Linux-libre 3.16.78-gnu
[librecmc/linux-libre.git] / drivers / net / ethernet / sfc / rx.c
1 /****************************************************************************
2  * Driver for Solarflare network controllers and boards
3  * Copyright 2005-2006 Fen Systems Ltd.
4  * Copyright 2005-2013 Solarflare Communications Inc.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 as published
8  * by the Free Software Foundation, incorporated herein by reference.
9  */
10
11 #include <linux/socket.h>
12 #include <linux/in.h>
13 #include <linux/slab.h>
14 #include <linux/ip.h>
15 #include <linux/ipv6.h>
16 #include <linux/tcp.h>
17 #include <linux/udp.h>
18 #include <linux/prefetch.h>
19 #include <linux/moduleparam.h>
20 #include <linux/iommu.h>
21 #include <net/ip.h>
22 #include <net/checksum.h>
23 #include "net_driver.h"
24 #include "efx.h"
25 #include "filter.h"
26 #include "nic.h"
27 #include "selftest.h"
28 #include "workarounds.h"
29
30 /* Preferred number of descriptors to fill at once */
31 #define EFX_RX_PREFERRED_BATCH 8U
32
33 /* Number of RX buffers to recycle pages for.  When creating the RX page recycle
34  * ring, this number is divided by the number of buffers per page to calculate
35  * the number of pages to store in the RX page recycle ring.
36  */
37 #define EFX_RECYCLE_RING_SIZE_IOMMU 4096
38 #define EFX_RECYCLE_RING_SIZE_NOIOMMU (2 * EFX_RX_PREFERRED_BATCH)
39
40 /* Size of buffer allocated for skb header area. */
41 #define EFX_SKB_HEADERS  128u
42
43 /* This is the percentage fill level below which new RX descriptors
44  * will be added to the RX descriptor ring.
45  */
46 static unsigned int rx_refill_threshold;
47
48 /* Each packet can consume up to ceil(max_frame_len / buffer_size) buffers */
49 #define EFX_RX_MAX_FRAGS DIV_ROUND_UP(EFX_MAX_FRAME_LEN(EFX_MAX_MTU), \
50                                       EFX_RX_USR_BUF_SIZE)
51
52 /*
53  * RX maximum head room required.
54  *
55  * This must be at least 1 to prevent overflow, plus one packet-worth
56  * to allow pipelined receives.
57  */
58 #define EFX_RXD_HEAD_ROOM (1 + EFX_RX_MAX_FRAGS)
59
60 static inline u8 *efx_rx_buf_va(struct efx_rx_buffer *buf)
61 {
62         return page_address(buf->page) + buf->page_offset;
63 }
64
65 static inline u32 efx_rx_buf_hash(struct efx_nic *efx, const u8 *eh)
66 {
67 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)
68         return __le32_to_cpup((const __le32 *)(eh + efx->rx_packet_hash_offset));
69 #else
70         const u8 *data = eh + efx->rx_packet_hash_offset;
71         return (u32)data[0]       |
72                (u32)data[1] << 8  |
73                (u32)data[2] << 16 |
74                (u32)data[3] << 24;
75 #endif
76 }
77
78 static inline struct efx_rx_buffer *
79 efx_rx_buf_next(struct efx_rx_queue *rx_queue, struct efx_rx_buffer *rx_buf)
80 {
81         if (unlikely(rx_buf == efx_rx_buffer(rx_queue, rx_queue->ptr_mask)))
82                 return efx_rx_buffer(rx_queue, 0);
83         else
84                 return rx_buf + 1;
85 }
86
87 static inline void efx_sync_rx_buffer(struct efx_nic *efx,
88                                       struct efx_rx_buffer *rx_buf,
89                                       unsigned int len)
90 {
91         dma_sync_single_for_cpu(&efx->pci_dev->dev, rx_buf->dma_addr, len,
92                                 DMA_FROM_DEVICE);
93 }
94
95 void efx_rx_config_page_split(struct efx_nic *efx)
96 {
97         efx->rx_page_buf_step = ALIGN(efx->rx_dma_len + efx->rx_ip_align,
98                                       EFX_RX_BUF_ALIGNMENT);
99         efx->rx_bufs_per_page = efx->rx_buffer_order ? 1 :
100                 ((PAGE_SIZE - sizeof(struct efx_rx_page_state)) /
101                  efx->rx_page_buf_step);
102         efx->rx_buffer_truesize = (PAGE_SIZE << efx->rx_buffer_order) /
103                 efx->rx_bufs_per_page;
104         efx->rx_pages_per_batch = DIV_ROUND_UP(EFX_RX_PREFERRED_BATCH,
105                                                efx->rx_bufs_per_page);
106 }
107
108 /* Check the RX page recycle ring for a page that can be reused. */
109 static struct page *efx_reuse_page(struct efx_rx_queue *rx_queue)
110 {
111         struct efx_nic *efx = rx_queue->efx;
112         struct page *page;
113         struct efx_rx_page_state *state;
114         unsigned index;
115
116         index = rx_queue->page_remove & rx_queue->page_ptr_mask;
117         page = rx_queue->page_ring[index];
118         if (page == NULL)
119                 return NULL;
120
121         rx_queue->page_ring[index] = NULL;
122         /* page_remove cannot exceed page_add. */
123         if (rx_queue->page_remove != rx_queue->page_add)
124                 ++rx_queue->page_remove;
125
126         /* If page_count is 1 then we hold the only reference to this page. */
127         if (page_count(page) == 1) {
128                 ++rx_queue->page_recycle_count;
129                 return page;
130         } else {
131                 state = page_address(page);
132                 dma_unmap_page(&efx->pci_dev->dev, state->dma_addr,
133                                PAGE_SIZE << efx->rx_buffer_order,
134                                DMA_FROM_DEVICE);
135                 put_page(page);
136                 ++rx_queue->page_recycle_failed;
137         }
138
139         return NULL;
140 }
141
142 /**
143  * efx_init_rx_buffers - create EFX_RX_BATCH page-based RX buffers
144  *
145  * @rx_queue:           Efx RX queue
146  *
147  * This allocates a batch of pages, maps them for DMA, and populates
148  * struct efx_rx_buffers for each one. Return a negative error code or
149  * 0 on success. If a single page can be used for multiple buffers,
150  * then the page will either be inserted fully, or not at all.
151  */
152 static int efx_init_rx_buffers(struct efx_rx_queue *rx_queue, bool atomic)
153 {
154         struct efx_nic *efx = rx_queue->efx;
155         struct efx_rx_buffer *rx_buf;
156         struct page *page;
157         unsigned int page_offset;
158         struct efx_rx_page_state *state;
159         dma_addr_t dma_addr;
160         unsigned index, count;
161
162         count = 0;
163         do {
164                 page = efx_reuse_page(rx_queue);
165                 if (page == NULL) {
166                         page = alloc_pages(__GFP_COLD | __GFP_COMP |
167                                            (atomic ? GFP_ATOMIC : GFP_KERNEL),
168                                            efx->rx_buffer_order);
169                         if (unlikely(page == NULL))
170                                 return -ENOMEM;
171                         dma_addr =
172                                 dma_map_page(&efx->pci_dev->dev, page, 0,
173                                              PAGE_SIZE << efx->rx_buffer_order,
174                                              DMA_FROM_DEVICE);
175                         if (unlikely(dma_mapping_error(&efx->pci_dev->dev,
176                                                        dma_addr))) {
177                                 __free_pages(page, efx->rx_buffer_order);
178                                 return -EIO;
179                         }
180                         state = page_address(page);
181                         state->dma_addr = dma_addr;
182                 } else {
183                         state = page_address(page);
184                         dma_addr = state->dma_addr;
185                 }
186
187                 dma_addr += sizeof(struct efx_rx_page_state);
188                 page_offset = sizeof(struct efx_rx_page_state);
189
190                 do {
191                         index = rx_queue->added_count & rx_queue->ptr_mask;
192                         rx_buf = efx_rx_buffer(rx_queue, index);
193                         rx_buf->dma_addr = dma_addr + efx->rx_ip_align;
194                         rx_buf->page = page;
195                         rx_buf->page_offset = page_offset + efx->rx_ip_align;
196                         rx_buf->len = efx->rx_dma_len;
197                         rx_buf->flags = 0;
198                         ++rx_queue->added_count;
199                         get_page(page);
200                         dma_addr += efx->rx_page_buf_step;
201                         page_offset += efx->rx_page_buf_step;
202                 } while (page_offset + efx->rx_page_buf_step <= PAGE_SIZE);
203
204                 rx_buf->flags = EFX_RX_BUF_LAST_IN_PAGE;
205         } while (++count < efx->rx_pages_per_batch);
206
207         return 0;
208 }
209
210 /* Unmap a DMA-mapped page.  This function is only called for the final RX
211  * buffer in a page.
212  */
213 static void efx_unmap_rx_buffer(struct efx_nic *efx,
214                                 struct efx_rx_buffer *rx_buf)
215 {
216         struct page *page = rx_buf->page;
217
218         if (page) {
219                 struct efx_rx_page_state *state = page_address(page);
220                 dma_unmap_page(&efx->pci_dev->dev,
221                                state->dma_addr,
222                                PAGE_SIZE << efx->rx_buffer_order,
223                                DMA_FROM_DEVICE);
224         }
225 }
226
227 static void efx_free_rx_buffer(struct efx_rx_buffer *rx_buf)
228 {
229         if (rx_buf->page) {
230                 put_page(rx_buf->page);
231                 rx_buf->page = NULL;
232         }
233 }
234
235 /* Attempt to recycle the page if there is an RX recycle ring; the page can
236  * only be added if this is the final RX buffer, to prevent pages being used in
237  * the descriptor ring and appearing in the recycle ring simultaneously.
238  */
239 static void efx_recycle_rx_page(struct efx_channel *channel,
240                                 struct efx_rx_buffer *rx_buf)
241 {
242         struct page *page = rx_buf->page;
243         struct efx_rx_queue *rx_queue = efx_channel_get_rx_queue(channel);
244         struct efx_nic *efx = rx_queue->efx;
245         unsigned index;
246
247         /* Only recycle the page after processing the final buffer. */
248         if (!(rx_buf->flags & EFX_RX_BUF_LAST_IN_PAGE))
249                 return;
250
251         index = rx_queue->page_add & rx_queue->page_ptr_mask;
252         if (rx_queue->page_ring[index] == NULL) {
253                 unsigned read_index = rx_queue->page_remove &
254                         rx_queue->page_ptr_mask;
255
256                 /* The next slot in the recycle ring is available, but
257                  * increment page_remove if the read pointer currently
258                  * points here.
259                  */
260                 if (read_index == index)
261                         ++rx_queue->page_remove;
262                 rx_queue->page_ring[index] = page;
263                 ++rx_queue->page_add;
264                 return;
265         }
266         ++rx_queue->page_recycle_full;
267         efx_unmap_rx_buffer(efx, rx_buf);
268         put_page(rx_buf->page);
269 }
270
271 static void efx_fini_rx_buffer(struct efx_rx_queue *rx_queue,
272                                struct efx_rx_buffer *rx_buf)
273 {
274         /* Release the page reference we hold for the buffer. */
275         if (rx_buf->page)
276                 put_page(rx_buf->page);
277
278         /* If this is the last buffer in a page, unmap and free it. */
279         if (rx_buf->flags & EFX_RX_BUF_LAST_IN_PAGE) {
280                 efx_unmap_rx_buffer(rx_queue->efx, rx_buf);
281                 efx_free_rx_buffer(rx_buf);
282         }
283         rx_buf->page = NULL;
284 }
285
286 /* Recycle the pages that are used by buffers that have just been received. */
287 static void efx_recycle_rx_pages(struct efx_channel *channel,
288                                  struct efx_rx_buffer *rx_buf,
289                                  unsigned int n_frags)
290 {
291         struct efx_rx_queue *rx_queue = efx_channel_get_rx_queue(channel);
292
293         do {
294                 efx_recycle_rx_page(channel, rx_buf);
295                 rx_buf = efx_rx_buf_next(rx_queue, rx_buf);
296         } while (--n_frags);
297 }
298
299 static void efx_discard_rx_packet(struct efx_channel *channel,
300                                   struct efx_rx_buffer *rx_buf,
301                                   unsigned int n_frags)
302 {
303         struct efx_rx_queue *rx_queue = efx_channel_get_rx_queue(channel);
304
305         efx_recycle_rx_pages(channel, rx_buf, n_frags);
306
307         do {
308                 efx_free_rx_buffer(rx_buf);
309                 rx_buf = efx_rx_buf_next(rx_queue, rx_buf);
310         } while (--n_frags);
311 }
312
313 /**
314  * efx_fast_push_rx_descriptors - push new RX descriptors quickly
315  * @rx_queue:           RX descriptor queue
316  *
317  * This will aim to fill the RX descriptor queue up to
318  * @rx_queue->@max_fill. If there is insufficient atomic
319  * memory to do so, a slow fill will be scheduled.
320  *
321  * The caller must provide serialisation (none is used here). In practise,
322  * this means this function must run from the NAPI handler, or be called
323  * when NAPI is disabled.
324  */
325 void efx_fast_push_rx_descriptors(struct efx_rx_queue *rx_queue, bool atomic)
326 {
327         struct efx_nic *efx = rx_queue->efx;
328         unsigned int fill_level, batch_size;
329         int space, rc = 0;
330
331         if (!rx_queue->refill_enabled)
332                 return;
333
334         /* Calculate current fill level, and exit if we don't need to fill */
335         fill_level = (rx_queue->added_count - rx_queue->removed_count);
336         EFX_BUG_ON_PARANOID(fill_level > rx_queue->efx->rxq_entries);
337         if (fill_level >= rx_queue->fast_fill_trigger)
338                 goto out;
339
340         /* Record minimum fill level */
341         if (unlikely(fill_level < rx_queue->min_fill)) {
342                 if (fill_level)
343                         rx_queue->min_fill = fill_level;
344         }
345
346         batch_size = efx->rx_pages_per_batch * efx->rx_bufs_per_page;
347         space = rx_queue->max_fill - fill_level;
348         EFX_BUG_ON_PARANOID(space < batch_size);
349
350         netif_vdbg(rx_queue->efx, rx_status, rx_queue->efx->net_dev,
351                    "RX queue %d fast-filling descriptor ring from"
352                    " level %d to level %d\n",
353                    efx_rx_queue_index(rx_queue), fill_level,
354                    rx_queue->max_fill);
355
356
357         do {
358                 rc = efx_init_rx_buffers(rx_queue, atomic);
359                 if (unlikely(rc)) {
360                         /* Ensure that we don't leave the rx queue empty */
361                         if (rx_queue->added_count == rx_queue->removed_count)
362                                 efx_schedule_slow_fill(rx_queue);
363                         goto out;
364                 }
365         } while ((space -= batch_size) >= batch_size);
366
367         netif_vdbg(rx_queue->efx, rx_status, rx_queue->efx->net_dev,
368                    "RX queue %d fast-filled descriptor ring "
369                    "to level %d\n", efx_rx_queue_index(rx_queue),
370                    rx_queue->added_count - rx_queue->removed_count);
371
372  out:
373         if (rx_queue->notified_count != rx_queue->added_count)
374                 efx_nic_notify_rx_desc(rx_queue);
375 }
376
377 void efx_rx_slow_fill(unsigned long context)
378 {
379         struct efx_rx_queue *rx_queue = (struct efx_rx_queue *)context;
380
381         /* Post an event to cause NAPI to run and refill the queue */
382         efx_nic_generate_fill_event(rx_queue);
383         ++rx_queue->slow_fill_count;
384 }
385
386 static void efx_rx_packet__check_len(struct efx_rx_queue *rx_queue,
387                                      struct efx_rx_buffer *rx_buf,
388                                      int len)
389 {
390         struct efx_nic *efx = rx_queue->efx;
391         unsigned max_len = rx_buf->len - efx->type->rx_buffer_padding;
392
393         if (likely(len <= max_len))
394                 return;
395
396         /* The packet must be discarded, but this is only a fatal error
397          * if the caller indicated it was
398          */
399         rx_buf->flags |= EFX_RX_PKT_DISCARD;
400
401         if ((len > rx_buf->len) && EFX_WORKAROUND_8071(efx)) {
402                 if (net_ratelimit())
403                         netif_err(efx, rx_err, efx->net_dev,
404                                   " RX queue %d seriously overlength "
405                                   "RX event (0x%x > 0x%x+0x%x). Leaking\n",
406                                   efx_rx_queue_index(rx_queue), len, max_len,
407                                   efx->type->rx_buffer_padding);
408                 efx_schedule_reset(efx, RESET_TYPE_RX_RECOVERY);
409         } else {
410                 if (net_ratelimit())
411                         netif_err(efx, rx_err, efx->net_dev,
412                                   " RX queue %d overlength RX event "
413                                   "(0x%x > 0x%x)\n",
414                                   efx_rx_queue_index(rx_queue), len, max_len);
415         }
416
417         efx_rx_queue_channel(rx_queue)->n_rx_overlength++;
418 }
419
420 /* Pass a received packet up through GRO.  GRO can handle pages
421  * regardless of checksum state and skbs with a good checksum.
422  */
423 static void
424 efx_rx_packet_gro(struct efx_channel *channel, struct efx_rx_buffer *rx_buf,
425                   unsigned int n_frags, u8 *eh)
426 {
427         struct napi_struct *napi = &channel->napi_str;
428         gro_result_t gro_result;
429         struct efx_nic *efx = channel->efx;
430         struct sk_buff *skb;
431
432         skb = napi_get_frags(napi);
433         if (unlikely(!skb)) {
434                 while (n_frags--) {
435                         put_page(rx_buf->page);
436                         rx_buf->page = NULL;
437                         rx_buf = efx_rx_buf_next(&channel->rx_queue, rx_buf);
438                 }
439                 return;
440         }
441
442         if (efx->net_dev->features & NETIF_F_RXHASH)
443                 skb_set_hash(skb, efx_rx_buf_hash(efx, eh),
444                              PKT_HASH_TYPE_L3);
445         skb->ip_summed = ((rx_buf->flags & EFX_RX_PKT_CSUMMED) ?
446                           CHECKSUM_UNNECESSARY : CHECKSUM_NONE);
447
448         for (;;) {
449                 skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags,
450                                    rx_buf->page, rx_buf->page_offset,
451                                    rx_buf->len);
452                 rx_buf->page = NULL;
453                 skb->len += rx_buf->len;
454                 if (skb_shinfo(skb)->nr_frags == n_frags)
455                         break;
456
457                 rx_buf = efx_rx_buf_next(&channel->rx_queue, rx_buf);
458         }
459
460         skb->data_len = skb->len;
461         skb->truesize += n_frags * efx->rx_buffer_truesize;
462
463         skb_record_rx_queue(skb, channel->rx_queue.core_index);
464
465         gro_result = napi_gro_frags(napi);
466         if (gro_result != GRO_DROP)
467                 channel->irq_mod_score += 2;
468 }
469
470 /* Allocate and construct an SKB around page fragments */
471 static struct sk_buff *efx_rx_mk_skb(struct efx_channel *channel,
472                                      struct efx_rx_buffer *rx_buf,
473                                      unsigned int n_frags,
474                                      u8 *eh, int hdr_len)
475 {
476         struct efx_nic *efx = channel->efx;
477         struct sk_buff *skb;
478
479         /* Allocate an SKB to store the headers */
480         skb = netdev_alloc_skb(efx->net_dev,
481                                efx->rx_ip_align + efx->rx_prefix_size +
482                                hdr_len);
483         if (unlikely(skb == NULL))
484                 return NULL;
485
486         EFX_BUG_ON_PARANOID(rx_buf->len < hdr_len);
487
488         memcpy(skb->data + efx->rx_ip_align, eh - efx->rx_prefix_size,
489                efx->rx_prefix_size + hdr_len);
490         skb_reserve(skb, efx->rx_ip_align + efx->rx_prefix_size);
491         __skb_put(skb, hdr_len);
492
493         /* Append the remaining page(s) onto the frag list */
494         if (rx_buf->len > hdr_len) {
495                 rx_buf->page_offset += hdr_len;
496                 rx_buf->len -= hdr_len;
497
498                 for (;;) {
499                         skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags,
500                                            rx_buf->page, rx_buf->page_offset,
501                                            rx_buf->len);
502                         rx_buf->page = NULL;
503                         skb->len += rx_buf->len;
504                         skb->data_len += rx_buf->len;
505                         if (skb_shinfo(skb)->nr_frags == n_frags)
506                                 break;
507
508                         rx_buf = efx_rx_buf_next(&channel->rx_queue, rx_buf);
509                 }
510         } else {
511                 __free_pages(rx_buf->page, efx->rx_buffer_order);
512                 rx_buf->page = NULL;
513                 n_frags = 0;
514         }
515
516         skb->truesize += n_frags * efx->rx_buffer_truesize;
517
518         /* Move past the ethernet header */
519         skb->protocol = eth_type_trans(skb, efx->net_dev);
520
521         return skb;
522 }
523
524 void efx_rx_packet(struct efx_rx_queue *rx_queue, unsigned int index,
525                    unsigned int n_frags, unsigned int len, u16 flags)
526 {
527         struct efx_nic *efx = rx_queue->efx;
528         struct efx_channel *channel = efx_rx_queue_channel(rx_queue);
529         struct efx_rx_buffer *rx_buf;
530
531         rx_buf = efx_rx_buffer(rx_queue, index);
532         rx_buf->flags |= flags;
533
534         /* Validate the number of fragments and completed length */
535         if (n_frags == 1) {
536                 if (!(flags & EFX_RX_PKT_PREFIX_LEN))
537                         efx_rx_packet__check_len(rx_queue, rx_buf, len);
538         } else if (unlikely(n_frags > EFX_RX_MAX_FRAGS) ||
539                    unlikely(len <= (n_frags - 1) * efx->rx_dma_len) ||
540                    unlikely(len > n_frags * efx->rx_dma_len) ||
541                    unlikely(!efx->rx_scatter)) {
542                 /* If this isn't an explicit discard request, either
543                  * the hardware or the driver is broken.
544                  */
545                 WARN_ON(!(len == 0 && rx_buf->flags & EFX_RX_PKT_DISCARD));
546                 rx_buf->flags |= EFX_RX_PKT_DISCARD;
547         }
548
549         netif_vdbg(efx, rx_status, efx->net_dev,
550                    "RX queue %d received ids %x-%x len %d %s%s\n",
551                    efx_rx_queue_index(rx_queue), index,
552                    (index + n_frags - 1) & rx_queue->ptr_mask, len,
553                    (rx_buf->flags & EFX_RX_PKT_CSUMMED) ? " [SUMMED]" : "",
554                    (rx_buf->flags & EFX_RX_PKT_DISCARD) ? " [DISCARD]" : "");
555
556         /* Discard packet, if instructed to do so.  Process the
557          * previous receive first.
558          */
559         if (unlikely(rx_buf->flags & EFX_RX_PKT_DISCARD)) {
560                 efx_rx_flush_packet(channel);
561                 efx_discard_rx_packet(channel, rx_buf, n_frags);
562                 return;
563         }
564
565         if (n_frags == 1 && !(flags & EFX_RX_PKT_PREFIX_LEN))
566                 rx_buf->len = len;
567
568         /* Release and/or sync the DMA mapping - assumes all RX buffers
569          * consumed in-order per RX queue.
570          */
571         efx_sync_rx_buffer(efx, rx_buf, rx_buf->len);
572
573         /* Prefetch nice and early so data will (hopefully) be in cache by
574          * the time we look at it.
575          */
576         prefetch(efx_rx_buf_va(rx_buf));
577
578         rx_buf->page_offset += efx->rx_prefix_size;
579         rx_buf->len -= efx->rx_prefix_size;
580
581         if (n_frags > 1) {
582                 /* Release/sync DMA mapping for additional fragments.
583                  * Fix length for last fragment.
584                  */
585                 unsigned int tail_frags = n_frags - 1;
586
587                 for (;;) {
588                         rx_buf = efx_rx_buf_next(rx_queue, rx_buf);
589                         if (--tail_frags == 0)
590                                 break;
591                         efx_sync_rx_buffer(efx, rx_buf, efx->rx_dma_len);
592                 }
593                 rx_buf->len = len - (n_frags - 1) * efx->rx_dma_len;
594                 efx_sync_rx_buffer(efx, rx_buf, rx_buf->len);
595         }
596
597         /* All fragments have been DMA-synced, so recycle pages. */
598         rx_buf = efx_rx_buffer(rx_queue, index);
599         efx_recycle_rx_pages(channel, rx_buf, n_frags);
600
601         /* Pipeline receives so that we give time for packet headers to be
602          * prefetched into cache.
603          */
604         efx_rx_flush_packet(channel);
605         channel->rx_pkt_n_frags = n_frags;
606         channel->rx_pkt_index = index;
607 }
608
609 static void efx_rx_deliver(struct efx_channel *channel, u8 *eh,
610                            struct efx_rx_buffer *rx_buf,
611                            unsigned int n_frags)
612 {
613         struct sk_buff *skb;
614         u16 hdr_len = min_t(u16, rx_buf->len, EFX_SKB_HEADERS);
615
616         skb = efx_rx_mk_skb(channel, rx_buf, n_frags, eh, hdr_len);
617         if (unlikely(skb == NULL)) {
618                 efx_free_rx_buffer(rx_buf);
619                 return;
620         }
621         skb_record_rx_queue(skb, channel->rx_queue.core_index);
622
623         /* Set the SKB flags */
624         skb_checksum_none_assert(skb);
625         if (likely(rx_buf->flags & EFX_RX_PKT_CSUMMED))
626                 skb->ip_summed = CHECKSUM_UNNECESSARY;
627
628         efx_rx_skb_attach_timestamp(channel, skb);
629
630         if (channel->type->receive_skb)
631                 if (channel->type->receive_skb(channel, skb))
632                         return;
633
634         /* Pass the packet up */
635         netif_receive_skb(skb);
636 }
637
638 /* Handle a received packet.  Second half: Touches packet payload. */
639 void __efx_rx_packet(struct efx_channel *channel)
640 {
641         struct efx_nic *efx = channel->efx;
642         struct efx_rx_buffer *rx_buf =
643                 efx_rx_buffer(&channel->rx_queue, channel->rx_pkt_index);
644         u8 *eh = efx_rx_buf_va(rx_buf);
645
646         /* Read length from the prefix if necessary.  This already
647          * excludes the length of the prefix itself.
648          */
649         if (rx_buf->flags & EFX_RX_PKT_PREFIX_LEN)
650                 rx_buf->len = le16_to_cpup((__le16 *)
651                                            (eh + efx->rx_packet_len_offset));
652
653         /* If we're in loopback test, then pass the packet directly to the
654          * loopback layer, and free the rx_buf here
655          */
656         if (unlikely(efx->loopback_selftest)) {
657                 efx_loopback_rx_packet(efx, eh, rx_buf->len);
658                 efx_free_rx_buffer(rx_buf);
659                 goto out;
660         }
661
662         if (unlikely(!(efx->net_dev->features & NETIF_F_RXCSUM)))
663                 rx_buf->flags &= ~EFX_RX_PKT_CSUMMED;
664
665         if ((rx_buf->flags & EFX_RX_PKT_TCP) && !channel->type->receive_skb)
666                 efx_rx_packet_gro(channel, rx_buf, channel->rx_pkt_n_frags, eh);
667         else
668                 efx_rx_deliver(channel, eh, rx_buf, channel->rx_pkt_n_frags);
669 out:
670         channel->rx_pkt_n_frags = 0;
671 }
672
673 int efx_probe_rx_queue(struct efx_rx_queue *rx_queue)
674 {
675         struct efx_nic *efx = rx_queue->efx;
676         unsigned int entries;
677         int rc;
678
679         /* Create the smallest power-of-two aligned ring */
680         entries = max(roundup_pow_of_two(efx->rxq_entries), EFX_MIN_DMAQ_SIZE);
681         EFX_BUG_ON_PARANOID(entries > EFX_MAX_DMAQ_SIZE);
682         rx_queue->ptr_mask = entries - 1;
683
684         netif_dbg(efx, probe, efx->net_dev,
685                   "creating RX queue %d size %#x mask %#x\n",
686                   efx_rx_queue_index(rx_queue), efx->rxq_entries,
687                   rx_queue->ptr_mask);
688
689         /* Allocate RX buffers */
690         rx_queue->buffer = kcalloc(entries, sizeof(*rx_queue->buffer),
691                                    GFP_KERNEL);
692         if (!rx_queue->buffer)
693                 return -ENOMEM;
694
695         rc = efx_nic_probe_rx(rx_queue);
696         if (rc) {
697                 kfree(rx_queue->buffer);
698                 rx_queue->buffer = NULL;
699         }
700
701         return rc;
702 }
703
704 static void efx_init_rx_recycle_ring(struct efx_nic *efx,
705                                      struct efx_rx_queue *rx_queue)
706 {
707         unsigned int bufs_in_recycle_ring, page_ring_size;
708
709         /* Set the RX recycle ring size */
710 #ifdef CONFIG_PPC64
711         bufs_in_recycle_ring = EFX_RECYCLE_RING_SIZE_IOMMU;
712 #else
713         if (iommu_present(&pci_bus_type))
714                 bufs_in_recycle_ring = EFX_RECYCLE_RING_SIZE_IOMMU;
715         else
716                 bufs_in_recycle_ring = EFX_RECYCLE_RING_SIZE_NOIOMMU;
717 #endif /* CONFIG_PPC64 */
718
719         page_ring_size = roundup_pow_of_two(bufs_in_recycle_ring /
720                                             efx->rx_bufs_per_page);
721         rx_queue->page_ring = kcalloc(page_ring_size,
722                                       sizeof(*rx_queue->page_ring), GFP_KERNEL);
723         rx_queue->page_ptr_mask = page_ring_size - 1;
724 }
725
726 void efx_init_rx_queue(struct efx_rx_queue *rx_queue)
727 {
728         struct efx_nic *efx = rx_queue->efx;
729         unsigned int max_fill, trigger, max_trigger;
730
731         netif_dbg(rx_queue->efx, drv, rx_queue->efx->net_dev,
732                   "initialising RX queue %d\n", efx_rx_queue_index(rx_queue));
733
734         /* Initialise ptr fields */
735         rx_queue->added_count = 0;
736         rx_queue->notified_count = 0;
737         rx_queue->removed_count = 0;
738         rx_queue->min_fill = -1U;
739         efx_init_rx_recycle_ring(efx, rx_queue);
740
741         rx_queue->page_remove = 0;
742         rx_queue->page_add = rx_queue->page_ptr_mask + 1;
743         rx_queue->page_recycle_count = 0;
744         rx_queue->page_recycle_failed = 0;
745         rx_queue->page_recycle_full = 0;
746
747         /* Initialise limit fields */
748         max_fill = efx->rxq_entries - EFX_RXD_HEAD_ROOM;
749         max_trigger =
750                 max_fill - efx->rx_pages_per_batch * efx->rx_bufs_per_page;
751         if (rx_refill_threshold != 0) {
752                 trigger = max_fill * min(rx_refill_threshold, 100U) / 100U;
753                 if (trigger > max_trigger)
754                         trigger = max_trigger;
755         } else {
756                 trigger = max_trigger;
757         }
758
759         rx_queue->max_fill = max_fill;
760         rx_queue->fast_fill_trigger = trigger;
761         rx_queue->refill_enabled = true;
762
763         /* Set up RX descriptor ring */
764         efx_nic_init_rx(rx_queue);
765 }
766
767 void efx_fini_rx_queue(struct efx_rx_queue *rx_queue)
768 {
769         int i;
770         struct efx_nic *efx = rx_queue->efx;
771         struct efx_rx_buffer *rx_buf;
772
773         netif_dbg(rx_queue->efx, drv, rx_queue->efx->net_dev,
774                   "shutting down RX queue %d\n", efx_rx_queue_index(rx_queue));
775
776         del_timer_sync(&rx_queue->slow_fill);
777
778         /* Release RX buffers from the current read ptr to the write ptr */
779         if (rx_queue->buffer) {
780                 for (i = rx_queue->removed_count; i < rx_queue->added_count;
781                      i++) {
782                         unsigned index = i & rx_queue->ptr_mask;
783                         rx_buf = efx_rx_buffer(rx_queue, index);
784                         efx_fini_rx_buffer(rx_queue, rx_buf);
785                 }
786         }
787
788         /* Unmap and release the pages in the recycle ring. Remove the ring. */
789         for (i = 0; i <= rx_queue->page_ptr_mask; i++) {
790                 struct page *page = rx_queue->page_ring[i];
791                 struct efx_rx_page_state *state;
792
793                 if (page == NULL)
794                         continue;
795
796                 state = page_address(page);
797                 dma_unmap_page(&efx->pci_dev->dev, state->dma_addr,
798                                PAGE_SIZE << efx->rx_buffer_order,
799                                DMA_FROM_DEVICE);
800                 put_page(page);
801         }
802         kfree(rx_queue->page_ring);
803         rx_queue->page_ring = NULL;
804 }
805
806 void efx_remove_rx_queue(struct efx_rx_queue *rx_queue)
807 {
808         netif_dbg(rx_queue->efx, drv, rx_queue->efx->net_dev,
809                   "destroying RX queue %d\n", efx_rx_queue_index(rx_queue));
810
811         efx_nic_remove_rx(rx_queue);
812
813         kfree(rx_queue->buffer);
814         rx_queue->buffer = NULL;
815 }
816
817
818 module_param(rx_refill_threshold, uint, 0444);
819 MODULE_PARM_DESC(rx_refill_threshold,
820                  "RX descriptor ring refill threshold (%)");
821
822 #ifdef CONFIG_RFS_ACCEL
823
824 int efx_filter_rfs(struct net_device *net_dev, const struct sk_buff *skb,
825                    u16 rxq_index, u32 flow_id)
826 {
827         struct efx_nic *efx = netdev_priv(net_dev);
828         struct efx_channel *channel;
829         struct efx_filter_spec spec;
830         const __be16 *ports;
831         __be16 ether_type;
832         int nhoff;
833         int rc;
834
835         /* The core RPS/RFS code has already parsed and validated
836          * VLAN, IP and transport headers.  We assume they are in the
837          * header area.
838          */
839
840         if (skb->protocol == htons(ETH_P_8021Q)) {
841                 const struct vlan_hdr *vh =
842                         (const struct vlan_hdr *)skb->data;
843
844                 /* We can't filter on the IP 5-tuple and the vlan
845                  * together, so just strip the vlan header and filter
846                  * on the IP part.
847                  */
848                 EFX_BUG_ON_PARANOID(skb_headlen(skb) < sizeof(*vh));
849                 ether_type = vh->h_vlan_encapsulated_proto;
850                 nhoff = sizeof(struct vlan_hdr);
851         } else {
852                 ether_type = skb->protocol;
853                 nhoff = 0;
854         }
855
856         if (ether_type != htons(ETH_P_IP) && ether_type != htons(ETH_P_IPV6))
857                 return -EPROTONOSUPPORT;
858
859         efx_filter_init_rx(&spec, EFX_FILTER_PRI_HINT,
860                            efx->rx_scatter ? EFX_FILTER_FLAG_RX_SCATTER : 0,
861                            rxq_index);
862         spec.match_flags =
863                 EFX_FILTER_MATCH_ETHER_TYPE | EFX_FILTER_MATCH_IP_PROTO |
864                 EFX_FILTER_MATCH_LOC_HOST | EFX_FILTER_MATCH_LOC_PORT |
865                 EFX_FILTER_MATCH_REM_HOST | EFX_FILTER_MATCH_REM_PORT;
866         spec.ether_type = ether_type;
867
868         if (ether_type == htons(ETH_P_IP)) {
869                 const struct iphdr *ip =
870                         (const struct iphdr *)(skb->data + nhoff);
871
872                 EFX_BUG_ON_PARANOID(skb_headlen(skb) < nhoff + sizeof(*ip));
873                 if (ip_is_fragment(ip))
874                         return -EPROTONOSUPPORT;
875                 spec.ip_proto = ip->protocol;
876                 spec.rem_host[0] = ip->saddr;
877                 spec.loc_host[0] = ip->daddr;
878                 EFX_BUG_ON_PARANOID(skb_headlen(skb) < nhoff + 4 * ip->ihl + 4);
879                 ports = (const __be16 *)(skb->data + nhoff + 4 * ip->ihl);
880         } else {
881                 const struct ipv6hdr *ip6 =
882                         (const struct ipv6hdr *)(skb->data + nhoff);
883
884                 EFX_BUG_ON_PARANOID(skb_headlen(skb) <
885                                     nhoff + sizeof(*ip6) + 4);
886                 spec.ip_proto = ip6->nexthdr;
887                 memcpy(spec.rem_host, &ip6->saddr, sizeof(ip6->saddr));
888                 memcpy(spec.loc_host, &ip6->daddr, sizeof(ip6->daddr));
889                 ports = (const __be16 *)(ip6 + 1);
890         }
891
892         spec.rem_port = ports[0];
893         spec.loc_port = ports[1];
894
895         rc = efx->type->filter_rfs_insert(efx, &spec);
896         if (rc < 0)
897                 return rc;
898
899         /* Remember this so we can check whether to expire the filter later */
900         efx->rps_flow_id[rc] = flow_id;
901         channel = efx_get_channel(efx, skb_get_rx_queue(skb));
902         ++channel->rfs_filters_added;
903
904         if (ether_type == htons(ETH_P_IP))
905                 netif_info(efx, rx_status, efx->net_dev,
906                            "steering %s %pI4:%u:%pI4:%u to queue %u [flow %u filter %d]\n",
907                            (spec.ip_proto == IPPROTO_TCP) ? "TCP" : "UDP",
908                            spec.rem_host, ntohs(ports[0]), spec.loc_host,
909                            ntohs(ports[1]), rxq_index, flow_id, rc);
910         else
911                 netif_info(efx, rx_status, efx->net_dev,
912                            "steering %s [%pI6]:%u:[%pI6]:%u to queue %u [flow %u filter %d]\n",
913                            (spec.ip_proto == IPPROTO_TCP) ? "TCP" : "UDP",
914                            spec.rem_host, ntohs(ports[0]), spec.loc_host,
915                            ntohs(ports[1]), rxq_index, flow_id, rc);
916
917         return rc;
918 }
919
920 bool __efx_filter_rfs_expire(struct efx_nic *efx, unsigned int quota)
921 {
922         bool (*expire_one)(struct efx_nic *efx, u32 flow_id, unsigned int index);
923         unsigned int index, size;
924         u32 flow_id;
925
926         if (!spin_trylock_bh(&efx->filter_lock))
927                 return false;
928
929         expire_one = efx->type->filter_rfs_expire_one;
930         index = efx->rps_expire_index;
931         size = efx->type->max_rx_ip_filters;
932         while (quota--) {
933                 flow_id = efx->rps_flow_id[index];
934                 if (expire_one(efx, flow_id, index))
935                         netif_info(efx, rx_status, efx->net_dev,
936                                    "expired filter %d [flow %u]\n",
937                                    index, flow_id);
938                 if (++index == size)
939                         index = 0;
940         }
941         efx->rps_expire_index = index;
942
943         spin_unlock_bh(&efx->filter_lock);
944         return true;
945 }
946
947 #endif /* CONFIG_RFS_ACCEL */
948
949 /**
950  * efx_filter_is_mc_recipient - test whether spec is a multicast recipient
951  * @spec: Specification to test
952  *
953  * Return: %true if the specification is a non-drop RX filter that
954  * matches a local MAC address I/G bit value of 1 or matches a local
955  * IPv4 or IPv6 address value in the respective multicast address
956  * range.  Otherwise %false.
957  */
958 bool efx_filter_is_mc_recipient(const struct efx_filter_spec *spec)
959 {
960         if (!(spec->flags & EFX_FILTER_FLAG_RX) ||
961             spec->dmaq_id == EFX_FILTER_RX_DMAQ_ID_DROP)
962                 return false;
963
964         if (spec->match_flags &
965             (EFX_FILTER_MATCH_LOC_MAC | EFX_FILTER_MATCH_LOC_MAC_IG) &&
966             is_multicast_ether_addr(spec->loc_mac))
967                 return true;
968
969         if ((spec->match_flags &
970              (EFX_FILTER_MATCH_ETHER_TYPE | EFX_FILTER_MATCH_LOC_HOST)) ==
971             (EFX_FILTER_MATCH_ETHER_TYPE | EFX_FILTER_MATCH_LOC_HOST)) {
972                 if (spec->ether_type == htons(ETH_P_IP) &&
973                     ipv4_is_multicast(spec->loc_host[0]))
974                         return true;
975                 if (spec->ether_type == htons(ETH_P_IPV6) &&
976                     ((const u8 *)spec->loc_host)[0] == 0xff)
977                         return true;
978         }
979
980         return false;
981 }