Linux-libre 4.14.132-gnu
[librecmc/linux-libre.git] / drivers / net / ethernet / qlogic / qede / qede_main.c
1 /* QLogic qede NIC Driver
2  * Copyright (c) 2015-2017  QLogic Corporation
3  *
4  * This software is available to you under a choice of one of two
5  * licenses.  You may choose to be licensed under the terms of the GNU
6  * General Public License (GPL) Version 2, available from the file
7  * COPYING in the main directory of this source tree, or the
8  * OpenIB.org BSD license below:
9  *
10  *     Redistribution and use in source and binary forms, with or
11  *     without modification, are permitted provided that the following
12  *     conditions are met:
13  *
14  *      - Redistributions of source code must retain the above
15  *        copyright notice, this list of conditions and the following
16  *        disclaimer.
17  *
18  *      - Redistributions in binary form must reproduce the above
19  *        copyright notice, this list of conditions and the following
20  *        disclaimer in the documentation and /or other materials
21  *        provided with the distribution.
22  *
23  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30  * SOFTWARE.
31  */
32 #include <linux/module.h>
33 #include <linux/pci.h>
34 #include <linux/version.h>
35 #include <linux/device.h>
36 #include <linux/netdevice.h>
37 #include <linux/etherdevice.h>
38 #include <linux/skbuff.h>
39 #include <linux/errno.h>
40 #include <linux/list.h>
41 #include <linux/string.h>
42 #include <linux/dma-mapping.h>
43 #include <linux/interrupt.h>
44 #include <asm/byteorder.h>
45 #include <asm/param.h>
46 #include <linux/io.h>
47 #include <linux/netdev_features.h>
48 #include <linux/udp.h>
49 #include <linux/tcp.h>
50 #include <net/udp_tunnel.h>
51 #include <linux/ip.h>
52 #include <net/ipv6.h>
53 #include <net/tcp.h>
54 #include <linux/if_ether.h>
55 #include <linux/if_vlan.h>
56 #include <linux/pkt_sched.h>
57 #include <linux/ethtool.h>
58 #include <linux/in.h>
59 #include <linux/random.h>
60 #include <net/ip6_checksum.h>
61 #include <linux/bitops.h>
62 #include <linux/vmalloc.h>
63 #include "qede.h"
64 #include "qede_ptp.h"
65
66 static char version[] =
67         "QLogic FastLinQ 4xxxx Ethernet Driver qede " DRV_MODULE_VERSION "\n";
68
69 MODULE_DESCRIPTION("QLogic FastLinQ 4xxxx Ethernet Driver");
70 MODULE_LICENSE("GPL");
71 MODULE_VERSION(DRV_MODULE_VERSION);
72
73 static uint debug;
74 module_param(debug, uint, 0);
75 MODULE_PARM_DESC(debug, " Default debug msglevel");
76
77 static const struct qed_eth_ops *qed_ops;
78
79 #define CHIP_NUM_57980S_40              0x1634
80 #define CHIP_NUM_57980S_10              0x1666
81 #define CHIP_NUM_57980S_MF              0x1636
82 #define CHIP_NUM_57980S_100             0x1644
83 #define CHIP_NUM_57980S_50              0x1654
84 #define CHIP_NUM_57980S_25              0x1656
85 #define CHIP_NUM_57980S_IOV             0x1664
86 #define CHIP_NUM_AH                     0x8070
87 #define CHIP_NUM_AH_IOV                 0x8090
88
89 #ifndef PCI_DEVICE_ID_NX2_57980E
90 #define PCI_DEVICE_ID_57980S_40         CHIP_NUM_57980S_40
91 #define PCI_DEVICE_ID_57980S_10         CHIP_NUM_57980S_10
92 #define PCI_DEVICE_ID_57980S_MF         CHIP_NUM_57980S_MF
93 #define PCI_DEVICE_ID_57980S_100        CHIP_NUM_57980S_100
94 #define PCI_DEVICE_ID_57980S_50         CHIP_NUM_57980S_50
95 #define PCI_DEVICE_ID_57980S_25         CHIP_NUM_57980S_25
96 #define PCI_DEVICE_ID_57980S_IOV        CHIP_NUM_57980S_IOV
97 #define PCI_DEVICE_ID_AH                CHIP_NUM_AH
98 #define PCI_DEVICE_ID_AH_IOV            CHIP_NUM_AH_IOV
99
100 #endif
101
102 enum qede_pci_private {
103         QEDE_PRIVATE_PF,
104         QEDE_PRIVATE_VF
105 };
106
107 static const struct pci_device_id qede_pci_tbl[] = {
108         {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_40), QEDE_PRIVATE_PF},
109         {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_10), QEDE_PRIVATE_PF},
110         {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_MF), QEDE_PRIVATE_PF},
111         {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_100), QEDE_PRIVATE_PF},
112         {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_50), QEDE_PRIVATE_PF},
113         {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_25), QEDE_PRIVATE_PF},
114 #ifdef CONFIG_QED_SRIOV
115         {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_IOV), QEDE_PRIVATE_VF},
116 #endif
117         {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_AH), QEDE_PRIVATE_PF},
118 #ifdef CONFIG_QED_SRIOV
119         {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_AH_IOV), QEDE_PRIVATE_VF},
120 #endif
121         { 0 }
122 };
123
124 MODULE_DEVICE_TABLE(pci, qede_pci_tbl);
125
126 static int qede_probe(struct pci_dev *pdev, const struct pci_device_id *id);
127
128 #define TX_TIMEOUT              (5 * HZ)
129
130 /* Utilize last protocol index for XDP */
131 #define XDP_PI  11
132
133 static void qede_remove(struct pci_dev *pdev);
134 static void qede_shutdown(struct pci_dev *pdev);
135 static void qede_link_update(void *dev, struct qed_link_output *link);
136
137 /* The qede lock is used to protect driver state change and driver flows that
138  * are not reentrant.
139  */
140 void __qede_lock(struct qede_dev *edev)
141 {
142         mutex_lock(&edev->qede_lock);
143 }
144
145 void __qede_unlock(struct qede_dev *edev)
146 {
147         mutex_unlock(&edev->qede_lock);
148 }
149
150 #ifdef CONFIG_QED_SRIOV
151 static int qede_set_vf_vlan(struct net_device *ndev, int vf, u16 vlan, u8 qos,
152                             __be16 vlan_proto)
153 {
154         struct qede_dev *edev = netdev_priv(ndev);
155
156         if (vlan > 4095) {
157                 DP_NOTICE(edev, "Illegal vlan value %d\n", vlan);
158                 return -EINVAL;
159         }
160
161         if (vlan_proto != htons(ETH_P_8021Q))
162                 return -EPROTONOSUPPORT;
163
164         DP_VERBOSE(edev, QED_MSG_IOV, "Setting Vlan 0x%04x to VF [%d]\n",
165                    vlan, vf);
166
167         return edev->ops->iov->set_vlan(edev->cdev, vlan, vf);
168 }
169
170 static int qede_set_vf_mac(struct net_device *ndev, int vfidx, u8 *mac)
171 {
172         struct qede_dev *edev = netdev_priv(ndev);
173
174         DP_VERBOSE(edev, QED_MSG_IOV,
175                    "Setting MAC %02x:%02x:%02x:%02x:%02x:%02x to VF [%d]\n",
176                    mac[0], mac[1], mac[2], mac[3], mac[4], mac[5], vfidx);
177
178         if (!is_valid_ether_addr(mac)) {
179                 DP_VERBOSE(edev, QED_MSG_IOV, "MAC address isn't valid\n");
180                 return -EINVAL;
181         }
182
183         return edev->ops->iov->set_mac(edev->cdev, mac, vfidx);
184 }
185
186 static int qede_sriov_configure(struct pci_dev *pdev, int num_vfs_param)
187 {
188         struct qede_dev *edev = netdev_priv(pci_get_drvdata(pdev));
189         struct qed_dev_info *qed_info = &edev->dev_info.common;
190         struct qed_update_vport_params *vport_params;
191         int rc;
192
193         vport_params = vzalloc(sizeof(*vport_params));
194         if (!vport_params)
195                 return -ENOMEM;
196         DP_VERBOSE(edev, QED_MSG_IOV, "Requested %d VFs\n", num_vfs_param);
197
198         rc = edev->ops->iov->configure(edev->cdev, num_vfs_param);
199
200         /* Enable/Disable Tx switching for PF */
201         if ((rc == num_vfs_param) && netif_running(edev->ndev) &&
202             qed_info->mf_mode != QED_MF_NPAR && qed_info->tx_switching) {
203                 vport_params->vport_id = 0;
204                 vport_params->update_tx_switching_flg = 1;
205                 vport_params->tx_switching_flg = num_vfs_param ? 1 : 0;
206                 edev->ops->vport_update(edev->cdev, vport_params);
207         }
208
209         vfree(vport_params);
210         return rc;
211 }
212 #endif
213
214 static struct pci_driver qede_pci_driver = {
215         .name = "qede",
216         .id_table = qede_pci_tbl,
217         .probe = qede_probe,
218         .remove = qede_remove,
219         .shutdown = qede_shutdown,
220 #ifdef CONFIG_QED_SRIOV
221         .sriov_configure = qede_sriov_configure,
222 #endif
223 };
224
225 static struct qed_eth_cb_ops qede_ll_ops = {
226         {
227 #ifdef CONFIG_RFS_ACCEL
228                 .arfs_filter_op = qede_arfs_filter_op,
229 #endif
230                 .link_update = qede_link_update,
231         },
232         .force_mac = qede_force_mac,
233         .ports_update = qede_udp_ports_update,
234 };
235
236 static int qede_netdev_event(struct notifier_block *this, unsigned long event,
237                              void *ptr)
238 {
239         struct net_device *ndev = netdev_notifier_info_to_dev(ptr);
240         struct ethtool_drvinfo drvinfo;
241         struct qede_dev *edev;
242
243         if (event != NETDEV_CHANGENAME && event != NETDEV_CHANGEADDR)
244                 goto done;
245
246         /* Check whether this is a qede device */
247         if (!ndev || !ndev->ethtool_ops || !ndev->ethtool_ops->get_drvinfo)
248                 goto done;
249
250         memset(&drvinfo, 0, sizeof(drvinfo));
251         ndev->ethtool_ops->get_drvinfo(ndev, &drvinfo);
252         if (strcmp(drvinfo.driver, "qede"))
253                 goto done;
254         edev = netdev_priv(ndev);
255
256         switch (event) {
257         case NETDEV_CHANGENAME:
258                 /* Notify qed of the name change */
259                 if (!edev->ops || !edev->ops->common)
260                         goto done;
261                 edev->ops->common->set_name(edev->cdev, edev->ndev->name);
262                 break;
263         case NETDEV_CHANGEADDR:
264                 edev = netdev_priv(ndev);
265                 qede_rdma_event_changeaddr(edev);
266                 break;
267         }
268
269 done:
270         return NOTIFY_DONE;
271 }
272
273 static struct notifier_block qede_netdev_notifier = {
274         .notifier_call = qede_netdev_event,
275 };
276
277 static
278 int __init qede_init(void)
279 {
280         int ret;
281
282         pr_info("qede_init: %s\n", version);
283
284         qed_ops = qed_get_eth_ops();
285         if (!qed_ops) {
286                 pr_notice("Failed to get qed ethtool operations\n");
287                 return -EINVAL;
288         }
289
290         /* Must register notifier before pci ops, since we might miss
291          * interface rename after pci probe and netdev registeration.
292          */
293         ret = register_netdevice_notifier(&qede_netdev_notifier);
294         if (ret) {
295                 pr_notice("Failed to register netdevice_notifier\n");
296                 qed_put_eth_ops();
297                 return -EINVAL;
298         }
299
300         ret = pci_register_driver(&qede_pci_driver);
301         if (ret) {
302                 pr_notice("Failed to register driver\n");
303                 unregister_netdevice_notifier(&qede_netdev_notifier);
304                 qed_put_eth_ops();
305                 return -EINVAL;
306         }
307
308         return 0;
309 }
310
311 static void __exit qede_cleanup(void)
312 {
313         if (debug & QED_LOG_INFO_MASK)
314                 pr_info("qede_cleanup called\n");
315
316         unregister_netdevice_notifier(&qede_netdev_notifier);
317         pci_unregister_driver(&qede_pci_driver);
318         qed_put_eth_ops();
319 }
320
321 module_init(qede_init);
322 module_exit(qede_cleanup);
323
324 static int qede_open(struct net_device *ndev);
325 static int qede_close(struct net_device *ndev);
326
327 void qede_fill_by_demand_stats(struct qede_dev *edev)
328 {
329         struct qede_stats_common *p_common = &edev->stats.common;
330         struct qed_eth_stats stats;
331
332         edev->ops->get_vport_stats(edev->cdev, &stats);
333
334         p_common->no_buff_discards = stats.common.no_buff_discards;
335         p_common->packet_too_big_discard = stats.common.packet_too_big_discard;
336         p_common->ttl0_discard = stats.common.ttl0_discard;
337         p_common->rx_ucast_bytes = stats.common.rx_ucast_bytes;
338         p_common->rx_mcast_bytes = stats.common.rx_mcast_bytes;
339         p_common->rx_bcast_bytes = stats.common.rx_bcast_bytes;
340         p_common->rx_ucast_pkts = stats.common.rx_ucast_pkts;
341         p_common->rx_mcast_pkts = stats.common.rx_mcast_pkts;
342         p_common->rx_bcast_pkts = stats.common.rx_bcast_pkts;
343         p_common->mftag_filter_discards = stats.common.mftag_filter_discards;
344         p_common->mac_filter_discards = stats.common.mac_filter_discards;
345
346         p_common->tx_ucast_bytes = stats.common.tx_ucast_bytes;
347         p_common->tx_mcast_bytes = stats.common.tx_mcast_bytes;
348         p_common->tx_bcast_bytes = stats.common.tx_bcast_bytes;
349         p_common->tx_ucast_pkts = stats.common.tx_ucast_pkts;
350         p_common->tx_mcast_pkts = stats.common.tx_mcast_pkts;
351         p_common->tx_bcast_pkts = stats.common.tx_bcast_pkts;
352         p_common->tx_err_drop_pkts = stats.common.tx_err_drop_pkts;
353         p_common->coalesced_pkts = stats.common.tpa_coalesced_pkts;
354         p_common->coalesced_events = stats.common.tpa_coalesced_events;
355         p_common->coalesced_aborts_num = stats.common.tpa_aborts_num;
356         p_common->non_coalesced_pkts = stats.common.tpa_not_coalesced_pkts;
357         p_common->coalesced_bytes = stats.common.tpa_coalesced_bytes;
358
359         p_common->rx_64_byte_packets = stats.common.rx_64_byte_packets;
360         p_common->rx_65_to_127_byte_packets =
361             stats.common.rx_65_to_127_byte_packets;
362         p_common->rx_128_to_255_byte_packets =
363             stats.common.rx_128_to_255_byte_packets;
364         p_common->rx_256_to_511_byte_packets =
365             stats.common.rx_256_to_511_byte_packets;
366         p_common->rx_512_to_1023_byte_packets =
367             stats.common.rx_512_to_1023_byte_packets;
368         p_common->rx_1024_to_1518_byte_packets =
369             stats.common.rx_1024_to_1518_byte_packets;
370         p_common->rx_crc_errors = stats.common.rx_crc_errors;
371         p_common->rx_mac_crtl_frames = stats.common.rx_mac_crtl_frames;
372         p_common->rx_pause_frames = stats.common.rx_pause_frames;
373         p_common->rx_pfc_frames = stats.common.rx_pfc_frames;
374         p_common->rx_align_errors = stats.common.rx_align_errors;
375         p_common->rx_carrier_errors = stats.common.rx_carrier_errors;
376         p_common->rx_oversize_packets = stats.common.rx_oversize_packets;
377         p_common->rx_jabbers = stats.common.rx_jabbers;
378         p_common->rx_undersize_packets = stats.common.rx_undersize_packets;
379         p_common->rx_fragments = stats.common.rx_fragments;
380         p_common->tx_64_byte_packets = stats.common.tx_64_byte_packets;
381         p_common->tx_65_to_127_byte_packets =
382             stats.common.tx_65_to_127_byte_packets;
383         p_common->tx_128_to_255_byte_packets =
384             stats.common.tx_128_to_255_byte_packets;
385         p_common->tx_256_to_511_byte_packets =
386             stats.common.tx_256_to_511_byte_packets;
387         p_common->tx_512_to_1023_byte_packets =
388             stats.common.tx_512_to_1023_byte_packets;
389         p_common->tx_1024_to_1518_byte_packets =
390             stats.common.tx_1024_to_1518_byte_packets;
391         p_common->tx_pause_frames = stats.common.tx_pause_frames;
392         p_common->tx_pfc_frames = stats.common.tx_pfc_frames;
393         p_common->brb_truncates = stats.common.brb_truncates;
394         p_common->brb_discards = stats.common.brb_discards;
395         p_common->tx_mac_ctrl_frames = stats.common.tx_mac_ctrl_frames;
396
397         if (QEDE_IS_BB(edev)) {
398                 struct qede_stats_bb *p_bb = &edev->stats.bb;
399
400                 p_bb->rx_1519_to_1522_byte_packets =
401                     stats.bb.rx_1519_to_1522_byte_packets;
402                 p_bb->rx_1519_to_2047_byte_packets =
403                     stats.bb.rx_1519_to_2047_byte_packets;
404                 p_bb->rx_2048_to_4095_byte_packets =
405                     stats.bb.rx_2048_to_4095_byte_packets;
406                 p_bb->rx_4096_to_9216_byte_packets =
407                     stats.bb.rx_4096_to_9216_byte_packets;
408                 p_bb->rx_9217_to_16383_byte_packets =
409                     stats.bb.rx_9217_to_16383_byte_packets;
410                 p_bb->tx_1519_to_2047_byte_packets =
411                     stats.bb.tx_1519_to_2047_byte_packets;
412                 p_bb->tx_2048_to_4095_byte_packets =
413                     stats.bb.tx_2048_to_4095_byte_packets;
414                 p_bb->tx_4096_to_9216_byte_packets =
415                     stats.bb.tx_4096_to_9216_byte_packets;
416                 p_bb->tx_9217_to_16383_byte_packets =
417                     stats.bb.tx_9217_to_16383_byte_packets;
418                 p_bb->tx_lpi_entry_count = stats.bb.tx_lpi_entry_count;
419                 p_bb->tx_total_collisions = stats.bb.tx_total_collisions;
420         } else {
421                 struct qede_stats_ah *p_ah = &edev->stats.ah;
422
423                 p_ah->rx_1519_to_max_byte_packets =
424                     stats.ah.rx_1519_to_max_byte_packets;
425                 p_ah->tx_1519_to_max_byte_packets =
426                     stats.ah.tx_1519_to_max_byte_packets;
427         }
428 }
429
430 static void qede_get_stats64(struct net_device *dev,
431                              struct rtnl_link_stats64 *stats)
432 {
433         struct qede_dev *edev = netdev_priv(dev);
434         struct qede_stats_common *p_common;
435
436         qede_fill_by_demand_stats(edev);
437         p_common = &edev->stats.common;
438
439         stats->rx_packets = p_common->rx_ucast_pkts + p_common->rx_mcast_pkts +
440                             p_common->rx_bcast_pkts;
441         stats->tx_packets = p_common->tx_ucast_pkts + p_common->tx_mcast_pkts +
442                             p_common->tx_bcast_pkts;
443
444         stats->rx_bytes = p_common->rx_ucast_bytes + p_common->rx_mcast_bytes +
445                           p_common->rx_bcast_bytes;
446         stats->tx_bytes = p_common->tx_ucast_bytes + p_common->tx_mcast_bytes +
447                           p_common->tx_bcast_bytes;
448
449         stats->tx_errors = p_common->tx_err_drop_pkts;
450         stats->multicast = p_common->rx_mcast_pkts + p_common->rx_bcast_pkts;
451
452         stats->rx_fifo_errors = p_common->no_buff_discards;
453
454         if (QEDE_IS_BB(edev))
455                 stats->collisions = edev->stats.bb.tx_total_collisions;
456         stats->rx_crc_errors = p_common->rx_crc_errors;
457         stats->rx_frame_errors = p_common->rx_align_errors;
458 }
459
460 #ifdef CONFIG_QED_SRIOV
461 static int qede_get_vf_config(struct net_device *dev, int vfidx,
462                               struct ifla_vf_info *ivi)
463 {
464         struct qede_dev *edev = netdev_priv(dev);
465
466         if (!edev->ops)
467                 return -EINVAL;
468
469         return edev->ops->iov->get_config(edev->cdev, vfidx, ivi);
470 }
471
472 static int qede_set_vf_rate(struct net_device *dev, int vfidx,
473                             int min_tx_rate, int max_tx_rate)
474 {
475         struct qede_dev *edev = netdev_priv(dev);
476
477         return edev->ops->iov->set_rate(edev->cdev, vfidx, min_tx_rate,
478                                         max_tx_rate);
479 }
480
481 static int qede_set_vf_spoofchk(struct net_device *dev, int vfidx, bool val)
482 {
483         struct qede_dev *edev = netdev_priv(dev);
484
485         if (!edev->ops)
486                 return -EINVAL;
487
488         return edev->ops->iov->set_spoof(edev->cdev, vfidx, val);
489 }
490
491 static int qede_set_vf_link_state(struct net_device *dev, int vfidx,
492                                   int link_state)
493 {
494         struct qede_dev *edev = netdev_priv(dev);
495
496         if (!edev->ops)
497                 return -EINVAL;
498
499         return edev->ops->iov->set_link_state(edev->cdev, vfidx, link_state);
500 }
501
502 static int qede_set_vf_trust(struct net_device *dev, int vfidx, bool setting)
503 {
504         struct qede_dev *edev = netdev_priv(dev);
505
506         if (!edev->ops)
507                 return -EINVAL;
508
509         return edev->ops->iov->set_trust(edev->cdev, vfidx, setting);
510 }
511 #endif
512
513 static int qede_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
514 {
515         struct qede_dev *edev = netdev_priv(dev);
516
517         if (!netif_running(dev))
518                 return -EAGAIN;
519
520         switch (cmd) {
521         case SIOCSHWTSTAMP:
522                 return qede_ptp_hw_ts(edev, ifr);
523         default:
524                 DP_VERBOSE(edev, QED_MSG_DEBUG,
525                            "default IOCTL cmd 0x%x\n", cmd);
526                 return -EOPNOTSUPP;
527         }
528
529         return 0;
530 }
531
532 static const struct net_device_ops qede_netdev_ops = {
533         .ndo_open = qede_open,
534         .ndo_stop = qede_close,
535         .ndo_start_xmit = qede_start_xmit,
536         .ndo_set_rx_mode = qede_set_rx_mode,
537         .ndo_set_mac_address = qede_set_mac_addr,
538         .ndo_validate_addr = eth_validate_addr,
539         .ndo_change_mtu = qede_change_mtu,
540         .ndo_do_ioctl = qede_ioctl,
541 #ifdef CONFIG_QED_SRIOV
542         .ndo_set_vf_mac = qede_set_vf_mac,
543         .ndo_set_vf_vlan = qede_set_vf_vlan,
544         .ndo_set_vf_trust = qede_set_vf_trust,
545 #endif
546         .ndo_vlan_rx_add_vid = qede_vlan_rx_add_vid,
547         .ndo_vlan_rx_kill_vid = qede_vlan_rx_kill_vid,
548         .ndo_set_features = qede_set_features,
549         .ndo_get_stats64 = qede_get_stats64,
550 #ifdef CONFIG_QED_SRIOV
551         .ndo_set_vf_link_state = qede_set_vf_link_state,
552         .ndo_set_vf_spoofchk = qede_set_vf_spoofchk,
553         .ndo_get_vf_config = qede_get_vf_config,
554         .ndo_set_vf_rate = qede_set_vf_rate,
555 #endif
556         .ndo_udp_tunnel_add = qede_udp_tunnel_add,
557         .ndo_udp_tunnel_del = qede_udp_tunnel_del,
558         .ndo_features_check = qede_features_check,
559         .ndo_xdp = qede_xdp,
560 #ifdef CONFIG_RFS_ACCEL
561         .ndo_rx_flow_steer = qede_rx_flow_steer,
562 #endif
563 };
564
565 static const struct net_device_ops qede_netdev_vf_ops = {
566         .ndo_open = qede_open,
567         .ndo_stop = qede_close,
568         .ndo_start_xmit = qede_start_xmit,
569         .ndo_set_rx_mode = qede_set_rx_mode,
570         .ndo_set_mac_address = qede_set_mac_addr,
571         .ndo_validate_addr = eth_validate_addr,
572         .ndo_change_mtu = qede_change_mtu,
573         .ndo_vlan_rx_add_vid = qede_vlan_rx_add_vid,
574         .ndo_vlan_rx_kill_vid = qede_vlan_rx_kill_vid,
575         .ndo_set_features = qede_set_features,
576         .ndo_get_stats64 = qede_get_stats64,
577         .ndo_udp_tunnel_add = qede_udp_tunnel_add,
578         .ndo_udp_tunnel_del = qede_udp_tunnel_del,
579         .ndo_features_check = qede_features_check,
580 };
581
582 static const struct net_device_ops qede_netdev_vf_xdp_ops = {
583         .ndo_open = qede_open,
584         .ndo_stop = qede_close,
585         .ndo_start_xmit = qede_start_xmit,
586         .ndo_set_rx_mode = qede_set_rx_mode,
587         .ndo_set_mac_address = qede_set_mac_addr,
588         .ndo_validate_addr = eth_validate_addr,
589         .ndo_change_mtu = qede_change_mtu,
590         .ndo_vlan_rx_add_vid = qede_vlan_rx_add_vid,
591         .ndo_vlan_rx_kill_vid = qede_vlan_rx_kill_vid,
592         .ndo_set_features = qede_set_features,
593         .ndo_get_stats64 = qede_get_stats64,
594         .ndo_udp_tunnel_add = qede_udp_tunnel_add,
595         .ndo_udp_tunnel_del = qede_udp_tunnel_del,
596         .ndo_features_check = qede_features_check,
597         .ndo_xdp = qede_xdp,
598 };
599
600 /* -------------------------------------------------------------------------
601  * START OF PROBE / REMOVE
602  * -------------------------------------------------------------------------
603  */
604
605 static struct qede_dev *qede_alloc_etherdev(struct qed_dev *cdev,
606                                             struct pci_dev *pdev,
607                                             struct qed_dev_eth_info *info,
608                                             u32 dp_module, u8 dp_level)
609 {
610         struct net_device *ndev;
611         struct qede_dev *edev;
612
613         ndev = alloc_etherdev_mqs(sizeof(*edev),
614                                   info->num_queues, info->num_queues);
615         if (!ndev) {
616                 pr_err("etherdev allocation failed\n");
617                 return NULL;
618         }
619
620         edev = netdev_priv(ndev);
621         edev->ndev = ndev;
622         edev->cdev = cdev;
623         edev->pdev = pdev;
624         edev->dp_module = dp_module;
625         edev->dp_level = dp_level;
626         edev->ops = qed_ops;
627         edev->q_num_rx_buffers = NUM_RX_BDS_DEF;
628         edev->q_num_tx_buffers = NUM_TX_BDS_DEF;
629
630         DP_INFO(edev, "Allocated netdev with %d tx queues and %d rx queues\n",
631                 info->num_queues, info->num_queues);
632
633         SET_NETDEV_DEV(ndev, &pdev->dev);
634
635         memset(&edev->stats, 0, sizeof(edev->stats));
636         memcpy(&edev->dev_info, info, sizeof(*info));
637
638         /* As ethtool doesn't have the ability to show WoL behavior as
639          * 'default', if device supports it declare it's enabled.
640          */
641         if (edev->dev_info.common.wol_support)
642                 edev->wol_enabled = true;
643
644         INIT_LIST_HEAD(&edev->vlan_list);
645
646         return edev;
647 }
648
649 static void qede_init_ndev(struct qede_dev *edev)
650 {
651         struct net_device *ndev = edev->ndev;
652         struct pci_dev *pdev = edev->pdev;
653         bool udp_tunnel_enable = false;
654         netdev_features_t hw_features;
655
656         pci_set_drvdata(pdev, ndev);
657
658         ndev->mem_start = edev->dev_info.common.pci_mem_start;
659         ndev->base_addr = ndev->mem_start;
660         ndev->mem_end = edev->dev_info.common.pci_mem_end;
661         ndev->irq = edev->dev_info.common.pci_irq;
662
663         ndev->watchdog_timeo = TX_TIMEOUT;
664
665         if (IS_VF(edev)) {
666                 if (edev->dev_info.xdp_supported)
667                         ndev->netdev_ops = &qede_netdev_vf_xdp_ops;
668                 else
669                         ndev->netdev_ops = &qede_netdev_vf_ops;
670         } else {
671                 ndev->netdev_ops = &qede_netdev_ops;
672         }
673
674         qede_set_ethtool_ops(ndev);
675
676         ndev->priv_flags |= IFF_UNICAST_FLT;
677
678         /* user-changeble features */
679         hw_features = NETIF_F_GRO | NETIF_F_SG |
680                       NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
681                       NETIF_F_TSO | NETIF_F_TSO6;
682
683         if (!IS_VF(edev) && edev->dev_info.common.num_hwfns == 1)
684                 hw_features |= NETIF_F_NTUPLE;
685
686         if (edev->dev_info.common.vxlan_enable ||
687             edev->dev_info.common.geneve_enable)
688                 udp_tunnel_enable = true;
689
690         if (udp_tunnel_enable || edev->dev_info.common.gre_enable) {
691                 hw_features |= NETIF_F_TSO_ECN;
692                 ndev->hw_enc_features = NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
693                                         NETIF_F_SG | NETIF_F_TSO |
694                                         NETIF_F_TSO_ECN | NETIF_F_TSO6 |
695                                         NETIF_F_RXCSUM;
696         }
697
698         if (udp_tunnel_enable) {
699                 hw_features |= (NETIF_F_GSO_UDP_TUNNEL |
700                                 NETIF_F_GSO_UDP_TUNNEL_CSUM);
701                 ndev->hw_enc_features |= (NETIF_F_GSO_UDP_TUNNEL |
702                                           NETIF_F_GSO_UDP_TUNNEL_CSUM);
703         }
704
705         if (edev->dev_info.common.gre_enable) {
706                 hw_features |= (NETIF_F_GSO_GRE | NETIF_F_GSO_GRE_CSUM);
707                 ndev->hw_enc_features |= (NETIF_F_GSO_GRE |
708                                           NETIF_F_GSO_GRE_CSUM);
709         }
710
711         ndev->vlan_features = hw_features | NETIF_F_RXHASH | NETIF_F_RXCSUM |
712                               NETIF_F_HIGHDMA;
713         ndev->features = hw_features | NETIF_F_RXHASH | NETIF_F_RXCSUM |
714                          NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HIGHDMA |
715                          NETIF_F_HW_VLAN_CTAG_FILTER | NETIF_F_HW_VLAN_CTAG_TX;
716
717         ndev->hw_features = hw_features;
718
719         /* MTU range: 46 - 9600 */
720         ndev->min_mtu = ETH_ZLEN - ETH_HLEN;
721         ndev->max_mtu = QEDE_MAX_JUMBO_PACKET_SIZE;
722
723         /* Set network device HW mac */
724         ether_addr_copy(edev->ndev->dev_addr, edev->dev_info.common.hw_mac);
725
726         ndev->mtu = edev->dev_info.common.mtu;
727 }
728
729 /* This function converts from 32b param to two params of level and module
730  * Input 32b decoding:
731  * b31 - enable all NOTICE prints. NOTICE prints are for deviation from the
732  * 'happy' flow, e.g. memory allocation failed.
733  * b30 - enable all INFO prints. INFO prints are for major steps in the flow
734  * and provide important parameters.
735  * b29-b0 - per-module bitmap, where each bit enables VERBOSE prints of that
736  * module. VERBOSE prints are for tracking the specific flow in low level.
737  *
738  * Notice that the level should be that of the lowest required logs.
739  */
740 void qede_config_debug(uint debug, u32 *p_dp_module, u8 *p_dp_level)
741 {
742         *p_dp_level = QED_LEVEL_NOTICE;
743         *p_dp_module = 0;
744
745         if (debug & QED_LOG_VERBOSE_MASK) {
746                 *p_dp_level = QED_LEVEL_VERBOSE;
747                 *p_dp_module = (debug & 0x3FFFFFFF);
748         } else if (debug & QED_LOG_INFO_MASK) {
749                 *p_dp_level = QED_LEVEL_INFO;
750         } else if (debug & QED_LOG_NOTICE_MASK) {
751                 *p_dp_level = QED_LEVEL_NOTICE;
752         }
753 }
754
755 static void qede_free_fp_array(struct qede_dev *edev)
756 {
757         if (edev->fp_array) {
758                 struct qede_fastpath *fp;
759                 int i;
760
761                 for_each_queue(i) {
762                         fp = &edev->fp_array[i];
763
764                         kfree(fp->sb_info);
765                         kfree(fp->rxq);
766                         kfree(fp->xdp_tx);
767                         kfree(fp->txq);
768                 }
769                 kfree(edev->fp_array);
770         }
771
772         edev->num_queues = 0;
773         edev->fp_num_tx = 0;
774         edev->fp_num_rx = 0;
775 }
776
777 static int qede_alloc_fp_array(struct qede_dev *edev)
778 {
779         u8 fp_combined, fp_rx = edev->fp_num_rx;
780         struct qede_fastpath *fp;
781         int i;
782
783         edev->fp_array = kcalloc(QEDE_QUEUE_CNT(edev),
784                                  sizeof(*edev->fp_array), GFP_KERNEL);
785         if (!edev->fp_array) {
786                 DP_NOTICE(edev, "fp array allocation failed\n");
787                 goto err;
788         }
789
790         fp_combined = QEDE_QUEUE_CNT(edev) - fp_rx - edev->fp_num_tx;
791
792         /* Allocate the FP elements for Rx queues followed by combined and then
793          * the Tx. This ordering should be maintained so that the respective
794          * queues (Rx or Tx) will be together in the fastpath array and the
795          * associated ids will be sequential.
796          */
797         for_each_queue(i) {
798                 fp = &edev->fp_array[i];
799
800                 fp->sb_info = kzalloc(sizeof(*fp->sb_info), GFP_KERNEL);
801                 if (!fp->sb_info) {
802                         DP_NOTICE(edev, "sb info struct allocation failed\n");
803                         goto err;
804                 }
805
806                 if (fp_rx) {
807                         fp->type = QEDE_FASTPATH_RX;
808                         fp_rx--;
809                 } else if (fp_combined) {
810                         fp->type = QEDE_FASTPATH_COMBINED;
811                         fp_combined--;
812                 } else {
813                         fp->type = QEDE_FASTPATH_TX;
814                 }
815
816                 if (fp->type & QEDE_FASTPATH_TX) {
817                         fp->txq = kzalloc(sizeof(*fp->txq), GFP_KERNEL);
818                         if (!fp->txq)
819                                 goto err;
820                 }
821
822                 if (fp->type & QEDE_FASTPATH_RX) {
823                         fp->rxq = kzalloc(sizeof(*fp->rxq), GFP_KERNEL);
824                         if (!fp->rxq)
825                                 goto err;
826
827                         if (edev->xdp_prog) {
828                                 fp->xdp_tx = kzalloc(sizeof(*fp->xdp_tx),
829                                                      GFP_KERNEL);
830                                 if (!fp->xdp_tx)
831                                         goto err;
832                                 fp->type |= QEDE_FASTPATH_XDP;
833                         }
834                 }
835         }
836
837         return 0;
838 err:
839         qede_free_fp_array(edev);
840         return -ENOMEM;
841 }
842
843 static void qede_sp_task(struct work_struct *work)
844 {
845         struct qede_dev *edev = container_of(work, struct qede_dev,
846                                              sp_task.work);
847
848         __qede_lock(edev);
849
850         if (test_and_clear_bit(QEDE_SP_RX_MODE, &edev->sp_flags))
851                 if (edev->state == QEDE_STATE_OPEN)
852                         qede_config_rx_mode(edev->ndev);
853
854 #ifdef CONFIG_RFS_ACCEL
855         if (test_and_clear_bit(QEDE_SP_ARFS_CONFIG, &edev->sp_flags)) {
856                 if (edev->state == QEDE_STATE_OPEN)
857                         qede_process_arfs_filters(edev, false);
858         }
859 #endif
860         __qede_unlock(edev);
861 }
862
863 static void qede_update_pf_params(struct qed_dev *cdev)
864 {
865         struct qed_pf_params pf_params;
866
867         /* 64 rx + 64 tx + 64 XDP */
868         memset(&pf_params, 0, sizeof(struct qed_pf_params));
869         pf_params.eth_pf_params.num_cons = (MAX_SB_PER_PF_MIMD - 1) * 3;
870
871         /* Same for VFs - make sure they'll have sufficient connections
872          * to support XDP Tx queues.
873          */
874         pf_params.eth_pf_params.num_vf_cons = 48;
875
876         pf_params.eth_pf_params.num_arfs_filters = QEDE_RFS_MAX_FLTR;
877         qed_ops->common->update_pf_params(cdev, &pf_params);
878 }
879
880 #define QEDE_FW_VER_STR_SIZE    80
881
882 static void qede_log_probe(struct qede_dev *edev)
883 {
884         struct qed_dev_info *p_dev_info = &edev->dev_info.common;
885         u8 buf[QEDE_FW_VER_STR_SIZE];
886         size_t left_size;
887
888         snprintf(buf, QEDE_FW_VER_STR_SIZE,
889                  "Storm FW %d.%d.%d.%d, Management FW %d.%d.%d.%d",
890                  p_dev_info->fw_major, p_dev_info->fw_minor, p_dev_info->fw_rev,
891                  p_dev_info->fw_eng,
892                  (p_dev_info->mfw_rev & QED_MFW_VERSION_3_MASK) >>
893                  QED_MFW_VERSION_3_OFFSET,
894                  (p_dev_info->mfw_rev & QED_MFW_VERSION_2_MASK) >>
895                  QED_MFW_VERSION_2_OFFSET,
896                  (p_dev_info->mfw_rev & QED_MFW_VERSION_1_MASK) >>
897                  QED_MFW_VERSION_1_OFFSET,
898                  (p_dev_info->mfw_rev & QED_MFW_VERSION_0_MASK) >>
899                  QED_MFW_VERSION_0_OFFSET);
900
901         left_size = QEDE_FW_VER_STR_SIZE - strlen(buf);
902         if (p_dev_info->mbi_version && left_size)
903                 snprintf(buf + strlen(buf), left_size,
904                          " [MBI %d.%d.%d]",
905                          (p_dev_info->mbi_version & QED_MBI_VERSION_2_MASK) >>
906                          QED_MBI_VERSION_2_OFFSET,
907                          (p_dev_info->mbi_version & QED_MBI_VERSION_1_MASK) >>
908                          QED_MBI_VERSION_1_OFFSET,
909                          (p_dev_info->mbi_version & QED_MBI_VERSION_0_MASK) >>
910                          QED_MBI_VERSION_0_OFFSET);
911
912         pr_info("qede %02x:%02x.%02x: %s [%s]\n", edev->pdev->bus->number,
913                 PCI_SLOT(edev->pdev->devfn), PCI_FUNC(edev->pdev->devfn),
914                 buf, edev->ndev->name);
915 }
916
917 enum qede_probe_mode {
918         QEDE_PROBE_NORMAL,
919 };
920
921 static int __qede_probe(struct pci_dev *pdev, u32 dp_module, u8 dp_level,
922                         bool is_vf, enum qede_probe_mode mode)
923 {
924         struct qed_probe_params probe_params;
925         struct qed_slowpath_params sp_params;
926         struct qed_dev_eth_info dev_info;
927         struct qede_dev *edev;
928         struct qed_dev *cdev;
929         int rc;
930
931         if (unlikely(dp_level & QED_LEVEL_INFO))
932                 pr_notice("Starting qede probe\n");
933
934         memset(&probe_params, 0, sizeof(probe_params));
935         probe_params.protocol = QED_PROTOCOL_ETH;
936         probe_params.dp_module = dp_module;
937         probe_params.dp_level = dp_level;
938         probe_params.is_vf = is_vf;
939         cdev = qed_ops->common->probe(pdev, &probe_params);
940         if (!cdev) {
941                 rc = -ENODEV;
942                 goto err0;
943         }
944
945         qede_update_pf_params(cdev);
946
947         /* Start the Slowpath-process */
948         memset(&sp_params, 0, sizeof(sp_params));
949         sp_params.int_mode = QED_INT_MODE_MSIX;
950         sp_params.drv_major = QEDE_MAJOR_VERSION;
951         sp_params.drv_minor = QEDE_MINOR_VERSION;
952         sp_params.drv_rev = QEDE_REVISION_VERSION;
953         sp_params.drv_eng = QEDE_ENGINEERING_VERSION;
954         strlcpy(sp_params.name, "qede LAN", QED_DRV_VER_STR_SIZE);
955         rc = qed_ops->common->slowpath_start(cdev, &sp_params);
956         if (rc) {
957                 pr_notice("Cannot start slowpath\n");
958                 goto err1;
959         }
960
961         /* Learn information crucial for qede to progress */
962         rc = qed_ops->fill_dev_info(cdev, &dev_info);
963         if (rc)
964                 goto err2;
965
966         edev = qede_alloc_etherdev(cdev, pdev, &dev_info, dp_module,
967                                    dp_level);
968         if (!edev) {
969                 rc = -ENOMEM;
970                 goto err2;
971         }
972
973         if (is_vf)
974                 edev->flags |= QEDE_FLAG_IS_VF;
975
976         qede_init_ndev(edev);
977
978         rc = qede_rdma_dev_add(edev);
979         if (rc)
980                 goto err3;
981
982         /* Prepare the lock prior to the registeration of the netdev,
983          * as once it's registered we might reach flows requiring it
984          * [it's even possible to reach a flow needing it directly
985          * from there, although it's unlikely].
986          */
987         INIT_DELAYED_WORK(&edev->sp_task, qede_sp_task);
988         mutex_init(&edev->qede_lock);
989         rc = register_netdev(edev->ndev);
990         if (rc) {
991                 DP_NOTICE(edev, "Cannot register net-device\n");
992                 goto err4;
993         }
994
995         edev->ops->common->set_name(cdev, edev->ndev->name);
996
997         /* PTP not supported on VFs */
998         if (!is_vf)
999                 qede_ptp_enable(edev, true);
1000
1001         edev->ops->register_ops(cdev, &qede_ll_ops, edev);
1002
1003 #ifdef CONFIG_DCB
1004         if (!IS_VF(edev))
1005                 qede_set_dcbnl_ops(edev->ndev);
1006 #endif
1007
1008         edev->rx_copybreak = QEDE_RX_HDR_SIZE;
1009
1010         qede_log_probe(edev);
1011         return 0;
1012
1013 err4:
1014         qede_rdma_dev_remove(edev);
1015 err3:
1016         free_netdev(edev->ndev);
1017 err2:
1018         qed_ops->common->slowpath_stop(cdev);
1019 err1:
1020         qed_ops->common->remove(cdev);
1021 err0:
1022         return rc;
1023 }
1024
1025 static int qede_probe(struct pci_dev *pdev, const struct pci_device_id *id)
1026 {
1027         bool is_vf = false;
1028         u32 dp_module = 0;
1029         u8 dp_level = 0;
1030
1031         switch ((enum qede_pci_private)id->driver_data) {
1032         case QEDE_PRIVATE_VF:
1033                 if (debug & QED_LOG_VERBOSE_MASK)
1034                         dev_err(&pdev->dev, "Probing a VF\n");
1035                 is_vf = true;
1036                 break;
1037         default:
1038                 if (debug & QED_LOG_VERBOSE_MASK)
1039                         dev_err(&pdev->dev, "Probing a PF\n");
1040         }
1041
1042         qede_config_debug(debug, &dp_module, &dp_level);
1043
1044         return __qede_probe(pdev, dp_module, dp_level, is_vf,
1045                             QEDE_PROBE_NORMAL);
1046 }
1047
1048 enum qede_remove_mode {
1049         QEDE_REMOVE_NORMAL,
1050 };
1051
1052 static void __qede_remove(struct pci_dev *pdev, enum qede_remove_mode mode)
1053 {
1054         struct net_device *ndev = pci_get_drvdata(pdev);
1055         struct qede_dev *edev = netdev_priv(ndev);
1056         struct qed_dev *cdev = edev->cdev;
1057
1058         DP_INFO(edev, "Starting qede_remove\n");
1059
1060         unregister_netdev(ndev);
1061         cancel_delayed_work_sync(&edev->sp_task);
1062
1063         qede_ptp_disable(edev);
1064
1065         qede_rdma_dev_remove(edev);
1066
1067         edev->ops->common->set_power_state(cdev, PCI_D0);
1068
1069         pci_set_drvdata(pdev, NULL);
1070
1071         /* Release edev's reference to XDP's bpf if such exist */
1072         if (edev->xdp_prog)
1073                 bpf_prog_put(edev->xdp_prog);
1074
1075         /* Use global ops since we've freed edev */
1076         qed_ops->common->slowpath_stop(cdev);
1077         if (system_state == SYSTEM_POWER_OFF)
1078                 return;
1079         qed_ops->common->remove(cdev);
1080
1081         /* Since this can happen out-of-sync with other flows,
1082          * don't release the netdevice until after slowpath stop
1083          * has been called to guarantee various other contexts
1084          * [e.g., QED register callbacks] won't break anything when
1085          * accessing the netdevice.
1086          */
1087          free_netdev(ndev);
1088
1089         dev_info(&pdev->dev, "Ending qede_remove successfully\n");
1090 }
1091
1092 static void qede_remove(struct pci_dev *pdev)
1093 {
1094         __qede_remove(pdev, QEDE_REMOVE_NORMAL);
1095 }
1096
1097 static void qede_shutdown(struct pci_dev *pdev)
1098 {
1099         __qede_remove(pdev, QEDE_REMOVE_NORMAL);
1100 }
1101
1102 /* -------------------------------------------------------------------------
1103  * START OF LOAD / UNLOAD
1104  * -------------------------------------------------------------------------
1105  */
1106
1107 static int qede_set_num_queues(struct qede_dev *edev)
1108 {
1109         int rc;
1110         u16 rss_num;
1111
1112         /* Setup queues according to possible resources*/
1113         if (edev->req_queues)
1114                 rss_num = edev->req_queues;
1115         else
1116                 rss_num = netif_get_num_default_rss_queues() *
1117                           edev->dev_info.common.num_hwfns;
1118
1119         rss_num = min_t(u16, QEDE_MAX_RSS_CNT(edev), rss_num);
1120
1121         rc = edev->ops->common->set_fp_int(edev->cdev, rss_num);
1122         if (rc > 0) {
1123                 /* Managed to request interrupts for our queues */
1124                 edev->num_queues = rc;
1125                 DP_INFO(edev, "Managed %d [of %d] RSS queues\n",
1126                         QEDE_QUEUE_CNT(edev), rss_num);
1127                 rc = 0;
1128         }
1129
1130         edev->fp_num_tx = edev->req_num_tx;
1131         edev->fp_num_rx = edev->req_num_rx;
1132
1133         return rc;
1134 }
1135
1136 static void qede_free_mem_sb(struct qede_dev *edev, struct qed_sb_info *sb_info,
1137                              u16 sb_id)
1138 {
1139         if (sb_info->sb_virt) {
1140                 edev->ops->common->sb_release(edev->cdev, sb_info, sb_id);
1141                 dma_free_coherent(&edev->pdev->dev, sizeof(*sb_info->sb_virt),
1142                                   (void *)sb_info->sb_virt, sb_info->sb_phys);
1143                 memset(sb_info, 0, sizeof(*sb_info));
1144         }
1145 }
1146
1147 /* This function allocates fast-path status block memory */
1148 static int qede_alloc_mem_sb(struct qede_dev *edev,
1149                              struct qed_sb_info *sb_info, u16 sb_id)
1150 {
1151         struct status_block *sb_virt;
1152         dma_addr_t sb_phys;
1153         int rc;
1154
1155         sb_virt = dma_alloc_coherent(&edev->pdev->dev,
1156                                      sizeof(*sb_virt), &sb_phys, GFP_KERNEL);
1157         if (!sb_virt) {
1158                 DP_ERR(edev, "Status block allocation failed\n");
1159                 return -ENOMEM;
1160         }
1161
1162         rc = edev->ops->common->sb_init(edev->cdev, sb_info,
1163                                         sb_virt, sb_phys, sb_id,
1164                                         QED_SB_TYPE_L2_QUEUE);
1165         if (rc) {
1166                 DP_ERR(edev, "Status block initialization failed\n");
1167                 dma_free_coherent(&edev->pdev->dev, sizeof(*sb_virt),
1168                                   sb_virt, sb_phys);
1169                 return rc;
1170         }
1171
1172         return 0;
1173 }
1174
1175 static void qede_free_rx_buffers(struct qede_dev *edev,
1176                                  struct qede_rx_queue *rxq)
1177 {
1178         u16 i;
1179
1180         for (i = rxq->sw_rx_cons; i != rxq->sw_rx_prod; i++) {
1181                 struct sw_rx_data *rx_buf;
1182                 struct page *data;
1183
1184                 rx_buf = &rxq->sw_rx_ring[i & NUM_RX_BDS_MAX];
1185                 data = rx_buf->data;
1186
1187                 dma_unmap_page(&edev->pdev->dev,
1188                                rx_buf->mapping, PAGE_SIZE, rxq->data_direction);
1189
1190                 rx_buf->data = NULL;
1191                 __free_page(data);
1192         }
1193 }
1194
1195 static void qede_free_sge_mem(struct qede_dev *edev, struct qede_rx_queue *rxq)
1196 {
1197         int i;
1198
1199         if (edev->gro_disable)
1200                 return;
1201
1202         for (i = 0; i < ETH_TPA_MAX_AGGS_NUM; i++) {
1203                 struct qede_agg_info *tpa_info = &rxq->tpa_info[i];
1204                 struct sw_rx_data *replace_buf = &tpa_info->buffer;
1205
1206                 if (replace_buf->data) {
1207                         dma_unmap_page(&edev->pdev->dev,
1208                                        replace_buf->mapping,
1209                                        PAGE_SIZE, DMA_FROM_DEVICE);
1210                         __free_page(replace_buf->data);
1211                 }
1212         }
1213 }
1214
1215 static void qede_free_mem_rxq(struct qede_dev *edev, struct qede_rx_queue *rxq)
1216 {
1217         qede_free_sge_mem(edev, rxq);
1218
1219         /* Free rx buffers */
1220         qede_free_rx_buffers(edev, rxq);
1221
1222         /* Free the parallel SW ring */
1223         kfree(rxq->sw_rx_ring);
1224
1225         /* Free the real RQ ring used by FW */
1226         edev->ops->common->chain_free(edev->cdev, &rxq->rx_bd_ring);
1227         edev->ops->common->chain_free(edev->cdev, &rxq->rx_comp_ring);
1228 }
1229
1230 static int qede_alloc_sge_mem(struct qede_dev *edev, struct qede_rx_queue *rxq)
1231 {
1232         dma_addr_t mapping;
1233         int i;
1234
1235         /* Don't perform FW aggregations in case of XDP */
1236         if (edev->xdp_prog)
1237                 edev->gro_disable = 1;
1238
1239         if (edev->gro_disable)
1240                 return 0;
1241
1242         if (edev->ndev->mtu > PAGE_SIZE) {
1243                 edev->gro_disable = 1;
1244                 return 0;
1245         }
1246
1247         for (i = 0; i < ETH_TPA_MAX_AGGS_NUM; i++) {
1248                 struct qede_agg_info *tpa_info = &rxq->tpa_info[i];
1249                 struct sw_rx_data *replace_buf = &tpa_info->buffer;
1250
1251                 replace_buf->data = alloc_pages(GFP_ATOMIC, 0);
1252                 if (unlikely(!replace_buf->data)) {
1253                         DP_NOTICE(edev,
1254                                   "Failed to allocate TPA skb pool [replacement buffer]\n");
1255                         goto err;
1256                 }
1257
1258                 mapping = dma_map_page(&edev->pdev->dev, replace_buf->data, 0,
1259                                        PAGE_SIZE, DMA_FROM_DEVICE);
1260                 if (unlikely(dma_mapping_error(&edev->pdev->dev, mapping))) {
1261                         DP_NOTICE(edev,
1262                                   "Failed to map TPA replacement buffer\n");
1263                         goto err;
1264                 }
1265
1266                 replace_buf->mapping = mapping;
1267                 tpa_info->buffer.page_offset = 0;
1268                 tpa_info->buffer_mapping = mapping;
1269                 tpa_info->state = QEDE_AGG_STATE_NONE;
1270         }
1271
1272         return 0;
1273 err:
1274         qede_free_sge_mem(edev, rxq);
1275         edev->gro_disable = 1;
1276         return -ENOMEM;
1277 }
1278
1279 /* This function allocates all memory needed per Rx queue */
1280 static int qede_alloc_mem_rxq(struct qede_dev *edev, struct qede_rx_queue *rxq)
1281 {
1282         int i, rc, size;
1283
1284         rxq->num_rx_buffers = edev->q_num_rx_buffers;
1285
1286         rxq->rx_buf_size = NET_IP_ALIGN + ETH_OVERHEAD + edev->ndev->mtu;
1287         rxq->rx_headroom = edev->xdp_prog ? XDP_PACKET_HEADROOM : 0;
1288
1289         /* Make sure that the headroom and  payload fit in a single page */
1290         if (rxq->rx_buf_size + rxq->rx_headroom > PAGE_SIZE)
1291                 rxq->rx_buf_size = PAGE_SIZE - rxq->rx_headroom;
1292
1293         /* Segment size to spilt a page in multiple equal parts,
1294          * unless XDP is used in which case we'd use the entire page.
1295          */
1296         if (!edev->xdp_prog)
1297                 rxq->rx_buf_seg_size = roundup_pow_of_two(rxq->rx_buf_size);
1298         else
1299                 rxq->rx_buf_seg_size = PAGE_SIZE;
1300
1301         /* Allocate the parallel driver ring for Rx buffers */
1302         size = sizeof(*rxq->sw_rx_ring) * RX_RING_SIZE;
1303         rxq->sw_rx_ring = kzalloc(size, GFP_KERNEL);
1304         if (!rxq->sw_rx_ring) {
1305                 DP_ERR(edev, "Rx buffers ring allocation failed\n");
1306                 rc = -ENOMEM;
1307                 goto err;
1308         }
1309
1310         /* Allocate FW Rx ring  */
1311         rc = edev->ops->common->chain_alloc(edev->cdev,
1312                                             QED_CHAIN_USE_TO_CONSUME_PRODUCE,
1313                                             QED_CHAIN_MODE_NEXT_PTR,
1314                                             QED_CHAIN_CNT_TYPE_U16,
1315                                             RX_RING_SIZE,
1316                                             sizeof(struct eth_rx_bd),
1317                                             &rxq->rx_bd_ring, NULL);
1318         if (rc)
1319                 goto err;
1320
1321         /* Allocate FW completion ring */
1322         rc = edev->ops->common->chain_alloc(edev->cdev,
1323                                             QED_CHAIN_USE_TO_CONSUME,
1324                                             QED_CHAIN_MODE_PBL,
1325                                             QED_CHAIN_CNT_TYPE_U16,
1326                                             RX_RING_SIZE,
1327                                             sizeof(union eth_rx_cqe),
1328                                             &rxq->rx_comp_ring, NULL);
1329         if (rc)
1330                 goto err;
1331
1332         /* Allocate buffers for the Rx ring */
1333         rxq->filled_buffers = 0;
1334         for (i = 0; i < rxq->num_rx_buffers; i++) {
1335                 rc = qede_alloc_rx_buffer(rxq, false);
1336                 if (rc) {
1337                         DP_ERR(edev,
1338                                "Rx buffers allocation failed at index %d\n", i);
1339                         goto err;
1340                 }
1341         }
1342
1343         rc = qede_alloc_sge_mem(edev, rxq);
1344 err:
1345         return rc;
1346 }
1347
1348 static void qede_free_mem_txq(struct qede_dev *edev, struct qede_tx_queue *txq)
1349 {
1350         /* Free the parallel SW ring */
1351         if (txq->is_xdp)
1352                 kfree(txq->sw_tx_ring.xdp);
1353         else
1354                 kfree(txq->sw_tx_ring.skbs);
1355
1356         /* Free the real RQ ring used by FW */
1357         edev->ops->common->chain_free(edev->cdev, &txq->tx_pbl);
1358 }
1359
1360 /* This function allocates all memory needed per Tx queue */
1361 static int qede_alloc_mem_txq(struct qede_dev *edev, struct qede_tx_queue *txq)
1362 {
1363         union eth_tx_bd_types *p_virt;
1364         int size, rc;
1365
1366         txq->num_tx_buffers = edev->q_num_tx_buffers;
1367
1368         /* Allocate the parallel driver ring for Tx buffers */
1369         if (txq->is_xdp) {
1370                 size = sizeof(*txq->sw_tx_ring.xdp) * txq->num_tx_buffers;
1371                 txq->sw_tx_ring.xdp = kzalloc(size, GFP_KERNEL);
1372                 if (!txq->sw_tx_ring.xdp)
1373                         goto err;
1374         } else {
1375                 size = sizeof(*txq->sw_tx_ring.skbs) * txq->num_tx_buffers;
1376                 txq->sw_tx_ring.skbs = kzalloc(size, GFP_KERNEL);
1377                 if (!txq->sw_tx_ring.skbs)
1378                         goto err;
1379         }
1380
1381         rc = edev->ops->common->chain_alloc(edev->cdev,
1382                                             QED_CHAIN_USE_TO_CONSUME_PRODUCE,
1383                                             QED_CHAIN_MODE_PBL,
1384                                             QED_CHAIN_CNT_TYPE_U16,
1385                                             txq->num_tx_buffers,
1386                                             sizeof(*p_virt),
1387                                             &txq->tx_pbl, NULL);
1388         if (rc)
1389                 goto err;
1390
1391         return 0;
1392
1393 err:
1394         qede_free_mem_txq(edev, txq);
1395         return -ENOMEM;
1396 }
1397
1398 /* This function frees all memory of a single fp */
1399 static void qede_free_mem_fp(struct qede_dev *edev, struct qede_fastpath *fp)
1400 {
1401         qede_free_mem_sb(edev, fp->sb_info, fp->id);
1402
1403         if (fp->type & QEDE_FASTPATH_RX)
1404                 qede_free_mem_rxq(edev, fp->rxq);
1405
1406         if (fp->type & QEDE_FASTPATH_XDP)
1407                 qede_free_mem_txq(edev, fp->xdp_tx);
1408
1409         if (fp->type & QEDE_FASTPATH_TX)
1410                 qede_free_mem_txq(edev, fp->txq);
1411 }
1412
1413 /* This function allocates all memory needed for a single fp (i.e. an entity
1414  * which contains status block, one rx queue and/or multiple per-TC tx queues.
1415  */
1416 static int qede_alloc_mem_fp(struct qede_dev *edev, struct qede_fastpath *fp)
1417 {
1418         int rc = 0;
1419
1420         rc = qede_alloc_mem_sb(edev, fp->sb_info, fp->id);
1421         if (rc)
1422                 goto out;
1423
1424         if (fp->type & QEDE_FASTPATH_RX) {
1425                 rc = qede_alloc_mem_rxq(edev, fp->rxq);
1426                 if (rc)
1427                         goto out;
1428         }
1429
1430         if (fp->type & QEDE_FASTPATH_XDP) {
1431                 rc = qede_alloc_mem_txq(edev, fp->xdp_tx);
1432                 if (rc)
1433                         goto out;
1434         }
1435
1436         if (fp->type & QEDE_FASTPATH_TX) {
1437                 rc = qede_alloc_mem_txq(edev, fp->txq);
1438                 if (rc)
1439                         goto out;
1440         }
1441
1442 out:
1443         return rc;
1444 }
1445
1446 static void qede_free_mem_load(struct qede_dev *edev)
1447 {
1448         int i;
1449
1450         for_each_queue(i) {
1451                 struct qede_fastpath *fp = &edev->fp_array[i];
1452
1453                 qede_free_mem_fp(edev, fp);
1454         }
1455 }
1456
1457 /* This function allocates all qede memory at NIC load. */
1458 static int qede_alloc_mem_load(struct qede_dev *edev)
1459 {
1460         int rc = 0, queue_id;
1461
1462         for (queue_id = 0; queue_id < QEDE_QUEUE_CNT(edev); queue_id++) {
1463                 struct qede_fastpath *fp = &edev->fp_array[queue_id];
1464
1465                 rc = qede_alloc_mem_fp(edev, fp);
1466                 if (rc) {
1467                         DP_ERR(edev,
1468                                "Failed to allocate memory for fastpath - rss id = %d\n",
1469                                queue_id);
1470                         qede_free_mem_load(edev);
1471                         return rc;
1472                 }
1473         }
1474
1475         return 0;
1476 }
1477
1478 /* This function inits fp content and resets the SB, RXQ and TXQ structures */
1479 static void qede_init_fp(struct qede_dev *edev)
1480 {
1481         int queue_id, rxq_index = 0, txq_index = 0;
1482         struct qede_fastpath *fp;
1483
1484         for_each_queue(queue_id) {
1485                 fp = &edev->fp_array[queue_id];
1486
1487                 fp->edev = edev;
1488                 fp->id = queue_id;
1489
1490                 if (fp->type & QEDE_FASTPATH_XDP) {
1491                         fp->xdp_tx->index = QEDE_TXQ_IDX_TO_XDP(edev,
1492                                                                 rxq_index);
1493                         fp->xdp_tx->is_xdp = 1;
1494                 }
1495
1496                 if (fp->type & QEDE_FASTPATH_RX) {
1497                         fp->rxq->rxq_id = rxq_index++;
1498
1499                         /* Determine how to map buffers for this queue */
1500                         if (fp->type & QEDE_FASTPATH_XDP)
1501                                 fp->rxq->data_direction = DMA_BIDIRECTIONAL;
1502                         else
1503                                 fp->rxq->data_direction = DMA_FROM_DEVICE;
1504                         fp->rxq->dev = &edev->pdev->dev;
1505                 }
1506
1507                 if (fp->type & QEDE_FASTPATH_TX) {
1508                         fp->txq->index = txq_index++;
1509                         if (edev->dev_info.is_legacy)
1510                                 fp->txq->is_legacy = 1;
1511                         fp->txq->dev = &edev->pdev->dev;
1512                 }
1513
1514                 snprintf(fp->name, sizeof(fp->name), "%s-fp-%d",
1515                          edev->ndev->name, queue_id);
1516         }
1517
1518         edev->gro_disable = !(edev->ndev->features & NETIF_F_GRO);
1519 }
1520
1521 static int qede_set_real_num_queues(struct qede_dev *edev)
1522 {
1523         int rc = 0;
1524
1525         rc = netif_set_real_num_tx_queues(edev->ndev, QEDE_TSS_COUNT(edev));
1526         if (rc) {
1527                 DP_NOTICE(edev, "Failed to set real number of Tx queues\n");
1528                 return rc;
1529         }
1530
1531         rc = netif_set_real_num_rx_queues(edev->ndev, QEDE_RSS_COUNT(edev));
1532         if (rc) {
1533                 DP_NOTICE(edev, "Failed to set real number of Rx queues\n");
1534                 return rc;
1535         }
1536
1537         return 0;
1538 }
1539
1540 static void qede_napi_disable_remove(struct qede_dev *edev)
1541 {
1542         int i;
1543
1544         for_each_queue(i) {
1545                 napi_disable(&edev->fp_array[i].napi);
1546
1547                 netif_napi_del(&edev->fp_array[i].napi);
1548         }
1549 }
1550
1551 static void qede_napi_add_enable(struct qede_dev *edev)
1552 {
1553         int i;
1554
1555         /* Add NAPI objects */
1556         for_each_queue(i) {
1557                 netif_napi_add(edev->ndev, &edev->fp_array[i].napi,
1558                                qede_poll, NAPI_POLL_WEIGHT);
1559                 napi_enable(&edev->fp_array[i].napi);
1560         }
1561 }
1562
1563 static void qede_sync_free_irqs(struct qede_dev *edev)
1564 {
1565         int i;
1566
1567         for (i = 0; i < edev->int_info.used_cnt; i++) {
1568                 if (edev->int_info.msix_cnt) {
1569                         synchronize_irq(edev->int_info.msix[i].vector);
1570                         free_irq(edev->int_info.msix[i].vector,
1571                                  &edev->fp_array[i]);
1572                 } else {
1573                         edev->ops->common->simd_handler_clean(edev->cdev, i);
1574                 }
1575         }
1576
1577         edev->int_info.used_cnt = 0;
1578 }
1579
1580 static int qede_req_msix_irqs(struct qede_dev *edev)
1581 {
1582         int i, rc;
1583
1584         /* Sanitize number of interrupts == number of prepared RSS queues */
1585         if (QEDE_QUEUE_CNT(edev) > edev->int_info.msix_cnt) {
1586                 DP_ERR(edev,
1587                        "Interrupt mismatch: %d RSS queues > %d MSI-x vectors\n",
1588                        QEDE_QUEUE_CNT(edev), edev->int_info.msix_cnt);
1589                 return -EINVAL;
1590         }
1591
1592         for (i = 0; i < QEDE_QUEUE_CNT(edev); i++) {
1593 #ifdef CONFIG_RFS_ACCEL
1594                 struct qede_fastpath *fp = &edev->fp_array[i];
1595
1596                 if (edev->ndev->rx_cpu_rmap && (fp->type & QEDE_FASTPATH_RX)) {
1597                         rc = irq_cpu_rmap_add(edev->ndev->rx_cpu_rmap,
1598                                               edev->int_info.msix[i].vector);
1599                         if (rc) {
1600                                 DP_ERR(edev, "Failed to add CPU rmap\n");
1601                                 qede_free_arfs(edev);
1602                         }
1603                 }
1604 #endif
1605                 rc = request_irq(edev->int_info.msix[i].vector,
1606                                  qede_msix_fp_int, 0, edev->fp_array[i].name,
1607                                  &edev->fp_array[i]);
1608                 if (rc) {
1609                         DP_ERR(edev, "Request fp %d irq failed\n", i);
1610                         qede_sync_free_irqs(edev);
1611                         return rc;
1612                 }
1613                 DP_VERBOSE(edev, NETIF_MSG_INTR,
1614                            "Requested fp irq for %s [entry %d]. Cookie is at %p\n",
1615                            edev->fp_array[i].name, i,
1616                            &edev->fp_array[i]);
1617                 edev->int_info.used_cnt++;
1618         }
1619
1620         return 0;
1621 }
1622
1623 static void qede_simd_fp_handler(void *cookie)
1624 {
1625         struct qede_fastpath *fp = (struct qede_fastpath *)cookie;
1626
1627         napi_schedule_irqoff(&fp->napi);
1628 }
1629
1630 static int qede_setup_irqs(struct qede_dev *edev)
1631 {
1632         int i, rc = 0;
1633
1634         /* Learn Interrupt configuration */
1635         rc = edev->ops->common->get_fp_int(edev->cdev, &edev->int_info);
1636         if (rc)
1637                 return rc;
1638
1639         if (edev->int_info.msix_cnt) {
1640                 rc = qede_req_msix_irqs(edev);
1641                 if (rc)
1642                         return rc;
1643                 edev->ndev->irq = edev->int_info.msix[0].vector;
1644         } else {
1645                 const struct qed_common_ops *ops;
1646
1647                 /* qed should learn receive the RSS ids and callbacks */
1648                 ops = edev->ops->common;
1649                 for (i = 0; i < QEDE_QUEUE_CNT(edev); i++)
1650                         ops->simd_handler_config(edev->cdev,
1651                                                  &edev->fp_array[i], i,
1652                                                  qede_simd_fp_handler);
1653                 edev->int_info.used_cnt = QEDE_QUEUE_CNT(edev);
1654         }
1655         return 0;
1656 }
1657
1658 static int qede_drain_txq(struct qede_dev *edev,
1659                           struct qede_tx_queue *txq, bool allow_drain)
1660 {
1661         int rc, cnt = 1000;
1662
1663         while (txq->sw_tx_cons != txq->sw_tx_prod) {
1664                 if (!cnt) {
1665                         if (allow_drain) {
1666                                 DP_NOTICE(edev,
1667                                           "Tx queue[%d] is stuck, requesting MCP to drain\n",
1668                                           txq->index);
1669                                 rc = edev->ops->common->drain(edev->cdev);
1670                                 if (rc)
1671                                         return rc;
1672                                 return qede_drain_txq(edev, txq, false);
1673                         }
1674                         DP_NOTICE(edev,
1675                                   "Timeout waiting for tx queue[%d]: PROD=%d, CONS=%d\n",
1676                                   txq->index, txq->sw_tx_prod,
1677                                   txq->sw_tx_cons);
1678                         return -ENODEV;
1679                 }
1680                 cnt--;
1681                 usleep_range(1000, 2000);
1682                 barrier();
1683         }
1684
1685         /* FW finished processing, wait for HW to transmit all tx packets */
1686         usleep_range(1000, 2000);
1687
1688         return 0;
1689 }
1690
1691 static int qede_stop_txq(struct qede_dev *edev,
1692                          struct qede_tx_queue *txq, int rss_id)
1693 {
1694         return edev->ops->q_tx_stop(edev->cdev, rss_id, txq->handle);
1695 }
1696
1697 static int qede_stop_queues(struct qede_dev *edev)
1698 {
1699         struct qed_update_vport_params *vport_update_params;
1700         struct qed_dev *cdev = edev->cdev;
1701         struct qede_fastpath *fp;
1702         int rc, i;
1703
1704         /* Disable the vport */
1705         vport_update_params = vzalloc(sizeof(*vport_update_params));
1706         if (!vport_update_params)
1707                 return -ENOMEM;
1708
1709         vport_update_params->vport_id = 0;
1710         vport_update_params->update_vport_active_flg = 1;
1711         vport_update_params->vport_active_flg = 0;
1712         vport_update_params->update_rss_flg = 0;
1713
1714         rc = edev->ops->vport_update(cdev, vport_update_params);
1715         vfree(vport_update_params);
1716
1717         if (rc) {
1718                 DP_ERR(edev, "Failed to update vport\n");
1719                 return rc;
1720         }
1721
1722         /* Flush Tx queues. If needed, request drain from MCP */
1723         for_each_queue(i) {
1724                 fp = &edev->fp_array[i];
1725
1726                 if (fp->type & QEDE_FASTPATH_TX) {
1727                         rc = qede_drain_txq(edev, fp->txq, true);
1728                         if (rc)
1729                                 return rc;
1730                 }
1731
1732                 if (fp->type & QEDE_FASTPATH_XDP) {
1733                         rc = qede_drain_txq(edev, fp->xdp_tx, true);
1734                         if (rc)
1735                                 return rc;
1736                 }
1737         }
1738
1739         /* Stop all Queues in reverse order */
1740         for (i = QEDE_QUEUE_CNT(edev) - 1; i >= 0; i--) {
1741                 fp = &edev->fp_array[i];
1742
1743                 /* Stop the Tx Queue(s) */
1744                 if (fp->type & QEDE_FASTPATH_TX) {
1745                         rc = qede_stop_txq(edev, fp->txq, i);
1746                         if (rc)
1747                                 return rc;
1748                 }
1749
1750                 /* Stop the Rx Queue */
1751                 if (fp->type & QEDE_FASTPATH_RX) {
1752                         rc = edev->ops->q_rx_stop(cdev, i, fp->rxq->handle);
1753                         if (rc) {
1754                                 DP_ERR(edev, "Failed to stop RXQ #%d\n", i);
1755                                 return rc;
1756                         }
1757                 }
1758
1759                 /* Stop the XDP forwarding queue */
1760                 if (fp->type & QEDE_FASTPATH_XDP) {
1761                         rc = qede_stop_txq(edev, fp->xdp_tx, i);
1762                         if (rc)
1763                                 return rc;
1764
1765                         bpf_prog_put(fp->rxq->xdp_prog);
1766                 }
1767         }
1768
1769         /* Stop the vport */
1770         rc = edev->ops->vport_stop(cdev, 0);
1771         if (rc)
1772                 DP_ERR(edev, "Failed to stop VPORT\n");
1773
1774         return rc;
1775 }
1776
1777 static int qede_start_txq(struct qede_dev *edev,
1778                           struct qede_fastpath *fp,
1779                           struct qede_tx_queue *txq, u8 rss_id, u16 sb_idx)
1780 {
1781         dma_addr_t phys_table = qed_chain_get_pbl_phys(&txq->tx_pbl);
1782         u32 page_cnt = qed_chain_get_page_cnt(&txq->tx_pbl);
1783         struct qed_queue_start_common_params params;
1784         struct qed_txq_start_ret_params ret_params;
1785         int rc;
1786
1787         memset(&params, 0, sizeof(params));
1788         memset(&ret_params, 0, sizeof(ret_params));
1789
1790         /* Let the XDP queue share the queue-zone with one of the regular txq.
1791          * We don't really care about its coalescing.
1792          */
1793         if (txq->is_xdp)
1794                 params.queue_id = QEDE_TXQ_XDP_TO_IDX(edev, txq);
1795         else
1796                 params.queue_id = txq->index;
1797
1798         params.p_sb = fp->sb_info;
1799         params.sb_idx = sb_idx;
1800
1801         rc = edev->ops->q_tx_start(edev->cdev, rss_id, &params, phys_table,
1802                                    page_cnt, &ret_params);
1803         if (rc) {
1804                 DP_ERR(edev, "Start TXQ #%d failed %d\n", txq->index, rc);
1805                 return rc;
1806         }
1807
1808         txq->doorbell_addr = ret_params.p_doorbell;
1809         txq->handle = ret_params.p_handle;
1810
1811         /* Determine the FW consumer address associated */
1812         txq->hw_cons_ptr = &fp->sb_info->sb_virt->pi_array[sb_idx];
1813
1814         /* Prepare the doorbell parameters */
1815         SET_FIELD(txq->tx_db.data.params, ETH_DB_DATA_DEST, DB_DEST_XCM);
1816         SET_FIELD(txq->tx_db.data.params, ETH_DB_DATA_AGG_CMD, DB_AGG_CMD_SET);
1817         SET_FIELD(txq->tx_db.data.params, ETH_DB_DATA_AGG_VAL_SEL,
1818                   DQ_XCM_ETH_TX_BD_PROD_CMD);
1819         txq->tx_db.data.agg_flags = DQ_XCM_ETH_DQ_CF_CMD;
1820
1821         return rc;
1822 }
1823
1824 static int qede_start_queues(struct qede_dev *edev, bool clear_stats)
1825 {
1826         int vlan_removal_en = 1;
1827         struct qed_dev *cdev = edev->cdev;
1828         struct qed_dev_info *qed_info = &edev->dev_info.common;
1829         struct qed_update_vport_params *vport_update_params;
1830         struct qed_queue_start_common_params q_params;
1831         struct qed_start_vport_params start = {0};
1832         int rc, i;
1833
1834         if (!edev->num_queues) {
1835                 DP_ERR(edev,
1836                        "Cannot update V-VPORT as active as there are no Rx queues\n");
1837                 return -EINVAL;
1838         }
1839
1840         vport_update_params = vzalloc(sizeof(*vport_update_params));
1841         if (!vport_update_params)
1842                 return -ENOMEM;
1843
1844         start.handle_ptp_pkts = !!(edev->ptp);
1845         start.gro_enable = !edev->gro_disable;
1846         start.mtu = edev->ndev->mtu;
1847         start.vport_id = 0;
1848         start.drop_ttl0 = true;
1849         start.remove_inner_vlan = vlan_removal_en;
1850         start.clear_stats = clear_stats;
1851
1852         rc = edev->ops->vport_start(cdev, &start);
1853
1854         if (rc) {
1855                 DP_ERR(edev, "Start V-PORT failed %d\n", rc);
1856                 goto out;
1857         }
1858
1859         DP_VERBOSE(edev, NETIF_MSG_IFUP,
1860                    "Start vport ramrod passed, vport_id = %d, MTU = %d, vlan_removal_en = %d\n",
1861                    start.vport_id, edev->ndev->mtu + 0xe, vlan_removal_en);
1862
1863         for_each_queue(i) {
1864                 struct qede_fastpath *fp = &edev->fp_array[i];
1865                 dma_addr_t p_phys_table;
1866                 u32 page_cnt;
1867
1868                 if (fp->type & QEDE_FASTPATH_RX) {
1869                         struct qed_rxq_start_ret_params ret_params;
1870                         struct qede_rx_queue *rxq = fp->rxq;
1871                         __le16 *val;
1872
1873                         memset(&ret_params, 0, sizeof(ret_params));
1874                         memset(&q_params, 0, sizeof(q_params));
1875                         q_params.queue_id = rxq->rxq_id;
1876                         q_params.vport_id = 0;
1877                         q_params.p_sb = fp->sb_info;
1878                         q_params.sb_idx = RX_PI;
1879
1880                         p_phys_table =
1881                             qed_chain_get_pbl_phys(&rxq->rx_comp_ring);
1882                         page_cnt = qed_chain_get_page_cnt(&rxq->rx_comp_ring);
1883
1884                         rc = edev->ops->q_rx_start(cdev, i, &q_params,
1885                                                    rxq->rx_buf_size,
1886                                                    rxq->rx_bd_ring.p_phys_addr,
1887                                                    p_phys_table,
1888                                                    page_cnt, &ret_params);
1889                         if (rc) {
1890                                 DP_ERR(edev, "Start RXQ #%d failed %d\n", i,
1891                                        rc);
1892                                 goto out;
1893                         }
1894
1895                         /* Use the return parameters */
1896                         rxq->hw_rxq_prod_addr = ret_params.p_prod;
1897                         rxq->handle = ret_params.p_handle;
1898
1899                         val = &fp->sb_info->sb_virt->pi_array[RX_PI];
1900                         rxq->hw_cons_ptr = val;
1901
1902                         qede_update_rx_prod(edev, rxq);
1903                 }
1904
1905                 if (fp->type & QEDE_FASTPATH_XDP) {
1906                         rc = qede_start_txq(edev, fp, fp->xdp_tx, i, XDP_PI);
1907                         if (rc)
1908                                 goto out;
1909
1910                         fp->rxq->xdp_prog = bpf_prog_add(edev->xdp_prog, 1);
1911                         if (IS_ERR(fp->rxq->xdp_prog)) {
1912                                 rc = PTR_ERR(fp->rxq->xdp_prog);
1913                                 fp->rxq->xdp_prog = NULL;
1914                                 goto out;
1915                         }
1916                 }
1917
1918                 if (fp->type & QEDE_FASTPATH_TX) {
1919                         rc = qede_start_txq(edev, fp, fp->txq, i, TX_PI(0));
1920                         if (rc)
1921                                 goto out;
1922                 }
1923         }
1924
1925         /* Prepare and send the vport enable */
1926         vport_update_params->vport_id = start.vport_id;
1927         vport_update_params->update_vport_active_flg = 1;
1928         vport_update_params->vport_active_flg = 1;
1929
1930         if ((qed_info->mf_mode == QED_MF_NPAR || pci_num_vf(edev->pdev)) &&
1931             qed_info->tx_switching) {
1932                 vport_update_params->update_tx_switching_flg = 1;
1933                 vport_update_params->tx_switching_flg = 1;
1934         }
1935
1936         qede_fill_rss_params(edev, &vport_update_params->rss_params,
1937                              &vport_update_params->update_rss_flg);
1938
1939         rc = edev->ops->vport_update(cdev, vport_update_params);
1940         if (rc)
1941                 DP_ERR(edev, "Update V-PORT failed %d\n", rc);
1942
1943 out:
1944         vfree(vport_update_params);
1945         return rc;
1946 }
1947
1948 enum qede_unload_mode {
1949         QEDE_UNLOAD_NORMAL,
1950 };
1951
1952 static void qede_unload(struct qede_dev *edev, enum qede_unload_mode mode,
1953                         bool is_locked)
1954 {
1955         struct qed_link_params link_params;
1956         int rc;
1957
1958         DP_INFO(edev, "Starting qede unload\n");
1959
1960         if (!is_locked)
1961                 __qede_lock(edev);
1962
1963         edev->state = QEDE_STATE_CLOSED;
1964
1965         qede_rdma_dev_event_close(edev);
1966
1967         /* Close OS Tx */
1968         netif_tx_disable(edev->ndev);
1969         netif_carrier_off(edev->ndev);
1970
1971         /* Reset the link */
1972         memset(&link_params, 0, sizeof(link_params));
1973         link_params.link_up = false;
1974         edev->ops->common->set_link(edev->cdev, &link_params);
1975         rc = qede_stop_queues(edev);
1976         if (rc) {
1977                 qede_sync_free_irqs(edev);
1978                 goto out;
1979         }
1980
1981         DP_INFO(edev, "Stopped Queues\n");
1982
1983         qede_vlan_mark_nonconfigured(edev);
1984         edev->ops->fastpath_stop(edev->cdev);
1985
1986         if (!IS_VF(edev) && edev->dev_info.common.num_hwfns == 1) {
1987                 qede_poll_for_freeing_arfs_filters(edev);
1988                 qede_free_arfs(edev);
1989         }
1990
1991         /* Release the interrupts */
1992         qede_sync_free_irqs(edev);
1993         edev->ops->common->set_fp_int(edev->cdev, 0);
1994
1995         qede_napi_disable_remove(edev);
1996
1997         qede_free_mem_load(edev);
1998         qede_free_fp_array(edev);
1999
2000 out:
2001         if (!is_locked)
2002                 __qede_unlock(edev);
2003         DP_INFO(edev, "Ending qede unload\n");
2004 }
2005
2006 enum qede_load_mode {
2007         QEDE_LOAD_NORMAL,
2008         QEDE_LOAD_RELOAD,
2009 };
2010
2011 static int qede_load(struct qede_dev *edev, enum qede_load_mode mode,
2012                      bool is_locked)
2013 {
2014         struct qed_link_params link_params;
2015         int rc;
2016
2017         DP_INFO(edev, "Starting qede load\n");
2018
2019         if (!is_locked)
2020                 __qede_lock(edev);
2021
2022         rc = qede_set_num_queues(edev);
2023         if (rc)
2024                 goto out;
2025
2026         rc = qede_alloc_fp_array(edev);
2027         if (rc)
2028                 goto out;
2029
2030         qede_init_fp(edev);
2031
2032         rc = qede_alloc_mem_load(edev);
2033         if (rc)
2034                 goto err1;
2035         DP_INFO(edev, "Allocated %d Rx, %d Tx queues\n",
2036                 QEDE_RSS_COUNT(edev), QEDE_TSS_COUNT(edev));
2037
2038         rc = qede_set_real_num_queues(edev);
2039         if (rc)
2040                 goto err2;
2041
2042         if (!IS_VF(edev) && edev->dev_info.common.num_hwfns == 1) {
2043                 rc = qede_alloc_arfs(edev);
2044                 if (rc)
2045                         DP_NOTICE(edev, "aRFS memory allocation failed\n");
2046         }
2047
2048         qede_napi_add_enable(edev);
2049         DP_INFO(edev, "Napi added and enabled\n");
2050
2051         rc = qede_setup_irqs(edev);
2052         if (rc)
2053                 goto err3;
2054         DP_INFO(edev, "Setup IRQs succeeded\n");
2055
2056         rc = qede_start_queues(edev, mode != QEDE_LOAD_RELOAD);
2057         if (rc)
2058                 goto err4;
2059         DP_INFO(edev, "Start VPORT, RXQ and TXQ succeeded\n");
2060
2061         /* Program un-configured VLANs */
2062         qede_configure_vlan_filters(edev);
2063
2064         /* Ask for link-up using current configuration */
2065         memset(&link_params, 0, sizeof(link_params));
2066         link_params.link_up = true;
2067         edev->ops->common->set_link(edev->cdev, &link_params);
2068
2069         edev->state = QEDE_STATE_OPEN;
2070
2071         DP_INFO(edev, "Ending successfully qede load\n");
2072
2073         goto out;
2074 err4:
2075         qede_sync_free_irqs(edev);
2076         memset(&edev->int_info.msix_cnt, 0, sizeof(struct qed_int_info));
2077 err3:
2078         qede_napi_disable_remove(edev);
2079 err2:
2080         qede_free_mem_load(edev);
2081 err1:
2082         edev->ops->common->set_fp_int(edev->cdev, 0);
2083         qede_free_fp_array(edev);
2084         edev->num_queues = 0;
2085         edev->fp_num_tx = 0;
2086         edev->fp_num_rx = 0;
2087 out:
2088         if (!is_locked)
2089                 __qede_unlock(edev);
2090
2091         return rc;
2092 }
2093
2094 /* 'func' should be able to run between unload and reload assuming interface
2095  * is actually running, or afterwards in case it's currently DOWN.
2096  */
2097 void qede_reload(struct qede_dev *edev,
2098                  struct qede_reload_args *args, bool is_locked)
2099 {
2100         if (!is_locked)
2101                 __qede_lock(edev);
2102
2103         /* Since qede_lock is held, internal state wouldn't change even
2104          * if netdev state would start transitioning. Check whether current
2105          * internal configuration indicates device is up, then reload.
2106          */
2107         if (edev->state == QEDE_STATE_OPEN) {
2108                 qede_unload(edev, QEDE_UNLOAD_NORMAL, true);
2109                 if (args)
2110                         args->func(edev, args);
2111                 qede_load(edev, QEDE_LOAD_RELOAD, true);
2112
2113                 /* Since no one is going to do it for us, re-configure */
2114                 qede_config_rx_mode(edev->ndev);
2115         } else if (args) {
2116                 args->func(edev, args);
2117         }
2118
2119         if (!is_locked)
2120                 __qede_unlock(edev);
2121 }
2122
2123 /* called with rtnl_lock */
2124 static int qede_open(struct net_device *ndev)
2125 {
2126         struct qede_dev *edev = netdev_priv(ndev);
2127         int rc;
2128
2129         netif_carrier_off(ndev);
2130
2131         edev->ops->common->set_power_state(edev->cdev, PCI_D0);
2132
2133         rc = qede_load(edev, QEDE_LOAD_NORMAL, false);
2134         if (rc)
2135                 return rc;
2136
2137         udp_tunnel_get_rx_info(ndev);
2138
2139         edev->ops->common->update_drv_state(edev->cdev, true);
2140
2141         return 0;
2142 }
2143
2144 static int qede_close(struct net_device *ndev)
2145 {
2146         struct qede_dev *edev = netdev_priv(ndev);
2147
2148         qede_unload(edev, QEDE_UNLOAD_NORMAL, false);
2149
2150         edev->ops->common->update_drv_state(edev->cdev, false);
2151
2152         return 0;
2153 }
2154
2155 static void qede_link_update(void *dev, struct qed_link_output *link)
2156 {
2157         struct qede_dev *edev = dev;
2158
2159         if (!netif_running(edev->ndev)) {
2160                 DP_VERBOSE(edev, NETIF_MSG_LINK, "Interface is not running\n");
2161                 return;
2162         }
2163
2164         if (link->link_up) {
2165                 if (!netif_carrier_ok(edev->ndev)) {
2166                         DP_NOTICE(edev, "Link is up\n");
2167                         netif_tx_start_all_queues(edev->ndev);
2168                         netif_carrier_on(edev->ndev);
2169                         qede_rdma_dev_event_open(edev);
2170                 }
2171         } else {
2172                 if (netif_carrier_ok(edev->ndev)) {
2173                         DP_NOTICE(edev, "Link is down\n");
2174                         netif_tx_disable(edev->ndev);
2175                         netif_carrier_off(edev->ndev);
2176                         qede_rdma_dev_event_close(edev);
2177                 }
2178         }
2179 }