)
856 {
857         reg &= ~IPW_START_STANDBY;
858         if (reg & IPW_GATE_ODMA)
859                 reg &= ~IPW_GATE_ODMA;
860         if (reg & IPW_GATE_IDMA)
861                 reg &= ~IPW_GATE_IDMA;
862         if (reg & IPW_GATE_ADMA)
863                 reg &= ~IPW_GATE_ADMA;
864         return reg;
865 }
866
867 /*
868  * LED behavior:
869  * - On radio ON, turn on any LEDs that require to be on during start
870  * - On initialization, start unassociated blink
871  * - On association, disable unassociated blink
872  * - On disassociation, start unassociated blink
873  * - On radio OFF, turn off any LEDs started during radio on
874  *
875  */
876 #define LD_TIME_LINK_ON msecs_to_jiffies(300)
877 #define LD_TIME_LINK_OFF msecs_to_jiffies(2700)
878 #define LD_TIME_ACT_ON msecs_to_jiffies(250)
879
880 static void ipw_led_link_on(struct ipw_priv *priv)
881 {
882         unsigned long flags;
883         u32 led;
884
885         /* If configured to not use LEDs, or nic_type is 1,
886          * then we don't toggle a LINK led */
887         if (priv->config & CFG_NO_LED || priv->nic_type == EEPROM_NIC_TYPE_1)
888                 return;
889
890         spin_lock_irqsave(&priv->lock, flags);
891
892         if (!(priv->status & STATUS_RF_KILL_MASK) &&
893             !(priv->status & STATUS_LED_LINK_ON)) {
894                 IPW_DEBUG_LED("Link LED On\n");
895                 led = ipw_read_reg32(priv, IPW_EVENT_REG);
896                 led |= priv->led_association_on;
897
898                 led = ipw_register_toggle(led);
899
900                 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
901                 ipw_write_reg32(priv, IPW_EVENT_REG, led);
902
903                 priv->status |= STATUS_LED_LINK_ON;
904
905                 /* If we aren't associated, schedule turning the LED off */
906                 if (!(priv->status & STATUS_ASSOCIATED))
907                         schedule_delayed_work(&priv->led_link_off,
908                                               LD_TIME_LINK_ON);
909         }
910
911         spin_unlock_irqrestore(&priv->lock, flags);
912 }
913
914 static void ipw_bg_led_link_on(struct work_struct *work)
915 {
916         struct ipw_priv *priv =
917                 container_of(work, struct ipw_priv, led_link_on.work);
918         mutex_lock(&priv->mutex);
919         ipw_led_link_on(priv);
920         mutex_unlock(&priv->mutex);
921 }
922
923 static void ipw_led_link_off(struct ipw_priv *priv)
924 {
925         unsigned long flags;
926         u32 led;
927
928         /* If configured not to use LEDs, or nic type is 1,
929          * then we don't goggle the LINK led. */
930         if (priv->config & CFG_NO_LED || priv->nic_type == EEPROM_NIC_TYPE_1)
931                 return;
932
933         spin_lock_irqsave(&priv->lock, flags);
934
935         if (priv->status & STATUS_LED_LINK_ON) {
936                 led = ipw_read_reg32(priv, IPW_EVENT_REG);
937                 led &= priv->led_association_off;
938                 led = ipw_register_toggle(led);
939
940                 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
941                 ipw_write_reg32(priv, IPW_EVENT_REG, led);
942
943                 IPW_DEBUG_LED("Link LED Off\n");
944
945                 priv->status &= ~STATUS_LED_LINK_ON;
946
947                 /* If we aren't associated and the radio is on, schedule
948                  * turning the LED on (blink while unassociated) */
949                 if (!(priv->status & STATUS_RF_KILL_MASK) &&
950                     !(priv->status & STATUS_ASSOCIATED))
951                         schedule_delayed_work(&priv->led_link_on,
952                                               LD_TIME_LINK_OFF);
953
954         }
955
956         spin_unlock_irqrestore(&priv->lock, flags);
957 }
958
959 static void ipw_bg_led_link_off(struct work_struct *work)
960 {
961         struct ipw_priv *priv =
962                 container_of(work, struct ipw_priv, led_link_off.work);
963         mutex_lock(&priv->mutex);
964         ipw_led_link_off(priv);
965         mutex_unlock(&priv->mutex);
966 }
967
968 static void __ipw_led_activity_on(struct ipw_priv *priv)
969 {
970         u32 led;
971
972         if (priv->config & CFG_NO_LED)
973                 return;
974
975         if (priv->status & STATUS_RF_KILL_MASK)
976                 return;
977
978         if (!(priv->status & STATUS_LED_ACT_ON)) {
979                 led = ipw_read_reg32(priv, IPW_EVENT_REG);
980                 led |= priv->led_activity_on;
981
982                 led = ipw_register_toggle(led);
983
984                 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
985                 ipw_write_reg32(priv, IPW_EVENT_REG, led);
986
987                 IPW_DEBUG_LED("Activity LED On\n");
988
989                 priv->status |= STATUS_LED_ACT_ON;
990
991                 cancel_delayed_work(&priv->led_act_off);
992                 schedule_delayed_work(&priv->led_act_off, LD_TIME_ACT_ON);
993         } else {
994                 /* Reschedule LED off for full time period */
995                 cancel_delayed_work(&priv->led_act_off);
996                 schedule_delayed_work(&priv->led_act_off, LD_TIME_ACT_ON);
997         }
998 }
999
1000 #if 0
1001 void ipw_led_activity_on(struct ipw_priv *priv)
1002 {
1003         unsigned long flags;
1004         spin_lock_irqsave(&priv->lock, flags);
1005         __ipw_led_activity_on(priv);
1006         spin_unlock_irqrestore(&priv->lock, flags);
1007 }
1008 #endif  /*  0  */
1009
1010 static void ipw_led_activity_off(struct ipw_priv *priv)
1011 {
1012         unsigned long flags;
1013         u32 led;
1014
1015         if (priv->config & CFG_NO_LED)
1016                 return;
1017
1018         spin_lock_irqsave(&priv->lock, flags);
1019
1020         if (priv->status & STATUS_LED_ACT_ON) {
1021                 led = ipw_read_reg32(priv, IPW_EVENT_REG);
1022                 led &= priv->led_activity_off;
1023
1024                 led = ipw_register_toggle(led);
1025
1026                 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
1027                 ipw_write_reg32(priv, IPW_EVENT_REG, led);
1028
1029                 IPW_DEBUG_LED("Activity LED Off\n");
1030
1031                 priv->status &= ~STATUS_LED_ACT_ON;
1032         }
1033
1034         spin_unlock_irqrestore(&priv->lock, flags);
1035 }
1036
1037 static void ipw_bg_led_activity_off(struct work_struct *work)
1038 {
1039         struct ipw_priv *priv =
1040                 container_of(work, struct ipw_priv, led_act_off.work);
1041         mutex_lock(&priv->mutex);
1042         ipw_led_activity_off(priv);
1043         mutex_unlock(&priv->mutex);
1044 }
1045
1046 static void ipw_led_band_on(struct ipw_priv *priv)
1047 {
1048         unsigned long flags;
1049         u32 led;
1050
1051         /* Only nic type 1 supports mode LEDs */
1052         if (priv->config & CFG_NO_LED ||
1053             priv->nic_type != EEPROM_NIC_TYPE_1 || !priv->assoc_network)
1054                 return;
1055
1056         spin_lock_irqsave(&priv->lock, flags);
1057
1058         led = ipw_read_reg32(priv, IPW_EVENT_REG);
1059         if (priv->assoc_network->mode == IEEE_A) {
1060                 led |= priv->led_ofdm_on;
1061                 led &= priv->led_association_off;
1062                 IPW_DEBUG_LED("Mode LED On: 802.11a\n");
1063         } else if (priv->assoc_network->mode == IEEE_G) {
1064                 led |= priv->led_ofdm_on;
1065                 led |= priv->led_association_on;
1066                 IPW_DEBUG_LED("Mode LED On: 802.11g\n");
1067         } else {
1068                 led &= priv->led_ofdm_off;
1069                 led |= priv->led_association_on;
1070                 IPW_DEBUG_LED("Mode LED On: 802.11b\n");
1071         }
1072
1073         led = ipw_register_toggle(led);
1074
1075         IPW_DEBUG_LED("Reg: 0x%08X\n", led);
1076         ipw_write_reg32(priv, IPW_EVENT_REG, led);
1077
1078         spin_unlock_irqrestore(&priv->lock, flags);
1079 }
1080
1081 static void ipw_led_band_off(struct ipw_priv *priv)
1082 {
1083         unsigned long flags;
1084         u32 led;
1085
1086         /* Only nic type 1 supports mode LEDs */
1087         if (priv->config & CFG_NO_LED || priv->nic_type != EEPROM_NIC_TYPE_1)
1088                 return;
1089
1090         spin_lock_irqsave(&priv->lock, flags);
1091
1092         led = ipw_read_reg32(priv, IPW_EVENT_REG);
1093         led &= priv->led_ofdm_off;
1094         led &= priv->led_association_off;
1095
1096         led = ipw_register_toggle(led);
1097
1098         IPW_DEBUG_LED("Reg: 0x%08X\n", led);
1099         ipw_write_reg32(priv, IPW_EVENT_REG, led);
1100
1101         spin_unlock_irqrestore(&priv->lock, flags);
1102 }
1103
1104 static void ipw_led_radio_on(struct ipw_priv *priv)
1105 {
1106         ipw_led_link_on(priv);
1107 }
1108
1109 static void ipw_led_radio_off(struct ipw_priv *priv)
1110 {
1111         ipw_led_activity_off(priv);
1112         ipw_led_link_off(priv);
1113 }
1114
1115 static void ipw_led_link_up(struct ipw_priv *priv)
1116 {
1117         /* Set the Link Led on for all nic types */
1118         ipw_led_link_on(priv);
1119 }
1120
1121 static void ipw_led_link_down(struct ipw_priv *priv)
1122 {
1123         ipw_led_activity_off(priv);
1124         ipw_led_link_off(priv);
1125
1126         if (priv->status & STATUS_RF_KILL_MASK)
1127                 ipw_led_radio_off(priv);
1128 }
1129
1130 static void ipw_led_init(struct ipw_priv *priv)
1131 {
1132         priv->nic_type = priv->eeprom[EEPROM_NIC_TYPE];
1133
1134         /* Set the default PINs for the link and activity leds */
1135         priv->led_activity_on = IPW_ACTIVITY_LED;
1136         priv->led_activity_off = ~(IPW_ACTIVITY_LED);
1137
1138         priv->led_association_on = IPW_ASSOCIATED_LED;
1139         priv->led_association_off = ~(IPW_ASSOCIATED_LED);
1140
1141         /* Set the default PINs for the OFDM leds */
1142         priv->led_ofdm_on = IPW_OFDM_LED;
1143         priv->led_ofdm_off = ~(IPW_OFDM_LED);
1144
1145         switch (priv->nic_type) {
1146         case EEPROM_NIC_TYPE_1:
1147                 /* In this NIC type, the LEDs are reversed.... */
1148                 priv->led_activity_on = IPW_ASSOCIATED_LED;
1149                 priv->led_activity_off = ~(IPW_ASSOCIATED_LED);
1150                 priv->led_association_on = IPW_ACTIVITY_LED;
1151                 priv->led_association_off = ~(IPW_ACTIVITY_LED);
1152
1153                 if (!(priv->config & CFG_NO_LED))
1154                         ipw_led_band_on(priv);
1155
1156                 /* And we don't blink link LEDs for this nic, so
1157                  * just return here */
1158                 return;
1159
1160         case EEPROM_NIC_TYPE_3:
1161         case EEPROM_NIC_TYPE_2:
1162         case EEPROM_NIC_TYPE_4:
1163         case EEPROM_NIC_TYPE_0:
1164                 break;
1165
1166         default:
1167                 IPW_DEBUG_INFO("Unknown NIC type from EEPROM: %d\n",
1168                                priv->nic_type);
1169                 priv->nic_type = EEPROM_NIC_TYPE_0;
1170                 break;
1171         }
1172
1173         if (!(priv->config & CFG_NO_LED)) {
1174                 if (priv->status & STATUS_ASSOCIATED)
1175                         ipw_led_link_on(priv);
1176                 else
1177                         ipw_led_link_off(priv);
1178         }
1179 }
1180
1181 static void ipw_led_shutdown(struct ipw_priv *priv)
1182 {
1183         ipw_led_activity_off(priv);
1184         ipw_led_link_off(priv);
1185         ipw_led_band_off(priv);
1186         cancel_delayed_work(&priv->led_link_on);
1187         cancel_delayed_work(&priv->led_link_off);
1188         cancel_delayed_work(&priv->led_act_off);
1189 }
1190
1191 /*
1192  * The following adds a new attribute to the sysfs representation
1193  * of this device driver (i.e. a new file in /sys/bus/pci/drivers/ipw/)
1194  * used for controlling the debug level.
1195  *
1196  * See the level definitions in ipw for details.
1197  */
1198 static ssize_t debug_level_show(struct device_driver *d, char *buf)
1199 {
1200         return sprintf(buf, "0x%08X\n", ipw_debug_level);
1201 }
1202
1203 static ssize_t debug_level_store(struct device_driver *d, const char *buf,
1204                                  size_t count)
1205 {
1206         char *p = (char *)buf;
1207         u32 val;
1208
1209         if (p[1] == 'x' || p[1] == 'X' || p[0] == 'x' || p[0] == 'X') {
1210                 p++;
1211                 if (p[0] == 'x' || p[0] == 'X')
1212                         p++;
1213                 val = simple_strtoul(p, &p, 16);
1214         } else
1215                 val = simple_strtoul(p, &p, 10);
1216         if (p == buf)
1217                 printk(KERN_INFO DRV_NAME
1218                        ": %s is not in hex or decimal form.\n", buf);
1219         else
1220                 ipw_debug_level = val;
1221
1222         return strnlen(buf, count);
1223 }
1224 static DRIVER_ATTR_RW(debug_level);
1225
1226 static inline u32 ipw_get_event_log_len(struct ipw_priv *priv)
1227 {
1228         /* length = 1st dword in log */
1229         return ipw_read_reg32(priv, ipw_read32(priv, IPW_EVENT_LOG));
1230 }
1231
1232 static void ipw_capture_event_log(struct ipw_priv *priv,
1233                                   u32 log_len, struct ipw_event *log)
1234 {
1235         u32 base;
1236
1237         if (log_len) {
1238                 base = ipw_read32(priv, IPW_EVENT_LOG);
1239                 ipw_read_indirect(priv, base + sizeof(base) + sizeof(u32),
1240                                   (u8 *) log, sizeof(*log) * log_len);
1241         }
1242 }
1243
1244 static struct ipw_fw_error *ipw_alloc_error_log(struct ipw_priv *priv)
1245 {
1246         struct ipw_fw_error *error;
1247         u32 log_len = ipw_get_event_log_len(priv);
1248         u32 base = ipw_read32(priv, IPW_ERROR_LOG);
1249         u32 elem_len = ipw_read_reg32(priv, base);
1250
1251         error = kmalloc(sizeof(*error) +
1252                         sizeof(*error->elem) * elem_len +
1253                         sizeof(*error->log) * log_len, GFP_ATOMIC);
1254         if (!error) {
1255                 IPW_ERROR("Memory allocation for firmware error log "
1256                           "failed.\n");
1257                 return NULL;
1258         }
1259         error->jiffies = jiffies;
1260         error->status = priv->status;
1261         error->config = priv->config;
1262         error->elem_len = elem_len;
1263         error->log_len = log_len;
1264         error->elem = (struct ipw_error_elem *)error->payload;
1265         error->log = (struct ipw_event *)(error->elem + elem_len);
1266
1267         ipw_capture_event_log(priv, log_len, error->log);
1268
1269         if (elem_len)
1270                 ipw_read_indirect(priv, base + sizeof(base), (u8 *) error->elem,
1271                                   sizeof(*error->elem) * elem_len);
1272
1273         return error;
1274 }
1275
1276 static ssize_t show_event_log(struct device *d,
1277                               struct device_attribute *attr, char *buf)
1278 {
1279         struct ipw_priv *priv = dev_get_drvdata(d);
1280         u32 log_len = ipw_get_event_log_len(priv);
1281         u32 log_size;
1282         struct ipw_event *log;
1283         u32 len = 0, i;
1284
1285         /* not using min() because of its strict type checking */
1286         log_size = PAGE_SIZE / sizeof(*log) > log_len ?
1287                         sizeof(*log) * log_len : PAGE_SIZE;
1288         log = kzalloc(log_size, GFP_KERNEL);
1289         if (!log) {
1290                 IPW_ERROR("Unable to allocate memory for log\n");
1291                 return 0;
1292         }
1293         log_len = log_size / sizeof(*log);
1294         ipw_capture_event_log(priv, log_len, log);
1295
1296         len += snprintf(buf + len, PAGE_SIZE - len, "%08X", log_len);
1297         for (i = 0; i < log_len; i++)
1298                 len += snprintf(buf + len, PAGE_SIZE - len,
1299                                 "\n%08X%08X%08X",
1300                                 log[i].time, log[i].event, log[i].data);
1301         len += snprintf(buf + len, PAGE_SIZE - len, "\n");
1302         kfree(log);
1303         return len;
1304 }
1305
1306 static DEVICE_ATTR(event_log, S_IRUGO, show_event_log, NULL);
1307
1308 static ssize_t show_error(struct device *d,
1309                           struct device_attribute *attr, char *buf)
1310 {
1311         struct ipw_priv *priv = dev_get_drvdata(d);
1312         u32 len = 0, i;
1313         if (!priv->error)
1314                 return 0;
1315         len += snprintf(buf + len, PAGE_SIZE - len,
1316                         "%08lX%08X%08X%08X",
1317                         priv->error->jiffies,
1318                         priv->error->status,
1319                         priv->error->config, priv->error->elem_len);
1320         for (i = 0; i < priv->error->elem_len; i++)
1321                 len += snprintf(buf + len, PAGE_SIZE - len,
1322                                 "\n%08X%08X%08X%08X%08X%08X%08X",
1323                                 priv->error->elem[i].time,
1324                                 priv->error->elem[i].desc,
1325                                 priv->error->elem[i].blink1,
1326                                 priv->error->elem[i].blink2,
1327                                 priv->error->elem[i].link1,
1328                                 priv->error->elem[i].link2,
1329                                 priv->error->elem[i].data);
1330
1331         len += snprintf(buf + len, PAGE_SIZE - len,
1332                         "\n%08X", priv->error->log_len);
1333         for (i = 0; i < priv->error->log_len; i++)
1334                 len += snprintf(buf + len, PAGE_SIZE - len,
1335                                 "\n%08X%08X%08X",
1336                                 priv->error->log[i].time,
1337                                 priv->error->log[i].event,
1338                                 priv->error->log[i].data);
1339         len += snprintf(buf + len, PAGE_SIZE - len, "\n");
1340         return len;
1341 }
1342
1343 static ssize_t clear_error(struct device *d,
1344                            struct device_attribute *attr,
1345                            const char *buf, size_t count)
1346 {
1347         struct ipw_priv *priv = dev_get_drvdata(d);
1348
1349         kfree(priv->error);
1350         priv->error = NULL;
1351         return count;
1352 }
1353
1354 static DEVICE_ATTR(error, S_IRUGO | S_IWUSR, show_error, clear_error);
1355
1356 static ssize_t show_cmd_log(struct device *d,
1357                             struct device_attribute *attr, char *buf)
1358 {
1359         struct ipw_priv *priv = dev_get_drvdata(d);
1360         u32 len = 0, i;
1361         if (!priv->cmdlog)
1362                 return 0;
1363         for (i = (priv->cmdlog_pos + 1) % priv->cmdlog_len;
1364              (i != priv->cmdlog_pos) && (len < PAGE_SIZE);
1365              i = (i + 1) % priv->cmdlog_len) {
1366                 len +=
1367                     snprintf(buf + len, PAGE_SIZE - len,
1368                              "\n%08lX%08X%08X%08X\n", priv->cmdlog[i].jiffies,
1369                              priv->cmdlog[i].retcode, priv->cmdlog[i].cmd.cmd,
1370                              priv->cmdlog[i].cmd.len);
1371                 len +=
1372                     snprintk_buf(buf + len, PAGE_SIZE - len,
1373                                  (u8 *) priv->cmdlog[i].cmd.param,
1374                                  priv->cmdlog[i].cmd.len);
1375                 len += snprintf(buf + len, PAGE_SIZE - len, "\n");
1376         }
1377         len += snprintf(buf + len, PAGE_SIZE - len, "\n");
1378         return len;
1379 }
1380
1381 static DEVICE_ATTR(cmd_log, S_IRUGO, show_cmd_log, NULL);
1382
1383 #ifdef CONFIG_IPW2200_PROMISCUOUS
1384 static void ipw_prom_free(struct ipw_priv *priv);
1385 static int ipw_prom_alloc(struct ipw_priv *priv);
1386 static ssize_t store_rtap_iface(struct device *d,
1387                          struct device_attribute *attr,
1388                          const char *buf, size_t count)
1389 {
1390         struct ipw_priv *priv = dev_get_drvdata(d);
1391         int rc = 0;
1392
1393         if (count < 1)
1394                 return -EINVAL;
1395
1396         switch (buf[0]) {
1397         case '0':
1398                 if (!rtap_iface)
1399                         return count;
1400
1401                 if (netif_running(priv->prom_net_dev)) {
1402                         IPW_WARNING("Interface is up.  Cannot unregister.\n");
1403                         return count;
1404                 }
1405
1406                 ipw_prom_free(priv);
1407                 rtap_iface = 0;
1408                 break;
1409
1410         case '1':
1411                 if (rtap_iface)
1412                         return count;
1413
1414                 rc = ipw_prom_alloc(priv);
1415                 if (!rc)
1416                         rtap_iface = 1;
1417                 break;
1418
1419         default:
1420                 return -EINVAL;
1421         }
1422
1423         if (rc) {
1424                 IPW_ERROR("Failed to register promiscuous network "
1425                           "device (error %d).\n", rc);
1426         }
1427
1428         return count;
1429 }
1430
1431 static ssize_t show_rtap_iface(struct device *d,
1432                         struct device_attribute *attr,
1433                         char *buf)
1434 {
1435         struct ipw_priv *priv = dev_get_drvdata(d);
1436         if (rtap_iface)
1437                 return sprintf(buf, "%s", priv->prom_net_dev->name);
1438         else {
1439                 buf[0] = '-';
1440                 buf[1] = '1';
1441                 buf[2] = '\0';
1442                 return 3;
1443         }
1444 }
1445
1446 static DEVICE_ATTR(rtap_iface, S_IWUSR | S_IRUSR, show_rtap_iface,
1447                    store_rtap_iface);
1448
1449 static ssize_t store_rtap_filter(struct device *d,
1450                          struct device_attribute *attr,
1451                          const char *buf, size_t count)
1452 {
1453         struct ipw_priv *priv = dev_get_drvdata(d);
1454
1455         if (!priv->prom_priv) {
1456                 IPW_ERROR("Attempting to set filter without "
1457                           "rtap_iface enabled.\n");
1458                 return -EPERM;
1459         }
1460
1461         priv->prom_priv->filter = simple_strtol(buf, NULL, 0);
1462
1463         IPW_DEBUG_INFO("Setting rtap filter to " BIT_FMT16 "\n",
1464                        BIT_ARG16(priv->prom_priv->filter));
1465
1466         return count;
1467 }
1468
1469 static ssize_t show_rtap_filter(struct device *d,
1470                         struct device_attribute *attr,
1471                         char *buf)
1472 {
1473         struct ipw_priv *priv = dev_get_drvdata(d);
1474         return sprintf(buf, "0x%04X",
1475                        priv->prom_priv ? priv->prom_priv->filter : 0);
1476 }
1477
1478 static DEVICE_ATTR(rtap_filter, S_IWUSR | S_IRUSR, show_rtap_filter,
1479                    store_rtap_filter);
1480 #endif
1481
1482 static ssize_t show_scan_age(struct device *d, struct device_attribute *attr,
1483                              char *buf)
1484 {
1485         struct ipw_priv *priv = dev_get_drvdata(d);
1486         return sprintf(buf, "%d\n", priv->ieee->scan_age);
1487 }
1488
1489 static ssize_t store_scan_age(struct device *d, struct device_attribute *attr,
1490                               const char *buf, size_t count)
1491 {
1492         struct ipw_priv *priv = dev_get_drvdata(d);
1493         struct net_device *dev = priv->net_dev;
1494         char buffer[] = "00000000";
1495         unsigned long len =
1496             (sizeof(buffer) - 1) > count ? count : sizeof(buffer) - 1;
1497         unsigned long val;
1498         char *p = buffer;
1499
1500         IPW_DEBUG_INFO("enter\n");
1501
1502         strncpy(buffer, buf, len);
1503         buffer[len] = 0;
1504
1505         if (p[1] == 'x' || p[1] == 'X' || p[0] == 'x' || p[0] == 'X') {
1506                 p++;
1507                 if (p[0] == 'x' || p[0] == 'X')
1508                         p++;
1509                 val = simple_strtoul(p, &p, 16);
1510         } else
1511                 val = simple_strtoul(p, &p, 10);
1512         if (p == buffer) {
1513                 IPW_DEBUG_INFO("%s: user supplied invalid value.\n", dev->name);
1514         } else {
1515                 priv->ieee->scan_age = val;
1516                 IPW_DEBUG_INFO("set scan_age = %u\n", priv->ieee->scan_age);
1517         }
1518
1519         IPW_DEBUG_INFO("exit\n");
1520         return len;
1521 }
1522
1523 static DEVICE_ATTR(scan_age, S_IWUSR | S_IRUGO, show_scan_age, store_scan_age);
1524
1525 static ssize_t show_led(struct device *d, struct device_attribute *attr,
1526                         char *buf)
1527 {
1528         struct ipw_priv *priv = dev_get_drvdata(d);
1529         return sprintf(buf, "%d\n", (priv->config & CFG_NO_LED) ? 0 : 1);
1530 }
1531
1532 static ssize_t store_led(struct device *d, struct device_attribute *attr,
1533                          const char *buf, size_t count)
1534 {
1535         struct ipw_priv *priv = dev_get_drvdata(d);
1536
1537         IPW_DEBUG_INFO("enter\n");
1538
1539         if (count == 0)
1540                 return 0;
1541
1542         if (*buf == 0) {
1543                 IPW_DEBUG_LED("Disabling LED control.\n");
1544                 priv->config |= CFG_NO_LED;
1545                 ipw_led_shutdown(priv);
1546         } else {
1547                 IPW_DEBUG_LED("Enabling LED control.\n");
1548                 priv->config &= ~CFG_NO_LED;
1549                 ipw_led_init(priv);
1550         }
1551
1552         IPW_DEBUG_INFO("exit\n");
1553         return count;
1554 }
1555
1556 static DEVICE_ATTR(led, S_IWUSR | S_IRUGO, show_led, store_led);
1557
1558 static ssize_t show_status(struct device *d,
1559                            struct device_attribute *attr, char *buf)
1560 {
1561         struct ipw_priv *p = dev_get_drvdata(d);
1562         return sprintf(buf, "0x%08x\n", (int)p->status);
1563 }
1564
1565 static DEVICE_ATTR(status, S_IRUGO, show_status, NULL);
1566
1567 static ssize_t show_cfg(struct device *d, struct device_attribute *attr,
1568                         char *buf)
1569 {
1570         struct ipw_priv *p = dev_get_drvdata(d);
1571         return sprintf(buf, "0x%08x\n", (int)p->config);
1572 }
1573
1574 static DEVICE_ATTR(cfg, S_IRUGO, show_cfg, NULL);
1575
1576 static ssize_t show_nic_type(struct device *d,
1577                              struct device_attribute *attr, char *buf)
1578 {
1579         struct ipw_priv *priv = dev_get_drvdata(d);
1580         return sprintf(buf, "TYPE: %d\n", priv->nic_type);
1581 }
1582
1583 static DEVICE_ATTR(nic_type, S_IRUGO, show_nic_type, NULL);
1584
1585 static ssize_t show_ucode_version(struct device *d,
1586                                   struct device_attribute *attr, char *buf)
1587 {
1588         u32 len = sizeof(u32), tmp = 0;
1589         struct ipw_priv *p = dev_get_drvdata(d);
1590
1591         if (ipw_get_ordinal(p, IPW_ORD_STAT_UCODE_VERSION, &tmp, &len))
1592                 return 0;
1593
1594         return sprintf(buf, "0x%08x\n", tmp);
1595 }
1596
1597 static DEVICE_ATTR(ucode_version, S_IWUSR | S_IRUGO, show_ucode_version, NULL);
1598
1599 static ssize_t show_rtc(struct device *d, struct device_attribute *attr,
1600                         char *buf)
1601 {
1602         u32 len = sizeof(u32), tmp = 0;
1603         struct ipw_priv *p = dev_get_drvdata(d);
1604
1605         if (ipw_get_ordinal(p, IPW_ORD_STAT_RTC, &tmp, &len))
1606                 return 0;
1607
1608         return sprintf(buf, "0x%08x\n", tmp);
1609 }
1610
1611 static DEVICE_ATTR(rtc, S_IWUSR | S_IRUGO, show_rtc, NULL);
1612
1613 /*
1614  * Add a device attribute to view/control the delay between eeprom
1615  * operations.
1616  */
1617 static ssize_t show_eeprom_delay(struct device *d,
1618                                  struct device_attribute *attr, char *buf)
1619 {
1620         struct ipw_priv *p = dev_get_drvdata(d);
1621         int n = p->eeprom_delay;
1622         return sprintf(buf, "%i\n", n);
1623 }
1624 static ssize_t store_eeprom_delay(struct device *d,
1625                                   struct device_attribute *attr,
1626                                   const char *buf, size_t count)
1627 {
1628         struct ipw_priv *p = dev_get_drvdata(d);
1629         sscanf(buf, "%i", &p->eeprom_delay);
1630         return strnlen(buf, count);
1631 }
1632
1633 static DEVICE_ATTR(eeprom_delay, S_IWUSR | S_IRUGO,
1634                    show_eeprom_delay, store_eeprom_delay);
1635
1636 static ssize_t show_command_event_reg(struct device *d,
1637                                       struct device_attribute *attr, char *buf)
1638 {
1639         u32 reg = 0;
1640         struct ipw_priv *p = dev_get_drvdata(d);
1641
1642         reg = ipw_read_reg32(p, IPW_INTERNAL_CMD_EVENT);
1643         return sprintf(buf, "0x%08x\n", reg);
1644 }
1645 static ssize_t store_command_event_reg(struct device *d,
1646                                        struct device_attribute *attr,
1647                                        const char *buf, size_t count)
1648 {
1649         u32 reg;
1650         struct ipw_priv *p = dev_get_drvdata(d);
1651
1652         sscanf(buf, "%x", &reg);
1653         ipw_write_reg32(p, IPW_INTERNAL_CMD_EVENT, reg);
1654         return strnlen(buf, count);
1655 }
1656
1657 static DEVICE_ATTR(command_event_reg, S_IWUSR | S_IRUGO,
1658                    show_command_event_reg, store_command_event_reg);
1659
1660 static ssize_t show_mem_gpio_reg(struct device *d,
1661                                  struct device_attribute *attr, char *buf)
1662 {
1663         u32 reg = 0;
1664         struct ipw_priv *p = dev_get_drvdata(d);
1665
1666         reg = ipw_read_reg32(p, 0x301100);
1667         return sprintf(buf, "0x%08x\n", reg);
1668 }
1669 static ssize_t store_mem_gpio_reg(struct device *d,
1670                                   struct device_attribute *attr,
1671                                   const char *buf, size_t count)
1672 {
1673         u32 reg;
1674         struct ipw_priv *p = dev_get_drvdata(d);
1675
1676         sscanf(buf, "%x", &reg);
1677         ipw_write_reg32(p, 0x301100, reg);
1678         return strnlen(buf, count);
1679 }
1680
1681 static DEVICE_ATTR(mem_gpio_reg, S_IWUSR | S_IRUGO,
1682                    show_mem_gpio_reg, store_mem_gpio_reg);
1683
1684 static ssize_t show_indirect_dword(struct device *d,
1685                                    struct device_attribute *attr, char *buf)
1686 {
1687         u32 reg = 0;
1688         struct ipw_priv *priv = dev_get_drvdata(d);
1689
1690         if (priv->status & STATUS_INDIRECT_DWORD)
1691                 reg = ipw_read_reg32(priv, priv->indirect_dword);
1692         else
1693                 reg = 0;
1694
1695         return sprintf(buf, "0x%08x\n", reg);
1696 }
1697 static ssize_t store_indirect_dword(struct device *d,
1698                                     struct device_attribute *attr,
1699                                     const char *buf, size_t count)
1700 {
1701         struct ipw_priv *priv = dev_get_drvdata(d);
1702
1703         sscanf(buf, "%x", &priv->indirect_dword);
1704         priv->status |= STATUS_INDIRECT_DWORD;
1705         return strnlen(buf, count);
1706 }
1707
1708 static DEVICE_ATTR(indirect_dword, S_IWUSR | S_IRUGO,
1709                    show_indirect_dword, store_indirect_dword);
1710
1711 static ssize_t show_indirect_byte(struct device *d,
1712                                   struct device_attribute *attr, char *buf)
1713 {
1714         u8 reg = 0;
1715         struct ipw_priv *priv = dev_get_drvdata(d);
1716
1717         if (priv->status & STATUS_INDIRECT_BYTE)
1718                 reg = ipw_read_reg8(priv, priv->indirect_byte);
1719         else
1720                 reg = 0;
1721
1722         return sprintf(buf, "0x%02x\n", reg);
1723 }
1724 static ssize_t store_indirect_byte(struct device *d,
1725                                    struct device_attribute *attr,
1726                                    const char *buf, size_t count)
1727 {
1728         struct ipw_priv *priv = dev_get_drvdata(d);
1729
1730         sscanf(buf, "%x", &priv->indirect_byte);
1731         priv->status |= STATUS_INDIRECT_BYTE;
1732         return strnlen(buf, count);
1733 }
1734
1735 static DEVICE_ATTR(indirect_byte, S_IWUSR | S_IRUGO,
1736                    show_indirect_byte, store_indirect_byte);
1737
1738 static ssize_t show_direct_dword(struct device *d,
1739                                  struct device_attribute *attr, char *buf)
1740 {
1741         u32 reg = 0;
1742         struct ipw_priv *priv = dev_get_drvdata(d);
1743
1744         if (priv->status & STATUS_DIRECT_DWORD)
1745                 reg = ipw_read32(priv, priv->direct_dword);
1746         else
1747                 reg = 0;
1748
1749         return sprintf(buf, "0x%08x\n", reg);
1750 }
1751 static ssize_t store_direct_dword(struct device *d,
1752                                   struct device_attribute *attr,
1753                                   const char *buf, size_t count)
1754 {
1755         struct ipw_priv *priv = dev_get_drvdata(d);
1756
1757         sscanf(buf, "%x", &priv->direct_dword);
1758         priv->status |= STATUS_DIRECT_DWORD;
1759         return strnlen(buf, count);
1760 }
1761
1762 static DEVICE_ATTR(direct_dword, S_IWUSR | S_IRUGO,
1763                    show_direct_dword, store_direct_dword);
1764
1765 static int rf_kill_active(struct ipw_priv *priv)
1766 {
1767         if (0 == (ipw_read32(priv, 0x30) & 0x10000)) {
1768                 priv->status |= STATUS_RF_KILL_HW;
1769                 wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, true);
1770         } else {
1771                 priv->status &= ~STATUS_RF_KILL_HW;
1772                 wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, false);
1773         }
1774
1775         return (priv->status & STATUS_RF_KILL_HW) ? 1 : 0;
1776 }
1777
1778 static ssize_t show_rf_kill(struct device *d, struct device_attribute *attr,
1779                             char *buf)
1780 {
1781         /* 0 - RF kill not enabled
1782            1 - SW based RF kill active (sysfs)
1783            2 - HW based RF kill active
1784            3 - Both HW and SW baed RF kill active */
1785         struct ipw_priv *priv = dev_get_drvdata(d);
1786         int val = ((priv->status & STATUS_RF_KILL_SW) ? 0x1 : 0x0) |
1787             (rf_kill_active(priv) ? 0x2 : 0x0);
1788         return sprintf(buf, "%i\n", val);
1789 }
1790
1791 static int ipw_radio_kill_sw(struct ipw_priv *priv, int disable_radio)
1792 {
1793         if ((disable_radio ? 1 : 0) ==
1794             ((priv->status & STATUS_RF_KILL_SW) ? 1 : 0))
1795                 return 0;
1796
1797         IPW_DEBUG_RF_KILL("Manual SW RF Kill set to: RADIO  %s\n",
1798                           disable_radio ? "OFF" : "ON");
1799
1800         if (disable_radio) {
1801                 priv->status |= STATUS_RF_KILL_SW;
1802
1803                 cancel_delayed_work(&priv->request_scan);
1804                 cancel_delayed_work(&priv->request_direct_scan);
1805                 cancel_delayed_work(&priv->request_passive_scan);
1806                 cancel_delayed_work(&priv->scan_event);
1807                 schedule_work(&priv->down);
1808         } else {
1809                 priv->status &= ~STATUS_RF_KILL_SW;
1810                 if (rf_kill_active(priv)) {
1811                         IPW_DEBUG_RF_KILL("Can not turn radio back on - "
1812                                           "disabled by HW switch\n");
1813                         /* Make sure the RF_KILL check timer is running */
1814                         cancel_delayed_work(&priv->rf_kill);
1815                         schedule_delayed_work(&priv->rf_kill,
1816                                               round_jiffies_relative(2 * HZ));
1817                 } else
1818                         schedule_work(&priv->up);
1819         }
1820
1821         return 1;
1822 }
1823
1824 static ssize_t store_rf_kill(struct device *d, struct device_attribute *attr,
1825                              const char *buf, size_t count)
1826 {
1827         struct ipw_priv *priv = dev_get_drvdata(d);
1828
1829         ipw_radio_kill_sw(priv, buf[0] == '1');
1830
1831         return count;
1832 }
1833
1834 static DEVICE_ATTR(rf_kill, S_IWUSR | S_IRUGO, show_rf_kill, store_rf_kill);
1835
1836 static ssize_t show_speed_scan(struct device *d, struct device_attribute *attr,
1837                                char *buf)
1838 {
1839         struct ipw_priv *priv = dev_get_drvdata(d);
1840         int pos = 0, len = 0;
1841         if (priv->config & CFG_SPEED_SCAN) {
1842                 while (priv->speed_scan[pos] != 0)
1843                         len += sprintf(&buf[len], "%d ",
1844                                        priv->speed_scan[pos++]);
1845                 return len + sprintf(&buf[len], "\n");
1846         }
1847
1848         return sprintf(buf, "0\n");
1849 }
1850
1851 static ssize_t store_speed_scan(struct device *d, struct device_attribute *attr,
1852                                 const char *buf, size_t count)
1853 {
1854         struct ipw_priv *priv = dev_get_drvdata(d);
1855         int channel, pos = 0;
1856         const char *p = buf;
1857
1858         /* list of space separated channels to scan, optionally ending with 0 */
1859         while ((channel = simple_strtol(p, NULL, 0))) {
1860                 if (pos == MAX_SPEED_SCAN - 1) {
1861                         priv->speed_scan[pos] = 0;
1862                         break;
1863                 }
1864
1865                 if (libipw_is_valid_channel(priv->ieee, channel))
1866                         priv->speed_scan[pos++] = channel;
1867                 else
1868                         IPW_WARNING("Skipping invalid channel request: %d\n",
1869                                     channel);
1870                 p = strchr(p, ' ');
1871                 if (!p)
1872                         break;
1873                 while (*p == ' ' || *p == '\t')
1874                         p++;
1875         }
1876
1877         if (pos == 0)
1878                 priv->config &= ~CFG_SPEED_SCAN;
1879         else {
1880                 priv->speed_scan_pos = 0;
1881                 priv->config |= CFG_SPEED_SCAN;
1882         }
1883
1884         return count;
1885 }
1886
1887 static DEVICE_ATTR(speed_scan, S_IWUSR | S_IRUGO, show_speed_scan,
1888                    store_speed_scan);
1889
1890 static ssize_t show_net_stats(struct device *d, struct device_attribute *attr,
1891                               char *buf)
1892 {
1893         struct ipw_priv *priv = dev_get_drvdata(d);
1894         return sprintf(buf, "%c\n", (priv->config & CFG_NET_STATS) ? '1' : '0');
1895 }
1896
1897 static ssize_t store_net_stats(struct device *d, struct device_attribute *attr,
1898                                const char *buf, size_t count)
1899 {
1900         struct ipw_priv *priv = dev_get_drvdata(d);
1901         if (buf[0] == '1')
1902                 priv->config |= CFG_NET_STATS;
1903         else
1904                 priv->config &= ~CFG_NET_STATS;
1905
1906         return count;
1907 }
1908
1909 static DEVICE_ATTR(net_stats, S_IWUSR | S_IRUGO,
1910                    show_net_stats, store_net_stats);
1911
1912 static ssize_t show_channels(struct device *d,
1913                              struct device_attribute *attr,
1914                              char *buf)
1915 {
1916         struct ipw_priv *priv = dev_get_drvdata(d);
1917         const struct libipw_geo *geo = libipw_get_geo(priv->ieee);
1918         int len = 0, i;
1919
1920         len = sprintf(&buf[len],
1921                       "Displaying %d channels in 2.4Ghz band "
1922                       "(802.11bg):\n", geo->bg_channels);
1923
1924         for (i = 0; i < geo->bg_channels; i++) {
1925                 len += sprintf(&buf[len], "%d: BSS%s%s, %s, Band %s.\n",
1926                                geo->bg[i].channel,
1927                                geo->bg[i].flags & LIBIPW_CH_RADAR_DETECT ?
1928                                " (radar spectrum)" : "",
1929                                ((geo->bg[i].flags & LIBIPW_CH_NO_IBSS) ||
1930                                 (geo->bg[i].flags & LIBIPW_CH_RADAR_DETECT))
1931                                ? "" : ", IBSS",
1932                                geo->bg[i].flags & LIBIPW_CH_PASSIVE_ONLY ?
1933                                "passive only" : "active/passive",
1934                                geo->bg[i].flags & LIBIPW_CH_B_ONLY ?
1935                                "B" : "B/G");
1936         }
1937
1938         len += sprintf(&buf[len],
1939                        "Displaying %d channels in 5.2Ghz band "
1940                        "(802.11a):\n", geo->a_channels);
1941         for (i = 0; i < geo->a_channels; i++) {
1942                 len += sprintf(&buf[len], "%d: BSS%s%s, %s.\n",
1943                                geo->a[i].channel,
1944                                geo->a[i].flags & LIBIPW_CH_RADAR_DETECT ?
1945                                " (radar spectrum)" : "",
1946                                ((geo->a[i].flags & LIBIPW_CH_NO_IBSS) ||
1947                                 (geo->a[i].flags & LIBIPW_CH_RADAR_DETECT))
1948                                ? "" : ", IBSS",
1949                                geo->a[i].flags & LIBIPW_CH_PASSIVE_ONLY ?
1950                                "passive only" : "active/passive");
1951         }
1952
1953         return len;
1954 }
1955
1956 static DEVICE_ATTR(channels, S_IRUSR, show_channels, NULL);
1957
1958 static void notify_wx_assoc_event(struct ipw_priv *priv)
1959 {
1960         union iwreq_data wrqu;
1961         wrqu.ap_addr.sa_family = ARPHRD_ETHER;
1962         if (priv->status & STATUS_ASSOCIATED)
1963                 memcpy(wrqu.ap_addr.sa_data, priv->bssid, ETH_ALEN);
1964         else
1965                 eth_zero_addr(wrqu.ap_addr.sa_data);
1966         wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
1967 }
1968
1969 static void ipw_irq_tasklet(struct ipw_priv *priv)
1970 {
1971         u32 inta, inta_mask, handled = 0;
1972         unsigned long flags;
1973         int rc = 0;
1974
1975         spin_lock_irqsave(&priv->irq_lock, flags);
1976
1977         inta = ipw_read32(priv, IPW_INTA_RW);
1978         inta_mask = ipw_read32(priv, IPW_INTA_MASK_R);
1979
1980         if (inta == 0xFFFFFFFF) {
1981                 /* Hardware disappeared */
1982                 IPW_WARNING("TASKLET INTA == 0xFFFFFFFF\n");
1983                 /* Only handle the cached INTA values */
1984                 inta = 0;
1985         }
1986         inta &= (IPW_INTA_MASK_ALL & inta_mask);
1987
1988         /* Add any cached INTA values that need to be handled */
1989         inta |= priv->isr_inta;
1990
1991         spin_unlock_irqrestore(&priv->irq_lock, flags);
1992
1993         spin_lock_irqsave(&priv->lock, flags);
1994
1995         /* handle all the justifications for the interrupt */
1996         if (inta & IPW_INTA_BIT_RX_TRANSFER) {
1997                 ipw_rx(priv);
1998                 handled |= IPW_INTA_BIT_RX_TRANSFER;
1999         }
2000
2001         if (inta & IPW_INTA_BIT_TX_CMD_QUEUE) {
2002                 IPW_DEBUG_HC("Command completed.\n");
2003                 rc = ipw_queue_tx_reclaim(priv, &priv->txq_cmd, -1);
2004                 priv->status &= ~STATUS_HCMD_ACTIVE;
2005                 wake_up_interruptible(&priv->wait_command_queue);
2006                 handled |= IPW_INTA_BIT_TX_CMD_QUEUE;
2007         }
2008
2009         if (inta & IPW_INTA_BIT_TX_QUEUE_1) {
2010                 IPW_DEBUG_TX("TX_QUEUE_1\n");
2011                 rc = ipw_queue_tx_reclaim(priv, &priv->txq[0], 0);
2012                 handled |= IPW_INTA_BIT_TX_QUEUE_1;
2013         }
2014
2015         if (inta & IPW_INTA_BIT_TX_QUEUE_2) {
2016                 IPW_DEBUG_TX("TX_QUEUE_2\n");
2017                 rc = ipw_queue_tx_reclaim(priv, &priv->txq[1], 1);
2018                 handled |= IPW_INTA_BIT_TX_QUEUE_2;
2019         }
2020
2021         if (inta & IPW_INTA_BIT_TX_QUEUE_3) {
2022                 IPW_DEBUG_TX("TX_QUEUE_3\n");
2023                 rc = ipw_queue_tx_reclaim(priv, &priv->txq[2], 2);
2024                 handled |= IPW_INTA_BIT_TX_QUEUE_3;
2025         }
2026
2027         if (inta & IPW_INTA_BIT_TX_QUEUE_4) {
2028                 IPW_DEBUG_TX("TX_QUEUE_4\n");
2029                 rc = ipw_queue_tx_reclaim(priv, &priv->txq[3], 3);
2030                 handled |= IPW_INTA_BIT_TX_QUEUE_4;
2031         }
2032
2033         if (inta & IPW_INTA_BIT_STATUS_CHANGE) {
2034                 IPW_WARNING("STATUS_CHANGE\n");
2035                 handled |= IPW_INTA_BIT_STATUS_CHANGE;
2036         }
2037
2038         if (inta & IPW_INTA_BIT_BEACON_PERIOD_EXPIRED) {
2039                 IPW_WARNING("TX_PERIOD_EXPIRED\n");
2040                 handled |= IPW_INTA_BIT_BEACON_PERIOD_EXPIRED;
2041         }
2042
2043         if (inta & IPW_INTA_BIT_SLAVE_MODE_HOST_CMD_DONE) {
2044                 IPW_WARNING("HOST_CMD_DONE\n");
2045                 handled |= IPW_INTA_BIT_SLAVE_MODE_HOST_CMD_DONE;
2046         }
2047
2048         if (inta & IPW_INTA_BIT_FW_INITIALIZATION_DONE) {
2049                 IPW_WARNING("FW_INITIALIZATION_DONE\n");
2050                 handled |= IPW_INTA_BIT_FW_INITIALIZATION_DONE;
2051         }
2052
2053         if (inta & IPW_INTA_BIT_FW_CARD_DISABLE_PHY_OFF_DONE) {
2054                 IPW_WARNING("PHY_OFF_DONE\n");
2055                 handled |= IPW_INTA_BIT_FW_CARD_DISABLE_PHY_OFF_DONE;
2056         }
2057
2058         if (inta & IPW_INTA_BIT_RF_KILL_DONE) {
2059                 IPW_DEBUG_RF_KILL("RF_KILL_DONE\n");
2060                 priv->status |= STATUS_RF_KILL_HW;
2061                 wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, true);
2062                 wake_up_interruptible(&priv->wait_command_queue);
2063                 priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
2064                 cancel_delayed_work(&priv->request_scan);
2065                 cancel_delayed_work(&priv->request_direct_scan);
2066                 cancel_delayed_work(&priv->request_passive_scan);
2067                 cancel_delayed_work(&priv->scan_event);
2068                 schedule_work(&priv->link_down);
2069                 schedule_delayed_work(&priv->rf_kill, 2 * HZ);
2070                 handled |= IPW_INTA_BIT_RF_KILL_DONE;
2071         }
2072
2073         if (inta & IPW_INTA_BIT_FATAL_ERROR) {
2074                 IPW_WARNING("Firmware error detected.  Restarting.\n");
2075                 if (priv->error) {
2076                         IPW_DEBUG_FW("Sysfs 'error' log already exists.\n");
2077                         if (ipw_debug_level & IPW_DL_FW_ERRORS) {
2078                                 struct ipw_fw_error *error =
2079                                     ipw_alloc_error_log(priv);
2080                                 ipw_dump_error_log(priv, error);
2081                                 kfree(error);
2082                         }
2083                 } else {
2084                         priv->error = ipw_alloc_error_log(priv);
2085                         if (priv->error)
2086                                 IPW_DEBUG_FW("Sysfs 'error' log captured.\n");
2087                         else
2088                                 IPW_DEBUG_FW("Error allocating sysfs 'error' "
2089                                              "log.\n");
2090                         if (ipw_debug_level & IPW_DL_FW_ERRORS)
2091                                 ipw_dump_error_log(priv, priv->error);
2092                 }
2093
2094                 /* XXX: If hardware encryption is for WPA/WPA2,
2095                  * we have to notify the supplicant. */
2096                 if (priv->ieee->sec.encrypt) {
2097                         priv->status &= ~STATUS_ASSOCIATED;
2098                         notify_wx_assoc_event(priv);
2099                 }
2100
2101                 /* Keep the restart process from trying to send host
2102                  * commands by clearing the INIT status bit */
2103                 priv->status &= ~STATUS_INIT;
2104
2105                 /* Cancel currently queued command. */
2106                 priv->status &= ~STATUS_HCMD_ACTIVE;
2107                 wake_up_interruptible(&priv->wait_command_queue);
2108
2109                 schedule_work(&priv->adapter_restart);
2110                 handled |= IPW_INTA_BIT_FATAL_ERROR;
2111         }
2112
2113         if (inta & IPW_INTA_BIT_PARITY_ERROR) {
2114                 IPW_ERROR("Parity error\n");
2115                 handled |= IPW_INTA_BIT_PARITY_ERROR;
2116         }
2117
2118         if (handled != inta) {
2119                 IPW_ERROR("Unhandled INTA bits 0x%08x\n", inta & ~handled);
2120         }
2121
2122         spin_unlock_irqrestore(&priv->lock, flags);
2123
2124         /* enable all interrupts */
2125         ipw_enable_interrupts(priv);
2126 }
2127
2128 #define IPW_CMD(x) case IPW_CMD_ ## x : return #x
2129 static char *get_cmd_string(u8 cmd)
2130 {
2131         switch (cmd) {
2132                 IPW_CMD(HOST_COMPLETE);
2133                 IPW_CMD(POWER_DOWN);
2134                 IPW_CMD(SYSTEM_CONFIG);
2135                 IPW_CMD(MULTICAST_ADDRESS);
2136                 IPW_CMD(SSID);
2137                 IPW_CMD(ADAPTER_ADDRESS);
2138                 IPW_CMD(PORT_TYPE);
2139                 IPW_CMD(RTS_THRESHOLD);
2140                 IPW_CMD(FRAG_THRESHOLD);
2141                 IPW_CMD(POWER_MODE);
2142                 IPW_CMD(WEP_KEY);
2143                 IPW_CMD(TGI_TX_KEY);
2144                 IPW_CMD(SCAN_REQUEST);
2145                 IPW_CMD(SCAN_REQUEST_EXT);
2146                 IPW_CMD(ASSOCIATE);
2147                 IPW_CMD(SUPPORTED_RATES);
2148                 IPW_CMD(SCAN_ABORT);
2149                 IPW_CMD(TX_FLUSH);
2150                 IPW_CMD(QOS_PARAMETERS);
2151                 IPW_CMD(DINO_CONFIG);
2152                 IPW_CMD(RSN_CAPABILITIES);
2153                 IPW_CMD(RX_KEY);
2154                 IPW_CMD(CARD_DISABLE);
2155                 IPW_CMD(SEED_NUMBER);
2156                 IPW_CMD(TX_POWER);
2157                 IPW_CMD(COUNTRY_INFO);
2158                 IPW_CMD(AIRONET_INFO);
2159                 IPW_CMD(AP_TX_POWER);
2160                 IPW_CMD(CCKM_INFO);
2161                 IPW_CMD(CCX_VER_INFO);
2162                 IPW_CMD(SET_CALIBRATION);
2163                 IPW_CMD(SENSITIVITY_CALIB);
2164                 IPW_CMD(RETRY_LIMIT);
2165                 IPW_CMD(IPW_PRE_POWER_DOWN);
2166                 IPW_CMD(VAP_BEACON_TEMPLATE);
2167                 IPW_CMD(VAP_DTIM_PERIOD);
2168                 IPW_CMD(EXT_SUPPORTED_RATES);
2169                 IPW_CMD(VAP_LOCAL_TX_PWR_CONSTRAINT);
2170                 IPW_CMD(VAP_QUIET_INTERVALS);
2171                 IPW_CMD(VAP_CHANNEL_SWITCH);
2172                 IPW_CMD(VAP_MANDATORY_CHANNELS);
2173                 IPW_CMD(VAP_CELL_PWR_LIMIT);
2174                 IPW_CMD(VAP_CF_PARAM_SET);
2175                 IPW_CMD(VAP_SET_BEACONING_STATE);
2176                 IPW_CMD(MEASUREMENT);
2177                 IPW_CMD(POWER_CAPABILITY);
2178                 IPW_CMD(SUPPORTED_CHANNELS);
2179                 IPW_CMD(TPC_REPORT);
2180                 IPW_CMD(WME_INFO);
2181                 IPW_CMD(PRODUCTION_COMMAND);
2182         default:
2183                 return "UNKNOWN";
2184         }
2185 }
2186
2187 #define HOST_COMPLETE_TIMEOUT HZ
2188
2189 static int __ipw_send_cmd(struct ipw_priv *priv, struct host_cmd *cmd)
2190 {
2191         int rc = 0;
2192         unsigned long flags;
2193         unsigned long now, end;
2194
2195         spin_lock_irqsave(&priv->lock, flags);
2196         if (priv->status & STATUS_HCMD_ACTIVE) {
2197                 IPW_ERROR("Failed to send %s: Already sending a command.\n",
2198                           get_cmd_string(cmd->cmd));
2199                 spin_unlock_irqrestore(&priv->lock, flags);
2200                 return -EAGAIN;
2201         }
2202
2203         priv->status |= STATUS_HCMD_ACTIVE;
2204
2205         if (priv->cmdlog) {
2206                 priv->cmdlog[priv->cmdlog_pos].jiffies = jiffies;
2207                 priv->cmdlog[priv->cmdlog_pos].cmd.cmd = cmd->cmd;
2208                 priv->cmdlog[priv->cmdlog_pos].cmd.len = cmd->len;
2209                 memcpy(priv->cmdlog[priv->cmdlog_pos].cmd.param, cmd->param,
2210                        cmd->len);
2211                 priv->cmdlog[priv->cmdlog_pos].retcode = -1;
2212         }
2213
2214         IPW_DEBUG_HC("%s command (#%d) %d bytes: 0x%08X\n",
2215                      get_cmd_string(cmd->cmd), cmd->cmd, cmd->len,
2216                      priv->status);
2217
2218 #ifndef DEBUG_CMD_WEP_KEY
2219         if (cmd->cmd == IPW_CMD_WEP_KEY)
2220                 IPW_DEBUG_HC("WEP_KEY command masked out for secure.\n");
2221         else
2222 #endif
2223                 printk_buf(IPW_DL_HOST_COMMAND, (u8 *) cmd->param, cmd->len);
2224
2225         rc = ipw_queue_tx_hcmd(priv, cmd->cmd, cmd->param, cmd->len, 0);
2226         if (rc) {
2227                 priv->status &= ~STATUS_HCMD_ACTIVE;
2228                 IPW_ERROR("Failed to send %s: Reason %d\n",
2229                           get_cmd_string(cmd->cmd), rc);
2230                 spin_unlock_irqrestore(&priv->lock, flags);
2231                 goto exit;
2232         }
2233         spin_unlock_irqrestore(&priv->lock, flags);
2234
2235         now = jiffies;
2236         end = now + HOST_COMPLETE_TIMEOUT;
2237 again:
2238         rc = wait_event_interruptible_timeout(priv->wait_command_queue,
2239                                               !(priv->
2240                                                 status & STATUS_HCMD_ACTIVE),
2241                                               end - now);
2242         if (rc < 0) {
2243                 now = jiffies;
2244                 if (time_before(now, end))
2245                         goto again;
2246                 rc = 0;
2247         }
2248
2249         if (rc == 0) {
2250                 spin_lock_irqsave(&priv->lock, flags);
2251                 if (priv->status & STATUS_HCMD_ACTIVE) {
2252                         IPW_ERROR("Failed to send %s: Command timed out.\n",
2253                                   get_cmd_string(cmd->cmd));
2254                         priv->status &= ~STATUS_HCMD_ACTIVE;
2255                         spin_unlock_irqrestore(&priv->lock, flags);
2256                         rc = -EIO;
2257                         goto exit;
2258                 }
2259                 spin_unlock_irqrestore(&priv->lock, flags);
2260         } else
2261                 rc = 0;
2262
2263         if (priv->status & STATUS_RF_KILL_HW) {
2264                 IPW_ERROR("Failed to send %s: Aborted due to RF kill switch.\n",
2265                           get_cmd_string(cmd->cmd));
2266                 rc = -EIO;
2267                 goto exit;
2268         }
2269
2270       exit:
2271         if (priv->cmdlog) {
2272                 priv->cmdlog[priv->cmdlog_pos++].retcode = rc;
2273                 priv->cmdlog_pos %= priv->cmdlog_len;
2274         }
2275         return rc;
2276 }
2277
2278 static int ipw_send_cmd_simple(struct ipw_priv *priv, u8 command)
2279 {
2280         struct host_cmd cmd = {
2281                 .cmd = command,
2282         };
2283
2284         return __ipw_send_cmd(priv, &cmd);
2285 }
2286
2287 static int ipw_send_cmd_pdu(struct ipw_priv *priv, u8 command, u8 len,
2288                             void *data)
2289 {
2290         struct host_cmd cmd = {
2291                 .cmd = command,
2292                 .len = len,
2293                 .param = data,
2294         };
2295
2296         return __ipw_send_cmd(priv, &cmd);
2297 }
2298
2299 static int ipw_send_host_complete(struct ipw_priv *priv)
2300 {
2301         if (!priv) {
2302                 IPW_ERROR("Invalid args\n");
2303                 return -1;
2304         }
2305
2306         return ipw_send_cmd_simple(priv, IPW_CMD_HOST_COMPLETE);
2307 }
2308
2309 static int ipw_send_system_config(struct ipw_priv *priv)
2310 {
2311         return ipw_send_cmd_pdu(priv, IPW_CMD_SYSTEM_CONFIG,
2312                                 sizeof(priv->sys_config),
2313                                 &priv->sys_config);
2314 }
2315
2316 static int ipw_send_ssid(struct ipw_priv *priv, u8 * ssid, int len)
2317 {
2318         if (!priv || !ssid) {
2319                 IPW_ERROR("Invalid args\n");
2320                 return -1;
2321         }
2322
2323         return ipw_send_cmd_pdu(priv, IPW_CMD_SSID, min(len, IW_ESSID_MAX_SIZE),
2324                                 ssid);
2325 }
2326
2327 static int ipw_send_adapter_address(struct ipw_priv *priv, u8 * mac)
2328 {
2329         if (!priv || !mac) {
2330                 IPW_ERROR("Invalid args\n");
2331                 return -1;
2332         }
2333
2334         IPW_DEBUG_INFO("%s: Setting MAC to %pM\n",
2335                        priv->net_dev->name, mac);
2336
2337         return ipw_send_cmd_pdu(priv, IPW_CMD_ADAPTER_ADDRESS, ETH_ALEN, mac);
2338 }
2339
2340 static void ipw_adapter_restart(void *adapter)
2341 {
2342         struct ipw_priv *priv = adapter;
2343
2344         if (priv->status & STATUS_RF_KILL_MASK)
2345                 return;
2346
2347         ipw_down(priv);
2348
2349         if (priv->assoc_network &&
2350             (priv->assoc_network->capability & WLAN_CAPABILITY_IBSS))
2351                 ipw_remove_current_network(priv);
2352
2353         if (ipw_up(priv)) {
2354                 IPW_ERROR("Failed to up device\n");
2355                 return;
2356         }
2357 }
2358
2359 static void ipw_bg_adapter_restart(struct work_struct *work)
2360 {
2361         struct ipw_priv *priv =
2362                 container_of(work, struct ipw_priv, adapter_restart);
2363         mutex_lock(&priv->mutex);
2364         ipw_adapter_restart(priv);
2365         mutex_unlock(&priv->mutex);
2366 }
2367
2368 static void ipw_abort_scan(struct ipw_priv *priv);
2369
2370 #define IPW_SCAN_CHECK_WATCHDOG (5 * HZ)
2371
2372 static void ipw_scan_check(void *data)
2373 {
2374         struct ipw_priv *priv = data;
2375
2376         if (priv->status & STATUS_SCAN_ABORTING) {
2377                 IPW_DEBUG_SCAN("Scan completion watchdog resetting "
2378                                "adapter after (%dms).\n",
2379                                jiffies_to_msecs(IPW_SCAN_CHECK_WATCHDOG));
2380                 schedule_work(&priv->adapter_restart);
2381         } else if (priv->status & STATUS_SCANNING) {
2382                 IPW_DEBUG_SCAN("Scan completion watchdog aborting scan "
2383                                "after (%dms).\n",
2384                                jiffies_to_msecs(IPW_SCAN_CHECK_WATCHDOG));
2385                 ipw_abort_scan(priv);
2386                 schedule_delayed_work(&priv->scan_check, HZ);
2387         }
2388 }
2389
2390 static void ipw_bg_scan_check(struct work_struct *work)
2391 {
2392         struct ipw_priv *priv =
2393                 container_of(work, struct ipw_priv, scan_check.work);
2394         mutex_lock(&priv->mutex);
2395         ipw_scan_check(priv);
2396         mutex_unlock(&priv->mutex);
2397 }
2398
2399 static int ipw_send_scan_request_ext(struct ipw_priv *priv,
2400                                      struct ipw_scan_request_ext *request)
2401 {
2402         return ipw_send_cmd_pdu(priv, IPW_CMD_SCAN_REQUEST_EXT,
2403                                 sizeof(*request), request);
2404 }
2405
2406 static int ipw_send_scan_abort(struct ipw_priv *priv)
2407 {
2408         if (!priv) {
2409                 IPW_ERROR("Invalid args\n");
2410                 return -1;
2411         }
2412
2413         return ipw_send_cmd_simple(priv, IPW_CMD_SCAN_ABORT);
2414 }
2415
2416 static int ipw_set_sensitivity(struct ipw_priv *priv, u16 sens)
2417 {
2418         struct ipw_sensitivity_calib calib = {
2419                 .beacon_rssi_raw = cpu_to_le16(sens),
2420         };
2421
2422         return ipw_send_cmd_pdu(priv, IPW_CMD_SENSITIVITY_CALIB, sizeof(calib),
2423                                 &calib);
2424 }
2425
2426 static int ipw_send_associate(struct ipw_priv *priv,
2427                               struct ipw_associate *associate)
2428 {
2429         if (!priv || !associate) {
2430                 IPW_ERROR("Invalid args\n");
2431                 return -1;
2432         }
2433
2434         return ipw_send_cmd_pdu(priv, IPW_CMD_ASSOCIATE, sizeof(*associate),
2435                                 associate);
2436 }
2437
2438 static int ipw_send_supported_rates(struct ipw_priv *priv,
2439                                     struct ipw_supported_rates *rates)
2440 {
2441         if (!priv || !rates) {
2442                 IPW_ERROR("Invalid args\n");
2443                 return -1;
2444         }
2445
2446         return ipw_send_cmd_pdu(priv, IPW_CMD_SUPPORTED_RATES, sizeof(*rates),
2447                                 rates);
2448 }
2449
2450 static int ipw_set_random_seed(struct ipw_priv *priv)
2451 {
2452         u32 val;
2453
2454         if (!priv) {
2455                 IPW_ERROR("Invalid args\n");
2456                 return -1;
2457         }
2458
2459         get_random_bytes(&val, sizeof(val));
2460
2461         return ipw_send_cmd_pdu(priv, IPW_CMD_SEED_NUMBER, sizeof(val), &val);
2462 }
2463
2464 static int ipw_send_card_disable(struct ipw_priv *priv, u32 phy_off)
2465 {
2466         __le32 v = cpu_to_le32(phy_off);
2467         if (!priv) {
2468                 IPW_ERROR("Invalid args\n");
2469                 return -1;
2470         }
2471
2472         return ipw_send_cmd_pdu(priv, IPW_CMD_CARD_DISABLE, sizeof(v), &v);
2473 }
2474
2475 static int ipw_send_tx_power(struct ipw_priv *priv, struct ipw_tx_power *power)
2476 {
2477         if (!priv || !power) {
2478                 IPW_ERROR("Invalid args\n");
2479                 return -1;
2480         }
2481
2482         return ipw_send_cmd_pdu(priv, IPW_CMD_TX_POWER, sizeof(*power), power);
2483 }
2484
2485 static int ipw_set_tx_power(struct ipw_priv *priv)
2486 {
2487         const struct libipw_geo *geo = libipw_get_geo(priv->ieee);
2488         struct ipw_tx_power tx_power;
2489         s8 max_power;
2490         int i;
2491
2492         memset(&tx_power, 0, sizeof(tx_power));
2493
2494         /* configure device for 'G' band */
2495         tx_power.ieee_mode = IPW_G_MODE;
2496         tx_power.num_channels = geo->bg_channels;
2497         for (i = 0; i < geo->bg_channels; i++) {
2498                 max_power = geo->bg[i].max_power;
2499                 tx_power.channels_tx_power[i].channel_number =
2500                     geo->bg[i].channel;
2501                 tx_power.channels_tx_power[i].tx_power = max_power ?
2502                     min(max_power, priv->tx_power) : priv->tx_power;
2503         }
2504         if (ipw_send_tx_power(priv, &tx_power))
2505                 return -EIO;
2506
2507         /* configure device to also handle 'B' band */
2508         tx_power.ieee_mode = IPW_B_MODE;
2509         if (ipw_send_tx_power(priv, &tx_power))
2510                 return -EIO;
2511
2512         /* configure device to also handle 'A' band */
2513         if (priv->ieee->abg_true) {
2514                 tx_power.ieee_mode = IPW_A_MODE;
2515                 tx_power.num_channels = geo->a_channels;
2516                 for (i = 0; i < tx_power.num_channels; i++) {
2517                         max_power = geo->a[i].max_power;
2518                         tx_power.channels_tx_power[i].channel_number =
2519                             geo->a[i].channel;
2520                         tx_power.channels_tx_power[i].tx_power = max_power ?
2521                             min(max_power, priv->tx_power) : priv->tx_power;
2522                 }
2523                 if (ipw_send_tx_power(priv, &tx_power))
2524                         return -EIO;
2525         }
2526         return 0;
2527 }
2528
2529 static int ipw_send_rts_threshold(struct ipw_priv *priv, u16 rts)
2530 {
2531         struct ipw_rts_threshold rts_threshold = {
2532                 .rts_threshold = cpu_to_le16(rts),
2533         };
2534
2535         if (!priv) {
2536                 IPW_ERROR("Invalid args\n");
2537                 return -1;
2538         }
2539
2540         return ipw_send_cmd_pdu(priv, IPW_CMD_RTS_THRESHOLD,
2541                                 sizeof(rts_threshold), &rts_threshold);
2542 }
2543
2544 static int ipw_send_frag_threshold(struct ipw_priv *priv, u16 frag)
2545 {
2546         struct ipw_frag_threshold frag_threshold = {
2547                 .frag_threshold = cpu_to_le16(frag),
2548         };
2549
2550         if (!priv) {
2551                 IPW_ERROR("Invalid args\n");
2552                 return -1;
2553         }
2554
2555         return ipw_send_cmd_pdu(priv, IPW_CMD_FRAG_THRESHOLD,
2556                                 sizeof(frag_threshold), &frag_threshold);
2557 }
2558
2559 static int ipw_send_power_mode(struct ipw_priv *priv, u32 mode)
2560 {
2561         __le32 param;
2562
2563         if (!priv) {
2564                 IPW_ERROR("Invalid args\n");
2565                 return -1;
2566         }
2567
2568         /* If on battery, set to 3, if AC set to CAM, else user
2569          * level */
2570         switch (mode) {
2571         case IPW_POWER_BATTERY:
2572                 param = cpu_to_le32(IPW_POWER_INDEX_3);
2573                 break;
2574         case IPW_POWER_AC:
2575                 param = cpu_to_le32(IPW_POWER_MODE_CAM);
2576                 break;
2577         default:
2578                 param = cpu_to_le32(mode);
2579                 break;
2580         }
2581
2582         return ipw_send_cmd_pdu(priv, IPW_CMD_POWER_MODE, sizeof(param),
2583                                 &param);
2584 }
2585
2586 static int ipw_send_retry_limit(struct ipw_priv *priv, u8 slimit, u8 llimit)
2587 {
2588         struct ipw_retry_limit retry_limit = {
2589                 .short_retry_limit = slimit,
2590                 .long_retry_limit = llimit
2591         };
2592
2593         if (!priv) {
2594                 IPW_ERROR("Invalid args\n");
2595                 return -1;
2596         }
2597
2598         return ipw_send_cmd_pdu(priv, IPW_CMD_RETRY_LIMIT, sizeof(retry_limit),
2599                                 &retry_limit);
2600 }
2601
2602 /*
2603  * The IPW device contains a Microwire compatible EEPROM that stores
2604  * various data like the MAC address.  Usually the firmware has exclusive
2605  * access to the eeprom, but during device initialization (before the
2606  * device driver has sent the HostComplete command to the firmware) the
2607  * device driver has read access to the EEPROM by way of indirect addressing
2608  * through a couple of memory mapped registers.
2609  *
2610  * The following is a simplified implementation for pulling data out of the
2611  * the eeprom, along with some helper functions to find information in
2612  * the per device private data's copy of the eeprom.
2613  *
2614  * NOTE: To better understand how these functions work (i.e what is a chip
2615  *       select and why do have to keep driving the eeprom clock?), read
2616  *       just about any data sheet for a Microwire compatible EEPROM.
2617  */
2618
2619 /* write a 32 bit value into the indirect accessor register */
2620 static inline void eeprom_write_reg(struct ipw_priv *p, u32 data)
2621 {
2622         ipw_write_reg32(p, FW_MEM_REG_EEPROM_ACCESS, data);
2623
2624         /* the eeprom requires some time to complete the operation */
2625         udelay(p->eeprom_delay);
2626 }
2627
2628 /* perform a chip select operation */
2629 static void eeprom_cs(struct ipw_priv *priv)
2630 {
2631         eeprom_write_reg(priv, 0);
2632         eeprom_write_reg(priv, EEPROM_BIT_CS);
2633         eeprom_write_reg(priv, EEPROM_BIT_CS | EEPROM_BIT_SK);
2634         eeprom_write_reg(priv, EEPROM_BIT_CS);
2635 }
2636
2637 /* perform a chip select operation */
2638 static void eeprom_disable_cs(struct ipw_priv *priv)
2639 {
2640         eeprom_write_reg(priv, EEPROM_BIT_CS);
2641         eeprom_write_reg(priv, 0);
2642         eeprom_write_reg(priv, EEPROM_BIT_SK);
2643 }
2644
2645 /* push a single bit down to the eeprom */
2646 static inline void eeprom_write_bit(struct ipw_priv *p, u8 bit)
2647 {
2648         int d = (bit ? EEPROM_BIT_DI : 0);
2649         eeprom_write_reg(p, EEPROM_BIT_CS | d);
2650         eeprom_write_reg(p, EEPROM_BIT_CS | d | EEPROM_BIT_SK);
2651 }
2652
2653 /* push an opcode followed by an address down to the eeprom */
2654 static void eeprom_op(struct ipw_priv *priv, u8 op, u8 addr)
2655 {
2656         int i;
2657
2658         eeprom_cs(priv);
2659         eeprom_write_bit(priv, 1);
2660         eeprom_write_bit(priv, op & 2);
2661         eeprom_write_bit(priv, op & 1);
2662         for (i = 7; i >= 0; i--) {
2663                 eeprom_write_bit(priv, addr & (1 << i));
2664         }
2665 }
2666
2667 /* pull 16 bits off the eeprom, one bit at a time */
2668 static u16 eeprom_read_u16(struct ipw_priv *priv, u8 addr)
2669 {
2670         int i;
2671         u16 r = 0;
2672
2673         /* Send READ Opcode */
2674         eeprom_op(priv, EEPROM_CMD_READ, addr);
2675
2676         /* Send dummy bit */
2677         eeprom_write_reg(priv, EEPROM_BIT_CS);
2678
2679         /* Read the byte off the eeprom one bit at a time */
2680         for (i = 0; i < 16; i++) {
2681                 u32 data = 0;
2682                 eeprom_write_reg(priv, EEPROM_BIT_CS | EEPROM_BIT_SK);
2683                 eeprom_write_reg(priv, EEPROM_BIT_CS);
2684                 data = ipw_read_reg32(priv, FW_MEM_REG_EEPROM_ACCESS);
2685                 r = (r << 1) | ((data & EEPROM_BIT_DO) ? 1 : 0);
2686         }
2687
2688         /* Send another dummy bit */
2689         eeprom_write_reg(priv, 0);
2690         eeprom_disable_cs(priv);
2691
2692         return r;
2693 }
2694
2695 /* helper function for pulling the mac address out of the private */
2696 /* data's copy of the eeprom data                                 */
2697 static void eeprom_parse_mac(struct ipw_priv *priv, u8 * mac)
2698 {
2699         memcpy(mac, &priv->eeprom[EEPROM_MAC_ADDRESS], ETH_ALEN);
2700 }
2701
2702 static void ipw_read_eeprom(struct ipw_priv *priv)
2703 {
2704         int i;
2705         __le16 *eeprom = (__le16 *) priv->eeprom;
2706
2707         IPW_DEBUG_TRACE(">>\n");
2708
2709         /* read entire contents of eeprom into private buffer */
2710         for (i = 0; i < 128; i++)
2711                 eeprom[i] = cpu_to_le16(eeprom_read_u16(priv, (u8) i));
2712
2713         IPW_DEBUG_TRACE("<<\n");
2714 }
2715
2716 /*
2717  * Either the device driver (i.e. the host) or the firmware can
2718  * load eeprom data into the designated region in SRAM.  If neither
2719  * happens then the FW will shutdown with a fatal error.
2720  *
2721  * In order to signal the FW to load the EEPROM, the EEPROM_LOAD_DISABLE
2722  * bit needs region of shared SRAM needs to be non-zero.
2723  */
2724 static void ipw_eeprom_init_sram(struct ipw_priv *priv)
2725 {
2726         int i;
2727
2728         IPW_DEBUG_TRACE(">>\n");
2729
2730         /*
2731            If the data looks correct, then copy it to our private
2732            copy.  Otherwise let the firmware know to perform the operation
2733            on its own.
2734          */
2735         if (priv->eeprom[EEPROM_VERSION] != 0) {
2736                 IPW_DEBUG_INFO("Writing EEPROM data into SRAM\n");
2737
2738                 /* write the eeprom data to sram */
2739                 for (i = 0; i < IPW_EEPROM_IMAGE_SIZE; i++)
2740                         ipw_write8(priv, IPW_EEPROM_DATA + i, priv->eeprom[i]);
2741
2742                 /* Do not load eeprom data on fatal error or suspend */
2743                 ipw_write32(priv, IPW_EEPROM_LOAD_DISABLE, 0);
2744         } else {
2745                 IPW_DEBUG_INFO("Enabling FW initializationg of SRAM\n");
2746
2747                 /* Load eeprom data on fatal error or suspend */
2748                 ipw_write32(priv, IPW_EEPROM_LOAD_DISABLE, 1);
2749         }
2750
2751         IPW_DEBUG_TRACE("<<\n");
2752 }
2753
2754 static void ipw_zero_memory(struct ipw_priv *priv, u32 start, u32 count)
2755 {
2756         count >>= 2;
2757         if (!count)
2758                 return;
2759         _ipw_write32(priv, IPW_AUTOINC_ADDR, start);
2760         while (count--)
2761                 _ipw_write32(priv, IPW_AUTOINC_DATA, 0);
2762 }
2763
2764 static inline void ipw_fw_dma_reset_command_blocks(struct ipw_priv *priv)
2765 {
2766         ipw_zero_memory(priv, IPW_SHARED_SRAM_DMA_CONTROL,
2767                         CB_NUMBER_OF_ELEMENTS_SMALL *
2768                         sizeof(struct command_block));
2769 }
2770
2771 static int ipw_fw_dma_enable(struct ipw_priv *priv)
2772 {                               /* start dma engine but no transfers yet */
2773
2774         IPW_DEBUG_FW(">> :\n");
2775
2776         /* Start the dma */
2777         ipw_fw_dma_reset_command_blocks(priv);
2778
2779         /* Write CB base address */
2780         ipw_write_reg32(priv, IPW_DMA_I_CB_BASE, IPW_SHARED_SRAM_DMA_CONTROL);
2781
2782         IPW_DEBUG_FW("<< :\n");
2783         return 0;
2784 }
2785
2786 static void ipw_fw_dma_abort(struct ipw_priv *priv)
2787 {
2788         u32 control = 0;
2789
2790         IPW_DEBUG_FW(">> :\n");
2791
2792         /* set the Stop and Abort bit */
2793         control = DMA_CONTROL_SMALL_CB_CONST_VALUE | DMA_CB_STOP_AND_ABORT;
2794         ipw_write_reg32(priv, IPW_DMA_I_DMA_CONTROL, control);
2795         priv->sram_desc.last_cb_index = 0;
2796
2797         IPW_DEBUG_FW("<<\n");
2798 }
2799
2800 static int ipw_fw_dma_write_command_block(struct ipw_priv *priv, int index,
2801                                           struct command_block *cb)
2802 {
2803         u32 address =
2804             IPW_SHARED_SRAM_DMA_CONTROL +
2805             (sizeof(struct command_block) * index);
2806         IPW_DEBUG_FW(">> :\n");
2807
2808         ipw_write_indirect(priv, address, (u8 *) cb,
2809                            (int)sizeof(struct command_block));
2810
2811         IPW_DEBUG_FW("<< :\n");
2812         return 0;
2813
2814 }
2815
2816 static int ipw_fw_dma_kick(struct ipw_priv *priv)
2817 {
2818         u32 control = 0;
2819         u32 index = 0;
2820
2821         IPW_DEBUG_FW(">> :\n");
2822
2823         for (index = 0; index < priv->sram_desc.last_cb_index; index++)
2824                 ipw_fw_dma_write_command_block(priv, index,
2825                                                &priv->sram_desc.cb_list[index]);
2826
2827         /* Enable the DMA in the CSR register */
2828         ipw_clear_bit(priv, IPW_RESET_REG,
2829                       IPW_RESET_REG_MASTER_DISABLED |
2830                       IPW_RESET_REG_STOP_MASTER);
2831
2832         /* Set the Start bit. */
2833         control = DMA_CONTROL_SMALL_CB_CONST_VALUE | DMA_CB_START;
2834         ipw_write_reg32(priv, IPW_DMA_I_DMA_CONTROL, control);
2835
2836         IPW_DEBUG_FW("<< :\n");
2837         return 0;
2838 }
2839
2840 static void ipw_fw_dma_dump_command_block(struct ipw_priv *priv)
2841 {
2842         u32 address;
2843         u32 register_value = 0;
2844         u32 cb_fields_address = 0;
2845
2846         IPW_DEBUG_FW(">> :\n");
2847         address = ipw_read_reg32(priv, IPW_DMA_I_CURRENT_CB);
2848         IPW_DEBUG_FW_INFO("Current CB is 0x%x\n", address);
2849
2850         /* Read the DMA Controlor register */
2851         register_value = ipw_read_reg32(priv, IPW_DMA_I_DMA_CONTROL);
2852         IPW_DEBUG_FW_INFO("IPW_DMA_I_DMA_CONTROL is 0x%x\n", register_value);
2853
2854         /* Print the CB values */
2855         cb_fields_address = address;
2856         register_value = ipw_read_reg32(priv, cb_fields_address);
2857         IPW_DEBUG_FW_INFO("Current CB Control Field is 0x%x\n", register_value);
2858
2859         cb_fields_address += sizeof(u32);
2860         register_value = ipw_read_reg32(priv, cb_fields_address);
2861         IPW_DEBUG_FW_INFO("Current CB Source Field is 0x%x\n", register_value);
2862
2863         cb_fields_address += sizeof(u32);
2864         register_value = ipw_read_reg32(priv, cb_fields_address);
2865         IPW_DEBUG_FW_INFO("Current CB Destination Field is 0x%x\n",
2866                           register_value);
2867
2868         cb_fields_address += sizeof(u32);
2869         register_value = ipw_read_reg32(priv, cb_fields_address);
2870         IPW_DEBUG_FW_INFO("Current CB Status Field is 0x%x\n", register_value);
2871
2872         IPW_DEBUG_FW(">> :\n");
2873 }
2874
2875 static int ipw_fw_dma_command_block_index(struct ipw_priv *priv)
2876 {
2877         u32 current_cb_address = 0;
2878         u32 current_cb_index = 0;
2879
2880         IPW_DEBUG_FW("<< :\n");
2881         current_cb_address = ipw_read_reg32(priv, IPW_DMA_I_CURRENT_CB);
2882
2883         current_cb_index = (current_cb_address - IPW_SHARED_SRAM_DMA_CONTROL) /
2884             sizeof(struct command_block);
2885
2886         IPW_DEBUG_FW_INFO("Current CB index 0x%x address = 0x%X\n",
2887                           current_cb_index, current_cb_address);
2888
2889         IPW_DEBUG_FW(">> :\n");
2890         return current_cb_index;
2891
2892 }
2893
2894 static int ipw_fw_dma_add_command_block(struct ipw_priv *priv,
2895                                         u32 src_address,
2896                                         u32 dest_address,
2897                                         u32 length,
2898                                         int interrupt_enabled, int is_last)
2899 {
2900
2901         u32 control = CB_VALID | CB_SRC_LE | CB_DEST_LE | CB_SRC_AUTOINC |
2902             CB_SRC_IO_GATED | CB_DEST_AUTOINC | CB_SRC_SIZE_LONG |
2903             CB_DEST_SIZE_LONG;
2904         struct command_block *cb;
2905         u32 last_cb_element = 0;
2906
2907         IPW_DEBUG_FW_INFO("src_address=0x%x dest_address=0x%x length=0x%x\n",
2908                           src_address, dest_address, length);
2909
2910         if (priv->sram_desc.last_cb_index >= CB_NUMBER_OF_ELEMENTS_SMALL)
2911                 return -1;
2912
2913         last_cb_element = priv->sram_desc.last_cb_index;
2914         cb = &priv->sram_desc.cb_list[last_cb_element];
2915         priv->sram_desc.last_cb_index++;
2916
2917         /* Calculate the new CB control word */
2918         if (interrupt_enabled)
2919                 control |= CB_INT_ENABLED;
2920
2921         if (is_last)
2922                 control |= CB_LAST_VALID;
2923
2924         control |= length;
2925
2926         /* Calculate the CB Element's checksum value */
2927         cb->status = control ^ src_address ^ dest_address;
2928
2929         /* Copy the Source and Destination addresses */
2930         cb->dest_addr = dest_address;
2931         cb->source_addr = src_address;
2932
2933         /* Copy the Control Word last */
2934         cb->control = control;
2935
2936         return 0;
2937 }
2938
2939 static int ipw_fw_dma_add_buffer(struct ipw_priv *priv, dma_addr_t *src_address,
2940                                  int nr, u32 dest_address, u32 len)
2941 {
2942         int ret, i;
2943         u32 size;
2944
2945         IPW_DEBUG_FW(">>\n");
2946         IPW_DEBUG_FW_INFO("nr=%d dest_address=0x%x len=0x%x\n",
2947                           nr, dest_address, len);
2948
2949         for (i = 0; i < nr; i++) {
2950                 size = min_t(u32, len - i * CB_MAX_LENGTH, CB_MAX_LENGTH);
2951                 ret = ipw_fw_dma_add_command_block(priv, src_address[i],
2952                                                    dest_address +
2953                                                    i * CB_MAX_LENGTH, size,
2954                                                    0, 0);
2955                 if (ret) {
2956                         IPW_DEBUG_FW_INFO(": Failed\n");
2957                         return -1;
2958                 } else
2959                         IPW_DEBUG_FW_INFO(": Added new cb\n");
2960         }
2961
2962         IPW_DEBUG_FW("<<\n");
2963         return 0;
2964 }
2965
2966 static int ipw_fw_dma_wait(struct ipw_priv *priv)
2967 {
2968         u32 current_index = 0, previous_index;
2969         u32 watchdog = 0;
2970
2971         IPW_DEBUG_FW(">> :\n");
2972
2973         current_index = ipw_fw_dma_command_block_index(priv);
2974         IPW_DEBUG_FW_INFO("sram_desc.last_cb_index:0x%08X\n",
2975                           (int)priv->sram_desc.last_cb_index);
2976
2977         while (current_index < priv->sram_desc.last_cb_index) {
2978                 udelay(50);
2979                 previous_index = current_index;
2980                 current_index = ipw_fw_dma_command_block_index(priv);
2981
2982                 if (previous_index < current_index) {
2983                         watchdog = 0;
2984                         continue;
2985                 }
2986                 if (++watchdog > 400) {
2987                         IPW_DEBUG_FW_INFO("Timeout\n");
2988                         ipw_fw_dma_dump_command_block(priv);
2989                         ipw_fw_dma_abort(priv);
2990                         return -1;
2991                 }
2992         }
2993
2994         ipw_fw_dma_abort(priv);
2995
2996         /*Disable the DMA in the CSR register */
2997         ipw_set_bit(priv, IPW_RESET_REG,
2998                     IPW_RESET_REG_MASTER_DISABLED | IPW_RESET_REG_STOP_MASTER);
2999
3000         IPW_DEBUG_FW("<< dmaWaitSync\n");
3001         return 0;
3002 }
3003
3004 static void ipw_remove_current_network(struct ipw_priv *priv)
3005 {
3006         struct list_head *element, *safe;
3007         struct libipw_network *network = NULL;
3008         unsigned long flags;
3009
3010         spin_lock_irqsave(&priv->ieee->lock, flags);
3011         list_for_each_safe(element, safe, &priv->ieee->network_list) {
3012                 network = list_entry(element, struct libipw_network, list);
3013                 if (ether_addr_equal(network->bssid, priv->bssid)) {
3014                         list_del(element);
3015                         list_add_tail(&network->list,
3016                                       &priv->ieee->network_free_list);
3017                 }
3018         }
3019         spin_unlock_irqrestore(&priv->ieee->lock, flags);
3020 }
3021
3022 /**
3023  * Check that card is still alive.
3024  * Reads debug register from domain0.
3025  * If card is present, pre-defined value should
3026  * be found there.
3027  *
3028  * @param priv
3029  * @return 1 if card is present, 0 otherwise
3030  */
3031 static inline int ipw_alive(struct ipw_priv *priv)
3032 {
3033         return ipw_read32(priv, 0x90) == 0xd55555d5;
3034 }
3035
3036 /* timeout in msec, attempted in 10-msec quanta */
3037 static int ipw_poll_bit(struct ipw_priv *priv, u32 addr, u32 mask,
3038                                int timeout)
3039 {
3040         int i = 0;
3041
3042         do {
3043                 if ((ipw_read32(priv, addr) & mask) == mask)
3044                         return i;
3045                 mdelay(10);
3046                 i += 10;
3047         } while (i < timeout);
3048
3049         return -ETIME;
3050 }
3051
3052 /* These functions load the firmware and micro code for the operation of
3053  * the ipw hardware.  It assumes the buffer has all the bits for the
3054  * image and the caller is handling the memory allocation and clean up.
3055  */
3056
3057 static int ipw_stop_master(struct ipw_priv *priv)
3058 {
3059         int rc;
3060
3061         IPW_DEBUG_TRACE(">>\n");
3062         /* stop master. typical delay - 0 */
3063         ipw_set_bit(priv, IPW_RESET_REG, IPW_RESET_REG_STOP_MASTER);
3064
3065         /* timeout is in msec, polled in 10-msec quanta */
3066         rc = ipw_poll_bit(priv, IPW_RESET_REG,
3067                           IPW_RESET_REG_MASTER_DISABLED, 100);
3068         if (rc < 0) {
3069                 IPW_ERROR("wait for stop master failed after 100ms\n");
3070                 return -1;
3071         }
3072
3073         IPW_DEBUG_INFO("stop master %dms\n", rc);
3074
3075         return rc;
3076 }
3077
3078 static void ipw_arc_release(struct ipw_priv *priv)
3079 {
3080         IPW_DEBUG_TRACE(">>\n");
3081         mdelay(5);
3082
3083         ipw_clear_bit(priv, IPW_RESET_REG, CBD_RESET_REG_PRINCETON_RESET);
3084
3085         /* no one knows timing, for safety add some delay */
3086         mdelay(5);
3087 }
3088
3089 struct fw_chunk {
3090         __le32 address;
3091         __le32 length;
3092 };
3093
3094 static int ipw_load_ucode(struct ipw_priv *priv, u8 * data, size_t len)
3095 {
3096         int rc = 0, i, addr;
3097         u8 cr = 0;
3098         __le16 *image;
3099
3100         image = (__le16 *) data;
3101
3102         IPW_DEBUG_TRACE(">>\n");
3103
3104         rc = ipw_stop_master(priv);
3105
3106         if (rc < 0)
3107                 return rc;
3108
3109         for (addr = IPW_SHARED_LOWER_BOUND;
3110              addr < IPW_REGISTER_DOMAIN1_END; addr += 4) {
3111                 ipw_write32(priv, addr, 0);
3112         }
3113
3114         /* no ucode (yet) */
3115         memset(&priv->dino_alive, 0, sizeof(priv->dino_alive));
3116         /* destroy DMA queues */
3117         /* reset sequence */
3118
3119         ipw_write_reg32(priv, IPW_MEM_HALT_AND_RESET, IPW_BIT_HALT_RESET_ON);
3120         ipw_arc_release(priv);
3121         ipw_write_reg32(priv, IPW_MEM_HALT_AND_RESET, IPW_BIT_HALT_RESET_OFF);
3122         mdelay(1);
3123
3124         /* reset PHY */
3125         ipw_write_reg32(priv, IPW_INTERNAL_CMD_EVENT, IPW_BASEBAND_POWER_DOWN);
3126         mdelay(1);
3127
3128         ipw_write_reg32(priv, IPW_INTERNAL_CMD_EVENT, 0);
3129         mdelay(1);
3130
3131         /* enable ucode store */
3132         ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, 0x0);
3133         ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, DINO_ENABLE_CS);
3134         mdelay(1);
3135
3136         /* write ucode */
3137         /**
3138          * @bug
3139          * Do NOT set indirect address register once and then
3140          * store data to indirect data register in the loop.
3141          * It seems very reasonable, but in this case DINO do not
3142          * accept ucode. It is essential to set address each time.
3143          */
3144         /* load new ipw uCode */
3145         for (i = 0; i < len / 2; i++)
3146                 ipw_write_reg16(priv, IPW_BASEBAND_CONTROL_STORE,
3147                                 le16_to_cpu(image[i]));
3148
3149         /* enable DINO */
3150         ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, 0);
3151         ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, DINO_ENABLE_SYSTEM);
3152
3153         /* this is where the igx / win driver deveates from the VAP driver. */
3154
3155         /* wait for alive response */
3156         for (i = 0; i < 100; i++) {
3157                 /* poll for incoming data */
3158                 cr = ipw_read_reg8(priv, IPW_BASEBAND_CONTROL_STATUS);
3159                 if (cr & DINO_RXFIFO_DATA)
3160                         break;
3161                 mdelay(1);
3162         }
3163
3164         if (cr & DINO_RXFIFO_DATA) {
3165                 /* alive_command_responce size is NOT multiple of 4 */
3166                 __le32 response_buffer[(sizeof(priv->dino_alive) + 3) / 4];
3167
3168                 for (i = 0; i < ARRAY_SIZE(response_buffer); i++)
3169                         response_buffer[i] =
3170                             cpu_to_le32(ipw_read_reg32(priv,
3171                                                        IPW_BASEBAND_RX_FIFO_READ));
3172                 memcpy(&priv->dino_alive, response_buffer,
3173                        sizeof(priv->dino_alive));
3174                 if (priv->dino_alive.alive_command == 1
3175                     && priv->dino_alive.ucode_valid == 1) {
3176                         rc = 0;
3177                         IPW_DEBUG_INFO
3178                             ("Microcode OK, rev. %d (0x%x) dev. %d (0x%x) "
3179                              "of %02d/%02d/%02d %02d:%02d\n",
3180                              priv->dino_alive.software_revision,
3181                              priv->dino_alive.software_revision,
3182                              priv->dino_alive.device_identifier,
3183                              priv->dino_alive.device_identifier,
3184                              priv->dino_alive.time_stamp[0],
3185                              priv->dino_alive.time_stamp[1],
3186                              priv->dino_alive.time_stamp[2],
3187                              priv->dino_alive.time_stamp[3],
3188                              priv->dino_alive.time_stamp[4]);
3189                 } else {
3190                         IPW_DEBUG_INFO("Microcode is not alive\n");
3191                         rc = -EINVAL;
3192                 }
3193         } else {
3194                 IPW_DEBUG_INFO("No alive response from DINO\n");
3195                 rc = -ETIME;
3196         }
3197
3198         /* disable DINO, otherwise for some reason
3199            firmware have problem getting alive resp. */
3200         ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, 0);
3201
3202         return rc;
3203 }
3204
3205 static int ipw_load_firmware(struct ipw_priv *priv, u8 * data, size_t len)
3206 {
3207         int ret = -1;
3208         int offset = 0;
3209         struct fw_chunk *chunk;
3210         int total_nr = 0;
3211         int i;
3212         struct dma_pool *pool;
3213         void **virts;
3214         dma_addr_t *phys;
3215
3216         IPW_DEBUG_TRACE("<< :\n");
3217
3218         virts = kmalloc(sizeof(void *) * CB_NUMBER_OF_ELEMENTS_SMALL,
3219                         GFP_KERNEL);
3220         if (!virts)
3221                 return -ENOMEM;
3222
3223         phys = kmalloc(sizeof(dma_addr_t) * CB_NUMBER_OF_ELEMENTS_SMALL,
3224                         GFP_KERNEL);
3225         if (!phys) {
3226                 kfree(virts);
3227                 return -ENOMEM;
3228         }
3229         pool = dma_pool_create("ipw2200", &priv->pci_dev->dev, CB_MAX_LENGTH, 0,
3230                                0);
3231         if (!pool) {
3232                 IPW_ERROR("dma_pool_create failed\n");
3233                 kfree(phys);
3234                 kfree(virts);
3235                 return -ENOMEM;
3236         }
3237
3238         /* Start the Dma */
3239         ret = ipw_fw_dma_enable(priv);
3240
3241         /* the DMA is already ready this would be a bug. */
3242         BUG_ON(priv->sram_desc.last_cb_index > 0);
3243
3244         do {
3245                 u32 chunk_len;
3246                 u8 *start;
3247                 int size;
3248                 int nr = 0;
3249
3250                 chunk = (struct fw_chunk *)(data + offset);
3251                 offset += sizeof(struct fw_chunk);
3252                 chunk_len = le32_to_cpu(chunk->length);
3253                 start = data + offset;
3254
3255                 nr = (chunk_len + CB_MAX_LENGTH - 1) / CB_MAX_LENGTH;
3256                 for (i = 0; i < nr; i++) {
3257                         virts[total_nr] = dma_pool_alloc(pool, GFP_KERNEL,
3258                                                          &phys[total_nr]);
3259                         if (!virts[total_nr]) {
3260                                 ret = -ENOMEM;
3261                                 goto out;
3262                         }
3263                         size = min_t(u32, chunk_len - i * CB_MAX_LENGTH,
3264                                      CB_MAX_LENGTH);
3265                         memcpy(virts[total_nr], start, size);
3266                         start += size;
3267                         total_nr++;
3268                         /* We don't support fw chunk larger than 64*8K */
3269                         BUG_ON(total_nr > CB_NUMBER_OF_ELEMENTS_SMALL);
3270                 }
3271
3272                 /* build DMA packet and queue up for sending */
3273                 /* dma to chunk->address, the chunk->length bytes from data +
3274                  * offeset*/
3275                 /* Dma loading */
3276                 ret = ipw_fw_dma_add_buffer(priv, &phys[total_nr - nr],
3277                                             nr, le32_to_cpu(chunk->address),
3278                                             chunk_len);
3279                 if (ret) {
3280                         IPW_DEBUG_INFO("dmaAddBuffer Failed\n");
3281                         goto out;
3282                 }
3283
3284                 offset += chunk_len;
3285         } while (offset < len);
3286
3287         /* Run the DMA and wait for the answer */
3288         ret = ipw_fw_dma_kick(priv);
3289         if (ret) {
3290                 IPW_ERROR("dmaKick Failed\n");
3291                 goto out;
3292         }
3293
3294         ret = ipw_fw_dma_wait(priv);
3295         if (ret) {
3296                 IPW_ERROR("dmaWaitSync Failed\n");
3297                 goto out;
3298         }
3299  out:
3300         for (i = 0; i < total_nr; i++)
3301                 dma_pool_free(pool, virts[i], phys[i]);
3302
3303         dma_pool_destroy(pool);
3304         kfree(phys);
3305         kfree(virts);
3306
3307         return ret;
3308 }
3309
3310 /* stop nic */
3311 static int ipw_stop_nic(struct ipw_priv *priv)
3312 {
3313         int rc = 0;
3314
3315         /* stop */
3316         ipw_write32(priv, IPW_RESET_REG, IPW_RESET_REG_STOP_MASTER);
3317
3318         rc = ipw_poll_bit(priv, IPW_RESET_REG,
3319                           IPW_RESET_REG_MASTER_DISABLED, 500);
3320         if (rc < 0) {
3321                 IPW_ERROR("wait for reg master disabled failed after 500ms\n");
3322                 return rc;
3323         }
3324
3325         ipw_set_bit(priv, IPW_RESET_REG, CBD_RESET_REG_PRINCETON_RESET);
3326
3327         return rc;
3328 }
3329
3330 static void ipw_start_nic(struct ipw_priv *priv)
3331 {
3332         IPW_DEBUG_TRACE(">>\n");
3333
3334         /* prvHwStartNic  release ARC */
3335         ipw_clear_bit(priv, IPW_RESET_REG,
3336                       IPW_RESET_REG_MASTER_DISABLED |
3337                       IPW_RESET_REG_STOP_MASTER |
3338                       CBD_RESET_REG_PRINCETON_RESET);
3339
3340         /* enable power management */
3341         ipw_set_bit(priv, IPW_GP_CNTRL_RW,
3342                     IPW_GP_CNTRL_BIT_HOST_ALLOWS_STANDBY);
3343
3344         IPW_DEBUG_TRACE("<<\n");
3345 }
3346
3347 static int ipw_init_nic(struct ipw_priv *priv)
3348 {
3349         int rc;
3350
3351         IPW_DEBUG_TRACE(">>\n");
3352         /* reset */
3353         /*prvHwInitNic */
3354         /* set "initialization complete" bit to move adapter to D0 state */
3355         ipw_set_bit(priv, IPW_GP_CNTRL_RW, IPW_GP_CNTRL_BIT_INIT_DONE);
3356
3357         /* low-level PLL activation */
3358         ipw_write32(priv, IPW_READ_INT_REGISTER,
3359                     IPW_BIT_INT_HOST_SRAM_READ_INT_REGISTER);
3360
3361         /* wait for clock stabilization */
3362         rc = ipw_poll_bit(priv, IPW_GP_CNTRL_RW,
3363                           IPW_GP_CNTRL_BIT_CLOCK_READY, 250);
3364         if (rc < 0)
3365                 IPW_DEBUG_INFO("FAILED wait for clock stablization\n");
3366
3367         /* assert SW reset */
3368         ipw_set_bit(priv, IPW_RESET_REG, IPW_RESET_REG_SW_RESET);
3369
3370         udelay(10);
3371
3372         /* set "initialization complete" bit to move adapter to D0 state */
3373         ipw_set_bit(priv, IPW_GP_CNTRL_RW, IPW_GP_CNTRL_BIT_INIT_DONE);
3374
3375         IPW_DEBUG_TRACE(">>\n");
3376         return 0;
3377 }
3378
3379 /* Call this function from process context, it will sleep in request_firmware.
3380  * Probe is an ok place to call this from.
3381  */
3382 static int ipw_reset_nic(struct ipw_priv *priv)
3383 {
3384         int rc = 0;
3385         unsigned long flags;
3386
3387         IPW_DEBUG_TRACE(">>\n");
3388
3389         rc = ipw_init_nic(priv);
3390
3391         spin_lock_irqsave(&priv->lock, flags);
3392         /* Clear the 'host command active' bit... */
3393         priv->status &= ~STATUS_HCMD_ACTIVE;
3394         wake_up_interruptible(&priv->wait_command_queue);
3395         priv->status &= ~(STATUS_SCANNING | STATUS_SCAN_ABORTING);
3396         wake_up_interruptible(&priv->wait_state);
3397         spin_unlock_irqrestore(&priv->lock, flags);
3398
3399         IPW_DEBUG_TRACE("<<\n");
3400         return rc;
3401 }
3402
3403
3404 struct ipw_fw {
3405         __le32 ver;
3406         __le32 boot_size;
3407         __le32 ucode_size;
3408         __le32 fw_size;
3409         u8 data[0];
3410 };
3411
3412 static int ipw_get_fw(struct ipw_priv *priv,
3413                       const struct firmware **raw, const char *name)
3414 {
3415         struct ipw_fw *fw;
3416         int rc;
3417
3418         /* ask firmware_class module to get the boot firmware off disk */
3419         rc = reject_firmware(raw, name, &priv->pci_dev->dev);
3420         if (rc < 0) {
3421                 IPW_ERROR("%s request_firmware failed: Reason %d\n", name, rc);
3422                 return rc;
3423         }
3424
3425         if ((*raw)->size < sizeof(*fw)) {
3426                 IPW_ERROR("%s is too small (%zd)\n", name, (*raw)->size);
3427                 return -EINVAL;
3428         }
3429
3430         fw = (void *)(*raw)->data;
3431
3432         if ((*raw)->size < sizeof(*fw) + le32_to_cpu(fw->boot_size) +
3433             le32_to_cpu(fw->ucode_size) + le32_to_cpu(fw->fw_size)) {
3434                 IPW_ERROR("%s is too small or corrupt (%zd)\n",
3435                           name, (*raw)->size);
3436                 return -EINVAL;
3437         }
3438
3439         IPW_DEBUG_INFO("Read firmware '%s' image v%d.%d (%zd bytes)\n",
3440                        name,
3441                        le32_to_cpu(fw->ver) >> 16,
3442                        le32_to_cpu(fw->ver) & 0xff,
3443                        (*raw)->size - sizeof(*fw));
3444         return 0;
3445 }
3446
3447 #define IPW_RX_BUF_SIZE (3000)
3448
3449 static void ipw_rx_queue_reset(struct ipw_priv *priv,
3450                                       struct ipw_rx_queue *rxq)
3451 {
3452         unsigned long flags;
3453         int i;
3454
3455         spin_lock_irqsave(&rxq->lock, flags);
3456
3457         INIT_LIST_HEAD(&rxq->rx_free);
3458         INIT_LIST_HEAD(&rxq->rx_used);
3459
3460         /* Fill the rx_used queue with _all_ of the Rx buffers */
3461         for (i = 0; i < RX_FREE_BUFFERS + RX_QUEUE_SIZE; i++) {
3462                 /* In the reset function, these buffers may have been allocated
3463                  * to an SKB, so we need to unmap and free potential storage */
3464                 if (rxq->pool[i].skb != NULL) {
3465                         pci_unmap_single(priv->pci_dev, rxq->pool[i].dma_addr,
3466                                          IPW_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
3467                         dev_kfree_skb(rxq->pool[i].skb);
3468                         rxq->pool[i].skb = NULL;
3469                 }
3470                 list_add_tail(&rxq->pool[i].list, &rxq->rx_used);
3471         }
3472
3473         /* Set us so that we have processed and used all buffers, but have
3474          * not restocked the Rx queue with fresh buffers */
3475         rxq->read = rxq->write = 0;
3476         rxq->free_count = 0;
3477         spin_unlock_irqrestore(&rxq->lock, flags);
3478 }
3479
3480 #ifdef CONFIG_PM
3481 static int fw_loaded = 0;
3482 static const struct firmware *raw = NULL;
3483
3484 static void free_firmware(void)
3485 {
3486         if (fw_loaded) {
3487                 release_firmware(raw);
3488                 raw = NULL;
3489                 fw_loaded = 0;
3490         }
3491 }
3492 #else
3493 #define free_firmware() do {} while (0)
3494 #endif
3495
3496 static int ipw_load(struct ipw_priv *priv)
3497 {
3498 #ifndef CONFIG_PM
3499         const struct firmware *raw = NULL;
3500 #endif
3501         struct ipw_fw *fw;
3502         u8 *boot_img, *ucode_img, *fw_img;
3503         u8 *name = NULL;
3504         int rc = 0, retries = 3;
3505
3506         switch (priv->ieee->iw_mode) {
3507         case IW_MODE_ADHOC:
3508                 name = "/*(DEBLOBBED)*/";
3509                 break;
3510 #ifdef CONFIG_IPW2200_MONITOR
3511         case IW_MODE_MONITOR:
3512                 name = "/*(DEBLOBBED)*/";
3513                 break;
3514 #endif
3515         case IW_MODE_INFRA:
3516                 name = "/*(DEBLOBBED)*/";
3517                 break;
3518         }
3519
3520         if (!name) {
3521                 rc = -EINVAL;
3522                 goto error;
3523         }
3524
3525 #ifdef CONFIG_PM
3526         if (!fw_loaded) {
3527 #endif
3528                 rc = ipw_get_fw(priv, &raw, name);
3529                 if (rc < 0)
3530                         goto error;
3531 #ifdef CONFIG_PM
3532         }
3533 #endif
3534
3535         fw = (void *)raw->data;
3536         boot_img = &fw->data[0];
3537         ucode_img = &fw->data[le32_to_cpu(fw->boot_size)];
3538         fw_img = &fw->data[le32_to_cpu(fw->boot_size) +
3539                            le32_to_cpu(fw->ucode_size)];
3540
3541         if (!priv->rxq)
3542                 priv->rxq = ipw_rx_queue_alloc(priv);
3543         else
3544                 ipw_rx_queue_reset(priv, priv->rxq);
3545         if (!priv->rxq) {
3546                 IPW_ERROR("Unable to initialize Rx queue\n");
3547                 rc = -ENOMEM;
3548                 goto error;
3549         }
3550
3551       retry:
3552         /* Ensure interrupts are disabled */
3553         ipw_write32(priv, IPW_INTA_MASK_R, ~IPW_INTA_MASK_ALL);
3554         priv->status &= ~STATUS_INT_ENABLED;
3555
3556         /* ack pending interrupts */
3557         ipw_write32(priv, IPW_INTA_RW, IPW_INTA_MASK_ALL);
3558
3559         ipw_stop_nic(priv);
3560
3561         rc = ipw_reset_nic(priv);
3562         if (rc < 0) {
3563                 IPW_ERROR("Unable to reset NIC\n");
3564                 goto error;
3565         }
3566
3567         ipw_zero_memory(priv, IPW_NIC_SRAM_LOWER_BOUND,
3568                         IPW_NIC_SRAM_UPPER_BOUND - IPW_NIC_SRAM_LOWER_BOUND);
3569
3570         /* DMA the initial boot firmware into the device */
3571         rc = ipw_load_firmware(priv, boot_img, le32_to_cpu(fw->boot_size));
3572         if (rc < 0) {
3573                 IPW_ERROR("Unable to load boot firmware: %d\n", rc);
3574                 goto error;
3575         }
3576
3577         /* kick start the device */
3578         ipw_start_nic(priv);
3579
3580         /* wait for the device to finish its initial startup sequence */
3581         rc = ipw_poll_bit(priv, IPW_INTA_RW,
3582                           IPW_INTA_BIT_FW_INITIALIZATION_DONE, 500);
3583         if (rc < 0) {
3584                 IPW_ERROR("device failed to boot initial fw image\n");
3585                 goto error;
3586         }
3587         IPW_DEBUG_INFO("initial device response after %dms\n", rc);
3588
3589         /* ack fw init done interrupt */
3590         ipw_write32(priv, IPW_INTA_RW, IPW_INTA_BIT_FW_INITIALIZATION_DONE);
3591
3592         /* DMA the ucode into the device */
3593         rc = ipw_load_ucode(priv, ucode_img, le32_to_cpu(fw->ucode_size));
3594         if (rc < 0) {
3595                 IPW_ERROR("Unable to load ucode: %d\n", rc);
3596                 goto error;
3597         }
3598
3599         /* stop nic */
3600         ipw_stop_nic(priv);
3601
3602         /* DMA bss firmware into the device */
3603         rc = ipw_load_firmware(priv, fw_img, le32_to_cpu(fw->fw_size));
3604         if (rc < 0) {
3605                 IPW_ERROR("Unable to load firmware: %d\n", rc);
3606                 goto error;
3607         }
3608 #ifdef CONFIG_PM
3609         fw_loaded = 1;
3610 #endif
3611
3612         ipw_write32(priv, IPW_EEPROM_LOAD_DISABLE, 0);
3613
3614         rc = ipw_queue_reset(priv);
3615         if (rc < 0) {
3616                 IPW_ERROR("Unable to initialize queues\n");
3617                 goto error;
3618         }
3619
3620         /* Ensure interrupts are disabled */
3621         ipw_write32(priv, IPW_INTA_MASK_R, ~IPW_INTA_MASK_ALL);
3622         /* ack pending interrupts */
3623         ipw_write32(priv, IPW_INTA_RW, IPW_INTA_MASK_ALL);
3624
3625         /* kick start the device */
3626         ipw_start_nic(priv);
3627
3628         if (ipw_read32(priv, IPW_INTA_RW) & IPW_INTA_BIT_PARITY_ERROR) {
3629                 if (retries > 0) {
3630                         IPW_WARNING("Parity error.  Retrying init.\n");
3631                         retries--;
3632                         goto retry;
3633                 }
3634
3635                 IPW_ERROR("TODO: Handle parity error -- schedule restart?\n");
3636                 rc = -EIO;
3637                 goto error;
3638         }
3639
3640         /* wait for the device */
3641         rc = ipw_poll_bit(priv, IPW_INTA_RW,
3642                           IPW_INTA_BIT_FW_INITIALIZATION_DONE, 500);
3643         if (rc < 0) {
3644                 IPW_ERROR("device failed to start within 500ms\n");
3645                 goto error;
3646         }
3647         IPW_DEBUG_INFO("device response after %dms\n", rc);
3648
3649         /* ack fw init done interrupt */
3650         ipw_write32(priv, IPW_INTA_RW, IPW_INTA_BIT_FW_INITIALIZATION_DONE);
3651
3652         /* read eeprom data */
3653         priv->eeprom_delay = 1;
3654         ipw_read_eeprom(priv);
3655         /* initialize the eeprom region of sram */
3656         ipw_eeprom_init_sram(priv);
3657
3658         /* enable interrupts */
3659         ipw_enable_interrupts(priv);
3660
3661         /* Ensure our queue has valid packets */
3662         ipw_rx_queue_replenish(priv);
3663
3664         ipw_write32(priv, IPW_RX_READ_INDEX, priv->rxq->read);
3665
3666         /* ack pending interrupts */
3667         ipw_write32(priv, IPW_INTA_RW, IPW_INTA_MASK_ALL);
3668
3669 #ifndef CONFIG_PM
3670         release_firmware(raw);
3671 #endif
3672         return 0;
3673
3674       error:
3675         if (priv->rxq) {
3676                 ipw_rx_queue_free(priv, priv->rxq);
3677                 priv->rxq = NULL;
3678         }
3679         ipw_tx_queue_free(priv);
3680         release_firmware(raw);
3681 #ifdef CONFIG_PM
3682         fw_loaded = 0;
3683         raw = NULL;
3684 #endif
3685
3686         return rc;
3687 }
3688
3689 /**
3690  * DMA services
3691  *
3692  * Theory of operation
3693  *
3694  * A queue is a circular buffers with 'Read' and 'Write' pointers.
3695  * 2 empty entries always kept in the buffer to protect from overflow.
3696  *
3697  * For Tx queue, there are low mark and high mark limits. If, after queuing
3698  * the packet for Tx, free space become < low mark, Tx queue stopped. When
3699  * reclaiming packets (on 'tx done IRQ), if free space become > high mark,
3700  * Tx queue resumed.
3701  *
3702  * The IPW operates with six queues, one receive queue in the device's
3703  * sram, one transmit queue for sending commands to the device firmware,
3704  * and four transmit queues for data.
3705  *
3706  * The four transmit queues allow for performing quality of service (qos)
3707  * transmissions as per the 802.11 protocol.  Currently Linux does not
3708  * provide a mechanism to the user for utilizing prioritized queues, so
3709  * we only utilize the first data transmit queue (queue1).
3710  */
3711
3712 /**
3713  * Driver allocates buffers of this size for Rx
3714  */
3715
3716 /**
3717  * ipw_rx_queue_space - Return number of free slots available in queue.
3718  */
3719 static int ipw_rx_queue_space(const struct ipw_rx_queue *q)
3720 {
3721         int s = q->read - q->write;
3722         if (s <= 0)
3723                 s += RX_QUEUE_SIZE;
3724         /* keep some buffer to not confuse full and empty queue */
3725         s -= 2;
3726         if (s < 0)
3727                 s = 0;
3728         return s;
3729 }
3730
3731 static inline int ipw_tx_queue_space(const struct clx2_queue *q)
3732 {
3733         int s = q->last_used - q->first_empty;
3734         if (s <= 0)
3735                 s += q->n_bd;
3736         s -= 2;                 /* keep some reserve to not confuse empty and full situations */
3737         if (s < 0)
3738                 s = 0;
3739         return s;
3740 }
3741
3742 static inline int ipw_queue_inc_wrap(int index, int n_bd)
3743 {
3744         return (++index == n_bd) ? 0 : index;
3745 }
3746
3747 /**
3748  * Initialize common DMA queue structure
3749  *
3750  * @param q                queue to init
3751  * @param count            Number of BD's to allocate. Should be power of 2
3752  * @param read_register    Address for 'read' register
3753  *                         (not offset within BAR, full address)
3754  * @param write_register   Address for 'write' register
3755  *                         (not offset within BAR, full address)
3756  * @param base_register    Address for 'base' register
3757  *                         (not offset within BAR, full address)
3758  * @param size             Address for 'size' register
3759  *                         (not offset within BAR, full address)
3760  */
3761 static void ipw_queue_init(struct ipw_priv *priv, struct clx2_queue *q,
3762                            int count, u32 read, u32 write, u32 base, u32 size)
3763 {
3764         q->n_bd = count;
3765
3766         q->low_mark = q->n_bd / 4;
3767         if (q->low_mark < 4)
3768                 q->low_mark = 4;
3769
3770         q->high_mark = q->n_bd / 8;
3771         if (q->high_mark < 2)
3772                 q->high_mark = 2;
3773
3774         q->first_empty = q->last_used = 0;
3775         q->reg_r = read;
3776         q->reg_w = write;
3777
3778         ipw_write32(priv, base, q->dma_addr);
3779         ipw_write32(priv, size, count);
3780         ipw_write32(priv, read, 0);
3781         ipw_write32(priv, write, 0);
3782
3783         _ipw_read32(priv, 0x90);
3784 }
3785
3786 static int ipw_queue_tx_init(struct ipw_priv *priv,
3787                              struct clx2_tx_queue *q,
3788                              int count, u32 read, u32 write, u32 base, u32 size)
3789 {
3790         struct pci_dev *dev = priv->pci_dev;
3791
3792         q->txb = kmalloc(sizeof(q->txb[0]) * count, GFP_KERNEL);
3793         if (!q->txb) {
3794                 IPW_ERROR("vmalloc for auxiliary BD structures failed\n");
3795                 return -ENOMEM;
3796         }
3797
3798         q->bd =
3799             pci_alloc_consistent(dev, sizeof(q->bd[0]) * count, &q->q.dma_addr);
3800         if (!q->bd) {
3801                 IPW_ERROR("pci_alloc_consistent(%zd) failed\n",
3802                           sizeof(q->bd[0]) * count);
3803                 kfree(q->txb);
3804                 q->txb = NULL;
3805                 return -ENOMEM;
3806         }
3807
3808         ipw_queue_init(priv, &q->q, count, read, write, base, size);
3809         return 0;
3810 }
3811
3812 /**
3813  * Free one TFD, those at index [txq->q.last_used].
3814  * Do NOT advance any indexes
3815  *
3816  * @param dev
3817  * @param txq
3818  */
3819 static void ipw_queue_tx_free_tfd(struct ipw_priv *priv,
3820                                   struct clx2_tx_queue *txq)
3821 {
3822         struct tfd_frame *bd = &txq->bd[txq->q.last_used];
3823         struct pci_dev *dev = priv->pci_dev;
3824         int i;
3825
3826         /* classify bd */
3827         if (bd->control_flags.message_type == TX_HOST_COMMAND_TYPE)
3828                 /* nothing to cleanup after for host commands */
3829                 return;
3830
3831         /* sanity check */
3832         if (le32_to_cpu(bd->u.data.num_chunks) > NUM_TFD_CHUNKS) {
3833                 IPW_ERROR("Too many chunks: %i\n",
3834                           le32_to_cpu(bd->u.data.num_chunks));
3835                 /** @todo issue fatal error, it is quite serious situation */
3836                 return;
3837         }
3838
3839         /* unmap chunks if any */
3840         for (i = 0; i < le32_to_cpu(bd->u.data.num_chunks); i++) {
3841                 pci_unmap_single(dev, le32_to_cpu(bd->u.data.chunk_ptr[i]),
3842                                  le16_to_cpu(bd->u.data.chunk_len[i]),
3843                                  PCI_DMA_TODEVICE);
3844                 if (txq->txb[txq->q.last_used]) {
3845                         libipw_txb_free(txq->txb[txq->q.last_used]);
3846                         txq->txb[txq->q.last_used] = NULL;
3847                 }
3848         }
3849 }
3850
3851 /**
3852  * Deallocate DMA queue.
3853  *
3854  * Empty queue by removing and destroying all BD's.
3855  * Free all buffers.
3856  *
3857  * @param dev
3858  * @param q
3859  */
3860 static void ipw_queue_tx_free(struct ipw_priv *priv, struct clx2_tx_queue *txq)
3861 {
3862         struct clx2_queue *q = &txq->q;
3863         struct pci_dev *dev = priv->pci_dev;
3864
3865         if (q->n_bd == 0)
3866                 return;
3867
3868         /* first, empty all BD's */
3869         for (; q->first_empty != q->last_used;
3870              q->last_used = ipw_queue_inc_wrap(q->last_used, q->n_bd)) {
3871                 ipw_queue_tx_free_tfd(priv, txq);
3872         }
3873
3874         /* free buffers belonging to queue itself */
3875         pci_free_consistent(dev, sizeof(txq->bd[0]) * q->n_bd, txq->bd,
3876                             q->dma_addr);
3877         kfree(txq->txb);
3878
3879         /* 0 fill whole structure */
3880         memset(txq, 0, sizeof(*txq));
3881 }
3882
3883 /**
3884  * Destroy all DMA queues and structures
3885  *
3886  * @param priv
3887  */
3888 static void ipw_tx_queue_free(struct ipw_priv *priv)
3889 {
3890         /* Tx CMD queue */
3891         ipw_queue_tx_free(priv, &priv->txq_cmd);
3892
3893         /* Tx queues */
3894         ipw_queue_tx_free(priv, &priv->txq[0]);
3895         ipw_queue_tx_free(priv, &priv->txq[1]);
3896         ipw_queue_tx_free(priv, &priv->txq[2]);
3897         ipw_queue_tx_free(priv, &priv->txq[3]);
3898 }
3899
3900 static void ipw_create_bssid(struct ipw_priv *priv, u8 * bssid)
3901 {
3902         /* First 3 bytes are manufacturer */
3903         bssid[0] = priv->mac_addr[0];
3904         bssid[1] = priv->mac_addr[1];
3905         bssid[2] = priv->mac_addr[2];
3906
3907         /* Last bytes are random */
3908         get_random_bytes(&bssid[3], ETH_ALEN - 3);
3909
3910         bssid[0] &= 0xfe;       /* clear multicast bit */
3911         bssid[0] |= 0x02;       /* set local assignment bit (IEEE802) */
3912 }
3913
3914 static u8 ipw_add_station(struct ipw_priv *priv, u8 * bssid)
3915 {
3916         struct ipw_station_entry entry;
3917         int i;
3918
3919         for (i = 0; i < priv->num_stations; i++) {
3920                 if (ether_addr_equal(priv->stations[i], bssid)) {
3921                         /* Another node is active in network */
3922                         priv->missed_adhoc_beacons = 0;
3923                         if (!(priv->config & CFG_STATIC_CHANNEL))
3924                                 /* when other nodes drop out, we drop out */
3925                                 priv->config &= ~CFG_ADHOC_PERSIST;
3926
3927                         return i;
3928                 }
3929         }
3930
3931         if (i == MAX_STATIONS)
3932                 return IPW_INVALID_STATION;
3933
3934         IPW_DEBUG_SCAN("Adding AdHoc station: %pM\n", bssid);
3935
3936         entry.reserved = 0;
3937         entry.support_mode = 0;
3938         memcpy(entry.mac_addr, bssid, ETH_ALEN);
3939         memcpy(priv->stations[i], bssid, ETH_ALEN);
3940         ipw_write_direct(priv, IPW_STATION_TABLE_LOWER + i * sizeof(entry),
3941                          &entry, sizeof(entry));
3942         priv->num_stations++;
3943
3944         return i;
3945 }
3946
3947 static u8 ipw_find_station(struct ipw_priv *priv, u8 * bssid)
3948 {
3949         int i;
3950
3951         for (i = 0; i < priv->num_stations; i++)
3952                 if (ether_addr_equal(priv->stations[i], bssid))
3953                         return i;
3954
3955         return IPW_INVALID_STATION;
3956 }
3957
3958 static void ipw_send_disassociate(struct ipw_priv *priv, int quiet)
3959 {
3960         int err;
3961
3962         if (priv->status & STATUS_ASSOCIATING) {
3963                 IPW_DEBUG_ASSOC("Disassociating while associating.\n");
3964                 schedule_work(&priv->disassociate);
3965                 return;
3966         }
3967
3968         if (!(priv->status & STATUS_ASSOCIATED)) {
3969                 IPW_DEBUG_ASSOC("Disassociating while not associated.\n");
3970                 return;
3971         }
3972
3973         IPW_DEBUG_ASSOC("Disassociation attempt from %pM "
3974                         "on channel %d.\n",
3975                         priv->assoc_request.bssid,
3976                         priv->assoc_request.channel);
3977
3978         priv->status &= ~(STATUS_ASSOCIATING | STATUS_ASSOCIATED);
3979         priv->status |= STATUS_DISASSOCIATING;
3980
3981         if (quiet)
3982                 priv->assoc_request.assoc_type = HC_DISASSOC_QUIET;
3983         else
3984                 priv->assoc_request.assoc_type = HC_DISASSOCIATE;
3985
3986         err = ipw_send_associate(priv, &priv->assoc_request);
3987         if (err) {
3988                 IPW_DEBUG_HC("Attempt to send [dis]associate command "
3989                              "failed.\n");
3990                 return;
3991         }
3992
3993 }
3994
3995 static int ipw_disassociate(void *data)
3996 {
3997         struct ipw_priv *priv = data;
3998         if (!(priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)))
3999                 return 0;
4000         ipw_send_disassociate(data, 0);
4001         netif_carrier_off(priv->net_dev);
4002         return 1;
4003 }
4004
4005 static void ipw_bg_disassociate(struct work_struct *work)
4006 {
4007         struct ipw_priv *priv =
4008                 container_of(work, struct ipw_priv, disassociate);
4009         mutex_lock(&priv->mutex);
4010         ipw_disassociate(priv);
4011         mutex_unlock(&priv->mutex);
4012 }
4013
4014 static void ipw_system_config(struct work_struct *work)
4015 {
4016         struct ipw_priv *priv =
4017                 container_of(work, struct ipw_priv, system_config);
4018
4019 #ifdef CONFIG_IPW2200_PROMISCUOUS
4020         if (priv->prom_net_dev && netif_running(priv->prom_net_dev)) {
4021                 priv->sys_config.accept_all_data_frames = 1;
4022                 priv->sys_config.accept_non_directed_frames = 1;
4023                 priv->sys_config.accept_all_mgmt_bcpr = 1;
4024                 priv->sys_config.accept_all_mgmt_frames = 1;
4025         }
4026 #endif
4027
4028         ipw_send_system_config(priv);
4029 }
4030
4031 struct ipw_status_code {
4032         u16 status;
4033         const char *reason;
4034 };
4035
4036 static const struct ipw_status_code ipw_status_codes[] = {
4037         {0x00, "Successful"},
4038         {0x01, "Unspecified failure"},
4039         {0x0A, "Cannot support all requested capabilities in the "
4040          "Capability information field"},
4041         {0x0B, "Reassociation denied due to inability to confirm that "
4042          "association exists"},
4043         {0x0C, "Association denied due to reason outside the scope of this "
4044          "standard"},
4045         {0x0D,
4046          "Responding station does not support the specified authentication "
4047          "algorithm"},
4048         {0x0E,
4049          "Received an Authentication frame with authentication sequence "
4050          "transaction sequence number out of expected sequence"},
4051         {0x0F, "Authentication rejected because of challenge failure"},
4052         {0x10, "Authentication rejected due to timeout waiting for next "
4053          "frame in sequence"},
4054         {0x11, "Association denied because AP is unable to handle additional "
4055          "associated stations"},
4056         {0x12,
4057          "Association denied due to requesting station not supporting all "
4058          "of the datarates in the BSSBasicServiceSet Parameter"},
4059         {0x13,
4060          "Association denied due to requesting station not supporting "
4061          "short preamble operation"},
4062         {0x14,
4063          "Association denied due to requesting station not supporting "
4064          "PBCC encoding"},
4065         {0x15,
4066          "Association denied due to requesting station not supporting "
4067          "channel agility"},
4068         {0x19,
4069          "Association denied due to requesting station not supporting "
4070          "short slot operation"},
4071         {0x1A,
4072          "Association denied due to requesting station not supporting "
4073          "DSSS-OFDM operation"},
4074         {0x28, "Invalid Information Element"},
4075         {0x29, "Group Cipher is not valid"},
4076         {0x2A, "Pairwise Cipher is not valid"},
4077         {0x2B, "AKMP is not valid"},
4078         {0x2C, "Unsupported RSN IE version"},
4079         {0x2D, "Invalid RSN IE Capabilities"},
4080         {0x2E, "Cipher suite is rejected per security policy"},
4081 };
4082
4083 static const char *ipw_get_status_code(u16 status)
4084 {
4085         int i;
4086         for (i = 0; i < ARRAY_SIZE(ipw_status_codes); i++)
4087                 if (ipw_status_codes[i].status == (status & 0xff))
4088                         return ipw_status_codes[i].reason;
4089         return "Unknown status value.";
4090 }
4091
4092 static inline void average_init(struct average *avg)
4093 {
4094         memset(avg, 0, sizeof(*avg));
4095 }
4096
4097 #define DEPTH_RSSI 8
4098 #define DEPTH_NOISE 16
4099 static s16 exponential_average(s16 prev_avg, s16 val, u8 depth)
4100 {
4101         return ((depth-1)*prev_avg +  val)/depth;
4102 }
4103
4104 static void average_add(struct average *avg, s16 val)
4105 {
4106         avg->sum -= avg->entries[avg->pos];
4107         avg->sum += val;
4108         avg->entries[avg->pos++] = val;
4109         if (unlikely(avg->pos == AVG_ENTRIES)) {
4110                 avg->init = 1;
4111                 avg->pos = 0;
4112         }
4113 }
4114
4115 static s16 average_value(struct average *avg)
4116 {
4117         if (!unlikely(avg->init)) {
4118                 if (avg->pos)
4119                         return avg->sum / avg->pos;
4120                 return 0;
4121         }
4122
4123         return avg->sum / AVG_ENTRIES;
4124 }
4125
4126 static void ipw_reset_stats(struct ipw_priv *priv)
4127 {
4128         u32 len = sizeof(u32);
4129
4130         priv->quality = 0;
4131
4132         average_init(&priv->average_missed_beacons);
4133         priv->exp_avg_rssi = -60;
4134         priv->exp_avg_noise = -85 + 0x100;
4135
4136         priv->last_rate = 0;
4137         priv->last_missed_beacons = 0;
4138         priv->last_rx_packets = 0;
4139         priv->last_tx_packets = 0;
4140         priv->last_tx_failures = 0;
4141
4142         /* Firmware managed, reset only when NIC is restarted, so we have to
4143          * normalize on the current value */
4144         ipw_get_ordinal(priv, IPW_ORD_STAT_RX_ERR_CRC,
4145                         &priv->last_rx_err, &len);
4146         ipw_get_ordinal(priv, IPW_ORD_STAT_TX_FAILURE,
4147                         &priv->last_tx_failures, &len);
4148
4149         /* Driver managed, reset with each association */
4150         priv->missed_adhoc_beacons = 0;
4151         priv->missed_beacons = 0;
4152         priv->tx_packets = 0;
4153         priv->rx_packets = 0;
4154
4155 }
4156
4157 static u32 ipw_get_max_rate(struct ipw_priv *priv)
4158 {
4159         u32 i = 0x80000000;
4160         u32 mask = priv->rates_mask;
4161         /* If currently associated in B mode, restrict the maximum
4162          * rate match to B rates */
4163         if (priv->assoc_request.ieee_mode == IPW_B_MODE)
4164                 mask &= LIBIPW_CCK_RATES_MASK;
4165
4166         /* TODO: Verify that the rate is supported by the current rates
4167          * list. */
4168
4169         while (i && !(mask & i))
4170                 i >>= 1;
4171         switch (i) {
4172         case LIBIPW_CCK_RATE_1MB_MASK:
4173                 return 1000000;
4174         case LIBIPW_CCK_RATE_2MB_MASK:
4175                 return 2000000;
4176         case LIBIPW_CCK_RATE_5MB_MASK:
4177                 return 5500000;
4178         case LIBIPW_OFDM_RATE_6MB_MASK:
4179                 return 6000000;
4180         case LIBIPW_OFDM_RATE_9MB_MASK:
4181                 return 9000000;
4182         case LIBIPW_CCK_RATE_11MB_MASK:
4183                 return 11000000;
4184         case LIBIPW_OFDM_RATE_12MB_MASK:
4185                 return 12000000;
4186         case LIBIPW_OFDM_RATE_18MB_MASK:
4187                 return 18000000;
4188         case LIBIPW_OFDM_RATE_24MB_MASK:
4189                 return 24000000;
4190         case LIBIPW_OFDM_RATE_36MB_MASK:
4191                 return 36000000;
4192         case LIBIPW_OFDM_RATE_48MB_MASK:
4193                 return 48000000;
4194         case LIBIPW_OFDM_RATE_54MB_MASK:
4195                 return 54000000;
4196         }
4197
4198         if (priv->ieee->mode == IEEE_B)
4199                 return 11000000;
4200         else
4201                 return 54000000;
4202 }
4203
4204 static u32 ipw_get_current_rate(struct ipw_priv *priv)
4205 {
4206         u32 rate, len = sizeof(rate);
4207         int err;
4208
4209         if (!(priv->status & STATUS_ASSOCIATED))
4210                 return 0;
4211
4212         if (priv->tx_packets > IPW_REAL_RATE_RX_PACKET_THRESHOLD) {
4213                 err = ipw_get_ordinal(priv, IPW_ORD_STAT_TX_CURR_RATE, &rate,
4214                                       &len);
4215                 if (err) {
4216                         IPW_DEBUG_INFO("failed querying ordinals.\n");
4217                         return 0;
4218                 }
4219         } else
4220                 return ipw_get_max_rate(priv);
4221
4222         switch (rate) {
4223         case IPW_TX_RATE_1MB:
4224                 return 1000000;
4225         case IPW_TX_RATE_2MB:
4226                 return 2000000;
4227         case IPW_TX_RATE_5MB:
4228                 return 5500000;
4229         case IPW_TX_RATE_6MB:
4230                 return 6000000;
4231         case IPW_TX_RATE_9MB:
4232                 return 9000000;
4233         case IPW_TX_RATE_11MB:
4234                 return 11000000;
4235         case IPW_TX_RATE_12MB:
4236                 return 12000000;
4237         case IPW_TX_RATE_18MB:
4238                 return 18000000;
4239         case IPW_TX_RATE_24MB:
4240                 return 24000000;
4241         case IPW_TX_RATE_36MB:
4242                 return 36000000;
4243         case IPW_TX_RATE_48MB:
4244                 return 48000000;
4245         case IPW_TX_RATE_54MB:
4246                 return 54000000;
4247         }
4248
4249         return 0;
4250 }
4251
4252 #define IPW_STATS_INTERVAL (2 * HZ)
4253 static void ipw_gather_stats(struct ipw_priv *priv)
4254 {
4255         u32 rx_err, rx_err_delta, rx_packets_delta;
4256         u32 tx_failures, tx_failures_delta, tx_packets_delta;
4257         u32 missed_beacons_percent, missed_beacons_delta;
4258         u32 quality = 0;
4259         u32 len = sizeof(u32);
4260         s16 rssi;
4261         u32 beacon_quality, signal_quality, tx_quality, rx_quality,
4262             rate_quality;
4263         u32 max_rate;
4264
4265         if (!(priv->status & STATUS_ASSOCIATED)) {
4266                 priv->quality = 0;
4267                 return;
4268         }
4269
4270         /* Update the statistics */
4271         ipw_get_ordinal(priv, IPW_ORD_STAT_MISSED_BEACONS,
4272                         &priv->missed_beacons, &len);
4273         missed_beacons_delta = priv->missed_beacons - priv->last_missed_beacons;
4274         priv->last_missed_beacons = priv->missed_beacons;
4275         if (priv->assoc_request.beacon_interval) {
4276                 missed_beacons_percent = missed_beacons_delta *
4277                     (HZ * le16_to_cpu(priv->assoc_request.beacon_interval)) /
4278                     (IPW_STATS_INTERVAL * 10);
4279         } else {
4280                 missed_beacons_percent = 0;
4281         }
4282         average_add(&priv->average_missed_beacons, missed_beacons_percent);
4283
4284         ipw_get_ordinal(priv, IPW_ORD_STAT_RX_ERR_CRC, &rx_err, &len);
4285         rx_err_delta = rx_err - priv->last_rx_err;
4286         priv->last_rx_err = rx_err;
4287
4288         ipw_get_ordinal(priv, IPW_ORD_STAT_TX_FAILURE, &tx_failures, &len);
4289         tx_failures_delta = tx_failures - priv->last_tx_failures;
4290         priv->last_tx_failures = tx_failures;
4291
4292         rx_packets_delta = priv->rx_packets - priv->last_rx_packets;
4293         priv->last_rx_packets = priv->rx_packets;
4294
4295         tx_packets_delta = priv->tx_packets - priv->last_tx_packets;
4296         priv->last_tx_packets = priv->tx_packets;
4297
4298         /* Calculate quality based on the following:
4299          *
4300          * Missed beacon: 100% = 0, 0% = 70% missed
4301          * Rate: 60% = 1Mbs, 100% = Max
4302          * Rx and Tx errors represent a straight % of total Rx/Tx
4303          * RSSI: 100% = > -50,  0% = < -80
4304          * Rx errors: 100% = 0, 0% = 50% missed
4305          *
4306          * The lowest computed quality is used.
4307          *
4308          */
4309 #define BEACON_THRESHOLD 5
4310         beacon_quality = 100 - missed_beacons_percent;
4311         if (beacon_quality < BEACON_THRESHOLD)
4312                 beacon_quality = 0;
4313         else
4314                 beacon_quality = (beacon_quality - BEACON_THRESHOLD) * 100 /
4315                     (100 - BEACON_THRESHOLD);
4316         IPW_DEBUG_STATS("Missed beacon: %3d%% (%d%%)\n",
4317                         beacon_quality, missed_beacons_percent);
4318
4319         priv->last_rate = ipw_get_current_rate(priv);
4320         max_rate = ipw_get_max_rate(priv);
4321         rate_quality = priv->last_rate * 40 / max_rate + 60;
4322         IPW_DEBUG_STATS("Rate quality : %3d%% (%dMbs)\n",
4323                         rate_quality, priv->last_rate / 1000000);
4324
4325         if (rx_packets_delta > 100 && rx_packets_delta + rx_err_delta)
4326                 rx_quality = 100 - (rx_err_delta * 100) /
4327                     (rx_packets_delta + rx_err_delta);
4328         else
4329                 rx_quality = 100;
4330         IPW_DEBUG_STATS("Rx quality   : %3d%% (%u errors, %u packets)\n",
4331                         rx_quality, rx_err_delta, rx_packets_delta);
4332
4333         if (tx_packets_delta > 100 && tx_packets_delta + tx_failures_delta)
4334                 tx_quality = 100 - (tx_failures_delta * 100) /
4335                     (tx_packets_delta + tx_failures_delta);
4336         else
4337                 tx_quality = 100;
4338         IPW_DEBUG_STATS("Tx quality   : %3d%% (%u errors, %u packets)\n",
4339                         tx_quality, tx_failures_delta, tx_packets_delta);
4340
4341         rssi = priv->exp_avg_rssi;
4342         signal_quality =
4343             (100 *
4344              (priv->ieee->perfect_rssi - priv->ieee->worst_rssi) *
4345              (priv->ieee->perfect_rssi - priv->ieee->worst_rssi) -
4346              (priv->ieee->perfect_rssi - rssi) *
4347              (15 * (priv->ieee->perfect_rssi - priv->ieee->worst_rssi) +
4348               62 * (priv->ieee->perfect_rssi - rssi))) /
4349             ((priv->ieee->perfect_rssi - priv->ieee->worst_rssi) *
4350              (priv->ieee->perfect_rssi - priv->ieee->worst_rssi));
4351         if (signal_quality > 100)
4352                 signal_quality = 100;
4353         else if (signal_quality < 1)
4354                 signal_quality = 0;
4355
4356         IPW_DEBUG_STATS("Signal level : %3d%% (%d dBm)\n",
4357                         signal_quality, rssi);
4358
4359         quality = min(rx_quality, signal_quality);
4360         quality = min(tx_quality, quality);
4361         quality = min(rate_quality, quality);
4362         quality = min(beacon_quality, quality);
4363         if (quality == beacon_quality)
4364                 IPW_DEBUG_STATS("Quality (%d%%): Clamped to missed beacons.\n",
4365                                 quality);
4366         if (quality == rate_quality)
4367                 IPW_DEBUG_STATS("Quality (%d%%): Clamped to rate quality.\n",
4368                                 quality);
4369         if (quality == tx_quality)
4370                 IPW_DEBUG_STATS("Quality (%d%%): Clamped to Tx quality.\n",
4371                                 quality);
4372         if (quality == rx_quality)
4373                 IPW_DEBUG_STATS("Quality (%d%%): Clamped to Rx quality.\n",
4374                                 quality);
4375         if (quality == signal_quality)
4376                 IPW_DEBUG_STATS("Quality (%d%%): Clamped to signal quality.\n",
4377                                 quality);
4378
4379         priv->quality = quality;
4380
4381         schedule_delayed_work(&priv->gather_stats, IPW_STATS_INTERVAL);
4382 }
4383
4384 static void ipw_bg_gather_stats(struct work_struct *work)
4385 {
4386         struct ipw_priv *priv =
4387                 container_of(work, struct ipw_priv, gather_stats.work);
4388         mutex_lock(&priv->mutex);
4389         ipw_gather_stats(priv);
4390         mutex_unlock(&priv->mutex);
4391 }
4392
4393 /* Missed beacon behavior:
4394  * 1st missed -> roaming_threshold, just wait, don't do any scan/roam.
4395  * roaming_threshold -> disassociate_threshold, scan and roam for better signal.
4396  * Above disassociate threshold, give up and stop scanning.
4397  * Roaming is disabled if disassociate_threshold <= roaming_threshold  */
4398 static void ipw_handle_missed_beacon(struct ipw_priv *priv,
4399                                             int missed_count)
4400 {
4401         priv->notif_missed_beacons = missed_count;
4402
4403         if (missed_count > priv->disassociate_threshold &&
4404             priv->status & STATUS_ASSOCIATED) {
4405                 /* If associated and we've hit the missed
4406                  * beacon threshold, disassociate, turn
4407                  * off roaming, and abort any active scans */
4408                 IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF |
4409                           IPW_DL_STATE | IPW_DL_ASSOC,
4410                           "Missed beacon: %d - disassociate\n", missed_count);
4411                 priv->status &= ~STATUS_ROAMING;
4412                 if (priv->status & STATUS_SCANNING) {
4413                         IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF |
4414                                   IPW_DL_STATE,
4415                                   "Aborting scan with missed beacon.\n");
4416                         schedule_work(&priv->abort_scan);
4417                 }
4418
4419                 schedule_work(&priv->disassociate);
4420                 return;
4421         }
4422
4423         if (priv->status & STATUS_ROAMING) {
4424                 /* If we are currently roaming, then just
4425                  * print a debug statement... */
4426                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
4427                           "Missed beacon: %d - roam in progress\n",
4428                           missed_count);
4429                 return;
4430         }
4431
4432         if (roaming &&
4433             (missed_count > priv->roaming_threshold &&
4434              missed_count <= priv->disassociate_threshold)) {
4435                 /* If we are not already roaming, set the ROAM
4436                  * bit in the status and kick off a scan.
4437                  * This can happen several times before we reach
4438                  * disassociate_threshold. */
4439                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
4440                           "Missed beacon: %d - initiate "
4441                           "roaming\n", missed_count);
4442                 if (!(priv->status & STATUS_ROAMING)) {
4443                         priv->status |= STATUS_ROAMING;
4444                         if (!(priv->status & STATUS_SCANNING))
4445                                 schedule_delayed_work(&priv->request_scan, 0);
4446                 }
4447                 return;
4448         }
4449
4450         if (priv->status & STATUS_SCANNING &&
4451             missed_count > IPW_MB_SCAN_CANCEL_THRESHOLD) {
4452                 /* Stop scan to keep fw from getting
4453                  * stuck (only if we aren't roaming --
4454                  * otherwise we'll never scan more than 2 or 3
4455                  * channels..) */
4456                 IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF | IPW_DL_STATE,
4457                           "Aborting scan with missed beacon.\n");
4458                 schedule_work(&priv->abort_scan);
4459         }
4460
4461         IPW_DEBUG_NOTIF("Missed beacon: %d\n", missed_count);
4462 }
4463
4464 static void ipw_scan_event(struct work_struct *work)
4465 {
4466         union iwreq_data wrqu;
4467
4468         struct ipw_priv *priv =
4469                 container_of(work, struct ipw_priv, scan_event.work);
4470
4471         wrqu.data.length = 0;
4472         wrqu.data.flags = 0;
4473         wireless_send_event(priv->net_dev, SIOCGIWSCAN, &wrqu, NULL);
4474 }
4475
4476 static void handle_scan_event(struct ipw_priv *priv)
4477 {
4478         /* Only userspace-requested scan completion events go out immediately */
4479         if (!priv->user_requested_scan) {
4480                 schedule_delayed_work(&priv->scan_event,
4481                                       round_jiffies_relative(msecs_to_jiffies(4000)));
4482         } else {
4483                 priv->user_requested_scan = 0;
4484                 mod_delayed_work(system_wq, &priv->scan_event, 0);
4485         }
4486 }
4487
4488 /**
4489  * Handle host notification packet.
4490  * Called from interrupt routine
4491  */
4492 static void ipw_rx_notification(struct ipw_priv *priv,
4493                                        struct ipw_rx_notification *notif)
4494 {
4495         u16 size = le16_to_cpu(notif->size);
4496
4497         IPW_DEBUG_NOTIF("type = %i (%d bytes)\n", notif->subtype, size);
4498
4499         switch (notif->subtype) {
4500         case HOST_NOTIFICATION_STATUS_ASSOCIATED:{
4501                         struct notif_association *assoc = &notif->u.assoc;
4502
4503                         switch (assoc->state) {
4504                         case CMAS_ASSOCIATED:{
4505                                         IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4506                                                   IPW_DL_ASSOC,
4507                                                   "associated: '%*pE' %pM\n",
4508                                                   priv->essid_len, priv->essid,
4509                                                   priv->bssid);
4510
4511                                         switch (priv->ieee->iw_mode) {
4512                                         case IW_MODE_INFRA:
4513                                                 memcpy(priv->ieee->bssid,
4514                                                        priv->bssid, ETH_ALEN);
4515                                                 break;
4516
4517                                         case IW_MODE_ADHOC:
4518                                                 memcpy(priv->ieee->bssid,
4519                                                        priv->bssid, ETH_ALEN);
4520
4521                                                 /* clear out the station table */
4522                                                 priv->num_stations = 0;
4523
4524                                                 IPW_DEBUG_ASSOC
4525                                                     ("queueing adhoc check\n");
4526                                                 schedule_delayed_work(
4527                                                         &priv->adhoc_check,
4528                                                         le16_to_cpu(priv->
4529                                                         assoc_request.
4530                                                         beacon_interval));
4531                                                 break;
4532                                         }
4533
4534                                         priv->status &= ~STATUS_ASSOCIATING;
4535                                         priv->status |= STATUS_ASSOCIATED;
4536                                         schedule_work(&priv->system_config);
4537
4538 #ifdef CONFIG_IPW2200_QOS
4539 #define IPW_GET_PACKET_STYPE(x) WLAN_FC_GET_STYPE( \
4540                          le16_to_cpu(((struct ieee80211_hdr *)(x))->frame_control))
4541                                         if ((priv->status & STATUS_AUTH) &&
4542                                             (IPW_GET_PACKET_STYPE(&notif->u.raw)
4543                                              == IEEE80211_STYPE_ASSOC_RESP)) {
4544                                                 if ((sizeof
4545                                                      (struct
4546                                                       libipw_assoc_response)
4547                                                      <= size)
4548                                                     && (size <= 2314)) {
4549                                                         struct
4550                                                         libipw_rx_stats
4551                                                             stats = {
4552                                                                 .len = size - 1,
4553                                                         };
4554
4555                                                         IPW_DEBUG_QOS
4556                                                             ("QoS Associate "
4557                                                              "size %d\n", size);
4558                                                         libipw_rx_mgt(priv->
4559                                                                          ieee,
4560                                                                          (struct
4561                                                                           libipw_hdr_4addr
4562                                                                           *)
4563                                                                          &notif->u.raw, &stats);
4564                                                 }
4565                                         }
4566 #endif
4567
4568                                         schedule_work(&priv->link_up);
4569
4570                                         break;
4571                                 }
4572
4573                         case CMAS_AUTHENTICATED:{
4574                                         if (priv->
4575                                             status & (STATUS_ASSOCIATED |
4576                                                       STATUS_AUTH)) {
4577                                                 struct notif_authenticate *auth
4578                                                     = &notif->u.auth;
4579                                                 IPW_DEBUG(IPW_DL_NOTIF |
4580                                                           IPW_DL_STATE |
4581                                                           IPW_DL_ASSOC,
4582                                                           "deauthenticated: '%*pE' %pM: (0x%04X) - %s\n",
4583                                                           priv->essid_len,
4584                                                           priv->essid,
4585                                                           priv->bssid,
4586                                                           le16_to_cpu(auth->status),
4587                                                           ipw_get_status_code
4588                                                           (le16_to_cpu
4589                                                            (auth->status)));
4590
4591                                                 priv->status &=
4592                                                     ~(STATUS_ASSOCIATING |
4593                                                       STATUS_AUTH |
4594                                                       STATUS_ASSOCIATED);
4595
4596                                                 schedule_work(&priv->link_down);
4597                                                 break;
4598                                         }
4599
4600                                         IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4601                                                   IPW_DL_ASSOC,
4602                                                   "authenticated: '%*pE' %pM\n",
4603                                                   priv->essid_len, priv->essid,
4604                                                   priv->bssid);
4605                                         break;
4606                                 }
4607
4608                         case CMAS_INIT:{
4609                                         if (priv->status & STATUS_AUTH) {
4610                                                 struct
4611                                                     libipw_assoc_response
4612                                                 *resp;
4613                                                 resp =
4614                                                     (struct
4615                                                      libipw_assoc_response
4616                                                      *)&notif->u.raw;
4617                                                 IPW_DEBUG(IPW_DL_NOTIF |
4618                                                           IPW_DL_STATE |
4619                                                           IPW_DL_ASSOC,
4620                                                           "association failed (0x%04X): %s\n",
4621                                                           le16_to_cpu(resp->status),
4622                                                           ipw_get_status_code
4623                                                           (le16_to_cpu
4624                                                            (resp->status)));
4625                                         }
4626
4627                                         IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4628                                                   IPW_DL_ASSOC,
4629                                                   "disassociated: '%*pE' %pM\n",
4630                                                   priv->essid_len, priv->essid,
4631                                                   priv->bssid);
4632
4633                                         priv->status &=
4634                                             ~(STATUS_DISASSOCIATING |
4635                                               STATUS_ASSOCIATING |
4636                                               STATUS_ASSOCIATED | STATUS_AUTH);
4637                                         if (priv->assoc_network
4638                                             && (priv->assoc_network->
4639                                                 capability &
4640                                                 WLAN_CAPABILITY_IBSS))
4641                                                 ipw_remove_current_network
4642                                                     (priv);
4643
4644                                         schedule_work(&priv->link_down);
4645
4646                                         break;
4647                                 }
4648
4649                         case CMAS_RX_ASSOC_RESP:
4650                                 break;
4651
4652                         default:
4653                                 IPW_ERROR("assoc: unknown (%d)\n",
4654                                           assoc->state);
4655                                 break;
4656                         }
4657
4658                         break;
4659                 }
4660
4661         case HOST_NOTIFICATION_STATUS_AUTHENTICATE:{
4662                         struct notif_authenticate *auth = &notif->u.auth;
4663                         switch (auth->state) {
4664                         case CMAS_AUTHENTICATED:
4665                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
4666                                           "authenticated: '%*pE' %pM\n",
4667                                           priv->essid_len, priv->essid,
4668                                           priv->bssid);
4669                                 priv->status |= STATUS_AUTH;
4670                                 break;
4671
4672                         case CMAS_INIT:
4673                                 if (priv->status & STATUS_AUTH) {
4674                                         IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4675                                                   IPW_DL_ASSOC,
4676                                                   "authentication failed (0x%04X): %s\n",
4677                                                   le16_to_cpu(auth->status),
4678                                                   ipw_get_status_code(le16_to_cpu
4679                                                                       (auth->
4680                                                                        status)));
4681                                 }
4682                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4683                                           IPW_DL_ASSOC,
4684                                           "deauthenticated: '%*pE' %pM\n",
4685                                           priv->essid_len, priv->essid,
4686                                           priv->bssid);
4687
4688                                 priv->status &= ~(STATUS_ASSOCIATING |
4689                                                   STATUS_AUTH |
4690                                                   STATUS_ASSOCIATED);
4691
4692                                 schedule_work(&priv->link_down);
4693                                 break;
4694
4695                         case CMAS_TX_AUTH_SEQ_1:
4696                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4697                                           IPW_DL_ASSOC, "AUTH_SEQ_1\n");
4698                                 break;
4699                         case CMAS_RX_AUTH_SEQ_2:
4700                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4701                                           IPW_DL_ASSOC, "AUTH_SEQ_2\n");
4702                                 break;
4703                         case CMAS_AUTH_SEQ_1_PASS:
4704                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4705                                           IPW_DL_ASSOC, "AUTH_SEQ_1_PASS\n");
4706                                 break;
4707                         case CMAS_AUTH_SEQ_1_FAIL:
4708                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4709                                           IPW_DL_ASSOC, "AUTH_SEQ_1_FAIL\n");
4710                                 break;
4711                         case CMAS_TX_AUTH_SEQ_3:
4712                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4713                                           IPW_DL_ASSOC, "AUTH_SEQ_3\n");
4714                                 break;
4715                         case CMAS_RX_AUTH_SEQ_4:
4716                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4717                                           IPW_DL_ASSOC, "RX_AUTH_SEQ_4\n");
4718                                 break;
4719                         case CMAS_AUTH_SEQ_2_PASS:
4720                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4721                                           IPW_DL_ASSOC, "AUTH_SEQ_2_PASS\n");
4722                                 break;
4723                         case CMAS_AUTH_SEQ_2_FAIL:
4724                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4725                                           IPW_DL_ASSOC, "AUT_SEQ_2_FAIL\n");
4726                                 break;
4727                         case CMAS_TX_ASSOC:
4728                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4729                                           IPW_DL_ASSOC, "TX_ASSOC\n");
4730                                 break;
4731                         case CMAS_RX_ASSOC_RESP:
4732                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4733                                           IPW_DL_ASSOC, "RX_ASSOC_RESP\n");
4734
4735                                 break;
4736                         case CMAS_ASSOCIATED:
4737                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4738                                           IPW_DL_ASSOC, "ASSOCIATED\n");
4739                                 break;
4740                         default:
4741                                 IPW_DEBUG_NOTIF("auth: failure - %d\n",
4742                                                 auth->state);
4743                                 break;
4744                         }
4745                         break;
4746                 }
4747
4748         case HOST_NOTIFICATION_STATUS_SCAN_CHANNEL_RESULT:{
4749                         struct notif_channel_result *x =
4750                             &notif->u.channel_result;
4751
4752                         if (size == sizeof(*x)) {
4753                                 IPW_DEBUG_SCAN("Scan result for channel %d\n",
4754                                                x->channel_num);
4755                         } else {
4756                                 IPW_DEBUG_SCAN("Scan result of wrong size %d "
4757                                                "(should be %zd)\n",
4758                                                size, sizeof(*x));
4759                         }
4760                         break;
4761                 }
4762
4763         case HOST_NOTIFICATION_STATUS_SCAN_COMPLETED:{
4764                         struct notif_scan_complete *x = &notif->u.scan_complete;
4765                         if (size == sizeof(*x)) {
4766                                 IPW_DEBUG_SCAN
4767                                     ("Scan completed: type %d, %d channels, "
4768                                      "%d status\n", x->scan_type,
4769                                      x->num_channels, x->status);
4770                         } else {
4771                                 IPW_ERROR("Scan completed of wrong size %d "
4772                                           "(should be %zd)\n",
4773                                           size, sizeof(*x));
4774                         }
4775
4776                         priv->status &=
4777                             ~(STATUS_SCANNING | STATUS_SCAN_ABORTING);
4778
4779                         wake_up_interruptible(&priv->wait_state);
4780                         cancel_delayed_work(&priv->scan_check);
4781
4782                         if (priv->status & STATUS_EXIT_PENDING)
4783                                 break;
4784
4785                         priv->ieee->scans++;
4786
4787 #ifdef CONFIG_IPW2200_MONITOR
4788                         if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
4789                                 priv->status |= STATUS_SCAN_FORCED;
4790                                 schedule_delayed_work(&priv->request_scan, 0);
4791                                 break;
4792                         }
4793                         priv->status &= ~STATUS_SCAN_FORCED;
4794 #endif                          /* CONFIG_IPW2200_MONITOR */
4795
4796                         /* Do queued direct scans first */
4797                         if (priv->status & STATUS_DIRECT_SCAN_PENDING)
4798                                 schedule_delayed_work(&priv->request_direct_scan, 0);
4799
4800                         if (!(priv->status & (STATUS_ASSOCIATED |
4801                                               STATUS_ASSOCIATING |
4802                                               STATUS_ROAMING |
4803                                               STATUS_DISASSOCIATING)))
4804                                 schedule_work(&priv->associate);
4805                         else if (priv->status & STATUS_ROAMING) {
4806                                 if (x->status == SCAN_COMPLETED_STATUS_COMPLETE)
4807                                         /* If a scan completed and we are in roam mode, then
4808                                          * the scan that completed was the one requested as a
4809                                          * result of entering roam... so, schedule the
4810                                          * roam work */
4811                                         schedule_work(&priv->roam);
4812                                 else
4813                                         /* Don't schedule if we aborted the scan */
4814                                         priv->status &= ~STATUS_ROAMING;
4815                         } else if (priv->status & STATUS_SCAN_PENDING)
4816                                 schedule_delayed_work(&priv->request_scan, 0);
4817                         else if (priv->config & CFG_BACKGROUND_SCAN
4818                                  && priv->status & STATUS_ASSOCIATED)
4819                                 schedule_delayed_work(&priv->request_scan,
4820                                                       round_jiffies_relative(HZ));
4821
4822                         /* Send an empty event to user space.
4823                          * We don't send the received data on the event because
4824                          * it would require us to do complex transcoding, and
4825                          * we want to minimise the work done in the irq handler
4826                          * Use a request to extract the data.
4827                          * Also, we generate this even for any scan, regardless
4828                          * on how the scan was initiated. User space can just
4829                          * sync on periodic scan to get fresh data...
4830                          * Jean II */
4831                         if (x->status == SCAN_COMPLETED_STATUS_COMPLETE)
4832                                 handle_scan_event(priv);
4833                         break;
4834                 }
4835
4836         case HOST_NOTIFICATION_STATUS_FRAG_LENGTH:{
4837                         struct notif_frag_length *x = &notif->u.frag_len;
4838
4839                         if (size == sizeof(*x))
4840                                 IPW_ERROR("Frag length: %d\n",
4841                                           le16_to_cpu(x->frag_length));
4842                         else
4843                                 IPW_ERROR("Frag length of wrong size %d "
4844                                           "(should be %zd)\n",
4845                                           size, sizeof(*x));
4846                         break;
4847                 }
4848
4849         case HOST_NOTIFICATION_STATUS_LINK_DETERIORATION:{
4850                         struct notif_link_deterioration *x =
4851                             &notif->u.link_deterioration;
4852
4853                         if (size == sizeof(*x)) {
4854                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
4855                                         "link deterioration: type %d, cnt %d\n",
4856                                         x->silence_notification_type,
4857                                         x->silence_count);
4858                                 memcpy(&priv->last_link_deterioration, x,
4859                                        sizeof(*x));
4860                         } else {
4861                                 IPW_ERROR("Link Deterioration of wrong size %d "
4862                                           "(should be %zd)\n",
4863                                           size, sizeof(*x));
4864                         }
4865                         break;
4866                 }
4867
4868         case HOST_NOTIFICATION_DINO_CONFIG_RESPONSE:{
4869                         IPW_ERROR("Dino config\n");
4870                         if (priv->hcmd
4871                             && priv->hcmd->cmd != HOST_CMD_DINO_CONFIG)
4872                                 IPW_ERROR("Unexpected DINO_CONFIG_RESPONSE\n");
4873
4874                         break;
4875                 }
4876
4877         case HOST_NOTIFICATION_STATUS_BEACON_STATE:{
4878                         struct notif_beacon_state *x = &notif->u.beacon_state;
4879                         if (size != sizeof(*x)) {
4880                                 IPW_ERROR
4881                                     ("Beacon state of wrong size %d (should "
4882                                      "be %zd)\n", size, sizeof(*x));
4883                                 break;
4884                         }
4885
4886                         if (le32_to_cpu(x->state) ==
4887                             HOST_NOTIFICATION_STATUS_BEACON_MISSING)
4888                                 ipw_handle_missed_beacon(priv,
4889                                                          le32_to_cpu(x->
4890                                                                      number));
4891
4892                         break;
4893                 }
4894
4895         case HOST_NOTIFICATION_STATUS_TGI_TX_KEY:{
4896                         struct notif_tgi_tx_key *x = &notif->u.tgi_tx_key;
4897                         if (size == sizeof(*x)) {
4898                                 IPW_ERROR("TGi Tx Key: state 0x%02x sec type "
4899                                           "0x%02x station %d\n",
4900                                           x->key_state, x->security_type,
4901                                           x->station_index);
4902                                 break;
4903                         }
4904
4905                         IPW_ERROR
4906                             ("TGi Tx Key of wrong size %d (should be %zd)\n",
4907                              size, sizeof(*x));
4908                         break;
4909                 }
4910
4911         case HOST_NOTIFICATION_CALIB_KEEP_RESULTS:{
4912                         struct notif_calibration *x = &notif->u.calibration;
4913
4914                         if (size == sizeof(*x)) {
4915                                 memcpy(&priv->calib, x, sizeof(*x));
4916                                 IPW_DEBUG_INFO("TODO: Calibration\n");
4917                                 break;
4918                         }
4919
4920                         IPW_ERROR
4921                             ("Calibration of wrong size %d (should be %zd)\n",
4922                              size, sizeof(*x));
4923                         break;
4924                 }
4925
4926         case HOST_NOTIFICATION_NOISE_STATS:{
4927                         if (size == sizeof(u32)) {
4928                                 priv->exp_avg_noise =
4929                                     exponential_average(priv->exp_avg_noise,
4930                                     (u8) (le32_to_cpu(notif->u.noise.value) & 0xff),
4931                                     DEPTH_NOISE);
4932                                 break;
4933                         }
4934
4935                         IPW_ERROR
4936                             ("Noise stat is wrong size %d (should be %zd)\n",
4937                              size, sizeof(u32));
4938                         break;
4939                 }
4940
4941         default:
4942                 IPW_DEBUG_NOTIF("Unknown notification: "
4943                                 "subtype=%d,flags=0x%2x,size=%d\n",
4944                                 notif->subtype, notif->flags, size);
4945         }
4946 }
4947
4948 /**
4949  * Destroys all DMA structures and initialise them again
4950  *
4951  * @param priv
4952  * @return error code
4953  */
4954 static int ipw_queue_reset(struct ipw_priv *priv)
4955 {
4956         int rc = 0;
4957         /** @todo customize queue sizes */
4958         int nTx = 64, nTxCmd = 8;
4959         ipw_tx_queue_free(priv);
4960         /* Tx CMD queue */
4961         rc = ipw_queue_tx_init(priv, &priv->txq_cmd, nTxCmd,
4962                                IPW_TX_CMD_QUEUE_READ_INDEX,
4963                                IPW_TX_CMD_QUEUE_WRITE_INDEX,
4964                                IPW_TX_CMD_QUEUE_BD_BASE,
4965                                IPW_TX_CMD_QUEUE_BD_SIZE);
4966         if (rc) {
4967                 IPW_ERROR("Tx Cmd queue init failed\n");
4968                 goto error;
4969         }
4970         /* Tx queue(s) */
4971         rc = ipw_queue_tx_init(priv, &priv->txq[0], nTx,
4972                                IPW_TX_QUEUE_0_READ_INDEX,
4973                                IPW_TX_QUEUE_0_WRITE_INDEX,
4974                                IPW_TX_QUEUE_0_BD_BASE, IPW_TX_QUEUE_0_BD_SIZE);
4975         if (rc) {
4976                 IPW_ERROR("Tx 0 queue init failed\n");
4977                 goto error;
4978         }
4979         rc = ipw_queue_tx_init(priv, &priv->txq[1], nTx,
4980                                IPW_TX_QUEUE_1_READ_INDEX,
4981                                IPW_TX_QUEUE_1_WRITE_INDEX,
4982                                IPW_TX_QUEUE_1_BD_BASE, IPW_TX_QUEUE_1_BD_SIZE);
4983         if (rc) {
4984                 IPW_ERROR("Tx 1 queue init failed\n");
4985                 goto error;
4986         }
4987         rc = ipw_queue_tx_init(priv, &priv->txq[2], nTx,
4988                                IPW_TX_QUEUE_2_READ_INDEX,
4989                                IPW_TX_QUEUE_2_WRITE_INDEX,
4990                                IPW_TX_QUEUE_2_BD_BASE, IPW_TX_QUEUE_2_BD_SIZE);
4991         if (rc) {
4992                 IPW_ERROR("Tx 2 queue init failed\n");
4993                 goto error;
4994         }
4995         rc = ipw_queue_tx_init(priv, &priv->txq[3], nTx,
4996                                IPW_TX_QUEUE_3_READ_INDEX,
4997                                IPW_TX_QUEUE_3_WRITE_INDEX,
4998                                IPW_TX_QUEUE_3_BD_BASE, IPW_TX_QUEUE_3_BD_SIZE);
4999         if (rc) {
5000                 IPW_ERROR("Tx 3 queue init failed\n");
5001                 goto error;
5002         }
5003         /* statistics */
5004         priv->rx_bufs_min = 0;
5005         priv->rx_pend_max = 0;
5006         return rc;
5007
5008       error:
5009         ipw_tx_queue_free(priv);
5010         return rc;
5011 }
5012
5013 /**
5014  * Reclaim Tx queue entries no more used by NIC.
5015  *
5016  * When FW advances 'R' index, all entries between old and
5017  * new 'R' index need to be reclaimed. As result, some free space
5018  * forms. If there is enough free space (> low mark), wake Tx queue.
5019  *
5020  * @note Need to protect against garbage in 'R' index
5021  * @param priv
5022  * @param txq
5023  * @param qindex
5024  * @return Number of used entries remains in the queue
5025  */
5026 static int ipw_queue_tx_reclaim(struct ipw_priv *priv,
5027                                 struct clx2_tx_queue *txq, int qindex)
5028 {
5029         u32 hw_tail;
5030         int used;
5031         struct clx2_queue *q = &txq->q;
5032
5033         hw_tail = ipw_read32(priv, q->reg_r);
5034         if (hw_tail >= q->n_bd) {
5035                 IPW_ERROR
5036                     ("Read index for DMA queue (%d) is out of range [0-%d)\n",
5037                      hw_tail, q->n_bd);
5038                 goto done;
5039         }
5040         for (; q->last_used != hw_tail;
5041              q->last_used = ipw_queue_inc_wrap(q->last_used, q->n_bd)) {
5042                 ipw_queue_tx_free_tfd(priv, txq);
5043                 priv->tx_packets++;
5044         }
5045       done:
5046         if ((ipw_tx_queue_space(q) > q->low_mark) &&
5047             (qindex >= 0))
5048                 netif_wake_queue(priv->net_dev);
5049         used = q->first_empty - q->last_used;
5050         if (used < 0)
5051                 used += q->n_bd;
5052
5053         return used;
5054 }
5055
5056 static int ipw_queue_tx_hcmd(struct ipw_priv *priv, int hcmd, void *buf,
5057                              int len, int sync)
5058 {
5059         struct clx2_tx_queue *txq = &priv->txq_cmd;
5060         struct clx2_queue *q = &txq->q;
5061         struct tfd_frame *tfd;
5062
5063         if (ipw_tx_queue_space(q) < (sync ? 1 : 2)) {
5064                 IPW_ERROR("No space for Tx\n");
5065                 return -EBUSY;
5066         }
5067
5068         tfd = &txq->bd[q->first_empty];
5069         txq->txb[q->first_empty] = NULL;
5070
5071         memset(tfd, 0, sizeof(*tfd));
5072         tfd->control_flags.message_type = TX_HOST_COMMAND_TYPE;
5073         tfd->control_flags.control_bits = TFD_NEED_IRQ_MASK;
5074         priv->hcmd_seq++;
5075         tfd->u.cmd.index = hcmd;
5076         tfd->u.cmd.length = len;
5077         memcpy(tfd->u.cmd.payload, buf, len);
5078         q->first_empty = ipw_queue_inc_wrap(q->first_empty, q->n_bd);
5079         ipw_write32(priv, q->reg_w, q->first_empty);
5080         _ipw_read32(priv, 0x90);
5081
5082         return 0;
5083 }
5084
5085 /*
5086  * Rx theory of operation
5087  *
5088  * The host allocates 32 DMA target addresses and passes the host address
5089  * to the firmware at register IPW_RFDS_TABLE_LOWER + N * RFD_SIZE where N is
5090  * 0 to 31
5091  *
5092  * Rx Queue Indexes
5093  * The host/firmware share two index registers for managing the Rx buffers.
5094  *
5095  * The READ index maps to the first position that the firmware may be writing
5096  * to -- the driver can read up to (but not including) this position and get
5097  * good data.
5098  * The READ index is managed by the firmware once the card is enabled.
5099  *
5100  * The WRITE index maps to the last position the driver has read from -- the
5101  * position preceding WRITE is the last slot the firmware can place a packet.
5102  *
5103  * The queue is empty (no good data) if WRITE = READ - 1, and is full if
5104  * WRITE = READ.
5105  *
5106  * During initialization the host sets up the READ queue position to the first
5107  * INDEX position, and WRITE to the last (READ - 1 wrapped)
5108  *
5109  * When the firmware places a packet in a buffer it will advance the READ index
5110  * and fire the RX interrupt.  The driver can then query the READ index and
5111  * process as many packets as possible, moving the WRITE index forward as it
5112  * resets the Rx queue buffers with new memory.
5113  *
5114  * The management in the driver is as follows:
5115  * + A list of pre-allocated SKBs is stored in ipw->rxq->rx_free.  When
5116  *   ipw->rxq->free_count drops to or below RX_LOW_WATERMARK, work is scheduled
5117  *   to replensish the ipw->rxq->rx_free.
5118  * + In ipw_rx_queue_replenish (scheduled) if 'processed' != 'read' then the
5119  *   ipw->rxq is replenished and the READ INDEX is updated (updating the
5120  *   'processed' and 'read' driver indexes as well)
5121  * + A received packet is processed and handed to the kernel network stack,
5122  *   detached from the ipw->rxq.  The driver 'processed' index is updated.
5123  * + The Host/Firmware ipw->rxq is replenished at tasklet time from the rx_free
5124  *   list. If there are no allocated buffers in ipw->rxq->rx_free, the READ
5125  *   INDEX is not incremented and ipw->status(RX_STALLED) is set.  If there
5126  *   were enough free buffers and RX_STALLED is set it is cleared.
5127  *
5128  *
5129  * Driver sequence:
5130  *
5131  * ipw_rx_queue_alloc()       Allocates rx_free
5132  * ipw_rx_queue_replenish()   Replenishes rx_free list from rx_used, and calls
5133  *                            ipw_rx_queue_restock
5134  * ipw_rx_queue_restock()     Moves available buffers from rx_free into Rx
5135  *                            queue, updates firmware pointers, and updates
5136  *                            the WRITE index.  If insufficient rx_free buffers
5137  *                            are available, schedules ipw_rx_queue_replenish
5138  *
5139  * -- enable interrupts --
5140  * ISR - ipw_rx()             Detach ipw_rx_mem_buffers from pool up to the
5141  *                            READ INDEX, detaching the SKB from the pool.
5142  *                            Moves the packet buffer from queue to rx_used.
5143  *                            Calls ipw_rx_queue_restock to refill any empty
5144  *                            slots.
5145  * ...
5146  *
5147  */
5148
5149 /*
5150  * If there are slots in the RX queue that  need to be restocked,
5151  * and we have free pre-allocated buffers, fill the ranks as much
5152  * as we can pulling from rx_free.
5153  *
5154  * This moves the 'write' index forward to catch up with 'processed', and
5155  * also updates the memory address in the firmware to reference the new
5156  * target buffer.
5157  */
5158 static void ipw_rx_queue_restock(struct ipw_priv *priv)
5159 {
5160         struct ipw_rx_queue *rxq = priv->rxq;
5161         struct list_head *element;
5162         struct ipw_rx_mem_buffer *rxb;
5163         unsigned long flags;
5164         int write;
5165
5166         spin_lock_irqsave(&rxq->lock, flags);
5167         write = rxq->write;
5168         while ((ipw_rx_queue_space(rxq) > 0) && (rxq->free_count)) {
5169                 element = rxq->rx_free.next;
5170                 rxb = list_entry(element, struct ipw_rx_mem_buffer, list);
5171                 list_del(element);
5172
5173                 ipw_write32(priv, IPW_RFDS_TABLE_LOWER + rxq->write * RFD_SIZE,
5174                             rxb->dma_addr);
5175                 rxq->queue[rxq->write] = rxb;
5176                 rxq->write = (rxq->write + 1) % RX_QUEUE_SIZE;
5177                 rxq->free_count--;
5178         }
5179         spin_unlock_irqrestore(&rxq->lock, flags);
5180
5181         /* If the pre-allocated buffer pool is dropping low, schedule to
5182          * refill it */
5183         if (rxq->free_count <= RX_LOW_WATERMARK)
5184                 schedule_work(&priv->rx_replenish);
5185
5186         /* If we've added more space for the firmware to place data, tell it */
5187         if (write != rxq->write)
5188                 ipw_write32(priv, IPW_RX_WRITE_INDEX, rxq->write);
5189 }
5190
5191 /*
5192  * Move all used packet from rx_used to rx_free, allocating a new SKB for each.
5193  * Also restock the Rx queue via ipw_rx_queue_restock.
5194  *
5195  * This is called as a scheduled work item (except for during initialization)
5196  */
5197 static void ipw_rx_queue_replenish(void *data)
5198 {
5199         struct ipw_priv *priv = data;
5200         struct ipw_rx_queue *rxq = priv->rxq;
5201         struct list_head *element;
5202         struct ipw_rx_mem_buffer *rxb;
5203         unsigned long flags;
5204
5205         spin_lock_irqsave(&rxq->lock, flags);
5206         while (!list_empty(&rxq->rx_used)) {
5207                 element = rxq->rx_used.next;
5208                 rxb = list_entry(element, struct ipw_rx_mem_buffer, list);
5209                 rxb->skb = alloc_skb(IPW_RX_BUF_SIZE, GFP_ATOMIC);
5210                 if (!rxb->skb) {
5211                         printk(KERN_CRIT "%s: Can not allocate SKB buffers.\n",
5212                                priv->net_dev->name);
5213                         /* We don't reschedule replenish work here -- we will
5214                          * call the restock method and if it still needs
5215                          * more buffers it will schedule replenish */
5216                         break;
5217                 }
5218                 list_del(element);
5219
5220                 rxb->dma_addr =
5221                     pci_map_single(priv->pci_dev, rxb->skb->data,
5222                                    IPW_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
5223
5224                 list_add_tail(&rxb->list, &rxq->rx_free);
5225                 rxq->free_count++;
5226         }
5227         spin_unlock_irqrestore(&rxq->lock, flags);
5228
5229         ipw_rx_queue_restock(priv);
5230 }
5231
5232 static void ipw_bg_rx_queue_replenish(struct work_struct *work)
5233 {
5234         struct ipw_priv *priv =
5235                 container_of(work, struct ipw_priv, rx_replenish);
5236         mutex_lock(&priv->mutex);
5237         ipw_rx_queue_replenish(priv);
5238         mutex_unlock(&priv->mutex);
5239 }
5240
5241 /* Assumes that the skb field of the buffers in 'pool' is kept accurate.
5242  * If an SKB has been detached, the POOL needs to have its SKB set to NULL
5243  * This free routine walks the list of POOL entries and if SKB is set to
5244  * non NULL it is unmapped and freed
5245  */
5246 static void ipw_rx_queue_free(struct ipw_priv *priv, struct ipw_rx_queue *rxq)
5247 {
5248         int i;
5249
5250         if (!rxq)
5251                 return;
5252
5253         for (i = 0; i < RX_QUEUE_SIZE + RX_FREE_BUFFERS; i++) {
5254                 if (rxq->pool[i].skb != NULL) {
5255                         pci_unmap_single(priv->pci_dev, rxq->pool[i].dma_addr,
5256                                          IPW_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
5257                         dev_kfree_skb(rxq->pool[i].skb);
5258                 }
5259         }
5260
5261         kfree(rxq);
5262 }
5263
5264 static struct ipw_rx_queue *ipw_rx_queue_alloc(struct ipw_priv *priv)
5265 {
5266         struct ipw_rx_queue *rxq;
5267         int i;
5268
5269         rxq = kzalloc(sizeof(*rxq), GFP_KERNEL);
5270         if (unlikely(!rxq)) {
5271                 IPW_ERROR("memory allocation failed\n");
5272                 return NULL;
5273         }
5274         spin_lock_init(&rxq->lock);
5275         INIT_LIST_HEAD(&rxq->rx_free);
5276         INIT_LIST_HEAD(&rxq->rx_used);
5277
5278         /* Fill the rx_used queue with _all_ of the Rx buffers */
5279         for (i = 0; i < RX_FREE_BUFFERS + RX_QUEUE_SIZE; i++)
5280                 list_add_tail(&rxq->pool[i].list, &rxq->rx_used);
5281
5282         /* Set us so that we have processed and used all buffers, but have
5283          * not restocked the Rx queue with fresh buffers */
5284         rxq->read = rxq->write = 0;
5285         rxq->free_count = 0;
5286
5287         return rxq;
5288 }
5289
5290 static int ipw_is_rate_in_mask(struct ipw_priv *priv, int ieee_mode, u8 rate)
5291 {
5292         rate &= ~LIBIPW_BASIC_RATE_MASK;
5293         if (ieee_mode == IEEE_A) {
5294                 switch (rate) {
5295                 case LIBIPW_OFDM_RATE_6MB:
5296                         return priv->rates_mask & LIBIPW_OFDM_RATE_6MB_MASK ?
5297                             1 : 0;
5298                 case LIBIPW_OFDM_RATE_9MB:
5299                         return priv->rates_mask & LIBIPW_OFDM_RATE_9MB_MASK ?
5300                             1 : 0;
5301                 case LIBIPW_OFDM_RATE_12MB:
5302                         return priv->
5303                             rates_mask & LIBIPW_OFDM_RATE_12MB_MASK ? 1 : 0;
5304                 case LIBIPW_OFDM_RATE_18MB:
5305                         return priv->
5306                             rates_mask & LIBIPW_OFDM_RATE_18MB_MASK ? 1 : 0;
5307                 case LIBIPW_OFDM_RATE_24MB:
5308                         return priv->
5309                             rates_mask & LIBIPW_OFDM_RATE_24MB_MASK ? 1 : 0;
5310                 case LIBIPW_OFDM_RATE_36MB:
5311                         return priv->
5312                             rates_mask & LIBIPW_OFDM_RATE_36MB_MASK ? 1 : 0;
5313                 case LIBIPW_OFDM_RATE_48MB:
5314                         return priv->
5315                             rates_mask & LIBIPW_OFDM_RATE_48MB_MASK ? 1 : 0;
5316                 case LIBIPW_OFDM_RATE_54MB:
5317                         return priv->
5318                             rates_mask & LIBIPW_OFDM_RATE_54MB_MASK ? 1 : 0;
5319                 default:
5320                         return 0;
5321                 }
5322         }
5323
5324         /* B and G mixed */
5325         switch (rate) {
5326         case LIBIPW_CCK_RATE_1MB:
5327                 return priv->rates_mask & LIBIPW_CCK_RATE_1MB_MASK ? 1 : 0;
5328         case LIBIPW_CCK_RATE_2MB:
5329                 return priv->rates_mask & LIBIPW_CCK_RATE_2MB_MASK ? 1 : 0;
5330         case LIBIPW_CCK_RATE_5MB:
5331                 return priv->rates_mask & LIBIPW_CCK_RATE_5MB_MASK ? 1 : 0;
5332         case LIBIPW_CCK_RATE_11MB:
5333                 return priv->rates_mask & LIBIPW_CCK_RATE_11MB_MASK ? 1 : 0;
5334         }
5335
5336         /* If we are limited to B modulations, bail at this point */
5337         if (ieee_mode == IEEE_B)
5338                 return 0;
5339
5340         /* G */
5341         switch (rate) {
5342         case LIBIPW_OFDM_RATE_6MB:
5343                 return priv->rates_mask & LIBIPW_OFDM_RATE_6MB_MASK ? 1 : 0;
5344         case LIBIPW_OFDM_RATE_9MB:
5345                 return priv->rates_mask & LIBIPW_OFDM_RATE_9MB_MASK ? 1 : 0;
5346         case LIBIPW_OFDM_RATE_12MB:
5347                 return priv->rates_mask & LIBIPW_OFDM_RATE_12MB_MASK ? 1 : 0;
5348         case LIBIPW_OFDM_RATE_18MB:
5349                 return priv->rates_mask & LIBIPW_OFDM_RATE_18MB_MASK ? 1 : 0;
5350         case LIBIPW_OFDM_RATE_24MB:
5351                 return priv->rates_mask & LIBIPW_OFDM_RATE_24MB_MASK ? 1 : 0;
5352         case LIBIPW_OFDM_RATE_36MB:
5353                 return priv->rates_mask & LIBIPW_OFDM_RATE_36MB_MASK ? 1 : 0;
5354         case LIBIPW_OFDM_RATE_48MB:
5355                 return priv->rates_mask & LIBIPW_OFDM_RATE_48MB_MASK ? 1 : 0;
5356         case LIBIPW_OFDM_RATE_54MB:
5357                 return priv->rates_mask & LIBIPW_OFDM_RATE_54MB_MASK ? 1 : 0;
5358         }
5359
5360         return 0;
5361 }
5362
5363 static int ipw_compatible_rates(struct ipw_priv *priv,
5364                                 const struct libipw_network *network,
5365                                 struct ipw_supported_rates *rates)
5366 {
5367         int num_rates, i;
5368
5369         memset(rates, 0, sizeof(*rates));
5370         num_rates = min(network->rates_len, (u8) IPW_MAX_RATES);
5371         rates->num_rates = 0;
5372         for (i = 0; i < num_rates; i++) {
5373                 if (!ipw_is_rate_in_mask(priv, network->mode,
5374                                          network->rates[i])) {
5375
5376                         if (network->rates[i] & LIBIPW_BASIC_RATE_MASK) {
5377                                 IPW_DEBUG_SCAN("Adding masked mandatory "
5378                                                "rate %02X\n",
5379                                                network->rates[i]);
5380                                 rates->supported_rates[rates->num_rates++] =
5381                                     network->rates[i];
5382                                 continue;
5383                         }
5384
5385                         IPW_DEBUG_SCAN("Rate %02X masked : 0x%08X\n",
5386                                        network->rates[i], priv->rates_mask);
5387                         continue;
5388                 }
5389
5390                 rates->supported_rates[rates->num_rates++] = network->rates[i];
5391         }
5392
5393         num_rates = min(network->rates_ex_len,
5394                         (u8) (IPW_MAX_RATES - num_rates));
5395         for (i = 0; i < num_rates; i++) {
5396                 if (!ipw_is_rate_in_mask(priv, network->mode,
5397                                          network->rates_ex[i])) {
5398                         if (network->rates_ex[i] & LIBIPW_BASIC_RATE_MASK) {
5399                                 IPW_DEBUG_SCAN("Adding masked mandatory "
5400                                                "rate %02X\n",
5401                                                network->rates_ex[i]);
5402                                 rates->supported_rates[rates->num_rates++] =
5403                                     network->rates[i];
5404                                 continue;
5405                         }
5406
5407                         IPW_DEBUG_SCAN("Rate %02X masked : 0x%08X\n",
5408                                        network->rates_ex[i], priv->rates_mask);
5409                         continue;
5410                 }
5411
5412                 rates->supported_rates[rates->num_rates++] =
5413                     network->rates_ex[i];
5414         }
5415
5416         return 1;
5417 }
5418
5419 static void ipw_copy_rates(struct ipw_supported_rates *dest,
5420                                   const struct ipw_supported_rates *src)
5421 {
5422         u8 i;
5423         for (i = 0; i < src->num_rates; i++)
5424                 dest->supported_rates[i] = src->supported_rates[i];
5425         dest->num_rates = src->num_rates;
5426 }
5427
5428 /* TODO: Look at sniffed packets in the air to determine if the basic rate
5429  * mask should ever be used -- right now all callers to add the scan rates are
5430  * set with the modulation = CCK, so BASIC_RATE_MASK is never set... */
5431 static void ipw_add_cck_scan_rates(struct ipw_supported_rates *rates,
5432                                    u8 modulation, u32 rate_mask)
5433 {
5434         u8 basic_mask = (LIBIPW_OFDM_MODULATION == modulation) ?
5435             LIBIPW_BASIC_RATE_MASK : 0;
5436
5437         if (rate_mask & LIBIPW_CCK_RATE_1MB_MASK)
5438                 rates->supported_rates[rates->num_rates++] =
5439                     LIBIPW_BASIC_RATE_MASK | LIBIPW_CCK_RATE_1MB;
5440
5441         if (rate_mask & LIBIPW_CCK_RATE_2MB_MASK)
5442                 rates->supported_rates[rates->num_rates++] =
5443                     LIBIPW_BASIC_RATE_MASK | LIBIPW_CCK_RATE_2MB;
5444
5445         if (rate_mask & LIBIPW_CCK_RATE_5MB_MASK)
5446                 rates->supported_rates[rates->num_rates++] = basic_mask |
5447                     LIBIPW_CCK_RATE_5MB;
5448
5449         if (rate_mask & LIBIPW_CCK_RATE_11MB_MASK)
5450                 rates->supported_rates[rates->num_rates++] = basic_mask |
5451                     LIBIPW_CCK_RATE_11MB;
5452 }
5453
5454 static void ipw_add_ofdm_scan_rates(struct ipw_supported_rates *rates,
5455                                     u8 modulation, u32 rate_mask)
5456 {
5457         u8 basic_mask = (LIBIPW_OFDM_MODULATION == modulation) ?
5458             LIBIPW_BASIC_RATE_MASK : 0;
5459
5460         if (rate_mask & LIBIPW_OFDM_RATE_6MB_MASK)
5461                 rates->supported_rates[rates->num_rates++] = basic_mask |
5462                     LIBIPW_OFDM_RATE_6MB;
5463
5464         if (rate_mask & LIBIPW_OFDM_RATE_9MB_MASK)
5465                 rates->supported_rates[rates->num_rates++] =
5466                     LIBIPW_OFDM_RATE_9MB;
5467
5468         if (rate_mask & LIBIPW_OFDM_RATE_12MB_MASK)
5469                 rates->supported_rates[rates->num_rates++] = basic_mask |
5470                     LIBIPW_OFDM_RATE_12MB;
5471
5472         if (rate_mask & LIBIPW_OFDM_RATE_18MB_MASK)
5473                 rates->supported_rates[rates->num_rates++] =
5474                     LIBIPW_OFDM_RATE_18MB;
5475
5476         if (rate_mask & LIBIPW_OFDM_RATE_24MB_MASK)
5477                 rates->supported_rates[rates->num_rates++] = basic_mask |
5478                     LIBIPW_OFDM_RATE_24MB;
5479
5480         if (rate_mask & LIBIPW_OFDM_RATE_36MB_MASK)
5481                 rates->supported_rates[rates->num_rates++] =
5482                     LIBIPW_OFDM_RATE_36MB;
5483
5484         if (rate_mask & LIBIPW_OFDM_RATE_48MB_MASK)
5485                 rates->supported_rates[rates->num_rates++] =
5486                     LIBIPW_OFDM_RATE_48MB;
5487
5488         if (rate_mask & LIBIPW_OFDM_RATE_54MB_MASK)
5489                 rates->supported_rates[rates->num_rates++] =
5490                     LIBIPW_OFDM_RATE_54MB;
5491 }
5492
5493 struct ipw_network_match {
5494         struct libipw_network *network;
5495         struct ipw_supported_rates rates;
5496 };
5497
5498 static int ipw_find_adhoc_network(struct ipw_priv *priv,
5499                                   struct ipw_network_match *match,
5500                                   struct libipw_network *network,
5501                                   int roaming)
5502 {
5503         struct ipw_supported_rates rates;
5504
5505         /* Verify that this network's capability is compatible with the
5506          * current mode (AdHoc or Infrastructure) */
5507         if ((priv->ieee->iw_mode == IW_MODE_ADHOC &&
5508              !(network->capability & WLAN_CAPABILITY_IBSS))) {
5509                 IPW_DEBUG_MERGE("Network '%*pE (%pM)' excluded due to capability mismatch.\n",
5510                                 network->ssid_len, network->ssid,
5511                                 network->bssid);
5512                 return 0;
5513         }
5514
5515         if (unlikely(roaming)) {
5516                 /* If we are roaming, then ensure check if this is a valid
5517                  * network to try and roam to */
5518                 if ((network->ssid_len != match->network->ssid_len) ||
5519                     memcmp(network->ssid, match->network->ssid,
5520                            network->ssid_len)) {
5521                         IPW_DEBUG_MERGE("Network '%*pE (%pM)' excluded because of non-network ESSID.\n",
5522                                         network->ssid_len, network->ssid,
5523                                         network->bssid);
5524                         return 0;
5525                 }
5526         } else {
5527                 /* If an ESSID has been configured then compare the broadcast
5528                  * ESSID to ours */
5529                 if ((priv->config & CFG_STATIC_ESSID) &&
5530                     ((network->ssid_len != priv->essid_len) ||
5531                      memcmp(network->ssid, priv->essid,
5532                             min(network->ssid_len, priv->essid_len)))) {
5533                         IPW_DEBUG_MERGE("Network '%*pE (%pM)' excluded because of ESSID mismatch: '%*pE'.\n",
5534                                         network->ssid_len, network->ssid,
5535                                         network->bssid, priv->essid_len,
5536                                         priv->essid);
5537                         return 0;
5538                 }
5539         }
5540
5541         /* If the old network rate is better than this one, don't bother
5542          * testing everything else. */
5543
5544         if (network->time_stamp[0] < match->network->time_stamp[0]) {
5545                 IPW_DEBUG_MERGE("Network '%*pE excluded because newer than current network.\n",
5546                                 match->network->ssid_len, match->network->ssid);
5547                 return 0;
5548         } else if (network->time_stamp[1] < match->network->time_stamp[1]) {
5549                 IPW_DEBUG_MERGE("Network '%*pE excluded because newer than current network.\n",
5550                                 match->network->ssid_len, match->network->ssid);
5551                 return 0;
5552         }
5553
5554         /* Now go through and see if the requested network is valid... */
5555         if (priv->ieee->scan_age != 0 &&
5556             time_after(jiffies, network->last_scanned + priv->ieee->scan_age)) {
5557                 IPW_DEBUG_MERGE("Network '%*pE (%pM)' excluded because of age: %ums.\n",
5558                                 network->ssid_len, network->ssid,
5559                                 network->bssid,
5560                                 jiffies_to_msecs(jiffies -
5561                                                  network->last_scanned));
5562                 return 0;
5563         }
5564
5565         if ((priv->config & CFG_STATIC_CHANNEL) &&
5566             (network->channel != priv->channel)) {
5567                 IPW_DEBUG_MERGE("Network '%*pE (%pM)' excluded because of channel mismatch: %d != %d.\n",
5568                                 network->ssid_len, network->ssid,
5569                                 network->bssid,
5570                                 network->channel, priv->channel);
5571                 return 0;
5572         }
5573
5574         /* Verify privacy compatibility */
5575         if (((priv->capability & CAP_PRIVACY_ON) ? 1 : 0) !=
5576             ((network->capability & WLAN_CAPABILITY_PRIVACY) ? 1 : 0)) {
5577                 IPW_DEBUG_MERGE("Network '%*pE (%pM)' excluded because of privacy mismatch: %s != %s.\n",
5578                                 network->ssid_len, network->ssid,
5579                                 network->bssid,
5580                                 priv->
5581                                 capability & CAP_PRIVACY_ON ? "on" : "off",
5582                                 network->
5583                                 capability & WLAN_CAPABILITY_PRIVACY ? "on" :
5584                                 "off");
5585                 return 0;
5586         }
5587
5588         if (ether_addr_equal(network->bssid, priv->bssid)) {
5589                 IPW_DEBUG_MERGE("Network '%*pE (%pM)' excluded because of the same BSSID match: %pM.\n",
5590                                 network->ssid_len, network->ssid,
5591                                 network->bssid, priv->bssid);
5592                 return 0;
5593         }
5594
5595         /* Filter out any incompatible freq / mode combinations */
5596         if (!libipw_is_valid_mode(priv->ieee, network->mode)) {
5597                 IPW_DEBUG_MERGE("Network '%*pE (%pM)' excluded because of invalid frequency/mode combination.\n",
5598                                 network->ssid_len, network->ssid,
5599                                 network->bssid);
5600                 return 0;
5601         }
5602
5603         /* Ensure that the rates supported by the driver are compatible with
5604          * this AP, including verification of basic rates (mandatory) */
5605         if (!ipw_compatible_rates(priv, network, &rates)) {
5606                 IPW_DEBUG_MERGE("Network '%*pE (%pM)' excluded because configured rate mask excludes AP mandatory rate.\n",
5607                                 network->ssid_len, network->ssid,
5608                                 network->bssid);
5609                 return 0;
5610         }
5611
5612         if (rates.num_rates == 0) {
5613                 IPW_DEBUG_MERGE("Network '%*pE (%pM)' excluded because of no compatible rates.\n",
5614                                 network->ssid_len, network->ssid,
5615                                 network->bssid);
5616                 return 0;
5617         }
5618
5619         /* TODO: Perform any further minimal comparititive tests.  We do not
5620          * want to put too much policy logic here; intelligent scan selection
5621          * should occur within a generic IEEE 802.11 user space tool.  */
5622
5623         /* Set up 'new' AP to this network */
5624         ipw_copy_rates(&match->rates, &rates);
5625         match->network = network;
5626         IPW_DEBUG_MERGE("Network '%*pE (%pM)' is a viable match.\n",
5627                         network->ssid_len, network->ssid, network->bssid);
5628
5629         return 1;
5630 }
5631
5632 static void ipw_merge_adhoc_network(struct work_struct *work)
5633 {
5634         struct ipw_priv *priv =
5635                 container_of(work, struct ipw_priv, merge_networks);
5636         struct libipw_network *network = NULL;
5637         struct ipw_network_match match = {
5638                 .network = priv->assoc_network
5639         };
5640
5641         if ((priv->status & STATUS_ASSOCIATED) &&
5642             (priv->ieee->iw_mode == IW_MODE_ADHOC)) {
5643                 /* First pass through ROAM process -- look for a better
5644                  * network */
5645                 unsigned long flags;
5646
5647                 spin_lock_irqsave(&priv->ieee->lock, flags);
5648                 list_for_each_entry(network, &priv->ieee->network_list, list) {
5649                         if (network != priv->assoc_network)
5650                                 ipw_find_adhoc_network(priv, &match, network,
5651                                                        1);
5652                 }
5653                 spin_unlock_irqrestore(&priv->ieee->lock, flags);
5654
5655                 if (match.network == priv->assoc_network) {
5656                         IPW_DEBUG_MERGE("No better ADHOC in this network to "
5657                                         "merge to.\n");
5658                         return;
5659                 }
5660
5661                 mutex_lock(&priv->mutex);
5662                 if ((priv->ieee->iw_mode == IW_MODE_ADHOC)) {
5663                         IPW_DEBUG_MERGE("remove network %*pE\n",
5664                                         priv->essid_len, priv->essid);
5665                         ipw_remove_current_network(priv);
5666                 }
5667
5668                 ipw_disassociate(priv);
5669                 priv->assoc_network = match.network;
5670                 mutex_unlock(&priv->mutex);
5671                 return;
5672         }
5673 }
5674
5675 static int ipw_best_network(struct ipw_priv *priv,
5676                             struct ipw_network_match *match,
5677                             struct libipw_network *network, int roaming)
5678 {
5679         struct ipw_supported_rates rates;
5680
5681         /* Verify that this network's capability is compatible with the
5682          * current mode (AdHoc or Infrastructure) */
5683         if ((priv->ieee->iw_mode == IW_MODE_INFRA &&
5684              !(network->capability & WLAN_CAPABILITY_ESS)) ||
5685             (priv->ieee->iw_mode == IW_MODE_ADHOC &&
5686              !(network->capability & WLAN_CAPABILITY_IBSS))) {
5687                 IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded due to capability mismatch.\n",
5688                                 network->ssid_len, network->ssid,
5689                                 network->bssid);
5690                 return 0;
5691         }
5692
5693         if (unlikely(roaming)) {
5694                 /* If we are roaming, then ensure check if this is a valid
5695                  * network to try and roam to */
5696                 if ((network->ssid_len != match->network->ssid_len) ||
5697                     memcmp(network->ssid, match->network->ssid,
5698                            network->ssid_len)) {
5699                         IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because of non-network ESSID.\n",
5700                                         network->ssid_len, network->ssid,
5701                                         network->bssid);
5702                         return 0;
5703                 }
5704         } else {
5705                 /* If an ESSID has been configured then compare the broadcast
5706                  * ESSID to ours */
5707                 if ((priv->config & CFG_STATIC_ESSID) &&
5708                     ((network->ssid_len != priv->essid_len) ||
5709                      memcmp(network->ssid, priv->essid,
5710                             min(network->ssid_len, priv->essid_len)))) {
5711                         IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because of ESSID mismatch: '%*pE'.\n",
5712                                         network->ssid_len, network->ssid,
5713                                         network->bssid, priv->essid_len,
5714                                         priv->essid);
5715                         return 0;
5716                 }
5717         }
5718
5719         /* If the old network rate is better than this one, don't bother
5720          * testing everything else. */
5721         if (match->network && match->network->stats.rssi > network->stats.rssi) {
5722                 IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because '%*pE (%pM)' has a stronger signal.\n",
5723                                 network->ssid_len, network->ssid,
5724                                 network->bssid, match->network->ssid_len,
5725                                 match->network->ssid, match->network->bssid);
5726                 return 0;
5727         }
5728
5729         /* If this network has already had an association attempt within the
5730          * last 3 seconds, do not try and associate again... */
5731         if (network->last_associate &&
5732             time_after(network->last_associate + (HZ * 3UL), jiffies)) {
5733                 IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because of storming (%ums since last assoc attempt).\n",
5734                                 network->ssid_len, network->ssid,
5735                                 network->bssid,
5736                                 jiffies_to_msecs(jiffies -
5737                                                  network->last_associate));
5738                 return 0;
5739         }
5740
5741         /* Now go through and see if the requested network is valid... */
5742         if (priv->ieee->scan_age != 0 &&
5743             time_after(jiffies, network->last_scanned + priv->ieee->scan_age)) {
5744                 IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because of age: %ums.\n",
5745                                 network->ssid_len, network->ssid,
5746                                 network->bssid,
5747                                 jiffies_to_msecs(jiffies -
5748                                                  network->last_scanned));
5749                 return 0;
5750         }
5751
5752         if ((priv->config & CFG_STATIC_CHANNEL) &&
5753             (network->channel != priv->channel)) {
5754                 IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because of channel mismatch: %d != %d.\n",
5755                                 network->ssid_len, network->ssid,
5756                                 network->bssid,
5757                                 network->channel, priv->channel);
5758                 return 0;
5759         }
5760
5761         /* Verify privacy compatibility */
5762         if (((priv->capability & CAP_PRIVACY_ON) ? 1 : 0) !=
5763             ((network->capability & WLAN_CAPABILITY_PRIVACY) ? 1 : 0)) {
5764                 IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because of privacy mismatch: %s != %s.\n",
5765                                 network->ssid_len, network->ssid,
5766                                 network->bssid,
5767                                 priv->capability & CAP_PRIVACY_ON ? "on" :
5768                                 "off",
5769                                 network->capability &
5770                                 WLAN_CAPABILITY_PRIVACY ? "on" : "off");
5771                 return 0;
5772         }
5773
5774         if ((priv->config & CFG_STATIC_BSSID) &&
5775             !ether_addr_equal(network->bssid, priv->bssid)) {
5776                 IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because of BSSID mismatch: %pM.\n",
5777                                 network->ssid_len, network->ssid,
5778                                 network->bssid, priv->bssid);
5779                 return 0;
5780         }
5781
5782         /* Filter out any incompatible freq / mode combinations */
5783         if (!libipw_is_valid_mode(priv->ieee, network->mode)) {
5784                 IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because of invalid frequency/mode combination.\n",
5785                                 network->ssid_len, network->ssid,
5786                                 network->bssid);
5787                 return 0;
5788         }
5789
5790         /* Filter out invalid channel in current GEO */
5791         if (!libipw_is_valid_channel(priv->ieee, network->channel)) {
5792                 IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because of invalid channel in current GEO\n",
5793                                 network->ssid_len, network->ssid,
5794                                 network->bssid);
5795                 return 0;
5796         }
5797
5798         /* Ensure that the rates supported by the driver are compatible with
5799          * this AP, including verification of basic rates (mandatory) */
5800         if (!ipw_compatible_rates(priv, network, &rates)) {
5801                 IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because configured rate mask excludes AP mandatory rate.\n",
5802                                 network->ssid_len, network->ssid,
5803                                 network->bssid);
5804                 return 0;
5805         }
5806
5807         if (rates.num_rates == 0) {
5808                 IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because of no compatible rates.\n",
5809                                 network->ssid_len, network->ssid,
5810                                 network->bssid);
5811                 return 0;
5812         }
5813
5814         /* TODO: Perform any further minimal comparititive tests.  We do not
5815          * want to put too much policy logic here; intelligent scan selection
5816          * should occur within a generic IEEE 802.11 user space tool.  */
5817
5818         /* Set up 'new' AP to this network */
5819         ipw_copy_rates(&match->rates, &rates);
5820         match->network = network;
5821
5822         IPW_DEBUG_ASSOC("Network '%*pE (%pM)' is a viable match.\n",
5823                         network->ssid_len, network->ssid, network->bssid);
5824
5825         return 1;
5826 }
5827
5828 static void ipw_adhoc_create(struct ipw_priv *priv,
5829                              struct libipw_network *network)
5830 {
5831         const struct libipw_geo *geo = libipw_get_geo(priv->ieee);
5832         int i;
5833
5834         /*
5835          * For the purposes of scanning, we can set our wireless mode
5836          * to trigger scans across combinations of bands, but when it
5837          * comes to creating a new ad-hoc network, we have tell the FW
5838          * exactly which band to use.
5839          *
5840          * We also have the possibility of an invalid channel for the
5841          * chossen band.  Attempting to create a new ad-hoc network
5842          * with an invalid channel for wireless mode will trigger a
5843          * FW fatal error.
5844          *
5845          */
5846         switch (libipw_is_valid_channel(priv->ieee, priv->channel)) {
5847         case LIBIPW_52GHZ_BAND:
5848                 network->mode = IEEE_A;
5849                 i = libipw_channel_to_index(priv->ieee, priv->channel);
5850                 BUG_ON(i == -1);
5851                 if (geo->a[i].flags & LIBIPW_CH_PASSIVE_ONLY) {
5852                         IPW_WARNING("Overriding invalid channel\n");
5853                         priv->channel = geo->a[0].channel;
5854                 }
5855                 break;
5856
5857         case LIBIPW_24GHZ_BAND:
5858                 if (priv->ieee->mode & IEEE_G)
5859                         network->mode = IEEE_G;
5860                 else
5861                         network->mode = IEEE_B;
5862                 i = libipw_channel_to_index(priv->ieee, priv->channel);
5863                 BUG_ON(i == -1);
5864                 if (geo->bg[i].flags & LIBIPW_CH_PASSIVE_ONLY) {
5865                         IPW_WARNING("Overriding invalid channel\n");
5866                         priv->channel = geo->bg[0].channel;
5867                 }
5868                 break;
5869
5870         default:
5871                 IPW_WARNING("Overriding invalid channel\n");
5872                 if (priv->ieee->mode & IEEE_A) {
5873                         network->mode = IEEE_A;
5874                         priv->channel = geo->a[0].channel;
5875                 } else if (priv->ieee->mode & IEEE_G) {
5876                         network->mode = IEEE_G;
5877                         priv->channel = geo->bg[0].channel;
5878                 } else {
5879                         network->mode = IEEE_B;
5880                         priv->channel = geo->bg[0].channel;
5881                 }
5882                 break;
5883         }
5884
5885         network->channel = priv->channel;
5886         priv->config |= CFG_ADHOC_PERSIST;
5887         ipw_create_bssid(priv, network->bssid);
5888         network->ssid_len = priv->essid_len;
5889         memcpy(network->ssid, priv->essid, priv->essid_len);
5890         memset(&network->stats, 0, sizeof(network->stats));
5891         network->capability = WLAN_CAPABILITY_IBSS;
5892         if (!(priv->config & CFG_PREAMBLE_LONG))
5893                 network->capability |= WLAN_CAPABILITY_SHORT_PREAMBLE;
5894         if (priv->capability & CAP_PRIVACY_ON)
5895                 network->capability |= WLAN_CAPABILITY_PRIVACY;
5896         network->rates_len = min(priv->rates.num_rates, MAX_RATES_LENGTH);
5897         memcpy(network->rates, priv->rates.supported_rates, network->rates_len);
5898         network->rates_ex_len = priv->rates.num_rates - network->rates_len;
5899         memcpy(network->rates_ex,
5900                &priv->rates.supported_rates[network->rates_len],
5901                network->rates_ex_len);
5902         network->last_scanned = 0;
5903         network->flags = 0;
5904         network->last_associate = 0;
5905         network->time_stamp[0] = 0;
5906         network->time_stamp[1] = 0;
5907         network->beacon_interval = 100; /* Default */
5908         network->listen_interval = 10;  /* Default */
5909         network->atim_window = 0;       /* Default */
5910         network->wpa_ie_len = 0;
5911         network->rsn_ie_len = 0;
5912 }
5913
5914 static void ipw_send_tgi_tx_key(struct ipw_priv *priv, int type, int index)
5915 {
5916         struct ipw_tgi_tx_key key;
5917
5918         if (!(priv->ieee->sec.flags & (1 << index)))
5919                 return;
5920
5921         key.key_id = index;
5922         memcpy(key.key, priv->ieee->sec.keys[index], SCM_TEMPORAL_KEY_LENGTH);
5923         key.security_type = type;
5924         key.station_index = 0;  /* always 0 for BSS */
5925         key.flags = 0;
5926         /* 0 for new key; previous value of counter (after fatal error) */
5927         key.tx_counter[0] = cpu_to_le32(0);
5928         key.tx_counter[1] = cpu_to_le32(0);
5929
5930         ipw_send_cmd_pdu(priv, IPW_CMD_TGI_TX_KEY, sizeof(key), &key);
5931 }
5932
5933 static void ipw_send_wep_keys(struct ipw_priv *priv, int type)
5934 {
5935         struct ipw_wep_key key;
5936         int i;
5937
5938         key.cmd_id = DINO_CMD_WEP_KEY;
5939         key.seq_num = 0;
5940
5941         /* Note: AES keys cannot be set for multiple times.
5942          * Only set it at the first time. */
5943         for (i = 0; i < 4; i++) {
5944                 key.key_index = i | type;
5945                 if (!(priv->ieee->sec.flags & (1 << i))) {
5946                         key.key_size = 0;
5947                         continue;
5948                 }
5949
5950                 key.key_size = priv->ieee->sec.key_sizes[i];
5951                 memcpy(key.key, priv->ieee->sec.keys[i], key.key_size);
5952
5953                 ipw_send_cmd_pdu(priv, IPW_CMD_WEP_KEY, sizeof(key), &key);
5954         }
5955 }
5956
5957 static void ipw_set_hw_decrypt_unicast(struct ipw_priv *priv, int level)
5958 {
5959         if (priv->ieee->host_encrypt)
5960                 return;
5961
5962         switch (level) {
5963         case SEC_LEVEL_3:
5964                 priv->sys_config.disable_unicast_decryption = 0;
5965                 priv->ieee->host_decrypt = 0;
5966                 break;
5967         case SEC_LEVEL_2:
5968                 priv->sys_config.disable_unicast_decryption = 1;
5969                 priv->ieee->host_decrypt = 1;
5970                 break;
5971         case SEC_LEVEL_1:
5972                 priv->sys_config.disable_unicast_decryption = 0;
5973                 priv->ieee->host_decrypt = 0;
5974                 break;
5975         case SEC_LEVEL_0:
5976                 priv->sys_config.disable_unicast_decryption = 1;
5977                 break;
5978         default:
5979                 break;
5980         }
5981 }
5982
5983 static void ipw_set_hw_decrypt_multicast(struct ipw_priv *priv, int level)
5984 {
5985         if (priv->ieee->host_encrypt)
5986                 return;
5987
5988         switch (level) {
5989         case SEC_LEVEL_3:
5990                 priv->sys_config.disable_multicast_decryption = 0;
5991                 break;
5992         case SEC_LEVEL_2:
5993                 priv->sys_config.disable_multicast_decryption = 1;
5994                 break;
5995         case SEC_LEVEL_1:
5996                 priv->sys_config.disable_multicast_decryption = 0;
5997                 break;
5998         case SEC_LEVEL_0:
5999                 priv->sys_config.disable_multicast_decryption = 1;
6000                 break;
6001         default:
6002                 break;
6003         }
6004 }
6005
6006 static void ipw_set_hwcrypto_keys(struct ipw_priv *priv)
6007 {
6008         switch (priv->ieee->sec.level) {
6009         case SEC_LEVEL_3:
6010                 if (priv->ieee->sec.flags & SEC_ACTIVE_KEY)
6011                         ipw_send_tgi_tx_key(priv,
6012                                             DCT_FLAG_EXT_SECURITY_CCM,
6013                                             priv->ieee->sec.active_key);
6014
6015                 if (!priv->ieee->host_mc_decrypt)
6016                         ipw_send_wep_keys(priv, DCW_WEP_KEY_SEC_TYPE_CCM);
6017                 break;
6018         case SEC_LEVEL_2:
6019                 if (priv->ieee->sec.flags & SEC_ACTIVE_KEY)
6020                         ipw_send_tgi_tx_key(priv,
6021                                             DCT_FLAG_EXT_SECURITY_TKIP,
6022                                             priv->ieee->sec.active_key);
6023                 break;
6024         case SEC_LEVEL_1:
6025                 ipw_send_wep_keys(priv, DCW_WEP_KEY_SEC_TYPE_WEP);
6026                 ipw_set_hw_decrypt_unicast(priv, priv->ieee->sec.level);
6027                 ipw_set_hw_decrypt_multicast(priv, priv->ieee->sec.level);
6028                 break;
6029         case SEC_LEVEL_0:
6030         default:
6031                 break;
6032         }
6033 }
6034
6035 static void ipw_adhoc_check(void *data)
6036 {
6037         struct ipw_priv *priv = data;
6038
6039         if (priv->missed_adhoc_beacons++ > priv->disassociate_threshold &&
6040             !(priv->config & CFG_ADHOC_PERSIST)) {
6041                 IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF |
6042                           IPW_DL_STATE | IPW_DL_ASSOC,
6043                           "Missed beacon: %d - disassociate\n",
6044                           priv->missed_adhoc_beacons);
6045                 ipw_remove_current_network(priv);
6046                 ipw_disassociate(priv);
6047                 return;
6048         }
6049
6050         schedule_delayed_work(&priv->adhoc_check,
6051                               le16_to_cpu(priv->assoc_request.beacon_interval));
6052 }
6053
6054 static void ipw_bg_adhoc_check(struct work_struct *work)
6055 {
6056         struct ipw_priv *priv =
6057                 container_of(work, struct ipw_priv, adhoc_check.work);
6058         mutex_lock(&priv->mutex);
6059         ipw_adhoc_check(priv);
6060         mutex_unlock(&priv->mutex);
6061 }
6062
6063 static void ipw_debug_config(struct ipw_priv *priv)
6064 {
6065         IPW_DEBUG_INFO("Scan completed, no valid APs matched "
6066                        "[CFG 0x%08X]\n", priv->config);
6067         if (priv->config & CFG_STATIC_CHANNEL)
6068                 IPW_DEBUG_INFO("Channel locked to %d\n", priv->channel);
6069         else
6070                 IPW_DEBUG_INFO("Channel unlocked.\n");
6071         if (priv->config & CFG_STATIC_ESSID)
6072                 IPW_DEBUG_INFO("ESSID locked to '%*pE'\n",
6073                                priv->essid_len, priv->essid);
6074         else
6075                 IPW_DEBUG_INFO("ESSID unlocked.\n");
6076         if (priv->config & CFG_STATIC_BSSID)
6077                 IPW_DEBUG_INFO("BSSID locked to %pM\n", priv->bssid);
6078         else
6079                 IPW_DEBUG_INFO("BSSID unlocked.\n");
6080         if (priv->capability & CAP_PRIVACY_ON)
6081                 IPW_DEBUG_INFO("PRIVACY on\n");
6082         else
6083                 IPW_DEBUG_INFO("PRIVACY off\n");
6084         IPW_DEBUG_INFO("RATE MASK: 0x%08X\n", priv->rates_mask);
6085 }
6086
6087 static void ipw_set_fixed_rate(struct ipw_priv *priv, int mode)
6088 {
6089         /* TODO: Verify that this works... */
6090         struct ipw_fixed_rate fr;
6091         u32 reg;
6092         u16 mask = 0;
6093         u16 new_tx_rates = priv->rates_mask;
6094
6095         /* Identify 'current FW band' and match it with the fixed
6096          * Tx rates */
6097
6098         switch (priv->ieee->freq_band) {
6099         case LIBIPW_52GHZ_BAND: /* A only */
6100                 /* IEEE_A */
6101                 if (priv->rates_mask & ~LIBIPW_OFDM_RATES_MASK) {
6102                         /* Invalid fixed rate mask */
6103                         IPW_DEBUG_WX
6104                             ("invalid fixed rate mask in ipw_set_fixed_rate\n");
6105                         new_tx_rates = 0;
6106                         break;
6107                 }
6108
6109                 new_tx_rates >>= LIBIPW_OFDM_SHIFT_MASK_A;
6110                 break;
6111
6112         default:                /* 2.4Ghz or Mixed */
6113                 /* IEEE_B */
6114                 if (mode == IEEE_B) {
6115                         if (new_tx_rates & ~LIBIPW_CCK_RATES_MASK) {
6116                                 /* Invalid fixed rate mask */
6117                                 IPW_DEBUG_WX
6118                                     ("invalid fixed rate mask in ipw_set_fixed_rate\n");
6119                                 new_tx_rates = 0;
6120                         }
6121                         break;
6122                 }
6123
6124                 /* IEEE_G */
6125                 if (new_tx_rates & ~(LIBIPW_CCK_RATES_MASK |
6126                                     LIBIPW_OFDM_RATES_MASK)) {
6127                         /* Invalid fixed rate mask */
6128                         IPW_DEBUG_WX
6129                             ("invalid fixed rate mask in ipw_set_fixed_rate\n");
6130                         new_tx_rates = 0;
6131                         break;
6132                 }
6133
6134                 if (LIBIPW_OFDM_RATE_6MB_MASK & new_tx_rates) {
6135                         mask |= (LIBIPW_OFDM_RATE_6MB_MASK >> 1);
6136                         new_tx_rates &= ~LIBIPW_OFDM_RATE_6MB_MASK;
6137                 }
6138
6139                 if (LIBIPW_OFDM_RATE_9MB_MASK & new_tx_rates) {
6140                         mask |= (LIBIPW_OFDM_RATE_9MB_MASK >> 1);
6141                         new_tx_rates &= ~LIBIPW_OFDM_RATE_9MB_MASK;
6142                 }
6143
6144                 if (LIBIPW_OFDM_RATE_12MB_MASK & new_tx_rates) {
6145                         mask |= (LIBIPW_OFDM_RATE_12MB_MASK >> 1);
6146                         new_tx_rates &= ~LIBIPW_OFDM_RATE_12MB_MASK;
6147                 }
6148
6149                 new_tx_rates |= mask;
6150                 break;
6151         }
6152
6153         fr.tx_rates = cpu_to_le16(new_tx_rates);
6154
6155         reg = ipw_read32(priv, IPW_MEM_FIXED_OVERRIDE);
6156         ipw_write_reg32(priv, reg, *(u32 *) & fr);
6157 }
6158
6159 static void ipw_abort_scan(struct ipw_priv *priv)
6160 {
6161         int err;
6162
6163         if (priv->status & STATUS_SCAN_ABORTING) {
6164                 IPW_DEBUG_HC("Ignoring concurrent scan abort request.\n");
6165                 return;
6166         }
6167         priv->status |= STATUS_SCAN_ABORTING;
6168
6169         err = ipw_send_scan_abort(priv);
6170         if (err)
6171                 IPW_DEBUG_HC("Request to abort scan failed.\n");
6172 }
6173
6174 static void ipw_add_scan_channels(struct ipw_priv *priv,
6175                                   struct ipw_scan_request_ext *scan,
6176                                   int scan_type)
6177 {
6178         int channel_index = 0;
6179         const struct libipw_geo *geo;
6180         int i;
6181
6182         geo = libipw_get_geo(priv->ieee);
6183
6184         if (priv->ieee->freq_band & LIBIPW_52GHZ_BAND) {
6185                 int start = channel_index;
6186                 for (i = 0; i < geo->a_channels; i++) {
6187                         if ((priv->status & STATUS_ASSOCIATED) &&
6188                             geo->a[i].channel == priv->channel)
6189                                 continue;
6190                         channel_index++;
6191                         scan->channels_list[channel_index] = geo->a[i].channel;
6192                         ipw_set_scan_type(scan, channel_index,
6193                                           geo->a[i].
6194                                           flags & LIBIPW_CH_PASSIVE_ONLY ?
6195                                           IPW_SCAN_PASSIVE_FULL_DWELL_SCAN :
6196                                           scan_type);
6197                 }
6198
6199                 if (start != channel_index) {
6200                         scan->channels_list[start] = (u8) (IPW_A_MODE << 6) |
6201                             (channel_index - start);
6202                         channel_index++;
6203                 }
6204         }
6205
6206         if (priv->ieee->freq_band & LIBIPW_24GHZ_BAND) {
6207                 int start = channel_index;
6208                 if (priv->config & CFG_SPEED_SCAN) {
6209                         int index;
6210                         u8 channels[LIBIPW_24GHZ_CHANNELS] = {
6211                                 /* nop out the list */
6212                                 [0] = 0
6213                         };
6214
6215                         u8 channel;
6216                         while (channel_index < IPW_SCAN_CHANNELS - 1) {
6217                                 channel =
6218                                     priv->speed_scan[priv->speed_scan_pos];
6219                                 if (channel == 0) {
6220                                         priv->speed_scan_pos = 0;
6221                                         channel = priv->speed_scan[0];
6222                                 }
6223                                 if ((priv->status & STATUS_ASSOCIATED) &&
6224                                     channel == priv->channel) {
6225                                         priv->speed_scan_pos++;
6226                                         continue;
6227                                 }
6228
6229                                 /* If this channel has already been
6230                                  * added in scan, break from loop
6231                                  * and this will be the first channel
6232                                  * in the next scan.
6233                                  */
6234                                 if (channels[channel - 1] != 0)
6235                                         break;
6236
6237                                 channels[channel - 1] = 1;
6238                                 priv->speed_scan_pos++;
6239                                 channel_index++;
6240                                 scan->channels_list[channel_index] = channel;
6241                                 index =
6242                                     libipw_channel_to_index(priv->ieee, channel);
6243                                 ipw_set_scan_type(scan, channel_index,
6244                                                   geo->bg[index].
6245                                                   flags &
6246                                                   LIBIPW_CH_PASSIVE_ONLY ?
6247                                                   IPW_SCAN_PASSIVE_FULL_DWELL_SCAN
6248                                                   : scan_type);
6249                         }
6250                 } else {
6251                         for (i = 0; i < geo->bg_channels; i++) {
6252                                 if ((priv->status & STATUS_ASSOCIATED) &&
6253                                     geo->bg[i].channel == priv->channel)
6254                                         continue;
6255                                 channel_index++;
6256                                 scan->channels_list[channel_index] =
6257                                     geo->bg[i].channel;
6258                                 ipw_set_scan_type(scan, channel_index,
6259                                                   geo->bg[i].
6260                                                   flags &
6261                                                   LIBIPW_CH_PASSIVE_ONLY ?
6262                                                   IPW_SCAN_PASSIVE_FULL_DWELL_SCAN
6263                                                   : scan_type);
6264                         }
6265                 }
6266
6267                 if (start != channel_index) {
6268                         scan->channels_list[start] = (u8) (IPW_B_MODE << 6) |
6269                             (channel_index - start);
6270                 }
6271         }
6272 }
6273
6274 static int ipw_passive_dwell_time(struct ipw_priv *priv)
6275 {
6276         /* staying on passive channels longer than the DTIM interval during a
6277          * scan, while associated, causes the firmware to cancel the scan
6278          * without notification. Hence, don't stay on passive channels longer
6279          * than the beacon interval.
6280          */
6281         if (priv->status & STATUS_ASSOCIATED
6282             && priv->assoc_network->beacon_interval > 10)
6283                 return priv->assoc_network->beacon_interval - 10;
6284         else
6285                 return 120;
6286 }
6287
6288 static int ipw_request_scan_helper(struct ipw_priv *priv, int type, int direct)
6289 {
6290         struct ipw_scan_request_ext scan;
6291         int err = 0, scan_type;
6292
6293         if (!(priv->status & STATUS_INIT) ||
6294             (priv->status & STATUS_EXIT_PENDING))
6295                 return 0;
6296
6297         mutex_lock(&priv->mutex);
6298
6299         if (direct && (priv->direct_scan_ssid_len == 0)) {
6300                 IPW_DEBUG_HC("Direct scan requested but no SSID to scan for\n");
6301                 priv->status &= ~STATUS_DIRECT_SCAN_PENDING;
6302                 goto done;
6303         }
6304
6305         if (priv->status & STATUS_SCANNING) {
6306                 IPW_DEBUG_HC("Concurrent scan requested.  Queuing.\n");
6307                 priv->status |= direct ? STATUS_DIRECT_SCAN_PENDING :
6308                                         STATUS_SCAN_PENDING;
6309                 goto done;
6310         }
6311
6312         if (!(priv->status & STATUS_SCAN_FORCED) &&
6313             priv->status & STATUS_SCAN_ABORTING) {
6314                 IPW_DEBUG_HC("Scan request while abort pending.  Queuing.\n");
6315                 priv->status |= direct ? STATUS_DIRECT_SCAN_PENDING :
6316                                         STATUS_SCAN_PENDING;
6317                 goto done;
6318         }
6319
6320         if (priv->status & STATUS_RF_KILL_MASK) {
6321                 IPW_DEBUG_HC("Queuing scan due to RF Kill activation\n");
6322                 priv->status |= direct ? STATUS_DIRECT_SCAN_PENDING :
6323                                         STATUS_SCAN_PENDING;
6324                 goto done;
6325         }
6326
6327         memset(&scan, 0, sizeof(scan));
6328         scan.full_scan_index = cpu_to_le32(libipw_get_scans(priv->ieee));
6329
6330         if (type == IW_SCAN_TYPE_PASSIVE) {
6331                 IPW_DEBUG_WX("use passive scanning\n");
6332                 scan_type = IPW_SCAN_PASSIVE_FULL_DWELL_SCAN;
6333                 scan.dwell_time[IPW_SCAN_PASSIVE_FULL_DWELL_SCAN] =
6334                         cpu_to_le16(ipw_passive_dwell_time(priv));
6335                 ipw_add_scan_channels(priv, &scan, scan_type);
6336                 goto send_request;
6337         }
6338
6339         /* Use active scan by default. */
6340         if (priv->config & CFG_SPEED_SCAN)
6341                 scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_SCAN] =
6342                         cpu_to_le16(30);
6343         else
6344                 scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_SCAN] =
6345                         cpu_to_le16(20);
6346
6347         scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_AND_DIRECT_SCAN] =
6348                 cpu_to_le16(20);
6349
6350         scan.dwell_time[IPW_SCAN_PASSIVE_FULL_DWELL_SCAN] =
6351                 cpu_to_le16(ipw_passive_dwell_time(priv));
6352         scan.dwell_time[IPW_SCAN_ACTIVE_DIRECT_SCAN] = cpu_to_le16(20);
6353
6354 #ifdef CONFIG_IPW2200_MONITOR
6355         if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
6356                 u8 channel;
6357                 u8 band = 0;
6358
6359                 switch (libipw_is_valid_channel(priv->ieee, priv->channel)) {
6360                 case LIBIPW_52GHZ_BAND:
6361                         band = (u8) (IPW_A_MODE << 6) | 1;
6362                         channel = priv->channel;
6363                         break;
6364
6365                 case LIBIPW_24GHZ_BAND:
6366                         band = (u8) (IPW_B_MODE << 6) | 1;
6367                         channel = priv->channel;
6368                         break;
6369
6370                 default:
6371                         band = (u8) (IPW_B_MODE << 6) | 1;
6372                         channel = 9;
6373                         break;
6374                 }
6375
6376                 scan.channels_list[0] = band;
6377                 scan.channels_list[1] = channel;
6378                 ipw_set_scan_type(&scan, 1, IPW_SCAN_PASSIVE_FULL_DWELL_SCAN);
6379
6380                 /* NOTE:  The card will sit on this channel for this time
6381                  * period.  Scan aborts are timing sensitive and frequently
6382                  * result in firmware restarts.  As such, it is best to
6383                  * set a small dwell_time here and just keep re-issuing
6384                  * scans.  Otherwise fast channel hopping will not actually
6385                  * hop channels.
6386                  *
6387                  * TODO: Move SPEED SCAN support to all modes and bands */
6388                 scan.dwell_time[IPW_SCAN_PASSIVE_FULL_DWELL_SCAN] =
6389                         cpu_to_le16(2000);
6390         } else {
6391 #endif                          /* CONFIG_IPW2200_MONITOR */
6392                 /* Honor direct scans first, otherwise if we are roaming make
6393                  * this a direct scan for the current network.  Finally,
6394                  * ensure that every other scan is a fast channel hop scan */
6395                 if (direct) {
6396                         err = ipw_send_ssid(priv, priv->direct_scan_ssid,
6397                                             priv->direct_scan_ssid_len);
6398                         if (err) {
6399                                 IPW_DEBUG_HC("Attempt to send SSID command  "
6400                                              "failed\n");
6401                                 goto done;
6402                         }
6403
6404                         scan_type = IPW_SCAN_ACTIVE_BROADCAST_AND_DIRECT_SCAN;
6405                 } else if ((priv->status & STATUS_ROAMING)
6406                            || (!(priv->status & STATUS_ASSOCIATED)
6407                                && (priv->config & CFG_STATIC_ESSID)
6408                                && (le32_to_cpu(scan.full_scan_index) % 2))) {
6409                         err = ipw_send_ssid(priv, priv->essid, priv->essid_len);
6410                         if (err) {
6411                                 IPW_DEBUG_HC("Attempt to send SSID command "
6412                                              "failed.\n");
6413                                 goto done;
6414                         }
6415
6416                         scan_type = IPW_SCAN_ACTIVE_BROADCAST_AND_DIRECT_SCAN;
6417                 } else
6418                         scan_type = IPW_SCAN_ACTIVE_BROADCAST_SCAN;
6419
6420                 ipw_add_scan_channels(priv, &scan, scan_type);
6421 #ifdef CONFIG_IPW2200_MONITOR
6422         }
6423 #endif
6424
6425 send_request:
6426         err = ipw_send_scan_request_ext(priv, &scan);
6427         if (err) {
6428                 IPW_DEBUG_HC("Sending scan command failed: %08X\n", err);
6429                 goto done;
6430         }
6431
6432         priv->status |= STATUS_SCANNING;
6433         if (direct) {
6434                 priv->status &= ~STATUS_DIRECT_SCAN_PENDING;
6435                 priv->direct_scan_ssid_len = 0;
6436         } else
6437                 priv->status &= ~STATUS_SCAN_PENDING;
6438
6439         schedule_delayed_work(&priv->scan_check, IPW_SCAN_CHECK_WATCHDOG);
6440 done:
6441         mutex_unlock(&priv->mutex);
6442         return err;
6443 }
6444
6445 static void ipw_request_passive_scan(struct work_struct *work)
6446 {
6447         struct ipw_priv *priv =
6448                 container_of(work, struct ipw_priv, request_passive_scan.work);
6449         ipw_request_scan_helper(priv, IW_SCAN_TYPE_PASSIVE, 0);
6450 }
6451
6452 static void ipw_request_scan(struct work_struct *work)
6453 {
6454         struct ipw_priv *priv =
6455                 container_of(work, struct ipw_priv, request_scan.work);
6456         ipw_request_scan_helper(priv, IW_SCAN_TYPE_ACTIVE, 0);
6457 }
6458
6459 static void ipw_request_direct_scan(struct work_struct *work)
6460 {
6461         struct ipw_priv *priv =
6462                 container_of(work, struct ipw_priv, request_direct_scan.work);
6463         ipw_request_scan_helper(priv, IW_SCAN_TYPE_ACTIVE, 1);
6464 }
6465
6466 static void ipw_bg_abort_scan(struct work_struct *work)
6467 {
6468         struct ipw_priv *priv =
6469                 container_of(work, struct ipw_priv, abort_scan);
6470         mutex_lock(&priv->mutex);
6471         ipw_abort_scan(priv);
6472         mutex_unlock(&priv->mutex);
6473 }
6474
6475 static int ipw_wpa_enable(struct ipw_priv *priv, int value)
6476 {
6477         /* This is called when wpa_supplicant loads and closes the driver
6478          * interface. */
6479         priv->ieee->wpa_enabled = value;
6480         return 0;
6481 }
6482
6483 static int ipw_wpa_set_auth_algs(struct ipw_priv *priv, int value)
6484 {
6485         struct libipw_device *ieee = priv->ieee;
6486         struct libipw_security sec = {
6487                 .flags = SEC_AUTH_MODE,
6488         };
6489         int ret = 0;
6490
6491         if (value & IW_AUTH_ALG_SHARED_KEY) {
6492                 sec.auth_mode = WLAN_AUTH_SHARED_KEY;
6493                 ieee->open_wep = 0;
6494         } else if (value & IW_AUTH_ALG_OPEN_SYSTEM) {
6495                 sec.auth_mode = WLAN_AUTH_OPEN;
6496                 ieee->open_wep = 1;
6497         } else if (value & IW_AUTH_ALG_LEAP) {
6498                 sec.auth_mode = WLAN_AUTH_LEAP;
6499                 ieee->open_wep = 1;
6500         } else
6501                 return -EINVAL;
6502
6503         if (ieee->set_security)
6504                 ieee->set_security(ieee->dev, &sec);
6505         else
6506                 ret = -EOPNOTSUPP;
6507
6508         return ret;
6509 }
6510
6511 static void ipw_wpa_assoc_frame(struct ipw_priv *priv, char *wpa_ie,
6512                                 int wpa_ie_len)
6513 {
6514         /* make sure WPA is enabled */
6515         ipw_wpa_enable(priv, 1);
6516 }
6517
6518 static int ipw_set_rsn_capa(struct ipw_priv *priv,
6519                             char *capabilities, int length)
6520 {
6521         IPW_DEBUG_HC("HOST_CMD_RSN_CAPABILITIES\n");
6522
6523         return ipw_send_cmd_pdu(priv, IPW_CMD_RSN_CAPABILITIES, length,
6524                                 capabilities);
6525 }
6526
6527 /*
6528  * WE-18 support
6529  */
6530
6531 /* SIOCSIWGENIE */
6532 static int ipw_wx_set_genie(struct net_device *dev,
6533                             struct iw_request_info *info,
6534                             union iwreq_data *wrqu, char *extra)
6535 {
6536         struct ipw_priv *priv = libipw_priv(dev);
6537         struct libipw_device *ieee = priv->ieee;
6538         u8 *buf;
6539         int err = 0;
6540
6541         if (wrqu->data.length > MAX_WPA_IE_LEN ||
6542             (wrqu->data.length && extra == NULL))
6543                 return -EINVAL;
6544
6545         if (wrqu->data.length) {
6546                 buf = kmemdup(extra, wrqu->data.length, GFP_KERNEL);
6547                 if (buf == NULL) {
6548                         err = -ENOMEM;
6549                         goto out;
6550                 }
6551
6552                 kfree(ieee->wpa_ie);
6553                 ieee->wpa_ie = buf;
6554                 ieee->wpa_ie_len = wrqu->data.length;
6555         } else {
6556                 kfree(ieee->wpa_ie);
6557                 ieee->wpa_ie = NULL;
6558                 ieee->wpa_ie_len = 0;
6559         }
6560
6561         ipw_wpa_assoc_frame(priv, ieee->wpa_ie, ieee->wpa_ie_len);
6562       out:
6563         return err;
6564 }
6565
6566 /* SIOCGIWGENIE */
6567 static int ipw_wx_get_genie(struct net_device *dev,
6568                             struct iw_request_info *info,
6569                             union iwreq_data *wrqu, char *extra)
6570 {
6571         struct ipw_priv *priv = libipw_priv(dev);
6572         struct libipw_device *ieee = priv->ieee;
6573         int err = 0;
6574
6575         if (ieee->wpa_ie_len == 0 || ieee->wpa_ie == NULL) {
6576                 wrqu->data.length = 0;
6577                 goto out;
6578         }
6579
6580         if (wrqu->data.length < ieee->wpa_ie_len) {
6581                 err = -E2BIG;
6582                 goto out;
6583         }
6584
6585         wrqu->data.length = ieee->wpa_ie_len;
6586         memcpy(extra, ieee->wpa_ie, ieee->wpa_ie_len);
6587
6588       out:
6589         return err;
6590 }
6591
6592 static int wext_cipher2level(int cipher)
6593 {
6594         switch (cipher) {
6595         case IW_AUTH_CIPHER_NONE:
6596                 return SEC_LEVEL_0;
6597         case IW_AUTH_CIPHER_WEP40:
6598         case IW_AUTH_CIPHER_WEP104:
6599                 return SEC_LEVEL_1;
6600         case IW_AUTH_CIPHER_TKIP:
6601                 return SEC_LEVEL_2;
6602         case IW_AUTH_CIPHER_CCMP:
6603                 return SEC_LEVEL_3;
6604         default:
6605                 return -1;
6606         }
6607 }
6608
6609 /* SIOCSIWAUTH */
6610 static int ipw_wx_set_auth(struct net_device *dev,
6611                            struct iw_request_info *info,
6612                            union iwreq_data *wrqu, char *extra)
6613 {
6614         struct ipw_priv *priv = libipw_priv(dev);
6615         struct libipw_device *ieee = priv->ieee;
6616         struct iw_param *param = &wrqu->param;
6617         struct lib80211_crypt_data *crypt;
6618         unsigned long flags;
6619         int ret = 0;
6620
6621         switch (param->flags & IW_AUTH_INDEX) {
6622         case IW_AUTH_WPA_VERSION:
6623                 break;
6624         case IW_AUTH_CIPHER_PAIRWISE:
6625                 ipw_set_hw_decrypt_unicast(priv,
6626                                            wext_cipher2level(param->value));
6627                 break;
6628         case IW_AUTH_CIPHER_GROUP:
6629                 ipw_set_hw_decrypt_multicast(priv,
6630                                              wext_cipher2level(param->value));
6631                 break;
6632         case IW_AUTH_KEY_MGMT:
6633                 /*
6634                  * ipw2200 does not use these parameters
6635                  */
6636                 break;
6637
6638         case IW_AUTH_TKIP_COUNTERMEASURES:
6639                 crypt = priv->ieee->crypt_info.crypt[priv->ieee->crypt_info.tx_keyidx];
6640                 if (!crypt || !crypt->ops->set_flags || !crypt->ops->get_flags)
6641                         break;
6642
6643                 flags = crypt->ops->get_flags(crypt->priv);
6644
6645                 if (param->value)
6646                         flags |= IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
6647                 else
6648                         flags &= ~IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
6649
6650                 crypt->ops->set_flags(flags, crypt->priv);
6651
6652                 break;
6653
6654         case IW_AUTH_DROP_UNENCRYPTED:{
6655                         /* HACK:
6656                          *
6657                          * wpa_supplicant calls set_wpa_enabled when the driver
6658                          * is loaded and unloaded, regardless of if WPA is being
6659                          * used.  No other calls are made which can be used to
6660                          * determine if encryption will be used or not prior to
6661                          * association being expected.  If encryption is not being
6662                          * used, drop_unencrypted is set to false, else true -- we
6663                          * can use this to determine if the CAP_PRIVACY_ON bit should
6664                          * be set.
6665                          */
6666                         struct libipw_security sec = {
6667                                 .flags = SEC_ENABLED,
6668                                 .enabled = param->value,
6669                         };
6670                         priv->ieee->drop_unencrypted = param->value;
6671                         /* We only change SEC_LEVEL for open mode. Others
6672                          * are set by ipw_wpa_set_encryption.
6673                          */
6674                         if (!param->value) {
6675                                 sec.flags |= SEC_LEVEL;
6676                                 sec.level = SEC_LEVEL_0;
6677                         } else {
6678                                 sec.flags |= SEC_LEVEL;
6679                                 sec.level = SEC_LEVEL_1;
6680                         }
6681                         if (priv->ieee->set_security)
6682                                 priv->ieee->set_security(priv->ieee->dev, &sec);
6683                         break;
6684                 }
6685
6686         case IW_AUTH_80211_AUTH_ALG:
6687                 ret = ipw_wpa_set_auth_algs(priv, param->value);
6688                 break;
6689
6690         case IW_AUTH_WPA_ENABLED:
6691                 ret = ipw_wpa_enable(priv, param->value);
6692                 ipw_disassociate(priv);
6693                 break;
6694
6695         case IW_AUTH_RX_UNENCRYPTED_EAPOL:
6696                 ieee->ieee802_1x = param->value;
6697                 break;
6698
6699         case IW_AUTH_PRIVACY_INVOKED:
6700                 ieee->privacy_invoked = param->value;
6701                 break;
6702
6703         default:
6704                 return -EOPNOTSUPP;
6705         }
6706         return ret;
6707 }
6708
6709 /* SIOCGIWAUTH */
6710 static int ipw_wx_get_auth(struct net_device *dev,
6711                            struct iw_request_info *info,
6712                            union iwreq_data *wrqu, char *extra)
6713 {
6714         struct ipw_priv *priv = libipw_priv(dev);
6715         struct libipw_device *ieee = priv->ieee;
6716         struct lib80211_crypt_data *crypt;
6717         struct iw_param *param = &wrqu->param;
6718
6719         switch (param->flags & IW_AUTH_INDEX) {
6720         case IW_AUTH_WPA_VERSION:
6721         case IW_AUTH_CIPHER_PAIRWISE:
6722         case IW_AUTH_CIPHER_GROUP:
6723         case IW_AUTH_KEY_MGMT:
6724                 /*
6725                  * wpa_supplicant will control these internally
6726                  */
6727                 return -EOPNOTSUPP;
6728
6729         case IW_AUTH_TKIP_COUNTERMEASURES:
6730                 crypt = priv->ieee->crypt_info.crypt[priv->ieee->crypt_info.tx_keyidx];
6731                 if (!crypt || !crypt->ops->get_flags)
6732                         break;
6733
6734                 param->value = (crypt->ops->get_flags(crypt->priv) &
6735                                 IEEE80211_CRYPTO_TKIP_COUNTERMEASURES) ? 1 : 0;
6736
6737                 break;
6738
6739         case IW_AUTH_DROP_UNENCRYPTED:
6740                 param->value = ieee->drop_unencrypted;
6741                 break;
6742
6743         case IW_AUTH_80211_AUTH_ALG:
6744                 param->value = ieee->sec.auth_mode;
6745                 break;
6746
6747         case IW_AUTH_WPA_ENABLED:
6748                 param->value = ieee->wpa_enabled;
6749                 break;
6750
6751         case IW_AUTH_RX_UNENCRYPTED_EAPOL:
6752                 param->value = ieee->ieee802_1x;
6753                 break;
6754
6755         case IW_AUTH_ROAMING_CONTROL:
6756         case IW_AUTH_PRIVACY_INVOKED:
6757                 param->value = ieee->privacy_invoked;
6758                 break;
6759
6760         default:
6761                 return -EOPNOTSUPP;
6762         }
6763         return 0;
6764 }
6765
6766 /* SIOCSIWENCODEEXT */
6767 static int ipw_wx_set_encodeext(struct net_device *dev,
6768                                 struct iw_request_info *info,
6769                                 union iwreq_data *wrqu, char *extra)
6770 {
6771         struct ipw_priv *priv = libipw_priv(dev);
6772         struct iw_encode_ext *ext = (struct iw_encode_ext *)extra;
6773
6774         if (hwcrypto) {
6775                 if (ext->alg == IW_ENCODE_ALG_TKIP) {
6776                         /* IPW HW can't build TKIP MIC,
6777                            host decryption still needed */
6778                         if (ext->ext_flags & IW_ENCODE_EXT_GROUP_KEY)
6779                                 priv->ieee->host_mc_decrypt = 1;
6780                         else {
6781                                 priv->ieee->host_encrypt = 0;
6782                                 priv->ieee->host_encrypt_msdu = 1;
6783                                 priv->ieee->host_decrypt = 1;
6784                         }
6785                 } else {
6786                         priv->ieee->host_encrypt = 0;
6787                         priv->ieee->host_encrypt_msdu = 0;
6788                         priv->ieee->host_decrypt = 0;
6789                         priv->ieee->host_mc_decrypt = 0;
6790                 }
6791         }
6792
6793         return libipw_wx_set_encodeext(priv->ieee, info, wrqu, extra);
6794 }
6795
6796 /* SIOCGIWENCODEEXT */
6797 static int ipw_wx_get_encodeext(struct net_device *dev,
6798                                 struct iw_request_info *info,
6799                                 union iwreq_data *wrqu, char *extra)
6800 {
6801         struct ipw_priv *priv = libipw_priv(dev);
6802         return libipw_wx_get_encodeext(priv->ieee, info, wrqu, extra);
6803 }
6804
6805 /* SIOCSIWMLME */
6806 static int ipw_wx_set_mlme(struct net_device *dev,
6807                            struct iw_request_info *info,
6808                            union iwreq_data *wrqu, char *extra)
6809 {
6810         struct ipw_priv *priv = libipw_priv(dev);
6811         struct iw_mlme *mlme = (struct iw_mlme *)extra;
6812         __le16 reason;
6813
6814         reason = cpu_to_le16(mlme->reason_code);
6815
6816         switch (mlme->cmd) {
6817         case IW_MLME_DEAUTH:
6818                 /* silently ignore */
6819                 break;
6820
6821         case IW_MLME_DISASSOC:
6822                 ipw_disassociate(priv);
6823                 break;
6824
6825         default:
6826                 return -EOPNOTSUPP;
6827         }
6828         return 0;
6829 }
6830
6831 #ifdef CONFIG_IPW2200_QOS
6832
6833 /* QoS */
6834 /*
6835 * get the modulation type of the current network or
6836 * the card current mode
6837 */
6838 static u8 ipw_qos_current_mode(struct ipw_priv * priv)
6839 {
6840         u8 mode = 0;
6841
6842         if (priv->status & STATUS_ASSOCIATED) {
6843                 unsigned long flags;
6844
6845                 spin_lock_irqsave(&priv->ieee->lock, flags);
6846                 mode = priv->assoc_network->mode;
6847                 spin_unlock_irqrestore(&priv->ieee->lock, flags);
6848         } else {
6849                 mode = priv->ieee->mode;
6850         }
6851         IPW_DEBUG_QOS("QoS network/card mode %d\n", mode);
6852         return mode;
6853 }
6854
6855 /*
6856 * Handle management frame beacon and probe response
6857 */
6858 static int ipw_qos_handle_probe_response(struct ipw_priv *priv,
6859                                          int active_network,
6860                                          struct libipw_network *network)
6861 {
6862         u32 size = sizeof(struct libipw_qos_parameters);
6863
6864         if (network->capability & WLAN_CAPABILITY_IBSS)
6865                 network->qos_data.active = network->qos_data.supported;
6866
6867         if (network->flags & NETWORK_HAS_QOS_MASK) {
6868                 if (active_network &&
6869                     (network->flags & NETWORK_HAS_QOS_PARAMETERS))
6870                         network->qos_data.active = network->qos_data.supported;
6871
6872                 if ((network->qos_data.active == 1) && (active_network == 1) &&
6873                     (network->flags & NETWORK_HAS_QOS_PARAMETERS) &&
6874                     (network->qos_data.old_param_count !=
6875                      network->qos_data.param_count)) {
6876                         network->qos_data.old_param_count =
6877                             network->qos_data.param_count;
6878                         schedule_work(&priv->qos_activate);
6879                         IPW_DEBUG_QOS("QoS parameters change call "
6880                                       "qos_activate\n");
6881                 }
6882         } else {
6883                 if ((priv->ieee->mode == IEEE_B) || (network->mode == IEEE_B))
6884                         memcpy(&network->qos_data.parameters,
6885                                &def_parameters_CCK, size);
6886                 else
6887                         memcpy(&network->qos_data.parameters,
6888                                &def_parameters_OFDM, size);
6889
6890                 if ((network->qos_data.active == 1) && (active_network == 1)) {
6891                         IPW_DEBUG_QOS("QoS was disabled call qos_activate\n");
6892                         schedule_work(&priv->qos_activate);
6893                 }
6894
6895                 network->qos_data.active = 0;
6896                 network->qos_data.supported = 0;
6897         }
6898         if ((priv->status & STATUS_ASSOCIATED) &&
6899             (priv->ieee->iw_mode == IW_MODE_ADHOC) && (active_network == 0)) {
6900                 if (!ether_addr_equal(network->bssid, priv->bssid))
6901                         if (network->capability & WLAN_CAPABILITY_IBSS)
6902                                 if ((network->ssid_len ==
6903                                      priv->assoc_network->ssid_len) &&
6904                                     !memcmp(network->ssid,
6905                                             priv->assoc_network->ssid,
6906                                             network->ssid_len)) {
6907                                         schedule_work(&priv->merge_networks);
6908                                 }
6909         }
6910
6911         return 0;
6912 }
6913
6914 /*
6915 * This function set up the firmware to support QoS. It sends
6916 * IPW_CMD_QOS_PARAMETERS and IPW_CMD_WME_INFO
6917 */
6918 static int ipw_qos_activate(struct ipw_priv *priv,
6919                             struct libipw_qos_data *qos_network_data)
6920 {
6921         int err;
6922         struct libipw_qos_parameters qos_parameters[QOS_QOS_SETS];
6923         struct libipw_qos_parameters *active_one = NULL;
6924         u32 size = sizeof(struct libipw_qos_parameters);
6925         u32 burst_duration;
6926         int i;
6927         u8 type;
6928
6929         type = ipw_qos_current_mode(priv);
6930
6931         active_one = &(qos_parameters[QOS_PARAM_SET_DEF_CCK]);
6932         memcpy(active_one, priv->qos_data.def_qos_parm_CCK, size);
6933         active_one = &(qos_parameters[QOS_PARAM_SET_DEF_OFDM]);
6934         memcpy(active_one, priv->qos_data.def_qos_parm_OFDM, size);
6935
6936         if (qos_network_data == NULL) {
6937                 if (type == IEEE_B) {
6938                         IPW_DEBUG_QOS("QoS activate network mode %d\n", type);
6939                         active_one = &def_parameters_CCK;
6940                 } else
6941                         active_one = &def_parameters_OFDM;
6942
6943                 memcpy(&qos_parameters[QOS_PARAM_SET_ACTIVE], active_one, size);
6944                 burst_duration = ipw_qos_get_burst_duration(priv);
6945                 for (i = 0; i < QOS_QUEUE_NUM; i++)
6946                         qos_parameters[QOS_PARAM_SET_ACTIVE].tx_op_limit[i] =
6947                             cpu_to_le16(burst_duration);
6948         } else if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
6949                 if (type == IEEE_B) {
6950                         IPW_DEBUG_QOS("QoS activate IBSS network mode %d\n",
6951                                       type);
6952                         if (priv->qos_data.qos_enable == 0)
6953                                 active_one = &def_parameters_CCK;
6954                         else
6955                                 active_one = priv->qos_data.def_qos_parm_CCK;
6956                 } else {
6957                         if (priv->qos_data.qos_enable == 0)
6958                                 active_one = &def_parameters_OFDM;
6959                         else
6960                                 active_one = priv->qos_data.def_qos_parm_OFDM;
6961                 }
6962                 memcpy(&qos_parameters[QOS_PARAM_SET_ACTIVE], active_one, size);
6963         } else {
6964                 unsigned long flags;
6965                 int active;
6966
6967                 spin_lock_irqsave(&priv->ieee->lock, flags);
6968                 active_one = &(qos_network_data->parameters);
6969                 qos_network_data->old_param_count =
6970                     qos_network_data->param_count;
6971                 memcpy(&qos_parameters[QOS_PARAM_SET_ACTIVE], active_one, size);
6972                 active = qos_network_data->supported;
6973                 spin_unlock_irqrestore(&priv->ieee->lock, flags);
6974
6975                 if (active == 0) {
6976                         burst_duration = ipw_qos_get_burst_duration(priv);
6977                         for (i = 0; i < QOS_QUEUE_NUM; i++)
6978                                 qos_parameters[QOS_PARAM_SET_ACTIVE].
6979                                     tx_op_limit[i] = cpu_to_le16(burst_duration);
6980                 }
6981         }
6982
6983         IPW_DEBUG_QOS("QoS sending IPW_CMD_QOS_PARAMETERS\n");
6984         err = ipw_send_qos_params_command(priv, &qos_parameters[0]);
6985         if (err)
6986                 IPW_DEBUG_QOS("QoS IPW_CMD_QOS_PARAMETERS failed\n");
6987
6988         return err;
6989 }
6990
6991 /*
6992 * send IPW_CMD_WME_INFO to the firmware
6993 */
6994 static int ipw_qos_set_info_element(struct ipw_priv *priv)
6995 {
6996         int ret = 0;
6997         struct libipw_qos_information_element qos_info;
6998
6999         if (priv == NULL)
7000                 return -1;
7001
7002         qos_info.elementID = QOS_ELEMENT_ID;
7003         qos_info.length = sizeof(struct libipw_qos_information_element) - 2;
7004
7005         qos_info.version = QOS_VERSION_1;
7006         qos_info.ac_info = 0;
7007
7008         memcpy(qos_info.qui, qos_oui, QOS_OUI_LEN);
7009         qos_info.qui_type = QOS_OUI_TYPE;
7010         qos_info.qui_subtype = QOS_OUI_INFO_SUB_TYPE;
7011
7012         ret = ipw_send_qos_info_command(priv, &qos_info);
7013         if (ret != 0) {
7014                 IPW_DEBUG_QOS("QoS error calling ipw_send_qos_info_command\n");
7015         }
7016         return ret;
7017 }
7018
7019 /*
7020 * Set the QoS parameter with the association request structure
7021 */
7022 static int ipw_qos_association(struct ipw_priv *priv,
7023                                struct libipw_network *network)
7024 {
7025         int err = 0;
7026         struct libipw_qos_data *qos_data = NULL;
7027         struct libipw_qos_data ibss_data = {
7028                 .supported = 1,
7029                 .active = 1,
7030         };
7031
7032         switch (priv->ieee->iw_mode) {
7033         case IW_MODE_ADHOC:
7034                 BUG_ON(!(network->capability & WLAN_CAPABILITY_IBSS));
7035
7036                 qos_data = &ibss_data;
7037                 break;
7038
7039         case IW_MODE_INFRA:
7040                 qos_data = &network->qos_data;
7041                 break;
7042
7043         default:
7044                 BUG();
7045                 break;
7046         }
7047
7048         err = ipw_qos_activate(priv, qos_data);
7049         if (err) {
7050                 priv->assoc_request.policy_support &= ~HC_QOS_SUPPORT_ASSOC;
7051                 return err;
7052         }
7053
7054         if (priv->qos_data.qos_enable && qos_data->supported) {
7055                 IPW_DEBUG_QOS("QoS will be enabled for this association\n");
7056                 priv->assoc_request.policy_support |= HC_QOS_SUPPORT_ASSOC;
7057                 return ipw_qos_set_info_element(priv);
7058         }
7059
7060         return 0;
7061 }
7062
7063 /*
7064 * handling the beaconing responses. if we get different QoS setting
7065 * off the network from the associated setting, adjust the QoS
7066 * setting
7067 */
7068 static int ipw_qos_association_resp(struct ipw_priv *priv,
7069                                     struct libipw_network *network)
7070 {
7071         int ret = 0;
7072         unsigned long flags;
7073         u32 size = sizeof(struct libipw_qos_parameters);
7074         int set_qos_param = 0;
7075
7076         if ((priv == NULL) || (network == NULL) ||
7077             (priv->assoc_network == NULL))
7078                 return ret;
7079
7080         if (!(priv->status & STATUS_ASSOCIATED))
7081                 return ret;
7082
7083         if ((priv->ieee->iw_mode != IW_MODE_INFRA))
7084                 return ret;
7085
7086         spin_lock_irqsave(&priv->ieee->lock, flags);
7087         if (network->flags & NETWORK_HAS_QOS_PARAMETERS) {
7088                 memcpy(&priv->assoc_network->qos_data, &network->qos_data,
7089                        sizeof(struct libipw_qos_data));
7090                 priv->assoc_network->qos_data.active = 1;
7091                 if ((network->qos_data.old_param_count !=
7092                      network->qos_data.param_count)) {
7093                         set_qos_param = 1;
7094                         network->qos_data.old_param_count =
7095                             network->qos_data.param_count;
7096                 }
7097
7098         } else {
7099                 if ((network->mode == IEEE_B) || (priv->ieee->mode == IEEE_B))
7100                         memcpy(&priv->assoc_network->qos_data.parameters,
7101                                &def_parameters_CCK, size);
7102                 else
7103                         memcpy(&priv->assoc_network->qos_data.parameters,
7104                                &def_parameters_OFDM, size);
7105                 priv->assoc_network->qos_data.active = 0;
7106                 priv->assoc_network->qos_data.supported = 0;
7107                 set_qos_param = 1;
7108         }
7109
7110         spin_unlock_irqrestore(&priv->ieee->lock, flags);
7111
7112         if (set_qos_param == 1)
7113                 schedule_work(&priv->qos_activate);
7114
7115         return ret;
7116 }
7117
7118 static u32 ipw_qos_get_burst_duration(struct ipw_priv *priv)
7119 {
7120         u32 ret = 0;
7121
7122         if ((priv == NULL))
7123                 return 0;
7124
7125         if (!(priv->ieee->modulation & LIBIPW_OFDM_MODULATION))
7126                 ret = priv->qos_data.burst_duration_CCK;
7127         else
7128                 ret = priv->qos_data.burst_duration_OFDM;
7129
7130         return ret;
7131 }
7132
7133 /*
7134 * Initialize the setting of QoS global
7135 */
7136 static void ipw_qos_init(struct ipw_priv *priv, int enable,
7137                          int burst_enable, u32 burst_duration_CCK,
7138                          u32 burst_duration_OFDM)
7139 {
7140         priv->qos_data.qos_enable = enable;
7141
7142         if (priv->qos_data.qos_enable) {
7143                 priv->qos_data.def_qos_parm_CCK = &def_qos_parameters_CCK;
7144                 priv->qos_data.def_qos_parm_OFDM = &def_qos_parameters_OFDM;
7145                 IPW_DEBUG_QOS("QoS is enabled\n");
7146         } else {
7147                 priv->qos_data.def_qos_parm_CCK = &def_parameters_CCK;
7148                 priv->qos_data.def_qos_parm_OFDM = &def_parameters_OFDM;
7149                 IPW_DEBUG_QOS("QoS is not enabled\n");
7150         }
7151
7152         priv->qos_data.burst_enable = burst_enable;
7153
7154         if (burst_enable) {
7155                 priv->qos_data.burst_duration_CCK = burst_duration_CCK;
7156                 priv->qos_data.burst_duration_OFDM = burst_duration_OFDM;
7157         } else {
7158                 priv->qos_data.burst_duration_CCK = 0;
7159                 priv->qos_data.burst_duration_OFDM = 0;
7160         }
7161 }
7162
7163 /*
7164 * map the packet priority to the right TX Queue
7165 */
7166 static int ipw_get_tx_queue_number(struct ipw_priv *priv, u16 priority)
7167 {
7168         if (priority > 7 || !priv->qos_data.qos_enable)
7169                 priority = 0;
7170
7171         return from_priority_to_tx_queue[priority] - 1;
7172 }
7173
7174 static int ipw_is_qos_active(struct net_device *dev,
7175                              struct sk_buff *skb)
7176 {
7177         struct ipw_priv *priv = libipw_priv(dev);
7178         struct libipw_qos_data *qos_data = NULL;
7179         int active, supported;
7180         u8 *daddr = skb->data + ETH_ALEN;
7181         int unicast = !is_multicast_ether_addr(daddr);
7182
7183         if (!(priv->status & STATUS_ASSOCIATED))
7184                 return 0;
7185
7186         qos_data = &priv->assoc_network->qos_data;
7187
7188         if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
7189                 if (unicast == 0)
7190                         qos_data->active = 0;
7191                 else
7192                         qos_data->active = qos_data->supported;
7193         }
7194         active = qos_data->active;
7195         supported = qos_data->supported;
7196         IPW_DEBUG_QOS("QoS  %d network is QoS active %d  supported %d  "
7197                       "unicast %d\n",
7198                       priv->qos_data.qos_enable, active, supported, unicast);
7199         if (active && priv->qos_data.qos_enable)
7200                 return 1;
7201
7202         return 0;
7203
7204 }
7205 /*
7206 * add QoS parameter to the TX command
7207 */
7208 static int ipw_qos_set_tx_queue_command(struct ipw_priv *priv,
7209                                         u16 priority,
7210                                         struct tfd_data *tfd)
7211 {
7212         int tx_queue_id = 0;
7213
7214
7215         tx_queue_id = from_priority_to_tx_queue[priority] - 1;
7216         tfd->tx_flags_ext |= DCT_FLAG_EXT_QOS_ENABLED;
7217
7218         if (priv->qos_data.qos_no_ack_mask & (1UL << tx_queue_id)) {
7219                 tfd->tx_flags &= ~DCT_FLAG_ACK_REQD;
7220                 tfd->tfd.tfd_26.mchdr.qos_ctrl |= cpu_to_le16(CTRL_QOS_NO_ACK);
7221         }
7222         return 0;
7223 }
7224
7225 /*
7226 * background support to run QoS activate functionality
7227 */
7228 static void ipw_bg_qos_activate(struct work_struct *work)
7229 {
7230         struct ipw_priv *priv =
7231                 container_of(work, struct ipw_priv, qos_activate);
7232
7233         mutex_lock(&priv->mutex);
7234
7235         if (priv->status & STATUS_ASSOCIATED)
7236                 ipw_qos_activate(priv, &(priv->assoc_network->qos_data));
7237
7238         mutex_unlock(&priv->mutex);
7239 }
7240
7241 static int ipw_handle_probe_response(struct net_device *dev,
7242                                      struct libipw_probe_response *resp,
7243                                      struct libipw_network *network)
7244 {
7245         struct ipw_priv *priv = libipw_priv(dev);
7246         int active_network = ((priv->status & STATUS_ASSOCIATED) &&
7247                               (network == priv->assoc_network));
7248
7249         ipw_qos_handle_probe_response(priv, active_network, network);
7250
7251         return 0;
7252 }
7253
7254 static int ipw_handle_beacon(struct net_device *dev,
7255                              struct libipw_beacon *resp,
7256                              struct libipw_network *network)
7257 {
7258         struct ipw_priv *priv = libipw_priv(dev);
7259         int active_network = ((priv->status & STATUS_ASSOCIATED) &&
7260                               (network == priv->assoc_network));
7261
7262         ipw_qos_handle_probe_response(priv, active_network, network);
7263
7264         return 0;
7265 }
7266
7267 static int ipw_handle_assoc_response(struct net_device *dev,
7268                                      struct libipw_assoc_response *resp,
7269                                      struct libipw_network *network)
7270 {
7271         struct ipw_priv *priv = libipw_priv(dev);
7272         ipw_qos_association_resp(priv, network);
7273         return 0;
7274 }
7275
7276 static int ipw_send_qos_params_command(struct ipw_priv *priv, struct libipw_qos_parameters
7277                                        *qos_param)
7278 {
7279         return ipw_send_cmd_pdu(priv, IPW_CMD_QOS_PARAMETERS,
7280                                 sizeof(*qos_param) * 3, qos_param);
7281 }
7282
7283 static int ipw_send_qos_info_command(struct ipw_priv *priv, struct libipw_qos_information_element
7284                                      *qos_param)
7285 {
7286         return ipw_send_cmd_pdu(priv, IPW_CMD_WME_INFO, sizeof(*qos_param),
7287                                 qos_param);
7288 }
7289
7290 #endif                          /* CONFIG_IPW2200_QOS */
7291
7292 static int ipw_associate_network(struct ipw_priv *priv,
7293                                  struct libipw_network *network,
7294                                  struct ipw_supported_rates *rates, int roaming)
7295 {
7296         int err;
7297
7298         if (priv->config & CFG_FIXED_RATE)
7299                 ipw_set_fixed_rate(priv, network->mode);
7300
7301         if (!(priv->config & CFG_STATIC_ESSID)) {
7302                 priv->essid_len = min(network->ssid_len,
7303                                       (u8) IW_ESSID_MAX_SIZE);
7304                 memcpy(priv->essid, network->ssid, priv->essid_len);
7305         }
7306
7307         network->last_associate = jiffies;
7308
7309         memset(&priv->assoc_request, 0, sizeof(priv->assoc_request));
7310         priv->assoc_request.channel = network->channel;
7311         priv->assoc_request.auth_key = 0;
7312
7313         if ((priv->capability & CAP_PRIVACY_ON) &&
7314             (priv->ieee->sec.auth_mode == WLAN_AUTH_SHARED_KEY)) {
7315                 priv->assoc_request.auth_type = AUTH_SHARED_KEY;
7316                 priv->assoc_request.auth_key = priv->ieee->sec.active_key;
7317
7318                 if (priv->ieee->sec.level == SEC_LEVEL_1)
7319                         ipw_send_wep_keys(priv, DCW_WEP_KEY_SEC_TYPE_WEP);
7320
7321         } else if ((priv->capability & CAP_PRIVACY_ON) &&
7322                    (priv->ieee->sec.auth_mode == WLAN_AUTH_LEAP))
7323                 priv->assoc_request.auth_type = AUTH_LEAP;
7324         else
7325                 priv->assoc_request.auth_type = AUTH_OPEN;
7326
7327         if (priv->ieee->wpa_ie_len) {
7328                 priv->assoc_request.policy_support = cpu_to_le16(0x02); /* RSN active */
7329                 ipw_set_rsn_capa(priv, priv->ieee->wpa_ie,
7330                                  priv->ieee->wpa_ie_len);
7331         }
7332
7333         /*
7334          * It is valid for our ieee device to support multiple modes, but
7335          * when it comes to associating to a given network we have to choose
7336          * just one mode.
7337          */
7338         if (network->mode & priv->ieee->mode & IEEE_A)
7339                 priv->assoc_request.ieee_mode = IPW_A_MODE;
7340         else if (network->mode & priv->ieee->mode & IEEE_G)
7341                 priv->assoc_request.ieee_mode = IPW_G_MODE;
7342         else if (network->mode & priv->ieee->mode & IEEE_B)
7343                 priv->assoc_request.ieee_mode = IPW_B_MODE;
7344
7345         priv->assoc_request.capability = cpu_to_le16(network->capability);
7346         if ((network->capability & WLAN_CAPABILITY_SHORT_PREAMBLE)
7347             && !(priv->config & CFG_PREAMBLE_LONG)) {
7348                 priv->assoc_request.preamble_length = DCT_FLAG_SHORT_PREAMBLE;
7349         } else {
7350                 priv->assoc_request.preamble_length = DCT_FLAG_LONG_PREAMBLE;
7351
7352                 /* Clear the short preamble if we won't be supporting it */
7353                 priv->assoc_request.capability &=
7354                     ~cpu_to_le16(WLAN_CAPABILITY_SHORT_PREAMBLE);
7355         }
7356
7357         /* Clear capability bits that aren't used in Ad Hoc */
7358         if (priv->ieee->iw_mode == IW_MODE_ADHOC)
7359                 priv->assoc_request.capability &=
7360                     ~cpu_to_le16(WLAN_CAPABILITY_SHORT_SLOT_TIME);
7361
7362         IPW_DEBUG_ASSOC("%ssociation attempt: '%*pE', channel %d, 802.11%c [%d], %s[:%s], enc=%s%s%s%c%c\n",
7363                         roaming ? "Rea" : "A",
7364                         priv->essid_len, priv->essid,
7365                         network->channel,
7366                         ipw_modes[priv->assoc_request.ieee_mode],
7367                         rates->num_rates,
7368                         (priv->assoc_request.preamble_length ==
7369                          DCT_FLAG_LONG_PREAMBLE) ? "long" : "short",
7370                         network->capability &
7371                         WLAN_CAPABILITY_SHORT_PREAMBLE ? "short" : "long",
7372                         priv->capability & CAP_PRIVACY_ON ? "on " : "off",
7373                         priv->capability & CAP_PRIVACY_ON ?
7374                         (priv->capability & CAP_SHARED_KEY ? "(shared)" :
7375                          "(open)") : "",
7376                         priv->capability & CAP_PRIVACY_ON ? " key=" : "",
7377                         priv->capability & CAP_PRIVACY_ON ?
7378                         '1' + priv->ieee->sec.active_key : '.',
7379                         priv->capability & CAP_PRIVACY_ON ? '.' : ' ');
7380
7381         priv->assoc_request.beacon_interval = cpu_to_le16(network->beacon_interval);
7382         if ((priv->ieee->iw_mode == IW_MODE_ADHOC) &&
7383             (network->time_stamp[0] == 0) && (network->time_stamp[1] == 0)) {
7384                 priv->assoc_request.assoc_type = HC_IBSS_START;
7385                 priv->assoc_request.assoc_tsf_msw = 0;
7386                 priv->assoc_request.assoc_tsf_lsw = 0;
7387         } else {
7388                 if (unlikely(roaming))
7389                         priv->assoc_request.assoc_type = HC_REASSOCIATE;
7390                 else
7391                         priv->assoc_request.assoc_type = HC_ASSOCIATE;
7392                 priv->assoc_request.assoc_tsf_msw = cpu_to_le32(network->time_stamp[1]);
7393                 priv->assoc_request.assoc_tsf_lsw = cpu_to_le32(network->time_stamp[0]);
7394         }
7395
7396         memcpy(priv->assoc_request.bssid, network->bssid, ETH_ALEN);
7397
7398         if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
7399                 eth_broadcast_addr(priv->assoc_request.dest);
7400                 priv->assoc_request.atim_window = cpu_to_le16(network->atim_window);
7401         } else {
7402                 memcpy(priv->assoc_request.dest, network->bssid, ETH_ALEN);
7403                 priv->assoc_request.atim_window = 0;
7404         }
7405
7406         priv->assoc_request.listen_interval = cpu_to_le16(network->listen_interval);
7407
7408         err = ipw_send_ssid(priv, priv->essid, priv->essid_len);
7409         if (err) {
7410                 IPW_DEBUG_HC("Attempt to send SSID command failed.\n");
7411                 return err;
7412         }
7413
7414         rates->ieee_mode = priv->assoc_request.ieee_mode;
7415         rates->purpose = IPW_RATE_CONNECT;
7416         ipw_send_supported_rates(priv, rates);
7417
7418         if (priv->assoc_request.ieee_mode == IPW_G_MODE)
7419                 priv->sys_config.dot11g_auto_detection = 1;
7420         else
7421                 priv->sys_config.dot11g_auto_detection = 0;
7422
7423         if (priv->ieee->iw_mode == IW_MODE_ADHOC)
7424                 priv->sys_config.answer_broadcast_ssid_probe = 1;
7425         else
7426                 priv->sys_config.answer_broadcast_ssid_probe = 0;
7427
7428         err = ipw_send_system_config(priv);
7429         if (err) {
7430                 IPW_DEBUG_HC("Attempt to send sys config command failed.\n");
7431                 return err;
7432         }
7433
7434         IPW_DEBUG_ASSOC("Association sensitivity: %d\n", network->stats.rssi);
7435         err = ipw_set_sensitivity(priv, network->stats.rssi + IPW_RSSI_TO_DBM);
7436         if (err) {
7437                 IPW_DEBUG_HC("Attempt to send associate command failed.\n");
7438                 return err;
7439         }
7440
7441         /*
7442          * If preemption is enabled, it is possible for the association
7443          * to complete before we return from ipw_send_associate.  Therefore
7444          * we have to be sure and update our priviate data first.
7445          */
7446         priv->channel = network->channel;
7447         memcpy(priv->bssid, network->bssid, ETH_ALEN);
7448         priv->status |= STATUS_ASSOCIATING;
7449         priv->status &= ~STATUS_SECURITY_UPDATED;
7450
7451         priv->assoc_network = network;
7452
7453 #ifdef CONFIG_IPW2200_QOS
7454         ipw_qos_association(priv, network);
7455 #endif
7456
7457         err = ipw_send_associate(priv, &priv->assoc_request);
7458         if (err) {
7459                 IPW_DEBUG_HC("Attempt to send associate command failed.\n");
7460                 return err;
7461         }
7462
7463         IPW_DEBUG(IPW_DL_STATE, "associating: '%*pE' %pM\n",
7464                   priv->essid_len, priv->essid, priv->bssid);
7465
7466         return 0;
7467 }
7468
7469 static void ipw_roam(void *data)
7470 {
7471         struct ipw_priv *priv = data;
7472         struct libipw_network *network = NULL;
7473         struct ipw_network_match match = {
7474                 .network = priv->assoc_network
7475         };
7476
7477         /* The roaming process is as follows:
7478          *
7479          * 1.  Missed beacon threshold triggers the roaming process by
7480          *     setting the status ROAM bit and requesting a scan.
7481          * 2.  When the scan completes, it schedules the ROAM work
7482          * 3.  The ROAM work looks at all of the known networks for one that
7483          *     is a better network than the currently associated.  If none
7484          *     found, the ROAM process is over (ROAM bit cleared)
7485          * 4.  If a better network is found, a disassociation request is
7486          *     sent.
7487          * 5.  When the disassociation completes, the roam work is again
7488          *     scheduled.  The second time through, the driver is no longer
7489          *     associated, and the newly selected network is sent an
7490          *     association request.
7491          * 6.  At this point ,the roaming process is complete and the ROAM
7492          *     status bit is cleared.
7493          */
7494
7495         /* If we are no longer associated, and the roaming bit is no longer
7496          * set, then we are not actively roaming, so just return */
7497         if (!(priv->status & (STATUS_ASSOCIATED | STATUS_ROAMING)))
7498                 return;
7499
7500         if (priv->status & STATUS_ASSOCIATED) {
7501                 /* First pass through ROAM process -- look for a better
7502                  * network */
7503                 unsigned long flags;
7504                 u8 rssi = priv->assoc_network->stats.rssi;
7505                 priv->assoc_network->stats.rssi = -128;
7506                 spin_lock_irqsave(&priv->ieee->lock, flags);
7507                 list_for_each_entry(network, &priv->ieee->network_list, list) {
7508                         if (network != priv->assoc_network)
7509                                 ipw_best_network(priv, &match, network, 1);
7510                 }
7511                 spin_unlock_irqrestore(&priv->ieee->lock, flags);
7512                 priv->assoc_network->stats.rssi = rssi;
7513
7514                 if (match.network == priv->assoc_network) {
7515                         IPW_DEBUG_ASSOC("No better APs in this network to "
7516                                         "roam to.\n");
7517                         priv->status &= ~STATUS_ROAMING;
7518                         ipw_debug_config(priv);
7519                         return;
7520                 }
7521
7522                 ipw_send_disassociate(priv, 1);
7523                 priv->assoc_network = match.network;
7524
7525                 return;
7526         }
7527
7528         /* Second pass through ROAM process -- request association */
7529         ipw_compatible_rates(priv, priv->assoc_network, &match.rates);
7530         ipw_associate_network(priv, priv->assoc_network, &match.rates, 1);
7531         priv->status &= ~STATUS_ROAMING;
7532 }
7533
7534 static void ipw_bg_roam(struct work_struct *work)
7535 {
7536         struct ipw_priv *priv =
7537                 container_of(work, struct ipw_priv, roam);
7538         mutex_lock(&priv->mutex);
7539         ipw_roam(priv);
7540         mutex_unlock(&priv->mutex);
7541 }
7542
7543 static int ipw_associate(void *data)
7544 {
7545         struct ipw_priv *priv = data;
7546
7547         struct libipw_network *network = NULL;
7548         struct ipw_network_match match = {
7549                 .network = NULL
7550         };
7551         struct ipw_supported_rates *rates;
7552         struct list_head *element;
7553         unsigned long flags;
7554
7555         if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
7556                 IPW_DEBUG_ASSOC("Not attempting association (monitor mode)\n");
7557                 return 0;
7558         }
7559
7560         if (priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) {
7561                 IPW_DEBUG_ASSOC("Not attempting association (already in "
7562                                 "progress)\n");
7563                 return 0;
7564         }
7565
7566         if (priv->status & STATUS_DISASSOCIATING) {
7567                 IPW_DEBUG_ASSOC("Not attempting association (in "
7568                                 "disassociating)\n ");
7569                 schedule_work(&priv->associate);
7570                 return 0;
7571         }
7572
7573         if (!ipw_is_init(priv) || (priv->status & STATUS_SCANNING)) {
7574                 IPW_DEBUG_ASSOC("Not attempting association (scanning or not "
7575                                 "initialized)\n");
7576                 return 0;
7577         }
7578
7579         if (!(priv->config & CFG_ASSOCIATE) &&
7580             !(priv->config & (CFG_STATIC_ESSID | CFG_STATIC_BSSID))) {
7581                 IPW_DEBUG_ASSOC("Not attempting association (associate=0)\n");
7582                 return 0;
7583         }
7584
7585         /* Protect our use of the network_list */
7586         spin_lock_irqsave(&priv->ieee->lock, flags);
7587         list_for_each_entry(network, &priv->ieee->network_list, list)
7588             ipw_best_network(priv, &match, network, 0);
7589
7590         network = match.network;
7591         rates = &match.rates;
7592
7593         if (network == NULL &&
7594             priv->ieee->iw_mode == IW_MODE_ADHOC &&
7595             priv->config & CFG_ADHOC_CREATE &&
7596             priv->config & CFG_STATIC_ESSID &&
7597             priv->config & CFG_STATIC_CHANNEL) {
7598                 /* Use oldest network if the free list is empty */
7599                 if (list_empty(&priv->ieee->network_free_list)) {
7600                         struct libipw_network *oldest = NULL;
7601                         struct libipw_network *target;
7602
7603                         list_for_each_entry(target, &priv->ieee->network_list, list) {
7604                                 if ((oldest == NULL) ||
7605                                     (target->last_scanned < oldest->last_scanned))
7606                                         oldest = target;
7607                         }
7608
7609                         /* If there are no more slots, expire the oldest */
7610                         list_del(&oldest->list);
7611                         target = oldest;
7612                         IPW_DEBUG_ASSOC("Expired '%*pE' (%pM) from network list.\n",
7613                                         target->ssid_len, target->ssid,
7614                                         target->bssid);
7615                         list_add_tail(&target->list,
7616                                       &priv->ieee->network_free_list);
7617                 }
7618
7619                 element = priv->ieee->network_free_list.next;
7620                 network = list_entry(element, struct libipw_network, list);
7621                 ipw_adhoc_create(priv, network);
7622                 rates = &priv->rates;
7623                 list_del(element);
7624                 list_add_tail(&network->list, &priv->ieee->network_list);
7625         }
7626         spin_unlock_irqrestore(&priv->ieee->lock, flags);
7627
7628         /* If we reached the end of the list, then we don't have any valid
7629          * matching APs */
7630         if (!network) {
7631                 ipw_debug_config(priv);
7632
7633                 if (!(priv->status & STATUS_SCANNING)) {
7634                         if (!(priv->config & CFG_SPEED_SCAN))
7635                                 schedule_delayed_work(&priv->request_scan,
7636                                                       SCAN_INTERVAL);
7637                         else
7638                                 schedule_delayed_work(&priv->request_scan, 0);
7639                 }
7640
7641                 return 0;
7642         }
7643
7644         ipw_associate_network(priv, network, rates, 0);
7645
7646         return 1;
7647 }
7648
7649 static void ipw_bg_associate(struct work_struct *work)
7650 {
7651         struct ipw_priv *priv =
7652                 container_of(work, struct ipw_priv, associate);
7653         mutex_lock(&priv->mutex);
7654         ipw_associate(priv);
7655         mutex_unlock(&priv->mutex);
7656 }
7657
7658 static void ipw_rebuild_decrypted_skb(struct ipw_priv *priv,
7659                                       struct sk_buff *skb)
7660 {
7661         struct ieee80211_hdr *hdr;
7662         u16 fc;
7663
7664         hdr = (struct ieee80211_hdr *)skb->data;
7665         fc = le16_to_cpu(hdr->frame_control);
7666         if (!(fc & IEEE80211_FCTL_PROTECTED))
7667                 return;
7668
7669         fc &= ~IEEE80211_FCTL_PROTECTED;
7670         hdr->frame_control = cpu_to_le16(fc);
7671         switch (priv->ieee->sec.level) {
7672         case SEC_LEVEL_3:
7673                 /* Remove CCMP HDR */
7674                 memmove(skb->data + LIBIPW_3ADDR_LEN,
7675                         skb->data + LIBIPW_3ADDR_LEN + 8,
7676                         skb->len - LIBIPW_3ADDR_LEN - 8);
7677                 skb_trim(skb, skb->len - 16);   /* CCMP_HDR_LEN + CCMP_MIC_LEN */
7678                 break;
7679         case SEC_LEVEL_2:
7680                 break;
7681         case SEC_LEVEL_1:
7682                 /* Remove IV */
7683                 memmove(skb->data + LIBIPW_3ADDR_LEN,
7684                         skb->data + LIBIPW_3ADDR_LEN + 4,
7685                         skb->len - LIBIPW_3ADDR_LEN - 4);
7686                 skb_trim(skb, skb->len - 8);    /* IV + ICV */
7687                 break;
7688         case SEC_LEVEL_0:
7689                 break;
7690         default:
7691                 printk(KERN_ERR "Unknown security level %d\n",
7692                        priv->ieee->sec.level);
7693                 break;
7694         }
7695 }
7696
7697 static void ipw_handle_data_packet(struct ipw_priv *priv,
7698                                    struct ipw_rx_mem_buffer *rxb,
7699                                    struct libipw_rx_stats *stats)
7700 {
7701         struct net_device *dev = priv->net_dev;
7702         struct libipw_hdr_4addr *hdr;
7703         struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)rxb->skb->data;
7704
7705         /* We received data from the HW, so stop the watchdog */
7706         netif_trans_update(dev);
7707
7708         /* We only process data packets if the
7709          * interface is open */
7710         if (unlikely((le16_to_cpu(pkt->u.frame.length) + IPW_RX_FRAME_SIZE) >
7711                      skb_tailroom(rxb->skb))) {
7712                 dev->stats.rx_errors++;
7713                 priv->wstats.discard.misc++;
7714                 IPW_DEBUG_DROP("Corruption detected! Oh no!\n");
7715                 return;
7716         } else if (unlikely(!netif_running(priv->net_dev))) {
7717                 dev->stats.rx_dropped++;
7718                 priv->wstats.discard.misc++;
7719                 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
7720                 return;
7721         }
7722
7723         /* Advance skb->data to the start of the actual payload */
7724         skb_reserve(rxb->skb, offsetof(struct ipw_rx_packet, u.frame.data));
7725
7726         /* Set the size of the skb to the size of the frame */
7727         skb_put(rxb->skb, le16_to_cpu(pkt->u.frame.length));
7728
7729         IPW_DEBUG_RX("Rx packet of %d bytes.\n", rxb->skb->len);
7730
7731         /* HW decrypt will not clear the WEP bit, MIC, PN, etc. */
7732         hdr = (struct libipw_hdr_4addr *)rxb->skb->data;
7733         if (priv->ieee->iw_mode != IW_MODE_MONITOR &&
7734             (is_multicast_ether_addr(hdr->addr1) ?
7735              !priv->ieee->host_mc_decrypt : !priv->ieee->host_decrypt))
7736                 ipw_rebuild_decrypted_skb(priv, rxb->skb);
7737
7738         if (!libipw_rx(priv->ieee, rxb->skb, stats))
7739                 dev->stats.rx_errors++;
7740         else {                  /* libipw_rx succeeded, so it now owns the SKB */
7741                 rxb->skb = NULL;
7742                 __ipw_led_activity_on(priv);
7743         }
7744 }
7745
7746 #ifdef CONFIG_IPW2200_RADIOTAP
7747 static void ipw_handle_data_packet_monitor(struct ipw_priv *priv,
7748                                            struct ipw_rx_mem_buffer *rxb,
7749                                            struct libipw_rx_stats *stats)
7750 {
7751         struct net_device *dev = priv->net_dev;
7752         struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)rxb->skb->data;
7753         struct ipw_rx_frame *frame = &pkt->u.frame;
7754
7755         /* initial pull of some data */
7756         u16 received_channel = frame->received_channel;
7757         u8 antennaAndPhy = frame->antennaAndPhy;
7758         s8 antsignal = frame->rssi_dbm - IPW_RSSI_TO_DBM;       /* call it signed anyhow */
7759         u16 pktrate = frame->rate;
7760
7761         /* Magic struct that slots into the radiotap header -- no reason
7762          * to build this manually element by element, we can write it much
7763          * more efficiently than we can parse it. ORDER MATTERS HERE */
7764         struct ipw_rt_hdr *ipw_rt;
7765
7766         unsigned short len = le16_to_cpu(pkt->u.frame.length);
7767
7768         /* We received data from the HW, so stop the watchdog */
7769         netif_trans_update(dev);
7770
7771         /* We only process data packets if the
7772          * interface is open */
7773         if (unlikely((le16_to_cpu(pkt->u.frame.length) + IPW_RX_FRAME_SIZE) >
7774                      skb_tailroom(rxb->skb))) {
7775                 dev->stats.rx_errors++;
7776                 priv->wstats.discard.misc++;
7777                 IPW_DEBUG_DROP("Corruption detected! Oh no!\n");
7778                 return;
7779         } else if (unlikely(!netif_running(priv->net_dev))) {
7780                 dev->stats.rx_dropped++;
7781                 priv->wstats.discard.misc++;
7782                 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
7783                 return;
7784         }
7785
7786         /* Libpcap 0.9.3+ can handle variable length radiotap, so we'll use
7787          * that now */
7788         if (len > IPW_RX_BUF_SIZE - sizeof(struct ipw_rt_hdr)) {
7789                 /* FIXME: Should alloc bigger skb instead */
7790                 dev->stats.rx_dropped++;
7791                 priv->wstats.discard.misc++;
7792                 IPW_DEBUG_DROP("Dropping too large packet in monitor\n");
7793                 return;
7794         }
7795
7796         /* copy the frame itself */
7797         memmove(rxb->skb->data + sizeof(struct ipw_rt_hdr),
7798                 rxb->skb->data + IPW_RX_FRAME_SIZE, len);
7799
7800         ipw_rt = (struct ipw_rt_hdr *)rxb->skb->data;
7801
7802         ipw_rt->rt_hdr.it_version = PKTHDR_RADIOTAP_VERSION;
7803         ipw_rt->rt_hdr.it_pad = 0;      /* always good to zero */
7804         ipw_rt->rt_hdr.it_len = cpu_to_le16(sizeof(struct ipw_rt_hdr)); /* total header+data */
7805
7806         /* Big bitfield of all the fields we provide in radiotap */
7807         ipw_rt->rt_hdr.it_present = cpu_to_le32(
7808              (1 << IEEE80211_RADIOTAP_TSFT) |
7809              (1 << IEEE80211_RADIOTAP_FLAGS) |
7810              (1 << IEEE80211_RADIOTAP_RATE) |
7811              (1 << IEEE80211_RADIOTAP_CHANNEL) |
7812              (1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL) |
7813              (1 << IEEE80211_RADIOTAP_DBM_ANTNOISE) |
7814              (1 << IEEE80211_RADIOTAP_ANTENNA));
7815
7816         /* Zero the flags, we'll add to them as we go */
7817         ipw_rt->rt_flags = 0;
7818         ipw_rt->rt_tsf = (u64)(frame->parent_tsf[3] << 24 |
7819                                frame->parent_tsf[2] << 16 |
7820                                frame->parent_tsf[1] << 8  |
7821                                frame->parent_tsf[0]);
7822
7823         /* Convert signal to DBM */
7824         ipw_rt->rt_dbmsignal = antsignal;
7825         ipw_rt->rt_dbmnoise = (s8) le16_to_cpu(frame->noise);
7826
7827         /* Convert the channel data and set the flags */
7828         ipw_rt->rt_channel = cpu_to_le16(ieee80211chan2mhz(received_channel));
7829         if (received_channel > 14) {    /* 802.11a */
7830                 ipw_rt->rt_chbitmask =
7831                     cpu_to_le16((IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ));
7832         } else if (antennaAndPhy & 32) {        /* 802.11b */
7833                 ipw_rt->rt_chbitmask =
7834                     cpu_to_le16((IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ));
7835         } else {                /* 802.11g */
7836                 ipw_rt->rt_chbitmask =
7837                     cpu_to_le16(IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ);
7838         }
7839
7840         /* set the rate in multiples of 500k/s */
7841         switch (pktrate) {
7842         case IPW_TX_RATE_1MB:
7843                 ipw_rt->rt_rate = 2;
7844                 break;
7845         case IPW_TX_RATE_2MB:
7846                 ipw_rt->rt_rate = 4;
7847                 break;
7848         case IPW_TX_RATE_5MB:
7849                 ipw_rt->rt_rate = 10;
7850                 break;
7851         case IPW_TX_RATE_6MB:
7852                 ipw_rt->rt_rate = 12;
7853                 break;
7854         case IPW_TX_RATE_9MB:
7855                 ipw_rt->rt_rate = 18;
7856                 break;
7857         case IPW_TX_RATE_11MB:
7858                 ipw_rt->rt_rate = 22;
7859                 break;
7860         case IPW_TX_RATE_12MB:
7861                 ipw_rt->rt_rate = 24;
7862                 break;
7863         case IPW_TX_RATE_18MB:
7864                 ipw_rt->rt_rate = 36;
7865                 break;
7866         case IPW_TX_RATE_24MB:
7867                 ipw_rt->rt_rate = 48;
7868                 break;
7869         case IPW_TX_RATE_36MB:
7870                 ipw_rt->rt_rate = 72;
7871                 break;
7872         case IPW_TX_RATE_48MB:
7873                 ipw_rt->rt_rate = 96;
7874                 break;
7875         case IPW_TX_RATE_54MB:
7876                 ipw_rt->rt_rate = 108;
7877                 break;
7878         default:
7879                 ipw_rt->rt_rate = 0;
7880                 break;
7881         }
7882
7883         /* antenna number */
7884         ipw_rt->rt_antenna = (antennaAndPhy & 3);       /* Is this right? */
7885
7886         /* set the preamble flag if we have it */
7887         if ((antennaAndPhy & 64))
7888                 ipw_rt->rt_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
7889
7890         /* Set the size of the skb to the size of the frame */
7891         skb_put(rxb->skb, len + sizeof(struct ipw_rt_hdr));
7892
7893         IPW_DEBUG_RX("Rx packet of %d bytes.\n", rxb->skb->len);
7894
7895         if (!libipw_rx(priv->ieee, rxb->skb, stats))
7896                 dev->stats.rx_errors++;
7897         else {                  /* libipw_rx succeeded, so it now owns the SKB */
7898                 rxb->skb = NULL;
7899                 /* no LED during capture */
7900         }
7901 }
7902 #endif
7903
7904 #ifdef CONFIG_IPW2200_PROMISCUOUS
7905 #define libipw_is_probe_response(fc) \
7906    ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_MGMT && \
7907     (fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_PROBE_RESP )
7908
7909 #define libipw_is_management(fc) \
7910    ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_MGMT)
7911
7912 #define libipw_is_control(fc) \
7913    ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_CTL)
7914
7915 #define libipw_is_data(fc) \
7916    ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_DATA)
7917
7918 #define libipw_is_assoc_request(fc) \
7919    ((fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_ASSOC_REQ)
7920
7921 #define libipw_is_reassoc_request(fc) \
7922    ((fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_REASSOC_REQ)
7923
7924 static void ipw_handle_promiscuous_rx(struct ipw_priv *priv,
7925                                       struct ipw_rx_mem_buffer *rxb,
7926                                       struct libipw_rx_stats *stats)
7927 {
7928         struct net_device *dev = priv->prom_net_dev;
7929         struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)rxb->skb->data;
7930         struct ipw_rx_frame *frame = &pkt->u.frame;
7931         struct ipw_rt_hdr *ipw_rt;
7932
7933         /* First cache any information we need before we overwrite
7934          * the information provided in the skb from the hardware */
7935         struct ieee80211_hdr *hdr;
7936         u16 channel = frame->received_channel;
7937         u8 phy_flags = frame->antennaAndPhy;
7938         s8 signal = frame->rssi_dbm - IPW_RSSI_TO_DBM;
7939         s8 noise = (s8) le16_to_cpu(frame->noise);
7940         u8 rate = frame->rate;
7941         unsigned short len = le16_to_cpu(pkt->u.frame.length);
7942         struct sk_buff *skb;
7943         int hdr_only = 0;
7944         u16 filter = priv->prom_priv->filter;
7945
7946         /* If the filter is set to not include Rx frames then return */
7947         if (filter & IPW_PROM_NO_RX)
7948                 return;
7949
7950         /* We received data from the HW, so stop the watchdog */
7951         netif_trans_update(dev);
7952
7953         if (unlikely((len + IPW_RX_FRAME_SIZE) > skb_tailroom(rxb->skb))) {
7954                 dev->stats.rx_errors++;
7955                 IPW_DEBUG_DROP("Corruption detected! Oh no!\n");
7956                 return;
7957         }
7958
7959         /* We only process data packets if the interface is open */
7960         if (unlikely(!netif_running(dev))) {
7961                 dev->stats.rx_dropped++;
7962                 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
7963                 return;
7964         }
7965
7966         /* Libpcap 0.9.3+ can handle variable length radiotap, so we'll use
7967          * that now */
7968         if (len > IPW_RX_BUF_SIZE - sizeof(struct ipw_rt_hdr)) {
7969                 /* FIXME: Should alloc bigger skb instead */
7970                 dev->stats.rx_dropped++;
7971                 IPW_DEBUG_DROP("Dropping too large packet in monitor\n");
7972                 return;
7973         }
7974
7975         hdr = (void *)rxb->skb->data + IPW_RX_FRAME_SIZE;
7976         if (libipw_is_management(le16_to_cpu(hdr->frame_control))) {
7977                 if (filter & IPW_PROM_NO_MGMT)
7978                         return;
7979                 if (filter & IPW_PROM_MGMT_HEADER_ONLY)
7980                         hdr_only = 1;
7981         } else if (libipw_is_control(le16_to_cpu(hdr->frame_control))) {
7982                 if (filter & IPW_PROM_NO_CTL)
7983                         return;
7984                 if (filter & IPW_PROM_CTL_HEADER_ONLY)
7985                         hdr_only = 1;
7986         } else if (libipw_is_data(le16_to_cpu(hdr->frame_control))) {
7987                 if (filter & IPW_PROM_NO_DATA)
7988                         return;
7989                 if (filter & IPW_PROM_DATA_HEADER_ONLY)
7990                         hdr_only = 1;
7991         }
7992
7993         /* Copy the SKB since this is for the promiscuous side */
7994         skb = skb_copy(rxb->skb, GFP_ATOMIC);
7995         if (skb == NULL) {
7996                 IPW_ERROR("skb_clone failed for promiscuous copy.\n");
7997                 return;
7998         }
7999
8000         /* copy the frame data to write after where the radiotap header goes */
8001         ipw_rt = (void *)skb->data;
8002
8003         if (hdr_only)
8004                 len = libipw_get_hdrlen(le16_to_cpu(hdr->frame_control));
8005
8006         memcpy(ipw_rt->payload, hdr, len);
8007
8008         ipw_rt->rt_hdr.it_version = PKTHDR_RADIOTAP_VERSION;
8009         ipw_rt->rt_hdr.it_pad = 0;      /* always good to zero */
8010         ipw_rt->rt_hdr.it_len = cpu_to_le16(sizeof(*ipw_rt));   /* total header+data */
8011
8012         /* Set the size of the skb to the size of the frame */
8013         skb_put(skb, sizeof(*ipw_rt) + len);
8014
8015         /* Big bitfield of all the fields we provide in radiotap */
8016         ipw_rt->rt_hdr.it_present = cpu_to_le32(
8017              (1 << IEEE80211_RADIOTAP_TSFT) |
8018              (1 << IEEE80211_RADIOTAP_FLAGS) |
8019              (1 << IEEE80211_RADIOTAP_RATE) |
8020              (1 << IEEE80211_RADIOTAP_CHANNEL) |
8021              (1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL) |
8022              (1 << IEEE80211_RADIOTAP_DBM_ANTNOISE) |
8023              (1 << IEEE80211_RADIOTAP_ANTENNA));
8024
8025         /* Zero the flags, we'll add to them as we go */
8026         ipw_rt->rt_flags = 0;
8027         ipw_rt->rt_tsf = (u64)(frame->parent_tsf[3] << 24 |
8028                                frame->parent_tsf[2] << 16 |
8029                                frame->parent_tsf[1] << 8  |
8030                                frame->parent_tsf[0]);
8031
8032         /* Convert to DBM */
8033         ipw_rt->rt_dbmsignal = signal;
8034         ipw_rt->rt_dbmnoise = noise;
8035
8036         /* Convert the channel data and set the flags */
8037         ipw_rt->rt_channel = cpu_to_le16(ieee80211chan2mhz(channel));
8038         if (channel > 14) {     /* 802.11a */
8039                 ipw_rt->rt_chbitmask =
8040                     cpu_to_le16((IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ));
8041         } else if (phy_flags & (1 << 5)) {      /* 802.11b */
8042                 ipw_rt->rt_chbitmask =
8043                     cpu_to_le16((IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ));
8044         } else {                /* 802.11g */
8045                 ipw_rt->rt_chbitmask =
8046                     cpu_to_le16(IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ);
8047         }
8048
8049         /* set the rate in multiples of 500k/s */
8050         switch (rate) {
8051         case IPW_TX_RATE_1MB:
8052                 ipw_rt->rt_rate = 2;
8053                 break;
8054         case IPW_TX_RATE_2MB:
8055                 ipw_rt->rt_rate = 4;
8056                 break;
8057         case IPW_TX_RATE_5MB:
8058                 ipw_rt->rt_rate = 10;
8059                 break;
8060         case IPW_TX_RATE_6MB:
8061                 ipw_rt->rt_rate = 12;
8062                 break;
8063         case IPW_TX_RATE_9MB:
8064                 ipw_rt->rt_rate = 18;
8065                 break;
8066         case IPW_TX_RATE_11MB:
8067                 ipw_rt->rt_rate = 22;
8068                 break;
8069         case IPW_TX_RATE_12MB:
8070                 ipw_rt->rt_rate = 24;
8071                 break;
8072         case IPW_TX_RATE_18MB:
8073                 ipw_rt->rt_rate = 36;
8074                 break;
8075         case IPW_TX_RATE_24MB:
8076                 ipw_rt->rt_rate = 48;
8077                 break;
8078         case IPW_TX_RATE_36MB:
8079                 ipw_rt->rt_rate = 72;
8080                 break;
8081         case IPW_TX_RATE_48MB:
8082                 ipw_rt->rt_rate = 96;
8083                 break;
8084         case IPW_TX_RATE_54MB:
8085                 ipw_rt->rt_rate = 108;
8086                 break;
8087         default:
8088                 ipw_rt->rt_rate = 0;
8089                 break;
8090         }
8091
8092         /* antenna number */
8093         ipw_rt->rt_antenna = (phy_flags & 3);
8094
8095         /* set the preamble flag if we have it */
8096         if (phy_flags & (1 << 6))
8097                 ipw_rt->rt_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
8098
8099         IPW_DEBUG_RX("Rx packet of %d bytes.\n", skb->len);
8100
8101         if (!libipw_rx(priv->prom_priv->ieee, skb, stats)) {
8102                 dev->stats.rx_errors++;
8103                 dev_kfree_skb_any(skb);
8104         }
8105 }
8106 #endif
8107
8108 static int is_network_packet(struct ipw_priv *priv,
8109                                     struct libipw_hdr_4addr *header)
8110 {
8111         /* Filter incoming packets to determine if they are targeted toward
8112          * this network, discarding packets coming from ourselves */
8113         switch (priv->ieee->iw_mode) {
8114         case IW_MODE_ADHOC:     /* Header: Dest. | Source    | BSSID */
8115                 /* packets from our adapter are dropped (echo) */
8116                 if (ether_addr_equal(header->addr2, priv->net_dev->dev_addr))
8117                         return 0;
8118
8119                 /* {broad,multi}cast packets to our BSSID go through */
8120                 if (is_multicast_ether_addr(header->addr1))
8121                         return ether_addr_equal(header->addr3, priv->bssid);
8122
8123                 /* packets to our adapter go through */
8124                 return ether_addr_equal(header->addr1,
8125                                         priv->net_dev->dev_addr);
8126
8127         case IW_MODE_INFRA:     /* Header: Dest. | BSSID | Source */
8128                 /* packets from our adapter are dropped (echo) */
8129                 if (ether_addr_equal(header->addr3, priv->net_dev->dev_addr))
8130                         return 0;
8131
8132                 /* {broad,multi}cast packets to our BSS go through */
8133                 if (is_multicast_ether_addr(header->addr1))
8134                         return ether_addr_equal(header->addr2, priv->bssid);
8135
8136                 /* packets to our adapter go through */
8137                 return ether_addr_equal(header->addr1,
8138                                         priv->net_dev->dev_addr);
8139         }
8140
8141         return 1;
8142 }
8143
8144 #define IPW_PACKET_RETRY_TIME HZ
8145
8146 static  int is_duplicate_packet(struct ipw_priv *priv,
8147                                       struct libipw_hdr_4addr *header)
8148 {
8149         u16 sc = le16_to_cpu(header->seq_ctl);
8150         u16 seq = WLAN_GET_SEQ_SEQ(sc);
8151         u16 frag = WLAN_GET_SEQ_FRAG(sc);
8152         u16 *last_seq, *last_frag;
8153         unsigned long *last_time;
8154
8155         switch (priv->ieee->iw_mode) {
8156         case IW_MODE_ADHOC:
8157                 {
8158                         struct list_head *p;
8159                         struct ipw_ibss_seq *entry = NULL;
8160                         u8 *mac = header->addr2;
8161                         int index = mac[5] % IPW_IBSS_MAC_HASH_SIZE;
8162
8163                         list_for_each(p, &priv->ibss_mac_hash[index]) {
8164                                 entry =
8165                                     list_entry(p, struct ipw_ibss_seq, list);
8166                                 if (ether_addr_equal(entry->mac, mac))
8167                                         break;
8168                         }
8169                         if (p == &priv->ibss_mac_hash[index]) {
8170                                 entry = kmalloc(sizeof(*entry), GFP_ATOMIC);
8171                                 if (!entry) {
8172                                         IPW_ERROR
8173                                             ("Cannot malloc new mac entry\n");
8174                                         return 0;
8175                                 }
8176                                 memcpy(entry->mac, mac, ETH_ALEN);
8177                                 entry->seq_num = seq;
8178                                 entry->frag_num = frag;
8179                                 entry->packet_time = jiffies;
8180                                 list_add(&entry->list,
8181                                          &priv->ibss_mac_hash[index]);
8182                                 return 0;
8183                         }
8184                         last_seq = &entry->seq_num;
8185                         last_frag = &entry->frag_num;
8186                         last_time = &entry->packet_time;
8187                         break;
8188                 }
8189         case IW_MODE_INFRA:
8190                 last_seq = &priv->last_seq_num;
8191                 last_frag = &priv->last_frag_num;
8192                 last_time = &priv->last_packet_time;
8193                 break;
8194         default:
8195                 return 0;
8196         }
8197         if ((*last_seq == seq) &&
8198             time_after(*last_time + IPW_PACKET_RETRY_TIME, jiffies)) {
8199                 if (*last_frag == frag)
8200                         goto drop;
8201                 if (*last_frag + 1 != frag)
8202                         /* out-of-order fragment */
8203                         goto drop;
8204         } else
8205                 *last_seq = seq;
8206
8207         *last_frag = frag;
8208         *last_time = jiffies;
8209         return 0;
8210
8211       drop:
8212         /* Comment this line now since we observed the card receives
8213          * duplicate packets but the FCTL_RETRY bit is not set in the
8214          * IBSS mode with fragmentation enabled.
8215          BUG_ON(!(le16_to_cpu(header->frame_control) & IEEE80211_FCTL_RETRY)); */
8216         return 1;
8217 }
8218
8219 static void ipw_handle_mgmt_packet(struct ipw_priv *priv,
8220                                    struct ipw_rx_mem_buffer *rxb,
8221                                    struct libipw_rx_stats *stats)
8222 {
8223         struct sk_buff *skb = rxb->skb;
8224         struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)skb->data;
8225         struct libipw_hdr_4addr *header = (struct libipw_hdr_4addr *)
8226             (skb->data + IPW_RX_FRAME_SIZE);
8227
8228         libipw_rx_mgt(priv->ieee, header, stats);
8229
8230         if (priv->ieee->iw_mode == IW_MODE_ADHOC &&
8231             ((WLAN_FC_GET_STYPE(le16_to_cpu(header->frame_ctl)) ==
8232               IEEE80211_STYPE_PROBE_RESP) ||
8233              (WLAN_FC_GET_STYPE(le16_to_cpu(header->frame_ctl)) ==
8234               IEEE80211_STYPE_BEACON))) {
8235                 if (ether_addr_equal(header->addr3, priv->bssid))
8236                         ipw_add_station(priv, header->addr2);
8237         }
8238
8239         if (priv->config & CFG_NET_STATS) {
8240                 IPW_DEBUG_HC("sending stat packet\n");
8241
8242                 /* Set the size of the skb to the size of the full
8243                  * ipw header and 802.11 frame */
8244                 skb_put(skb, le16_to_cpu(pkt->u.frame.length) +
8245                         IPW_RX_FRAME_SIZE);
8246
8247                 /* Advance past the ipw packet header to the 802.11 frame */
8248                 skb_pull(skb, IPW_RX_FRAME_SIZE);
8249
8250                 /* Push the libipw_rx_stats before the 802.11 frame */
8251                 memcpy(skb_push(skb, sizeof(*stats)), stats, sizeof(*stats));
8252
8253                 skb->dev = priv->ieee->dev;
8254
8255                 /* Point raw at the libipw_stats */
8256                 skb_reset_mac_header(skb);
8257
8258                 skb->pkt_type = PACKET_OTHERHOST;
8259                 skb->protocol = cpu_to_be16(ETH_P_80211_STATS);
8260                 memset(skb->cb, 0, sizeof(rxb->skb->cb));
8261                 netif_rx(skb);
8262                 rxb->skb = NULL;
8263         }
8264 }
8265
8266 /*
8267  * Main entry function for receiving a packet with 80211 headers.  This
8268  * should be called when ever the FW has notified us that there is a new
8269  * skb in the receive queue.
8270  */
8271 static void ipw_rx(struct ipw_priv *priv)
8272 {
8273         struct ipw_rx_mem_buffer *rxb;
8274         struct ipw_rx_packet *pkt;
8275         struct libipw_hdr_4addr *header;
8276         u32 r, w, i;
8277         u8 network_packet;
8278         u8 fill_rx = 0;
8279
8280         r = ipw_read32(priv, IPW_RX_READ_INDEX);
8281         w = ipw_read32(priv, IPW_RX_WRITE_INDEX);
8282         i = priv->rxq->read;
8283
8284         if (ipw_rx_queue_space (priv->rxq) > (RX_QUEUE_SIZE / 2))
8285                 fill_rx = 1;
8286
8287         while (i != r) {
8288                 rxb = priv->rxq->queue[i];
8289                 if (unlikely(rxb == NULL)) {
8290                         printk(KERN_CRIT "Queue not allocated!\n");
8291                         break;
8292                 }
8293                 priv->rxq->queue[i] = NULL;
8294
8295                 pci_dma_sync_single_for_cpu(priv->pci_dev, rxb->dma_addr,
8296                                             IPW_RX_BUF_SIZE,
8297                                             PCI_DMA_FROMDEVICE);
8298
8299                 pkt = (struct ipw_rx_packet *)rxb->skb->data;
8300                 IPW_DEBUG_RX("Packet: type=%02X seq=%02X bits=%02X\n",
8301                              pkt->header.message_type,
8302                              pkt->header.rx_seq_num, pkt->header.control_bits);
8303
8304                 switch (pkt->header.message_type) {
8305                 case RX_FRAME_TYPE:     /* 802.11 frame */  {
8306                                 struct libipw_rx_stats stats = {
8307                                         .rssi = pkt->u.frame.rssi_dbm -
8308                                             IPW_RSSI_TO_DBM,
8309                                         .signal =
8310                                             pkt->u.frame.rssi_dbm -
8311                                             IPW_RSSI_TO_DBM + 0x100,
8312                                         .noise =
8313                                             le16_to_cpu(pkt->u.frame.noise),
8314                                         .rate = pkt->u.frame.rate,
8315                                         .mac_time = jiffies,
8316                                         .received_channel =
8317                                             pkt->u.frame.received_channel,
8318                                         .freq =
8319                                             (pkt->u.frame.
8320                                              control & (1 << 0)) ?
8321                                             LIBIPW_24GHZ_BAND :
8322                                             LIBIPW_52GHZ_BAND,
8323                                         .len = le16_to_cpu(pkt->u.frame.length),
8324                                 };
8325
8326                                 if (stats.rssi != 0)
8327                                         stats.mask |= LIBIPW_STATMASK_RSSI;
8328                                 if (stats.signal != 0)
8329                                         stats.mask |= LIBIPW_STATMASK_SIGNAL;
8330                                 if (stats.noise != 0)
8331                                         stats.mask |= LIBIPW_STATMASK_NOISE;
8332                                 if (stats.rate != 0)
8333                                         stats.mask |= LIBIPW_STATMASK_RATE;
8334
8335                                 priv->rx_packets++;
8336
8337 #ifdef CONFIG_IPW2200_PROMISCUOUS
8338         if (priv->prom_net_dev && netif_running(priv->prom_net_dev))
8339                 ipw_handle_promiscuous_rx(priv, rxb, &stats);
8340 #endif
8341
8342 #ifdef CONFIG_IPW2200_MONITOR
8343                                 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
8344 #ifdef CONFIG_IPW2200_RADIOTAP
8345
8346                 ipw_handle_data_packet_monitor(priv,
8347                                                rxb,
8348                                                &stats);
8349 #else
8350                 ipw_handle_data_packet(priv, rxb,
8351                                        &stats);
8352 #endif
8353                                         break;
8354                                 }
8355 #endif
8356
8357                                 header =
8358                                     (struct libipw_hdr_4addr *)(rxb->skb->
8359                                                                    data +
8360                                                                    IPW_RX_FRAME_SIZE);
8361                                 /* TODO: Check Ad-Hoc dest/source and make sure
8362                                  * that we are actually parsing these packets
8363                                  * correctly -- we should probably use the
8364                                  * frame control of the packet and disregard
8365                                  * the current iw_mode */
8366
8367                                 network_packet =
8368                                     is_network_packet(priv, header);
8369                                 if (network_packet && priv->assoc_network) {
8370                                         priv->assoc_network->stats.rssi =
8371                                             stats.rssi;
8372                                         priv->exp_avg_rssi =
8373                                             exponential_average(priv->exp_avg_rssi,
8374                                             stats.rssi, DEPTH_RSSI);
8375                                 }
8376
8377                                 IPW_DEBUG_RX("Frame: len=%u\n",
8378                                              le16_to_cpu(pkt->u.frame.length));
8379
8380                                 if (le16_to_cpu(pkt->u.frame.length) <
8381                                     libipw_get_hdrlen(le16_to_cpu(
8382                                                     header->frame_ctl))) {
8383                                         IPW_DEBUG_DROP
8384                                             ("Received packet is too small. "
8385                                              "Dropping.\n");
8386                                         priv->net_dev->stats.rx_errors++;
8387                                         priv->wstats.discard.misc++;
8388                                         break;
8389                                 }
8390
8391                                 switch (WLAN_FC_GET_TYPE
8392                                         (le16_to_cpu(header->frame_ctl))) {
8393
8394                                 case IEEE80211_FTYPE_MGMT:
8395                                         ipw_handle_mgmt_packet(priv, rxb,
8396                                                                &stats);
8397                                         break;
8398
8399                                 case IEEE80211_FTYPE_CTL:
8400                                         break;
8401
8402                                 case IEEE80211_FTYPE_DATA:
8403                                         if (unlikely(!network_packet ||
8404                                                      is_duplicate_packet(priv,
8405                                                                          header)))
8406                                         {
8407                                                 IPW_DEBUG_DROP("Dropping: "
8408                                                                "%pM, "
8409                                                                "%pM, "
8410                                                                "%pM\n",
8411                                                                header->addr1,
8412                                                                header->addr2,
8413                                                                header->addr3);
8414                                                 break;
8415                                         }
8416
8417                                         ipw_handle_data_packet(priv, rxb,
8418                                                                &stats);
8419
8420                                         break;
8421                                 }
8422                                 break;
8423                         }
8424
8425                 case RX_HOST_NOTIFICATION_TYPE:{
8426                                 IPW_DEBUG_RX
8427                                     ("Notification: subtype=%02X flags=%02X size=%d\n",
8428                                      pkt->u.notification.subtype,
8429                                      pkt->u.notification.flags,
8430                                      le16_to_cpu(pkt->u.notification.size));
8431                                 ipw_rx_notification(priv, &pkt->u.notification);
8432                                 break;
8433                         }
8434
8435                 default:
8436                         IPW_DEBUG_RX("Bad Rx packet of type %d\n",
8437                                      pkt->header.message_type);
8438                         break;
8439                 }
8440
8441                 /* For now we just don't re-use anything.  We can tweak this
8442                  * later to try and re-use notification packets and SKBs that
8443                  * fail to Rx correctly */
8444                 if (rxb->skb != NULL) {
8445                         dev_kfree_skb_any(rxb->skb);
8446                         rxb->skb = NULL;
8447                 }
8448
8449                 pci_unmap_single(priv->pci_dev, rxb->dma_addr,
8450                                  IPW_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
8451                 list_add_tail(&rxb->list, &priv->rxq->rx_used);
8452
8453                 i = (i + 1) % RX_QUEUE_SIZE;
8454
8455                 /* If there are a lot of unsued frames, restock the Rx queue
8456                  * so the ucode won't assert */
8457                 if (fill_rx) {
8458                         priv->rxq->read = i;
8459                         ipw_rx_queue_replenish(priv);
8460                 }
8461         }
8462
8463         /* Backtrack one entry */
8464         priv->rxq->read = i;
8465         ipw_rx_queue_restock(priv);
8466 }
8467
8468 #define DEFAULT_RTS_THRESHOLD     2304U
8469 #define MIN_RTS_THRESHOLD         1U
8470 #define MAX_RTS_THRESHOLD         2304U
8471 #define DEFAULT_BEACON_INTERVAL   100U
8472 #define DEFAULT_SHORT_RETRY_LIMIT 7U
8473 #define DEFAULT_LONG_RETRY_LIMIT  4U
8474
8475 /**
8476  * ipw_sw_reset
8477  * @option: options to control different reset behaviour
8478  *          0 = reset everything except the 'disable' module_param
8479  *          1 = reset everything and print out driver info (for probe only)
8480  *          2 = reset everything
8481  */
8482 static int ipw_sw_reset(struct ipw_priv *priv, int option)
8483 {
8484         int band, modulation;
8485         int old_mode = priv->ieee->iw_mode;
8486
8487         /* Initialize module parameter values here */
8488         priv->config = 0;
8489
8490         /* We default to disabling the LED code as right now it causes
8491          * too many systems to lock up... */
8492         if (!led_support)
8493                 priv->config |= CFG_NO_LED;
8494
8495         if (associate)
8496                 priv->config |= CFG_ASSOCIATE;
8497         else
8498                 IPW_DEBUG_INFO("Auto associate disabled.\n");
8499
8500         if (auto_create)
8501                 priv->config |= CFG_ADHOC_CREATE;
8502         else
8503                 IPW_DEBUG_INFO("Auto adhoc creation disabled.\n");
8504
8505         priv->config &= ~CFG_STATIC_ESSID;
8506         priv->essid_len = 0;
8507         memset(priv->essid, 0, IW_ESSID_MAX_SIZE);
8508
8509         if (disable && option) {
8510                 priv->status |= STATUS_RF_KILL_SW;
8511                 IPW_DEBUG_INFO("Radio disabled.\n");
8512         }
8513
8514         if (default_channel != 0) {
8515                 priv->config |= CFG_STATIC_CHANNEL;
8516                 priv->channel = default_channel;
8517                 IPW_DEBUG_INFO("Bind to static channel %d\n", default_channel);
8518                 /* TODO: Validate that provided channel is in range */
8519         }
8520 #ifdef CONFIG_IPW2200_QOS
8521         ipw_qos_init(priv, qos_enable, qos_burst_enable,
8522                      burst_duration_CCK, burst_duration_OFDM);
8523 #endif                          /* CONFIG_IPW2200_QOS */
8524
8525         switch (network_mode) {
8526         case 1:
8527                 priv->ieee->iw_mode = IW_MODE_ADHOC;
8528                 priv->net_dev->type = ARPHRD_ETHER;
8529
8530                 break;
8531 #ifdef CONFIG_IPW2200_MONITOR
8532         case 2:
8533                 priv->ieee->iw_mode = IW_MODE_MONITOR;
8534 #ifdef CONFIG_IPW2200_RADIOTAP
8535                 priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
8536 #else
8537                 priv->net_dev->type = ARPHRD_IEEE80211;
8538 #endif
8539                 break;
8540 #endif
8541         default:
8542         case 0:
8543                 priv->net_dev->type = ARPHRD_ETHER;
8544                 priv->ieee->iw_mode = IW_MODE_INFRA;
8545                 break;
8546         }
8547
8548         if (hwcrypto) {
8549                 priv->ieee->host_encrypt = 0;
8550                 priv->ieee->host_encrypt_msdu = 0;
8551                 priv->ieee->host_decrypt = 0;
8552                 priv->ieee->host_mc_decrypt = 0;
8553         }
8554         IPW_DEBUG_INFO("Hardware crypto [%s]\n", hwcrypto ? "on" : "off");
8555
8556         /* IPW2200/2915 is abled to do hardware fragmentation. */
8557         priv->ieee->host_open_frag = 0;
8558
8559         if ((priv->pci_dev->device == 0x4223) ||
8560             (priv->pci_dev->device == 0x4224)) {
8561                 if (option == 1)
8562                         printk(KERN_INFO DRV_NAME
8563                                ": Detected Intel PRO/Wireless 2915ABG Network "
8564                                "Connection\n");
8565                 priv->ieee->abg_true = 1;
8566                 band = LIBIPW_52GHZ_BAND | LIBIPW_24GHZ_BAND;
8567                 modulation = LIBIPW_OFDM_MODULATION |
8568                     LIBIPW_CCK_MODULATION;
8569                 priv->adapter = IPW_2915ABG;
8570                 priv->ieee->mode = IEEE_A | IEEE_G | IEEE_B;
8571         } else {
8572                 if (option == 1)
8573                         printk(KERN_INFO DRV_NAME
8574                                ": Detected Intel PRO/Wireless 2200BG Network "
8575                                "Connection\n");
8576
8577                 priv->ieee->abg_true = 0;
8578                 band = LIBIPW_24GHZ_BAND;
8579                 modulation = LIBIPW_OFDM_MODULATION |
8580                     LIBIPW_CCK_MODULATION;
8581                 priv->adapter = IPW_2200BG;
8582                 priv->ieee->mode = IEEE_G | IEEE_B;
8583         }
8584
8585         priv->ieee->freq_band = band;
8586         priv->ieee->modulation = modulation;
8587
8588         priv->rates_mask = LIBIPW_DEFAULT_RATES_MASK;
8589
8590         priv->disassociate_threshold = IPW_MB_DISASSOCIATE_THRESHOLD_DEFAULT;
8591         priv->roaming_threshold = IPW_MB_ROAMING_THRESHOLD_DEFAULT;
8592
8593         priv->rts_threshold = DEFAULT_RTS_THRESHOLD;
8594         priv->short_retry_limit = DEFAULT_SHORT_RETRY_LIMIT;
8595         priv->long_retry_limit = DEFAULT_LONG_RETRY_LIMIT;
8596
8597         /* If power management is turned on, default to AC mode */
8598         priv->power_mode = IPW_POWER_AC;
8599         priv->tx_power = IPW_TX_POWER_DEFAULT;
8600
8601         return old_mode == priv->ieee->iw_mode;
8602 }
8603
8604 /*
8605  * This file defines the Wireless Extension handlers.  It does not
8606  * define any methods of hardware manipulation and relies on the
8607  * functions defined in ipw_main to provide the HW interaction.
8608  *
8609  * The exception to this is the use of the ipw_get_ordinal()
8610  * function used to poll the hardware vs. making unnecessary calls.
8611  *
8612  */
8613
8614 static int ipw_set_channel(struct ipw_priv *priv, u8 channel)
8615 {
8616         if (channel == 0) {
8617                 IPW_DEBUG_INFO("Setting channel to ANY (0)\n");
8618                 priv->config &= ~CFG_STATIC_CHANNEL;
8619                 IPW_DEBUG_ASSOC("Attempting to associate with new "
8620                                 "parameters.\n");
8621                 ipw_associate(priv);
8622                 return 0;
8623         }
8624
8625         priv->config |= CFG_STATIC_CHANNEL;
8626
8627         if (priv->channel == channel) {
8628                 IPW_DEBUG_INFO("Request to set channel to current value (%d)\n",
8629                                channel);
8630                 return 0;
8631         }
8632
8633         IPW_DEBUG_INFO("Setting channel to %i\n", (int)channel);
8634         priv->channel = channel;
8635
8636 #ifdef CONFIG_IPW2200_MONITOR
8637         if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
8638                 int i;
8639                 if (priv->status & STATUS_SCANNING) {
8640                         IPW_DEBUG_SCAN("Scan abort triggered due to "
8641                                        "channel change.\n");
8642                         ipw_abort_scan(priv);
8643                 }
8644
8645                 for (i = 1000; i && (priv->status & STATUS_SCANNING); i--)
8646                         udelay(10);
8647
8648                 if (priv->status & STATUS_SCANNING)
8649                         IPW_DEBUG_SCAN("Still scanning...\n");
8650                 else
8651                         IPW_DEBUG_SCAN("Took %dms to abort current scan\n",
8652                                        1000 - i);
8653
8654                 return 0;
8655         }
8656 #endif                          /* CONFIG_IPW2200_MONITOR */
8657
8658         /* Network configuration changed -- force [re]association */
8659         IPW_DEBUG_ASSOC("[re]association triggered due to channel change.\n");
8660         if (!ipw_disassociate(priv))
8661                 ipw_associate(priv);
8662
8663         return 0;
8664 }
8665
8666 static int ipw_wx_set_freq(struct net_device *dev,
8667                            struct iw_request_info *info,
8668                            union iwreq_data *wrqu, char *extra)
8669 {
8670         struct ipw_priv *priv = libipw_priv(dev);
8671         const struct libipw_geo *geo = libipw_get_geo(priv->ieee);
8672         struct iw_freq *fwrq = &wrqu->freq;
8673         int ret = 0, i;
8674         u8 channel, flags;
8675         int band;
8676
8677         if (fwrq->m == 0) {
8678                 IPW_DEBUG_WX("SET Freq/Channel -> any\n");
8679                 mutex_lock(&priv->mutex);
8680                 ret = ipw_set_channel(priv, 0);
8681                 mutex_unlock(&priv->mutex);
8682                 return ret;
8683         }
8684         /* if setting by freq convert to channel */
8685         if (fwrq->e == 1) {
8686                 channel = libipw_freq_to_channel(priv->ieee, fwrq->m);
8687                 if (channel == 0)
8688                         return -EINVAL;
8689         } else
8690                 channel = fwrq->m;
8691
8692         if (!(band = libipw_is_valid_channel(priv->ieee, channel)))
8693                 return -EINVAL;
8694
8695         if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
8696                 i = libipw_channel_to_index(priv->ieee, channel);
8697                 if (i == -1)
8698                         return -EINVAL;
8699
8700                 flags = (band == LIBIPW_24GHZ_BAND) ?
8701                     geo->bg[i].flags : geo->a[i].flags;
8702                 if (flags & LIBIPW_CH_PASSIVE_ONLY) {
8703                         IPW_DEBUG_WX("Invalid Ad-Hoc channel for 802.11a\n");
8704                         return -EINVAL;
8705                 }
8706         }
8707
8708         IPW_DEBUG_WX("SET Freq/Channel -> %d\n", fwrq->m);
8709         mutex_lock(&priv->mutex);
8710         ret = ipw_set_channel(priv, channel);
8711         mutex_unlock(&priv->mutex);
8712         return ret;
8713 }
8714
8715 static int ipw_wx_get_freq(struct net_device *dev,
8716                            struct iw_request_info *info,
8717                            union iwreq_data *wrqu, char *extra)
8718 {
8719         struct ipw_priv *priv = libipw_priv(dev);
8720
8721         wrqu->freq.e = 0;
8722
8723         /* If we are associated, trying to associate, or have a statically
8724          * configured CHANNEL then return that; otherwise return ANY */
8725         mutex_lock(&priv->mutex);
8726         if (priv->config & CFG_STATIC_CHANNEL ||
8727             priv->status & (STATUS_ASSOCIATING | STATUS_ASSOCIATED)) {
8728                 int i;
8729
8730                 i = libipw_channel_to_index(priv->ieee, priv->channel);
8731                 BUG_ON(i == -1);
8732                 wrqu->freq.e = 1;
8733
8734                 switch (libipw_is_valid_channel(priv->ieee, priv->channel)) {
8735                 case LIBIPW_52GHZ_BAND:
8736                         wrqu->freq.m = priv->ieee->geo.a[i].freq * 100000;
8737                         break;
8738
8739                 case LIBIPW_24GHZ_BAND:
8740                         wrqu->freq.m = priv->ieee->geo.bg[i].freq * 100000;
8741                         break;
8742
8743                 default:
8744                         BUG();
8745                 }
8746         } else
8747                 wrqu->freq.m = 0;
8748
8749         mutex_unlock(&priv->mutex);
8750         IPW_DEBUG_WX("GET Freq/Channel -> %d\n", priv->channel);
8751         return 0;
8752 }
8753
8754 static int ipw_wx_set_mode(struct net_device *dev,
8755                            struct iw_request_info *info,
8756                            union iwreq_data *wrqu, char *extra)
8757 {
8758         struct ipw_priv *priv = libipw_priv(dev);
8759         int err = 0;
8760
8761         IPW_DEBUG_WX("Set MODE: %d\n", wrqu->mode);
8762
8763         switch (wrqu->mode) {
8764 #ifdef CONFIG_IPW2200_MONITOR
8765         case IW_MODE_MONITOR:
8766 #endif
8767         case IW_MODE_ADHOC:
8768         case IW_MODE_INFRA:
8769                 break;
8770         case IW_MODE_AUTO:
8771                 wrqu->mode = IW_MODE_INFRA;
8772                 break;
8773         default:
8774                 return -EINVAL;
8775         }
8776         if (wrqu->mode == priv->ieee->iw_mode)
8777                 return 0;
8778
8779         mutex_lock(&priv->mutex);
8780
8781         ipw_sw_reset(priv, 0);
8782
8783 #ifdef CONFIG_IPW2200_MONITOR
8784         if (priv->ieee->iw_mode == IW_MODE_MONITOR)
8785                 priv->net_dev->type = ARPHRD_ETHER;
8786
8787         if (wrqu->mode == IW_MODE_MONITOR)
8788 #ifdef CONFIG_IPW2200_RADIOTAP
8789                 priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
8790 #else
8791                 priv->net_dev->type = ARPHRD_IEEE80211;
8792 #endif
8793 #endif                          /* CONFIG_IPW2200_MONITOR */
8794
8795         /* Free the existing firmware and reset the fw_loaded
8796          * flag so ipw_load() will bring in the new firmware */
8797         free_firmware();
8798
8799         priv->ieee->iw_mode = wrqu->mode;
8800
8801         schedule_work(&priv->adapter_restart);
8802         mutex_unlock(&priv->mutex);
8803         return err;
8804 }
8805
8806 static int ipw_wx_get_mode(struct net_device *dev,
8807                            struct iw_request_info *info,
8808                            union iwreq_data *wrqu, char *extra)
8809 {
8810         struct ipw_priv *priv = libipw_priv(dev);
8811         mutex_lock(&priv->mutex);
8812         wrqu->mode = priv->ieee->iw_mode;
8813         IPW_DEBUG_WX("Get MODE -> %d\n", wrqu->mode);
8814         mutex_unlock(&priv->mutex);
8815         return 0;
8816 }
8817
8818 /* Values are in microsecond */
8819 static const s32 timeout_duration[] = {
8820         350000,
8821         250000,
8822         75000,
8823         37000,
8824         25000,
8825 };
8826
8827 static const s32 period_duration[] = {
8828         400000,
8829         700000,
8830         1000000,
8831         1000000,
8832         1000000
8833 };
8834
8835 static int ipw_wx_get_range(struct net_device *dev,
8836                             struct iw_request_info *info,
8837                             union iwreq_data *wrqu, char *extra)
8838 {
8839         struct ipw_priv *priv = libipw_priv(dev);
8840         struct iw_range *range = (struct iw_range *)extra;
8841         const struct libipw_geo *geo = libipw_get_geo(priv->ieee);
8842         int i = 0, j;
8843
8844         wrqu->data.length = sizeof(*range);
8845         memset(range, 0, sizeof(*range));
8846
8847         /* 54Mbs == ~27 Mb/s real (802.11g) */
8848         range->throughput = 27 * 1000 * 1000;
8849
8850         range->max_qual.qual = 100;
8851         /* TODO: Find real max RSSI and stick here */
8852         range->max_qual.level = 0;
8853         range->max_qual.noise = 0;
8854         range->max_qual.updated = 7;    /* Updated all three */
8855
8856         range->avg_qual.qual = 70;
8857         /* TODO: Find real 'good' to 'bad' threshold value for RSSI */
8858         range->avg_qual.level = 0;      /* FIXME to real average level */
8859         range->avg_qual.noise = 0;
8860         range->avg_qual.updated = 7;    /* Updated all three */
8861         mutex_lock(&priv->mutex);
8862         range->num_bitrates = min(priv->rates.num_rates, (u8) IW_MAX_BITRATES);
8863
8864         for (i = 0; i < range->num_bitrates; i++)
8865                 range->bitrate[i] = (priv->rates.supported_rates[i] & 0x7F) *
8866                     500000;
8867
8868         range->max_rts = DEFAULT_RTS_THRESHOLD;
8869         range->min_frag = MIN_FRAG_THRESHOLD;
8870         range->max_frag = MAX_FRAG_THRESHOLD;
8871
8872         range->encoding_size[0] = 5;
8873         range->encoding_size[1] = 13;
8874         range->num_encoding_sizes = 2;
8875         range->max_encoding_tokens = WEP_KEYS;
8876
8877         /* Set the Wireless Extension versions */
8878         range->we_version_compiled = WIRELESS_EXT;
8879         range->we_version_source = 18;
8880
8881         i = 0;
8882         if (priv->ieee->mode & (IEEE_B | IEEE_G)) {
8883                 for (j = 0; j < geo->bg_channels && i < IW_MAX_FREQUENCIES; j++) {
8884                         if ((priv->ieee->iw_mode == IW_MODE_ADHOC) &&
8885                             (geo->bg[j].flags & LIBIPW_CH_PASSIVE_ONLY))
8886                                 continue;
8887
8888                         range->freq[i].i = geo->bg[j].channel;
8889                         range->freq[i].m = geo->bg[j].freq * 100000;
8890                         range->freq[i].e = 1;
8891                         i++;
8892                 }
8893         }
8894
8895         if (priv->ieee->mode & IEEE_A) {
8896                 for (j = 0; j < geo->a_channels && i < IW_MAX_FREQUENCIES; j++) {
8897                         if ((priv->ieee->iw_mode == IW_MODE_ADHOC) &&
8898                             (geo->a[j].flags & LIBIPW_CH_PASSIVE_ONLY))
8899                                 continue;
8900
8901                         range->freq[i].i = geo->a[j].channel;
8902                         range->freq[i].m = geo->a[j].freq * 100000;
8903                         range->freq[i].e = 1;
8904                         i++;
8905                 }
8906         }
8907
8908         range->num_channels = i;
8909         range->num_frequency = i;
8910
8911         mutex_unlock(&priv->mutex);
8912
8913         /* Event capability (kernel + driver) */
8914         range->event_capa[0] = (IW_EVENT_CAPA_K_0 |
8915                                 IW_EVENT_CAPA_MASK(SIOCGIWTHRSPY) |
8916                                 IW_EVENT_CAPA_MASK(SIOCGIWAP) |
8917                                 IW_EVENT_CAPA_MASK(SIOCGIWSCAN));
8918         range->event_capa[1] = IW_EVENT_CAPA_K_1;
8919
8920         range->enc_capa = IW_ENC_CAPA_WPA | IW_ENC_CAPA_WPA2 |
8921                 IW_ENC_CAPA_CIPHER_TKIP | IW_ENC_CAPA_CIPHER_CCMP;
8922
8923         range->scan_capa = IW_SCAN_CAPA_ESSID | IW_SCAN_CAPA_TYPE;
8924
8925         IPW_DEBUG_WX("GET Range\n");
8926         return 0;
8927 }
8928
8929 static int ipw_wx_set_wap(struct net_device *dev,
8930                           struct iw_request_info *info,
8931                           union iwreq_data *wrqu, char *extra)
8932 {
8933         struct ipw_priv *priv = libipw_priv(dev);
8934
8935         if (wrqu->ap_addr.sa_family != ARPHRD_ETHER)
8936                 return -EINVAL;
8937         mutex_lock(&priv->mutex);
8938         if (is_broadcast_ether_addr(wrqu->ap_addr.sa_data) ||
8939             is_zero_ether_addr(wrqu->ap_addr.sa_data)) {
8940                 /* we disable mandatory BSSID association */
8941                 IPW_DEBUG_WX("Setting AP BSSID to ANY\n");
8942                 priv->config &= ~CFG_STATIC_BSSID;
8943                 IPW_DEBUG_ASSOC("Attempting to associate with new "
8944                                 "parameters.\n");
8945                 ipw_associate(priv);
8946                 mutex_unlock(&priv->mutex);
8947                 return 0;
8948         }
8949
8950         priv->config |= CFG_STATIC_BSSID;
8951         if (ether_addr_equal(priv->bssid, wrqu->ap_addr.sa_data)) {
8952                 IPW_DEBUG_WX("BSSID set to current BSSID.\n");
8953                 mutex_unlock(&priv->mutex);
8954                 return 0;
8955         }
8956
8957         IPW_DEBUG_WX("Setting mandatory BSSID to %pM\n",
8958                      wrqu->ap_addr.sa_data);
8959
8960         memcpy(priv->bssid, wrqu->ap_addr.sa_data, ETH_ALEN);
8961
8962         /* Network configuration changed -- force [re]association */
8963         IPW_DEBUG_ASSOC("[re]association triggered due to BSSID change.\n");
8964         if (!ipw_disassociate(priv))
8965                 ipw_associate(priv);
8966
8967         mutex_unlock(&priv->mutex);
8968         return 0;
8969 }
8970
8971 static int ipw_wx_get_wap(struct net_device *dev,
8972                           struct iw_request_info *info,
8973                           union iwreq_data *wrqu, char *extra)
8974 {
8975         struct ipw_priv *priv = libipw_priv(dev);
8976
8977         /* If we are associated, trying to associate, or have a statically
8978          * configured BSSID then return that; otherwise return ANY */
8979         mutex_lock(&priv->mutex);
8980         if (priv->config & CFG_STATIC_BSSID ||
8981             priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) {
8982                 wrqu->ap_addr.sa_family = ARPHRD_ETHER;
8983                 memcpy(wrqu->ap_addr.sa_data, priv->bssid, ETH_ALEN);
8984         } else
8985                 eth_zero_addr(wrqu->ap_addr.sa_data);
8986
8987         IPW_DEBUG_WX("Getting WAP BSSID: %pM\n",
8988                      wrqu->ap_addr.sa_data);
8989         mutex_unlock(&priv->mutex);
8990         return 0;
8991 }
8992
8993 static int ipw_wx_set_essid(struct net_device *dev,
8994                             struct iw_request_info *info,
8995                             union iwreq_data *wrqu, char *extra)
8996 {
8997         struct ipw_priv *priv = libipw_priv(dev);
8998         int length;
8999
9000         mutex_lock(&priv->mutex);
9001
9002         if (!wrqu->essid.flags)
9003         {
9004                 IPW_DEBUG_WX("Setting ESSID to ANY\n");
9005                 ipw_disassociate(priv);
9006                 priv->config &= ~CFG_STATIC_ESSID;
9007                 ipw_associate(priv);
9008                 mutex_unlock(&priv->mutex);
9009                 return 0;
9010         }
9011
9012         length = min((int)wrqu->essid.length, IW_ESSID_MAX_SIZE);
9013
9014         priv->config |= CFG_STATIC_ESSID;
9015
9016         if (priv->essid_len == length && !memcmp(priv->essid, extra, length)
9017             && (priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING))) {
9018                 IPW_DEBUG_WX("ESSID set to current ESSID.\n");
9019                 mutex_unlock(&priv->mutex);
9020                 return 0;
9021         }
9022
9023         IPW_DEBUG_WX("Setting ESSID: '%*pE' (%d)\n", length, extra, length);
9024
9025         priv->essid_len = length;
9026         memcpy(priv->essid, extra, priv->essid_len);
9027
9028         /* Network configuration changed -- force [re]association */
9029         IPW_DEBUG_ASSOC("[re]association triggered due to ESSID change.\n");
9030         if (!ipw_disassociate(priv))
9031                 ipw_associate(priv);
9032
9033         mutex_unlock(&priv->mutex);
9034         return 0;
9035 }
9036
9037 static int ipw_wx_get_essid(struct net_device *dev,
9038                             struct iw_request_info *info,
9039                             union iwreq_data *wrqu, char *extra)
9040 {
9041         struct ipw_priv *priv = libipw_priv(dev);
9042
9043         /* If we are associated, trying to associate, or have a statically
9044          * configured ESSID then return that; otherwise return ANY */
9045         mutex_lock(&priv->mutex);
9046         if (priv->config & CFG_STATIC_ESSID ||
9047             priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) {
9048                 IPW_DEBUG_WX("Getting essid: '%*pE'\n",
9049                              priv->essid_len, priv->essid);
9050                 memcpy(extra, priv->essid, priv->essid_len);
9051                 wrqu->essid.length = priv->essid_len;
9052                 wrqu->essid.flags = 1;  /* active */
9053         } else {
9054                 IPW_DEBUG_WX("Getting essid: ANY\n");
9055                 wrqu->essid.length = 0;
9056                 wrqu->essid.flags = 0;  /* active */
9057         }
9058         mutex_unlock(&priv->mutex);
9059         return 0;
9060 }
9061
9062 static int ipw_wx_set_nick(struct net_device *dev,
9063                            struct iw_request_info *info,
9064                            union iwreq_data *wrqu, char *extra)
9065 {
9066         struct ipw_priv *priv = libipw_priv(dev);
9067
9068         IPW_DEBUG_WX("Setting nick to '%s'\n", extra);
9069         if (wrqu->data.length > IW_ESSID_MAX_SIZE)
9070                 return -E2BIG;
9071         mutex_lock(&priv->mutex);
9072         wrqu->data.length = min_t(size_t, wrqu->data.length, sizeof(priv->nick));
9073         memset(priv->nick, 0, sizeof(priv->nick));
9074         memcpy(priv->nick, extra, wrqu->data.length);
9075         IPW_DEBUG_TRACE("<<\n");
9076         mutex_unlock(&priv->mutex);
9077         return 0;
9078
9079 }
9080
9081 static int ipw_wx_get_nick(struct net_device *dev,
9082                            struct iw_request_info *info,
9083                            union iwreq_data *wrqu, char *extra)
9084 {
9085         struct ipw_priv *priv = libipw_priv(dev);
9086         IPW_DEBUG_WX("Getting nick\n");
9087         mutex_lock(&priv->mutex);
9088         wrqu->data.length = strlen(priv->nick);
9089         memcpy(extra, priv->nick, wrqu->data.length);
9090         wrqu->data.flags = 1;   /* active */
9091         mutex_unlock(&priv->mutex);
9092         return 0;
9093 }
9094
9095 static int ipw_wx_set_sens(struct net_device *dev,
9096                             struct iw_request_info *info,
9097                             union iwreq_data *wrqu, char *extra)
9098 {
9099         struct ipw_priv *priv = libipw_priv(dev);
9100         int err = 0;
9101
9102         IPW_DEBUG_WX("Setting roaming threshold to %d\n", wrqu->sens.value);
9103         IPW_DEBUG_WX("Setting disassociate threshold to %d\n", 3*wrqu->sens.value);
9104         mutex_lock(&priv->mutex);
9105
9106         if (wrqu->sens.fixed == 0)
9107         {
9108                 priv->roaming_threshold = IPW_MB_ROAMING_THRESHOLD_DEFAULT;
9109                 priv->disassociate_threshold = IPW_MB_DISASSOCIATE_THRESHOLD_DEFAULT;
9110                 goto out;
9111         }
9112         if ((wrqu->sens.value > IPW_MB_ROAMING_THRESHOLD_MAX) ||
9113             (wrqu->sens.value < IPW_MB_ROAMING_THRESHOLD_MIN)) {
9114                 err = -EINVAL;
9115                 goto out;
9116         }
9117
9118         priv->roaming_threshold = wrqu->sens.value;
9119         priv->disassociate_threshold = 3*wrqu->sens.value;
9120       out:
9121         mutex_unlock(&priv->mutex);
9122         return err;
9123 }
9124
9125 static int ipw_wx_get_sens(struct net_device *dev,
9126                             struct iw_request_info *info,
9127                             union iwreq_data *wrqu, char *extra)
9128 {
9129         struct ipw_priv *priv = libipw_priv(dev);
9130         mutex_lock(&priv->mutex);
9131         wrqu->sens.fixed = 1;
9132         wrqu->sens.value = priv->roaming_threshold;
9133         mutex_unlock(&priv->mutex);
9134
9135         IPW_DEBUG_WX("GET roaming threshold -> %s %d\n",
9136                      wrqu->power.disabled ? "OFF" : "ON", wrqu->power.value);
9137
9138         return 0;
9139 }
9140
9141 static int ipw_wx_set_rate(struct net_device *dev,
9142                            struct iw_request_info *info,
9143                            union iwreq_data *wrqu, char *extra)
9144 {
9145         /* TODO: We should use semaphores or locks for access to priv */
9146         struct ipw_priv *priv = libipw_priv(dev);
9147         u32 target_rate = wrqu->bitrate.value;
9148         u32 fixed, mask;
9149
9150         /* value = -1, fixed = 0 means auto only, so we should use all rates offered by AP */
9151         /* value = X, fixed = 1 means only rate X */
9152         /* value = X, fixed = 0 means all rates lower equal X */
9153
9154         if (target_rate == -1) {
9155                 fixed = 0;
9156                 mask = LIBIPW_DEFAULT_RATES_MASK;
9157                 /* Now we should reassociate */
9158                 goto apply;
9159         }
9160
9161         mask = 0;
9162         fixed = wrqu->bitrate.fixed;
9163
9164         if (target_rate == 1000000 || !fixed)
9165                 mask |= LIBIPW_CCK_RATE_1MB_MASK;
9166         if (target_rate == 1000000)
9167                 goto apply;
9168
9169         if (target_rate == 2000000 || !fixed)
9170                 mask |= LIBIPW_CCK_RATE_2MB_MASK;
9171         if (target_rate == 2000000)
9172                 goto apply;
9173
9174         if (target_rate == 5500000 || !fixed)
9175                 mask |= LIBIPW_CCK_RATE_5MB_MASK;
9176         if (target_rate == 5500000)
9177                 goto apply;
9178
9179         if (target_rate == 6000000 || !fixed)
9180                 mask |= LIBIPW_OFDM_RATE_6MB_MASK;
9181         if (target_rate == 6000000)
9182                 goto apply;
9183
9184         if (target_rate == 9000000 || !fixed)
9185                 mask |= LIBIPW_OFDM_RATE_9MB_MASK;
9186         if (target_rate == 9000000)
9187                 goto apply;
9188
9189         if (target_rate == 11000000 || !fixed)
9190                 mask |= LIBIPW_CCK_RATE_11MB_MASK;
9191         if (target_rate == 11000000)
9192                 goto apply;
9193
9194         if (target_rate == 12000000 || !fixed)
9195                 mask |= LIBIPW_OFDM_RATE_12MB_MASK;
9196         if (target_rate == 12000000)
9197                 goto apply;
9198
9199         if (target_rate == 18000000 || !fixed)
9200                 mask |= LIBIPW_OFDM_RATE_18MB_MASK;
9201         if (target_rate == 18000000)
9202                 goto apply;
9203
9204         if (target_rate == 24000000 || !fixed)
9205                 mask |= LIBIPW_OFDM_RATE_24MB_MASK;
9206         if (target_rate == 24000000)
9207                 goto apply;
9208
9209         if (target_rate == 36000000 || !fixed)
9210                 mask |= LIBIPW_OFDM_RATE_36MB_MASK;
9211         if (target_rate == 36000000)
9212                 goto apply;
9213
9214         if (target_rate == 48000000 || !fixed)
9215                 mask |= LIBIPW_OFDM_RATE_48MB_MASK;
9216         if (target_rate == 48000000)
9217                 goto apply;
9218
9219         if (target_rate == 54000000 || !fixed)
9220                 mask |= LIBIPW_OFDM_RATE_54MB_MASK;
9221         if (target_rate == 54000000)
9222                 goto apply;
9223
9224         IPW_DEBUG_WX("invalid rate specified, returning error\n");
9225         return -EINVAL;
9226
9227       apply:
9228         IPW_DEBUG_WX("Setting rate mask to 0x%08X [%s]\n",
9229                      mask, fixed ? "fixed" : "sub-rates");
9230         mutex_lock(&priv->mutex);
9231         if (mask == LIBIPW_DEFAULT_RATES_MASK) {
9232                 priv->config &= ~CFG_FIXED_RATE;
9233                 ipw_set_fixed_rate(priv, priv->ieee->mode);
9234         } else
9235                 priv->config |= CFG_FIXED_RATE;
9236
9237         if (priv->rates_mask == mask) {
9238                 IPW_DEBUG_WX("Mask set to current mask.\n");
9239                 mutex_unlock(&priv->mutex);
9240                 return 0;
9241         }
9242
9243         priv->rates_mask = mask;
9244
9245         /* Network configuration changed -- force [re]association */
9246         IPW_DEBUG_ASSOC("[re]association triggered due to rates change.\n");
9247         if (!ipw_disassociate(priv))
9248                 ipw_associate(priv);
9249
9250         mutex_unlock(&priv->mutex);
9251         return 0;
9252 }
9253
9254 static int ipw_wx_get_rate(struct net_device *dev,
9255                            struct iw_request_info *info,
9256                            union iwreq_data *wrqu, char *extra)
9257 {
9258         struct ipw_priv *priv = libipw_priv(dev);
9259         mutex_lock(&priv->mutex);
9260         wrqu->bitrate.value = priv->last_rate;
9261         wrqu->bitrate.fixed = (priv->config & CFG_FIXED_RATE) ? 1 : 0;
9262         mutex_unlock(&priv->mutex);
9263         IPW_DEBUG_WX("GET Rate -> %d\n", wrqu->bitrate.value);
9264         return 0;
9265 }
9266
9267 static int ipw_wx_set_rts(struct net_device *dev,
9268                           struct iw_request_info *info,
9269                           union iwreq_data *wrqu, char *extra)
9270 {
9271         struct ipw_priv *priv = libipw_priv(dev);
9272         mutex_lock(&priv->mutex);
9273         if (wrqu->rts.disabled || !wrqu->rts.fixed)
9274                 priv->rts_threshold = DEFAULT_RTS_THRESHOLD;
9275         else {
9276                 if (wrqu->rts.value < MIN_RTS_THRESHOLD ||
9277                     wrqu->rts.value > MAX_RTS_THRESHOLD) {
9278                         mutex_unlock(&priv->mutex);
9279                         return -EINVAL;
9280                 }
9281                 priv->rts_threshold = wrqu->rts.value;
9282         }
9283
9284         ipw_send_rts_threshold(priv, priv->rts_threshold);
9285         mutex_unlock(&priv->mutex);
9286         IPW_DEBUG_WX("SET RTS Threshold -> %d\n", priv->rts_threshold);
9287         return 0;
9288 }
9289
9290 static int ipw_wx_get_rts(struct net_device *dev,
9291                           struct iw_request_info *info,
9292                           union iwreq_data *wrqu, char *extra)
9293 {
9294         struct ipw_priv *priv = libipw_priv(dev);
9295         mutex_lock(&priv->mutex);
9296         wrqu->rts.value = priv->rts_threshold;
9297         wrqu->rts.fixed = 0;    /* no auto select */
9298         wrqu->rts.disabled = (wrqu->rts.value == DEFAULT_RTS_THRESHOLD);
9299         mutex_unlock(&priv->mutex);
9300         IPW_DEBUG_WX("GET RTS Threshold -> %d\n", wrqu->rts.value);
9301         return 0;
9302 }
9303
9304 static int ipw_wx_set_txpow(struct net_device *dev,
9305                             struct iw_request_info *info,
9306                             union iwreq_data *wrqu, char *extra)
9307 {
9308         struct ipw_priv *priv = libipw_priv(dev);
9309         int err = 0;
9310
9311         mutex_lock(&priv->mutex);
9312         if (ipw_radio_kill_sw(priv, wrqu->power.disabled)) {
9313                 err = -EINPROGRESS;
9314                 goto out;
9315         }
9316
9317         if (!wrqu->power.fixed)
9318                 wrqu->power.value = IPW_TX_POWER_DEFAULT;
9319
9320         if (wrqu->power.flags != IW_TXPOW_DBM) {
9321                 err = -EINVAL;
9322                 goto out;
9323         }
9324
9325         if ((wrqu->power.value > IPW_TX_POWER_MAX) ||
9326             (wrqu->power.value < IPW_TX_POWER_MIN)) {
9327                 err = -EINVAL;
9328                 goto out;
9329         }
9330
9331         priv->tx_power = wrqu->power.value;
9332         err = ipw_set_tx_power(priv);
9333       out:
9334         mutex_unlock(&priv->mutex);
9335         return err;
9336 }
9337
9338 static int ipw_wx_get_txpow(struct net_device *dev,
9339                             struct iw_request_info *info,
9340                             union iwreq_data *wrqu, char *extra)
9341 {
9342         struct ipw_priv *priv = libipw_priv(dev);
9343         mutex_lock(&priv->mutex);
9344         wrqu->power.value = priv->tx_power;
9345         wrqu->power.fixed = 1;
9346         wrqu->power.flags = IW_TXPOW_DBM;
9347         wrqu->power.disabled = (priv->status & STATUS_RF_KILL_MASK) ? 1 : 0;
9348         mutex_unlock(&priv->mutex);
9349
9350         IPW_DEBUG_WX("GET TX Power -> %s %d\n",
9351                      wrqu->power.disabled ? "OFF" : "ON", wrqu->power.value);
9352
9353         return 0;
9354 }
9355
9356 static int ipw_wx_set_frag(struct net_device *dev,
9357                            struct iw_request_info *info,
9358                            union iwreq_data *wrqu, char *extra)
9359 {
9360         struct ipw_priv *priv = libipw_priv(dev);
9361         mutex_lock(&priv->mutex);
9362         if (wrqu->frag.disabled || !wrqu->frag.fixed)
9363                 priv->ieee->fts = DEFAULT_FTS;
9364         else {
9365                 if (wrqu->frag.value < MIN_FRAG_THRESHOLD ||
9366                     wrqu->frag.value > MAX_FRAG_THRESHOLD) {
9367                         mutex_unlock(&priv->mutex);
9368                         return -EINVAL;
9369                 }
9370
9371                 priv->ieee->fts = wrqu->frag.value & ~0x1;
9372         }
9373
9374         ipw_send_frag_threshold(priv, wrqu->frag.value);
9375         mutex_unlock(&priv->mutex);
9376         IPW_DEBUG_WX("SET Frag Threshold -> %d\n", wrqu->frag.value);
9377         return 0;
9378 }
9379
9380 static int ipw_wx_get_frag(struct net_device *dev,
9381                            struct iw_request_info *info,
9382                            union iwreq_data *wrqu, char *extra)
9383 {
9384         struct ipw_priv *priv = libipw_priv(dev);
9385         mutex_lock(&priv->mutex);
9386         wrqu->frag.value = priv->ieee->fts;
9387         wrqu->frag.fixed = 0;   /* no auto select */
9388         wrqu->frag.disabled = (wrqu->frag.value == DEFAULT_FTS);
9389         mutex_unlock(&priv->mutex);
9390         IPW_DEBUG_WX("GET Frag Threshold -> %d\n", wrqu->frag.value);
9391
9392         return 0;
9393 }
9394
9395 static int ipw_wx_set_retry(struct net_device *dev,
9396                             struct iw_request_info *info,
9397                             union iwreq_data *wrqu, char *extra)
9398 {
9399         struct ipw_priv *priv = libipw_priv(dev);
9400
9401         if (wrqu->retry.flags & IW_RETRY_LIFETIME || wrqu->retry.disabled)
9402                 return -EINVAL;
9403
9404         if (!(wrqu->retry.flags & IW_RETRY_LIMIT))
9405                 return 0;
9406
9407         if (wrqu->retry.value < 0 || wrqu->retry.value >= 255)
9408                 return -EINVAL;
9409
9410         mutex_lock(&priv->mutex);
9411         if (wrqu->retry.flags & IW_RETRY_SHORT)
9412                 priv->short_retry_limit = (u8) wrqu->retry.value;
9413         else if (wrqu->retry.flags & IW_RETRY_LONG)
9414                 priv->long_retry_limit = (u8) wrqu->retry.value;
9415         else {
9416                 priv->short_retry_limit = (u8) wrqu->retry.value;
9417                 priv->long_retry_limit = (u8) wrqu->retry.value;
9418         }
9419
9420         ipw_send_retry_limit(priv, priv->short_retry_limit,
9421                              priv->long_retry_limit);
9422         mutex_unlock(&priv->mutex);
9423         IPW_DEBUG_WX("SET retry limit -> short:%d long:%d\n",
9424                      priv->short_retry_limit, priv->long_retry_limit);
9425         return 0;
9426 }
9427
9428 static int ipw_wx_get_retry(struct net_device *dev,
9429                             struct iw_request_info *info,
9430                             union iwreq_data *wrqu, char *extra)
9431 {
9432         struct ipw_priv *priv = libipw_priv(dev);
9433
9434         mutex_lock(&priv->mutex);
9435         wrqu->retry.disabled = 0;
9436
9437         if ((wrqu->retry.flags & IW_RETRY_TYPE) == IW_RETRY_LIFETIME) {
9438                 mutex_unlock(&priv->mutex);
9439                 return -EINVAL;
9440         }
9441
9442         if (wrqu->retry.flags & IW_RETRY_LONG) {
9443                 wrqu->retry.flags = IW_RETRY_LIMIT | IW_RETRY_LONG;
9444                 wrqu->retry.value = priv->long_retry_limit;
9445         } else if (wrqu->retry.flags & IW_RETRY_SHORT) {
9446                 wrqu->retry.flags = IW_RETRY_LIMIT | IW_RETRY_SHORT;
9447                 wrqu->retry.value = priv->short_retry_limit;
9448         } else {
9449                 wrqu->retry.flags = IW_RETRY_LIMIT;
9450                 wrqu->retry.value = priv->short_retry_limit;
9451         }
9452         mutex_unlock(&priv->mutex);
9453
9454         IPW_DEBUG_WX("GET retry -> %d\n", wrqu->retry.value);
9455
9456         return 0;
9457 }
9458
9459 static int ipw_wx_set_scan(struct net_device *dev,
9460                            struct iw_request_info *info,
9461                            union iwreq_data *wrqu, char *extra)
9462 {
9463         struct ipw_priv *priv = libipw_priv(dev);
9464         struct iw_scan_req *req = (struct iw_scan_req *)extra;
9465         struct delayed_work *work = NULL;
9466
9467         mutex_lock(&priv->mutex);
9468
9469         priv->user_requested_scan = 1;
9470
9471         if (wrqu->data.length == sizeof(struct iw_scan_req)) {
9472                 if (wrqu->data.flags & IW_SCAN_THIS_ESSID) {
9473                         int len = min((int)req->essid_len,
9474                                       (int)sizeof(priv->direct_scan_ssid));
9475                         memcpy(priv->direct_scan_ssid, req->essid, len);
9476                         priv->direct_scan_ssid_len = len;
9477                         work = &priv->request_direct_scan;
9478                 } else if (req->scan_type == IW_SCAN_TYPE_PASSIVE) {
9479                         work = &priv->request_passive_scan;
9480                 }
9481         } else {
9482                 /* Normal active broadcast scan */
9483                 work = &priv->request_scan;
9484         }
9485
9486         mutex_unlock(&priv->mutex);
9487
9488         IPW_DEBUG_WX("Start scan\n");
9489
9490         schedule_delayed_work(work, 0);
9491
9492         return 0;
9493 }
9494
9495 static int ipw_wx_get_scan(struct net_device *dev,
9496                            struct iw_request_info *info,
9497                            union iwreq_data *wrqu, char *extra)
9498 {
9499         struct ipw_priv *priv = libipw_priv(dev);
9500         return libipw_wx_get_scan(priv->ieee, info, wrqu, extra);
9501 }
9502
9503 static int ipw_wx_set_encode(struct net_device *dev,
9504                              struct iw_request_info *info,
9505                              union iwreq_data *wrqu, char *key)
9506 {
9507         struct ipw_priv *priv = libipw_priv(dev);
9508         int ret;
9509         u32 cap = priv->capability;
9510
9511         mutex_lock(&priv->mutex);
9512         ret = libipw_wx_set_encode(priv->ieee, info, wrqu, key);
9513
9514         /* In IBSS mode, we need to notify the firmware to update
9515          * the beacon info after we changed the capability. */
9516         if (cap != priv->capability &&
9517             priv->ieee->iw_mode == IW_MODE_ADHOC &&
9518             priv->status & STATUS_ASSOCIATED)
9519                 ipw_disassociate(priv);
9520
9521         mutex_unlock(&priv->mutex);
9522         return ret;
9523 }
9524
9525 static int ipw_wx_get_encode(struct net_device *dev,
9526                              struct iw_request_info *info,
9527                              union iwreq_data *wrqu, char *key)
9528 {
9529         struct ipw_priv *priv = libipw_priv(dev);
9530         return libipw_wx_get_encode(priv->ieee, info, wrqu, key);
9531 }
9532
9533 static int ipw_wx_set_power(struct net_device *dev,
9534                             struct iw_request_info *info,
9535                             union iwreq_data *wrqu, char *extra)
9536 {
9537         struct ipw_priv *priv = libipw_priv(dev);
9538         int err;
9539         mutex_lock(&priv->mutex);
9540         if (wrqu->power.disabled) {
9541                 priv->power_mode = IPW_POWER_LEVEL(priv->power_mode);
9542                 err = ipw_send_power_mode(priv, IPW_POWER_MODE_CAM);
9543                 if (err) {
9544                         IPW_DEBUG_WX("failed setting power mode.\n");
9545                         mutex_unlock(&priv->mutex);
9546                         return err;
9547                 }
9548                 IPW_DEBUG_WX("SET Power Management Mode -> off\n");
9549                 mutex_unlock(&priv->mutex);
9550                 return 0;
9551         }
9552
9553         switch (wrqu->power.flags & IW_POWER_MODE) {
9554         case IW_POWER_ON:       /* If not specified */
9555         case IW_POWER_MODE:     /* If set all mask */
9556         case IW_POWER_ALL_R:    /* If explicitly state all */
9557                 break;
9558         default:                /* Otherwise we don't support it */
9559                 IPW_DEBUG_WX("SET PM Mode: %X not supported.\n",
9560                              wrqu->power.flags);
9561                 mutex_unlock(&priv->mutex);
9562                 return -EOPNOTSUPP;
9563         }
9564
9565         /* If the user hasn't specified a power management mode yet, default
9566          * to BATTERY */
9567         if (IPW_POWER_LEVEL(priv->power_mode) == IPW_POWER_AC)
9568                 priv->power_mode = IPW_POWER_ENABLED | IPW_POWER_BATTERY;
9569         else
9570                 priv->power_mode = IPW_POWER_ENABLED | priv->power_mode;
9571
9572         err = ipw_send_power_mode(priv, IPW_POWER_LEVEL(priv->power_mode));
9573         if (err) {
9574                 IPW_DEBUG_WX("failed setting power mode.\n");
9575                 mutex_unlock(&priv->mutex);
9576                 return err;
9577         }
9578
9579         IPW_DEBUG_WX("SET Power Management Mode -> 0x%02X\n", priv->power_mode);
9580         mutex_unlock(&priv->mutex);
9581         return 0;
9582 }
9583
9584 static int ipw_wx_get_power(struct net_device *dev,
9585                             struct iw_request_info *info,
9586                             union iwreq_data *wrqu, char *extra)
9587 {
9588         struct ipw_priv *priv = libipw_priv(dev);
9589         mutex_lock(&priv->mutex);
9590         if (!(priv->power_mode & IPW_POWER_ENABLED))
9591                 wrqu->power.disabled = 1;
9592         else
9593                 wrqu->power.disabled = 0;
9594
9595         mutex_unlock(&priv->mutex);
9596         IPW_DEBUG_WX("GET Power Management Mode -> %02X\n", priv->power_mode);
9597
9598         return 0;
9599 }
9600
9601 static int ipw_wx_set_powermode(struct net_device *dev,
9602                                 struct iw_request_info *info,
9603                                 union iwreq_data *wrqu, char *extra)
9604 {
9605         struct ipw_priv *priv = libipw_priv(dev);
9606         int mode = *(int *)extra;
9607         int err;
9608
9609         mutex_lock(&priv->mutex);
9610         if ((mode < 1) || (mode > IPW_POWER_LIMIT))
9611                 mode = IPW_POWER_AC;
9612
9613         if (IPW_POWER_LEVEL(priv->power_mode) != mode) {
9614                 err = ipw_send_power_mode(priv, mode);
9615                 if (err) {
9616                         IPW_DEBUG_WX("failed setting power mode.\n");
9617                         mutex_unlock(&priv->mutex);
9618                         return err;
9619                 }
9620                 priv->power_mode = IPW_POWER_ENABLED | mode;
9621         }
9622         mutex_unlock(&priv->mutex);
9623         return 0;
9624 }
9625
9626 #define MAX_WX_STRING 80
9627 static int ipw_wx_get_powermode(struct net_device *dev,
9628                                 struct iw_request_info *info,
9629                                 union iwreq_data *wrqu, char *extra)
9630 {
9631         struct ipw_priv *priv = libipw_priv(dev);
9632         int level = IPW_POWER_LEVEL(priv->power_mode);
9633         char *p = extra;
9634
9635         p += snprintf(p, MAX_WX_STRING, "Power save level: %d ", level);
9636
9637         switch (level) {
9638         case IPW_POWER_AC:
9639                 p += snprintf(p, MAX_WX_STRING - (p - extra), "(AC)");
9640                 break;
9641         case IPW_POWER_BATTERY:
9642                 p += snprintf(p, MAX_WX_STRING - (p - extra), "(BATTERY)");
9643                 break;
9644         default:
9645                 p += snprintf(p, MAX_WX_STRING - (p - extra),
9646                               "(Timeout %dms, Period %dms)",
9647                               timeout_duration[level - 1] / 1000,
9648                               period_duration[level - 1] / 1000);
9649         }
9650
9651         if (!(priv->power_mode & IPW_POWER_ENABLED))
9652                 p += snprintf(p, MAX_WX_STRING - (p - extra), " OFF");
9653
9654         wrqu->data.length = p - extra + 1;
9655
9656         return 0;
9657 }
9658
9659 static int ipw_wx_set_wireless_mode(struct net_device *dev,
9660                                     struct iw_request_info *info,
9661                                     union iwreq_data *wrqu, char *extra)
9662 {
9663         struct ipw_priv *priv = libipw_priv(dev);
9664         int mode = *(int *)extra;
9665         u8 band = 0, modulation = 0;
9666
9667         if (mode == 0 || mode & ~IEEE_MODE_MASK) {
9668                 IPW_WARNING("Attempt to set invalid wireless mode: %d\n", mode);
9669                 return -EINVAL;
9670         }
9671         mutex_lock(&priv->mutex);
9672         if (priv->adapter == IPW_2915ABG) {
9673                 priv->ieee->abg_true = 1;
9674                 if (mode & IEEE_A) {
9675                         band |= LIBIPW_52GHZ_BAND;
9676                         modulation |= LIBIPW_OFDM_MODULATION;
9677                 } else
9678                         priv->ieee->abg_true = 0;
9679         } else {
9680                 if (mode & IEEE_A) {
9681                         IPW_WARNING("Attempt to set 2200BG into "
9682                                     "802.11a mode\n");
9683                         mutex_unlock(&priv->mutex);
9684                         return -EINVAL;
9685                 }
9686
9687                 priv->ieee->abg_true = 0;
9688         }
9689
9690         if (mode & IEEE_B) {
9691                 band |= LIBIPW_24GHZ_BAND;
9692                 modulation |= LIBIPW_CCK_MODULATION;
9693         } else
9694                 priv->ieee->abg_true = 0;
9695
9696         if (mode & IEEE_G) {
9697                 band |= LIBIPW_24GHZ_BAND;
9698                 modulation |= LIBIPW_OFDM_MODULATION;
9699         } else
9700                 priv->ieee->abg_true = 0;
9701
9702         priv->ieee->mode = mode;
9703         priv->ieee->freq_band = band;
9704         priv->ieee->modulation = modulation;
9705         init_supported_rates(priv, &priv->rates);
9706
9707         /* Network configuration changed -- force [re]association */
9708         IPW_DEBUG_ASSOC("[re]association triggered due to mode change.\n");
9709         if (!ipw_disassociate(priv)) {
9710                 ipw_send_supported_rates(priv, &priv->rates);
9711                 ipw_associate(priv);
9712         }
9713
9714         /* Update the band LEDs */
9715         ipw_led_band_on(priv);
9716
9717         IPW_DEBUG_WX("PRIV SET MODE: %c%c%c\n",
9718                      mode & IEEE_A ? 'a' : '.',
9719                      mode & IEEE_B ? 'b' : '.', mode & IEEE_G ? 'g' : '.');
9720         mutex_unlock(&priv->mutex);
9721         return 0;
9722 }
9723
9724 static int ipw_wx_get_wireless_mode(struct net_device *dev,
9725                                     struct iw_request_info *info,
9726                                     union iwreq_data *wrqu, char *extra)
9727 {
9728         struct ipw_priv *priv = libipw_priv(dev);
9729         mutex_lock(&priv->mutex);
9730         switch (priv->ieee->mode) {
9731         case IEEE_A:
9732                 strncpy(extra, "802.11a (1)", MAX_WX_STRING);
9733                 break;
9734         case IEEE_B:
9735                 strncpy(extra, "802.11b (2)", MAX_WX_STRING);
9736                 break;
9737         case IEEE_A | IEEE_B:
9738                 strncpy(extra, "802.11ab (3)", MAX_WX_STRING);
9739                 break;
9740         case IEEE_G:
9741                 strncpy(extra, "802.11g (4)", MAX_WX_STRING);
9742                 break;
9743         case IEEE_A | IEEE_G:
9744                 strncpy(extra, "802.11ag (5)", MAX_WX_STRING);
9745                 break;
9746         case IEEE_B | IEEE_G:
9747                 strncpy(extra, "802.11bg (6)", MAX_WX_STRING);
9748                 break;
9749         case IEEE_A | IEEE_B | IEEE_G:
9750                 strncpy(extra, "802.11abg (7)", MAX_WX_STRING);
9751                 break;
9752         default:
9753                 strncpy(extra, "unknown", MAX_WX_STRING);
9754                 break;
9755         }
9756         extra[MAX_WX_STRING - 1] = '\0';
9757
9758         IPW_DEBUG_WX("PRIV GET MODE: %s\n", extra);
9759
9760         wrqu->data.length = strlen(extra) + 1;
9761         mutex_unlock(&priv->mutex);
9762
9763         return 0;
9764 }
9765
9766 static int ipw_wx_set_preamble(struct net_device *dev,
9767                                struct iw_request_info *info,
9768                                union iwreq_data *wrqu, char *extra)
9769 {
9770         struct ipw_priv *priv = libipw_priv(dev);
9771         int mode = *(int *)extra;
9772         mutex_lock(&priv->mutex);
9773         /* Switching from SHORT -> LONG requires a disassociation */
9774         if (mode == 1) {
9775                 if (!(priv->config & CFG_PREAMBLE_LONG)) {
9776                         priv->config |= CFG_PREAMBLE_LONG;
9777
9778                         /* Network configuration changed -- force [re]association */
9779                         IPW_DEBUG_ASSOC
9780                             ("[re]association triggered due to preamble change.\n");
9781                         if (!ipw_disassociate(priv))
9782                                 ipw_associate(priv);
9783                 }
9784                 goto done;
9785         }
9786
9787         if (mode == 0) {
9788                 priv->config &= ~CFG_PREAMBLE_LONG;
9789                 goto done;
9790         }
9791         mutex_unlock(&priv->mutex);
9792         return -EINVAL;
9793
9794       done:
9795         mutex_unlock(&priv->mutex);
9796         return 0;
9797 }
9798
9799 static int ipw_wx_get_preamble(struct net_device *dev,
9800                                struct iw_request_info *info,
9801                                union iwreq_data *wrqu, char *extra)
9802 {
9803         struct ipw_priv *priv = libipw_priv(dev);
9804         mutex_lock(&priv->mutex);
9805         if (priv->config & CFG_PREAMBLE_LONG)
9806                 snprintf(wrqu->name, IFNAMSIZ, "long (1)");
9807         else
9808                 snprintf(wrqu->name, IFNAMSIZ, "auto (0)");
9809         mutex_unlock(&priv->mutex);
9810         return 0;
9811 }
9812
9813 #ifdef CONFIG_IPW2200_MONITOR
9814 static int ipw_wx_set_monitor(struct net_device *dev,
9815                               struct iw_request_info *info,
9816                               union iwreq_data *wrqu, char *extra)
9817 {
9818         struct ipw_priv *priv = libipw_priv(dev);
9819         int *parms = (int *)extra;
9820         int enable = (parms[0] > 0);
9821         mutex_lock(&priv->mutex);
9822         IPW_DEBUG_WX("SET MONITOR: %d %d\n", enable, parms[1]);
9823         if (enable) {
9824                 if (priv->ieee->iw_mode != IW_MODE_MONITOR) {
9825 #ifdef CONFIG_IPW2200_RADIOTAP
9826                         priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
9827 #else
9828                         priv->net_dev->type = ARPHRD_IEEE80211;
9829 #endif
9830                         schedule_work(&priv->adapter_restart);
9831                 }
9832
9833                 ipw_set_channel(priv, parms[1]);
9834         } else {
9835                 if (priv->ieee->iw_mode != IW_MODE_MONITOR) {
9836                         mutex_unlock(&priv->mutex);
9837                         return 0;
9838                 }
9839                 priv->net_dev->type = ARPHRD_ETHER;
9840                 schedule_work(&priv->adapter_restart);
9841         }
9842         mutex_unlock(&priv->mutex);
9843         return 0;
9844 }
9845
9846 #endif                          /* CONFIG_IPW2200_MONITOR */
9847
9848 static int ipw_wx_reset(struct net_device *dev,
9849                         struct iw_request_info *info,
9850                         union iwreq_data *wrqu, char *extra)
9851 {
9852         struct ipw_priv *priv = libipw_priv(dev);
9853         IPW_DEBUG_WX("RESET\n");
9854         schedule_work(&priv->adapter_restart);
9855         return 0;
9856 }
9857
9858 static int ipw_wx_sw_reset(struct net_device *dev,
9859                            struct iw_request_info *info,
9860                            union iwreq_data *wrqu, char *extra)
9861 {
9862         struct ipw_priv *priv = libipw_priv(dev);
9863         union iwreq_data wrqu_sec = {
9864                 .encoding = {
9865                              .flags = IW_ENCODE_DISABLED,
9866                              },
9867         };
9868         int ret;
9869
9870         IPW_DEBUG_WX("SW_RESET\n");
9871
9872         mutex_lock(&priv->mutex);
9873
9874         ret = ipw_sw_reset(priv, 2);
9875         if (!ret) {
9876                 free_firmware();
9877                 ipw_adapter_restart(priv);
9878         }
9879
9880         /* The SW reset bit might have been toggled on by the 'disable'
9881          * module parameter, so take appropriate action */
9882         ipw_radio_kill_sw(priv, priv->status & STATUS_RF_KILL_SW);
9883
9884         mutex_unlock(&priv->mutex);
9885         libipw_wx_set_encode(priv->ieee, info, &wrqu_sec, NULL);
9886         mutex_lock(&priv->mutex);
9887
9888         if (!(priv->status & STATUS_RF_KILL_MASK)) {
9889                 /* Configuration likely changed -- force [re]association */
9890                 IPW_DEBUG_ASSOC("[re]association triggered due to sw "
9891                                 "reset.\n");
9892                 if (!ipw_disassociate(priv))
9893                         ipw_associate(priv);
9894         }
9895
9896         mutex_unlock(&priv->mutex);
9897
9898         return 0;
9899 }
9900
9901 /* Rebase the WE IOCTLs to zero for the handler array */
9902 static iw_handler ipw_wx_handlers[] = {
9903         IW_HANDLER(SIOCGIWNAME, (iw_handler)cfg80211_wext_giwname),
9904         IW_HANDLER(SIOCSIWFREQ, ipw_wx_set_freq),
9905         IW_HANDLER(SIOCGIWFREQ, ipw_wx_get_freq),
9906         IW_HANDLER(SIOCSIWMODE, ipw_wx_set_mode),
9907         IW_HANDLER(SIOCGIWMODE, ipw_wx_get_mode),
9908         IW_HANDLER(SIOCSIWSENS, ipw_wx_set_sens),
9909         IW_HANDLER(SIOCGIWSENS, ipw_wx_get_sens),
9910         IW_HANDLER(SIOCGIWRANGE, ipw_wx_get_range),
9911         IW_HANDLER(SIOCSIWAP, ipw_wx_set_wap),
9912         IW_HANDLER(SIOCGIWAP, ipw_wx_get_wap),
9913         IW_HANDLER(SIOCSIWSCAN, ipw_wx_set_scan),
9914         IW_HANDLER(SIOCGIWSCAN, ipw_wx_get_scan),
9915         IW_HANDLER(SIOCSIWESSID, ipw_wx_set_essid),
9916         IW_HANDLER(SIOCGIWESSID, ipw_wx_get_essid),
9917         IW_HANDLER(SIOCSIWNICKN, ipw_wx_set_nick),
9918         IW_HANDLER(SIOCGIWNICKN, ipw_wx_get_nick),
9919         IW_HANDLER(SIOCSIWRATE, ipw_wx_set_rate),
9920         IW_HANDLER(SIOCGIWRATE, ipw_wx_get_rate),
9921         IW_HANDLER(SIOCSIWRTS, ipw_wx_set_rts),
9922         IW_HANDLER(SIOCGIWRTS, ipw_wx_get_rts),
9923         IW_HANDLER(SIOCSIWFRAG, ipw_wx_set_frag),
9924         IW_HANDLER(SIOCGIWFRAG, ipw_wx_get_frag),
9925         IW_HANDLER(SIOCSIWTXPOW, ipw_wx_set_txpow),
9926         IW_HANDLER(SIOCGIWTXPOW, ipw_wx_get_txpow),
9927         IW_HANDLER(SIOCSIWRETRY, ipw_wx_set_retry),
9928         IW_HANDLER(SIOCGIWRETRY, ipw_wx_get_retry),
9929         IW_HANDLER(SIOCSIWENCODE, ipw_wx_set_encode),
9930         IW_HANDLER(SIOCGIWENCODE, ipw_wx_get_encode),
9931         IW_HANDLER(SIOCSIWPOWER, ipw_wx_set_power),
9932         IW_HANDLER(SIOCGIWPOWER, ipw_wx_get_power),
9933         IW_HANDLER(SIOCSIWSPY, iw_handler_set_spy),
9934         IW_HANDLER(SIOCGIWSPY, iw_handler_get_spy),
9935         IW_HANDLER(SIOCSIWTHRSPY, iw_handler_set_thrspy),
9936         IW_HANDLER(SIOCGIWTHRSPY, iw_handler_get_thrspy),
9937         IW_HANDLER(SIOCSIWGENIE, ipw_wx_set_genie),
9938         IW_HANDLER(SIOCGIWGENIE, ipw_wx_get_genie),
9939         IW_HANDLER(SIOCSIWMLME, ipw_wx_set_mlme),
9940         IW_HANDLER(SIOCSIWAUTH, ipw_wx_set_auth),
9941         IW_HANDLER(SIOCGIWAUTH, ipw_wx_get_auth),
9942         IW_HANDLER(SIOCSIWENCODEEXT, ipw_wx_set_encodeext),
9943         IW_HANDLER(SIOCGIWENCODEEXT, ipw_wx_get_encodeext),
9944 };
9945
9946 enum {
9947         IPW_PRIV_SET_POWER = SIOCIWFIRSTPRIV,
9948         IPW_PRIV_GET_POWER,
9949         IPW_PRIV_SET_MODE,
9950         IPW_PRIV_GET_MODE,
9951         IPW_PRIV_SET_PREAMBLE,
9952         IPW_PRIV_GET_PREAMBLE,
9953         IPW_PRIV_RESET,
9954         IPW_PRIV_SW_RESET,
9955 #ifdef CONFIG_IPW2200_MONITOR
9956         IPW_PRIV_SET_MONITOR,
9957 #endif
9958 };
9959
9960 static struct iw_priv_args ipw_priv_args[] = {
9961         {
9962          .cmd = IPW_PRIV_SET_POWER,
9963          .set_args = IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1,
9964          .name = "set_power"},
9965         {
9966          .cmd = IPW_PRIV_GET_POWER,
9967          .get_args = IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | MAX_WX_STRING,
9968          .name = "get_power"},
9969         {
9970          .cmd = IPW_PRIV_SET_MODE,
9971          .set_args = IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1,
9972          .name = "set_mode"},
9973         {
9974          .cmd = IPW_PRIV_GET_MODE,
9975          .get_args = IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | MAX_WX_STRING,
9976          .name = "get_mode"},
9977         {
9978          .cmd = IPW_PRIV_SET_PREAMBLE,
9979          .set_args = IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1,
9980          .name = "set_preamble"},
9981         {
9982          .cmd = IPW_PRIV_GET_PREAMBLE,
9983          .get_args = IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | IFNAMSIZ,
9984          .name = "get_preamble"},
9985         {
9986          IPW_PRIV_RESET,
9987          IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 0, 0, "reset"},
9988         {
9989          IPW_PRIV_SW_RESET,
9990          IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 0, 0, "sw_reset"},
9991 #ifdef CONFIG_IPW2200_MONITOR
9992         {
9993          IPW_PRIV_SET_MONITOR,
9994          IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 2, 0, "monitor"},
9995 #endif                          /* CONFIG_IPW2200_MONITOR */
9996 };
9997
9998 static iw_handler ipw_priv_handler[] = {
9999         ipw_wx_set_powermode,
10000         ipw_wx_get_powermode,
10001         ipw_wx_set_wireless_mode,
10002         ipw_wx_get_wireless_mode,
10003         ipw_wx_set_preamble,
10004         ipw_wx_get_preamble,
10005         ipw_wx_reset,
10006         ipw_wx_sw_reset,
10007 #ifdef CONFIG_IPW2200_MONITOR
10008         ipw_wx_set_monitor,
10009 #endif
10010 };
10011
10012 static const struct iw_handler_def ipw_wx_handler_def = {
10013         .standard = ipw_wx_handlers,
10014         .num_standard = ARRAY_SIZE(ipw_wx_handlers),
10015         .num_private = ARRAY_SIZE(ipw_priv_handler),
10016         .num_private_args = ARRAY_SIZE(ipw_priv_args),
10017         .private = ipw_priv_handler,
10018         .private_args = ipw_priv_args,
10019         .get_wireless_stats = ipw_get_wireless_stats,
10020 };
10021
10022 /*
10023  * Get wireless statistics.
10024  * Called by /proc/net/wireless
10025  * Also called by SIOCGIWSTATS
10026  */
10027 static struct iw_statistics *ipw_get_wireless_stats(struct net_device *dev)
10028 {
10029         struct ipw_priv *priv = libipw_priv(dev);
10030         struct iw_statistics *wstats;
10031
10032         wstats = &priv->wstats;
10033
10034         /* if hw is disabled, then ipw_get_ordinal() can't be called.
10035          * netdev->get_wireless_stats seems to be called before fw is
10036          * initialized.  STATUS_ASSOCIATED will only be set if the hw is up
10037          * and associated; if not associcated, the values are all meaningless
10038          * anyway, so set them all to NULL and INVALID */
10039         if (!(priv->status & STATUS_ASSOCIATED)) {
10040                 wstats->miss.beacon = 0;
10041                 wstats->discard.retries = 0;
10042                 wstats->qual.qual = 0;
10043                 wstats->qual.level = 0;
10044                 wstats->qual.noise = 0;
10045                 wstats->qual.updated = 7;
10046                 wstats->qual.updated |= IW_QUAL_NOISE_INVALID |
10047                     IW_QUAL_QUAL_INVALID | IW_QUAL_LEVEL_INVALID;
10048                 return wstats;
10049         }
10050
10051         wstats->qual.qual = priv->quality;
10052         wstats->qual.level = priv->exp_avg_rssi;
10053         wstats->qual.noise = priv->exp_avg_noise;
10054         wstats->qual.updated = IW_QUAL_QUAL_UPDATED | IW_QUAL_LEVEL_UPDATED |
10055             IW_QUAL_NOISE_UPDATED | IW_QUAL_DBM;
10056
10057         wstats->miss.beacon = average_value(&priv->average_missed_beacons);
10058         wstats->discard.retries = priv->last_tx_failures;
10059         wstats->discard.code = priv->ieee->ieee_stats.rx_discards_undecryptable;
10060
10061 /*      if (ipw_get_ordinal(priv, IPW_ORD_STAT_TX_RETRY, &tx_retry, &len))
10062         goto fail_get_ordinal;
10063         wstats->discard.retries += tx_retry; */
10064
10065         return wstats;
10066 }
10067
10068 /* net device stuff */
10069
10070 static  void init_sys_config(struct ipw_sys_config *sys_config)
10071 {
10072         memset(sys_config, 0, sizeof(struct ipw_sys_config));
10073         sys_config->bt_coexistence = 0;
10074         sys_config->answer_broadcast_ssid_probe = 0;
10075         sys_config->accept_all_data_frames = 0;
10076         sys_config->accept_non_directed_frames = 1;
10077         sys_config->exclude_unicast_unencrypted = 0;
10078         sys_config->disable_unicast_decryption = 1;
10079         sys_config->exclude_multicast_unencrypted = 0;
10080         sys_config->disable_multicast_decryption = 1;
10081         if (antenna < CFG_SYS_ANTENNA_BOTH || antenna > CFG_SYS_ANTENNA_B)
10082                 antenna = CFG_SYS_ANTENNA_BOTH;
10083         sys_config->antenna_diversity = antenna;
10084         sys_config->pass_crc_to_host = 0;       /* TODO: See if 1 gives us FCS */
10085         sys_config->dot11g_auto_detection = 0;
10086         sys_config->enable_cts_to_self = 0;
10087         sys_config->bt_coexist_collision_thr = 0;
10088         sys_config->pass_noise_stats_to_host = 1;       /* 1 -- fix for 256 */
10089         sys_config->silence_threshold = 0x1e;
10090 }
10091
10092 static int ipw_net_open(struct net_device *dev)
10093 {
10094         IPW_DEBUG_INFO("dev->open\n");
10095         netif_start_queue(dev);
10096         return 0;
10097 }
10098
10099 static int ipw_net_stop(struct net_device *dev)
10100 {
10101         IPW_DEBUG_INFO("dev->close\n");
10102         netif_stop_queue(dev);
10103         return 0;
10104 }
10105
10106 /*
10107 todo:
10108
10109 modify to send one tfd per fragment instead of using chunking.  otherwise
10110 we need to heavily modify the libipw_skb_to_txb.
10111 */
10112
10113 static int ipw_tx_skb(struct ipw_priv *priv, struct libipw_txb *txb,
10114                              int pri)
10115 {
10116         struct libipw_hdr_3addrqos *hdr = (struct libipw_hdr_3addrqos *)
10117             txb->fragments[0]->data;
10118         int i = 0;
10119         struct tfd_frame *tfd;
10120 #ifdef CONFIG_IPW2200_QOS
10121         int tx_id = ipw_get_tx_queue_number(priv, pri);
10122         struct clx2_tx_queue *txq = &priv->txq[tx_id];
10123 #else
10124         struct clx2_tx_queue *txq = &priv->txq[0];
10125 #endif
10126         struct clx2_queue *q = &txq->q;
10127         u8 id, hdr_len, unicast;
10128         int fc;
10129
10130         if (!(priv->status & STATUS_ASSOCIATED))
10131                 goto drop;
10132
10133         hdr_len = libipw_get_hdrlen(le16_to_cpu(hdr->frame_ctl));
10134         switch (priv->ieee->iw_mode) {
10135         case IW_MODE_ADHOC:
10136                 unicast = !is_multicast_ether_addr(hdr->addr1);
10137                 id = ipw_find_station(priv, hdr->addr1);
10138                 if (id == IPW_INVALID_STATION) {
10139                         id = ipw_add_station(priv, hdr->addr1);
10140                         if (id == IPW_INVALID_STATION) {
10141                                 IPW_WARNING("Attempt to send data to "
10142                                             "invalid cell: %pM\n",
10143                                             hdr->addr1);
10144                                 goto drop;
10145                         }
10146                 }
10147                 break;
10148
10149         case IW_MODE_INFRA:
10150         default:
10151                 unicast = !is_multicast_ether_addr(hdr->addr3);
10152                 id = 0;
10153                 break;
10154         }
10155
10156         tfd = &txq->bd[q->first_empty];
10157         txq->txb[q->first_empty] = txb;
10158         memset(tfd, 0, sizeof(*tfd));
10159         tfd->u.data.station_number = id;
10160
10161         tfd->control_flags.message_type = TX_FRAME_TYPE;
10162         tfd->control_flags.control_bits = TFD_NEED_IRQ_MASK;
10163
10164         tfd->u.data.cmd_id = DINO_CMD_TX;
10165         tfd->u.data.len = cpu_to_le16(txb->payload_size);
10166
10167         if (priv->assoc_request.ieee_mode == IPW_B_MODE)
10168                 tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_MODE_CCK;
10169         else
10170                 tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_MODE_OFDM;
10171
10172         if (priv->assoc_request.preamble_length == DCT_FLAG_SHORT_PREAMBLE)
10173                 tfd->u.data.tx_flags |= DCT_FLAG_SHORT_PREAMBLE;
10174
10175         fc = le16_to_cpu(hdr->frame_ctl);
10176         hdr->frame_ctl = cpu_to_le16(fc & ~IEEE80211_FCTL_MOREFRAGS);
10177
10178         memcpy(&tfd->u.data.tfd.tfd_24.mchdr, hdr, hdr_len);
10179
10180         if (likely(unicast))
10181                 tfd->u.data.tx_flags |= DCT_FLAG_ACK_REQD;
10182
10183         if (txb->encrypted && !priv->ieee->host_encrypt) {
10184                 switch (priv->ieee->sec.level) {
10185                 case SEC_LEVEL_3:
10186                         tfd->u.data.tfd.tfd_24.mchdr.frame_ctl |=
10187                             cpu_to_le16(IEEE80211_FCTL_PROTECTED);
10188                         /* XXX: ACK flag must be set for CCMP even if it
10189                          * is a multicast/broadcast packet, because CCMP
10190                          * group communication encrypted by GTK is
10191                          * actually done by the AP. */
10192                         if (!unicast)
10193                                 tfd->u.data.tx_flags |= DCT_FLAG_ACK_REQD;
10194
10195                         tfd->u.data.tx_flags &= ~DCT_FLAG_NO_WEP;
10196                         tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_SECURITY_CCM;
10197                         tfd->u.data.key_index = 0;
10198                         tfd->u.data.key_index |= DCT_WEP_INDEX_USE_IMMEDIATE;
10199                         break;
10200                 case SEC_LEVEL_2:
10201                         tfd->u.data.tfd.tfd_24.mchdr.frame_ctl |=
10202                             cpu_to_le16(IEEE80211_FCTL_PROTECTED);
10203                         tfd->u.data.tx_flags &= ~DCT_FLAG_NO_WEP;
10204                         tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_SECURITY_TKIP;
10205                         tfd->u.data.key_index = DCT_WEP_INDEX_USE_IMMEDIATE;
10206                         break;
10207                 case SEC_LEVEL_1:
10208                         tfd->u.data.tfd.tfd_24.mchdr.frame_ctl |=
10209                             cpu_to_le16(IEEE80211_FCTL_PROTECTED);
10210                         tfd->u.data.key_index = priv->ieee->crypt_info.tx_keyidx;
10211                         if (priv->ieee->sec.key_sizes[priv->ieee->crypt_info.tx_keyidx] <=
10212                             40)
10213                                 tfd->u.data.key_index |= DCT_WEP_KEY_64Bit;
10214                         else
10215                                 tfd->u.data.key_index |= DCT_WEP_KEY_128Bit;
10216                         break;
10217                 case SEC_LEVEL_0:
10218                         break;
10219                 default:
10220                         printk(KERN_ERR "Unknown security level %d\n",
10221                                priv->ieee->sec.level);
10222                         break;
10223                 }
10224         } else
10225                 /* No hardware encryption */
10226                 tfd->u.data.tx_flags |= DCT_FLAG_NO_WEP;
10227
10228 #ifdef CONFIG_IPW2200_QOS
10229         if (fc & IEEE80211_STYPE_QOS_DATA)
10230                 ipw_qos_set_tx_queue_command(priv, pri, &(tfd->u.data));
10231 #endif                          /* CONFIG_IPW2200_QOS */
10232
10233         /* payload */
10234         tfd->u.data.num_chunks = cpu_to_le32(min((u8) (NUM_TFD_CHUNKS - 2),
10235                                                  txb->nr_frags));
10236         IPW_DEBUG_FRAG("%i fragments being sent as %i chunks.\n",
10237                        txb->nr_frags, le32_to_cpu(tfd->u.data.num_chunks));
10238         for (i = 0; i < le32_to_cpu(tfd->u.data.num_chunks); i++) {
10239                 IPW_DEBUG_FRAG("Adding fragment %i of %i (%d bytes).\n",
10240                                i, le32_to_cpu(tfd->u.data.num_chunks),
10241                                txb->fragments[i]->len - hdr_len);
10242                 IPW_DEBUG_TX("Dumping TX packet frag %i of %i (%d bytes):\n",
10243                              i, tfd->u.data.num_chunks,
10244                              txb->fragments[i]->len - hdr_len);
10245                 printk_buf(IPW_DL_TX, txb->fragments[i]->data + hdr_len,
10246                            txb->fragments[i]->len - hdr_len);
10247
10248                 tfd->u.data.chunk_ptr[i] =
10249                     cpu_to_le32(pci_map_single
10250                                 (priv->pci_dev,
10251                                  txb->fragments[i]->data + hdr_len,
10252                                  txb->fragments[i]->len - hdr_len,
10253                                  PCI_DMA_TODEVICE));
10254                 tfd->u.data.chunk_len[i] =
10255                     cpu_to_le16(txb->fragments[i]->len - hdr_len);
10256         }
10257
10258         if (i != txb->nr_frags) {
10259                 struct sk_buff *skb;
10260                 u16 remaining_bytes = 0;
10261                 int j;
10262
10263                 for (j = i; j < txb->nr_frags; j++)
10264                         remaining_bytes += txb->fragments[j]->len - hdr_len;
10265
10266                 printk(KERN_INFO "Trying to reallocate for %d bytes\n",
10267                        remaining_bytes);
10268                 skb = alloc_skb(remaining_bytes, GFP_ATOMIC);
10269                 if (skb != NULL) {
10270                         tfd->u.data.chunk_len[i] = cpu_to_le16(remaining_bytes);
10271                         for (j = i; j < txb->nr_frags; j++) {
10272                                 int size = txb->fragments[j]->len - hdr_len;
10273
10274                                 printk(KERN_INFO "Adding frag %d %d...\n",
10275                                        j, size);
10276                                 skb_put_data(skb,
10277                                              txb->fragments[j]->data + hdr_len,
10278                                              size);
10279                         }
10280                         dev_kfree_skb_any(txb->fragments[i]);
10281                         txb->fragments[i] = skb;
10282                         tfd->u.data.chunk_ptr[i] =
10283                             cpu_to_le32(pci_map_single
10284                                         (priv->pci_dev, skb->data,
10285                                          remaining_bytes,
10286                                          PCI_DMA_TODEVICE));
10287
10288                         le32_add_cpu(&tfd->u.data.num_chunks, 1);
10289                 }
10290         }
10291
10292         /* kick DMA */
10293         q->first_empty = ipw_queue_inc_wrap(q->first_empty, q->n_bd);
10294         ipw_write32(priv, q->reg_w, q->first_empty);
10295
10296         if (ipw_tx_queue_space(q) < q->high_mark)
10297                 netif_stop_queue(priv->net_dev);
10298
10299         return NETDEV_TX_OK;
10300
10301       drop:
10302         IPW_DEBUG_DROP("Silently dropping Tx packet.\n");
10303         libipw_txb_free(txb);
10304         return NETDEV_TX_OK;
10305 }
10306
10307 static int ipw_net_is_queue_full(struct net_device *dev, int pri)
10308 {
10309         struct ipw_priv *priv = libipw_priv(dev);
10310 #ifdef CONFIG_IPW2200_QOS
10311         int tx_id = ipw_get_tx_queue_number(priv, pri);
10312         struct clx2_tx_queue *txq = &priv->txq[tx_id];
10313 #else
10314         struct clx2_tx_queue *txq = &priv->txq[0];
10315 #endif                          /* CONFIG_IPW2200_QOS */
10316
10317         if (ipw_tx_queue_space(&txq->q) < txq->q.high_mark)
10318                 return 1;
10319
10320         return 0;
10321 }
10322
10323 #ifdef CONFIG_IPW2200_PROMISCUOUS
10324 static void ipw_handle_promiscuous_tx(struct ipw_priv *priv,
10325                                       struct libipw_txb *txb)
10326 {
10327         struct libipw_rx_stats dummystats;
10328         struct ieee80211_hdr *hdr;
10329         u8 n;
10330         u16 filter = priv->prom_priv->filter;
10331         int hdr_only = 0;
10332
10333         if (filter & IPW_PROM_NO_TX)
10334                 return;
10335
10336         memset(&dummystats, 0, sizeof(dummystats));
10337
10338         /* Filtering of fragment chains is done against the first fragment */
10339         hdr = (void *)txb->fragments[0]->data;
10340         if (libipw_is_management(le16_to_cpu(hdr->frame_control))) {
10341                 if (filter & IPW_PROM_NO_MGMT)
10342                         return;
10343                 if (filter & IPW_PROM_MGMT_HEADER_ONLY)
10344                         hdr_only = 1;
10345         } else if (libipw_is_control(le16_to_cpu(hdr->frame_control))) {
10346                 if (filter & IPW_PROM_NO_CTL)
10347                         return;
10348                 if (filter & IPW_PROM_CTL_HEADER_ONLY)
10349                         hdr_only = 1;
10350         } else if (libipw_is_data(le16_to_cpu(hdr->frame_control))) {
10351                 if (filter & IPW_PROM_NO_DATA)
10352                         return;
10353                 if (filter & IPW_PROM_DATA_HEADER_ONLY)
10354                         hdr_only = 1;
10355         }
10356
10357         for(n=0; n<txb->nr_frags; ++n) {
10358                 struct sk_buff *src = txb->fragments[n];
10359                 struct sk_buff *dst;
10360                 struct ieee80211_radiotap_header *rt_hdr;
10361                 int len;
10362
10363                 if (hdr_only) {
10364                         hdr = (void *)src->data;
10365                         len = libipw_get_hdrlen(le16_to_cpu(hdr->frame_control));
10366                 } else
10367                         len = src->len;
10368
10369                 dst = alloc_skb(len + sizeof(*rt_hdr) + sizeof(u16)*2, GFP_ATOMIC);
10370                 if (!dst)
10371                         continue;
10372
10373                 rt_hdr = skb_put(dst, sizeof(*rt_hdr));
10374
10375                 rt_hdr->it_version = PKTHDR_RADIOTAP_VERSION;
10376                 rt_hdr->it_pad = 0;
10377                 rt_hdr->it_present = 0; /* after all, it's just an idea */
10378                 rt_hdr->it_present |=  cpu_to_le32(1 << IEEE80211_RADIOTAP_CHANNEL);
10379
10380                 *(__le16*)skb_put(dst, sizeof(u16)) = cpu_to_le16(
10381                         ieee80211chan2mhz(priv->channel));
10382                 if (priv->channel > 14)         /* 802.11a */
10383                         *(__le16*)skb_put(dst, sizeof(u16)) =
10384                                 cpu_to_le16(IEEE80211_CHAN_OFDM |
10385                                              IEEE80211_CHAN_5GHZ);
10386                 else if (priv->ieee->mode == IEEE_B) /* 802.11b */
10387                         *(__le16*)skb_put(dst, sizeof(u16)) =
10388                                 cpu_to_le16(IEEE80211_CHAN_CCK |
10389                                              IEEE80211_CHAN_2GHZ);
10390                 else            /* 802.11g */
10391                         *(__le16*)skb_put(dst, sizeof(u16)) =
10392                                 cpu_to_le16(IEEE80211_CHAN_OFDM |
10393                                  IEEE80211_CHAN_2GHZ);
10394
10395                 rt_hdr->it_len = cpu_to_le16(dst->len);
10396
10397                 skb_copy_from_linear_data(src, skb_put(dst, len), len);
10398
10399                 if (!libipw_rx(priv->prom_priv->ieee, dst, &dummystats))
10400                         dev_kfree_skb_any(dst);
10401         }
10402 }
10403 #endif
10404
10405 static netdev_tx_t ipw_net_hard_start_xmit(struct libipw_txb *txb,
10406                                            struct net_device *dev, int pri)
10407 {
10408         struct ipw_priv *priv = libipw_priv(dev);
10409         unsigned long flags;
10410         netdev_tx_t ret;
10411
10412         IPW_DEBUG_TX("dev->xmit(%d bytes)\n", txb->payload_size);
10413         spin_lock_irqsave(&priv->lock, flags);
10414
10415 #ifdef CONFIG_IPW2200_PROMISCUOUS
10416         if (rtap_iface && netif_running(priv->prom_net_dev))
10417                 ipw_handle_promiscuous_tx(priv, txb);
10418 #endif
10419
10420         ret = ipw_tx_skb(priv, txb, pri);
10421         if (ret == NETDEV_TX_OK)
10422                 __ipw_led_activity_on(priv);
10423         spin_unlock_irqrestore(&priv->lock, flags);
10424
10425         return ret;
10426 }
10427
10428 static void ipw_net_set_multicast_list(struct net_device *dev)
10429 {
10430
10431 }
10432
10433 static int ipw_net_set_mac_address(struct net_device *dev, void *p)
10434 {
10435         struct ipw_priv *priv = libipw_priv(dev);
10436         struct sockaddr *addr = p;
10437
10438         if (!is_valid_ether_addr(addr->sa_data))
10439                 return -EADDRNOTAVAIL;
10440         mutex_lock(&priv->mutex);
10441         priv->config |= CFG_CUSTOM_MAC;
10442         memcpy(priv->mac_addr, addr->sa_data, ETH_ALEN);
10443         printk(KERN_INFO "%s: Setting MAC to %pM\n",
10444                priv->net_dev->name, priv->mac_addr);
10445         schedule_work(&priv->adapter_restart);
10446         mutex_unlock(&priv->mutex);
10447         return 0;
10448 }
10449
10450 static void ipw_ethtool_get_drvinfo(struct net_device *dev,
10451                                     struct ethtool_drvinfo *info)
10452 {
10453         struct ipw_priv *p = libipw_priv(dev);
10454         char vers[64];
10455         char date[32];
10456         u32 len;
10457
10458         strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
10459         strlcpy(info->version, DRV_VERSION, sizeof(info->version));
10460
10461         len = sizeof(vers);
10462         ipw_get_ordinal(p, IPW_ORD_STAT_FW_VERSION, vers, &len);
10463         len = sizeof(date);
10464         ipw_get_ordinal(p, IPW_ORD_STAT_FW_DATE, date, &len);
10465
10466         snprintf(info->fw_version, sizeof(info->fw_version), "%s (%s)",
10467                  vers, date);
10468         strlcpy(info->bus_info, pci_name(p->pci_dev),
10469                 sizeof(info->bus_info));
10470 }
10471
10472 static u32 ipw_ethtool_get_link(struct net_device *dev)
10473 {
10474         struct ipw_priv *priv = libipw_priv(dev);
10475         return (priv->status & STATUS_ASSOCIATED) != 0;
10476 }
10477
10478 static int ipw_ethtool_get_eeprom_len(struct net_device *dev)
10479 {
10480         return IPW_EEPROM_IMAGE_SIZE;
10481 }
10482
10483 static int ipw_ethtool_get_eeprom(struct net_device *dev,
10484                                   struct ethtool_eeprom *eeprom, u8 * bytes)
10485 {
10486         struct ipw_priv *p = libipw_priv(dev);
10487
10488         if (eeprom->offset + eeprom->len > IPW_EEPROM_IMAGE_SIZE)
10489                 return -EINVAL;
10490         mutex_lock(&p->mutex);
10491         memcpy(bytes, &p->eeprom[eeprom->offset], eeprom->len);
10492         mutex_unlock(&p->mutex);
10493         return 0;
10494 }
10495
10496 static int ipw_ethtool_set_eeprom(struct net_device *dev,
10497                                   struct ethtool_eeprom *eeprom, u8 * bytes)
10498 {
10499         struct ipw_priv *p = libipw_priv(dev);
10500         int i;
10501
10502         if (eeprom->offset + eeprom->len > IPW_EEPROM_IMAGE_SIZE)
10503                 return -EINVAL;
10504         mutex_lock(&p->mutex);
10505         memcpy(&p->eeprom[eeprom->offset], bytes, eeprom->len);
10506         for (i = 0; i < IPW_EEPROM_IMAGE_SIZE; i++)
10507                 ipw_write8(p, i + IPW_EEPROM_DATA, p->eeprom[i]);
10508         mutex_unlock(&p->mutex);
10509         return 0;
10510 }
10511
10512 static const struct ethtool_ops ipw_ethtool_ops = {
10513         .get_link = ipw_ethtool_get_link,
10514         .get_drvinfo = ipw_ethtool_get_drvinfo,
10515         .get_eeprom_len = ipw_ethtool_get_eeprom_len,
10516         .get_eeprom = ipw_ethtool_get_eeprom,
10517         .set_eeprom = ipw_ethtool_set_eeprom,
10518 };
10519
10520 static irqreturn_t ipw_isr(int irq, void *data)
10521 {
10522         struct ipw_priv *priv = data;
10523         u32 inta, inta_mask;
10524
10525         if (!priv)
10526                 return IRQ_NONE;
10527
10528         spin_lock(&priv->irq_lock);
10529
10530         if (!(priv->status & STATUS_INT_ENABLED)) {
10531                 /* IRQ is disabled */
10532                 goto none;
10533         }
10534
10535         inta = ipw_read32(priv, IPW_INTA_RW);
10536         inta_mask = ipw_read32(priv, IPW_INTA_MASK_R);
10537
10538         if (inta == 0xFFFFFFFF) {
10539                 /* Hardware disappeared */
10540                 IPW_WARNING("IRQ INTA == 0xFFFFFFFF\n");
10541                 goto none;
10542         }
10543
10544         if (!(inta & (IPW_INTA_MASK_ALL & inta_mask))) {
10545                 /* Shared interrupt */
10546                 goto none;
10547         }
10548
10549         /* tell the device to stop sending interrupts */
10550         __ipw_disable_interrupts(priv);
10551
10552         /* ack current interrupts */
10553         inta &= (IPW_INTA_MASK_ALL & inta_mask);
10554         ipw_write32(priv, IPW_INTA_RW, inta);
10555
10556         /* Cache INTA value for our tasklet */
10557         priv->isr_inta = inta;
10558
10559         tasklet_schedule(&priv->irq_tasklet);
10560
10561         spin_unlock(&priv->irq_lock);
10562
10563         return IRQ_HANDLED;
10564       none:
10565         spin_unlock(&priv->irq_lock);
10566         return IRQ_NONE;
10567 }
10568
10569 static void ipw_rf_kill(void *adapter)
10570 {
10571         struct ipw_priv *priv = adapter;
10572         unsigned long flags;
10573
10574         spin_lock_irqsave(&priv->lock, flags);
10575
10576         if (rf_kill_active(priv)) {
10577                 IPW_DEBUG_RF_KILL("RF Kill active, rescheduling GPIO check\n");
10578                 schedule_delayed_work(&priv->rf_kill, 2 * HZ);
10579                 goto exit_unlock;
10580         }
10581
10582         /* RF Kill is now disabled, so bring the device back up */
10583
10584         if (!(priv->status & STATUS_RF_KILL_MASK)) {
10585                 IPW_DEBUG_RF_KILL("HW RF Kill no longer active, restarting "
10586                                   "device\n");
10587
10588                 /* we can not do an adapter restart while inside an irq lock */
10589                 schedule_work(&priv->adapter_restart);
10590         } else
10591                 IPW_DEBUG_RF_KILL("HW RF Kill deactivated.  SW RF Kill still "
10592                                   "enabled\n");
10593
10594       exit_unlock:
10595         spin_unlock_irqrestore(&priv->lock, flags);
10596 }
10597
10598 static void ipw_bg_rf_kill(struct work_struct *work)
10599 {
10600         struct ipw_priv *priv =
10601                 container_of(work, struct ipw_priv, rf_kill.work);
10602         mutex_lock(&priv->mutex);
10603         ipw_rf_kill(priv);
10604         mutex_unlock(&priv->mutex);
10605 }
10606
10607 static void ipw_link_up(struct ipw_priv *priv)
10608 {
10609         priv->last_seq_num = -1;
10610         priv->last_frag_num = -1;
10611         priv->last_packet_time = 0;
10612
10613         netif_carrier_on(priv->net_dev);
10614
10615         cancel_delayed_work(&priv->request_scan);
10616         cancel_delayed_work(&priv->request_direct_scan);
10617         cancel_delayed_work(&priv->request_passive_scan);
10618         cancel_delayed_work(&priv->scan_event);
10619         ipw_reset_stats(priv);
10620         /* Ensure the rate is updated immediately */
10621         priv->last_rate = ipw_get_current_rate(priv);
10622         ipw_gather_stats(priv);
10623         ipw_led_link_up(priv);
10624         notify_wx_assoc_event(priv);
10625
10626         if (priv->config & CFG_BACKGROUND_SCAN)
10627                 schedule_delayed_work(&priv->request_scan, HZ);
10628 }
10629
10630 static void ipw_bg_link_up(struct work_struct *work)
10631 {
10632         struct ipw_priv *priv =
10633                 container_of(work, struct ipw_priv, link_up);
10634         mutex_lock(&priv->mutex);
10635         ipw_link_up(priv);
10636         mutex_unlock(&priv->mutex);
10637 }
10638
10639 static void ipw_link_down(struct ipw_priv *priv)
10640 {
10641         ipw_led_link_down(priv);
10642         netif_carrier_off(priv->net_dev);
10643         notify_wx_assoc_event(priv);
10644
10645         /* Cancel any queued work ... */
10646         cancel_delayed_work(&priv->request_scan);
10647         cancel_delayed_work(&priv->request_direct_scan);
10648         cancel_delayed_work(&priv->request_passive_scan);
10649         cancel_delayed_work(&priv->adhoc_check);
10650         cancel_delayed_work(&priv->gather_stats);
10651
10652         ipw_reset_stats(priv);
10653
10654         if (!(priv->status & STATUS_EXIT_PENDING)) {
10655                 /* Queue up another scan... */
10656                 schedule_delayed_work(&priv->request_scan, 0);
10657         } else
10658                 cancel_delayed_work(&priv->scan_event);
10659 }
10660
10661 static void ipw_bg_link_down(struct work_struct *work)
10662 {
10663         struct ipw_priv *priv =
10664                 container_of(work, struct ipw_priv, link_down);
10665         mutex_lock(&priv->mutex);
10666         ipw_link_down(priv);
10667         mutex_unlock(&priv->mutex);
10668 }
10669
10670 static int ipw_setup_deferred_work(struct ipw_priv *priv)
10671 {
10672         int ret = 0;
10673
10674         init_waitqueue_head(&priv->wait_command_queue);
10675         init_waitqueue_head(&priv->wait_state);
10676
10677         INIT_DELAYED_WORK(&priv->adhoc_check, ipw_bg_adhoc_check);
10678         INIT_WORK(&priv->associate, ipw_bg_associate);
10679         INIT_WORK(&priv->disassociate, ipw_bg_disassociate);
10680         INIT_WORK(&priv->system_config, ipw_system_config);
10681         INIT_WORK(&priv->rx_replenish, ipw_bg_rx_queue_replenish);
10682         INIT_WORK(&priv->adapter_restart, ipw_bg_adapter_restart);
10683         INIT_DELAYED_WORK(&priv->rf_kill, ipw_bg_rf_kill);
10684         INIT_WORK(&priv->up, ipw_bg_up);
10685         INIT_WORK(&priv->down, ipw_bg_down);
10686         INIT_DELAYED_WORK(&priv->request_scan, ipw_request_scan);
10687         INIT_DELAYED_WORK(&priv->request_direct_scan, ipw_request_direct_scan);
10688         INIT_DELAYED_WORK(&priv->request_passive_scan, ipw_request_passive_scan);
10689         INIT_DELAYED_WORK(&priv->scan_event, ipw_scan_event);
10690         INIT_DELAYED_WORK(&priv->gather_stats, ipw_bg_gather_stats);
10691         INIT_WORK(&priv->abort_scan, ipw_bg_abort_scan);
10692         INIT_WORK(&priv->roam, ipw_bg_roam);
10693         INIT_DELAYED_WORK(&priv->scan_check, ipw_bg_scan_check);
10694         INIT_WORK(&priv->link_up, ipw_bg_link_up);
10695         INIT_WORK(&priv->link_down, ipw_bg_link_down);
10696         INIT_DELAYED_WORK(&priv->led_link_on, ipw_bg_led_link_on);
10697         INIT_DELAYED_WORK(&priv->led_link_off, ipw_bg_led_link_off);
10698         INIT_DELAYED_WORK(&priv->led_act_off, ipw_bg_led_activity_off);
10699         INIT_WORK(&priv->merge_networks, ipw_merge_adhoc_network);
10700
10701 #ifdef CONFIG_IPW2200_QOS
10702         INIT_WORK(&priv->qos_activate, ipw_bg_qos_activate);
10703 #endif                          /* CONFIG_IPW2200_QOS */
10704
10705         tasklet_init(&priv->irq_tasklet, (void (*)(unsigned long))
10706                      ipw_irq_tasklet, (unsigned long)priv);
10707
10708         return ret;
10709 }
10710
10711 static void shim__set_security(struct net_device *dev,
10712                                struct libipw_security *sec)
10713 {
10714         struct ipw_priv *priv = libipw_priv(dev);
10715         int i;
10716         for (i = 0; i < 4; i++) {
10717                 if (sec->flags & (1 << i)) {
10718                         priv->ieee->sec.encode_alg[i] = sec->encode_alg[i];
10719                         priv->ieee->sec.key_sizes[i] = sec->key_sizes[i];
10720                         if (sec->key_sizes[i] == 0)
10721                                 priv->ieee->sec.flags &= ~(1 << i);
10722                         else {
10723                                 memcpy(priv->ieee->sec.keys[i], sec->keys[i],
10724                                        sec->key_sizes[i]);
10725                                 priv->ieee->sec.flags |= (1 << i);
10726                         }
10727                         priv->status |= STATUS_SECURITY_UPDATED;
10728                 } else if (sec->level != SEC_LEVEL_1)
10729                         priv->ieee->sec.flags &= ~(1 << i);
10730         }
10731
10732         if (sec->flags & SEC_ACTIVE_KEY) {
10733                 if (sec->active_key <= 3) {
10734                         priv->ieee->sec.active_key = sec->active_key;
10735                         priv->ieee->sec.flags |= SEC_ACTIVE_KEY;
10736                 } else
10737                         priv->ieee->sec.flags &= ~SEC_ACTIVE_KEY;
10738                 priv->status |= STATUS_SECURITY_UPDATED;
10739         } else
10740                 priv->ieee->sec.flags &= ~SEC_ACTIVE_KEY;
10741
10742         if ((sec->flags & SEC_AUTH_MODE) &&
10743             (priv->ieee->sec.auth_mode != sec->auth_mode)) {
10744                 priv->ieee->sec.auth_mode = sec->auth_mode;
10745                 priv->ieee->sec.flags |= SEC_AUTH_MODE;
10746                 if (sec->auth_mode == WLAN_AUTH_SHARED_KEY)
10747                         priv->capability |= CAP_SHARED_KEY;
10748                 else
10749                         priv->capability &= ~CAP_SHARED_KEY;
10750                 priv->status |= STATUS_SECURITY_UPDATED;
10751         }
10752
10753         if (sec->flags & SEC_ENABLED && priv->ieee->sec.enabled != sec->enabled) {
10754                 priv->ieee->sec.flags |= SEC_ENABLED;
10755                 priv->ieee->sec.enabled = sec->enabled;
10756                 priv->status |= STATUS_SECURITY_UPDATED;
10757                 if (sec->enabled)
10758                         priv->capability |= CAP_PRIVACY_ON;
10759                 else
10760                         priv->capability &= ~CAP_PRIVACY_ON;
10761         }
10762
10763         if (sec->flags & SEC_ENCRYPT)
10764                 priv->ieee->sec.encrypt = sec->encrypt;
10765
10766         if (sec->flags & SEC_LEVEL && priv->ieee->sec.level != sec->level) {
10767                 priv->ieee->sec.level = sec->level;
10768                 priv->ieee->sec.flags |= SEC_LEVEL;
10769                 priv->status |= STATUS_SECURITY_UPDATED;
10770         }
10771
10772         if (!priv->ieee->host_encrypt && (sec->flags & SEC_ENCRYPT))
10773                 ipw_set_hwcrypto_keys(priv);
10774
10775         /* To match current functionality of ipw2100 (which works well w/
10776          * various supplicants, we don't force a disassociate if the
10777          * privacy capability changes ... */
10778 #if 0
10779         if ((priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) &&
10780             (((priv->assoc_request.capability &
10781                cpu_to_le16(WLAN_CAPABILITY_PRIVACY)) && !sec->enabled) ||
10782              (!(priv->assoc_request.capability &
10783                 cpu_to_le16(WLAN_CAPABILITY_PRIVACY)) && sec->enabled))) {
10784                 IPW_DEBUG_ASSOC("Disassociating due to capability "
10785                                 "change.\n");
10786                 ipw_disassociate(priv);
10787         }
10788 #endif
10789 }
10790
10791 static int init_supported_rates(struct ipw_priv *priv,
10792                                 struct ipw_supported_rates *rates)
10793 {
10794         /* TODO: Mask out rates based on priv->rates_mask */
10795
10796         memset(rates, 0, sizeof(*rates));
10797         /* configure supported rates */
10798         switch (priv->ieee->freq_band) {
10799         case LIBIPW_52GHZ_BAND:
10800                 rates->ieee_mode = IPW_A_MODE;
10801                 rates->purpose = IPW_RATE_CAPABILITIES;
10802                 ipw_add_ofdm_scan_rates(rates, LIBIPW_CCK_MODULATION,
10803                                         LIBIPW_OFDM_DEFAULT_RATES_MASK);
10804                 break;
10805
10806         default:                /* Mixed or 2.4Ghz */
10807                 rates->ieee_mode = IPW_G_MODE;
10808                 rates->purpose = IPW_RATE_CAPABILITIES;
10809                 ipw_add_cck_scan_rates(rates, LIBIPW_CCK_MODULATION,
10810                                        LIBIPW_CCK_DEFAULT_RATES_MASK);
10811                 if (priv->ieee->modulation & LIBIPW_OFDM_MODULATION) {
10812                         ipw_add_ofdm_scan_rates(rates, LIBIPW_CCK_MODULATION,
10813                                                 LIBIPW_OFDM_DEFAULT_RATES_MASK);
10814                 }
10815                 break;
10816         }
10817
10818         return 0;
10819 }
10820
10821 static int ipw_config(struct ipw_priv *priv)
10822 {
10823         /* This is only called from ipw_up, which resets/reloads the firmware
10824            so, we don't need to first disable the card before we configure
10825            it */
10826         if (ipw_set_tx_power(priv))
10827                 goto error;
10828
10829         /* initialize adapter address */
10830         if (ipw_send_adapter_address(priv, priv->net_dev->dev_addr))
10831                 goto error;
10832
10833         /* set basic system config settings */
10834         init_sys_config(&priv->sys_config);
10835
10836         /* Support Bluetooth if we have BT h/w on board, and user wants to.
10837          * Does not support BT priority yet (don't abort or defer our Tx) */
10838         if (bt_coexist) {
10839                 unsigned char bt_caps = priv->eeprom[EEPROM_SKU_CAPABILITY];
10840
10841                 if (bt_caps & EEPROM_SKU_CAP_BT_CHANNEL_SIG)
10842                         priv->sys_config.bt_coexistence
10843                             |= CFG_BT_COEXISTENCE_SIGNAL_CHNL;
10844                 if (bt_caps & EEPROM_SKU_CAP_BT_OOB)
10845                         priv->sys_config.bt_coexistence
10846                             |= CFG_BT_COEXISTENCE_OOB;
10847         }
10848
10849 #ifdef CONFIG_IPW2200_PROMISCUOUS
10850         if (priv->prom_net_dev && netif_running(priv->prom_net_dev)) {
10851                 priv->sys_config.accept_all_data_frames = 1;
10852                 priv->sys_config.accept_non_directed_frames = 1;
10853                 priv->sys_config.accept_all_mgmt_bcpr = 1;
10854                 priv->sys_config.accept_all_mgmt_frames = 1;
10855         }
10856 #endif
10857
10858         if (priv->ieee->iw_mode == IW_MODE_ADHOC)
10859                 priv->sys_config.answer_broadcast_ssid_probe = 1;
10860         else
10861                 priv->sys_config.answer_broadcast_ssid_probe = 0;
10862
10863         if (ipw_send_system_config(priv))
10864                 goto error;
10865
10866         init_supported_rates(priv, &priv->rates);
10867         if (ipw_send_supported_rates(priv, &priv->rates))
10868                 goto error;
10869
10870         /* Set request-to-send threshold */
10871         if (priv->rts_threshold) {
10872                 if (ipw_send_rts_threshold(priv, priv->rts_threshold))
10873                         goto error;
10874         }
10875 #ifdef CONFIG_IPW2200_QOS
10876         IPW_DEBUG_QOS("QoS: call ipw_qos_activate\n");
10877         ipw_qos_activate(priv, NULL);
10878 #endif                          /* CONFIG_IPW2200_QOS */
10879
10880         if (ipw_set_random_seed(priv))
10881                 goto error;
10882
10883         /* final state transition to the RUN state */
10884         if (ipw_send_host_complete(priv))
10885                 goto error;
10886
10887         priv->status |= STATUS_INIT;
10888
10889         ipw_led_init(priv);
10890         ipw_led_radio_on(priv);
10891         priv->notif_missed_beacons = 0;
10892
10893         /* Set hardware WEP key if it is configured. */
10894         if ((priv->capability & CAP_PRIVACY_ON) &&
10895             (priv->ieee->sec.level == SEC_LEVEL_1) &&
10896             !(priv->ieee->host_encrypt || priv->ieee->host_decrypt))
10897                 ipw_set_hwcrypto_keys(priv);
10898
10899         return 0;
10900
10901       error:
10902         return -EIO;
10903 }
10904
10905 /*
10906  * NOTE:
10907  *
10908  * These tables have been tested in conjunction with the
10909  * Intel PRO/Wireless 2200BG and 2915ABG Network Connection Adapters.
10910  *
10911  * Altering this values, using it on other hardware, or in geographies
10912  * not intended for resale of the above mentioned Intel adapters has
10913  * not been tested.
10914  *
10915  * Remember to update the table in README.ipw2200 when changing this
10916  * table.
10917  *
10918  */
10919 static const struct libipw_geo ipw_geos[] = {
10920         {                       /* Restricted */
10921          "---",
10922          .bg_channels = 11,
10923          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10924                 {2427, 4}, {2432, 5}, {2437, 6},
10925                 {2442, 7}, {2447, 8}, {2452, 9},
10926                 {2457, 10}, {2462, 11}},
10927          },
10928
10929         {                       /* Custom US/Canada */
10930          "ZZF",
10931          .bg_channels = 11,
10932          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10933                 {2427, 4}, {2432, 5}, {2437, 6},
10934                 {2442, 7}, {2447, 8}, {2452, 9},
10935                 {2457, 10}, {2462, 11}},
10936          .a_channels = 8,
10937          .a = {{5180, 36},
10938                {5200, 40},
10939                {5220, 44},
10940                {5240, 48},
10941                {5260, 52, LIBIPW_CH_PASSIVE_ONLY},
10942                {5280, 56, LIBIPW_CH_PASSIVE_ONLY},
10943                {5300, 60, LIBIPW_CH_PASSIVE_ONLY},
10944                {5320, 64, LIBIPW_CH_PASSIVE_ONLY}},
10945          },
10946
10947         {                       /* Rest of World */
10948          "ZZD",
10949          .bg_channels = 13,
10950          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10951                 {2427, 4}, {2432, 5}, {2437, 6},
10952                 {2442, 7}, {2447, 8}, {2452, 9},
10953                 {2457, 10}, {2462, 11}, {2467, 12},
10954                 {2472, 13}},
10955          },
10956
10957         {                       /* Custom USA & Europe & High */
10958          "ZZA",
10959          .bg_channels = 11,
10960          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10961                 {2427, 4}, {2432, 5}, {2437, 6},
10962                 {2442, 7}, {2447, 8}, {2452, 9},
10963                 {2457, 10}, {2462, 11}},
10964          .a_channels = 13,
10965          .a = {{5180, 36},
10966                {5200, 40},
10967                {5220, 44},
10968                {5240, 48},
10969                {5260, 52, LIBIPW_CH_PASSIVE_ONLY},
10970                {5280, 56, LIBIPW_CH_PASSIVE_ONLY},
10971                {5300, 60, LIBIPW_CH_PASSIVE_ONLY},
10972                {5320, 64, LIBIPW_CH_PASSIVE_ONLY},
10973                {5745, 149},
10974                {5765, 153},
10975                {5785, 157},
10976                {5805, 161},
10977                {5825, 165}},
10978          },
10979
10980         {                       /* Custom NA & Europe */
10981          "ZZB",
10982          .bg_channels = 11,
10983          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10984                 {2427, 4}, {2432, 5}, {2437, 6},
10985                 {2442, 7}, {2447, 8}, {2452, 9},
10986                 {2457, 10}, {2462, 11}},
10987          .a_channels = 13,
10988          .a = {{5180, 36},
10989                {5200, 40},
10990                {5220, 44},
10991                {5240, 48},
10992                {5260, 52, LIBIPW_CH_PASSIVE_ONLY},
10993                {5280, 56, LIBIPW_CH_PASSIVE_ONLY},
10994                {5300, 60, LIBIPW_CH_PASSIVE_ONLY},
10995                {5320, 64, LIBIPW_CH_PASSIVE_ONLY},
10996                {5745, 149, LIBIPW_CH_PASSIVE_ONLY},
10997                {5765, 153, LIBIPW_CH_PASSIVE_ONLY},
10998                {5785, 157, LIBIPW_CH_PASSIVE_ONLY},
10999                {5805, 161, LIBIPW_CH_PASSIVE_ONLY},
11000                {5825, 165, LIBIPW_CH_PASSIVE_ONLY}},
11001          },
11002
11003         {                       /* Custom Japan */
11004          "ZZC",
11005          .bg_channels = 11,
11006          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11007                 {2427, 4}, {2432, 5}, {2437, 6},
11008                 {2442, 7}, {2447, 8}, {2452, 9},
11009                 {2457, 10}, {2462, 11}},
11010          .a_channels = 4,
11011          .a = {{5170, 34}, {5190, 38},
11012                {5210, 42}, {5230, 46}},
11013          },
11014
11015         {                       /* Custom */
11016          "ZZM",
11017          .bg_channels = 11,
11018          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11019                 {2427, 4}, {2432, 5}, {2437, 6},
11020                 {2442, 7}, {2447, 8}, {2452, 9},
11021                 {2457, 10}, {2462, 11}},
11022          },
11023
11024         {                       /* Europe */
11025          "ZZE",
11026          .bg_channels = 13,
11027          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11028                 {2427, 4}, {2432, 5}, {2437, 6},
11029                 {2442, 7}, {2447, 8}, {2452, 9},
11030                 {2457, 10}, {2462, 11}, {2467, 12},
11031                 {2472, 13}},
11032          .a_channels = 19,
11033          .a = {{5180, 36},
11034                {5200, 40},
11035                {5220, 44},
11036                {5240, 48},
11037                {5260, 52, LIBIPW_CH_PASSIVE_ONLY},
11038                {5280, 56, LIBIPW_CH_PASSIVE_ONLY},
11039                {5300, 60, LIBIPW_CH_PASSIVE_ONLY},
11040                {5320, 64, LIBIPW_CH_PASSIVE_ONLY},
11041                {5500, 100, LIBIPW_CH_PASSIVE_ONLY},
11042                {5520, 104, LIBIPW_CH_PASSIVE_ONLY},
11043                {5540, 108, LIBIPW_CH_PASSIVE_ONLY},
11044                {5560, 112, LIBIPW_CH_PASSIVE_ONLY},
11045                {5580, 116, LIBIPW_CH_PASSIVE_ONLY},
11046                {5600, 120, LIBIPW_CH_PASSIVE_ONLY},
11047                {5620, 124, LIBIPW_CH_PASSIVE_ONLY},
11048                {5640, 128, LIBIPW_CH_PASSIVE_ONLY},
11049                {5660, 132, LIBIPW_CH_PASSIVE_ONLY},
11050                {5680, 136, LIBIPW_CH_PASSIVE_ONLY},
11051                {5700, 140, LIBIPW_CH_PASSIVE_ONLY}},
11052          },
11053
11054         {                       /* Custom Japan */
11055          "ZZJ",
11056          .bg_channels = 14,
11057          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11058                 {2427, 4}, {2432, 5}, {2437, 6},
11059                 {2442, 7}, {2447, 8}, {2452, 9},
11060                 {2457, 10}, {2462, 11}, {2467, 12},
11061                 {2472, 13}, {2484, 14, LIBIPW_CH_B_ONLY}},
11062          .a_channels = 4,
11063          .a = {{5170, 34}, {5190, 38},
11064                {5210, 42}, {5230, 46}},
11065          },
11066
11067         {                       /* Rest of World */
11068          "ZZR",
11069          .bg_channels = 14,
11070          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11071                 {2427, 4}, {2432, 5}, {2437, 6},
11072                 {2442, 7}, {2447, 8}, {2452, 9},
11073                 {2457, 10}, {2462, 11}, {2467, 12},
11074                 {2472, 13}, {2484, 14, LIBIPW_CH_B_ONLY |
11075                              LIBIPW_CH_PASSIVE_ONLY}},
11076          },
11077
11078         {                       /* High Band */
11079          "ZZH",
11080          .bg_channels = 13,
11081          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11082                 {2427, 4}, {2432, 5}, {2437, 6},
11083                 {2442, 7}, {2447, 8}, {2452, 9},
11084                 {2457, 10}, {2462, 11},
11085                 {2467, 12, LIBIPW_CH_PASSIVE_ONLY},
11086                 {2472, 13, LIBIPW_CH_PASSIVE_ONLY}},
11087          .a_channels = 4,
11088          .a = {{5745, 149}, {5765, 153},
11089                {5785, 157}, {5805, 161}},
11090          },
11091
11092         {                       /* Custom Europe */
11093          "ZZG",
11094          .bg_channels = 13,
11095          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11096                 {2427, 4}, {2432, 5}, {2437, 6},
11097                 {2442, 7}, {2447, 8}, {2452, 9},
11098                 {2457, 10}, {2462, 11},
11099                 {2467, 12}, {2472, 13}},
11100          .a_channels = 4,
11101          .a = {{5180, 36}, {5200, 40},
11102                {5220, 44}, {5240, 48}},
11103          },
11104
11105         {                       /* Europe */
11106          "ZZK",
11107          .bg_channels = 13,
11108          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11109                 {2427, 4}, {2432, 5}, {2437, 6},
11110                 {2442, 7}, {2447, 8}, {2452, 9},
11111                 {2457, 10}, {2462, 11},
11112                 {2467, 12, LIBIPW_CH_PASSIVE_ONLY},
11113                 {2472, 13, LIBIPW_CH_PASSIVE_ONLY}},
11114          .a_channels = 24,
11115          .a = {{5180, 36, LIBIPW_CH_PASSIVE_ONLY},
11116                {5200, 40, LIBIPW_CH_PASSIVE_ONLY},
11117                {5220, 44, LIBIPW_CH_PASSIVE_ONLY},
11118                {5240, 48, LIBIPW_CH_PASSIVE_ONLY},
11119                {5260, 52, LIBIPW_CH_PASSIVE_ONLY},
11120                {5280, 56, LIBIPW_CH_PASSIVE_ONLY},
11121                {5300, 60, LIBIPW_CH_PASSIVE_ONLY},
11122                {5320, 64, LIBIPW_CH_PASSIVE_ONLY},
11123                {5500, 100, LIBIPW_CH_PASSIVE_ONLY},
11124                {5520, 104, LIBIPW_CH_PASSIVE_ONLY},
11125                {5540, 108, LIBIPW_CH_PASSIVE_ONLY},
11126                {5560, 112, LIBIPW_CH_PASSIVE_ONLY},
11127                {5580, 116, LIBIPW_CH_PASSIVE_ONLY},
11128                {5600, 120, LIBIPW_CH_PASSIVE_ONLY},
11129                {5620, 124, LIBIPW_CH_PASSIVE_ONLY},
11130                {5640, 128, LIBIPW_CH_PASSIVE_ONLY},
11131                {5660, 132, LIBIPW_CH_PASSIVE_ONLY},
11132                {5680, 136, LIBIPW_CH_PASSIVE_ONLY},
11133                {5700, 140, LIBIPW_CH_PASSIVE_ONLY},
11134                {5745, 149, LIBIPW_CH_PASSIVE_ONLY},
11135                {5765, 153, LIBIPW_CH_PASSIVE_ONLY},
11136                {5785, 157, LIBIPW_CH_PASSIVE_ONLY},
11137                {5805, 161, LIBIPW_CH_PASSIVE_ONLY},
11138                {5825, 165, LIBIPW_CH_PASSIVE_ONLY}},
11139          },
11140
11141         {                       /* Europe */
11142          "ZZL",
11143          .bg_channels = 11,
11144          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11145                 {2427, 4}, {2432, 5}, {2437, 6},
11146                 {2442, 7}, {2447, 8}, {2452, 9},
11147                 {2457, 10}, {2462, 11}},
11148          .a_channels = 13,
11149          .a = {{5180, 36, LIBIPW_CH_PASSIVE_ONLY},
11150                {5200, 40, LIBIPW_CH_PASSIVE_ONLY},
11151                {5220, 44, LIBIPW_CH_PASSIVE_ONLY},
11152                {5240, 48, LIBIPW_CH_PASSIVE_ONLY},
11153                {5260, 52, LIBIPW_CH_PASSIVE_ONLY},
11154                {5280, 56, LIBIPW_CH_PASSIVE_ONLY},
11155                {5300, 60, LIBIPW_CH_PASSIVE_ONLY},
11156                {5320, 64, LIBIPW_CH_PASSIVE_ONLY},
11157                {5745, 149, LIBIPW_CH_PASSIVE_ONLY},
11158                {5765, 153, LIBIPW_CH_PASSIVE_ONLY},
11159                {5785, 157, LIBIPW_CH_PASSIVE_ONLY},
11160                {5805, 161, LIBIPW_CH_PASSIVE_ONLY},
11161                {5825, 165, LIBIPW_CH_PASSIVE_ONLY}},
11162          }
11163 };
11164
11165 static void ipw_set_geo(struct ipw_priv *priv)
11166 {
11167         int j;
11168
11169         for (j = 0; j < ARRAY_SIZE(ipw_geos); j++) {
11170                 if (!memcmp(&priv->eeprom[EEPROM_COUNTRY_CODE],
11171                             ipw_geos[j].name, 3))
11172                         break;
11173         }
11174
11175         if (j == ARRAY_SIZE(ipw_geos)) {
11176                 IPW_WARNING("SKU [%c%c%c] not recognized.\n",
11177                             priv->eeprom[EEPROM_COUNTRY_CODE + 0],
11178                             priv->eeprom[EEPROM_COUNTRY_CODE + 1],
11179                             priv->eeprom[EEPROM_COUNTRY_CODE + 2]);
11180                 j = 0;
11181         }
11182
11183         libipw_set_geo(priv->ieee, &ipw_geos[j]);
11184 }
11185
11186 #define MAX_HW_RESTARTS 5
11187 static int ipw_up(struct ipw_priv *priv)
11188 {
11189         int rc, i;
11190
11191         /* Age scan list entries found before suspend */
11192         if (priv->suspend_time) {
11193                 libipw_networks_age(priv->ieee, priv->suspend_time);
11194                 priv->suspend_time = 0;
11195         }
11196
11197         if (priv->status & STATUS_EXIT_PENDING)
11198                 return -EIO;
11199
11200         if (cmdlog && !priv->cmdlog) {
11201                 priv->cmdlog = kcalloc(cmdlog, sizeof(*priv->cmdlog),
11202                                        GFP_KERNEL);
11203                 if (priv->cmdlog == NULL) {
11204                         IPW_ERROR("Error allocating %d command log entries.\n",
11205                                   cmdlog);
11206                         return -ENOMEM;
11207                 } else {
11208                         priv->cmdlog_len = cmdlog;
11209                 }
11210         }
11211
11212         for (i = 0; i < MAX_HW_RESTARTS; i++) {
11213                 /* Load the microcode, firmware, and eeprom.
11214                  * Also start the clocks. */
11215                 rc = ipw_load(priv);
11216                 if (rc) {
11217                         IPW_ERROR("Unable to load firmware: %d\n", rc);
11218                         return rc;
11219                 }
11220
11221                 ipw_init_ordinals(priv);
11222                 if (!(priv->config & CFG_CUSTOM_MAC))
11223                         eeprom_parse_mac(priv, priv->mac_addr);
11224                 memcpy(priv->net_dev->dev_addr, priv->mac_addr, ETH_ALEN);
11225
11226                 ipw_set_geo(priv);
11227
11228                 if (priv->status & STATUS_RF_KILL_SW) {
11229                         IPW_WARNING("Radio disabled by module parameter.\n");
11230                         return 0;
11231                 } else if (rf_kill_active(priv)) {
11232                         IPW_WARNING("Radio Frequency Kill Switch is On:\n"
11233                                     "Kill switch must be turned off for "
11234                                     "wireless networking to work.\n");
11235                         schedule_delayed_work(&priv->rf_kill, 2 * HZ);
11236                         return 0;
11237                 }
11238
11239                 rc = ipw_config(priv);
11240                 if (!rc) {
11241                         IPW_DEBUG_INFO("Configured device on count %i\n", i);
11242
11243                         /* If configure to try and auto-associate, kick
11244                          * off a scan. */
11245                         schedule_delayed_work(&priv->request_scan, 0);
11246
11247                         return 0;
11248                 }
11249
11250                 IPW_DEBUG_INFO("Device configuration failed: 0x%08X\n", rc);
11251                 IPW_DEBUG_INFO("Failed to config device on retry %d of %d\n",
11252                                i, MAX_HW_RESTARTS);
11253
11254                 /* We had an error bringing up the hardware, so take it
11255                  * all the way back down so we can try again */
11256                 ipw_down(priv);
11257         }
11258
11259         /* tried to restart and config the device for as long as our
11260          * patience could withstand */
11261         IPW_ERROR("Unable to initialize device after %d attempts.\n", i);
11262
11263         return -EIO;
11264 }
11265
11266 static void ipw_bg_up(struct work_struct *work)
11267 {
11268         struct ipw_priv *priv =
11269                 container_of(work, struct ipw_priv, up);
11270         mutex_lock(&priv->mutex);
11271         ipw_up(priv);
11272         mutex_unlock(&priv->mutex);
11273 }
11274
11275 static void ipw_deinit(struct ipw_priv *priv)
11276 {
11277         int i;
11278
11279         if (priv->status & STATUS_SCANNING) {
11280                 IPW_DEBUG_INFO("Aborting scan during shutdown.\n");
11281                 ipw_abort_scan(priv);
11282         }
11283
11284         if (priv->status & STATUS_ASSOCIATED) {
11285                 IPW_DEBUG_INFO("Disassociating during shutdown.\n");
11286                 ipw_disassociate(priv);
11287         }
11288
11289         ipw_led_shutdown(priv);
11290
11291         /* Wait up to 1s for status to change to not scanning and not
11292          * associated (disassociation can take a while for a ful 802.11
11293          * exchange */
11294         for (i = 1000; i && (priv->status &
11295                              (STATUS_DISASSOCIATING |
11296                               STATUS_ASSOCIATED | STATUS_SCANNING)); i--)
11297                 udelay(10);
11298
11299         if (priv->status & (STATUS_DISASSOCIATING |
11300                             STATUS_ASSOCIATED | STATUS_SCANNING))
11301                 IPW_DEBUG_INFO("Still associated or scanning...\n");
11302         else
11303                 IPW_DEBUG_INFO("Took %dms to de-init\n", 1000 - i);
11304
11305         /* Attempt to disable the card */
11306         ipw_send_card_disable(priv, 0);
11307
11308         priv->status &= ~STATUS_INIT;
11309 }
11310
11311 static void ipw_down(struct ipw_priv *priv)
11312 {
11313         int exit_pending = priv->status & STATUS_EXIT_PENDING;
11314
11315         priv->status |= STATUS_EXIT_PENDING;
11316
11317         if (ipw_is_init(priv))
11318                 ipw_deinit(priv);
11319
11320         /* Wipe out the EXIT_PENDING status bit if we are not actually
11321          * exiting the module */
11322         if (!exit_pending)
11323                 priv->status &= ~STATUS_EXIT_PENDING;
11324
11325         /* tell the device to stop sending interrupts */
11326         ipw_disable_interrupts(priv);
11327
11328         /* Clear all bits but the RF Kill */
11329         priv->status &= STATUS_RF_KILL_MASK | STATUS_EXIT_PENDING;
11330         netif_carrier_off(priv->net_dev);
11331
11332         ipw_stop_nic(priv);
11333
11334         ipw_led_radio_off(priv);
11335 }
11336
11337 static void ipw_bg_down(struct work_struct *work)
11338 {
11339         struct ipw_priv *priv =
11340                 container_of(work, struct ipw_priv, down);
11341         mutex_lock(&priv->mutex);
11342         ipw_down(priv);
11343         mutex_unlock(&priv->mutex);
11344 }
11345
11346 static int ipw_wdev_init(struct net_device *dev)
11347 {
11348         int i, rc = 0;
11349         struct ipw_priv *priv = libipw_priv(dev);
11350         const struct libipw_geo *geo = libipw_get_geo(priv->ieee);
11351         struct wireless_dev *wdev = &priv->ieee->wdev;
11352
11353         memcpy(wdev->wiphy->perm_addr, priv->mac_addr, ETH_ALEN);
11354
11355         /* fill-out priv->ieee->bg_band */
11356         if (geo->bg_channels) {
11357                 struct ieee80211_supported_band *bg_band = &priv->ieee->bg_band;
11358
11359                 bg_band->band = NL80211_BAND_2GHZ;
11360                 bg_band->n_channels = geo->bg_channels;
11361                 bg_band->channels = kcalloc(geo->bg_channels,
11362                                             sizeof(struct ieee80211_channel),
11363                                             GFP_KERNEL);
11364                 if (!bg_band->channels) {
11365                         rc = -ENOMEM;
11366                         goto out;
11367                 }
11368                 /* translate geo->bg to bg_band.channels */
11369                 for (i = 0; i < geo->bg_channels; i++) {
11370                         bg_band->channels[i].band = NL80211_BAND_2GHZ;
11371                         bg_band->channels[i].center_freq = geo->bg[i].freq;
11372                         bg_band->channels[i].hw_value = geo->bg[i].channel;
11373                         bg_band->channels[i].max_power = geo->bg[i].max_power;
11374                         if (geo->bg[i].flags & LIBIPW_CH_PASSIVE_ONLY)
11375                                 bg_band->channels[i].flags |=
11376                                         IEEE80211_CHAN_NO_IR;
11377                         if (geo->bg[i].flags & LIBIPW_CH_NO_IBSS)
11378                                 bg_band->channels[i].flags |=
11379                                         IEEE80211_CHAN_NO_IR;
11380                         if (geo->bg[i].flags & LIBIPW_CH_RADAR_DETECT)
11381                                 bg_band->channels[i].flags |=
11382                                         IEEE80211_CHAN_RADAR;
11383                         /* No equivalent for LIBIPW_CH_80211H_RULES,
11384                            LIBIPW_CH_UNIFORM_SPREADING, or
11385                            LIBIPW_CH_B_ONLY... */
11386                 }
11387                 /* point at bitrate info */
11388                 bg_band->bitrates = ipw2200_bg_rates;
11389                 bg_band->n_bitrates = ipw2200_num_bg_rates;
11390
11391                 wdev->wiphy->bands[NL80211_BAND_2GHZ] = bg_band;
11392         }
11393
11394         /* fill-out priv->ieee->a_band */
11395         if (geo->a_channels) {
11396                 struct ieee80211_supported_band *a_band = &priv->ieee->a_band;
11397
11398                 a_band->band = NL80211_BAND_5GHZ;
11399                 a_band->n_channels = geo->a_channels;
11400                 a_band->channels = kcalloc(geo->a_channels,
11401                                            sizeof(struct ieee80211_channel),
11402                                            GFP_KERNEL);
11403                 if (!a_band->channels) {
11404                         rc = -ENOMEM;
11405                         goto out;
11406                 }
11407                 /* translate geo->a to a_band.channels */
11408                 for (i = 0; i < geo->a_channels; i++) {
11409                         a_band->channels[i].band = NL80211_BAND_5GHZ;
11410                         a_band->channels[i].center_freq = geo->a[i].freq;
11411                         a_band->channels[i].hw_value = geo->a[i].channel;
11412                         a_band->channels[i].max_power = geo->a[i].max_power;
11413                         if (geo->a[i].flags & LIBIPW_CH_PASSIVE_ONLY)
11414                                 a_band->channels[i].flags |=
11415                                         IEEE80211_CHAN_NO_IR;
11416                         if (geo->a[i].flags & LIBIPW_CH_NO_IBSS)
11417                                 a_band->channels[i].flags |=
11418                                         IEEE80211_CHAN_NO_IR;
11419                         if (geo->a[i].flags & LIBIPW_CH_RADAR_DETECT)
11420                                 a_band->channels[i].flags |=
11421                                         IEEE80211_CHAN_RADAR;
11422                         /* No equivalent for LIBIPW_CH_80211H_RULES,
11423                            LIBIPW_CH_UNIFORM_SPREADING, or
11424                            LIBIPW_CH_B_ONLY... */
11425                 }
11426                 /* point at bitrate info */
11427                 a_band->bitrates = ipw2200_a_rates;
11428                 a_band->n_bitrates = ipw2200_num_a_rates;
11429
11430                 wdev->wiphy->bands[NL80211_BAND_5GHZ] = a_band;
11431         }
11432
11433         wdev->wiphy->cipher_suites = ipw_cipher_suites;
11434         wdev->wiphy->n_cipher_suites = ARRAY_SIZE(ipw_cipher_suites);
11435
11436         set_wiphy_dev(wdev->wiphy, &priv->pci_dev->dev);
11437
11438         /* With that information in place, we can now register the wiphy... */
11439         if (wiphy_register(wdev->wiphy))
11440                 rc = -EIO;
11441 out:
11442         return rc;
11443 }
11444
11445 /* PCI driver stuff */
11446 static const struct pci_device_id card_ids[] = {
11447         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2701, 0, 0, 0},
11448         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2702, 0, 0, 0},
11449         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2711, 0, 0, 0},
11450         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2712, 0, 0, 0},
11451         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2721, 0, 0, 0},
11452         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2722, 0, 0, 0},
11453         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2731, 0, 0, 0},
11454         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2732, 0, 0, 0},
11455         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2741, 0, 0, 0},
11456         {PCI_VENDOR_ID_INTEL, 0x1043, 0x103c, 0x2741, 0, 0, 0},
11457         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2742, 0, 0, 0},
11458         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2751, 0, 0, 0},
11459         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2752, 0, 0, 0},
11460         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2753, 0, 0, 0},
11461         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2754, 0, 0, 0},
11462         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2761, 0, 0, 0},
11463         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2762, 0, 0, 0},
11464         {PCI_VDEVICE(INTEL, 0x104f), 0},
11465         {PCI_VDEVICE(INTEL, 0x4220), 0},        /* BG */
11466         {PCI_VDEVICE(INTEL, 0x4221), 0},        /* BG */
11467         {PCI_VDEVICE(INTEL, 0x4223), 0},        /* ABG */
11468         {PCI_VDEVICE(INTEL, 0x4224), 0},        /* ABG */
11469
11470         /* required last entry */
11471         {0,}
11472 };
11473
11474 MODULE_DEVICE_TABLE(pci, card_ids);
11475
11476 static struct attribute *ipw_sysfs_entries[] = {
11477         &dev_attr_rf_kill.attr,
11478         &dev_attr_direct_dword.attr,
11479         &dev_attr_indirect_byte.attr,
11480         &dev_attr_indirect_dword.attr,
11481         &dev_attr_mem_gpio_reg.attr,
11482         &dev_attr_command_event_reg.attr,
11483         &dev_attr_nic_type.attr,
11484         &dev_attr_status.attr,
11485         &dev_attr_cfg.attr,
11486         &dev_attr_error.attr,
11487         &dev_attr_event_log.attr,
11488         &dev_attr_cmd_log.attr,
11489         &dev_attr_eeprom_delay.attr,
11490         &dev_attr_ucode_version.attr,
11491         &dev_attr_rtc.attr,
11492         &dev_attr_scan_age.attr,
11493         &dev_attr_led.attr,
11494         &dev_attr_speed_scan.attr,
11495         &dev_attr_net_stats.attr,
11496         &dev_attr_channels.attr,
11497 #ifdef CONFIG_IPW2200_PROMISCUOUS
11498         &dev_attr_rtap_iface.attr,
11499         &dev_attr_rtap_filter.attr,
11500 #endif
11501         NULL
11502 };
11503
11504 static const struct attribute_group ipw_attribute_group = {
11505         .name = NULL,           /* put in device directory */
11506         .attrs = ipw_sysfs_entries,
11507 };
11508
11509 #ifdef CONFIG_IPW2200_PROMISCUOUS
11510 static int ipw_prom_open(struct net_device *dev)
11511 {
11512         struct ipw_prom_priv *prom_priv = libipw_priv(dev);
11513         struct ipw_priv *priv = prom_priv->priv;
11514
11515         IPW_DEBUG_INFO("prom dev->open\n");
11516         netif_carrier_off(dev);
11517
11518         if (priv->ieee->iw_mode != IW_MODE_MONITOR) {
11519                 priv->sys_config.accept_all_data_frames = 1;
11520                 priv->sys_config.accept_non_directed_frames = 1;
11521                 priv->sys_config.accept_all_mgmt_bcpr = 1;
11522                 priv->sys_config.accept_all_mgmt_frames = 1;
11523
11524                 ipw_send_system_config(priv);
11525         }
11526
11527         return 0;
11528 }
11529
11530 static int ipw_prom_stop(struct net_device *dev)
11531 {
11532         struct ipw_prom_priv *prom_priv = libipw_priv(dev);
11533         struct ipw_priv *priv = prom_priv->priv;
11534
11535         IPW_DEBUG_INFO("prom dev->stop\n");
11536
11537         if (priv->ieee->iw_mode != IW_MODE_MONITOR) {
11538                 priv->sys_config.accept_all_data_frames = 0;
11539                 priv->sys_config.accept_non_directed_frames = 0;
11540                 priv->sys_config.accept_all_mgmt_bcpr = 0;
11541                 priv->sys_config.accept_all_mgmt_frames = 0;
11542
11543                 ipw_send_system_config(priv);
11544         }
11545
11546         return 0;
11547 }
11548
11549 static netdev_tx_t ipw_prom_hard_start_xmit(struct sk_buff *skb,
11550                                             struct net_device *dev)
11551 {
11552         IPW_DEBUG_INFO("prom dev->xmit\n");
11553         dev_kfree_skb(skb);
11554         return NETDEV_TX_OK;
11555 }
11556
11557 static const struct net_device_ops ipw_prom_netdev_ops = {
11558         .ndo_open               = ipw_prom_open,
11559         .ndo_stop               = ipw_prom_stop,
11560         .ndo_start_xmit         = ipw_prom_hard_start_xmit,
11561         .ndo_set_mac_address    = eth_mac_addr,
11562         .ndo_validate_addr      = eth_validate_addr,
11563 };
11564
11565 static int ipw_prom_alloc(struct ipw_priv *priv)
11566 {
11567         int rc = 0;
11568
11569         if (priv->prom_net_dev)
11570                 return -EPERM;
11571
11572         priv->prom_net_dev = alloc_libipw(sizeof(struct ipw_prom_priv), 1);
11573         if (priv->prom_net_dev == NULL)
11574                 return -ENOMEM;
11575
11576         priv->prom_priv = libipw_priv(priv->prom_net_dev);
11577         priv->prom_priv->ieee = netdev_priv(priv->prom_net_dev);
11578         priv->prom_priv->priv = priv;
11579
11580         strcpy(priv->prom_net_dev->name, "rtap%d");
11581         memcpy(priv->prom_net_dev->dev_addr, priv->mac_addr, ETH_ALEN);
11582
11583         priv->prom_net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
11584         priv->prom_net_dev->netdev_ops = &ipw_prom_netdev_ops;
11585
11586         priv->prom_net_dev->min_mtu = 68;
11587         priv->prom_net_dev->max_mtu = LIBIPW_DATA_LEN;
11588
11589         priv->prom_priv->ieee->iw_mode = IW_MODE_MONITOR;
11590         SET_NETDEV_DEV(priv->prom_net_dev, &priv->pci_dev->dev);
11591
11592         rc = register_netdev(priv->prom_net_dev);
11593         if (rc) {
11594                 free_libipw(priv->prom_net_dev, 1);
11595                 priv->prom_net_dev = NULL;
11596                 return rc;
11597         }
11598
11599         return 0;
11600 }
11601
11602 static void ipw_prom_free(struct ipw_priv *priv)
11603 {
11604         if (!priv->prom_net_dev)
11605                 return;
11606
11607         unregister_netdev(priv->prom_net_dev);
11608         free_libipw(priv->prom_net_dev, 1);
11609
11610         priv->prom_net_dev = NULL;
11611 }
11612
11613 #endif
11614
11615 static const struct net_device_ops ipw_netdev_ops = {
11616         .ndo_open               = ipw_net_open,
11617         .ndo_stop               = ipw_net_stop,
11618         .ndo_set_rx_mode        = ipw_net_set_multicast_list,
11619         .ndo_set_mac_address    = ipw_net_set_mac_address,
11620         .ndo_start_xmit         = libipw_xmit,
11621         .ndo_validate_addr      = eth_validate_addr,
11622 };
11623
11624 static int ipw_pci_probe(struct pci_dev *pdev,
11625                                    const struct pci_device_id *ent)
11626 {
11627         int err = 0;
11628         struct net_device *net_dev;
11629         void __iomem *base;
11630         u32 length, val;
11631         struct ipw_priv *priv;
11632         int i;
11633
11634         net_dev = alloc_libipw(sizeof(struct ipw_priv), 0);
11635         if (net_dev == NULL) {
11636                 err = -ENOMEM;
11637                 goto out;
11638         }
11639
11640         priv = libipw_priv(net_dev);
11641         priv->ieee = netdev_priv(net_dev);
11642
11643         priv->net_dev = net_dev;
11644         priv->pci_dev = pdev;
11645         ipw_debug_level = debug;
11646         spin_lock_init(&priv->irq_lock);
11647         spin_lock_init(&priv->lock);
11648         for (i = 0; i < IPW_IBSS_MAC_HASH_SIZE; i++)
11649                 INIT_LIST_HEAD(&priv->ibss_mac_hash[i]);
11650
11651         mutex_init(&priv->mutex);
11652         if (pci_enable_device(pdev)) {
11653                 err = -ENODEV;
11654                 goto out_free_libipw;
11655         }
11656
11657         pci_set_master(pdev);
11658
11659         err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
11660         if (!err)
11661                 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
11662         if (err) {
11663                 printk(KERN_WARNING DRV_NAME ": No suitable DMA available.\n");
11664                 goto out_pci_disable_device;
11665         }
11666
11667         pci_set_drvdata(pdev, priv);
11668
11669         err = pci_request_regions(pdev, DRV_NAME);
11670         if (err)
11671                 goto out_pci_disable_device;
11672
11673         /* We disable the RETRY_TIMEOUT register (0x41) to keep
11674          * PCI Tx retries from interfering with C3 CPU state */
11675         pci_read_config_dword(pdev, 0x40, &val);
11676         if ((val & 0x0000ff00) != 0)
11677                 pci_write_config_dword(pdev, 0x40, val & 0xffff00ff);
11678
11679         length = pci_resource_len(pdev, 0);
11680         priv->hw_len = length;
11681
11682         base = pci_ioremap_bar(pdev, 0);
11683         if (!base) {
11684                 err = -ENODEV;
11685                 goto out_pci_release_regions;
11686         }
11687
11688         priv->hw_base = base;
11689         IPW_DEBUG_INFO("pci_resource_len = 0x%08x\n", length);
11690         IPW_DEBUG_INFO("pci_resource_base = %p\n", base);
11691
11692         err = ipw_setup_deferred_work(priv);
11693         if (err) {
11694                 IPW_ERROR("Unable to setup deferred work\n");
11695                 goto out_iounmap;
11696         }
11697
11698         ipw_sw_reset(priv, 1);
11699
11700         err = request_irq(pdev->irq, ipw_isr, IRQF_SHARED, DRV_NAME, priv);
11701         if (err) {
11702                 IPW_ERROR("Error allocating IRQ %d\n", pdev->irq);
11703                 goto out_iounmap;
11704         }
11705
11706         SET_NETDEV_DEV(net_dev, &pdev->dev);
11707
11708         mutex_lock(&priv->mutex);
11709
11710         priv->ieee->hard_start_xmit = ipw_net_hard_start_xmit;
11711         priv->ieee->set_security = shim__set_security;
11712         priv->ieee->is_queue_full = ipw_net_is_queue_full;
11713
11714 #ifdef CONFIG_IPW2200_QOS
11715         priv->ieee->is_qos_active = ipw_is_qos_active;
11716         priv->ieee->handle_probe_response = ipw_handle_beacon;
11717         priv->ieee->handle_beacon = ipw_handle_probe_response;
11718         priv->ieee->handle_assoc_response = ipw_handle_assoc_response;
11719 #endif                          /* CONFIG_IPW2200_QOS */
11720
11721         priv->ieee->perfect_rssi = -20;
11722         priv->ieee->worst_rssi = -85;
11723
11724         net_dev->netdev_ops = &ipw_netdev_ops;
11725         priv->wireless_data.spy_data = &priv->ieee->spy_data;
11726         net_dev->wireless_data = &priv->wireless_data;
11727         net_dev->wireless_handlers = &ipw_wx_handler_def;
11728         net_dev->ethtool_ops = &ipw_ethtool_ops;
11729
11730         net_dev->min_mtu = 68;
11731         net_dev->max_mtu = LIBIPW_DATA_LEN;
11732
11733         err = sysfs_create_group(&pdev->dev.kobj, &ipw_attribute_group);
11734         if (err) {
11735                 IPW_ERROR("failed to create sysfs device attributes\n");
11736                 mutex_unlock(&priv->mutex);
11737                 goto out_release_irq;
11738         }
11739
11740         if (ipw_up(priv)) {
11741                 mutex_unlock(&priv->mutex);
11742                 err = -EIO;
11743                 goto out_remove_sysfs;
11744         }
11745
11746         mutex_unlock(&priv->mutex);
11747
11748         err = ipw_wdev_init(net_dev);
11749         if (err) {
11750                 IPW_ERROR("failed to register wireless device\n");
11751                 goto out_remove_sysfs;
11752         }
11753
11754         err = register_netdev(net_dev);
11755         if (err) {
11756                 IPW_ERROR("failed to register network device\n");
11757                 goto out_unregister_wiphy;
11758         }
11759
11760 #ifdef CONFIG_IPW2200_PROMISCUOUS
11761         if (rtap_iface) {
11762                 err = ipw_prom_alloc(priv);
11763                 if (err) {
11764                         IPW_ERROR("Failed to register promiscuous network "
11765                                   "device (error %d).\n", err);
11766                         unregister_netdev(priv->net_dev);
11767                         goto out_unregister_wiphy;
11768                 }
11769         }
11770 #endif
11771
11772         printk(KERN_INFO DRV_NAME ": Detected geography %s (%d 802.11bg "
11773                "channels, %d 802.11a channels)\n",
11774                priv->ieee->geo.name, priv->ieee->geo.bg_channels,
11775                priv->ieee->geo.a_channels);
11776
11777         return 0;
11778
11779       out_unregister_wiphy:
11780         wiphy_unregister(priv->ieee->wdev.wiphy);
11781         kfree(priv->ieee->a_band.channels);
11782         kfree(priv->ieee->bg_band.channels);
11783       out_remove_sysfs:
11784         sysfs_remove_group(&pdev->dev.kobj, &ipw_attribute_group);
11785       out_release_irq:
11786         free_irq(pdev->irq, priv);
11787       out_iounmap:
11788         iounmap(priv->hw_base);
11789       out_pci_release_regions:
11790         pci_release_regions(pdev);
11791       out_pci_disable_device:
11792         pci_disable_device(pdev);
11793       out_free_libipw:
11794         free_libipw(priv->net_dev, 0);
11795       out:
11796         return err;
11797 }
11798
11799 static void ipw_pci_remove(struct pci_dev *pdev)
11800 {
11801         struct ipw_priv *priv = pci_get_drvdata(pdev);
11802         struct list_head *p, *q;
11803         int i;
11804
11805         if (!priv)
11806                 return;
11807
11808         mutex_lock(&priv->mutex);
11809
11810         priv->status |= STATUS_EXIT_PENDING;
11811         ipw_down(priv);
11812         sysfs_remove_group(&pdev->dev.kobj, &ipw_attribute_group);
11813
11814         mutex_unlock(&priv->mutex);
11815
11816         unregister_netdev(priv->net_dev);
11817
11818         if (priv->rxq) {
11819                 ipw_rx_queue_free(priv, priv->rxq);
11820                 priv->rxq = NULL;
11821         }
11822         ipw_tx_queue_free(priv);
11823
11824         if (priv->cmdlog) {
11825                 kfree(priv->cmdlog);
11826                 priv->cmdlog = NULL;
11827         }
11828
11829         /* make sure all works are inactive */
11830         cancel_delayed_work_sync(&priv->adhoc_check);
11831         cancel_work_sync(&priv->associate);
11832         cancel_work_sync(&priv->disassociate);
11833         cancel_work_sync(&priv->system_config);
11834         cancel_work_sync(&priv->rx_replenish);
11835         cancel_work_sync(&priv->adapter_restart);
11836         cancel_delayed_work_sync(&priv->rf_kill);
11837         cancel_work_sync(&priv->up);
11838         cancel_work_sync(&priv->down);
11839         cancel_delayed_work_sync(&priv->request_scan);
11840         cancel_delayed_work_sync(&priv->request_direct_scan);
11841         cancel_delayed_work_sync(&priv->request_passive_scan);
11842         cancel_delayed_work_sync(&priv->scan_event);
11843         cancel_delayed_work_sync(&priv->gather_stats);
11844         cancel_work_sync(&priv->abort_scan);
11845         cancel_work_sync(&priv->roam);
11846         cancel_delayed_work_sync(&priv->scan_check);
11847         cancel_work_sync(&priv->link_up);
11848         cancel_work_sync(&priv->link_down);
11849         cancel_delayed_work_sync(&priv->led_link_on);
11850         cancel_delayed_work_sync(&priv->led_link_off);
11851         cancel_delayed_work_sync(&priv->led_act_off);
11852         cancel_work_sync(&priv->merge_networks);
11853
11854         /* Free MAC hash list for ADHOC */
11855         for (i = 0; i < IPW_IBSS_MAC_HASH_SIZE; i++) {
11856                 list_for_each_safe(p, q, &priv->ibss_mac_hash[i]) {
11857                         list_del(p);
11858                         kfree(list_entry(p, struct ipw_ibss_seq, list));
11859                 }
11860         }
11861
11862         kfree(priv->error);
11863         priv->error = NULL;
11864
11865 #ifdef CONFIG_IPW2200_PROMISCUOUS
11866         ipw_prom_free(priv);
11867 #endif
11868
11869         free_irq(pdev->irq, priv);
11870         iounmap(priv->hw_base);
11871         pci_release_regions(pdev);
11872         pci_disable_device(pdev);
11873         /* wiphy_unregister needs to be here, before free_libipw */
11874         wiphy_unregister(priv->ieee->wdev.wiphy);
11875         kfree(priv->ieee->a_band.channels);
11876         kfree(priv->ieee->bg_band.channels);
11877         free_libipw(priv->net_dev, 0);
11878         free_firmware();
11879 }
11880
11881 #ifdef CONFIG_PM
11882 static int ipw_pci_suspend(struct pci_dev *pdev, pm_message_t state)
11883 {
11884         struct ipw_priv *priv = pci_get_drvdata(pdev);
11885         struct net_device *dev = priv->net_dev;
11886
11887         printk(KERN_INFO "%s: Going into suspend...\n", dev->name);
11888
11889         /* Take down the device; powers it off, etc. */
11890         ipw_down(priv);
11891
11892         /* Remove the PRESENT state of the device */
11893         netif_device_detach(dev);
11894
11895         pci_save_state(pdev);
11896         pci_disable_device(pdev);
11897         pci_set_power_state(pdev, pci_choose_state(pdev, state));
11898
11899         priv->suspend_at = get_seconds();
11900
11901         return 0;
11902 }
11903
11904 static int ipw_pci_resume(struct pci_dev *pdev)
11905 {
11906         struct ipw_priv *priv = pci_get_drvdata(pdev);
11907         struct net_device *dev = priv->net_dev;
11908         int err;
11909         u32 val;
11910
11911         printk(KERN_INFO "%s: Coming out of suspend...\n", dev->name);
11912
11913         pci_set_power_state(pdev, PCI_D0);
11914         err = pci_enable_device(pdev);
11915         if (err) {
11916                 printk(KERN_ERR "%s: pci_enable_device failed on resume\n",
11917                        dev->name);
11918                 return err;
11919         }
11920         pci_restore_state(pdev);
11921
11922         /*
11923          * Suspend/Resume resets the PCI configuration space, so we have to
11924          * re-disable the RETRY_TIMEOUT register (0x41) to keep PCI Tx retries
11925          * from interfering with C3 CPU state. pci_restore_state won't help
11926          * here since it only restores the first 64 bytes pci config header.
11927          */
11928         pci_read_config_dword(pdev, 0x40, &val);
11929         if ((val & 0x0000ff00) != 0)
11930                 pci_write_config_dword(pdev, 0x40, val & 0xffff00ff);
11931
11932         /* Set the device back into the PRESENT state; this will also wake
11933          * the queue of needed */
11934         netif_device_attach(dev);
11935
11936         priv->suspend_time = get_seconds() - priv->suspend_at;
11937
11938         /* Bring the device back up */
11939         schedule_work(&priv->up);
11940
11941         return 0;
11942 }
11943 #endif
11944
11945 static void ipw_pci_shutdown(struct pci_dev *pdev)
11946 {
11947         struct ipw_priv *priv = pci_get_drvdata(pdev);
11948
11949         /* Take down the device; powers it off, etc. */
11950         ipw_down(priv);
11951
11952         pci_disable_device(pdev);
11953 }
11954
11955 /* driver initialization stuff */
11956 static struct pci_driver ipw_driver = {
11957         .name = DRV_NAME,
11958         .id_table = card_ids,
11959         .probe = ipw_pci_probe,
11960         .remove = ipw_pci_remove,
11961 #ifdef CONFIG_PM
11962         .suspend = ipw_pci_suspend,
11963         .resume = ipw_pci_resume,
11964 #endif
11965         .shutdown = ipw_pci_shutdown,
11966 };
11967
11968 static int __init ipw_init(void)
11969 {
11970         int ret;
11971
11972         printk(KERN_INFO DRV_NAME ": " DRV_DESCRIPTION ", " DRV_VERSION "\n");
11973         printk(KERN_INFO DRV_NAME ": " DRV_COPYRIGHT "\n");
11974
11975         ret = pci_register_driver(&ipw_driver);
11976         if (ret) {
11977                 IPW_ERROR("Unable to initialize PCI module\n");
11978                 return ret;
11979         }
11980
11981         ret = driver_create_file(&ipw_driver.driver, &driver_attr_debug_level);
11982         if (ret) {
11983                 IPW_ERROR("Unable to create driver sysfs file\n");
11984                 pci_unregister_driver(&ipw_driver);
11985                 return ret;
11986         }
11987
11988         return ret;
11989 }
11990
11991 static void __exit ipw_exit(void)
11992 {
11993         driver_remove_file(&ipw_driver.driver, &driver_attr_debug_level);
11994         pci_unregister_driver(&ipw_driver);
11995 }
11996
11997 module_param(disable, int, 0444);
11998 MODULE_PARM_DESC(disable, "manually disable the radio (default 0 [radio on])");
11999
12000 module_param(associate, int, 0444);
12001 MODULE_PARM_DESC(associate, "auto associate when scanning (default off)");
12002
12003 module_param(auto_create, int, 0444);
12004 MODULE_PARM_DESC(auto_create, "auto create adhoc network (default on)");
12005
12006 module_param_named(led, led_support, int, 0444);
12007 MODULE_PARM_DESC(led, "enable led control on some systems (default 1 on)");
12008
12009 module_param(debug, int, 0444);
12010 MODULE_PARM_DESC(debug, "debug output mask");
12011
12012 module_param_named(channel, default_channel, int, 0444);
12013 MODULE_PARM_DESC(channel, "channel to limit associate to (default 0 [ANY])");
12014
12015 #ifdef CONFIG_IPW2200_PROMISCUOUS
12016 module_param(rtap_iface, int, 0444);
12017 MODULE_PARM_DESC(rtap_iface, "create the rtap interface (1 - create, default 0)");
12018 #endif
12019
12020 #ifdef CONFIG_IPW2200_QOS
12021 module_param(qos_enable, int, 0444);
12022 MODULE_PARM_DESC(qos_enable, "enable all QoS functionalitis");
12023
12024 module_param(qos_burst_enable, int, 0444);
12025 MODULE_PARM_DESC(qos_burst_enable, "enable QoS burst mode");
12026
12027 module_param(qos_no_ack_mask, int, 0444);
12028 MODULE_PARM_DESC(qos_no_ack_mask, "mask Tx_Queue to no ack");
12029
12030 module_param(burst_duration_CCK, int, 0444);
12031 MODULE_PARM_DESC(burst_duration_CCK, "set CCK burst value");
12032
12033 module_param(burst_duration_OFDM, int, 0444);
12034 MODULE_PARM_DESC(burst_duration_OFDM, "set OFDM burst value");
12035 #endif                          /* CONFIG_IPW2200_QOS */
12036
12037 #ifdef CONFIG_IPW2200_MONITOR
12038 module_param_named(mode, network_mode, int, 0444);
12039 MODULE_PARM_DESC(mode, "network mode (0=BSS,1=IBSS,2=Monitor)");
12040 #else
12041 module_param_named(mode, network_mode, int, 0444);
12042 MODULE_PARM_DESC(mode, "network mode (0=BSS,1=IBSS)");
12043 #endif
12044
12045 module_param(bt_coexist, int, 0444);
12046 MODULE_PARM_DESC(bt_coexist, "enable bluetooth coexistence (default off)");
12047
12048 module_param(hwcrypto, int, 0444);
12049 MODULE_PARM_DESC(hwcrypto, "enable hardware crypto (default off)");
12050
12051 module_param(cmdlog, int, 0444);
12052 MODULE_PARM_DESC(cmdlog,
12053                  "allocate a ring buffer for logging firmware commands");
12054
12055 module_param(roaming, int, 0444);
12056 MODULE_PARM_DESC(roaming, "enable roaming support (default on)");
12057
12058 module_param(antenna, int, 0444);
12059 MODULE_PARM_DESC(antenna, "select antenna 1=Main, 3=Aux, default 0 [both], 2=slow_diversity (choose the one with lower background noise)");
12060
12061 module_exit(ipw_exit);
12062 module_init(ipw_init);