Linux-libre 3.17.4-gnu
[librecmc/linux-libre.git] / drivers / net / ethernet / sfc / tx.c
1 /****************************************************************************
2  * Driver for Solarflare network controllers and boards
3  * Copyright 2005-2006 Fen Systems Ltd.
4  * Copyright 2005-2013 Solarflare Communications Inc.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 as published
8  * by the Free Software Foundation, incorporated herein by reference.
9  */
10
11 #include <linux/pci.h>
12 #include <linux/tcp.h>
13 #include <linux/ip.h>
14 #include <linux/in.h>
15 #include <linux/ipv6.h>
16 #include <linux/slab.h>
17 #include <net/ipv6.h>
18 #include <linux/if_ether.h>
19 #include <linux/highmem.h>
20 #include <linux/cache.h>
21 #include "net_driver.h"
22 #include "efx.h"
23 #include "io.h"
24 #include "nic.h"
25 #include "workarounds.h"
26 #include "ef10_regs.h"
27
28 #ifdef EFX_USE_PIO
29
30 #define EFX_PIOBUF_SIZE_MAX ER_DZ_TX_PIOBUF_SIZE
31 #define EFX_PIOBUF_SIZE_DEF ALIGN(256, L1_CACHE_BYTES)
32 unsigned int efx_piobuf_size __read_mostly = EFX_PIOBUF_SIZE_DEF;
33
34 #endif /* EFX_USE_PIO */
35
36 static inline unsigned int
37 efx_tx_queue_get_insert_index(const struct efx_tx_queue *tx_queue)
38 {
39         return tx_queue->insert_count & tx_queue->ptr_mask;
40 }
41
42 static inline struct efx_tx_buffer *
43 __efx_tx_queue_get_insert_buffer(const struct efx_tx_queue *tx_queue)
44 {
45         return &tx_queue->buffer[efx_tx_queue_get_insert_index(tx_queue)];
46 }
47
48 static inline struct efx_tx_buffer *
49 efx_tx_queue_get_insert_buffer(const struct efx_tx_queue *tx_queue)
50 {
51         struct efx_tx_buffer *buffer =
52                 __efx_tx_queue_get_insert_buffer(tx_queue);
53
54         EFX_BUG_ON_PARANOID(buffer->len);
55         EFX_BUG_ON_PARANOID(buffer->flags);
56         EFX_BUG_ON_PARANOID(buffer->unmap_len);
57
58         return buffer;
59 }
60
61 static void efx_dequeue_buffer(struct efx_tx_queue *tx_queue,
62                                struct efx_tx_buffer *buffer,
63                                unsigned int *pkts_compl,
64                                unsigned int *bytes_compl)
65 {
66         if (buffer->unmap_len) {
67                 struct device *dma_dev = &tx_queue->efx->pci_dev->dev;
68                 dma_addr_t unmap_addr = buffer->dma_addr - buffer->dma_offset;
69                 if (buffer->flags & EFX_TX_BUF_MAP_SINGLE)
70                         dma_unmap_single(dma_dev, unmap_addr, buffer->unmap_len,
71                                          DMA_TO_DEVICE);
72                 else
73                         dma_unmap_page(dma_dev, unmap_addr, buffer->unmap_len,
74                                        DMA_TO_DEVICE);
75                 buffer->unmap_len = 0;
76         }
77
78         if (buffer->flags & EFX_TX_BUF_SKB) {
79                 (*pkts_compl)++;
80                 (*bytes_compl) += buffer->skb->len;
81                 dev_kfree_skb_any((struct sk_buff *) buffer->skb);
82                 netif_vdbg(tx_queue->efx, tx_done, tx_queue->efx->net_dev,
83                            "TX queue %d transmission id %x complete\n",
84                            tx_queue->queue, tx_queue->read_count);
85         } else if (buffer->flags & EFX_TX_BUF_HEAP) {
86                 kfree(buffer->heap_buf);
87         }
88
89         buffer->len = 0;
90         buffer->flags = 0;
91 }
92
93 static int efx_enqueue_skb_tso(struct efx_tx_queue *tx_queue,
94                                struct sk_buff *skb);
95
96 static inline unsigned
97 efx_max_tx_len(struct efx_nic *efx, dma_addr_t dma_addr)
98 {
99         /* Depending on the NIC revision, we can use descriptor
100          * lengths up to 8K or 8K-1.  However, since PCI Express
101          * devices must split read requests at 4K boundaries, there is
102          * little benefit from using descriptors that cross those
103          * boundaries and we keep things simple by not doing so.
104          */
105         unsigned len = (~dma_addr & (EFX_PAGE_SIZE - 1)) + 1;
106
107         /* Work around hardware bug for unaligned buffers. */
108         if (EFX_WORKAROUND_5391(efx) && (dma_addr & 0xf))
109                 len = min_t(unsigned, len, 512 - (dma_addr & 0xf));
110
111         return len;
112 }
113
114 unsigned int efx_tx_max_skb_descs(struct efx_nic *efx)
115 {
116         /* Header and payload descriptor for each output segment, plus
117          * one for every input fragment boundary within a segment
118          */
119         unsigned int max_descs = EFX_TSO_MAX_SEGS * 2 + MAX_SKB_FRAGS;
120
121         /* Possibly one more per segment for the alignment workaround,
122          * or for option descriptors
123          */
124         if (EFX_WORKAROUND_5391(efx) || efx_nic_rev(efx) >= EFX_REV_HUNT_A0)
125                 max_descs += EFX_TSO_MAX_SEGS;
126
127         /* Possibly more for PCIe page boundaries within input fragments */
128         if (PAGE_SIZE > EFX_PAGE_SIZE)
129                 max_descs += max_t(unsigned int, MAX_SKB_FRAGS,
130                                    DIV_ROUND_UP(GSO_MAX_SIZE, EFX_PAGE_SIZE));
131
132         return max_descs;
133 }
134
135 /* Get partner of a TX queue, seen as part of the same net core queue */
136 static struct efx_tx_queue *efx_tx_queue_partner(struct efx_tx_queue *tx_queue)
137 {
138         if (tx_queue->queue & EFX_TXQ_TYPE_OFFLOAD)
139                 return tx_queue - EFX_TXQ_TYPE_OFFLOAD;
140         else
141                 return tx_queue + EFX_TXQ_TYPE_OFFLOAD;
142 }
143
144 static void efx_tx_maybe_stop_queue(struct efx_tx_queue *txq1)
145 {
146         /* We need to consider both queues that the net core sees as one */
147         struct efx_tx_queue *txq2 = efx_tx_queue_partner(txq1);
148         struct efx_nic *efx = txq1->efx;
149         unsigned int fill_level;
150
151         fill_level = max(txq1->insert_count - txq1->old_read_count,
152                          txq2->insert_count - txq2->old_read_count);
153         if (likely(fill_level < efx->txq_stop_thresh))
154                 return;
155
156         /* We used the stale old_read_count above, which gives us a
157          * pessimistic estimate of the fill level (which may even
158          * validly be >= efx->txq_entries).  Now try again using
159          * read_count (more likely to be a cache miss).
160          *
161          * If we read read_count and then conditionally stop the
162          * queue, it is possible for the completion path to race with
163          * us and complete all outstanding descriptors in the middle,
164          * after which there will be no more completions to wake it.
165          * Therefore we stop the queue first, then read read_count
166          * (with a memory barrier to ensure the ordering), then
167          * restart the queue if the fill level turns out to be low
168          * enough.
169          */
170         netif_tx_stop_queue(txq1->core_txq);
171         smp_mb();
172         txq1->old_read_count = ACCESS_ONCE(txq1->read_count);
173         txq2->old_read_count = ACCESS_ONCE(txq2->read_count);
174
175         fill_level = max(txq1->insert_count - txq1->old_read_count,
176                          txq2->insert_count - txq2->old_read_count);
177         EFX_BUG_ON_PARANOID(fill_level >= efx->txq_entries);
178         if (likely(fill_level < efx->txq_stop_thresh)) {
179                 smp_mb();
180                 if (likely(!efx->loopback_selftest))
181                         netif_tx_start_queue(txq1->core_txq);
182         }
183 }
184
185 #ifdef EFX_USE_PIO
186
187 struct efx_short_copy_buffer {
188         int used;
189         u8 buf[L1_CACHE_BYTES];
190 };
191
192 /* Copy to PIO, respecting that writes to PIO buffers must be dword aligned.
193  * Advances piobuf pointer. Leaves additional data in the copy buffer.
194  */
195 static void efx_memcpy_toio_aligned(struct efx_nic *efx, u8 __iomem **piobuf,
196                                     u8 *data, int len,
197                                     struct efx_short_copy_buffer *copy_buf)
198 {
199         int block_len = len & ~(sizeof(copy_buf->buf) - 1);
200
201         __iowrite64_copy(*piobuf, data, block_len >> 3);
202         *piobuf += block_len;
203         len -= block_len;
204
205         if (len) {
206                 data += block_len;
207                 BUG_ON(copy_buf->used);
208                 BUG_ON(len > sizeof(copy_buf->buf));
209                 memcpy(copy_buf->buf, data, len);
210                 copy_buf->used = len;
211         }
212 }
213
214 /* Copy to PIO, respecting dword alignment, popping data from copy buffer first.
215  * Advances piobuf pointer. Leaves additional data in the copy buffer.
216  */
217 static void efx_memcpy_toio_aligned_cb(struct efx_nic *efx, u8 __iomem **piobuf,
218                                        u8 *data, int len,
219                                        struct efx_short_copy_buffer *copy_buf)
220 {
221         if (copy_buf->used) {
222                 /* if the copy buffer is partially full, fill it up and write */
223                 int copy_to_buf =
224                         min_t(int, sizeof(copy_buf->buf) - copy_buf->used, len);
225
226                 memcpy(copy_buf->buf + copy_buf->used, data, copy_to_buf);
227                 copy_buf->used += copy_to_buf;
228
229                 /* if we didn't fill it up then we're done for now */
230                 if (copy_buf->used < sizeof(copy_buf->buf))
231                         return;
232
233                 __iowrite64_copy(*piobuf, copy_buf->buf,
234                                  sizeof(copy_buf->buf) >> 3);
235                 *piobuf += sizeof(copy_buf->buf);
236                 data += copy_to_buf;
237                 len -= copy_to_buf;
238                 copy_buf->used = 0;
239         }
240
241         efx_memcpy_toio_aligned(efx, piobuf, data, len, copy_buf);
242 }
243
244 static void efx_flush_copy_buffer(struct efx_nic *efx, u8 __iomem *piobuf,
245                                   struct efx_short_copy_buffer *copy_buf)
246 {
247         /* if there's anything in it, write the whole buffer, including junk */
248         if (copy_buf->used)
249                 __iowrite64_copy(piobuf, copy_buf->buf,
250                                  sizeof(copy_buf->buf) >> 3);
251 }
252
253 /* Traverse skb structure and copy fragments in to PIO buffer.
254  * Advances piobuf pointer.
255  */
256 static void efx_skb_copy_bits_to_pio(struct efx_nic *efx, struct sk_buff *skb,
257                                      u8 __iomem **piobuf,
258                                      struct efx_short_copy_buffer *copy_buf)
259 {
260         int i;
261
262         efx_memcpy_toio_aligned(efx, piobuf, skb->data, skb_headlen(skb),
263                                 copy_buf);
264
265         for (i = 0; i < skb_shinfo(skb)->nr_frags; ++i) {
266                 skb_frag_t *f = &skb_shinfo(skb)->frags[i];
267                 u8 *vaddr;
268
269                 vaddr = kmap_atomic(skb_frag_page(f));
270
271                 efx_memcpy_toio_aligned_cb(efx, piobuf, vaddr + f->page_offset,
272                                            skb_frag_size(f), copy_buf);
273                 kunmap_atomic(vaddr);
274         }
275
276         EFX_BUG_ON_PARANOID(skb_shinfo(skb)->frag_list);
277 }
278
279 static struct efx_tx_buffer *
280 efx_enqueue_skb_pio(struct efx_tx_queue *tx_queue, struct sk_buff *skb)
281 {
282         struct efx_tx_buffer *buffer =
283                 efx_tx_queue_get_insert_buffer(tx_queue);
284         u8 __iomem *piobuf = tx_queue->piobuf;
285
286         /* Copy to PIO buffer. Ensure the writes are padded to the end
287          * of a cache line, as this is required for write-combining to be
288          * effective on at least x86.
289          */
290
291         if (skb_shinfo(skb)->nr_frags) {
292                 /* The size of the copy buffer will ensure all writes
293                  * are the size of a cache line.
294                  */
295                 struct efx_short_copy_buffer copy_buf;
296
297                 copy_buf.used = 0;
298
299                 efx_skb_copy_bits_to_pio(tx_queue->efx, skb,
300                                          &piobuf, &copy_buf);
301                 efx_flush_copy_buffer(tx_queue->efx, piobuf, &copy_buf);
302         } else {
303                 /* Pad the write to the size of a cache line.
304                  * We can do this because we know the skb_shared_info sruct is
305                  * after the source, and the destination buffer is big enough.
306                  */
307                 BUILD_BUG_ON(L1_CACHE_BYTES >
308                              SKB_DATA_ALIGN(sizeof(struct skb_shared_info)));
309                 __iowrite64_copy(tx_queue->piobuf, skb->data,
310                                  ALIGN(skb->len, L1_CACHE_BYTES) >> 3);
311         }
312
313         EFX_POPULATE_QWORD_5(buffer->option,
314                              ESF_DZ_TX_DESC_IS_OPT, 1,
315                              ESF_DZ_TX_OPTION_TYPE, ESE_DZ_TX_OPTION_DESC_PIO,
316                              ESF_DZ_TX_PIO_CONT, 0,
317                              ESF_DZ_TX_PIO_BYTE_CNT, skb->len,
318                              ESF_DZ_TX_PIO_BUF_ADDR,
319                              tx_queue->piobuf_offset);
320         ++tx_queue->pio_packets;
321         ++tx_queue->insert_count;
322         return buffer;
323 }
324 #endif /* EFX_USE_PIO */
325
326 /*
327  * Add a socket buffer to a TX queue
328  *
329  * This maps all fragments of a socket buffer for DMA and adds them to
330  * the TX queue.  The queue's insert pointer will be incremented by
331  * the number of fragments in the socket buffer.
332  *
333  * If any DMA mapping fails, any mapped fragments will be unmapped,
334  * the queue's insert pointer will be restored to its original value.
335  *
336  * This function is split out from efx_hard_start_xmit to allow the
337  * loopback test to direct packets via specific TX queues.
338  *
339  * Returns NETDEV_TX_OK.
340  * You must hold netif_tx_lock() to call this function.
341  */
342 netdev_tx_t efx_enqueue_skb(struct efx_tx_queue *tx_queue, struct sk_buff *skb)
343 {
344         struct efx_nic *efx = tx_queue->efx;
345         struct device *dma_dev = &efx->pci_dev->dev;
346         struct efx_tx_buffer *buffer;
347         skb_frag_t *fragment;
348         unsigned int len, unmap_len = 0;
349         dma_addr_t dma_addr, unmap_addr = 0;
350         unsigned int dma_len;
351         unsigned short dma_flags;
352         int i = 0;
353
354         EFX_BUG_ON_PARANOID(tx_queue->write_count != tx_queue->insert_count);
355
356         if (skb_shinfo(skb)->gso_size)
357                 return efx_enqueue_skb_tso(tx_queue, skb);
358
359         /* Get size of the initial fragment */
360         len = skb_headlen(skb);
361
362         /* Pad if necessary */
363         if (EFX_WORKAROUND_15592(efx) && skb->len <= 32) {
364                 EFX_BUG_ON_PARANOID(skb->data_len);
365                 len = 32 + 1;
366                 if (skb_pad(skb, len - skb->len))
367                         return NETDEV_TX_OK;
368         }
369
370         /* Consider using PIO for short packets */
371 #ifdef EFX_USE_PIO
372         if (skb->len <= efx_piobuf_size && tx_queue->piobuf &&
373             efx_nic_tx_is_empty(tx_queue) &&
374             efx_nic_tx_is_empty(efx_tx_queue_partner(tx_queue))) {
375                 buffer = efx_enqueue_skb_pio(tx_queue, skb);
376                 dma_flags = EFX_TX_BUF_OPTION;
377                 goto finish_packet;
378         }
379 #endif
380
381         /* Map for DMA.  Use dma_map_single rather than dma_map_page
382          * since this is more efficient on machines with sparse
383          * memory.
384          */
385         dma_flags = EFX_TX_BUF_MAP_SINGLE;
386         dma_addr = dma_map_single(dma_dev, skb->data, len, PCI_DMA_TODEVICE);
387
388         /* Process all fragments */
389         while (1) {
390                 if (unlikely(dma_mapping_error(dma_dev, dma_addr)))
391                         goto dma_err;
392
393                 /* Store fields for marking in the per-fragment final
394                  * descriptor */
395                 unmap_len = len;
396                 unmap_addr = dma_addr;
397
398                 /* Add to TX queue, splitting across DMA boundaries */
399                 do {
400                         buffer = efx_tx_queue_get_insert_buffer(tx_queue);
401
402                         dma_len = efx_max_tx_len(efx, dma_addr);
403                         if (likely(dma_len >= len))
404                                 dma_len = len;
405
406                         /* Fill out per descriptor fields */
407                         buffer->len = dma_len;
408                         buffer->dma_addr = dma_addr;
409                         buffer->flags = EFX_TX_BUF_CONT;
410                         len -= dma_len;
411                         dma_addr += dma_len;
412                         ++tx_queue->insert_count;
413                 } while (len);
414
415                 /* Transfer ownership of the unmapping to the final buffer */
416                 buffer->flags = EFX_TX_BUF_CONT | dma_flags;
417                 buffer->unmap_len = unmap_len;
418                 buffer->dma_offset = buffer->dma_addr - unmap_addr;
419                 unmap_len = 0;
420
421                 /* Get address and size of next fragment */
422                 if (i >= skb_shinfo(skb)->nr_frags)
423                         break;
424                 fragment = &skb_shinfo(skb)->frags[i];
425                 len = skb_frag_size(fragment);
426                 i++;
427                 /* Map for DMA */
428                 dma_flags = 0;
429                 dma_addr = skb_frag_dma_map(dma_dev, fragment, 0, len,
430                                             DMA_TO_DEVICE);
431         }
432
433         /* Transfer ownership of the skb to the final buffer */
434 #ifdef EFX_USE_PIO
435 finish_packet:
436 #endif
437         buffer->skb = skb;
438         buffer->flags = EFX_TX_BUF_SKB | dma_flags;
439
440         netdev_tx_sent_queue(tx_queue->core_txq, skb->len);
441
442         /* Pass off to hardware */
443         efx_nic_push_buffers(tx_queue);
444
445         tx_queue->tx_packets++;
446
447         efx_tx_maybe_stop_queue(tx_queue);
448
449         return NETDEV_TX_OK;
450
451  dma_err:
452         netif_err(efx, tx_err, efx->net_dev,
453                   " TX queue %d could not map skb with %d bytes %d "
454                   "fragments for DMA\n", tx_queue->queue, skb->len,
455                   skb_shinfo(skb)->nr_frags + 1);
456
457         /* Mark the packet as transmitted, and free the SKB ourselves */
458         dev_kfree_skb_any(skb);
459
460         /* Work backwards until we hit the original insert pointer value */
461         while (tx_queue->insert_count != tx_queue->write_count) {
462                 unsigned int pkts_compl = 0, bytes_compl = 0;
463                 --tx_queue->insert_count;
464                 buffer = __efx_tx_queue_get_insert_buffer(tx_queue);
465                 efx_dequeue_buffer(tx_queue, buffer, &pkts_compl, &bytes_compl);
466         }
467
468         /* Free the fragment we were mid-way through pushing */
469         if (unmap_len) {
470                 if (dma_flags & EFX_TX_BUF_MAP_SINGLE)
471                         dma_unmap_single(dma_dev, unmap_addr, unmap_len,
472                                          DMA_TO_DEVICE);
473                 else
474                         dma_unmap_page(dma_dev, unmap_addr, unmap_len,
475                                        DMA_TO_DEVICE);
476         }
477
478         return NETDEV_TX_OK;
479 }
480
481 /* Remove packets from the TX queue
482  *
483  * This removes packets from the TX queue, up to and including the
484  * specified index.
485  */
486 static void efx_dequeue_buffers(struct efx_tx_queue *tx_queue,
487                                 unsigned int index,
488                                 unsigned int *pkts_compl,
489                                 unsigned int *bytes_compl)
490 {
491         struct efx_nic *efx = tx_queue->efx;
492         unsigned int stop_index, read_ptr;
493
494         stop_index = (index + 1) & tx_queue->ptr_mask;
495         read_ptr = tx_queue->read_count & tx_queue->ptr_mask;
496
497         while (read_ptr != stop_index) {
498                 struct efx_tx_buffer *buffer = &tx_queue->buffer[read_ptr];
499
500                 if (!(buffer->flags & EFX_TX_BUF_OPTION) &&
501                     unlikely(buffer->len == 0)) {
502                         netif_err(efx, tx_err, efx->net_dev,
503                                   "TX queue %d spurious TX completion id %x\n",
504                                   tx_queue->queue, read_ptr);
505                         efx_schedule_reset(efx, RESET_TYPE_TX_SKIP);
506                         return;
507                 }
508
509                 efx_dequeue_buffer(tx_queue, buffer, pkts_compl, bytes_compl);
510
511                 ++tx_queue->read_count;
512                 read_ptr = tx_queue->read_count & tx_queue->ptr_mask;
513         }
514 }
515
516 /* Initiate a packet transmission.  We use one channel per CPU
517  * (sharing when we have more CPUs than channels).  On Falcon, the TX
518  * completion events will be directed back to the CPU that transmitted
519  * the packet, which should be cache-efficient.
520  *
521  * Context: non-blocking.
522  * Note that returning anything other than NETDEV_TX_OK will cause the
523  * OS to free the skb.
524  */
525 netdev_tx_t efx_hard_start_xmit(struct sk_buff *skb,
526                                 struct net_device *net_dev)
527 {
528         struct efx_nic *efx = netdev_priv(net_dev);
529         struct efx_tx_queue *tx_queue;
530         unsigned index, type;
531
532         EFX_WARN_ON_PARANOID(!netif_device_present(net_dev));
533
534         /* PTP "event" packet */
535         if (unlikely(efx_xmit_with_hwtstamp(skb)) &&
536             unlikely(efx_ptp_is_ptp_tx(efx, skb))) {
537                 return efx_ptp_tx(efx, skb);
538         }
539
540         index = skb_get_queue_mapping(skb);
541         type = skb->ip_summed == CHECKSUM_PARTIAL ? EFX_TXQ_TYPE_OFFLOAD : 0;
542         if (index >= efx->n_tx_channels) {
543                 index -= efx->n_tx_channels;
544                 type |= EFX_TXQ_TYPE_HIGHPRI;
545         }
546         tx_queue = efx_get_tx_queue(efx, index, type);
547
548         return efx_enqueue_skb(tx_queue, skb);
549 }
550
551 void efx_init_tx_queue_core_txq(struct efx_tx_queue *tx_queue)
552 {
553         struct efx_nic *efx = tx_queue->efx;
554
555         /* Must be inverse of queue lookup in efx_hard_start_xmit() */
556         tx_queue->core_txq =
557                 netdev_get_tx_queue(efx->net_dev,
558                                     tx_queue->queue / EFX_TXQ_TYPES +
559                                     ((tx_queue->queue & EFX_TXQ_TYPE_HIGHPRI) ?
560                                      efx->n_tx_channels : 0));
561 }
562
563 int efx_setup_tc(struct net_device *net_dev, u8 num_tc)
564 {
565         struct efx_nic *efx = netdev_priv(net_dev);
566         struct efx_channel *channel;
567         struct efx_tx_queue *tx_queue;
568         unsigned tc;
569         int rc;
570
571         if (efx_nic_rev(efx) < EFX_REV_FALCON_B0 || num_tc > EFX_MAX_TX_TC)
572                 return -EINVAL;
573
574         if (num_tc == net_dev->num_tc)
575                 return 0;
576
577         for (tc = 0; tc < num_tc; tc++) {
578                 net_dev->tc_to_txq[tc].offset = tc * efx->n_tx_channels;
579                 net_dev->tc_to_txq[tc].count = efx->n_tx_channels;
580         }
581
582         if (num_tc > net_dev->num_tc) {
583                 /* Initialise high-priority queues as necessary */
584                 efx_for_each_channel(channel, efx) {
585                         efx_for_each_possible_channel_tx_queue(tx_queue,
586                                                                channel) {
587                                 if (!(tx_queue->queue & EFX_TXQ_TYPE_HIGHPRI))
588                                         continue;
589                                 if (!tx_queue->buffer) {
590                                         rc = efx_probe_tx_queue(tx_queue);
591                                         if (rc)
592                                                 return rc;
593                                 }
594                                 if (!tx_queue->initialised)
595                                         efx_init_tx_queue(tx_queue);
596                                 efx_init_tx_queue_core_txq(tx_queue);
597                         }
598                 }
599         } else {
600                 /* Reduce number of classes before number of queues */
601                 net_dev->num_tc = num_tc;
602         }
603
604         rc = netif_set_real_num_tx_queues(net_dev,
605                                           max_t(int, num_tc, 1) *
606                                           efx->n_tx_channels);
607         if (rc)
608                 return rc;
609
610         /* Do not destroy high-priority queues when they become
611          * unused.  We would have to flush them first, and it is
612          * fairly difficult to flush a subset of TX queues.  Leave
613          * it to efx_fini_channels().
614          */
615
616         net_dev->num_tc = num_tc;
617         return 0;
618 }
619
620 void efx_xmit_done(struct efx_tx_queue *tx_queue, unsigned int index)
621 {
622         unsigned fill_level;
623         struct efx_nic *efx = tx_queue->efx;
624         struct efx_tx_queue *txq2;
625         unsigned int pkts_compl = 0, bytes_compl = 0;
626
627         EFX_BUG_ON_PARANOID(index > tx_queue->ptr_mask);
628
629         efx_dequeue_buffers(tx_queue, index, &pkts_compl, &bytes_compl);
630         netdev_tx_completed_queue(tx_queue->core_txq, pkts_compl, bytes_compl);
631
632         if (pkts_compl > 1)
633                 ++tx_queue->merge_events;
634
635         /* See if we need to restart the netif queue.  This memory
636          * barrier ensures that we write read_count (inside
637          * efx_dequeue_buffers()) before reading the queue status.
638          */
639         smp_mb();
640         if (unlikely(netif_tx_queue_stopped(tx_queue->core_txq)) &&
641             likely(efx->port_enabled) &&
642             likely(netif_device_present(efx->net_dev))) {
643                 txq2 = efx_tx_queue_partner(tx_queue);
644                 fill_level = max(tx_queue->insert_count - tx_queue->read_count,
645                                  txq2->insert_count - txq2->read_count);
646                 if (fill_level <= efx->txq_wake_thresh)
647                         netif_tx_wake_queue(tx_queue->core_txq);
648         }
649
650         /* Check whether the hardware queue is now empty */
651         if ((int)(tx_queue->read_count - tx_queue->old_write_count) >= 0) {
652                 tx_queue->old_write_count = ACCESS_ONCE(tx_queue->write_count);
653                 if (tx_queue->read_count == tx_queue->old_write_count) {
654                         smp_mb();
655                         tx_queue->empty_read_count =
656                                 tx_queue->read_count | EFX_EMPTY_COUNT_VALID;
657                 }
658         }
659 }
660
661 /* Size of page-based TSO header buffers.  Larger blocks must be
662  * allocated from the heap.
663  */
664 #define TSOH_STD_SIZE   128
665 #define TSOH_PER_PAGE   (PAGE_SIZE / TSOH_STD_SIZE)
666
667 /* At most half the descriptors in the queue at any time will refer to
668  * a TSO header buffer, since they must always be followed by a
669  * payload descriptor referring to an skb.
670  */
671 static unsigned int efx_tsoh_page_count(struct efx_tx_queue *tx_queue)
672 {
673         return DIV_ROUND_UP(tx_queue->ptr_mask + 1, 2 * TSOH_PER_PAGE);
674 }
675
676 int efx_probe_tx_queue(struct efx_tx_queue *tx_queue)
677 {
678         struct efx_nic *efx = tx_queue->efx;
679         unsigned int entries;
680         int rc;
681
682         /* Create the smallest power-of-two aligned ring */
683         entries = max(roundup_pow_of_two(efx->txq_entries), EFX_MIN_DMAQ_SIZE);
684         EFX_BUG_ON_PARANOID(entries > EFX_MAX_DMAQ_SIZE);
685         tx_queue->ptr_mask = entries - 1;
686
687         netif_dbg(efx, probe, efx->net_dev,
688                   "creating TX queue %d size %#x mask %#x\n",
689                   tx_queue->queue, efx->txq_entries, tx_queue->ptr_mask);
690
691         /* Allocate software ring */
692         tx_queue->buffer = kcalloc(entries, sizeof(*tx_queue->buffer),
693                                    GFP_KERNEL);
694         if (!tx_queue->buffer)
695                 return -ENOMEM;
696
697         if (tx_queue->queue & EFX_TXQ_TYPE_OFFLOAD) {
698                 tx_queue->tsoh_page =
699                         kcalloc(efx_tsoh_page_count(tx_queue),
700                                 sizeof(tx_queue->tsoh_page[0]), GFP_KERNEL);
701                 if (!tx_queue->tsoh_page) {
702                         rc = -ENOMEM;
703                         goto fail1;
704                 }
705         }
706
707         /* Allocate hardware ring */
708         rc = efx_nic_probe_tx(tx_queue);
709         if (rc)
710                 goto fail2;
711
712         return 0;
713
714 fail2:
715         kfree(tx_queue->tsoh_page);
716         tx_queue->tsoh_page = NULL;
717 fail1:
718         kfree(tx_queue->buffer);
719         tx_queue->buffer = NULL;
720         return rc;
721 }
722
723 void efx_init_tx_queue(struct efx_tx_queue *tx_queue)
724 {
725         netif_dbg(tx_queue->efx, drv, tx_queue->efx->net_dev,
726                   "initialising TX queue %d\n", tx_queue->queue);
727
728         tx_queue->insert_count = 0;
729         tx_queue->write_count = 0;
730         tx_queue->old_write_count = 0;
731         tx_queue->read_count = 0;
732         tx_queue->old_read_count = 0;
733         tx_queue->empty_read_count = 0 | EFX_EMPTY_COUNT_VALID;
734
735         /* Set up TX descriptor ring */
736         efx_nic_init_tx(tx_queue);
737
738         tx_queue->initialised = true;
739 }
740
741 void efx_fini_tx_queue(struct efx_tx_queue *tx_queue)
742 {
743         struct efx_tx_buffer *buffer;
744
745         netif_dbg(tx_queue->efx, drv, tx_queue->efx->net_dev,
746                   "shutting down TX queue %d\n", tx_queue->queue);
747
748         if (!tx_queue->buffer)
749                 return;
750
751         /* Free any buffers left in the ring */
752         while (tx_queue->read_count != tx_queue->write_count) {
753                 unsigned int pkts_compl = 0, bytes_compl = 0;
754                 buffer = &tx_queue->buffer[tx_queue->read_count & tx_queue->ptr_mask];
755                 efx_dequeue_buffer(tx_queue, buffer, &pkts_compl, &bytes_compl);
756
757                 ++tx_queue->read_count;
758         }
759         netdev_tx_reset_queue(tx_queue->core_txq);
760 }
761
762 void efx_remove_tx_queue(struct efx_tx_queue *tx_queue)
763 {
764         int i;
765
766         if (!tx_queue->buffer)
767                 return;
768
769         netif_dbg(tx_queue->efx, drv, tx_queue->efx->net_dev,
770                   "destroying TX queue %d\n", tx_queue->queue);
771         efx_nic_remove_tx(tx_queue);
772
773         if (tx_queue->tsoh_page) {
774                 for (i = 0; i < efx_tsoh_page_count(tx_queue); i++)
775                         efx_nic_free_buffer(tx_queue->efx,
776                                             &tx_queue->tsoh_page[i]);
777                 kfree(tx_queue->tsoh_page);
778                 tx_queue->tsoh_page = NULL;
779         }
780
781         kfree(tx_queue->buffer);
782         tx_queue->buffer = NULL;
783 }
784
785
786 /* Efx TCP segmentation acceleration.
787  *
788  * Why?  Because by doing it here in the driver we can go significantly
789  * faster than the GSO.
790  *
791  * Requires TX checksum offload support.
792  */
793
794 #define PTR_DIFF(p1, p2)  ((u8 *)(p1) - (u8 *)(p2))
795
796 /**
797  * struct tso_state - TSO state for an SKB
798  * @out_len: Remaining length in current segment
799  * @seqnum: Current sequence number
800  * @ipv4_id: Current IPv4 ID, host endian
801  * @packet_space: Remaining space in current packet
802  * @dma_addr: DMA address of current position
803  * @in_len: Remaining length in current SKB fragment
804  * @unmap_len: Length of SKB fragment
805  * @unmap_addr: DMA address of SKB fragment
806  * @dma_flags: TX buffer flags for DMA mapping - %EFX_TX_BUF_MAP_SINGLE or 0
807  * @protocol: Network protocol (after any VLAN header)
808  * @ip_off: Offset of IP header
809  * @tcp_off: Offset of TCP header
810  * @header_len: Number of bytes of header
811  * @ip_base_len: IPv4 tot_len or IPv6 payload_len, before TCP payload
812  * @header_dma_addr: Header DMA address, when using option descriptors
813  * @header_unmap_len: Header DMA mapped length, or 0 if not using option
814  *      descriptors
815  *
816  * The state used during segmentation.  It is put into this data structure
817  * just to make it easy to pass into inline functions.
818  */
819 struct tso_state {
820         /* Output position */
821         unsigned out_len;
822         unsigned seqnum;
823         u16 ipv4_id;
824         unsigned packet_space;
825
826         /* Input position */
827         dma_addr_t dma_addr;
828         unsigned in_len;
829         unsigned unmap_len;
830         dma_addr_t unmap_addr;
831         unsigned short dma_flags;
832
833         __be16 protocol;
834         unsigned int ip_off;
835         unsigned int tcp_off;
836         unsigned header_len;
837         unsigned int ip_base_len;
838         dma_addr_t header_dma_addr;
839         unsigned int header_unmap_len;
840 };
841
842
843 /*
844  * Verify that our various assumptions about sk_buffs and the conditions
845  * under which TSO will be attempted hold true.  Return the protocol number.
846  */
847 static __be16 efx_tso_check_protocol(struct sk_buff *skb)
848 {
849         __be16 protocol = skb->protocol;
850
851         EFX_BUG_ON_PARANOID(((struct ethhdr *)skb->data)->h_proto !=
852                             protocol);
853         if (protocol == htons(ETH_P_8021Q)) {
854                 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
855                 protocol = veh->h_vlan_encapsulated_proto;
856         }
857
858         if (protocol == htons(ETH_P_IP)) {
859                 EFX_BUG_ON_PARANOID(ip_hdr(skb)->protocol != IPPROTO_TCP);
860         } else {
861                 EFX_BUG_ON_PARANOID(protocol != htons(ETH_P_IPV6));
862                 EFX_BUG_ON_PARANOID(ipv6_hdr(skb)->nexthdr != NEXTHDR_TCP);
863         }
864         EFX_BUG_ON_PARANOID((PTR_DIFF(tcp_hdr(skb), skb->data)
865                              + (tcp_hdr(skb)->doff << 2u)) >
866                             skb_headlen(skb));
867
868         return protocol;
869 }
870
871 static u8 *efx_tsoh_get_buffer(struct efx_tx_queue *tx_queue,
872                                struct efx_tx_buffer *buffer, unsigned int len)
873 {
874         u8 *result;
875
876         EFX_BUG_ON_PARANOID(buffer->len);
877         EFX_BUG_ON_PARANOID(buffer->flags);
878         EFX_BUG_ON_PARANOID(buffer->unmap_len);
879
880         if (likely(len <= TSOH_STD_SIZE - NET_IP_ALIGN)) {
881                 unsigned index =
882                         (tx_queue->insert_count & tx_queue->ptr_mask) / 2;
883                 struct efx_buffer *page_buf =
884                         &tx_queue->tsoh_page[index / TSOH_PER_PAGE];
885                 unsigned offset =
886                         TSOH_STD_SIZE * (index % TSOH_PER_PAGE) + NET_IP_ALIGN;
887
888                 if (unlikely(!page_buf->addr) &&
889                     efx_nic_alloc_buffer(tx_queue->efx, page_buf, PAGE_SIZE,
890                                          GFP_ATOMIC))
891                         return NULL;
892
893                 result = (u8 *)page_buf->addr + offset;
894                 buffer->dma_addr = page_buf->dma_addr + offset;
895                 buffer->flags = EFX_TX_BUF_CONT;
896         } else {
897                 tx_queue->tso_long_headers++;
898
899                 buffer->heap_buf = kmalloc(NET_IP_ALIGN + len, GFP_ATOMIC);
900                 if (unlikely(!buffer->heap_buf))
901                         return NULL;
902                 result = (u8 *)buffer->heap_buf + NET_IP_ALIGN;
903                 buffer->flags = EFX_TX_BUF_CONT | EFX_TX_BUF_HEAP;
904         }
905
906         buffer->len = len;
907
908         return result;
909 }
910
911 /**
912  * efx_tx_queue_insert - push descriptors onto the TX queue
913  * @tx_queue:           Efx TX queue
914  * @dma_addr:           DMA address of fragment
915  * @len:                Length of fragment
916  * @final_buffer:       The final buffer inserted into the queue
917  *
918  * Push descriptors onto the TX queue.
919  */
920 static void efx_tx_queue_insert(struct efx_tx_queue *tx_queue,
921                                 dma_addr_t dma_addr, unsigned len,
922                                 struct efx_tx_buffer **final_buffer)
923 {
924         struct efx_tx_buffer *buffer;
925         struct efx_nic *efx = tx_queue->efx;
926         unsigned dma_len;
927
928         EFX_BUG_ON_PARANOID(len <= 0);
929
930         while (1) {
931                 buffer = efx_tx_queue_get_insert_buffer(tx_queue);
932                 ++tx_queue->insert_count;
933
934                 EFX_BUG_ON_PARANOID(tx_queue->insert_count -
935                                     tx_queue->read_count >=
936                                     efx->txq_entries);
937
938                 buffer->dma_addr = dma_addr;
939
940                 dma_len = efx_max_tx_len(efx, dma_addr);
941
942                 /* If there is enough space to send then do so */
943                 if (dma_len >= len)
944                         break;
945
946                 buffer->len = dma_len;
947                 buffer->flags = EFX_TX_BUF_CONT;
948                 dma_addr += dma_len;
949                 len -= dma_len;
950         }
951
952         EFX_BUG_ON_PARANOID(!len);
953         buffer->len = len;
954         *final_buffer = buffer;
955 }
956
957
958 /*
959  * Put a TSO header into the TX queue.
960  *
961  * This is special-cased because we know that it is small enough to fit in
962  * a single fragment, and we know it doesn't cross a page boundary.  It
963  * also allows us to not worry about end-of-packet etc.
964  */
965 static int efx_tso_put_header(struct efx_tx_queue *tx_queue,
966                               struct efx_tx_buffer *buffer, u8 *header)
967 {
968         if (unlikely(buffer->flags & EFX_TX_BUF_HEAP)) {
969                 buffer->dma_addr = dma_map_single(&tx_queue->efx->pci_dev->dev,
970                                                   header, buffer->len,
971                                                   DMA_TO_DEVICE);
972                 if (unlikely(dma_mapping_error(&tx_queue->efx->pci_dev->dev,
973                                                buffer->dma_addr))) {
974                         kfree(buffer->heap_buf);
975                         buffer->len = 0;
976                         buffer->flags = 0;
977                         return -ENOMEM;
978                 }
979                 buffer->unmap_len = buffer->len;
980                 buffer->dma_offset = 0;
981                 buffer->flags |= EFX_TX_BUF_MAP_SINGLE;
982         }
983
984         ++tx_queue->insert_count;
985         return 0;
986 }
987
988
989 /* Remove buffers put into a tx_queue.  None of the buffers must have
990  * an skb attached.
991  */
992 static void efx_enqueue_unwind(struct efx_tx_queue *tx_queue)
993 {
994         struct efx_tx_buffer *buffer;
995
996         /* Work backwards until we hit the original insert pointer value */
997         while (tx_queue->insert_count != tx_queue->write_count) {
998                 --tx_queue->insert_count;
999                 buffer = __efx_tx_queue_get_insert_buffer(tx_queue);
1000                 efx_dequeue_buffer(tx_queue, buffer, NULL, NULL);
1001         }
1002 }
1003
1004
1005 /* Parse the SKB header and initialise state. */
1006 static int tso_start(struct tso_state *st, struct efx_nic *efx,
1007                      const struct sk_buff *skb)
1008 {
1009         bool use_opt_desc = efx_nic_rev(efx) >= EFX_REV_HUNT_A0;
1010         struct device *dma_dev = &efx->pci_dev->dev;
1011         unsigned int header_len, in_len;
1012         dma_addr_t dma_addr;
1013
1014         st->ip_off = skb_network_header(skb) - skb->data;
1015         st->tcp_off = skb_transport_header(skb) - skb->data;
1016         header_len = st->tcp_off + (tcp_hdr(skb)->doff << 2u);
1017         in_len = skb_headlen(skb) - header_len;
1018         st->header_len = header_len;
1019         st->in_len = in_len;
1020         if (st->protocol == htons(ETH_P_IP)) {
1021                 st->ip_base_len = st->header_len - st->ip_off;
1022                 st->ipv4_id = ntohs(ip_hdr(skb)->id);
1023         } else {
1024                 st->ip_base_len = st->header_len - st->tcp_off;
1025                 st->ipv4_id = 0;
1026         }
1027         st->seqnum = ntohl(tcp_hdr(skb)->seq);
1028
1029         EFX_BUG_ON_PARANOID(tcp_hdr(skb)->urg);
1030         EFX_BUG_ON_PARANOID(tcp_hdr(skb)->syn);
1031         EFX_BUG_ON_PARANOID(tcp_hdr(skb)->rst);
1032
1033         st->out_len = skb->len - header_len;
1034
1035         if (!use_opt_desc) {
1036                 st->header_unmap_len = 0;
1037
1038                 if (likely(in_len == 0)) {
1039                         st->dma_flags = 0;
1040                         st->unmap_len = 0;
1041                         return 0;
1042                 }
1043
1044                 dma_addr = dma_map_single(dma_dev, skb->data + header_len,
1045                                           in_len, DMA_TO_DEVICE);
1046                 st->dma_flags = EFX_TX_BUF_MAP_SINGLE;
1047                 st->dma_addr = dma_addr;
1048                 st->unmap_addr = dma_addr;
1049                 st->unmap_len = in_len;
1050         } else {
1051                 dma_addr = dma_map_single(dma_dev, skb->data,
1052                                           skb_headlen(skb), DMA_TO_DEVICE);
1053                 st->header_dma_addr = dma_addr;
1054                 st->header_unmap_len = skb_headlen(skb);
1055                 st->dma_flags = 0;
1056                 st->dma_addr = dma_addr + header_len;
1057                 st->unmap_len = 0;
1058         }
1059
1060         return unlikely(dma_mapping_error(dma_dev, dma_addr)) ? -ENOMEM : 0;
1061 }
1062
1063 static int tso_get_fragment(struct tso_state *st, struct efx_nic *efx,
1064                             skb_frag_t *frag)
1065 {
1066         st->unmap_addr = skb_frag_dma_map(&efx->pci_dev->dev, frag, 0,
1067                                           skb_frag_size(frag), DMA_TO_DEVICE);
1068         if (likely(!dma_mapping_error(&efx->pci_dev->dev, st->unmap_addr))) {
1069                 st->dma_flags = 0;
1070                 st->unmap_len = skb_frag_size(frag);
1071                 st->in_len = skb_frag_size(frag);
1072                 st->dma_addr = st->unmap_addr;
1073                 return 0;
1074         }
1075         return -ENOMEM;
1076 }
1077
1078
1079 /**
1080  * tso_fill_packet_with_fragment - form descriptors for the current fragment
1081  * @tx_queue:           Efx TX queue
1082  * @skb:                Socket buffer
1083  * @st:                 TSO state
1084  *
1085  * Form descriptors for the current fragment, until we reach the end
1086  * of fragment or end-of-packet.
1087  */
1088 static void tso_fill_packet_with_fragment(struct efx_tx_queue *tx_queue,
1089                                           const struct sk_buff *skb,
1090                                           struct tso_state *st)
1091 {
1092         struct efx_tx_buffer *buffer;
1093         int n;
1094
1095         if (st->in_len == 0)
1096                 return;
1097         if (st->packet_space == 0)
1098                 return;
1099
1100         EFX_BUG_ON_PARANOID(st->in_len <= 0);
1101         EFX_BUG_ON_PARANOID(st->packet_space <= 0);
1102
1103         n = min(st->in_len, st->packet_space);
1104
1105         st->packet_space -= n;
1106         st->out_len -= n;
1107         st->in_len -= n;
1108
1109         efx_tx_queue_insert(tx_queue, st->dma_addr, n, &buffer);
1110
1111         if (st->out_len == 0) {
1112                 /* Transfer ownership of the skb */
1113                 buffer->skb = skb;
1114                 buffer->flags = EFX_TX_BUF_SKB;
1115         } else if (st->packet_space != 0) {
1116                 buffer->flags = EFX_TX_BUF_CONT;
1117         }
1118
1119         if (st->in_len == 0) {
1120                 /* Transfer ownership of the DMA mapping */
1121                 buffer->unmap_len = st->unmap_len;
1122                 buffer->dma_offset = buffer->unmap_len - buffer->len;
1123                 buffer->flags |= st->dma_flags;
1124                 st->unmap_len = 0;
1125         }
1126
1127         st->dma_addr += n;
1128 }
1129
1130
1131 /**
1132  * tso_start_new_packet - generate a new header and prepare for the new packet
1133  * @tx_queue:           Efx TX queue
1134  * @skb:                Socket buffer
1135  * @st:                 TSO state
1136  *
1137  * Generate a new header and prepare for the new packet.  Return 0 on
1138  * success, or -%ENOMEM if failed to alloc header.
1139  */
1140 static int tso_start_new_packet(struct efx_tx_queue *tx_queue,
1141                                 const struct sk_buff *skb,
1142                                 struct tso_state *st)
1143 {
1144         struct efx_tx_buffer *buffer =
1145                 efx_tx_queue_get_insert_buffer(tx_queue);
1146         bool is_last = st->out_len <= skb_shinfo(skb)->gso_size;
1147         u8 tcp_flags_clear;
1148
1149         if (!is_last) {
1150                 st->packet_space = skb_shinfo(skb)->gso_size;
1151                 tcp_flags_clear = 0x09; /* mask out FIN and PSH */
1152         } else {
1153                 st->packet_space = st->out_len;
1154                 tcp_flags_clear = 0x00;
1155         }
1156
1157         if (!st->header_unmap_len) {
1158                 /* Allocate and insert a DMA-mapped header buffer. */
1159                 struct tcphdr *tsoh_th;
1160                 unsigned ip_length;
1161                 u8 *header;
1162                 int rc;
1163
1164                 header = efx_tsoh_get_buffer(tx_queue, buffer, st->header_len);
1165                 if (!header)
1166                         return -ENOMEM;
1167
1168                 tsoh_th = (struct tcphdr *)(header + st->tcp_off);
1169
1170                 /* Copy and update the headers. */
1171                 memcpy(header, skb->data, st->header_len);
1172
1173                 tsoh_th->seq = htonl(st->seqnum);
1174                 ((u8 *)tsoh_th)[13] &= ~tcp_flags_clear;
1175
1176                 ip_length = st->ip_base_len + st->packet_space;
1177
1178                 if (st->protocol == htons(ETH_P_IP)) {
1179                         struct iphdr *tsoh_iph =
1180                                 (struct iphdr *)(header + st->ip_off);
1181
1182                         tsoh_iph->tot_len = htons(ip_length);
1183                         tsoh_iph->id = htons(st->ipv4_id);
1184                 } else {
1185                         struct ipv6hdr *tsoh_iph =
1186                                 (struct ipv6hdr *)(header + st->ip_off);
1187
1188                         tsoh_iph->payload_len = htons(ip_length);
1189                 }
1190
1191                 rc = efx_tso_put_header(tx_queue, buffer, header);
1192                 if (unlikely(rc))
1193                         return rc;
1194         } else {
1195                 /* Send the original headers with a TSO option descriptor
1196                  * in front
1197                  */
1198                 u8 tcp_flags = ((u8 *)tcp_hdr(skb))[13] & ~tcp_flags_clear;
1199
1200                 buffer->flags = EFX_TX_BUF_OPTION;
1201                 buffer->len = 0;
1202                 buffer->unmap_len = 0;
1203                 EFX_POPULATE_QWORD_5(buffer->option,
1204                                      ESF_DZ_TX_DESC_IS_OPT, 1,
1205                                      ESF_DZ_TX_OPTION_TYPE,
1206                                      ESE_DZ_TX_OPTION_DESC_TSO,
1207                                      ESF_DZ_TX_TSO_TCP_FLAGS, tcp_flags,
1208                                      ESF_DZ_TX_TSO_IP_ID, st->ipv4_id,
1209                                      ESF_DZ_TX_TSO_TCP_SEQNO, st->seqnum);
1210                 ++tx_queue->insert_count;
1211
1212                 /* We mapped the headers in tso_start().  Unmap them
1213                  * when the last segment is completed.
1214                  */
1215                 buffer = efx_tx_queue_get_insert_buffer(tx_queue);
1216                 buffer->dma_addr = st->header_dma_addr;
1217                 buffer->len = st->header_len;
1218                 if (is_last) {
1219                         buffer->flags = EFX_TX_BUF_CONT | EFX_TX_BUF_MAP_SINGLE;
1220                         buffer->unmap_len = st->header_unmap_len;
1221                         buffer->dma_offset = 0;
1222                         /* Ensure we only unmap them once in case of a
1223                          * later DMA mapping error and rollback
1224                          */
1225                         st->header_unmap_len = 0;
1226                 } else {
1227                         buffer->flags = EFX_TX_BUF_CONT;
1228                         buffer->unmap_len = 0;
1229                 }
1230                 ++tx_queue->insert_count;
1231         }
1232
1233         st->seqnum += skb_shinfo(skb)->gso_size;
1234
1235         /* Linux leaves suitable gaps in the IP ID space for us to fill. */
1236         ++st->ipv4_id;
1237
1238         ++tx_queue->tso_packets;
1239
1240         ++tx_queue->tx_packets;
1241
1242         return 0;
1243 }
1244
1245
1246 /**
1247  * efx_enqueue_skb_tso - segment and transmit a TSO socket buffer
1248  * @tx_queue:           Efx TX queue
1249  * @skb:                Socket buffer
1250  *
1251  * Context: You must hold netif_tx_lock() to call this function.
1252  *
1253  * Add socket buffer @skb to @tx_queue, doing TSO or return != 0 if
1254  * @skb was not enqueued.  In all cases @skb is consumed.  Return
1255  * %NETDEV_TX_OK.
1256  */
1257 static int efx_enqueue_skb_tso(struct efx_tx_queue *tx_queue,
1258                                struct sk_buff *skb)
1259 {
1260         struct efx_nic *efx = tx_queue->efx;
1261         int frag_i, rc;
1262         struct tso_state state;
1263
1264         /* Find the packet protocol and sanity-check it */
1265         state.protocol = efx_tso_check_protocol(skb);
1266
1267         EFX_BUG_ON_PARANOID(tx_queue->write_count != tx_queue->insert_count);
1268
1269         rc = tso_start(&state, efx, skb);
1270         if (rc)
1271                 goto mem_err;
1272
1273         if (likely(state.in_len == 0)) {
1274                 /* Grab the first payload fragment. */
1275                 EFX_BUG_ON_PARANOID(skb_shinfo(skb)->nr_frags < 1);
1276                 frag_i = 0;
1277                 rc = tso_get_fragment(&state, efx,
1278                                       skb_shinfo(skb)->frags + frag_i);
1279                 if (rc)
1280                         goto mem_err;
1281         } else {
1282                 /* Payload starts in the header area. */
1283                 frag_i = -1;
1284         }
1285
1286         if (tso_start_new_packet(tx_queue, skb, &state) < 0)
1287                 goto mem_err;
1288
1289         while (1) {
1290                 tso_fill_packet_with_fragment(tx_queue, skb, &state);
1291
1292                 /* Move onto the next fragment? */
1293                 if (state.in_len == 0) {
1294                         if (++frag_i >= skb_shinfo(skb)->nr_frags)
1295                                 /* End of payload reached. */
1296                                 break;
1297                         rc = tso_get_fragment(&state, efx,
1298                                               skb_shinfo(skb)->frags + frag_i);
1299                         if (rc)
1300                                 goto mem_err;
1301                 }
1302
1303                 /* Start at new packet? */
1304                 if (state.packet_space == 0 &&
1305                     tso_start_new_packet(tx_queue, skb, &state) < 0)
1306                         goto mem_err;
1307         }
1308
1309         netdev_tx_sent_queue(tx_queue->core_txq, skb->len);
1310
1311         /* Pass off to hardware */
1312         efx_nic_push_buffers(tx_queue);
1313
1314         efx_tx_maybe_stop_queue(tx_queue);
1315
1316         tx_queue->tso_bursts++;
1317         return NETDEV_TX_OK;
1318
1319  mem_err:
1320         netif_err(efx, tx_err, efx->net_dev,
1321                   "Out of memory for TSO headers, or DMA mapping error\n");
1322         dev_kfree_skb_any(skb);
1323
1324         /* Free the DMA mapping we were in the process of writing out */
1325         if (state.unmap_len) {
1326                 if (state.dma_flags & EFX_TX_BUF_MAP_SINGLE)
1327                         dma_unmap_single(&efx->pci_dev->dev, state.unmap_addr,
1328                                          state.unmap_len, DMA_TO_DEVICE);
1329                 else
1330                         dma_unmap_page(&efx->pci_dev->dev, state.unmap_addr,
1331                                        state.unmap_len, DMA_TO_DEVICE);
1332         }
1333
1334         /* Free the header DMA mapping, if using option descriptors */
1335         if (state.header_unmap_len)
1336                 dma_unmap_single(&efx->pci_dev->dev, state.header_dma_addr,
1337                                  state.header_unmap_len, DMA_TO_DEVICE);
1338
1339         efx_enqueue_unwind(tx_queue);
1340         return NETDEV_TX_OK;
1341 }