Linux-libre 5.4.47-gnu
[librecmc/linux-libre.git] / drivers / net / ethernet / sfc / efx.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /****************************************************************************
3  * Driver for Solarflare network controllers and boards
4  * Copyright 2005-2006 Fen Systems Ltd.
5  * Copyright 2005-2013 Solarflare Communications Inc.
6  */
7
8 #include <linux/module.h>
9 #include <linux/pci.h>
10 #include <linux/netdevice.h>
11 #include <linux/etherdevice.h>
12 #include <linux/delay.h>
13 #include <linux/notifier.h>
14 #include <linux/ip.h>
15 #include <linux/tcp.h>
16 #include <linux/in.h>
17 #include <linux/ethtool.h>
18 #include <linux/topology.h>
19 #include <linux/gfp.h>
20 #include <linux/aer.h>
21 #include <linux/interrupt.h>
22 #include "net_driver.h"
23 #include <net/gre.h>
24 #include <net/udp_tunnel.h>
25 #include "efx.h"
26 #include "nic.h"
27 #include "io.h"
28 #include "selftest.h"
29 #include "sriov.h"
30
31 #include "mcdi.h"
32 #include "mcdi_pcol.h"
33 #include "workarounds.h"
34
35 /**************************************************************************
36  *
37  * Type name strings
38  *
39  **************************************************************************
40  */
41
42 /* Loopback mode names (see LOOPBACK_MODE()) */
43 const unsigned int efx_loopback_mode_max = LOOPBACK_MAX;
44 const char *const efx_loopback_mode_names[] = {
45         [LOOPBACK_NONE]         = "NONE",
46         [LOOPBACK_DATA]         = "DATAPATH",
47         [LOOPBACK_GMAC]         = "GMAC",
48         [LOOPBACK_XGMII]        = "XGMII",
49         [LOOPBACK_XGXS]         = "XGXS",
50         [LOOPBACK_XAUI]         = "XAUI",
51         [LOOPBACK_GMII]         = "GMII",
52         [LOOPBACK_SGMII]        = "SGMII",
53         [LOOPBACK_XGBR]         = "XGBR",
54         [LOOPBACK_XFI]          = "XFI",
55         [LOOPBACK_XAUI_FAR]     = "XAUI_FAR",
56         [LOOPBACK_GMII_FAR]     = "GMII_FAR",
57         [LOOPBACK_SGMII_FAR]    = "SGMII_FAR",
58         [LOOPBACK_XFI_FAR]      = "XFI_FAR",
59         [LOOPBACK_GPHY]         = "GPHY",
60         [LOOPBACK_PHYXS]        = "PHYXS",
61         [LOOPBACK_PCS]          = "PCS",
62         [LOOPBACK_PMAPMD]       = "PMA/PMD",
63         [LOOPBACK_XPORT]        = "XPORT",
64         [LOOPBACK_XGMII_WS]     = "XGMII_WS",
65         [LOOPBACK_XAUI_WS]      = "XAUI_WS",
66         [LOOPBACK_XAUI_WS_FAR]  = "XAUI_WS_FAR",
67         [LOOPBACK_XAUI_WS_NEAR] = "XAUI_WS_NEAR",
68         [LOOPBACK_GMII_WS]      = "GMII_WS",
69         [LOOPBACK_XFI_WS]       = "XFI_WS",
70         [LOOPBACK_XFI_WS_FAR]   = "XFI_WS_FAR",
71         [LOOPBACK_PHYXS_WS]     = "PHYXS_WS",
72 };
73
74 const unsigned int efx_reset_type_max = RESET_TYPE_MAX;
75 const char *const efx_reset_type_names[] = {
76         [RESET_TYPE_INVISIBLE]          = "INVISIBLE",
77         [RESET_TYPE_ALL]                = "ALL",
78         [RESET_TYPE_RECOVER_OR_ALL]     = "RECOVER_OR_ALL",
79         [RESET_TYPE_WORLD]              = "WORLD",
80         [RESET_TYPE_RECOVER_OR_DISABLE] = "RECOVER_OR_DISABLE",
81         [RESET_TYPE_DATAPATH]           = "DATAPATH",
82         [RESET_TYPE_MC_BIST]            = "MC_BIST",
83         [RESET_TYPE_DISABLE]            = "DISABLE",
84         [RESET_TYPE_TX_WATCHDOG]        = "TX_WATCHDOG",
85         [RESET_TYPE_INT_ERROR]          = "INT_ERROR",
86         [RESET_TYPE_DMA_ERROR]          = "DMA_ERROR",
87         [RESET_TYPE_TX_SKIP]            = "TX_SKIP",
88         [RESET_TYPE_MC_FAILURE]         = "MC_FAILURE",
89         [RESET_TYPE_MCDI_TIMEOUT]       = "MCDI_TIMEOUT (FLR)",
90 };
91
92 /* UDP tunnel type names */
93 static const char *const efx_udp_tunnel_type_names[] = {
94         [TUNNEL_ENCAP_UDP_PORT_ENTRY_VXLAN] = "vxlan",
95         [TUNNEL_ENCAP_UDP_PORT_ENTRY_GENEVE] = "geneve",
96 };
97
98 void efx_get_udp_tunnel_type_name(u16 type, char *buf, size_t buflen)
99 {
100         if (type < ARRAY_SIZE(efx_udp_tunnel_type_names) &&
101             efx_udp_tunnel_type_names[type] != NULL)
102                 snprintf(buf, buflen, "%s", efx_udp_tunnel_type_names[type]);
103         else
104                 snprintf(buf, buflen, "type %d", type);
105 }
106
107 /* Reset workqueue. If any NIC has a hardware failure then a reset will be
108  * queued onto this work queue. This is not a per-nic work queue, because
109  * efx_reset_work() acquires the rtnl lock, so resets are naturally serialised.
110  */
111 static struct workqueue_struct *reset_workqueue;
112
113 /* How often and how many times to poll for a reset while waiting for a
114  * BIST that another function started to complete.
115  */
116 #define BIST_WAIT_DELAY_MS      100
117 #define BIST_WAIT_DELAY_COUNT   100
118
119 /**************************************************************************
120  *
121  * Configurable values
122  *
123  *************************************************************************/
124
125 /*
126  * Use separate channels for TX and RX events
127  *
128  * Set this to 1 to use separate channels for TX and RX. It allows us
129  * to control interrupt affinity separately for TX and RX.
130  *
131  * This is only used in MSI-X interrupt mode
132  */
133 bool efx_separate_tx_channels;
134 module_param(efx_separate_tx_channels, bool, 0444);
135 MODULE_PARM_DESC(efx_separate_tx_channels,
136                  "Use separate channels for TX and RX");
137
138 /* This is the weight assigned to each of the (per-channel) virtual
139  * NAPI devices.
140  */
141 static int napi_weight = 64;
142
143 /* This is the time (in jiffies) between invocations of the hardware
144  * monitor.
145  * On Falcon-based NICs, this will:
146  * - Check the on-board hardware monitor;
147  * - Poll the link state and reconfigure the hardware as necessary.
148  * On Siena-based NICs for power systems with EEH support, this will give EEH a
149  * chance to start.
150  */
151 static unsigned int efx_monitor_interval = 1 * HZ;
152
153 /* Initial interrupt moderation settings.  They can be modified after
154  * module load with ethtool.
155  *
156  * The default for RX should strike a balance between increasing the
157  * round-trip latency and reducing overhead.
158  */
159 static unsigned int rx_irq_mod_usec = 60;
160
161 /* Initial interrupt moderation settings.  They can be modified after
162  * module load with ethtool.
163  *
164  * This default is chosen to ensure that a 10G link does not go idle
165  * while a TX queue is stopped after it has become full.  A queue is
166  * restarted when it drops below half full.  The time this takes (assuming
167  * worst case 3 descriptors per packet and 1024 descriptors) is
168  *   512 / 3 * 1.2 = 205 usec.
169  */
170 static unsigned int tx_irq_mod_usec = 150;
171
172 /* This is the first interrupt mode to try out of:
173  * 0 => MSI-X
174  * 1 => MSI
175  * 2 => legacy
176  */
177 static unsigned int interrupt_mode;
178
179 /* This is the requested number of CPUs to use for Receive-Side Scaling (RSS),
180  * i.e. the number of CPUs among which we may distribute simultaneous
181  * interrupt handling.
182  *
183  * Cards without MSI-X will only target one CPU via legacy or MSI interrupt.
184  * The default (0) means to assign an interrupt to each core.
185  */
186 static unsigned int rss_cpus;
187 module_param(rss_cpus, uint, 0444);
188 MODULE_PARM_DESC(rss_cpus, "Number of CPUs to use for Receive-Side Scaling");
189
190 static bool phy_flash_cfg;
191 module_param(phy_flash_cfg, bool, 0644);
192 MODULE_PARM_DESC(phy_flash_cfg, "Set PHYs into reflash mode initially");
193
194 static unsigned irq_adapt_low_thresh = 8000;
195 module_param(irq_adapt_low_thresh, uint, 0644);
196 MODULE_PARM_DESC(irq_adapt_low_thresh,
197                  "Threshold score for reducing IRQ moderation");
198
199 static unsigned irq_adapt_high_thresh = 16000;
200 module_param(irq_adapt_high_thresh, uint, 0644);
201 MODULE_PARM_DESC(irq_adapt_high_thresh,
202                  "Threshold score for increasing IRQ moderation");
203
204 static unsigned debug = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
205                          NETIF_MSG_LINK | NETIF_MSG_IFDOWN |
206                          NETIF_MSG_IFUP | NETIF_MSG_RX_ERR |
207                          NETIF_MSG_TX_ERR | NETIF_MSG_HW);
208 module_param(debug, uint, 0);
209 MODULE_PARM_DESC(debug, "Bitmapped debugging message enable value");
210
211 /**************************************************************************
212  *
213  * Utility functions and prototypes
214  *
215  *************************************************************************/
216
217 static int efx_soft_enable_interrupts(struct efx_nic *efx);
218 static void efx_soft_disable_interrupts(struct efx_nic *efx);
219 static void efx_remove_channel(struct efx_channel *channel);
220 static void efx_remove_channels(struct efx_nic *efx);
221 static const struct efx_channel_type efx_default_channel_type;
222 static void efx_remove_port(struct efx_nic *efx);
223 static void efx_init_napi_channel(struct efx_channel *channel);
224 static void efx_fini_napi(struct efx_nic *efx);
225 static void efx_fini_napi_channel(struct efx_channel *channel);
226 static void efx_fini_struct(struct efx_nic *efx);
227 static void efx_start_all(struct efx_nic *efx);
228 static void efx_stop_all(struct efx_nic *efx);
229
230 #define EFX_ASSERT_RESET_SERIALISED(efx)                \
231         do {                                            \
232                 if ((efx->state == STATE_READY) ||      \
233                     (efx->state == STATE_RECOVERY) ||   \
234                     (efx->state == STATE_DISABLED))     \
235                         ASSERT_RTNL();                  \
236         } while (0)
237
238 static int efx_check_disabled(struct efx_nic *efx)
239 {
240         if (efx->state == STATE_DISABLED || efx->state == STATE_RECOVERY) {
241                 netif_err(efx, drv, efx->net_dev,
242                           "device is disabled due to earlier errors\n");
243                 return -EIO;
244         }
245         return 0;
246 }
247
248 /**************************************************************************
249  *
250  * Event queue processing
251  *
252  *************************************************************************/
253
254 /* Process channel's event queue
255  *
256  * This function is responsible for processing the event queue of a
257  * single channel.  The caller must guarantee that this function will
258  * never be concurrently called more than once on the same channel,
259  * though different channels may be being processed concurrently.
260  */
261 static int efx_process_channel(struct efx_channel *channel, int budget)
262 {
263         struct efx_tx_queue *tx_queue;
264         struct list_head rx_list;
265         int spent;
266
267         if (unlikely(!channel->enabled))
268                 return 0;
269
270         /* Prepare the batch receive list */
271         EFX_WARN_ON_PARANOID(channel->rx_list != NULL);
272         INIT_LIST_HEAD(&rx_list);
273         channel->rx_list = &rx_list;
274
275         efx_for_each_channel_tx_queue(tx_queue, channel) {
276                 tx_queue->pkts_compl = 0;
277                 tx_queue->bytes_compl = 0;
278         }
279
280         spent = efx_nic_process_eventq(channel, budget);
281         if (spent && efx_channel_has_rx_queue(channel)) {
282                 struct efx_rx_queue *rx_queue =
283                         efx_channel_get_rx_queue(channel);
284
285                 efx_rx_flush_packet(channel);
286                 efx_fast_push_rx_descriptors(rx_queue, true);
287         }
288
289         /* Update BQL */
290         efx_for_each_channel_tx_queue(tx_queue, channel) {
291                 if (tx_queue->bytes_compl) {
292                         netdev_tx_completed_queue(tx_queue->core_txq,
293                                 tx_queue->pkts_compl, tx_queue->bytes_compl);
294                 }
295         }
296
297         /* Receive any packets we queued up */
298         netif_receive_skb_list(channel->rx_list);
299         channel->rx_list = NULL;
300
301         return spent;
302 }
303
304 /* NAPI poll handler
305  *
306  * NAPI guarantees serialisation of polls of the same device, which
307  * provides the guarantee required by efx_process_channel().
308  */
309 static void efx_update_irq_mod(struct efx_nic *efx, struct efx_channel *channel)
310 {
311         int step = efx->irq_mod_step_us;
312
313         if (channel->irq_mod_score < irq_adapt_low_thresh) {
314                 if (channel->irq_moderation_us > step) {
315                         channel->irq_moderation_us -= step;
316                         efx->type->push_irq_moderation(channel);
317                 }
318         } else if (channel->irq_mod_score > irq_adapt_high_thresh) {
319                 if (channel->irq_moderation_us <
320                     efx->irq_rx_moderation_us) {
321                         channel->irq_moderation_us += step;
322                         efx->type->push_irq_moderation(channel);
323                 }
324         }
325
326         channel->irq_count = 0;
327         channel->irq_mod_score = 0;
328 }
329
330 static int efx_poll(struct napi_struct *napi, int budget)
331 {
332         struct efx_channel *channel =
333                 container_of(napi, struct efx_channel, napi_str);
334         struct efx_nic *efx = channel->efx;
335         int spent;
336
337         netif_vdbg(efx, intr, efx->net_dev,
338                    "channel %d NAPI poll executing on CPU %d\n",
339                    channel->channel, raw_smp_processor_id());
340
341         spent = efx_process_channel(channel, budget);
342
343         if (spent < budget) {
344                 if (efx_channel_has_rx_queue(channel) &&
345                     efx->irq_rx_adaptive &&
346                     unlikely(++channel->irq_count == 1000)) {
347                         efx_update_irq_mod(efx, channel);
348                 }
349
350 #ifdef CONFIG_RFS_ACCEL
351                 /* Perhaps expire some ARFS filters */
352                 schedule_work(&channel->filter_work);
353 #endif
354
355                 /* There is no race here; although napi_disable() will
356                  * only wait for napi_complete(), this isn't a problem
357                  * since efx_nic_eventq_read_ack() will have no effect if
358                  * interrupts have already been disabled.
359                  */
360                 if (napi_complete_done(napi, spent))
361                         efx_nic_eventq_read_ack(channel);
362         }
363
364         return spent;
365 }
366
367 /* Create event queue
368  * Event queue memory allocations are done only once.  If the channel
369  * is reset, the memory buffer will be reused; this guards against
370  * errors during channel reset and also simplifies interrupt handling.
371  */
372 static int efx_probe_eventq(struct efx_channel *channel)
373 {
374         struct efx_nic *efx = channel->efx;
375         unsigned long entries;
376
377         netif_dbg(efx, probe, efx->net_dev,
378                   "chan %d create event queue\n", channel->channel);
379
380         /* Build an event queue with room for one event per tx and rx buffer,
381          * plus some extra for link state events and MCDI completions. */
382         entries = roundup_pow_of_two(efx->rxq_entries + efx->txq_entries + 128);
383         EFX_WARN_ON_PARANOID(entries > EFX_MAX_EVQ_SIZE);
384         channel->eventq_mask = max(entries, EFX_MIN_EVQ_SIZE) - 1;
385
386         return efx_nic_probe_eventq(channel);
387 }
388
389 /* Prepare channel's event queue */
390 static int efx_init_eventq(struct efx_channel *channel)
391 {
392         struct efx_nic *efx = channel->efx;
393         int rc;
394
395         EFX_WARN_ON_PARANOID(channel->eventq_init);
396
397         netif_dbg(efx, drv, efx->net_dev,
398                   "chan %d init event queue\n", channel->channel);
399
400         rc = efx_nic_init_eventq(channel);
401         if (rc == 0) {
402                 efx->type->push_irq_moderation(channel);
403                 channel->eventq_read_ptr = 0;
404                 channel->eventq_init = true;
405         }
406         return rc;
407 }
408
409 /* Enable event queue processing and NAPI */
410 void efx_start_eventq(struct efx_channel *channel)
411 {
412         netif_dbg(channel->efx, ifup, channel->efx->net_dev,
413                   "chan %d start event queue\n", channel->channel);
414
415         /* Make sure the NAPI handler sees the enabled flag set */
416         channel->enabled = true;
417         smp_wmb();
418
419         napi_enable(&channel->napi_str);
420         efx_nic_eventq_read_ack(channel);
421 }
422
423 /* Disable event queue processing and NAPI */
424 void efx_stop_eventq(struct efx_channel *channel)
425 {
426         if (!channel->enabled)
427                 return;
428
429         napi_disable(&channel->napi_str);
430         channel->enabled = false;
431 }
432
433 static void efx_fini_eventq(struct efx_channel *channel)
434 {
435         if (!channel->eventq_init)
436                 return;
437
438         netif_dbg(channel->efx, drv, channel->efx->net_dev,
439                   "chan %d fini event queue\n", channel->channel);
440
441         efx_nic_fini_eventq(channel);
442         channel->eventq_init = false;
443 }
444
445 static void efx_remove_eventq(struct efx_channel *channel)
446 {
447         netif_dbg(channel->efx, drv, channel->efx->net_dev,
448                   "chan %d remove event queue\n", channel->channel);
449
450         efx_nic_remove_eventq(channel);
451 }
452
453 /**************************************************************************
454  *
455  * Channel handling
456  *
457  *************************************************************************/
458
459 /* Allocate and initialise a channel structure. */
460 static struct efx_channel *
461 efx_alloc_channel(struct efx_nic *efx, int i, struct efx_channel *old_channel)
462 {
463         struct efx_channel *channel;
464         struct efx_rx_queue *rx_queue;
465         struct efx_tx_queue *tx_queue;
466         int j;
467
468         channel = kzalloc(sizeof(*channel), GFP_KERNEL);
469         if (!channel)
470                 return NULL;
471
472         channel->efx = efx;
473         channel->channel = i;
474         channel->type = &efx_default_channel_type;
475
476         for (j = 0; j < EFX_TXQ_TYPES; j++) {
477                 tx_queue = &channel->tx_queue[j];
478                 tx_queue->efx = efx;
479                 tx_queue->queue = i * EFX_TXQ_TYPES + j;
480                 tx_queue->channel = channel;
481         }
482
483 #ifdef CONFIG_RFS_ACCEL
484         INIT_WORK(&channel->filter_work, efx_filter_rfs_expire);
485 #endif
486
487         rx_queue = &channel->rx_queue;
488         rx_queue->efx = efx;
489         timer_setup(&rx_queue->slow_fill, efx_rx_slow_fill, 0);
490
491         return channel;
492 }
493
494 /* Allocate and initialise a channel structure, copying parameters
495  * (but not resources) from an old channel structure.
496  */
497 static struct efx_channel *
498 efx_copy_channel(const struct efx_channel *old_channel)
499 {
500         struct efx_channel *channel;
501         struct efx_rx_queue *rx_queue;
502         struct efx_tx_queue *tx_queue;
503         int j;
504
505         channel = kmalloc(sizeof(*channel), GFP_KERNEL);
506         if (!channel)
507                 return NULL;
508
509         *channel = *old_channel;
510
511         channel->napi_dev = NULL;
512         INIT_HLIST_NODE(&channel->napi_str.napi_hash_node);
513         channel->napi_str.napi_id = 0;
514         channel->napi_str.state = 0;
515         memset(&channel->eventq, 0, sizeof(channel->eventq));
516
517         for (j = 0; j < EFX_TXQ_TYPES; j++) {
518                 tx_queue = &channel->tx_queue[j];
519                 if (tx_queue->channel)
520                         tx_queue->channel = channel;
521                 tx_queue->buffer = NULL;
522                 tx_queue->cb_page = NULL;
523                 memset(&tx_queue->txd, 0, sizeof(tx_queue->txd));
524         }
525
526         rx_queue = &channel->rx_queue;
527         rx_queue->buffer = NULL;
528         memset(&rx_queue->rxd, 0, sizeof(rx_queue->rxd));
529         timer_setup(&rx_queue->slow_fill, efx_rx_slow_fill, 0);
530 #ifdef CONFIG_RFS_ACCEL
531         INIT_WORK(&channel->filter_work, efx_filter_rfs_expire);
532 #endif
533
534         return channel;
535 }
536
537 static int efx_probe_channel(struct efx_channel *channel)
538 {
539         struct efx_tx_queue *tx_queue;
540         struct efx_rx_queue *rx_queue;
541         int rc;
542
543         netif_dbg(channel->efx, probe, channel->efx->net_dev,
544                   "creating channel %d\n", channel->channel);
545
546         rc = channel->type->pre_probe(channel);
547         if (rc)
548                 goto fail;
549
550         rc = efx_probe_eventq(channel);
551         if (rc)
552                 goto fail;
553
554         efx_for_each_channel_tx_queue(tx_queue, channel) {
555                 rc = efx_probe_tx_queue(tx_queue);
556                 if (rc)
557                         goto fail;
558         }
559
560         efx_for_each_channel_rx_queue(rx_queue, channel) {
561                 rc = efx_probe_rx_queue(rx_queue);
562                 if (rc)
563                         goto fail;
564         }
565
566         channel->rx_list = NULL;
567
568         return 0;
569
570 fail:
571         efx_remove_channel(channel);
572         return rc;
573 }
574
575 static void
576 efx_get_channel_name(struct efx_channel *channel, char *buf, size_t len)
577 {
578         struct efx_nic *efx = channel->efx;
579         const char *type;
580         int number;
581
582         number = channel->channel;
583         if (efx->tx_channel_offset == 0) {
584                 type = "";
585         } else if (channel->channel < efx->tx_channel_offset) {
586                 type = "-rx";
587         } else {
588                 type = "-tx";
589                 number -= efx->tx_channel_offset;
590         }
591         snprintf(buf, len, "%s%s-%d", efx->name, type, number);
592 }
593
594 static void efx_set_channel_names(struct efx_nic *efx)
595 {
596         struct efx_channel *channel;
597
598         efx_for_each_channel(channel, efx)
599                 channel->type->get_name(channel,
600                                         efx->msi_context[channel->channel].name,
601                                         sizeof(efx->msi_context[0].name));
602 }
603
604 static int efx_probe_channels(struct efx_nic *efx)
605 {
606         struct efx_channel *channel;
607         int rc;
608
609         /* Restart special buffer allocation */
610         efx->next_buffer_table = 0;
611
612         /* Probe channels in reverse, so that any 'extra' channels
613          * use the start of the buffer table. This allows the traffic
614          * channels to be resized without moving them or wasting the
615          * entries before them.
616          */
617         efx_for_each_channel_rev(channel, efx) {
618                 rc = efx_probe_channel(channel);
619                 if (rc) {
620                         netif_err(efx, probe, efx->net_dev,
621                                   "failed to create channel %d\n",
622                                   channel->channel);
623                         goto fail;
624                 }
625         }
626         efx_set_channel_names(efx);
627
628         return 0;
629
630 fail:
631         efx_remove_channels(efx);
632         return rc;
633 }
634
635 /* Channels are shutdown and reinitialised whilst the NIC is running
636  * to propagate configuration changes (mtu, checksum offload), or
637  * to clear hardware error conditions
638  */
639 static void efx_start_datapath(struct efx_nic *efx)
640 {
641         netdev_features_t old_features = efx->net_dev->features;
642         bool old_rx_scatter = efx->rx_scatter;
643         struct efx_tx_queue *tx_queue;
644         struct efx_rx_queue *rx_queue;
645         struct efx_channel *channel;
646         size_t rx_buf_len;
647
648         /* Calculate the rx buffer allocation parameters required to
649          * support the current MTU, including padding for header
650          * alignment and overruns.
651          */
652         efx->rx_dma_len = (efx->rx_prefix_size +
653                            EFX_MAX_FRAME_LEN(efx->net_dev->mtu) +
654                            efx->type->rx_buffer_padding);
655         rx_buf_len = (sizeof(struct efx_rx_page_state) +
656                       efx->rx_ip_align + efx->rx_dma_len);
657         if (rx_buf_len <= PAGE_SIZE) {
658                 efx->rx_scatter = efx->type->always_rx_scatter;
659                 efx->rx_buffer_order = 0;
660         } else if (efx->type->can_rx_scatter) {
661                 BUILD_BUG_ON(EFX_RX_USR_BUF_SIZE % L1_CACHE_BYTES);
662                 BUILD_BUG_ON(sizeof(struct efx_rx_page_state) +
663                              2 * ALIGN(NET_IP_ALIGN + EFX_RX_USR_BUF_SIZE,
664                                        EFX_RX_BUF_ALIGNMENT) >
665                              PAGE_SIZE);
666                 efx->rx_scatter = true;
667                 efx->rx_dma_len = EFX_RX_USR_BUF_SIZE;
668                 efx->rx_buffer_order = 0;
669         } else {
670                 efx->rx_scatter = false;
671                 efx->rx_buffer_order = get_order(rx_buf_len);
672         }
673
674         efx_rx_config_page_split(efx);
675         if (efx->rx_buffer_order)
676                 netif_dbg(efx, drv, efx->net_dev,
677                           "RX buf len=%u; page order=%u batch=%u\n",
678                           efx->rx_dma_len, efx->rx_buffer_order,
679                           efx->rx_pages_per_batch);
680         else
681                 netif_dbg(efx, drv, efx->net_dev,
682                           "RX buf len=%u step=%u bpp=%u; page batch=%u\n",
683                           efx->rx_dma_len, efx->rx_page_buf_step,
684                           efx->rx_bufs_per_page, efx->rx_pages_per_batch);
685
686         /* Restore previously fixed features in hw_features and remove
687          * features which are fixed now
688          */
689         efx->net_dev->hw_features |= efx->net_dev->features;
690         efx->net_dev->hw_features &= ~efx->fixed_features;
691         efx->net_dev->features |= efx->fixed_features;
692         if (efx->net_dev->features != old_features)
693                 netdev_features_change(efx->net_dev);
694
695         /* RX filters may also have scatter-enabled flags */
696         if (efx->rx_scatter != old_rx_scatter)
697                 efx->type->filter_update_rx_scatter(efx);
698
699         /* We must keep at least one descriptor in a TX ring empty.
700          * We could avoid this when the queue size does not exactly
701          * match the hardware ring size, but it's not that important.
702          * Therefore we stop the queue when one more skb might fill
703          * the ring completely.  We wake it when half way back to
704          * empty.
705          */
706         efx->txq_stop_thresh = efx->txq_entries - efx_tx_max_skb_descs(efx);
707         efx->txq_wake_thresh = efx->txq_stop_thresh / 2;
708
709         /* Initialise the channels */
710         efx_for_each_channel(channel, efx) {
711                 efx_for_each_channel_tx_queue(tx_queue, channel) {
712                         efx_init_tx_queue(tx_queue);
713                         atomic_inc(&efx->active_queues);
714                 }
715
716                 efx_for_each_channel_rx_queue(rx_queue, channel) {
717                         efx_init_rx_queue(rx_queue);
718                         atomic_inc(&efx->active_queues);
719                         efx_stop_eventq(channel);
720                         efx_fast_push_rx_descriptors(rx_queue, false);
721                         efx_start_eventq(channel);
722                 }
723
724                 WARN_ON(channel->rx_pkt_n_frags);
725         }
726
727         efx_ptp_start_datapath(efx);
728
729         if (netif_device_present(efx->net_dev))
730                 netif_tx_wake_all_queues(efx->net_dev);
731 }
732
733 static void efx_stop_datapath(struct efx_nic *efx)
734 {
735         struct efx_channel *channel;
736         struct efx_tx_queue *tx_queue;
737         struct efx_rx_queue *rx_queue;
738         int rc;
739
740         EFX_ASSERT_RESET_SERIALISED(efx);
741         BUG_ON(efx->port_enabled);
742
743         efx_ptp_stop_datapath(efx);
744
745         /* Stop RX refill */
746         efx_for_each_channel(channel, efx) {
747                 efx_for_each_channel_rx_queue(rx_queue, channel)
748                         rx_queue->refill_enabled = false;
749         }
750
751         efx_for_each_channel(channel, efx) {
752                 /* RX packet processing is pipelined, so wait for the
753                  * NAPI handler to complete.  At least event queue 0
754                  * might be kept active by non-data events, so don't
755                  * use napi_synchronize() but actually disable NAPI
756                  * temporarily.
757                  */
758                 if (efx_channel_has_rx_queue(channel)) {
759                         efx_stop_eventq(channel);
760                         efx_start_eventq(channel);
761                 }
762         }
763
764         rc = efx->type->fini_dmaq(efx);
765         if (rc) {
766                 netif_err(efx, drv, efx->net_dev, "failed to flush queues\n");
767         } else {
768                 netif_dbg(efx, drv, efx->net_dev,
769                           "successfully flushed all queues\n");
770         }
771
772         efx_for_each_channel(channel, efx) {
773                 efx_for_each_channel_rx_queue(rx_queue, channel)
774                         efx_fini_rx_queue(rx_queue);
775                 efx_for_each_possible_channel_tx_queue(tx_queue, channel)
776                         efx_fini_tx_queue(tx_queue);
777         }
778 }
779
780 static void efx_remove_channel(struct efx_channel *channel)
781 {
782         struct efx_tx_queue *tx_queue;
783         struct efx_rx_queue *rx_queue;
784
785         netif_dbg(channel->efx, drv, channel->efx->net_dev,
786                   "destroy chan %d\n", channel->channel);
787
788         efx_for_each_channel_rx_queue(rx_queue, channel)
789                 efx_remove_rx_queue(rx_queue);
790         efx_for_each_possible_channel_tx_queue(tx_queue, channel)
791                 efx_remove_tx_queue(tx_queue);
792         efx_remove_eventq(channel);
793         channel->type->post_remove(channel);
794 }
795
796 static void efx_remove_channels(struct efx_nic *efx)
797 {
798         struct efx_channel *channel;
799
800         efx_for_each_channel(channel, efx)
801                 efx_remove_channel(channel);
802 }
803
804 int
805 efx_realloc_channels(struct efx_nic *efx, u32 rxq_entries, u32 txq_entries)
806 {
807         struct efx_channel *other_channel[EFX_MAX_CHANNELS], *channel;
808         u32 old_rxq_entries, old_txq_entries;
809         unsigned i, next_buffer_table = 0;
810         int rc, rc2;
811
812         rc = efx_check_disabled(efx);
813         if (rc)
814                 return rc;
815
816         /* Not all channels should be reallocated. We must avoid
817          * reallocating their buffer table entries.
818          */
819         efx_for_each_channel(channel, efx) {
820                 struct efx_rx_queue *rx_queue;
821                 struct efx_tx_queue *tx_queue;
822
823                 if (channel->type->copy)
824                         continue;
825                 next_buffer_table = max(next_buffer_table,
826                                         channel->eventq.index +
827                                         channel->eventq.entries);
828                 efx_for_each_channel_rx_queue(rx_queue, channel)
829                         next_buffer_table = max(next_buffer_table,
830                                                 rx_queue->rxd.index +
831                                                 rx_queue->rxd.entries);
832                 efx_for_each_channel_tx_queue(tx_queue, channel)
833                         next_buffer_table = max(next_buffer_table,
834                                                 tx_queue->txd.index +
835                                                 tx_queue->txd.entries);
836         }
837
838         efx_device_detach_sync(efx);
839         efx_stop_all(efx);
840         efx_soft_disable_interrupts(efx);
841
842         /* Clone channels (where possible) */
843         memset(other_channel, 0, sizeof(other_channel));
844         for (i = 0; i < efx->n_channels; i++) {
845                 channel = efx->channel[i];
846                 if (channel->type->copy)
847                         channel = channel->type->copy(channel);
848                 if (!channel) {
849                         rc = -ENOMEM;
850                         goto out;
851                 }
852                 other_channel[i] = channel;
853         }
854
855         /* Swap entry counts and channel pointers */
856         old_rxq_entries = efx->rxq_entries;
857         old_txq_entries = efx->txq_entries;
858         efx->rxq_entries = rxq_entries;
859         efx->txq_entries = txq_entries;
860         for (i = 0; i < efx->n_channels; i++) {
861                 channel = efx->channel[i];
862                 efx->channel[i] = other_channel[i];
863                 other_channel[i] = channel;
864         }
865
866         /* Restart buffer table allocation */
867         efx->next_buffer_table = next_buffer_table;
868
869         for (i = 0; i < efx->n_channels; i++) {
870                 channel = efx->channel[i];
871                 if (!channel->type->copy)
872                         continue;
873                 rc = efx_probe_channel(channel);
874                 if (rc)
875                         goto rollback;
876                 efx_init_napi_channel(efx->channel[i]);
877         }
878
879 out:
880         /* Destroy unused channel structures */
881         for (i = 0; i < efx->n_channels; i++) {
882                 channel = other_channel[i];
883                 if (channel && channel->type->copy) {
884                         efx_fini_napi_channel(channel);
885                         efx_remove_channel(channel);
886                         kfree(channel);
887                 }
888         }
889
890         rc2 = efx_soft_enable_interrupts(efx);
891         if (rc2) {
892                 rc = rc ? rc : rc2;
893                 netif_err(efx, drv, efx->net_dev,
894                           "unable to restart interrupts on channel reallocation\n");
895                 efx_schedule_reset(efx, RESET_TYPE_DISABLE);
896         } else {
897                 efx_start_all(efx);
898                 efx_device_attach_if_not_resetting(efx);
899         }
900         return rc;
901
902 rollback:
903         /* Swap back */
904         efx->rxq_entries = old_rxq_entries;
905         efx->txq_entries = old_txq_entries;
906         for (i = 0; i < efx->n_channels; i++) {
907                 channel = efx->channel[i];
908                 efx->channel[i] = other_channel[i];
909                 other_channel[i] = channel;
910         }
911         goto out;
912 }
913
914 void efx_schedule_slow_fill(struct efx_rx_queue *rx_queue)
915 {
916         mod_timer(&rx_queue->slow_fill, jiffies + msecs_to_jiffies(10));
917 }
918
919 static bool efx_default_channel_want_txqs(struct efx_channel *channel)
920 {
921         return channel->channel - channel->efx->tx_channel_offset <
922                 channel->efx->n_tx_channels;
923 }
924
925 static const struct efx_channel_type efx_default_channel_type = {
926         .pre_probe              = efx_channel_dummy_op_int,
927         .post_remove            = efx_channel_dummy_op_void,
928         .get_name               = efx_get_channel_name,
929         .copy                   = efx_copy_channel,
930         .want_txqs              = efx_default_channel_want_txqs,
931         .keep_eventq            = false,
932         .want_pio               = true,
933 };
934
935 int efx_channel_dummy_op_int(struct efx_channel *channel)
936 {
937         return 0;
938 }
939
940 void efx_channel_dummy_op_void(struct efx_channel *channel)
941 {
942 }
943
944 /**************************************************************************
945  *
946  * Port handling
947  *
948  **************************************************************************/
949
950 /* This ensures that the kernel is kept informed (via
951  * netif_carrier_on/off) of the link status, and also maintains the
952  * link status's stop on the port's TX queue.
953  */
954 void efx_link_status_changed(struct efx_nic *efx)
955 {
956         struct efx_link_state *link_state = &efx->link_state;
957
958         /* SFC Bug 5356: A net_dev notifier is registered, so we must ensure
959          * that no events are triggered between unregister_netdev() and the
960          * driver unloading. A more general condition is that NETDEV_CHANGE
961          * can only be generated between NETDEV_UP and NETDEV_DOWN */
962         if (!netif_running(efx->net_dev))
963                 return;
964
965         if (link_state->up != netif_carrier_ok(efx->net_dev)) {
966                 efx->n_link_state_changes++;
967
968                 if (link_state->up)
969                         netif_carrier_on(efx->net_dev);
970                 else
971                         netif_carrier_off(efx->net_dev);
972         }
973
974         /* Status message for kernel log */
975         if (link_state->up)
976                 netif_info(efx, link, efx->net_dev,
977                            "link up at %uMbps %s-duplex (MTU %d)\n",
978                            link_state->speed, link_state->fd ? "full" : "half",
979                            efx->net_dev->mtu);
980         else
981                 netif_info(efx, link, efx->net_dev, "link down\n");
982 }
983
984 void efx_link_set_advertising(struct efx_nic *efx,
985                               const unsigned long *advertising)
986 {
987         memcpy(efx->link_advertising, advertising,
988                sizeof(__ETHTOOL_DECLARE_LINK_MODE_MASK()));
989
990         efx->link_advertising[0] |= ADVERTISED_Autoneg;
991         if (advertising[0] & ADVERTISED_Pause)
992                 efx->wanted_fc |= (EFX_FC_TX | EFX_FC_RX);
993         else
994                 efx->wanted_fc &= ~(EFX_FC_TX | EFX_FC_RX);
995         if (advertising[0] & ADVERTISED_Asym_Pause)
996                 efx->wanted_fc ^= EFX_FC_TX;
997 }
998
999 /* Equivalent to efx_link_set_advertising with all-zeroes, except does not
1000  * force the Autoneg bit on.
1001  */
1002 void efx_link_clear_advertising(struct efx_nic *efx)
1003 {
1004         bitmap_zero(efx->link_advertising, __ETHTOOL_LINK_MODE_MASK_NBITS);
1005         efx->wanted_fc &= ~(EFX_FC_TX | EFX_FC_RX);
1006 }
1007
1008 void efx_link_set_wanted_fc(struct efx_nic *efx, u8 wanted_fc)
1009 {
1010         efx->wanted_fc = wanted_fc;
1011         if (efx->link_advertising[0]) {
1012                 if (wanted_fc & EFX_FC_RX)
1013                         efx->link_advertising[0] |= (ADVERTISED_Pause |
1014                                                      ADVERTISED_Asym_Pause);
1015                 else
1016                         efx->link_advertising[0] &= ~(ADVERTISED_Pause |
1017                                                       ADVERTISED_Asym_Pause);
1018                 if (wanted_fc & EFX_FC_TX)
1019                         efx->link_advertising[0] ^= ADVERTISED_Asym_Pause;
1020         }
1021 }
1022
1023 static void efx_fini_port(struct efx_nic *efx);
1024
1025 /* We assume that efx->type->reconfigure_mac will always try to sync RX
1026  * filters and therefore needs to read-lock the filter table against freeing
1027  */
1028 void efx_mac_reconfigure(struct efx_nic *efx)
1029 {
1030         down_read(&efx->filter_sem);
1031         efx->type->reconfigure_mac(efx);
1032         up_read(&efx->filter_sem);
1033 }
1034
1035 /* Push loopback/power/transmit disable settings to the PHY, and reconfigure
1036  * the MAC appropriately. All other PHY configuration changes are pushed
1037  * through phy_op->set_settings(), and pushed asynchronously to the MAC
1038  * through efx_monitor().
1039  *
1040  * Callers must hold the mac_lock
1041  */
1042 int __efx_reconfigure_port(struct efx_nic *efx)
1043 {
1044         enum efx_phy_mode phy_mode;
1045         int rc;
1046
1047         WARN_ON(!mutex_is_locked(&efx->mac_lock));
1048
1049         /* Disable PHY transmit in mac level loopbacks */
1050         phy_mode = efx->phy_mode;
1051         if (LOOPBACK_INTERNAL(efx))
1052                 efx->phy_mode |= PHY_MODE_TX_DISABLED;
1053         else
1054                 efx->phy_mode &= ~PHY_MODE_TX_DISABLED;
1055
1056         rc = efx->type->reconfigure_port(efx);
1057
1058         if (rc)
1059                 efx->phy_mode = phy_mode;
1060
1061         return rc;
1062 }
1063
1064 /* Reinitialise the MAC to pick up new PHY settings, even if the port is
1065  * disabled. */
1066 int efx_reconfigure_port(struct efx_nic *efx)
1067 {
1068         int rc;
1069
1070         EFX_ASSERT_RESET_SERIALISED(efx);
1071
1072         mutex_lock(&efx->mac_lock);
1073         rc = __efx_reconfigure_port(efx);
1074         mutex_unlock(&efx->mac_lock);
1075
1076         return rc;
1077 }
1078
1079 /* Asynchronous work item for changing MAC promiscuity and multicast
1080  * hash.  Avoid a drain/rx_ingress enable by reconfiguring the current
1081  * MAC directly. */
1082 static void efx_mac_work(struct work_struct *data)
1083 {
1084         struct efx_nic *efx = container_of(data, struct efx_nic, mac_work);
1085
1086         mutex_lock(&efx->mac_lock);
1087         if (efx->port_enabled)
1088                 efx_mac_reconfigure(efx);
1089         mutex_unlock(&efx->mac_lock);
1090 }
1091
1092 static int efx_probe_port(struct efx_nic *efx)
1093 {
1094         int rc;
1095
1096         netif_dbg(efx, probe, efx->net_dev, "create port\n");
1097
1098         if (phy_flash_cfg)
1099                 efx->phy_mode = PHY_MODE_SPECIAL;
1100
1101         /* Connect up MAC/PHY operations table */
1102         rc = efx->type->probe_port(efx);
1103         if (rc)
1104                 return rc;
1105
1106         /* Initialise MAC address to permanent address */
1107         ether_addr_copy(efx->net_dev->dev_addr, efx->net_dev->perm_addr);
1108
1109         return 0;
1110 }
1111
1112 static int efx_init_port(struct efx_nic *efx)
1113 {
1114         int rc;
1115
1116         netif_dbg(efx, drv, efx->net_dev, "init port\n");
1117
1118         mutex_lock(&efx->mac_lock);
1119
1120         rc = efx->phy_op->init(efx);
1121         if (rc)
1122                 goto fail1;
1123
1124         efx->port_initialized = true;
1125
1126         /* Reconfigure the MAC before creating dma queues (required for
1127          * Falcon/A1 where RX_INGR_EN/TX_DRAIN_EN isn't supported) */
1128         efx_mac_reconfigure(efx);
1129
1130         /* Ensure the PHY advertises the correct flow control settings */
1131         rc = efx->phy_op->reconfigure(efx);
1132         if (rc && rc != -EPERM)
1133                 goto fail2;
1134
1135         mutex_unlock(&efx->mac_lock);
1136         return 0;
1137
1138 fail2:
1139         efx->phy_op->fini(efx);
1140 fail1:
1141         mutex_unlock(&efx->mac_lock);
1142         return rc;
1143 }
1144
1145 static void efx_start_port(struct efx_nic *efx)
1146 {
1147         netif_dbg(efx, ifup, efx->net_dev, "start port\n");
1148         BUG_ON(efx->port_enabled);
1149
1150         mutex_lock(&efx->mac_lock);
1151         efx->port_enabled = true;
1152
1153         /* Ensure MAC ingress/egress is enabled */
1154         efx_mac_reconfigure(efx);
1155
1156         mutex_unlock(&efx->mac_lock);
1157 }
1158
1159 /* Cancel work for MAC reconfiguration, periodic hardware monitoring
1160  * and the async self-test, wait for them to finish and prevent them
1161  * being scheduled again.  This doesn't cover online resets, which
1162  * should only be cancelled when removing the device.
1163  */
1164 static void efx_stop_port(struct efx_nic *efx)
1165 {
1166         netif_dbg(efx, ifdown, efx->net_dev, "stop port\n");
1167
1168         EFX_ASSERT_RESET_SERIALISED(efx);
1169
1170         mutex_lock(&efx->mac_lock);
1171         efx->port_enabled = false;
1172         mutex_unlock(&efx->mac_lock);
1173
1174         /* Serialise against efx_set_multicast_list() */
1175         netif_addr_lock_bh(efx->net_dev);
1176         netif_addr_unlock_bh(efx->net_dev);
1177
1178         cancel_delayed_work_sync(&efx->monitor_work);
1179         efx_selftest_async_cancel(efx);
1180         cancel_work_sync(&efx->mac_work);
1181 }
1182
1183 static void efx_fini_port(struct efx_nic *efx)
1184 {
1185         netif_dbg(efx, drv, efx->net_dev, "shut down port\n");
1186
1187         if (!efx->port_initialized)
1188                 return;
1189
1190         efx->phy_op->fini(efx);
1191         efx->port_initialized = false;
1192
1193         efx->link_state.up = false;
1194         efx_link_status_changed(efx);
1195 }
1196
1197 static void efx_remove_port(struct efx_nic *efx)
1198 {
1199         netif_dbg(efx, drv, efx->net_dev, "destroying port\n");
1200
1201         efx->type->remove_port(efx);
1202 }
1203
1204 /**************************************************************************
1205  *
1206  * NIC handling
1207  *
1208  **************************************************************************/
1209
1210 static LIST_HEAD(efx_primary_list);
1211 static LIST_HEAD(efx_unassociated_list);
1212
1213 static bool efx_same_controller(struct efx_nic *left, struct efx_nic *right)
1214 {
1215         return left->type == right->type &&
1216                 left->vpd_sn && right->vpd_sn &&
1217                 !strcmp(left->vpd_sn, right->vpd_sn);
1218 }
1219
1220 static void efx_associate(struct efx_nic *efx)
1221 {
1222         struct efx_nic *other, *next;
1223
1224         if (efx->primary == efx) {
1225                 /* Adding primary function; look for secondaries */
1226
1227                 netif_dbg(efx, probe, efx->net_dev, "adding to primary list\n");
1228                 list_add_tail(&efx->node, &efx_primary_list);
1229
1230                 list_for_each_entry_safe(other, next, &efx_unassociated_list,
1231                                          node) {
1232                         if (efx_same_controller(efx, other)) {
1233                                 list_del(&other->node);
1234                                 netif_dbg(other, probe, other->net_dev,
1235                                           "moving to secondary list of %s %s\n",
1236                                           pci_name(efx->pci_dev),
1237                                           efx->net_dev->name);
1238                                 list_add_tail(&other->node,
1239                                               &efx->secondary_list);
1240                                 other->primary = efx;
1241                         }
1242                 }
1243         } else {
1244                 /* Adding secondary function; look for primary */
1245
1246                 list_for_each_entry(other, &efx_primary_list, node) {
1247                         if (efx_same_controller(efx, other)) {
1248                                 netif_dbg(efx, probe, efx->net_dev,
1249                                           "adding to secondary list of %s %s\n",
1250                                           pci_name(other->pci_dev),
1251                                           other->net_dev->name);
1252                                 list_add_tail(&efx->node,
1253                                               &other->secondary_list);
1254                                 efx->primary = other;
1255                                 return;
1256                         }
1257                 }
1258
1259                 netif_dbg(efx, probe, efx->net_dev,
1260                           "adding to unassociated list\n");
1261                 list_add_tail(&efx->node, &efx_unassociated_list);
1262         }
1263 }
1264
1265 static void efx_dissociate(struct efx_nic *efx)
1266 {
1267         struct efx_nic *other, *next;
1268
1269         list_del(&efx->node);
1270         efx->primary = NULL;
1271
1272         list_for_each_entry_safe(other, next, &efx->secondary_list, node) {
1273                 list_del(&other->node);
1274                 netif_dbg(other, probe, other->net_dev,
1275                           "moving to unassociated list\n");
1276                 list_add_tail(&other->node, &efx_unassociated_list);
1277                 other->primary = NULL;
1278         }
1279 }
1280
1281 /* This configures the PCI device to enable I/O and DMA. */
1282 static int efx_init_io(struct efx_nic *efx)
1283 {
1284         struct pci_dev *pci_dev = efx->pci_dev;
1285         dma_addr_t dma_mask = efx->type->max_dma_mask;
1286         unsigned int mem_map_size = efx->type->mem_map_size(efx);
1287         int rc, bar;
1288
1289         netif_dbg(efx, probe, efx->net_dev, "initialising I/O\n");
1290
1291         bar = efx->type->mem_bar(efx);
1292
1293         rc = pci_enable_device(pci_dev);
1294         if (rc) {
1295                 netif_err(efx, probe, efx->net_dev,
1296                           "failed to enable PCI device\n");
1297                 goto fail1;
1298         }
1299
1300         pci_set_master(pci_dev);
1301
1302         /* Set the PCI DMA mask.  Try all possibilities from our genuine mask
1303          * down to 32 bits, because some architectures will allow 40 bit
1304          * masks event though they reject 46 bit masks.
1305          */
1306         while (dma_mask > 0x7fffffffUL) {
1307                 rc = dma_set_mask_and_coherent(&pci_dev->dev, dma_mask);
1308                 if (rc == 0)
1309                         break;
1310                 dma_mask >>= 1;
1311         }
1312         if (rc) {
1313                 netif_err(efx, probe, efx->net_dev,
1314                           "could not find a suitable DMA mask\n");
1315                 goto fail2;
1316         }
1317         netif_dbg(efx, probe, efx->net_dev,
1318                   "using DMA mask %llx\n", (unsigned long long) dma_mask);
1319
1320         efx->membase_phys = pci_resource_start(efx->pci_dev, bar);
1321         rc = pci_request_region(pci_dev, bar, "sfc");
1322         if (rc) {
1323                 netif_err(efx, probe, efx->net_dev,
1324                           "request for memory BAR failed\n");
1325                 rc = -EIO;
1326                 goto fail3;
1327         }
1328         efx->membase = ioremap_nocache(efx->membase_phys, mem_map_size);
1329         if (!efx->membase) {
1330                 netif_err(efx, probe, efx->net_dev,
1331                           "could not map memory BAR at %llx+%x\n",
1332                           (unsigned long long)efx->membase_phys, mem_map_size);
1333                 rc = -ENOMEM;
1334                 goto fail4;
1335         }
1336         netif_dbg(efx, probe, efx->net_dev,
1337                   "memory BAR at %llx+%x (virtual %p)\n",
1338                   (unsigned long long)efx->membase_phys, mem_map_size,
1339                   efx->membase);
1340
1341         return 0;
1342
1343  fail4:
1344         pci_release_region(efx->pci_dev, bar);
1345  fail3:
1346         efx->membase_phys = 0;
1347  fail2:
1348         pci_disable_device(efx->pci_dev);
1349  fail1:
1350         return rc;
1351 }
1352
1353 static void efx_fini_io(struct efx_nic *efx)
1354 {
1355         int bar;
1356
1357         netif_dbg(efx, drv, efx->net_dev, "shutting down I/O\n");
1358
1359         if (efx->membase) {
1360                 iounmap(efx->membase);
1361                 efx->membase = NULL;
1362         }
1363
1364         if (efx->membase_phys) {
1365                 bar = efx->type->mem_bar(efx);
1366                 pci_release_region(efx->pci_dev, bar);
1367                 efx->membase_phys = 0;
1368         }
1369
1370         /* Don't disable bus-mastering if VFs are assigned */
1371         if (!pci_vfs_assigned(efx->pci_dev))
1372                 pci_disable_device(efx->pci_dev);
1373 }
1374
1375 void efx_set_default_rx_indir_table(struct efx_nic *efx,
1376                                     struct efx_rss_context *ctx)
1377 {
1378         size_t i;
1379
1380         for (i = 0; i < ARRAY_SIZE(ctx->rx_indir_table); i++)
1381                 ctx->rx_indir_table[i] =
1382                         ethtool_rxfh_indir_default(i, efx->rss_spread);
1383 }
1384
1385 static unsigned int efx_wanted_parallelism(struct efx_nic *efx)
1386 {
1387         cpumask_var_t thread_mask;
1388         unsigned int count;
1389         int cpu;
1390
1391         if (rss_cpus) {
1392                 count = rss_cpus;
1393         } else {
1394                 if (unlikely(!zalloc_cpumask_var(&thread_mask, GFP_KERNEL))) {
1395                         netif_warn(efx, probe, efx->net_dev,
1396                                    "RSS disabled due to allocation failure\n");
1397                         return 1;
1398                 }
1399
1400                 count = 0;
1401                 for_each_online_cpu(cpu) {
1402                         if (!cpumask_test_cpu(cpu, thread_mask)) {
1403                                 ++count;
1404                                 cpumask_or(thread_mask, thread_mask,
1405                                            topology_sibling_cpumask(cpu));
1406                         }
1407                 }
1408
1409                 free_cpumask_var(thread_mask);
1410         }
1411
1412         if (count > EFX_MAX_RX_QUEUES) {
1413                 netif_cond_dbg(efx, probe, efx->net_dev, !rss_cpus, warn,
1414                                "Reducing number of rx queues from %u to %u.\n",
1415                                count, EFX_MAX_RX_QUEUES);
1416                 count = EFX_MAX_RX_QUEUES;
1417         }
1418
1419         /* If RSS is requested for the PF *and* VFs then we can't write RSS
1420          * table entries that are inaccessible to VFs
1421          */
1422 #ifdef CONFIG_SFC_SRIOV
1423         if (efx->type->sriov_wanted) {
1424                 if (efx->type->sriov_wanted(efx) && efx_vf_size(efx) > 1 &&
1425                     count > efx_vf_size(efx)) {
1426                         netif_warn(efx, probe, efx->net_dev,
1427                                    "Reducing number of RSS channels from %u to %u for "
1428                                    "VF support. Increase vf-msix-limit to use more "
1429                                    "channels on the PF.\n",
1430                                    count, efx_vf_size(efx));
1431                         count = efx_vf_size(efx);
1432                 }
1433         }
1434 #endif
1435
1436         return count;
1437 }
1438
1439 /* Probe the number and type of interrupts we are able to obtain, and
1440  * the resulting numbers of channels and RX queues.
1441  */
1442 static int efx_probe_interrupts(struct efx_nic *efx)
1443 {
1444         unsigned int extra_channels = 0;
1445         unsigned int i, j;
1446         int rc;
1447
1448         for (i = 0; i < EFX_MAX_EXTRA_CHANNELS; i++)
1449                 if (efx->extra_channel_type[i])
1450                         ++extra_channels;
1451
1452         if (efx->interrupt_mode == EFX_INT_MODE_MSIX) {
1453                 struct msix_entry xentries[EFX_MAX_CHANNELS];
1454                 unsigned int n_channels;
1455
1456                 n_channels = efx_wanted_parallelism(efx);
1457                 if (efx_separate_tx_channels)
1458                         n_channels *= 2;
1459                 n_channels += extra_channels;
1460                 n_channels = min(n_channels, efx->max_channels);
1461
1462                 for (i = 0; i < n_channels; i++)
1463                         xentries[i].entry = i;
1464                 rc = pci_enable_msix_range(efx->pci_dev,
1465                                            xentries, 1, n_channels);
1466                 if (rc < 0) {
1467                         /* Fall back to single channel MSI */
1468                         netif_err(efx, drv, efx->net_dev,
1469                                   "could not enable MSI-X\n");
1470                         if (efx->type->min_interrupt_mode >= EFX_INT_MODE_MSI)
1471                                 efx->interrupt_mode = EFX_INT_MODE_MSI;
1472                         else
1473                                 return rc;
1474                 } else if (rc < n_channels) {
1475                         netif_err(efx, drv, efx->net_dev,
1476                                   "WARNING: Insufficient MSI-X vectors"
1477                                   " available (%d < %u).\n", rc, n_channels);
1478                         netif_err(efx, drv, efx->net_dev,
1479                                   "WARNING: Performance may be reduced.\n");
1480                         n_channels = rc;
1481                 }
1482
1483                 if (rc > 0) {
1484                         efx->n_channels = n_channels;
1485                         if (n_channels > extra_channels)
1486                                 n_channels -= extra_channels;
1487                         if (efx_separate_tx_channels) {
1488                                 efx->n_tx_channels = min(max(n_channels / 2,
1489                                                              1U),
1490                                                          efx->max_tx_channels);
1491                                 efx->n_rx_channels = max(n_channels -
1492                                                          efx->n_tx_channels,
1493                                                          1U);
1494                         } else {
1495                                 efx->n_tx_channels = min(n_channels,
1496                                                          efx->max_tx_channels);
1497                                 efx->n_rx_channels = n_channels;
1498                         }
1499                         for (i = 0; i < efx->n_channels; i++)
1500                                 efx_get_channel(efx, i)->irq =
1501                                         xentries[i].vector;
1502                 }
1503         }
1504
1505         /* Try single interrupt MSI */
1506         if (efx->interrupt_mode == EFX_INT_MODE_MSI) {
1507                 efx->n_channels = 1;
1508                 efx->n_rx_channels = 1;
1509                 efx->n_tx_channels = 1;
1510                 rc = pci_enable_msi(efx->pci_dev);
1511                 if (rc == 0) {
1512                         efx_get_channel(efx, 0)->irq = efx->pci_dev->irq;
1513                 } else {
1514                         netif_err(efx, drv, efx->net_dev,
1515                                   "could not enable MSI\n");
1516                         if (efx->type->min_interrupt_mode >= EFX_INT_MODE_LEGACY)
1517                                 efx->interrupt_mode = EFX_INT_MODE_LEGACY;
1518                         else
1519                                 return rc;
1520                 }
1521         }
1522
1523         /* Assume legacy interrupts */
1524         if (efx->interrupt_mode == EFX_INT_MODE_LEGACY) {
1525                 efx->n_channels = 1 + (efx_separate_tx_channels ? 1 : 0);
1526                 efx->n_rx_channels = 1;
1527                 efx->n_tx_channels = 1;
1528                 efx->legacy_irq = efx->pci_dev->irq;
1529         }
1530
1531         /* Assign extra channels if possible */
1532         efx->n_extra_tx_channels = 0;
1533         j = efx->n_channels;
1534         for (i = 0; i < EFX_MAX_EXTRA_CHANNELS; i++) {
1535                 if (!efx->extra_channel_type[i])
1536                         continue;
1537                 if (efx->interrupt_mode != EFX_INT_MODE_MSIX ||
1538                     efx->n_channels <= extra_channels) {
1539                         efx->extra_channel_type[i]->handle_no_channel(efx);
1540                 } else {
1541                         --j;
1542                         efx_get_channel(efx, j)->type =
1543                                 efx->extra_channel_type[i];
1544                         if (efx_channel_has_tx_queues(efx_get_channel(efx, j)))
1545                                 efx->n_extra_tx_channels++;
1546                 }
1547         }
1548
1549         /* RSS might be usable on VFs even if it is disabled on the PF */
1550 #ifdef CONFIG_SFC_SRIOV
1551         if (efx->type->sriov_wanted) {
1552                 efx->rss_spread = ((efx->n_rx_channels > 1 ||
1553                                     !efx->type->sriov_wanted(efx)) ?
1554                                    efx->n_rx_channels : efx_vf_size(efx));
1555                 return 0;
1556         }
1557 #endif
1558         efx->rss_spread = efx->n_rx_channels;
1559
1560         return 0;
1561 }
1562
1563 #if defined(CONFIG_SMP)
1564 static void efx_set_interrupt_affinity(struct efx_nic *efx)
1565 {
1566         struct efx_channel *channel;
1567         unsigned int cpu;
1568
1569         efx_for_each_channel(channel, efx) {
1570                 cpu = cpumask_local_spread(channel->channel,
1571                                            pcibus_to_node(efx->pci_dev->bus));
1572                 irq_set_affinity_hint(channel->irq, cpumask_of(cpu));
1573         }
1574 }
1575
1576 static void efx_clear_interrupt_affinity(struct efx_nic *efx)
1577 {
1578         struct efx_channel *channel;
1579
1580         efx_for_each_channel(channel, efx)
1581                 irq_set_affinity_hint(channel->irq, NULL);
1582 }
1583 #else
1584 static void
1585 efx_set_interrupt_affinity(struct efx_nic *efx __attribute__ ((unused)))
1586 {
1587 }
1588
1589 static void
1590 efx_clear_interrupt_affinity(struct efx_nic *efx __attribute__ ((unused)))
1591 {
1592 }
1593 #endif /* CONFIG_SMP */
1594
1595 static int efx_soft_enable_interrupts(struct efx_nic *efx)
1596 {
1597         struct efx_channel *channel, *end_channel;
1598         int rc;
1599
1600         BUG_ON(efx->state == STATE_DISABLED);
1601
1602         efx->irq_soft_enabled = true;
1603         smp_wmb();
1604
1605         efx_for_each_channel(channel, efx) {
1606                 if (!channel->type->keep_eventq) {
1607                         rc = efx_init_eventq(channel);
1608                         if (rc)
1609                                 goto fail;
1610                 }
1611                 efx_start_eventq(channel);
1612         }
1613
1614         efx_mcdi_mode_event(efx);
1615
1616         return 0;
1617 fail:
1618         end_channel = channel;
1619         efx_for_each_channel(channel, efx) {
1620                 if (channel == end_channel)
1621                         break;
1622                 efx_stop_eventq(channel);
1623                 if (!channel->type->keep_eventq)
1624                         efx_fini_eventq(channel);
1625         }
1626
1627         return rc;
1628 }
1629
1630 static void efx_soft_disable_interrupts(struct efx_nic *efx)
1631 {
1632         struct efx_channel *channel;
1633
1634         if (efx->state == STATE_DISABLED)
1635                 return;
1636
1637         efx_mcdi_mode_poll(efx);
1638
1639         efx->irq_soft_enabled = false;
1640         smp_wmb();
1641
1642         if (efx->legacy_irq)
1643                 synchronize_irq(efx->legacy_irq);
1644
1645         efx_for_each_channel(channel, efx) {
1646                 if (channel->irq)
1647                         synchronize_irq(channel->irq);
1648
1649                 efx_stop_eventq(channel);
1650                 if (!channel->type->keep_eventq)
1651                         efx_fini_eventq(channel);
1652         }
1653
1654         /* Flush the asynchronous MCDI request queue */
1655         efx_mcdi_flush_async(efx);
1656 }
1657
1658 static int efx_enable_interrupts(struct efx_nic *efx)
1659 {
1660         struct efx_channel *channel, *end_channel;
1661         int rc;
1662
1663         BUG_ON(efx->state == STATE_DISABLED);
1664
1665         if (efx->eeh_disabled_legacy_irq) {
1666                 enable_irq(efx->legacy_irq);
1667                 efx->eeh_disabled_legacy_irq = false;
1668         }
1669
1670         efx->type->irq_enable_master(efx);
1671
1672         efx_for_each_channel(channel, efx) {
1673                 if (channel->type->keep_eventq) {
1674                         rc = efx_init_eventq(channel);
1675                         if (rc)
1676                                 goto fail;
1677                 }
1678         }
1679
1680         rc = efx_soft_enable_interrupts(efx);
1681         if (rc)
1682                 goto fail;
1683
1684         return 0;
1685
1686 fail:
1687         end_channel = channel;
1688         efx_for_each_channel(channel, efx) {
1689                 if (channel == end_channel)
1690                         break;
1691                 if (channel->type->keep_eventq)
1692                         efx_fini_eventq(channel);
1693         }
1694
1695         efx->type->irq_disable_non_ev(efx);
1696
1697         return rc;
1698 }
1699
1700 static void efx_disable_interrupts(struct efx_nic *efx)
1701 {
1702         struct efx_channel *channel;
1703
1704         efx_soft_disable_interrupts(efx);
1705
1706         efx_for_each_channel(channel, efx) {
1707                 if (channel->type->keep_eventq)
1708                         efx_fini_eventq(channel);
1709         }
1710
1711         efx->type->irq_disable_non_ev(efx);
1712 }
1713
1714 static void efx_remove_interrupts(struct efx_nic *efx)
1715 {
1716         struct efx_channel *channel;
1717
1718         /* Remove MSI/MSI-X interrupts */
1719         efx_for_each_channel(channel, efx)
1720                 channel->irq = 0;
1721         pci_disable_msi(efx->pci_dev);
1722         pci_disable_msix(efx->pci_dev);
1723
1724         /* Remove legacy interrupt */
1725         efx->legacy_irq = 0;
1726 }
1727
1728 static void efx_set_channels(struct efx_nic *efx)
1729 {
1730         struct efx_channel *channel;
1731         struct efx_tx_queue *tx_queue;
1732
1733         efx->tx_channel_offset =
1734                 efx_separate_tx_channels ?
1735                 efx->n_channels - efx->n_tx_channels : 0;
1736
1737         /* We need to mark which channels really have RX and TX
1738          * queues, and adjust the TX queue numbers if we have separate
1739          * RX-only and TX-only channels.
1740          */
1741         efx_for_each_channel(channel, efx) {
1742                 if (channel->channel < efx->n_rx_channels)
1743                         channel->rx_queue.core_index = channel->channel;
1744                 else
1745                         channel->rx_queue.core_index = -1;
1746
1747                 efx_for_each_channel_tx_queue(tx_queue, channel)
1748                         tx_queue->queue -= (efx->tx_channel_offset *
1749                                             EFX_TXQ_TYPES);
1750         }
1751 }
1752
1753 static int efx_probe_nic(struct efx_nic *efx)
1754 {
1755         int rc;
1756
1757         netif_dbg(efx, probe, efx->net_dev, "creating NIC\n");
1758
1759         /* Carry out hardware-type specific initialisation */
1760         rc = efx->type->probe(efx);
1761         if (rc)
1762                 return rc;
1763
1764         do {
1765                 if (!efx->max_channels || !efx->max_tx_channels) {
1766                         netif_err(efx, drv, efx->net_dev,
1767                                   "Insufficient resources to allocate"
1768                                   " any channels\n");
1769                         rc = -ENOSPC;
1770                         goto fail1;
1771                 }
1772
1773                 /* Determine the number of channels and queues by trying
1774                  * to hook in MSI-X interrupts.
1775                  */
1776                 rc = efx_probe_interrupts(efx);
1777                 if (rc)
1778                         goto fail1;
1779
1780                 efx_set_channels(efx);
1781
1782                 /* dimension_resources can fail with EAGAIN */
1783                 rc = efx->type->dimension_resources(efx);
1784                 if (rc != 0 && rc != -EAGAIN)
1785                         goto fail2;
1786
1787                 if (rc == -EAGAIN)
1788                         /* try again with new max_channels */
1789                         efx_remove_interrupts(efx);
1790
1791         } while (rc == -EAGAIN);
1792
1793         if (efx->n_channels > 1)
1794                 netdev_rss_key_fill(efx->rss_context.rx_hash_key,
1795                                     sizeof(efx->rss_context.rx_hash_key));
1796         efx_set_default_rx_indir_table(efx, &efx->rss_context);
1797
1798         netif_set_real_num_tx_queues(efx->net_dev, efx->n_tx_channels);
1799         netif_set_real_num_rx_queues(efx->net_dev, efx->n_rx_channels);
1800
1801         /* Initialise the interrupt moderation settings */
1802         efx->irq_mod_step_us = DIV_ROUND_UP(efx->timer_quantum_ns, 1000);
1803         efx_init_irq_moderation(efx, tx_irq_mod_usec, rx_irq_mod_usec, true,
1804                                 true);
1805
1806         return 0;
1807
1808 fail2:
1809         efx_remove_interrupts(efx);
1810 fail1:
1811         efx->type->remove(efx);
1812         return rc;
1813 }
1814
1815 static void efx_remove_nic(struct efx_nic *efx)
1816 {
1817         netif_dbg(efx, drv, efx->net_dev, "destroying NIC\n");
1818
1819         efx_remove_interrupts(efx);
1820         efx->type->remove(efx);
1821 }
1822
1823 static int efx_probe_filters(struct efx_nic *efx)
1824 {
1825         int rc;
1826
1827         init_rwsem(&efx->filter_sem);
1828         mutex_lock(&efx->mac_lock);
1829         down_write(&efx->filter_sem);
1830         rc = efx->type->filter_table_probe(efx);
1831         if (rc)
1832                 goto out_unlock;
1833
1834 #ifdef CONFIG_RFS_ACCEL
1835         if (efx->type->offload_features & NETIF_F_NTUPLE) {
1836                 struct efx_channel *channel;
1837                 int i, success = 1;
1838
1839                 efx_for_each_channel(channel, efx) {
1840                         channel->rps_flow_id =
1841                                 kcalloc(efx->type->max_rx_ip_filters,
1842                                         sizeof(*channel->rps_flow_id),
1843                                         GFP_KERNEL);
1844                         if (!channel->rps_flow_id)
1845                                 success = 0;
1846                         else
1847                                 for (i = 0;
1848                                      i < efx->type->max_rx_ip_filters;
1849                                      ++i)
1850                                         channel->rps_flow_id[i] =
1851                                                 RPS_FLOW_ID_INVALID;
1852                 }
1853
1854                 if (!success) {
1855                         efx_for_each_channel(channel, efx)
1856                                 kfree(channel->rps_flow_id);
1857                         efx->type->filter_table_remove(efx);
1858                         rc = -ENOMEM;
1859                         goto out_unlock;
1860                 }
1861
1862                 efx->rps_expire_index = efx->rps_expire_channel = 0;
1863         }
1864 #endif
1865 out_unlock:
1866         up_write(&efx->filter_sem);
1867         mutex_unlock(&efx->mac_lock);
1868         return rc;
1869 }
1870
1871 static void efx_remove_filters(struct efx_nic *efx)
1872 {
1873 #ifdef CONFIG_RFS_ACCEL
1874         struct efx_channel *channel;
1875
1876         efx_for_each_channel(channel, efx)
1877                 kfree(channel->rps_flow_id);
1878 #endif
1879         down_write(&efx->filter_sem);
1880         efx->type->filter_table_remove(efx);
1881         up_write(&efx->filter_sem);
1882 }
1883
1884
1885 /**************************************************************************
1886  *
1887  * NIC startup/shutdown
1888  *
1889  *************************************************************************/
1890
1891 static int efx_probe_all(struct efx_nic *efx)
1892 {
1893         int rc;
1894
1895         rc = efx_probe_nic(efx);
1896         if (rc) {
1897                 netif_err(efx, probe, efx->net_dev, "failed to create NIC\n");
1898                 goto fail1;
1899         }
1900
1901         rc = efx_probe_port(efx);
1902         if (rc) {
1903                 netif_err(efx, probe, efx->net_dev, "failed to create port\n");
1904                 goto fail2;
1905         }
1906
1907         BUILD_BUG_ON(EFX_DEFAULT_DMAQ_SIZE < EFX_RXQ_MIN_ENT);
1908         if (WARN_ON(EFX_DEFAULT_DMAQ_SIZE < EFX_TXQ_MIN_ENT(efx))) {
1909                 rc = -EINVAL;
1910                 goto fail3;
1911         }
1912         efx->rxq_entries = efx->txq_entries = EFX_DEFAULT_DMAQ_SIZE;
1913
1914 #ifdef CONFIG_SFC_SRIOV
1915         rc = efx->type->vswitching_probe(efx);
1916         if (rc) /* not fatal; the PF will still work fine */
1917                 netif_warn(efx, probe, efx->net_dev,
1918                            "failed to setup vswitching rc=%d;"
1919                            " VFs may not function\n", rc);
1920 #endif
1921
1922         rc = efx_probe_filters(efx);
1923         if (rc) {
1924                 netif_err(efx, probe, efx->net_dev,
1925                           "failed to create filter tables\n");
1926                 goto fail4;
1927         }
1928
1929         rc = efx_probe_channels(efx);
1930         if (rc)
1931                 goto fail5;
1932
1933         return 0;
1934
1935  fail5:
1936         efx_remove_filters(efx);
1937  fail4:
1938 #ifdef CONFIG_SFC_SRIOV
1939         efx->type->vswitching_remove(efx);
1940 #endif
1941  fail3:
1942         efx_remove_port(efx);
1943  fail2:
1944         efx_remove_nic(efx);
1945  fail1:
1946         return rc;
1947 }
1948
1949 /* If the interface is supposed to be running but is not, start
1950  * the hardware and software data path, regular activity for the port
1951  * (MAC statistics, link polling, etc.) and schedule the port to be
1952  * reconfigured.  Interrupts must already be enabled.  This function
1953  * is safe to call multiple times, so long as the NIC is not disabled.
1954  * Requires the RTNL lock.
1955  */
1956 static void efx_start_all(struct efx_nic *efx)
1957 {
1958         EFX_ASSERT_RESET_SERIALISED(efx);
1959         BUG_ON(efx->state == STATE_DISABLED);
1960
1961         /* Check that it is appropriate to restart the interface. All
1962          * of these flags are safe to read under just the rtnl lock */
1963         if (efx->port_enabled || !netif_running(efx->net_dev) ||
1964             efx->reset_pending)
1965                 return;
1966
1967         efx_start_port(efx);
1968         efx_start_datapath(efx);
1969
1970         /* Start the hardware monitor if there is one */
1971         if (efx->type->monitor != NULL)
1972                 queue_delayed_work(efx->workqueue, &efx->monitor_work,
1973                                    efx_monitor_interval);
1974
1975         /* Link state detection is normally event-driven; we have
1976          * to poll now because we could have missed a change
1977          */
1978         mutex_lock(&efx->mac_lock);
1979         if (efx->phy_op->poll(efx))
1980                 efx_link_status_changed(efx);
1981         mutex_unlock(&efx->mac_lock);
1982
1983         efx->type->start_stats(efx);
1984         efx->type->pull_stats(efx);
1985         spin_lock_bh(&efx->stats_lock);
1986         efx->type->update_stats(efx, NULL, NULL);
1987         spin_unlock_bh(&efx->stats_lock);
1988 }
1989
1990 /* Quiesce the hardware and software data path, and regular activity
1991  * for the port without bringing the link down.  Safe to call multiple
1992  * times with the NIC in almost any state, but interrupts should be
1993  * enabled.  Requires the RTNL lock.
1994  */
1995 static void efx_stop_all(struct efx_nic *efx)
1996 {
1997         EFX_ASSERT_RESET_SERIALISED(efx);
1998
1999         /* port_enabled can be read safely under the rtnl lock */
2000         if (!efx->port_enabled)
2001                 return;
2002
2003         /* update stats before we go down so we can accurately count
2004          * rx_nodesc_drops
2005          */
2006         efx->type->pull_stats(efx);
2007         spin_lock_bh(&efx->stats_lock);
2008         efx->type->update_stats(efx, NULL, NULL);
2009         spin_unlock_bh(&efx->stats_lock);
2010         efx->type->stop_stats(efx);
2011         efx_stop_port(efx);
2012
2013         /* Stop the kernel transmit interface.  This is only valid if
2014          * the device is stopped or detached; otherwise the watchdog
2015          * may fire immediately.
2016          */
2017         WARN_ON(netif_running(efx->net_dev) &&
2018                 netif_device_present(efx->net_dev));
2019         netif_tx_disable(efx->net_dev);
2020
2021         efx_stop_datapath(efx);
2022 }
2023
2024 static void efx_remove_all(struct efx_nic *efx)
2025 {
2026         efx_remove_channels(efx);
2027         efx_remove_filters(efx);
2028 #ifdef CONFIG_SFC_SRIOV
2029         efx->type->vswitching_remove(efx);
2030 #endif
2031         efx_remove_port(efx);
2032         efx_remove_nic(efx);
2033 }
2034
2035 /**************************************************************************
2036  *
2037  * Interrupt moderation
2038  *
2039  **************************************************************************/
2040 unsigned int efx_usecs_to_ticks(struct efx_nic *efx, unsigned int usecs)
2041 {
2042         if (usecs == 0)
2043                 return 0;
2044         if (usecs * 1000 < efx->timer_quantum_ns)
2045                 return 1; /* never round down to 0 */
2046         return usecs * 1000 / efx->timer_quantum_ns;
2047 }
2048
2049 unsigned int efx_ticks_to_usecs(struct efx_nic *efx, unsigned int ticks)
2050 {
2051         /* We must round up when converting ticks to microseconds
2052          * because we round down when converting the other way.
2053          */
2054         return DIV_ROUND_UP(ticks * efx->timer_quantum_ns, 1000);
2055 }
2056
2057 /* Set interrupt moderation parameters */
2058 int efx_init_irq_moderation(struct efx_nic *efx, unsigned int tx_usecs,
2059                             unsigned int rx_usecs, bool rx_adaptive,
2060                             bool rx_may_override_tx)
2061 {
2062         struct efx_channel *channel;
2063         unsigned int timer_max_us;
2064
2065         EFX_ASSERT_RESET_SERIALISED(efx);
2066
2067         timer_max_us = efx->timer_max_ns / 1000;
2068
2069         if (tx_usecs > timer_max_us || rx_usecs > timer_max_us)
2070                 return -EINVAL;
2071
2072         if (tx_usecs != rx_usecs && efx->tx_channel_offset == 0 &&
2073             !rx_may_override_tx) {
2074                 netif_err(efx, drv, efx->net_dev, "Channels are shared. "
2075                           "RX and TX IRQ moderation must be equal\n");
2076                 return -EINVAL;
2077         }
2078
2079         efx->irq_rx_adaptive = rx_adaptive;
2080         efx->irq_rx_moderation_us = rx_usecs;
2081         efx_for_each_channel(channel, efx) {
2082                 if (efx_channel_has_rx_queue(channel))
2083                         channel->irq_moderation_us = rx_usecs;
2084                 else if (efx_channel_has_tx_queues(channel))
2085                         channel->irq_moderation_us = tx_usecs;
2086         }
2087
2088         return 0;
2089 }
2090
2091 void efx_get_irq_moderation(struct efx_nic *efx, unsigned int *tx_usecs,
2092                             unsigned int *rx_usecs, bool *rx_adaptive)
2093 {
2094         *rx_adaptive = efx->irq_rx_adaptive;
2095         *rx_usecs = efx->irq_rx_moderation_us;
2096
2097         /* If channels are shared between RX and TX, so is IRQ
2098          * moderation.  Otherwise, IRQ moderation is the same for all
2099          * TX channels and is not adaptive.
2100          */
2101         if (efx->tx_channel_offset == 0) {
2102                 *tx_usecs = *rx_usecs;
2103         } else {
2104                 struct efx_channel *tx_channel;
2105
2106                 tx_channel = efx->channel[efx->tx_channel_offset];
2107                 *tx_usecs = tx_channel->irq_moderation_us;
2108         }
2109 }
2110
2111 /**************************************************************************
2112  *
2113  * Hardware monitor
2114  *
2115  **************************************************************************/
2116
2117 /* Run periodically off the general workqueue */
2118 static void efx_monitor(struct work_struct *data)
2119 {
2120         struct efx_nic *efx = container_of(data, struct efx_nic,
2121                                            monitor_work.work);
2122
2123         netif_vdbg(efx, timer, efx->net_dev,
2124                    "hardware monitor executing on CPU %d\n",
2125                    raw_smp_processor_id());
2126         BUG_ON(efx->type->monitor == NULL);
2127
2128         /* If the mac_lock is already held then it is likely a port
2129          * reconfiguration is already in place, which will likely do
2130          * most of the work of monitor() anyway. */
2131         if (mutex_trylock(&efx->mac_lock)) {
2132                 if (efx->port_enabled)
2133                         efx->type->monitor(efx);
2134                 mutex_unlock(&efx->mac_lock);
2135         }
2136
2137         queue_delayed_work(efx->workqueue, &efx->monitor_work,
2138                            efx_monitor_interval);
2139 }
2140
2141 /**************************************************************************
2142  *
2143  * ioctls
2144  *
2145  *************************************************************************/
2146
2147 /* Net device ioctl
2148  * Context: process, rtnl_lock() held.
2149  */
2150 static int efx_ioctl(struct net_device *net_dev, struct ifreq *ifr, int cmd)
2151 {
2152         struct efx_nic *efx = netdev_priv(net_dev);
2153         struct mii_ioctl_data *data = if_mii(ifr);
2154
2155         if (cmd == SIOCSHWTSTAMP)
2156                 return efx_ptp_set_ts_config(efx, ifr);
2157         if (cmd == SIOCGHWTSTAMP)
2158                 return efx_ptp_get_ts_config(efx, ifr);
2159
2160         /* Convert phy_id from older PRTAD/DEVAD format */
2161         if ((cmd == SIOCGMIIREG || cmd == SIOCSMIIREG) &&
2162             (data->phy_id & 0xfc00) == 0x0400)
2163                 data->phy_id ^= MDIO_PHY_ID_C45 | 0x0400;
2164
2165         return mdio_mii_ioctl(&efx->mdio, data, cmd);
2166 }
2167
2168 /**************************************************************************
2169  *
2170  * NAPI interface
2171  *
2172  **************************************************************************/
2173
2174 static void efx_init_napi_channel(struct efx_channel *channel)
2175 {
2176         struct efx_nic *efx = channel->efx;
2177
2178         channel->napi_dev = efx->net_dev;
2179         netif_napi_add(channel->napi_dev, &channel->napi_str,
2180                        efx_poll, napi_weight);
2181 }
2182
2183 static void efx_init_napi(struct efx_nic *efx)
2184 {
2185         struct efx_channel *channel;
2186
2187         efx_for_each_channel(channel, efx)
2188                 efx_init_napi_channel(channel);
2189 }
2190
2191 static void efx_fini_napi_channel(struct efx_channel *channel)
2192 {
2193         if (channel->napi_dev)
2194                 netif_napi_del(&channel->napi_str);
2195
2196         channel->napi_dev = NULL;
2197 }
2198
2199 static void efx_fini_napi(struct efx_nic *efx)
2200 {
2201         struct efx_channel *channel;
2202
2203         efx_for_each_channel(channel, efx)
2204                 efx_fini_napi_channel(channel);
2205 }
2206
2207 /**************************************************************************
2208  *
2209  * Kernel net device interface
2210  *
2211  *************************************************************************/
2212
2213 /* Context: process, rtnl_lock() held. */
2214 int efx_net_open(struct net_device *net_dev)
2215 {
2216         struct efx_nic *efx = netdev_priv(net_dev);
2217         int rc;
2218
2219         netif_dbg(efx, ifup, efx->net_dev, "opening device on CPU %d\n",
2220                   raw_smp_processor_id());
2221
2222         rc = efx_check_disabled(efx);
2223         if (rc)
2224                 return rc;
2225         if (efx->phy_mode & PHY_MODE_SPECIAL)
2226                 return -EBUSY;
2227         if (efx_mcdi_poll_reboot(efx) && efx_reset(efx, RESET_TYPE_ALL))
2228                 return -EIO;
2229
2230         /* Notify the kernel of the link state polled during driver load,
2231          * before the monitor starts running */
2232         efx_link_status_changed(efx);
2233
2234         efx_start_all(efx);
2235         if (efx->state == STATE_DISABLED || efx->reset_pending)
2236                 netif_device_detach(efx->net_dev);
2237         efx_selftest_async_start(efx);
2238         return 0;
2239 }
2240
2241 /* Context: process, rtnl_lock() held.
2242  * Note that the kernel will ignore our return code; this method
2243  * should really be a void.
2244  */
2245 int efx_net_stop(struct net_device *net_dev)
2246 {
2247         struct efx_nic *efx = netdev_priv(net_dev);
2248
2249         netif_dbg(efx, ifdown, efx->net_dev, "closing on CPU %d\n",
2250                   raw_smp_processor_id());
2251
2252         /* Stop the device and flush all the channels */
2253         efx_stop_all(efx);
2254
2255         return 0;
2256 }
2257
2258 /* Context: process, dev_base_lock or RTNL held, non-blocking. */
2259 static void efx_net_stats(struct net_device *net_dev,
2260                           struct rtnl_link_stats64 *stats)
2261 {
2262         struct efx_nic *efx = netdev_priv(net_dev);
2263
2264         spin_lock_bh(&efx->stats_lock);
2265         efx->type->update_stats(efx, NULL, stats);
2266         spin_unlock_bh(&efx->stats_lock);
2267 }
2268
2269 /* Context: netif_tx_lock held, BHs disabled. */
2270 static void efx_watchdog(struct net_device *net_dev)
2271 {
2272         struct efx_nic *efx = netdev_priv(net_dev);
2273
2274         netif_err(efx, tx_err, efx->net_dev,
2275                   "TX stuck with port_enabled=%d: resetting channels\n",
2276                   efx->port_enabled);
2277
2278         efx_schedule_reset(efx, RESET_TYPE_TX_WATCHDOG);
2279 }
2280
2281
2282 /* Context: process, rtnl_lock() held. */
2283 static int efx_change_mtu(struct net_device *net_dev, int new_mtu)
2284 {
2285         struct efx_nic *efx = netdev_priv(net_dev);
2286         int rc;
2287
2288         rc = efx_check_disabled(efx);
2289         if (rc)
2290                 return rc;
2291
2292         netif_dbg(efx, drv, efx->net_dev, "changing MTU to %d\n", new_mtu);
2293
2294         efx_device_detach_sync(efx);
2295         efx_stop_all(efx);
2296
2297         mutex_lock(&efx->mac_lock);
2298         net_dev->mtu = new_mtu;
2299         efx_mac_reconfigure(efx);
2300         mutex_unlock(&efx->mac_lock);
2301
2302         efx_start_all(efx);
2303         efx_device_attach_if_not_resetting(efx);
2304         return 0;
2305 }
2306
2307 static int efx_set_mac_address(struct net_device *net_dev, void *data)
2308 {
2309         struct efx_nic *efx = netdev_priv(net_dev);
2310         struct sockaddr *addr = data;
2311         u8 *new_addr = addr->sa_data;
2312         u8 old_addr[6];
2313         int rc;
2314
2315         if (!is_valid_ether_addr(new_addr)) {
2316                 netif_err(efx, drv, efx->net_dev,
2317                           "invalid ethernet MAC address requested: %pM\n",
2318                           new_addr);
2319                 return -EADDRNOTAVAIL;
2320         }
2321
2322         /* save old address */
2323         ether_addr_copy(old_addr, net_dev->dev_addr);
2324         ether_addr_copy(net_dev->dev_addr, new_addr);
2325         if (efx->type->set_mac_address) {
2326                 rc = efx->type->set_mac_address(efx);
2327                 if (rc) {
2328                         ether_addr_copy(net_dev->dev_addr, old_addr);
2329                         return rc;
2330                 }
2331         }
2332
2333         /* Reconfigure the MAC */
2334         mutex_lock(&efx->mac_lock);
2335         efx_mac_reconfigure(efx);
2336         mutex_unlock(&efx->mac_lock);
2337
2338         return 0;
2339 }
2340
2341 /* Context: netif_addr_lock held, BHs disabled. */
2342 static void efx_set_rx_mode(struct net_device *net_dev)
2343 {
2344         struct efx_nic *efx = netdev_priv(net_dev);
2345
2346         if (efx->port_enabled)
2347                 queue_work(efx->workqueue, &efx->mac_work);
2348         /* Otherwise efx_start_port() will do this */
2349 }
2350
2351 static int efx_set_features(struct net_device *net_dev, netdev_features_t data)
2352 {
2353         struct efx_nic *efx = netdev_priv(net_dev);
2354         int rc;
2355
2356         /* If disabling RX n-tuple filtering, clear existing filters */
2357         if (net_dev->features & ~data & NETIF_F_NTUPLE) {
2358                 rc = efx->type->filter_clear_rx(efx, EFX_FILTER_PRI_MANUAL);
2359                 if (rc)
2360                         return rc;
2361         }
2362
2363         /* If Rx VLAN filter is changed, update filters via mac_reconfigure.
2364          * If rx-fcs is changed, mac_reconfigure updates that too.
2365          */
2366         if ((net_dev->features ^ data) & (NETIF_F_HW_VLAN_CTAG_FILTER |
2367                                           NETIF_F_RXFCS)) {
2368                 /* efx_set_rx_mode() will schedule MAC work to update filters
2369                  * when a new features are finally set in net_dev.
2370                  */
2371                 efx_set_rx_mode(net_dev);
2372         }
2373
2374         return 0;
2375 }
2376
2377 static int efx_get_phys_port_id(struct net_device *net_dev,
2378                                 struct netdev_phys_item_id *ppid)
2379 {
2380         struct efx_nic *efx = netdev_priv(net_dev);
2381
2382         if (efx->type->get_phys_port_id)
2383                 return efx->type->get_phys_port_id(efx, ppid);
2384         else
2385                 return -EOPNOTSUPP;
2386 }
2387
2388 static int efx_get_phys_port_name(struct net_device *net_dev,
2389                                   char *name, size_t len)
2390 {
2391         struct efx_nic *efx = netdev_priv(net_dev);
2392
2393         if (snprintf(name, len, "p%u", efx->port_num) >= len)
2394                 return -EINVAL;
2395         return 0;
2396 }
2397
2398 static int efx_vlan_rx_add_vid(struct net_device *net_dev, __be16 proto, u16 vid)
2399 {
2400         struct efx_nic *efx = netdev_priv(net_dev);
2401
2402         if (efx->type->vlan_rx_add_vid)
2403                 return efx->type->vlan_rx_add_vid(efx, proto, vid);
2404         else
2405                 return -EOPNOTSUPP;
2406 }
2407
2408 static int efx_vlan_rx_kill_vid(struct net_device *net_dev, __be16 proto, u16 vid)
2409 {
2410         struct efx_nic *efx = netdev_priv(net_dev);
2411
2412         if (efx->type->vlan_rx_kill_vid)
2413                 return efx->type->vlan_rx_kill_vid(efx, proto, vid);
2414         else
2415                 return -EOPNOTSUPP;
2416 }
2417
2418 static int efx_udp_tunnel_type_map(enum udp_parsable_tunnel_type in)
2419 {
2420         switch (in) {
2421         case UDP_TUNNEL_TYPE_VXLAN:
2422                 return TUNNEL_ENCAP_UDP_PORT_ENTRY_VXLAN;
2423         case UDP_TUNNEL_TYPE_GENEVE:
2424                 return TUNNEL_ENCAP_UDP_PORT_ENTRY_GENEVE;
2425         default:
2426                 return -1;
2427         }
2428 }
2429
2430 static void efx_udp_tunnel_add(struct net_device *dev, struct udp_tunnel_info *ti)
2431 {
2432         struct efx_nic *efx = netdev_priv(dev);
2433         struct efx_udp_tunnel tnl;
2434         int efx_tunnel_type;
2435
2436         efx_tunnel_type = efx_udp_tunnel_type_map(ti->type);
2437         if (efx_tunnel_type < 0)
2438                 return;
2439
2440         tnl.type = (u16)efx_tunnel_type;
2441         tnl.port = ti->port;
2442
2443         if (efx->type->udp_tnl_add_port)
2444                 (void)efx->type->udp_tnl_add_port(efx, tnl);
2445 }
2446
2447 static void efx_udp_tunnel_del(struct net_device *dev, struct udp_tunnel_info *ti)
2448 {
2449         struct efx_nic *efx = netdev_priv(dev);
2450         struct efx_udp_tunnel tnl;
2451         int efx_tunnel_type;
2452
2453         efx_tunnel_type = efx_udp_tunnel_type_map(ti->type);
2454         if (efx_tunnel_type < 0)
2455                 return;
2456
2457         tnl.type = (u16)efx_tunnel_type;
2458         tnl.port = ti->port;
2459
2460         if (efx->type->udp_tnl_del_port)
2461                 (void)efx->type->udp_tnl_del_port(efx, tnl);
2462 }
2463
2464 static const struct net_device_ops efx_netdev_ops = {
2465         .ndo_open               = efx_net_open,
2466         .ndo_stop               = efx_net_stop,
2467         .ndo_get_stats64        = efx_net_stats,
2468         .ndo_tx_timeout         = efx_watchdog,
2469         .ndo_start_xmit         = efx_hard_start_xmit,
2470         .ndo_validate_addr      = eth_validate_addr,
2471         .ndo_do_ioctl           = efx_ioctl,
2472         .ndo_change_mtu         = efx_change_mtu,
2473         .ndo_set_mac_address    = efx_set_mac_address,
2474         .ndo_set_rx_mode        = efx_set_rx_mode,
2475         .ndo_set_features       = efx_set_features,
2476         .ndo_vlan_rx_add_vid    = efx_vlan_rx_add_vid,
2477         .ndo_vlan_rx_kill_vid   = efx_vlan_rx_kill_vid,
2478 #ifdef CONFIG_SFC_SRIOV
2479         .ndo_set_vf_mac         = efx_sriov_set_vf_mac,
2480         .ndo_set_vf_vlan        = efx_sriov_set_vf_vlan,
2481         .ndo_set_vf_spoofchk    = efx_sriov_set_vf_spoofchk,
2482         .ndo_get_vf_config      = efx_sriov_get_vf_config,
2483         .ndo_set_vf_link_state  = efx_sriov_set_vf_link_state,
2484 #endif
2485         .ndo_get_phys_port_id   = efx_get_phys_port_id,
2486         .ndo_get_phys_port_name = efx_get_phys_port_name,
2487         .ndo_setup_tc           = efx_setup_tc,
2488 #ifdef CONFIG_RFS_ACCEL
2489         .ndo_rx_flow_steer      = efx_filter_rfs,
2490 #endif
2491         .ndo_udp_tunnel_add     = efx_udp_tunnel_add,
2492         .ndo_udp_tunnel_del     = efx_udp_tunnel_del,
2493 };
2494
2495 static void efx_update_name(struct efx_nic *efx)
2496 {
2497         strcpy(efx->name, efx->net_dev->name);
2498         efx_mtd_rename(efx);
2499         efx_set_channel_names(efx);
2500 }
2501
2502 static int efx_netdev_event(struct notifier_block *this,
2503                             unsigned long event, void *ptr)
2504 {
2505         struct net_device *net_dev = netdev_notifier_info_to_dev(ptr);
2506
2507         if ((net_dev->netdev_ops == &efx_netdev_ops) &&
2508             event == NETDEV_CHANGENAME)
2509                 efx_update_name(netdev_priv(net_dev));
2510
2511         return NOTIFY_DONE;
2512 }
2513
2514 static struct notifier_block efx_netdev_notifier = {
2515         .notifier_call = efx_netdev_event,
2516 };
2517
2518 static ssize_t
2519 show_phy_type(struct device *dev, struct device_attribute *attr, char *buf)
2520 {
2521         struct efx_nic *efx = dev_get_drvdata(dev);
2522         return sprintf(buf, "%d\n", efx->phy_type);
2523 }
2524 static DEVICE_ATTR(phy_type, 0444, show_phy_type, NULL);
2525
2526 #ifdef CONFIG_SFC_MCDI_LOGGING
2527 static ssize_t show_mcdi_log(struct device *dev, struct device_attribute *attr,
2528                              char *buf)
2529 {
2530         struct efx_nic *efx = dev_get_drvdata(dev);
2531         struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
2532
2533         return scnprintf(buf, PAGE_SIZE, "%d\n", mcdi->logging_enabled);
2534 }
2535 static ssize_t set_mcdi_log(struct device *dev, struct device_attribute *attr,
2536                             const char *buf, size_t count)
2537 {
2538         struct efx_nic *efx = dev_get_drvdata(dev);
2539         struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
2540         bool enable = count > 0 && *buf != '0';
2541
2542         mcdi->logging_enabled = enable;
2543         return count;
2544 }
2545 static DEVICE_ATTR(mcdi_logging, 0644, show_mcdi_log, set_mcdi_log);
2546 #endif
2547
2548 static int efx_register_netdev(struct efx_nic *efx)
2549 {
2550         struct net_device *net_dev = efx->net_dev;
2551         struct efx_channel *channel;
2552         int rc;
2553
2554         net_dev->watchdog_timeo = 5 * HZ;
2555         net_dev->irq = efx->pci_dev->irq;
2556         net_dev->netdev_ops = &efx_netdev_ops;
2557         if (efx_nic_rev(efx) >= EFX_REV_HUNT_A0)
2558                 net_dev->priv_flags |= IFF_UNICAST_FLT;
2559         net_dev->ethtool_ops = &efx_ethtool_ops;
2560         net_dev->gso_max_segs = EFX_TSO_MAX_SEGS;
2561         net_dev->min_mtu = EFX_MIN_MTU;
2562         net_dev->max_mtu = EFX_MAX_MTU;
2563
2564         rtnl_lock();
2565
2566         /* Enable resets to be scheduled and check whether any were
2567          * already requested.  If so, the NIC is probably hosed so we
2568          * abort.
2569          */
2570         efx->state = STATE_READY;
2571         smp_mb(); /* ensure we change state before checking reset_pending */
2572         if (efx->reset_pending) {
2573                 netif_err(efx, probe, efx->net_dev,
2574                           "aborting probe due to scheduled reset\n");
2575                 rc = -EIO;
2576                 goto fail_locked;
2577         }
2578
2579         rc = dev_alloc_name(net_dev, net_dev->name);
2580         if (rc < 0)
2581                 goto fail_locked;
2582         efx_update_name(efx);
2583
2584         /* Always start with carrier off; PHY events will detect the link */
2585         netif_carrier_off(net_dev);
2586
2587         rc = register_netdevice(net_dev);
2588         if (rc)
2589                 goto fail_locked;
2590
2591         efx_for_each_channel(channel, efx) {
2592                 struct efx_tx_queue *tx_queue;
2593                 efx_for_each_channel_tx_queue(tx_queue, channel)
2594                         efx_init_tx_queue_core_txq(tx_queue);
2595         }
2596
2597         efx_associate(efx);
2598
2599         rtnl_unlock();
2600
2601         rc = device_create_file(&efx->pci_dev->dev, &dev_attr_phy_type);
2602         if (rc) {
2603                 netif_err(efx, drv, efx->net_dev,
2604                           "failed to init net dev attributes\n");
2605                 goto fail_registered;
2606         }
2607 #ifdef CONFIG_SFC_MCDI_LOGGING
2608         rc = device_create_file(&efx->pci_dev->dev, &dev_attr_mcdi_logging);
2609         if (rc) {
2610                 netif_err(efx, drv, efx->net_dev,
2611                           "failed to init net dev attributes\n");
2612                 goto fail_attr_mcdi_logging;
2613         }
2614 #endif
2615
2616         return 0;
2617
2618 #ifdef CONFIG_SFC_MCDI_LOGGING
2619 fail_attr_mcdi_logging:
2620         device_remove_file(&efx->pci_dev->dev, &dev_attr_phy_type);
2621 #endif
2622 fail_registered:
2623         rtnl_lock();
2624         efx_dissociate(efx);
2625         unregister_netdevice(net_dev);
2626 fail_locked:
2627         efx->state = STATE_UNINIT;
2628         rtnl_unlock();
2629         netif_err(efx, drv, efx->net_dev, "could not register net dev\n");
2630         return rc;
2631 }
2632
2633 static void efx_unregister_netdev(struct efx_nic *efx)
2634 {
2635         if (!efx->net_dev)
2636                 return;
2637
2638         BUG_ON(netdev_priv(efx->net_dev) != efx);
2639
2640         if (efx_dev_registered(efx)) {
2641                 strlcpy(efx->name, pci_name(efx->pci_dev), sizeof(efx->name));
2642 #ifdef CONFIG_SFC_MCDI_LOGGING
2643                 device_remove_file(&efx->pci_dev->dev, &dev_attr_mcdi_logging);
2644 #endif
2645                 device_remove_file(&efx->pci_dev->dev, &dev_attr_phy_type);
2646                 unregister_netdev(efx->net_dev);
2647         }
2648 }
2649
2650 /**************************************************************************
2651  *
2652  * Device reset and suspend
2653  *
2654  **************************************************************************/
2655
2656 /* Tears down the entire software state and most of the hardware state
2657  * before reset.  */
2658 void efx_reset_down(struct efx_nic *efx, enum reset_type method)
2659 {
2660         EFX_ASSERT_RESET_SERIALISED(efx);
2661
2662         if (method == RESET_TYPE_MCDI_TIMEOUT)
2663                 efx->type->prepare_flr(efx);
2664
2665         efx_stop_all(efx);
2666         efx_disable_interrupts(efx);
2667
2668         mutex_lock(&efx->mac_lock);
2669         down_write(&efx->filter_sem);
2670         mutex_lock(&efx->rss_lock);
2671         if (efx->port_initialized && method != RESET_TYPE_INVISIBLE &&
2672             method != RESET_TYPE_DATAPATH)
2673                 efx->phy_op->fini(efx);
2674         efx->type->fini(efx);
2675 }
2676
2677 /* This function will always ensure that the locks acquired in
2678  * efx_reset_down() are released. A failure return code indicates
2679  * that we were unable to reinitialise the hardware, and the
2680  * driver should be disabled. If ok is false, then the rx and tx
2681  * engines are not restarted, pending a RESET_DISABLE. */
2682 int efx_reset_up(struct efx_nic *efx, enum reset_type method, bool ok)
2683 {
2684         int rc;
2685
2686         EFX_ASSERT_RESET_SERIALISED(efx);
2687
2688         if (method == RESET_TYPE_MCDI_TIMEOUT)
2689                 efx->type->finish_flr(efx);
2690
2691         /* Ensure that SRAM is initialised even if we're disabling the device */
2692         rc = efx->type->init(efx);
2693         if (rc) {
2694                 netif_err(efx, drv, efx->net_dev, "failed to initialise NIC\n");
2695                 goto fail;
2696         }
2697
2698         if (!ok)
2699                 goto fail;
2700
2701         if (efx->port_initialized && method != RESET_TYPE_INVISIBLE &&
2702             method != RESET_TYPE_DATAPATH) {
2703                 rc = efx->phy_op->init(efx);
2704                 if (rc)
2705                         goto fail;
2706                 rc = efx->phy_op->reconfigure(efx);
2707                 if (rc && rc != -EPERM)
2708                         netif_err(efx, drv, efx->net_dev,
2709                                   "could not restore PHY settings\n");
2710         }
2711
2712         rc = efx_enable_interrupts(efx);
2713         if (rc)
2714                 goto fail;
2715
2716 #ifdef CONFIG_SFC_SRIOV
2717         rc = efx->type->vswitching_restore(efx);
2718         if (rc) /* not fatal; the PF will still work fine */
2719                 netif_warn(efx, probe, efx->net_dev,
2720                            "failed to restore vswitching rc=%d;"
2721                            " VFs may not function\n", rc);
2722 #endif
2723
2724         if (efx->type->rx_restore_rss_contexts)
2725                 efx->type->rx_restore_rss_contexts(efx);
2726         mutex_unlock(&efx->rss_lock);
2727         efx->type->filter_table_restore(efx);
2728         up_write(&efx->filter_sem);
2729         if (efx->type->sriov_reset)
2730                 efx->type->sriov_reset(efx);
2731
2732         mutex_unlock(&efx->mac_lock);
2733
2734         efx_start_all(efx);
2735
2736         if (efx->type->udp_tnl_push_ports)
2737                 efx->type->udp_tnl_push_ports(efx);
2738
2739         return 0;
2740
2741 fail:
2742         efx->port_initialized = false;
2743
2744         mutex_unlock(&efx->rss_lock);
2745         up_write(&efx->filter_sem);
2746         mutex_unlock(&efx->mac_lock);
2747
2748         return rc;
2749 }
2750
2751 /* Reset the NIC using the specified method.  Note that the reset may
2752  * fail, in which case the card will be left in an unusable state.
2753  *
2754  * Caller must hold the rtnl_lock.
2755  */
2756 int efx_reset(struct efx_nic *efx, enum reset_type method)
2757 {
2758         int rc, rc2;
2759         bool disabled;
2760
2761         netif_info(efx, drv, efx->net_dev, "resetting (%s)\n",
2762                    RESET_TYPE(method));
2763
2764         efx_device_detach_sync(efx);
2765         efx_reset_down(efx, method);
2766
2767         rc = efx->type->reset(efx, method);
2768         if (rc) {
2769                 netif_err(efx, drv, efx->net_dev, "failed to reset hardware\n");
2770                 goto out;
2771         }
2772
2773         /* Clear flags for the scopes we covered.  We assume the NIC and
2774          * driver are now quiescent so that there is no race here.
2775          */
2776         if (method < RESET_TYPE_MAX_METHOD)
2777                 efx->reset_pending &= -(1 << (method + 1));
2778         else /* it doesn't fit into the well-ordered scope hierarchy */
2779                 __clear_bit(method, &efx->reset_pending);
2780
2781         /* Reinitialise bus-mastering, which may have been turned off before
2782          * the reset was scheduled. This is still appropriate, even in the
2783          * RESET_TYPE_DISABLE since this driver generally assumes the hardware
2784          * can respond to requests. */
2785         pci_set_master(efx->pci_dev);
2786
2787 out:
2788         /* Leave device stopped if necessary */
2789         disabled = rc ||
2790                 method == RESET_TYPE_DISABLE ||
2791                 method == RESET_TYPE_RECOVER_OR_DISABLE;
2792         rc2 = efx_reset_up(efx, method, !disabled);
2793         if (rc2) {
2794                 disabled = true;
2795                 if (!rc)
2796                         rc = rc2;
2797         }
2798
2799         if (disabled) {
2800                 dev_close(efx->net_dev);
2801                 netif_err(efx, drv, efx->net_dev, "has been disabled\n");
2802                 efx->state = STATE_DISABLED;
2803         } else {
2804                 netif_dbg(efx, drv, efx->net_dev, "reset complete\n");
2805                 efx_device_attach_if_not_resetting(efx);
2806         }
2807         return rc;
2808 }
2809
2810 /* Try recovery mechanisms.
2811  * For now only EEH is supported.
2812  * Returns 0 if the recovery mechanisms are unsuccessful.
2813  * Returns a non-zero value otherwise.
2814  */
2815 int efx_try_recovery(struct efx_nic *efx)
2816 {
2817 #ifdef CONFIG_EEH
2818         /* A PCI error can occur and not be seen by EEH because nothing
2819          * happens on the PCI bus. In this case the driver may fail and
2820          * schedule a 'recover or reset', leading to this recovery handler.
2821          * Manually call the eeh failure check function.
2822          */
2823         struct eeh_dev *eehdev = pci_dev_to_eeh_dev(efx->pci_dev);
2824         if (eeh_dev_check_failure(eehdev)) {
2825                 /* The EEH mechanisms will handle the error and reset the
2826                  * device if necessary.
2827                  */
2828                 return 1;
2829         }
2830 #endif
2831         return 0;
2832 }
2833
2834 static void efx_wait_for_bist_end(struct efx_nic *efx)
2835 {
2836         int i;
2837
2838         for (i = 0; i < BIST_WAIT_DELAY_COUNT; ++i) {
2839                 if (efx_mcdi_poll_reboot(efx))
2840                         goto out;
2841                 msleep(BIST_WAIT_DELAY_MS);
2842         }
2843
2844         netif_err(efx, drv, efx->net_dev, "Warning: No MC reboot after BIST mode\n");
2845 out:
2846         /* Either way unset the BIST flag. If we found no reboot we probably
2847          * won't recover, but we should try.
2848          */
2849         efx->mc_bist_for_other_fn = false;
2850 }
2851
2852 /* The worker thread exists so that code that cannot sleep can
2853  * schedule a reset for later.
2854  */
2855 static void efx_reset_work(struct work_struct *data)
2856 {
2857         struct efx_nic *efx = container_of(data, struct efx_nic, reset_work);
2858         unsigned long pending;
2859         enum reset_type method;
2860
2861         pending = READ_ONCE(efx->reset_pending);
2862         method = fls(pending) - 1;
2863
2864         if (method == RESET_TYPE_MC_BIST)
2865                 efx_wait_for_bist_end(efx);
2866
2867         if ((method == RESET_TYPE_RECOVER_OR_DISABLE ||
2868              method == RESET_TYPE_RECOVER_OR_ALL) &&
2869             efx_try_recovery(efx))
2870                 return;
2871
2872         if (!pending)
2873                 return;
2874
2875         rtnl_lock();
2876
2877         /* We checked the state in efx_schedule_reset() but it may
2878          * have changed by now.  Now that we have the RTNL lock,
2879          * it cannot change again.
2880          */
2881         if (efx->state == STATE_READY)
2882                 (void)efx_reset(efx, method);
2883
2884         rtnl_unlock();
2885 }
2886
2887 void efx_schedule_reset(struct efx_nic *efx, enum reset_type type)
2888 {
2889         enum reset_type method;
2890
2891         if (efx->state == STATE_RECOVERY) {
2892                 netif_dbg(efx, drv, efx->net_dev,
2893                           "recovering: skip scheduling %s reset\n",
2894                           RESET_TYPE(type));
2895                 return;
2896         }
2897
2898         switch (type) {
2899         case RESET_TYPE_INVISIBLE:
2900         case RESET_TYPE_ALL:
2901         case RESET_TYPE_RECOVER_OR_ALL:
2902         case RESET_TYPE_WORLD:
2903         case RESET_TYPE_DISABLE:
2904         case RESET_TYPE_RECOVER_OR_DISABLE:
2905         case RESET_TYPE_DATAPATH:
2906         case RESET_TYPE_MC_BIST:
2907         case RESET_TYPE_MCDI_TIMEOUT:
2908                 method = type;
2909                 netif_dbg(efx, drv, efx->net_dev, "scheduling %s reset\n",
2910                           RESET_TYPE(method));
2911                 break;
2912         default:
2913                 method = efx->type->map_reset_reason(type);
2914                 netif_dbg(efx, drv, efx->net_dev,
2915                           "scheduling %s reset for %s\n",
2916                           RESET_TYPE(method), RESET_TYPE(type));
2917                 break;
2918         }
2919
2920         set_bit(method, &efx->reset_pending);
2921         smp_mb(); /* ensure we change reset_pending before checking state */
2922
2923         /* If we're not READY then just leave the flags set as the cue
2924          * to abort probing or reschedule the reset later.
2925          */
2926         if (READ_ONCE(efx->state) != STATE_READY)
2927                 return;
2928
2929         /* efx_process_channel() will no longer read events once a
2930          * reset is scheduled. So switch back to poll'd MCDI completions. */
2931         efx_mcdi_mode_poll(efx);
2932
2933         queue_work(reset_workqueue, &efx->reset_work);
2934 }
2935
2936 /**************************************************************************
2937  *
2938  * List of NICs we support
2939  *
2940  **************************************************************************/
2941
2942 /* PCI device ID table */
2943 static const struct pci_device_id efx_pci_table[] = {
2944         {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0803),  /* SFC9020 */
2945          .driver_data = (unsigned long) &siena_a0_nic_type},
2946         {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0813),  /* SFL9021 */
2947          .driver_data = (unsigned long) &siena_a0_nic_type},
2948         {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0903),  /* SFC9120 PF */
2949          .driver_data = (unsigned long) &efx_hunt_a0_nic_type},
2950         {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x1903),  /* SFC9120 VF */
2951          .driver_data = (unsigned long) &efx_hunt_a0_vf_nic_type},
2952         {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0923),  /* SFC9140 PF */
2953          .driver_data = (unsigned long) &efx_hunt_a0_nic_type},
2954         {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x1923),  /* SFC9140 VF */
2955          .driver_data = (unsigned long) &efx_hunt_a0_vf_nic_type},
2956         {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0a03),  /* SFC9220 PF */
2957          .driver_data = (unsigned long) &efx_hunt_a0_nic_type},
2958         {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x1a03),  /* SFC9220 VF */
2959          .driver_data = (unsigned long) &efx_hunt_a0_vf_nic_type},
2960         {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0b03),  /* SFC9250 PF */
2961          .driver_data = (unsigned long) &efx_hunt_a0_nic_type},
2962         {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x1b03),  /* SFC9250 VF */
2963          .driver_data = (unsigned long) &efx_hunt_a0_vf_nic_type},
2964         {0}                     /* end of list */
2965 };
2966
2967 /**************************************************************************
2968  *
2969  * Dummy PHY/MAC operations
2970  *
2971  * Can be used for some unimplemented operations
2972  * Needed so all function pointers are valid and do not have to be tested
2973  * before use
2974  *
2975  **************************************************************************/
2976 int efx_port_dummy_op_int(struct efx_nic *efx)
2977 {
2978         return 0;
2979 }
2980 void efx_port_dummy_op_void(struct efx_nic *efx) {}
2981
2982 static bool efx_port_dummy_op_poll(struct efx_nic *efx)
2983 {
2984         return false;
2985 }
2986
2987 static const struct efx_phy_operations efx_dummy_phy_operations = {
2988         .init            = efx_port_dummy_op_int,
2989         .reconfigure     = efx_port_dummy_op_int,
2990         .poll            = efx_port_dummy_op_poll,
2991         .fini            = efx_port_dummy_op_void,
2992 };
2993
2994 /**************************************************************************
2995  *
2996  * Data housekeeping
2997  *
2998  **************************************************************************/
2999
3000 /* This zeroes out and then fills in the invariants in a struct
3001  * efx_nic (including all sub-structures).
3002  */
3003 static int efx_init_struct(struct efx_nic *efx,
3004                            struct pci_dev *pci_dev, struct net_device *net_dev)
3005 {
3006         int rc = -ENOMEM, i;
3007
3008         /* Initialise common structures */
3009         INIT_LIST_HEAD(&efx->node);
3010         INIT_LIST_HEAD(&efx->secondary_list);
3011         spin_lock_init(&efx->biu_lock);
3012 #ifdef CONFIG_SFC_MTD
3013         INIT_LIST_HEAD(&efx->mtd_list);
3014 #endif
3015         INIT_WORK(&efx->reset_work, efx_reset_work);
3016         INIT_DELAYED_WORK(&efx->monitor_work, efx_monitor);
3017         INIT_DELAYED_WORK(&efx->selftest_work, efx_selftest_async_work);
3018         efx->pci_dev = pci_dev;
3019         efx->msg_enable = debug;
3020         efx->state = STATE_UNINIT;
3021         strlcpy(efx->name, pci_name(pci_dev), sizeof(efx->name));
3022
3023         efx->net_dev = net_dev;
3024         efx->rx_prefix_size = efx->type->rx_prefix_size;
3025         efx->rx_ip_align =
3026                 NET_IP_ALIGN ? (efx->rx_prefix_size + NET_IP_ALIGN) % 4 : 0;
3027         efx->rx_packet_hash_offset =
3028                 efx->type->rx_hash_offset - efx->type->rx_prefix_size;
3029         efx->rx_packet_ts_offset =
3030                 efx->type->rx_ts_offset - efx->type->rx_prefix_size;
3031         INIT_LIST_HEAD(&efx->rss_context.list);
3032         mutex_init(&efx->rss_lock);
3033         spin_lock_init(&efx->stats_lock);
3034         efx->vi_stride = EFX_DEFAULT_VI_STRIDE;
3035         efx->num_mac_stats = MC_CMD_MAC_NSTATS;
3036         BUILD_BUG_ON(MC_CMD_MAC_NSTATS - 1 != MC_CMD_MAC_GENERATION_END);
3037         mutex_init(&efx->mac_lock);
3038 #ifdef CONFIG_RFS_ACCEL
3039         mutex_init(&efx->rps_mutex);
3040         spin_lock_init(&efx->rps_hash_lock);
3041         /* Failure to allocate is not fatal, but may degrade ARFS performance */
3042         efx->rps_hash_table = kcalloc(EFX_ARFS_HASH_TABLE_SIZE,
3043                                       sizeof(*efx->rps_hash_table), GFP_KERNEL);
3044 #endif
3045         efx->phy_op = &efx_dummy_phy_operations;
3046         efx->mdio.dev = net_dev;
3047         INIT_WORK(&efx->mac_work, efx_mac_work);
3048         init_waitqueue_head(&efx->flush_wq);
3049
3050         for (i = 0; i < EFX_MAX_CHANNELS; i++) {
3051                 efx->channel[i] = efx_alloc_channel(efx, i, NULL);
3052                 if (!efx->channel[i])
3053                         goto fail;
3054                 efx->msi_context[i].efx = efx;
3055                 efx->msi_context[i].index = i;
3056         }
3057
3058         /* Higher numbered interrupt modes are less capable! */
3059         if (WARN_ON_ONCE(efx->type->max_interrupt_mode >
3060                          efx->type->min_interrupt_mode)) {
3061                 rc = -EIO;
3062                 goto fail;
3063         }
3064         efx->interrupt_mode = max(efx->type->max_interrupt_mode,
3065                                   interrupt_mode);
3066         efx->interrupt_mode = min(efx->type->min_interrupt_mode,
3067                                   interrupt_mode);
3068
3069         /* Would be good to use the net_dev name, but we're too early */
3070         snprintf(efx->workqueue_name, sizeof(efx->workqueue_name), "sfc%s",
3071                  pci_name(pci_dev));
3072         efx->workqueue = create_singlethread_workqueue(efx->workqueue_name);
3073         if (!efx->workqueue)
3074                 goto fail;
3075
3076         return 0;
3077
3078 fail:
3079         efx_fini_struct(efx);
3080         return rc;
3081 }
3082
3083 static void efx_fini_struct(struct efx_nic *efx)
3084 {
3085         int i;
3086
3087 #ifdef CONFIG_RFS_ACCEL
3088         kfree(efx->rps_hash_table);
3089 #endif
3090
3091         for (i = 0; i < EFX_MAX_CHANNELS; i++)
3092                 kfree(efx->channel[i]);
3093
3094         kfree(efx->vpd_sn);
3095
3096         if (efx->workqueue) {
3097                 destroy_workqueue(efx->workqueue);
3098                 efx->workqueue = NULL;
3099         }
3100 }
3101
3102 void efx_update_sw_stats(struct efx_nic *efx, u64 *stats)
3103 {
3104         u64 n_rx_nodesc_trunc = 0;
3105         struct efx_channel *channel;
3106
3107         efx_for_each_channel(channel, efx)
3108                 n_rx_nodesc_trunc += channel->n_rx_nodesc_trunc;
3109         stats[GENERIC_STAT_rx_nodesc_trunc] = n_rx_nodesc_trunc;
3110         stats[GENERIC_STAT_rx_noskb_drops] = atomic_read(&efx->n_rx_noskb_drops);
3111 }
3112
3113 bool efx_filter_spec_equal(const struct efx_filter_spec *left,
3114                            const struct efx_filter_spec *right)
3115 {
3116         if ((left->match_flags ^ right->match_flags) |
3117             ((left->flags ^ right->flags) &
3118              (EFX_FILTER_FLAG_RX | EFX_FILTER_FLAG_TX)))
3119                 return false;
3120
3121         return memcmp(&left->outer_vid, &right->outer_vid,
3122                       sizeof(struct efx_filter_spec) -
3123                       offsetof(struct efx_filter_spec, outer_vid)) == 0;
3124 }
3125
3126 u32 efx_filter_spec_hash(const struct efx_filter_spec *spec)
3127 {
3128         BUILD_BUG_ON(offsetof(struct efx_filter_spec, outer_vid) & 3);
3129         return jhash2((const u32 *)&spec->outer_vid,
3130                       (sizeof(struct efx_filter_spec) -
3131                        offsetof(struct efx_filter_spec, outer_vid)) / 4,
3132                       0);
3133 }
3134
3135 #ifdef CONFIG_RFS_ACCEL
3136 bool efx_rps_check_rule(struct efx_arfs_rule *rule, unsigned int filter_idx,
3137                         bool *force)
3138 {
3139         if (rule->filter_id == EFX_ARFS_FILTER_ID_PENDING) {
3140                 /* ARFS is currently updating this entry, leave it */
3141                 return false;
3142         }
3143         if (rule->filter_id == EFX_ARFS_FILTER_ID_ERROR) {
3144                 /* ARFS tried and failed to update this, so it's probably out
3145                  * of date.  Remove the filter and the ARFS rule entry.
3146                  */
3147                 rule->filter_id = EFX_ARFS_FILTER_ID_REMOVING;
3148                 *force = true;
3149                 return true;
3150         } else if (WARN_ON(rule->filter_id != filter_idx)) { /* can't happen */
3151                 /* ARFS has moved on, so old filter is not needed.  Since we did
3152                  * not mark the rule with EFX_ARFS_FILTER_ID_REMOVING, it will
3153                  * not be removed by efx_rps_hash_del() subsequently.
3154                  */
3155                 *force = true;
3156                 return true;
3157         }
3158         /* Remove it iff ARFS wants to. */
3159         return true;
3160 }
3161
3162 static
3163 struct hlist_head *efx_rps_hash_bucket(struct efx_nic *efx,
3164                                        const struct efx_filter_spec *spec)
3165 {
3166         u32 hash = efx_filter_spec_hash(spec);
3167
3168         lockdep_assert_held(&efx->rps_hash_lock);
3169         if (!efx->rps_hash_table)
3170                 return NULL;
3171         return &efx->rps_hash_table[hash % EFX_ARFS_HASH_TABLE_SIZE];
3172 }
3173
3174 struct efx_arfs_rule *efx_rps_hash_find(struct efx_nic *efx,
3175                                         const struct efx_filter_spec *spec)
3176 {
3177         struct efx_arfs_rule *rule;
3178         struct hlist_head *head;
3179         struct hlist_node *node;
3180
3181         head = efx_rps_hash_bucket(efx, spec);
3182         if (!head)
3183                 return NULL;
3184         hlist_for_each(node, head) {
3185                 rule = container_of(node, struct efx_arfs_rule, node);
3186                 if (efx_filter_spec_equal(spec, &rule->spec))
3187                         return rule;
3188         }
3189         return NULL;
3190 }
3191
3192 struct efx_arfs_rule *efx_rps_hash_add(struct efx_nic *efx,
3193                                        const struct efx_filter_spec *spec,
3194                                        bool *new)
3195 {
3196         struct efx_arfs_rule *rule;
3197         struct hlist_head *head;
3198         struct hlist_node *node;
3199
3200         head = efx_rps_hash_bucket(efx, spec);
3201         if (!head)
3202                 return NULL;
3203         hlist_for_each(node, head) {
3204                 rule = container_of(node, struct efx_arfs_rule, node);
3205                 if (efx_filter_spec_equal(spec, &rule->spec)) {
3206                         *new = false;
3207                         return rule;
3208                 }
3209         }
3210         rule = kmalloc(sizeof(*rule), GFP_ATOMIC);
3211         *new = true;
3212         if (rule) {
3213                 memcpy(&rule->spec, spec, sizeof(rule->spec));
3214                 hlist_add_head(&rule->node, head);
3215         }
3216         return rule;
3217 }
3218
3219 void efx_rps_hash_del(struct efx_nic *efx, const struct efx_filter_spec *spec)
3220 {
3221         struct efx_arfs_rule *rule;
3222         struct hlist_head *head;
3223         struct hlist_node *node;
3224
3225         head = efx_rps_hash_bucket(efx, spec);
3226         if (WARN_ON(!head))
3227                 return;
3228         hlist_for_each(node, head) {
3229                 rule = container_of(node, struct efx_arfs_rule, node);
3230                 if (efx_filter_spec_equal(spec, &rule->spec)) {
3231                         /* Someone already reused the entry.  We know that if
3232                          * this check doesn't fire (i.e. filter_id == REMOVING)
3233                          * then the REMOVING mark was put there by our caller,
3234                          * because caller is holding a lock on filter table and
3235                          * only holders of that lock set REMOVING.
3236                          */
3237                         if (rule->filter_id != EFX_ARFS_FILTER_ID_REMOVING)
3238                                 return;
3239                         hlist_del(node);
3240                         kfree(rule);
3241                         return;
3242                 }
3243         }
3244         /* We didn't find it. */
3245         WARN_ON(1);
3246 }
3247 #endif
3248
3249 /* RSS contexts.  We're using linked lists and crappy O(n) algorithms, because
3250  * (a) this is an infrequent control-plane operation and (b) n is small (max 64)
3251  */
3252 struct efx_rss_context *efx_alloc_rss_context_entry(struct efx_nic *efx)
3253 {
3254         struct list_head *head = &efx->rss_context.list;
3255         struct efx_rss_context *ctx, *new;
3256         u32 id = 1; /* Don't use zero, that refers to the master RSS context */
3257
3258         WARN_ON(!mutex_is_locked(&efx->rss_lock));
3259
3260         /* Search for first gap in the numbering */
3261         list_for_each_entry(ctx, head, list) {
3262                 if (ctx->user_id != id)
3263                         break;
3264                 id++;
3265                 /* Check for wrap.  If this happens, we have nearly 2^32
3266                  * allocated RSS contexts, which seems unlikely.
3267                  */
3268                 if (WARN_ON_ONCE(!id))
3269                         return NULL;
3270         }
3271
3272         /* Create the new entry */
3273         new = kmalloc(sizeof(struct efx_rss_context), GFP_KERNEL);
3274         if (!new)
3275                 return NULL;
3276         new->context_id = EFX_EF10_RSS_CONTEXT_INVALID;
3277         new->rx_hash_udp_4tuple = false;
3278
3279         /* Insert the new entry into the gap */
3280         new->user_id = id;
3281         list_add_tail(&new->list, &ctx->list);
3282         return new;
3283 }
3284
3285 struct efx_rss_context *efx_find_rss_context_entry(struct efx_nic *efx, u32 id)
3286 {
3287         struct list_head *head = &efx->rss_context.list;
3288         struct efx_rss_context *ctx;
3289
3290         WARN_ON(!mutex_is_locked(&efx->rss_lock));
3291
3292         list_for_each_entry(ctx, head, list)
3293                 if (ctx->user_id == id)
3294                         return ctx;
3295         return NULL;
3296 }
3297
3298 void efx_free_rss_context_entry(struct efx_rss_context *ctx)
3299 {
3300         list_del(&ctx->list);
3301         kfree(ctx);
3302 }
3303
3304 /**************************************************************************
3305  *
3306  * PCI interface
3307  *
3308  **************************************************************************/
3309
3310 /* Main body of final NIC shutdown code
3311  * This is called only at module unload (or hotplug removal).
3312  */
3313 static void efx_pci_remove_main(struct efx_nic *efx)
3314 {
3315         /* Flush reset_work. It can no longer be scheduled since we
3316          * are not READY.
3317          */
3318         BUG_ON(efx->state == STATE_READY);
3319         cancel_work_sync(&efx->reset_work);
3320
3321         efx_disable_interrupts(efx);
3322         efx_clear_interrupt_affinity(efx);
3323         efx_nic_fini_interrupt(efx);
3324         efx_fini_port(efx);
3325         efx->type->fini(efx);
3326         efx_fini_napi(efx);
3327         efx_remove_all(efx);
3328 }
3329
3330 /* Final NIC shutdown
3331  * This is called only at module unload (or hotplug removal).  A PF can call
3332  * this on its VFs to ensure they are unbound first.
3333  */
3334 static void efx_pci_remove(struct pci_dev *pci_dev)
3335 {
3336         struct efx_nic *efx;
3337
3338         efx = pci_get_drvdata(pci_dev);
3339         if (!efx)
3340                 return;
3341
3342         /* Mark the NIC as fini, then stop the interface */
3343         rtnl_lock();
3344         efx_dissociate(efx);
3345         dev_close(efx->net_dev);
3346         efx_disable_interrupts(efx);
3347         efx->state = STATE_UNINIT;
3348         rtnl_unlock();
3349
3350         if (efx->type->sriov_fini)
3351                 efx->type->sriov_fini(efx);
3352
3353         efx_unregister_netdev(efx);
3354
3355         efx_mtd_remove(efx);
3356
3357         efx_pci_remove_main(efx);
3358
3359         efx_fini_io(efx);
3360         netif_dbg(efx, drv, efx->net_dev, "shutdown successful\n");
3361
3362         efx_fini_struct(efx);
3363         free_netdev(efx->net_dev);
3364
3365         pci_disable_pcie_error_reporting(pci_dev);
3366 };
3367
3368 /* NIC VPD information
3369  * Called during probe to display the part number of the
3370  * installed NIC.  VPD is potentially very large but this should
3371  * always appear within the first 512 bytes.
3372  */
3373 #define SFC_VPD_LEN 512
3374 static void efx_probe_vpd_strings(struct efx_nic *efx)
3375 {
3376         struct pci_dev *dev = efx->pci_dev;
3377         char vpd_data[SFC_VPD_LEN];
3378         ssize_t vpd_size;
3379         int ro_start, ro_size, i, j;
3380
3381         /* Get the vpd data from the device */
3382         vpd_size = pci_read_vpd(dev, 0, sizeof(vpd_data), vpd_data);
3383         if (vpd_size <= 0) {
3384                 netif_err(efx, drv, efx->net_dev, "Unable to read VPD\n");
3385                 return;
3386         }
3387
3388         /* Get the Read only section */
3389         ro_start = pci_vpd_find_tag(vpd_data, 0, vpd_size, PCI_VPD_LRDT_RO_DATA);
3390         if (ro_start < 0) {
3391                 netif_err(efx, drv, efx->net_dev, "VPD Read-only not found\n");
3392                 return;
3393         }
3394
3395         ro_size = pci_vpd_lrdt_size(&vpd_data[ro_start]);
3396         j = ro_size;
3397         i = ro_start + PCI_VPD_LRDT_TAG_SIZE;
3398         if (i + j > vpd_size)
3399                 j = vpd_size - i;
3400
3401         /* Get the Part number */
3402         i = pci_vpd_find_info_keyword(vpd_data, i, j, "PN");
3403         if (i < 0) {
3404                 netif_err(efx, drv, efx->net_dev, "Part number not found\n");
3405                 return;
3406         }
3407
3408         j = pci_vpd_info_field_size(&vpd_data[i]);
3409         i += PCI_VPD_INFO_FLD_HDR_SIZE;
3410         if (i + j > vpd_size) {
3411                 netif_err(efx, drv, efx->net_dev, "Incomplete part number\n");
3412                 return;
3413         }
3414
3415         netif_info(efx, drv, efx->net_dev,
3416                    "Part Number : %.*s\n", j, &vpd_data[i]);
3417
3418         i = ro_start + PCI_VPD_LRDT_TAG_SIZE;
3419         j = ro_size;
3420         i = pci_vpd_find_info_keyword(vpd_data, i, j, "SN");
3421         if (i < 0) {
3422                 netif_err(efx, drv, efx->net_dev, "Serial number not found\n");
3423                 return;
3424         }
3425
3426         j = pci_vpd_info_field_size(&vpd_data[i]);
3427         i += PCI_VPD_INFO_FLD_HDR_SIZE;
3428         if (i + j > vpd_size) {
3429                 netif_err(efx, drv, efx->net_dev, "Incomplete serial number\n");
3430                 return;
3431         }
3432
3433         efx->vpd_sn = kmalloc(j + 1, GFP_KERNEL);
3434         if (!efx->vpd_sn)
3435                 return;
3436
3437         snprintf(efx->vpd_sn, j + 1, "%s", &vpd_data[i]);
3438 }
3439
3440
3441 /* Main body of NIC initialisation
3442  * This is called at module load (or hotplug insertion, theoretically).
3443  */
3444 static int efx_pci_probe_main(struct efx_nic *efx)
3445 {
3446         int rc;
3447
3448         /* Do start-of-day initialisation */
3449         rc = efx_probe_all(efx);
3450         if (rc)
3451                 goto fail1;
3452
3453         efx_init_napi(efx);
3454
3455         down_write(&efx->filter_sem);
3456         rc = efx->type->init(efx);
3457         up_write(&efx->filter_sem);
3458         if (rc) {
3459                 netif_err(efx, probe, efx->net_dev,
3460                           "failed to initialise NIC\n");
3461                 goto fail3;
3462         }
3463
3464         rc = efx_init_port(efx);
3465         if (rc) {
3466                 netif_err(efx, probe, efx->net_dev,
3467                           "failed to initialise port\n");
3468                 goto fail4;
3469         }
3470
3471         rc = efx_nic_init_interrupt(efx);
3472         if (rc)
3473                 goto fail5;
3474
3475         efx_set_interrupt_affinity(efx);
3476         rc = efx_enable_interrupts(efx);
3477         if (rc)
3478                 goto fail6;
3479
3480         return 0;
3481
3482  fail6:
3483         efx_clear_interrupt_affinity(efx);
3484         efx_nic_fini_interrupt(efx);
3485  fail5:
3486         efx_fini_port(efx);
3487  fail4:
3488         efx->type->fini(efx);
3489  fail3:
3490         efx_fini_napi(efx);
3491         efx_remove_all(efx);
3492  fail1:
3493         return rc;
3494 }
3495
3496 static int efx_pci_probe_post_io(struct efx_nic *efx)
3497 {
3498         struct net_device *net_dev = efx->net_dev;
3499         int rc = efx_pci_probe_main(efx);
3500
3501         if (rc)
3502                 return rc;
3503
3504         if (efx->type->sriov_init) {
3505                 rc = efx->type->sriov_init(efx);
3506                 if (rc)
3507                         netif_err(efx, probe, efx->net_dev,
3508                                   "SR-IOV can't be enabled rc %d\n", rc);
3509         }
3510
3511         /* Determine netdevice features */
3512         net_dev->features |= (efx->type->offload_features | NETIF_F_SG |
3513                               NETIF_F_TSO | NETIF_F_RXCSUM | NETIF_F_RXALL);
3514         if (efx->type->offload_features & (NETIF_F_IPV6_CSUM | NETIF_F_HW_CSUM))
3515                 net_dev->features |= NETIF_F_TSO6;
3516         /* Check whether device supports TSO */
3517         if (!efx->type->tso_versions || !efx->type->tso_versions(efx))
3518                 net_dev->features &= ~NETIF_F_ALL_TSO;
3519         /* Mask for features that also apply to VLAN devices */
3520         net_dev->vlan_features |= (NETIF_F_HW_CSUM | NETIF_F_SG |
3521                                    NETIF_F_HIGHDMA | NETIF_F_ALL_TSO |
3522                                    NETIF_F_RXCSUM);
3523
3524         net_dev->hw_features |= net_dev->features & ~efx->fixed_features;
3525
3526         /* Disable receiving frames with bad FCS, by default. */
3527         net_dev->features &= ~NETIF_F_RXALL;
3528
3529         /* Disable VLAN filtering by default.  It may be enforced if
3530          * the feature is fixed (i.e. VLAN filters are required to
3531          * receive VLAN tagged packets due to vPort restrictions).
3532          */
3533         net_dev->features &= ~NETIF_F_HW_VLAN_CTAG_FILTER;
3534         net_dev->features |= efx->fixed_features;
3535
3536         rc = efx_register_netdev(efx);
3537         if (!rc)
3538                 return 0;
3539
3540         efx_pci_remove_main(efx);
3541         return rc;
3542 }
3543
3544 /* NIC initialisation
3545  *
3546  * This is called at module load (or hotplug insertion,
3547  * theoretically).  It sets up PCI mappings, resets the NIC,
3548  * sets up and registers the network devices with the kernel and hooks
3549  * the interrupt service routine.  It does not prepare the device for
3550  * transmission; this is left to the first time one of the network
3551  * interfaces is brought up (i.e. efx_net_open).
3552  */
3553 static int efx_pci_probe(struct pci_dev *pci_dev,
3554                          const struct pci_device_id *entry)
3555 {
3556         struct net_device *net_dev;
3557         struct efx_nic *efx;
3558         int rc;
3559
3560         /* Allocate and initialise a struct net_device and struct efx_nic */
3561         net_dev = alloc_etherdev_mqs(sizeof(*efx), EFX_MAX_CORE_TX_QUEUES,
3562                                      EFX_MAX_RX_QUEUES);
3563         if (!net_dev)
3564                 return -ENOMEM;
3565         efx = netdev_priv(net_dev);
3566         efx->type = (const struct efx_nic_type *) entry->driver_data;
3567         efx->fixed_features |= NETIF_F_HIGHDMA;
3568
3569         pci_set_drvdata(pci_dev, efx);
3570         SET_NETDEV_DEV(net_dev, &pci_dev->dev);
3571         rc = efx_init_struct(efx, pci_dev, net_dev);
3572         if (rc)
3573                 goto fail1;
3574
3575         netif_info(efx, probe, efx->net_dev,
3576                    "Solarflare NIC detected\n");
3577
3578         if (!efx->type->is_vf)
3579                 efx_probe_vpd_strings(efx);
3580
3581         /* Set up basic I/O (BAR mappings etc) */
3582         rc = efx_init_io(efx);
3583         if (rc)
3584                 goto fail2;
3585
3586         rc = efx_pci_probe_post_io(efx);
3587         if (rc) {
3588                 /* On failure, retry once immediately.
3589                  * If we aborted probe due to a scheduled reset, dismiss it.
3590                  */
3591                 efx->reset_pending = 0;
3592                 rc = efx_pci_probe_post_io(efx);
3593                 if (rc) {
3594                         /* On another failure, retry once more
3595                          * after a 50-305ms delay.
3596                          */
3597                         unsigned char r;
3598
3599                         get_random_bytes(&r, 1);
3600                         msleep((unsigned int)r + 50);
3601                         efx->reset_pending = 0;
3602                         rc = efx_pci_probe_post_io(efx);
3603                 }
3604         }
3605         if (rc)
3606                 goto fail3;
3607
3608         netif_dbg(efx, probe, efx->net_dev, "initialisation successful\n");
3609
3610         /* Try to create MTDs, but allow this to fail */
3611         rtnl_lock();
3612         rc = efx_mtd_probe(efx);
3613         rtnl_unlock();
3614         if (rc && rc != -EPERM)
3615                 netif_warn(efx, probe, efx->net_dev,
3616                            "failed to create MTDs (%d)\n", rc);
3617
3618         (void)pci_enable_pcie_error_reporting(pci_dev);
3619
3620         if (efx->type->udp_tnl_push_ports)
3621                 efx->type->udp_tnl_push_ports(efx);
3622
3623         return 0;
3624
3625  fail3:
3626         efx_fini_io(efx);
3627  fail2:
3628         efx_fini_struct(efx);
3629  fail1:
3630         WARN_ON(rc > 0);
3631         netif_dbg(efx, drv, efx->net_dev, "initialisation failed. rc=%d\n", rc);
3632         free_netdev(net_dev);
3633         return rc;
3634 }
3635
3636 /* efx_pci_sriov_configure returns the actual number of Virtual Functions
3637  * enabled on success
3638  */
3639 #ifdef CONFIG_SFC_SRIOV
3640 static int efx_pci_sriov_configure(struct pci_dev *dev, int num_vfs)
3641 {
3642         int rc;
3643         struct efx_nic *efx = pci_get_drvdata(dev);
3644
3645         if (efx->type->sriov_configure) {
3646                 rc = efx->type->sriov_configure(efx, num_vfs);
3647                 if (rc)
3648                         return rc;
3649                 else
3650                         return num_vfs;
3651         } else
3652                 return -EOPNOTSUPP;
3653 }
3654 #endif
3655
3656 static int efx_pm_freeze(struct device *dev)
3657 {
3658         struct efx_nic *efx = dev_get_drvdata(dev);
3659
3660         rtnl_lock();
3661
3662         if (efx->state != STATE_DISABLED) {
3663                 efx->state = STATE_UNINIT;
3664
3665                 efx_device_detach_sync(efx);
3666
3667                 efx_stop_all(efx);
3668                 efx_disable_interrupts(efx);
3669         }
3670
3671         rtnl_unlock();
3672
3673         return 0;
3674 }
3675
3676 static int efx_pm_thaw(struct device *dev)
3677 {
3678         int rc;
3679         struct efx_nic *efx = dev_get_drvdata(dev);
3680
3681         rtnl_lock();
3682
3683         if (efx->state != STATE_DISABLED) {
3684                 rc = efx_enable_interrupts(efx);
3685                 if (rc)
3686                         goto fail;
3687
3688                 mutex_lock(&efx->mac_lock);
3689                 efx->phy_op->reconfigure(efx);
3690                 mutex_unlock(&efx->mac_lock);
3691
3692                 efx_start_all(efx);
3693
3694                 efx_device_attach_if_not_resetting(efx);
3695
3696                 efx->state = STATE_READY;
3697
3698                 efx->type->resume_wol(efx);
3699         }
3700
3701         rtnl_unlock();
3702
3703         /* Reschedule any quenched resets scheduled during efx_pm_freeze() */
3704         queue_work(reset_workqueue, &efx->reset_work);
3705
3706         return 0;
3707
3708 fail:
3709         rtnl_unlock();
3710
3711         return rc;
3712 }
3713
3714 static int efx_pm_poweroff(struct device *dev)
3715 {
3716         struct pci_dev *pci_dev = to_pci_dev(dev);
3717         struct efx_nic *efx = pci_get_drvdata(pci_dev);
3718
3719         efx->type->fini(efx);
3720
3721         efx->reset_pending = 0;
3722
3723         pci_save_state(pci_dev);
3724         return pci_set_power_state(pci_dev, PCI_D3hot);
3725 }
3726
3727 /* Used for both resume and restore */
3728 static int efx_pm_resume(struct device *dev)
3729 {
3730         struct pci_dev *pci_dev = to_pci_dev(dev);
3731         struct efx_nic *efx = pci_get_drvdata(pci_dev);
3732         int rc;
3733
3734         rc = pci_set_power_state(pci_dev, PCI_D0);
3735         if (rc)
3736                 return rc;
3737         pci_restore_state(pci_dev);
3738         rc = pci_enable_device(pci_dev);
3739         if (rc)
3740                 return rc;
3741         pci_set_master(efx->pci_dev);
3742         rc = efx->type->reset(efx, RESET_TYPE_ALL);
3743         if (rc)
3744                 return rc;
3745         down_write(&efx->filter_sem);
3746         rc = efx->type->init(efx);
3747         up_write(&efx->filter_sem);
3748         if (rc)
3749                 return rc;
3750         rc = efx_pm_thaw(dev);
3751         return rc;
3752 }
3753
3754 static int efx_pm_suspend(struct device *dev)
3755 {
3756         int rc;
3757
3758         efx_pm_freeze(dev);
3759         rc = efx_pm_poweroff(dev);
3760         if (rc)
3761                 efx_pm_resume(dev);
3762         return rc;
3763 }
3764
3765 static const struct dev_pm_ops efx_pm_ops = {
3766         .suspend        = efx_pm_suspend,
3767         .resume         = efx_pm_resume,
3768         .freeze         = efx_pm_freeze,
3769         .thaw           = efx_pm_thaw,
3770         .poweroff       = efx_pm_poweroff,
3771         .restore        = efx_pm_resume,
3772 };
3773
3774 /* A PCI error affecting this device was detected.
3775  * At this point MMIO and DMA may be disabled.
3776  * Stop the software path and request a slot reset.
3777  */
3778 static pci_ers_result_t efx_io_error_detected(struct pci_dev *pdev,
3779                                               enum pci_channel_state state)
3780 {
3781         pci_ers_result_t status = PCI_ERS_RESULT_RECOVERED;
3782         struct efx_nic *efx = pci_get_drvdata(pdev);
3783
3784         if (state == pci_channel_io_perm_failure)
3785                 return PCI_ERS_RESULT_DISCONNECT;
3786
3787         rtnl_lock();
3788
3789         if (efx->state != STATE_DISABLED) {
3790                 efx->state = STATE_RECOVERY;
3791                 efx->reset_pending = 0;
3792
3793                 efx_device_detach_sync(efx);
3794
3795                 efx_stop_all(efx);
3796                 efx_disable_interrupts(efx);
3797
3798                 status = PCI_ERS_RESULT_NEED_RESET;
3799         } else {
3800                 /* If the interface is disabled we don't want to do anything
3801                  * with it.
3802                  */
3803                 status = PCI_ERS_RESULT_RECOVERED;
3804         }
3805
3806         rtnl_unlock();
3807
3808         pci_disable_device(pdev);
3809
3810         return status;
3811 }
3812
3813 /* Fake a successful reset, which will be performed later in efx_io_resume. */
3814 static pci_ers_result_t efx_io_slot_reset(struct pci_dev *pdev)
3815 {
3816         struct efx_nic *efx = pci_get_drvdata(pdev);
3817         pci_ers_result_t status = PCI_ERS_RESULT_RECOVERED;
3818
3819         if (pci_enable_device(pdev)) {
3820                 netif_err(efx, hw, efx->net_dev,
3821                           "Cannot re-enable PCI device after reset.\n");
3822                 status =  PCI_ERS_RESULT_DISCONNECT;
3823         }
3824
3825         return status;
3826 }
3827
3828 /* Perform the actual reset and resume I/O operations. */
3829 static void efx_io_resume(struct pci_dev *pdev)
3830 {
3831         struct efx_nic *efx = pci_get_drvdata(pdev);
3832         int rc;
3833
3834         rtnl_lock();
3835
3836         if (efx->state == STATE_DISABLED)
3837                 goto out;
3838
3839         rc = efx_reset(efx, RESET_TYPE_ALL);
3840         if (rc) {
3841                 netif_err(efx, hw, efx->net_dev,
3842                           "efx_reset failed after PCI error (%d)\n", rc);
3843         } else {
3844                 efx->state = STATE_READY;
3845                 netif_dbg(efx, hw, efx->net_dev,
3846                           "Done resetting and resuming IO after PCI error.\n");
3847         }
3848
3849 out:
3850         rtnl_unlock();
3851 }
3852
3853 /* For simplicity and reliability, we always require a slot reset and try to
3854  * reset the hardware when a pci error affecting the device is detected.
3855  * We leave both the link_reset and mmio_enabled callback unimplemented:
3856  * with our request for slot reset the mmio_enabled callback will never be
3857  * called, and the link_reset callback is not used by AER or EEH mechanisms.
3858  */
3859 static const struct pci_error_handlers efx_err_handlers = {
3860         .error_detected = efx_io_error_detected,
3861         .slot_reset     = efx_io_slot_reset,
3862         .resume         = efx_io_resume,
3863 };
3864
3865 static struct pci_driver efx_pci_driver = {
3866         .name           = KBUILD_MODNAME,
3867         .id_table       = efx_pci_table,
3868         .probe          = efx_pci_probe,
3869         .remove         = efx_pci_remove,
3870         .driver.pm      = &efx_pm_ops,
3871         .err_handler    = &efx_err_handlers,
3872 #ifdef CONFIG_SFC_SRIOV
3873         .sriov_configure = efx_pci_sriov_configure,
3874 #endif
3875 };
3876
3877 /**************************************************************************
3878  *
3879  * Kernel module interface
3880  *
3881  *************************************************************************/
3882
3883 module_param(interrupt_mode, uint, 0444);
3884 MODULE_PARM_DESC(interrupt_mode,
3885                  "Interrupt mode (0=>MSIX 1=>MSI 2=>legacy)");
3886
3887 static int __init efx_init_module(void)
3888 {
3889         int rc;
3890
3891         printk(KERN_INFO "Solarflare NET driver v" EFX_DRIVER_VERSION "\n");
3892
3893         rc = register_netdevice_notifier(&efx_netdev_notifier);
3894         if (rc)
3895                 goto err_notifier;
3896
3897 #ifdef CONFIG_SFC_SRIOV
3898         rc = efx_init_sriov();
3899         if (rc)
3900                 goto err_sriov;
3901 #endif
3902
3903         reset_workqueue = create_singlethread_workqueue("sfc_reset");
3904         if (!reset_workqueue) {
3905                 rc = -ENOMEM;
3906                 goto err_reset;
3907         }
3908
3909         rc = pci_register_driver(&efx_pci_driver);
3910         if (rc < 0)
3911                 goto err_pci;
3912
3913         return 0;
3914
3915  err_pci:
3916         destroy_workqueue(reset_workqueue);
3917  err_reset:
3918 #ifdef CONFIG_SFC_SRIOV
3919         efx_fini_sriov();
3920  err_sriov:
3921 #endif
3922         unregister_netdevice_notifier(&efx_netdev_notifier);
3923  err_notifier:
3924         return rc;
3925 }
3926
3927 static void __exit efx_exit_module(void)
3928 {
3929         printk(KERN_INFO "Solarflare NET driver unloading\n");
3930
3931         pci_unregister_driver(&efx_pci_driver);
3932         destroy_workqueue(reset_workqueue);
3933 #ifdef CONFIG_SFC_SRIOV
3934         efx_fini_sriov();
3935 #endif
3936         unregister_netdevice_notifier(&efx_netdev_notifier);
3937
3938 }
3939
3940 module_init(efx_init_module);
3941 module_exit(efx_exit_module);
3942
3943 MODULE_AUTHOR("Solarflare Communications and "
3944               "Michael Brown <mbrown@fensystems.co.uk>");
3945 MODULE_DESCRIPTION("Solarflare network driver");
3946 MODULE_LICENSE("GPL");
3947 MODULE_DEVICE_TABLE(pci, efx_pci_table);
3948 MODULE_VERSION(EFX_DRIVER_VERSION);