Linux-libre 5.7.6-gnu
[librecmc/linux-libre.git] / drivers / net / ethernet / neterion / s2io.c
1 /************************************************************************
2  * s2io.c: A Linux PCI-X Ethernet driver for Neterion 10GbE Server NIC
3  * Copyright(c) 2002-2010 Exar Corp.
4  *
5  * This software may be used and distributed according to the terms of
6  * the GNU General Public License (GPL), incorporated herein by reference.
7  * Drivers based on or derived from this code fall under the GPL and must
8  * retain the authorship, copyright and license notice.  This file is not
9  * a complete program and may only be used when the entire operating
10  * system is licensed under the GPL.
11  * See the file COPYING in this distribution for more information.
12  *
13  * Credits:
14  * Jeff Garzik          : For pointing out the improper error condition
15  *                        check in the s2io_xmit routine and also some
16  *                        issues in the Tx watch dog function. Also for
17  *                        patiently answering all those innumerable
18  *                        questions regaring the 2.6 porting issues.
19  * Stephen Hemminger    : Providing proper 2.6 porting mechanism for some
20  *                        macros available only in 2.6 Kernel.
21  * Francois Romieu      : For pointing out all code part that were
22  *                        deprecated and also styling related comments.
23  * Grant Grundler       : For helping me get rid of some Architecture
24  *                        dependent code.
25  * Christopher Hellwig  : Some more 2.6 specific issues in the driver.
26  *
27  * The module loadable parameters that are supported by the driver and a brief
28  * explanation of all the variables.
29  *
30  * rx_ring_num : This can be used to program the number of receive rings used
31  * in the driver.
32  * rx_ring_sz: This defines the number of receive blocks each ring can have.
33  *     This is also an array of size 8.
34  * rx_ring_mode: This defines the operation mode of all 8 rings. The valid
35  *              values are 1, 2.
36  * tx_fifo_num: This defines the number of Tx FIFOs thats used int the driver.
37  * tx_fifo_len: This too is an array of 8. Each element defines the number of
38  * Tx descriptors that can be associated with each corresponding FIFO.
39  * intr_type: This defines the type of interrupt. The values can be 0(INTA),
40  *     2(MSI_X). Default value is '2(MSI_X)'
41  * lro_max_pkts: This parameter defines maximum number of packets can be
42  *     aggregated as a single large packet
43  * napi: This parameter used to enable/disable NAPI (polling Rx)
44  *     Possible values '1' for enable and '0' for disable. Default is '1'
45  * vlan_tag_strip: This can be used to enable or disable vlan stripping.
46  *                 Possible values '1' for enable , '0' for disable.
47  *                 Default is '2' - which means disable in promisc mode
48  *                 and enable in non-promiscuous mode.
49  * multiq: This parameter used to enable/disable MULTIQUEUE support.
50  *      Possible values '1' for enable and '0' for disable. Default is '0'
51  ************************************************************************/
52
53 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
54
55 #include <linux/module.h>
56 #include <linux/types.h>
57 #include <linux/errno.h>
58 #include <linux/ioport.h>
59 #include <linux/pci.h>
60 #include <linux/dma-mapping.h>
61 #include <linux/kernel.h>
62 #include <linux/netdevice.h>
63 #include <linux/etherdevice.h>
64 #include <linux/mdio.h>
65 #include <linux/skbuff.h>
66 #include <linux/init.h>
67 #include <linux/delay.h>
68 #include <linux/stddef.h>
69 #include <linux/ioctl.h>
70 #include <linux/timex.h>
71 #include <linux/ethtool.h>
72 #include <linux/workqueue.h>
73 #include <linux/if_vlan.h>
74 #include <linux/ip.h>
75 #include <linux/tcp.h>
76 #include <linux/uaccess.h>
77 #include <linux/io.h>
78 #include <linux/io-64-nonatomic-lo-hi.h>
79 #include <linux/slab.h>
80 #include <linux/prefetch.h>
81 #include <net/tcp.h>
82 #include <net/checksum.h>
83
84 #include <asm/div64.h>
85 #include <asm/irq.h>
86
87 /* local include */
88 #include "s2io.h"
89 #include "s2io-regs.h"
90
91 #define DRV_VERSION "2.0.26.28"
92
93 /* S2io Driver name & version. */
94 static const char s2io_driver_name[] = "Neterion";
95 static const char s2io_driver_version[] = DRV_VERSION;
96
97 static const int rxd_size[2] = {32, 48};
98 static const int rxd_count[2] = {127, 85};
99
100 static inline int RXD_IS_UP2DT(struct RxD_t *rxdp)
101 {
102         int ret;
103
104         ret = ((!(rxdp->Control_1 & RXD_OWN_XENA)) &&
105                (GET_RXD_MARKER(rxdp->Control_2) != THE_RXD_MARK));
106
107         return ret;
108 }
109
110 /*
111  * Cards with following subsystem_id have a link state indication
112  * problem, 600B, 600C, 600D, 640B, 640C and 640D.
113  * macro below identifies these cards given the subsystem_id.
114  */
115 #define CARDS_WITH_FAULTY_LINK_INDICATORS(dev_type, subid)              \
116         (dev_type == XFRAME_I_DEVICE) ?                                 \
117         ((((subid >= 0x600B) && (subid <= 0x600D)) ||                   \
118           ((subid >= 0x640B) && (subid <= 0x640D))) ? 1 : 0) : 0
119
120 #define LINK_IS_UP(val64) (!(val64 & (ADAPTER_STATUS_RMAC_REMOTE_FAULT | \
121                                       ADAPTER_STATUS_RMAC_LOCAL_FAULT)))
122
123 static inline int is_s2io_card_up(const struct s2io_nic *sp)
124 {
125         return test_bit(__S2IO_STATE_CARD_UP, &sp->state);
126 }
127
128 /* Ethtool related variables and Macros. */
129 static const char s2io_gstrings[][ETH_GSTRING_LEN] = {
130         "Register test\t(offline)",
131         "Eeprom test\t(offline)",
132         "Link test\t(online)",
133         "RLDRAM test\t(offline)",
134         "BIST Test\t(offline)"
135 };
136
137 static const char ethtool_xena_stats_keys[][ETH_GSTRING_LEN] = {
138         {"tmac_frms"},
139         {"tmac_data_octets"},
140         {"tmac_drop_frms"},
141         {"tmac_mcst_frms"},
142         {"tmac_bcst_frms"},
143         {"tmac_pause_ctrl_frms"},
144         {"tmac_ttl_octets"},
145         {"tmac_ucst_frms"},
146         {"tmac_nucst_frms"},
147         {"tmac_any_err_frms"},
148         {"tmac_ttl_less_fb_octets"},
149         {"tmac_vld_ip_octets"},
150         {"tmac_vld_ip"},
151         {"tmac_drop_ip"},
152         {"tmac_icmp"},
153         {"tmac_rst_tcp"},
154         {"tmac_tcp"},
155         {"tmac_udp"},
156         {"rmac_vld_frms"},
157         {"rmac_data_octets"},
158         {"rmac_fcs_err_frms"},
159         {"rmac_drop_frms"},
160         {"rmac_vld_mcst_frms"},
161         {"rmac_vld_bcst_frms"},
162         {"rmac_in_rng_len_err_frms"},
163         {"rmac_out_rng_len_err_frms"},
164         {"rmac_long_frms"},
165         {"rmac_pause_ctrl_frms"},
166         {"rmac_unsup_ctrl_frms"},
167         {"rmac_ttl_octets"},
168         {"rmac_accepted_ucst_frms"},
169         {"rmac_accepted_nucst_frms"},
170         {"rmac_discarded_frms"},
171         {"rmac_drop_events"},
172         {"rmac_ttl_less_fb_octets"},
173         {"rmac_ttl_frms"},
174         {"rmac_usized_frms"},
175         {"rmac_osized_frms"},
176         {"rmac_frag_frms"},
177         {"rmac_jabber_frms"},
178         {"rmac_ttl_64_frms"},
179         {"rmac_ttl_65_127_frms"},
180         {"rmac_ttl_128_255_frms"},
181         {"rmac_ttl_256_511_frms"},
182         {"rmac_ttl_512_1023_frms"},
183         {"rmac_ttl_1024_1518_frms"},
184         {"rmac_ip"},
185         {"rmac_ip_octets"},
186         {"rmac_hdr_err_ip"},
187         {"rmac_drop_ip"},
188         {"rmac_icmp"},
189         {"rmac_tcp"},
190         {"rmac_udp"},
191         {"rmac_err_drp_udp"},
192         {"rmac_xgmii_err_sym"},
193         {"rmac_frms_q0"},
194         {"rmac_frms_q1"},
195         {"rmac_frms_q2"},
196         {"rmac_frms_q3"},
197         {"rmac_frms_q4"},
198         {"rmac_frms_q5"},
199         {"rmac_frms_q6"},
200         {"rmac_frms_q7"},
201         {"rmac_full_q0"},
202         {"rmac_full_q1"},
203         {"rmac_full_q2"},
204         {"rmac_full_q3"},
205         {"rmac_full_q4"},
206         {"rmac_full_q5"},
207         {"rmac_full_q6"},
208         {"rmac_full_q7"},
209         {"rmac_pause_cnt"},
210         {"rmac_xgmii_data_err_cnt"},
211         {"rmac_xgmii_ctrl_err_cnt"},
212         {"rmac_accepted_ip"},
213         {"rmac_err_tcp"},
214         {"rd_req_cnt"},
215         {"new_rd_req_cnt"},
216         {"new_rd_req_rtry_cnt"},
217         {"rd_rtry_cnt"},
218         {"wr_rtry_rd_ack_cnt"},
219         {"wr_req_cnt"},
220         {"new_wr_req_cnt"},
221         {"new_wr_req_rtry_cnt"},
222         {"wr_rtry_cnt"},
223         {"wr_disc_cnt"},
224         {"rd_rtry_wr_ack_cnt"},
225         {"txp_wr_cnt"},
226         {"txd_rd_cnt"},
227         {"txd_wr_cnt"},
228         {"rxd_rd_cnt"},
229         {"rxd_wr_cnt"},
230         {"txf_rd_cnt"},
231         {"rxf_wr_cnt"}
232 };
233
234 static const char ethtool_enhanced_stats_keys[][ETH_GSTRING_LEN] = {
235         {"rmac_ttl_1519_4095_frms"},
236         {"rmac_ttl_4096_8191_frms"},
237         {"rmac_ttl_8192_max_frms"},
238         {"rmac_ttl_gt_max_frms"},
239         {"rmac_osized_alt_frms"},
240         {"rmac_jabber_alt_frms"},
241         {"rmac_gt_max_alt_frms"},
242         {"rmac_vlan_frms"},
243         {"rmac_len_discard"},
244         {"rmac_fcs_discard"},
245         {"rmac_pf_discard"},
246         {"rmac_da_discard"},
247         {"rmac_red_discard"},
248         {"rmac_rts_discard"},
249         {"rmac_ingm_full_discard"},
250         {"link_fault_cnt"}
251 };
252
253 static const char ethtool_driver_stats_keys[][ETH_GSTRING_LEN] = {
254         {"\n DRIVER STATISTICS"},
255         {"single_bit_ecc_errs"},
256         {"double_bit_ecc_errs"},
257         {"parity_err_cnt"},
258         {"serious_err_cnt"},
259         {"soft_reset_cnt"},
260         {"fifo_full_cnt"},
261         {"ring_0_full_cnt"},
262         {"ring_1_full_cnt"},
263         {"ring_2_full_cnt"},
264         {"ring_3_full_cnt"},
265         {"ring_4_full_cnt"},
266         {"ring_5_full_cnt"},
267         {"ring_6_full_cnt"},
268         {"ring_7_full_cnt"},
269         {"alarm_transceiver_temp_high"},
270         {"alarm_transceiver_temp_low"},
271         {"alarm_laser_bias_current_high"},
272         {"alarm_laser_bias_current_low"},
273         {"alarm_laser_output_power_high"},
274         {"alarm_laser_output_power_low"},
275         {"warn_transceiver_temp_high"},
276         {"warn_transceiver_temp_low"},
277         {"warn_laser_bias_current_high"},
278         {"warn_laser_bias_current_low"},
279         {"warn_laser_output_power_high"},
280         {"warn_laser_output_power_low"},
281         {"lro_aggregated_pkts"},
282         {"lro_flush_both_count"},
283         {"lro_out_of_sequence_pkts"},
284         {"lro_flush_due_to_max_pkts"},
285         {"lro_avg_aggr_pkts"},
286         {"mem_alloc_fail_cnt"},
287         {"pci_map_fail_cnt"},
288         {"watchdog_timer_cnt"},
289         {"mem_allocated"},
290         {"mem_freed"},
291         {"link_up_cnt"},
292         {"link_down_cnt"},
293         {"link_up_time"},
294         {"link_down_time"},
295         {"tx_tcode_buf_abort_cnt"},
296         {"tx_tcode_desc_abort_cnt"},
297         {"tx_tcode_parity_err_cnt"},
298         {"tx_tcode_link_loss_cnt"},
299         {"tx_tcode_list_proc_err_cnt"},
300         {"rx_tcode_parity_err_cnt"},
301         {"rx_tcode_abort_cnt"},
302         {"rx_tcode_parity_abort_cnt"},
303         {"rx_tcode_rda_fail_cnt"},
304         {"rx_tcode_unkn_prot_cnt"},
305         {"rx_tcode_fcs_err_cnt"},
306         {"rx_tcode_buf_size_err_cnt"},
307         {"rx_tcode_rxd_corrupt_cnt"},
308         {"rx_tcode_unkn_err_cnt"},
309         {"tda_err_cnt"},
310         {"pfc_err_cnt"},
311         {"pcc_err_cnt"},
312         {"tti_err_cnt"},
313         {"tpa_err_cnt"},
314         {"sm_err_cnt"},
315         {"lso_err_cnt"},
316         {"mac_tmac_err_cnt"},
317         {"mac_rmac_err_cnt"},
318         {"xgxs_txgxs_err_cnt"},
319         {"xgxs_rxgxs_err_cnt"},
320         {"rc_err_cnt"},
321         {"prc_pcix_err_cnt"},
322         {"rpa_err_cnt"},
323         {"rda_err_cnt"},
324         {"rti_err_cnt"},
325         {"mc_err_cnt"}
326 };
327
328 #define S2IO_XENA_STAT_LEN      ARRAY_SIZE(ethtool_xena_stats_keys)
329 #define S2IO_ENHANCED_STAT_LEN  ARRAY_SIZE(ethtool_enhanced_stats_keys)
330 #define S2IO_DRIVER_STAT_LEN    ARRAY_SIZE(ethtool_driver_stats_keys)
331
332 #define XFRAME_I_STAT_LEN (S2IO_XENA_STAT_LEN + S2IO_DRIVER_STAT_LEN)
333 #define XFRAME_II_STAT_LEN (XFRAME_I_STAT_LEN + S2IO_ENHANCED_STAT_LEN)
334
335 #define XFRAME_I_STAT_STRINGS_LEN (XFRAME_I_STAT_LEN * ETH_GSTRING_LEN)
336 #define XFRAME_II_STAT_STRINGS_LEN (XFRAME_II_STAT_LEN * ETH_GSTRING_LEN)
337
338 #define S2IO_TEST_LEN   ARRAY_SIZE(s2io_gstrings)
339 #define S2IO_STRINGS_LEN        (S2IO_TEST_LEN * ETH_GSTRING_LEN)
340
341 /* copy mac addr to def_mac_addr array */
342 static void do_s2io_copy_mac_addr(struct s2io_nic *sp, int offset, u64 mac_addr)
343 {
344         sp->def_mac_addr[offset].mac_addr[5] = (u8) (mac_addr);
345         sp->def_mac_addr[offset].mac_addr[4] = (u8) (mac_addr >> 8);
346         sp->def_mac_addr[offset].mac_addr[3] = (u8) (mac_addr >> 16);
347         sp->def_mac_addr[offset].mac_addr[2] = (u8) (mac_addr >> 24);
348         sp->def_mac_addr[offset].mac_addr[1] = (u8) (mac_addr >> 32);
349         sp->def_mac_addr[offset].mac_addr[0] = (u8) (mac_addr >> 40);
350 }
351
352 /*
353  * Constants to be programmed into the Xena's registers, to configure
354  * the XAUI.
355  */
356
357 #define END_SIGN        0x0
358 static const u64 herc_act_dtx_cfg[] = {
359         /* Set address */
360         0x8000051536750000ULL, 0x80000515367500E0ULL,
361         /* Write data */
362         0x8000051536750004ULL, 0x80000515367500E4ULL,
363         /* Set address */
364         0x80010515003F0000ULL, 0x80010515003F00E0ULL,
365         /* Write data */
366         0x80010515003F0004ULL, 0x80010515003F00E4ULL,
367         /* Set address */
368         0x801205150D440000ULL, 0x801205150D4400E0ULL,
369         /* Write data */
370         0x801205150D440004ULL, 0x801205150D4400E4ULL,
371         /* Set address */
372         0x80020515F2100000ULL, 0x80020515F21000E0ULL,
373         /* Write data */
374         0x80020515F2100004ULL, 0x80020515F21000E4ULL,
375         /* Done */
376         END_SIGN
377 };
378
379 static const u64 xena_dtx_cfg[] = {
380         /* Set address */
381         0x8000051500000000ULL, 0x80000515000000E0ULL,
382         /* Write data */
383         0x80000515D9350004ULL, 0x80000515D93500E4ULL,
384         /* Set address */
385         0x8001051500000000ULL, 0x80010515000000E0ULL,
386         /* Write data */
387         0x80010515001E0004ULL, 0x80010515001E00E4ULL,
388         /* Set address */
389         0x8002051500000000ULL, 0x80020515000000E0ULL,
390         /* Write data */
391         0x80020515F2100004ULL, 0x80020515F21000E4ULL,
392         END_SIGN
393 };
394
395 /*
396  * Constants for Fixing the MacAddress problem seen mostly on
397  * Alpha machines.
398  */
399 static const u64 fix_mac[] = {
400         0x0060000000000000ULL, 0x0060600000000000ULL,
401         0x0040600000000000ULL, 0x0000600000000000ULL,
402         0x0020600000000000ULL, 0x0060600000000000ULL,
403         0x0020600000000000ULL, 0x0060600000000000ULL,
404         0x0020600000000000ULL, 0x0060600000000000ULL,
405         0x0020600000000000ULL, 0x0060600000000000ULL,
406         0x0020600000000000ULL, 0x0060600000000000ULL,
407         0x0020600000000000ULL, 0x0060600000000000ULL,
408         0x0020600000000000ULL, 0x0060600000000000ULL,
409         0x0020600000000000ULL, 0x0060600000000000ULL,
410         0x0020600000000000ULL, 0x0060600000000000ULL,
411         0x0020600000000000ULL, 0x0060600000000000ULL,
412         0x0020600000000000ULL, 0x0000600000000000ULL,
413         0x0040600000000000ULL, 0x0060600000000000ULL,
414         END_SIGN
415 };
416
417 MODULE_LICENSE("GPL");
418 MODULE_VERSION(DRV_VERSION);
419
420
421 /* Module Loadable parameters. */
422 S2IO_PARM_INT(tx_fifo_num, FIFO_DEFAULT_NUM);
423 S2IO_PARM_INT(rx_ring_num, 1);
424 S2IO_PARM_INT(multiq, 0);
425 S2IO_PARM_INT(rx_ring_mode, 1);
426 S2IO_PARM_INT(use_continuous_tx_intrs, 1);
427 S2IO_PARM_INT(rmac_pause_time, 0x100);
428 S2IO_PARM_INT(mc_pause_threshold_q0q3, 187);
429 S2IO_PARM_INT(mc_pause_threshold_q4q7, 187);
430 S2IO_PARM_INT(shared_splits, 0);
431 S2IO_PARM_INT(tmac_util_period, 5);
432 S2IO_PARM_INT(rmac_util_period, 5);
433 S2IO_PARM_INT(l3l4hdr_size, 128);
434 /* 0 is no steering, 1 is Priority steering, 2 is Default steering */
435 S2IO_PARM_INT(tx_steering_type, TX_DEFAULT_STEERING);
436 /* Frequency of Rx desc syncs expressed as power of 2 */
437 S2IO_PARM_INT(rxsync_frequency, 3);
438 /* Interrupt type. Values can be 0(INTA), 2(MSI_X) */
439 S2IO_PARM_INT(intr_type, 2);
440 /* Large receive offload feature */
441
442 /* Max pkts to be aggregated by LRO at one time. If not specified,
443  * aggregation happens until we hit max IP pkt size(64K)
444  */
445 S2IO_PARM_INT(lro_max_pkts, 0xFFFF);
446 S2IO_PARM_INT(indicate_max_pkts, 0);
447
448 S2IO_PARM_INT(napi, 1);
449 S2IO_PARM_INT(vlan_tag_strip, NO_STRIP_IN_PROMISC);
450
451 static unsigned int tx_fifo_len[MAX_TX_FIFOS] =
452 {DEFAULT_FIFO_0_LEN, [1 ...(MAX_TX_FIFOS - 1)] = DEFAULT_FIFO_1_7_LEN};
453 static unsigned int rx_ring_sz[MAX_RX_RINGS] =
454 {[0 ...(MAX_RX_RINGS - 1)] = SMALL_BLK_CNT};
455 static unsigned int rts_frm_len[MAX_RX_RINGS] =
456 {[0 ...(MAX_RX_RINGS - 1)] = 0 };
457
458 module_param_array(tx_fifo_len, uint, NULL, 0);
459 module_param_array(rx_ring_sz, uint, NULL, 0);
460 module_param_array(rts_frm_len, uint, NULL, 0);
461
462 /*
463  * S2IO device table.
464  * This table lists all the devices that this driver supports.
465  */
466 static const struct pci_device_id s2io_tbl[] = {
467         {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_WIN,
468          PCI_ANY_ID, PCI_ANY_ID},
469         {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_UNI,
470          PCI_ANY_ID, PCI_ANY_ID},
471         {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_WIN,
472          PCI_ANY_ID, PCI_ANY_ID},
473         {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_UNI,
474          PCI_ANY_ID, PCI_ANY_ID},
475         {0,}
476 };
477
478 MODULE_DEVICE_TABLE(pci, s2io_tbl);
479
480 static const struct pci_error_handlers s2io_err_handler = {
481         .error_detected = s2io_io_error_detected,
482         .slot_reset = s2io_io_slot_reset,
483         .resume = s2io_io_resume,
484 };
485
486 static struct pci_driver s2io_driver = {
487         .name = "S2IO",
488         .id_table = s2io_tbl,
489         .probe = s2io_init_nic,
490         .remove = s2io_rem_nic,
491         .err_handler = &s2io_err_handler,
492 };
493
494 /* A simplifier macro used both by init and free shared_mem Fns(). */
495 #define TXD_MEM_PAGE_CNT(len, per_each) DIV_ROUND_UP(len, per_each)
496
497 /* netqueue manipulation helper functions */
498 static inline void s2io_stop_all_tx_queue(struct s2io_nic *sp)
499 {
500         if (!sp->config.multiq) {
501                 int i;
502
503                 for (i = 0; i < sp->config.tx_fifo_num; i++)
504                         sp->mac_control.fifos[i].queue_state = FIFO_QUEUE_STOP;
505         }
506         netif_tx_stop_all_queues(sp->dev);
507 }
508
509 static inline void s2io_stop_tx_queue(struct s2io_nic *sp, int fifo_no)
510 {
511         if (!sp->config.multiq)
512                 sp->mac_control.fifos[fifo_no].queue_state =
513                         FIFO_QUEUE_STOP;
514
515         netif_tx_stop_all_queues(sp->dev);
516 }
517
518 static inline void s2io_start_all_tx_queue(struct s2io_nic *sp)
519 {
520         if (!sp->config.multiq) {
521                 int i;
522
523                 for (i = 0; i < sp->config.tx_fifo_num; i++)
524                         sp->mac_control.fifos[i].queue_state = FIFO_QUEUE_START;
525         }
526         netif_tx_start_all_queues(sp->dev);
527 }
528
529 static inline void s2io_wake_all_tx_queue(struct s2io_nic *sp)
530 {
531         if (!sp->config.multiq) {
532                 int i;
533
534                 for (i = 0; i < sp->config.tx_fifo_num; i++)
535                         sp->mac_control.fifos[i].queue_state = FIFO_QUEUE_START;
536         }
537         netif_tx_wake_all_queues(sp->dev);
538 }
539
540 static inline void s2io_wake_tx_queue(
541         struct fifo_info *fifo, int cnt, u8 multiq)
542 {
543
544         if (multiq) {
545                 if (cnt && __netif_subqueue_stopped(fifo->dev, fifo->fifo_no))
546                         netif_wake_subqueue(fifo->dev, fifo->fifo_no);
547         } else if (cnt && (fifo->queue_state == FIFO_QUEUE_STOP)) {
548                 if (netif_queue_stopped(fifo->dev)) {
549                         fifo->queue_state = FIFO_QUEUE_START;
550                         netif_wake_queue(fifo->dev);
551                 }
552         }
553 }
554
555 /**
556  * init_shared_mem - Allocation and Initialization of Memory
557  * @nic: Device private variable.
558  * Description: The function allocates all the memory areas shared
559  * between the NIC and the driver. This includes Tx descriptors,
560  * Rx descriptors and the statistics block.
561  */
562
563 static int init_shared_mem(struct s2io_nic *nic)
564 {
565         u32 size;
566         void *tmp_v_addr, *tmp_v_addr_next;
567         dma_addr_t tmp_p_addr, tmp_p_addr_next;
568         struct RxD_block *pre_rxd_blk = NULL;
569         int i, j, blk_cnt;
570         int lst_size, lst_per_page;
571         struct net_device *dev = nic->dev;
572         unsigned long tmp;
573         struct buffAdd *ba;
574         struct config_param *config = &nic->config;
575         struct mac_info *mac_control = &nic->mac_control;
576         unsigned long long mem_allocated = 0;
577
578         /* Allocation and initialization of TXDLs in FIFOs */
579         size = 0;
580         for (i = 0; i < config->tx_fifo_num; i++) {
581                 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
582
583                 size += tx_cfg->fifo_len;
584         }
585         if (size > MAX_AVAILABLE_TXDS) {
586                 DBG_PRINT(ERR_DBG,
587                           "Too many TxDs requested: %d, max supported: %d\n",
588                           size, MAX_AVAILABLE_TXDS);
589                 return -EINVAL;
590         }
591
592         size = 0;
593         for (i = 0; i < config->tx_fifo_num; i++) {
594                 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
595
596                 size = tx_cfg->fifo_len;
597                 /*
598                  * Legal values are from 2 to 8192
599                  */
600                 if (size < 2) {
601                         DBG_PRINT(ERR_DBG, "Fifo %d: Invalid length (%d) - "
602                                   "Valid lengths are 2 through 8192\n",
603                                   i, size);
604                         return -EINVAL;
605                 }
606         }
607
608         lst_size = (sizeof(struct TxD) * config->max_txds);
609         lst_per_page = PAGE_SIZE / lst_size;
610
611         for (i = 0; i < config->tx_fifo_num; i++) {
612                 struct fifo_info *fifo = &mac_control->fifos[i];
613                 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
614                 int fifo_len = tx_cfg->fifo_len;
615                 int list_holder_size = fifo_len * sizeof(struct list_info_hold);
616
617                 fifo->list_info = kzalloc(list_holder_size, GFP_KERNEL);
618                 if (!fifo->list_info) {
619                         DBG_PRINT(INFO_DBG, "Malloc failed for list_info\n");
620                         return -ENOMEM;
621                 }
622                 mem_allocated += list_holder_size;
623         }
624         for (i = 0; i < config->tx_fifo_num; i++) {
625                 int page_num = TXD_MEM_PAGE_CNT(config->tx_cfg[i].fifo_len,
626                                                 lst_per_page);
627                 struct fifo_info *fifo = &mac_control->fifos[i];
628                 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
629
630                 fifo->tx_curr_put_info.offset = 0;
631                 fifo->tx_curr_put_info.fifo_len = tx_cfg->fifo_len - 1;
632                 fifo->tx_curr_get_info.offset = 0;
633                 fifo->tx_curr_get_info.fifo_len = tx_cfg->fifo_len - 1;
634                 fifo->fifo_no = i;
635                 fifo->nic = nic;
636                 fifo->max_txds = MAX_SKB_FRAGS + 2;
637                 fifo->dev = dev;
638
639                 for (j = 0; j < page_num; j++) {
640                         int k = 0;
641                         dma_addr_t tmp_p;
642                         void *tmp_v;
643                         tmp_v = pci_alloc_consistent(nic->pdev,
644                                                      PAGE_SIZE, &tmp_p);
645                         if (!tmp_v) {
646                                 DBG_PRINT(INFO_DBG,
647                                           "pci_alloc_consistent failed for TxDL\n");
648                                 return -ENOMEM;
649                         }
650                         /* If we got a zero DMA address(can happen on
651                          * certain platforms like PPC), reallocate.
652                          * Store virtual address of page we don't want,
653                          * to be freed later.
654                          */
655                         if (!tmp_p) {
656                                 mac_control->zerodma_virt_addr = tmp_v;
657                                 DBG_PRINT(INIT_DBG,
658                                           "%s: Zero DMA address for TxDL. "
659                                           "Virtual address %p\n",
660                                           dev->name, tmp_v);
661                                 tmp_v = pci_alloc_consistent(nic->pdev,
662                                                              PAGE_SIZE, &tmp_p);
663                                 if (!tmp_v) {
664                                         DBG_PRINT(INFO_DBG,
665                                                   "pci_alloc_consistent failed for TxDL\n");
666                                         return -ENOMEM;
667                                 }
668                                 mem_allocated += PAGE_SIZE;
669                         }
670                         while (k < lst_per_page) {
671                                 int l = (j * lst_per_page) + k;
672                                 if (l == tx_cfg->fifo_len)
673                                         break;
674                                 fifo->list_info[l].list_virt_addr =
675                                         tmp_v + (k * lst_size);
676                                 fifo->list_info[l].list_phy_addr =
677                                         tmp_p + (k * lst_size);
678                                 k++;
679                         }
680                 }
681         }
682
683         for (i = 0; i < config->tx_fifo_num; i++) {
684                 struct fifo_info *fifo = &mac_control->fifos[i];
685                 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
686
687                 size = tx_cfg->fifo_len;
688                 fifo->ufo_in_band_v = kcalloc(size, sizeof(u64), GFP_KERNEL);
689                 if (!fifo->ufo_in_band_v)
690                         return -ENOMEM;
691                 mem_allocated += (size * sizeof(u64));
692         }
693
694         /* Allocation and initialization of RXDs in Rings */
695         size = 0;
696         for (i = 0; i < config->rx_ring_num; i++) {
697                 struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
698                 struct ring_info *ring = &mac_control->rings[i];
699
700                 if (rx_cfg->num_rxd % (rxd_count[nic->rxd_mode] + 1)) {
701                         DBG_PRINT(ERR_DBG, "%s: Ring%d RxD count is not a "
702                                   "multiple of RxDs per Block\n",
703                                   dev->name, i);
704                         return FAILURE;
705                 }
706                 size += rx_cfg->num_rxd;
707                 ring->block_count = rx_cfg->num_rxd /
708                         (rxd_count[nic->rxd_mode] + 1);
709                 ring->pkt_cnt = rx_cfg->num_rxd - ring->block_count;
710         }
711         if (nic->rxd_mode == RXD_MODE_1)
712                 size = (size * (sizeof(struct RxD1)));
713         else
714                 size = (size * (sizeof(struct RxD3)));
715
716         for (i = 0; i < config->rx_ring_num; i++) {
717                 struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
718                 struct ring_info *ring = &mac_control->rings[i];
719
720                 ring->rx_curr_get_info.block_index = 0;
721                 ring->rx_curr_get_info.offset = 0;
722                 ring->rx_curr_get_info.ring_len = rx_cfg->num_rxd - 1;
723                 ring->rx_curr_put_info.block_index = 0;
724                 ring->rx_curr_put_info.offset = 0;
725                 ring->rx_curr_put_info.ring_len = rx_cfg->num_rxd - 1;
726                 ring->nic = nic;
727                 ring->ring_no = i;
728
729                 blk_cnt = rx_cfg->num_rxd / (rxd_count[nic->rxd_mode] + 1);
730                 /*  Allocating all the Rx blocks */
731                 for (j = 0; j < blk_cnt; j++) {
732                         struct rx_block_info *rx_blocks;
733                         int l;
734
735                         rx_blocks = &ring->rx_blocks[j];
736                         size = SIZE_OF_BLOCK;   /* size is always page size */
737                         tmp_v_addr = pci_alloc_consistent(nic->pdev, size,
738                                                           &tmp_p_addr);
739                         if (tmp_v_addr == NULL) {
740                                 /*
741                                  * In case of failure, free_shared_mem()
742                                  * is called, which should free any
743                                  * memory that was alloced till the
744                                  * failure happened.
745                                  */
746                                 rx_blocks->block_virt_addr = tmp_v_addr;
747                                 return -ENOMEM;
748                         }
749                         mem_allocated += size;
750
751                         size = sizeof(struct rxd_info) *
752                                 rxd_count[nic->rxd_mode];
753                         rx_blocks->block_virt_addr = tmp_v_addr;
754                         rx_blocks->block_dma_addr = tmp_p_addr;
755                         rx_blocks->rxds = kmalloc(size,  GFP_KERNEL);
756                         if (!rx_blocks->rxds)
757                                 return -ENOMEM;
758                         mem_allocated += size;
759                         for (l = 0; l < rxd_count[nic->rxd_mode]; l++) {
760                                 rx_blocks->rxds[l].virt_addr =
761                                         rx_blocks->block_virt_addr +
762                                         (rxd_size[nic->rxd_mode] * l);
763                                 rx_blocks->rxds[l].dma_addr =
764                                         rx_blocks->block_dma_addr +
765                                         (rxd_size[nic->rxd_mode] * l);
766                         }
767                 }
768                 /* Interlinking all Rx Blocks */
769                 for (j = 0; j < blk_cnt; j++) {
770                         int next = (j + 1) % blk_cnt;
771                         tmp_v_addr = ring->rx_blocks[j].block_virt_addr;
772                         tmp_v_addr_next = ring->rx_blocks[next].block_virt_addr;
773                         tmp_p_addr = ring->rx_blocks[j].block_dma_addr;
774                         tmp_p_addr_next = ring->rx_blocks[next].block_dma_addr;
775
776                         pre_rxd_blk = tmp_v_addr;
777                         pre_rxd_blk->reserved_2_pNext_RxD_block =
778                                 (unsigned long)tmp_v_addr_next;
779                         pre_rxd_blk->pNext_RxD_Blk_physical =
780                                 (u64)tmp_p_addr_next;
781                 }
782         }
783         if (nic->rxd_mode == RXD_MODE_3B) {
784                 /*
785                  * Allocation of Storages for buffer addresses in 2BUFF mode
786                  * and the buffers as well.
787                  */
788                 for (i = 0; i < config->rx_ring_num; i++) {
789                         struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
790                         struct ring_info *ring = &mac_control->rings[i];
791
792                         blk_cnt = rx_cfg->num_rxd /
793                                 (rxd_count[nic->rxd_mode] + 1);
794                         size = sizeof(struct buffAdd *) * blk_cnt;
795                         ring->ba = kmalloc(size, GFP_KERNEL);
796                         if (!ring->ba)
797                                 return -ENOMEM;
798                         mem_allocated += size;
799                         for (j = 0; j < blk_cnt; j++) {
800                                 int k = 0;
801
802                                 size = sizeof(struct buffAdd) *
803                                         (rxd_count[nic->rxd_mode] + 1);
804                                 ring->ba[j] = kmalloc(size, GFP_KERNEL);
805                                 if (!ring->ba[j])
806                                         return -ENOMEM;
807                                 mem_allocated += size;
808                                 while (k != rxd_count[nic->rxd_mode]) {
809                                         ba = &ring->ba[j][k];
810                                         size = BUF0_LEN + ALIGN_SIZE;
811                                         ba->ba_0_org = kmalloc(size, GFP_KERNEL);
812                                         if (!ba->ba_0_org)
813                                                 return -ENOMEM;
814                                         mem_allocated += size;
815                                         tmp = (unsigned long)ba->ba_0_org;
816                                         tmp += ALIGN_SIZE;
817                                         tmp &= ~((unsigned long)ALIGN_SIZE);
818                                         ba->ba_0 = (void *)tmp;
819
820                                         size = BUF1_LEN + ALIGN_SIZE;
821                                         ba->ba_1_org = kmalloc(size, GFP_KERNEL);
822                                         if (!ba->ba_1_org)
823                                                 return -ENOMEM;
824                                         mem_allocated += size;
825                                         tmp = (unsigned long)ba->ba_1_org;
826                                         tmp += ALIGN_SIZE;
827                                         tmp &= ~((unsigned long)ALIGN_SIZE);
828                                         ba->ba_1 = (void *)tmp;
829                                         k++;
830                                 }
831                         }
832                 }
833         }
834
835         /* Allocation and initialization of Statistics block */
836         size = sizeof(struct stat_block);
837         mac_control->stats_mem =
838                 pci_alloc_consistent(nic->pdev, size,
839                                      &mac_control->stats_mem_phy);
840
841         if (!mac_control->stats_mem) {
842                 /*
843                  * In case of failure, free_shared_mem() is called, which
844                  * should free any memory that was alloced till the
845                  * failure happened.
846                  */
847                 return -ENOMEM;
848         }
849         mem_allocated += size;
850         mac_control->stats_mem_sz = size;
851
852         tmp_v_addr = mac_control->stats_mem;
853         mac_control->stats_info = tmp_v_addr;
854         memset(tmp_v_addr, 0, size);
855         DBG_PRINT(INIT_DBG, "%s: Ring Mem PHY: 0x%llx\n",
856                 dev_name(&nic->pdev->dev), (unsigned long long)tmp_p_addr);
857         mac_control->stats_info->sw_stat.mem_allocated += mem_allocated;
858         return SUCCESS;
859 }
860
861 /**
862  * free_shared_mem - Free the allocated Memory
863  * @nic:  Device private variable.
864  * Description: This function is to free all memory locations allocated by
865  * the init_shared_mem() function and return it to the kernel.
866  */
867
868 static void free_shared_mem(struct s2io_nic *nic)
869 {
870         int i, j, blk_cnt, size;
871         void *tmp_v_addr;
872         dma_addr_t tmp_p_addr;
873         int lst_size, lst_per_page;
874         struct net_device *dev;
875         int page_num = 0;
876         struct config_param *config;
877         struct mac_info *mac_control;
878         struct stat_block *stats;
879         struct swStat *swstats;
880
881         if (!nic)
882                 return;
883
884         dev = nic->dev;
885
886         config = &nic->config;
887         mac_control = &nic->mac_control;
888         stats = mac_control->stats_info;
889         swstats = &stats->sw_stat;
890
891         lst_size = sizeof(struct TxD) * config->max_txds;
892         lst_per_page = PAGE_SIZE / lst_size;
893
894         for (i = 0; i < config->tx_fifo_num; i++) {
895                 struct fifo_info *fifo = &mac_control->fifos[i];
896                 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
897
898                 page_num = TXD_MEM_PAGE_CNT(tx_cfg->fifo_len, lst_per_page);
899                 for (j = 0; j < page_num; j++) {
900                         int mem_blks = (j * lst_per_page);
901                         struct list_info_hold *fli;
902
903                         if (!fifo->list_info)
904                                 return;
905
906                         fli = &fifo->list_info[mem_blks];
907                         if (!fli->list_virt_addr)
908                                 break;
909                         pci_free_consistent(nic->pdev, PAGE_SIZE,
910                                             fli->list_virt_addr,
911                                             fli->list_phy_addr);
912                         swstats->mem_freed += PAGE_SIZE;
913                 }
914                 /* If we got a zero DMA address during allocation,
915                  * free the page now
916                  */
917                 if (mac_control->zerodma_virt_addr) {
918                         pci_free_consistent(nic->pdev, PAGE_SIZE,
919                                             mac_control->zerodma_virt_addr,
920                                             (dma_addr_t)0);
921                         DBG_PRINT(INIT_DBG,
922                                   "%s: Freeing TxDL with zero DMA address. "
923                                   "Virtual address %p\n",
924                                   dev->name, mac_control->zerodma_virt_addr);
925                         swstats->mem_freed += PAGE_SIZE;
926                 }
927                 kfree(fifo->list_info);
928                 swstats->mem_freed += tx_cfg->fifo_len *
929                         sizeof(struct list_info_hold);
930         }
931
932         size = SIZE_OF_BLOCK;
933         for (i = 0; i < config->rx_ring_num; i++) {
934                 struct ring_info *ring = &mac_control->rings[i];
935
936                 blk_cnt = ring->block_count;
937                 for (j = 0; j < blk_cnt; j++) {
938                         tmp_v_addr = ring->rx_blocks[j].block_virt_addr;
939                         tmp_p_addr = ring->rx_blocks[j].block_dma_addr;
940                         if (tmp_v_addr == NULL)
941                                 break;
942                         pci_free_consistent(nic->pdev, size,
943                                             tmp_v_addr, tmp_p_addr);
944                         swstats->mem_freed += size;
945                         kfree(ring->rx_blocks[j].rxds);
946                         swstats->mem_freed += sizeof(struct rxd_info) *
947                                 rxd_count[nic->rxd_mode];
948                 }
949         }
950
951         if (nic->rxd_mode == RXD_MODE_3B) {
952                 /* Freeing buffer storage addresses in 2BUFF mode. */
953                 for (i = 0; i < config->rx_ring_num; i++) {
954                         struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
955                         struct ring_info *ring = &mac_control->rings[i];
956
957                         blk_cnt = rx_cfg->num_rxd /
958                                 (rxd_count[nic->rxd_mode] + 1);
959                         for (j = 0; j < blk_cnt; j++) {
960                                 int k = 0;
961                                 if (!ring->ba[j])
962                                         continue;
963                                 while (k != rxd_count[nic->rxd_mode]) {
964                                         struct buffAdd *ba = &ring->ba[j][k];
965                                         kfree(ba->ba_0_org);
966                                         swstats->mem_freed +=
967                                                 BUF0_LEN + ALIGN_SIZE;
968                                         kfree(ba->ba_1_org);
969                                         swstats->mem_freed +=
970                                                 BUF1_LEN + ALIGN_SIZE;
971                                         k++;
972                                 }
973                                 kfree(ring->ba[j]);
974                                 swstats->mem_freed += sizeof(struct buffAdd) *
975                                         (rxd_count[nic->rxd_mode] + 1);
976                         }
977                         kfree(ring->ba);
978                         swstats->mem_freed += sizeof(struct buffAdd *) *
979                                 blk_cnt;
980                 }
981         }
982
983         for (i = 0; i < nic->config.tx_fifo_num; i++) {
984                 struct fifo_info *fifo = &mac_control->fifos[i];
985                 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
986
987                 if (fifo->ufo_in_band_v) {
988                         swstats->mem_freed += tx_cfg->fifo_len *
989                                 sizeof(u64);
990                         kfree(fifo->ufo_in_band_v);
991                 }
992         }
993
994         if (mac_control->stats_mem) {
995                 swstats->mem_freed += mac_control->stats_mem_sz;
996                 pci_free_consistent(nic->pdev,
997                                     mac_control->stats_mem_sz,
998                                     mac_control->stats_mem,
999                                     mac_control->stats_mem_phy);
1000         }
1001 }
1002
1003 /**
1004  * s2io_verify_pci_mode -
1005  */
1006
1007 static int s2io_verify_pci_mode(struct s2io_nic *nic)
1008 {
1009         struct XENA_dev_config __iomem *bar0 = nic->bar0;
1010         register u64 val64 = 0;
1011         int     mode;
1012
1013         val64 = readq(&bar0->pci_mode);
1014         mode = (u8)GET_PCI_MODE(val64);
1015
1016         if (val64 & PCI_MODE_UNKNOWN_MODE)
1017                 return -1;      /* Unknown PCI mode */
1018         return mode;
1019 }
1020
1021 #define NEC_VENID   0x1033
1022 #define NEC_DEVID   0x0125
1023 static int s2io_on_nec_bridge(struct pci_dev *s2io_pdev)
1024 {
1025         struct pci_dev *tdev = NULL;
1026         for_each_pci_dev(tdev) {
1027                 if (tdev->vendor == NEC_VENID && tdev->device == NEC_DEVID) {
1028                         if (tdev->bus == s2io_pdev->bus->parent) {
1029                                 pci_dev_put(tdev);
1030                                 return 1;
1031                         }
1032                 }
1033         }
1034         return 0;
1035 }
1036
1037 static int bus_speed[8] = {33, 133, 133, 200, 266, 133, 200, 266};
1038 /**
1039  * s2io_print_pci_mode -
1040  */
1041 static int s2io_print_pci_mode(struct s2io_nic *nic)
1042 {
1043         struct XENA_dev_config __iomem *bar0 = nic->bar0;
1044         register u64 val64 = 0;
1045         int     mode;
1046         struct config_param *config = &nic->config;
1047         const char *pcimode;
1048
1049         val64 = readq(&bar0->pci_mode);
1050         mode = (u8)GET_PCI_MODE(val64);
1051
1052         if (val64 & PCI_MODE_UNKNOWN_MODE)
1053                 return -1;      /* Unknown PCI mode */
1054
1055         config->bus_speed = bus_speed[mode];
1056
1057         if (s2io_on_nec_bridge(nic->pdev)) {
1058                 DBG_PRINT(ERR_DBG, "%s: Device is on PCI-E bus\n",
1059                           nic->dev->name);
1060                 return mode;
1061         }
1062
1063         switch (mode) {
1064         case PCI_MODE_PCI_33:
1065                 pcimode = "33MHz PCI bus";
1066                 break;
1067         case PCI_MODE_PCI_66:
1068                 pcimode = "66MHz PCI bus";
1069                 break;
1070         case PCI_MODE_PCIX_M1_66:
1071                 pcimode = "66MHz PCIX(M1) bus";
1072                 break;
1073         case PCI_MODE_PCIX_M1_100:
1074                 pcimode = "100MHz PCIX(M1) bus";
1075                 break;
1076         case PCI_MODE_PCIX_M1_133:
1077                 pcimode = "133MHz PCIX(M1) bus";
1078                 break;
1079         case PCI_MODE_PCIX_M2_66:
1080                 pcimode = "133MHz PCIX(M2) bus";
1081                 break;
1082         case PCI_MODE_PCIX_M2_100:
1083                 pcimode = "200MHz PCIX(M2) bus";
1084                 break;
1085         case PCI_MODE_PCIX_M2_133:
1086                 pcimode = "266MHz PCIX(M2) bus";
1087                 break;
1088         default:
1089                 pcimode = "unsupported bus!";
1090                 mode = -1;
1091         }
1092
1093         DBG_PRINT(ERR_DBG, "%s: Device is on %d bit %s\n",
1094                   nic->dev->name, val64 & PCI_MODE_32_BITS ? 32 : 64, pcimode);
1095
1096         return mode;
1097 }
1098
1099 /**
1100  *  init_tti - Initialization transmit traffic interrupt scheme
1101  *  @nic: device private variable
1102  *  @link: link status (UP/DOWN) used to enable/disable continuous
1103  *  transmit interrupts
1104  *  Description: The function configures transmit traffic interrupts
1105  *  Return Value:  SUCCESS on success and
1106  *  '-1' on failure
1107  */
1108
1109 static int init_tti(struct s2io_nic *nic, int link)
1110 {
1111         struct XENA_dev_config __iomem *bar0 = nic->bar0;
1112         register u64 val64 = 0;
1113         int i;
1114         struct config_param *config = &nic->config;
1115
1116         for (i = 0; i < config->tx_fifo_num; i++) {
1117                 /*
1118                  * TTI Initialization. Default Tx timer gets us about
1119                  * 250 interrupts per sec. Continuous interrupts are enabled
1120                  * by default.
1121                  */
1122                 if (nic->device_type == XFRAME_II_DEVICE) {
1123                         int count = (nic->config.bus_speed * 125)/2;
1124                         val64 = TTI_DATA1_MEM_TX_TIMER_VAL(count);
1125                 } else
1126                         val64 = TTI_DATA1_MEM_TX_TIMER_VAL(0x2078);
1127
1128                 val64 |= TTI_DATA1_MEM_TX_URNG_A(0xA) |
1129                         TTI_DATA1_MEM_TX_URNG_B(0x10) |
1130                         TTI_DATA1_MEM_TX_URNG_C(0x30) |
1131                         TTI_DATA1_MEM_TX_TIMER_AC_EN;
1132                 if (i == 0)
1133                         if (use_continuous_tx_intrs && (link == LINK_UP))
1134                                 val64 |= TTI_DATA1_MEM_TX_TIMER_CI_EN;
1135                 writeq(val64, &bar0->tti_data1_mem);
1136
1137                 if (nic->config.intr_type == MSI_X) {
1138                         val64 = TTI_DATA2_MEM_TX_UFC_A(0x10) |
1139                                 TTI_DATA2_MEM_TX_UFC_B(0x100) |
1140                                 TTI_DATA2_MEM_TX_UFC_C(0x200) |
1141                                 TTI_DATA2_MEM_TX_UFC_D(0x300);
1142                 } else {
1143                         if ((nic->config.tx_steering_type ==
1144                              TX_DEFAULT_STEERING) &&
1145                             (config->tx_fifo_num > 1) &&
1146                             (i >= nic->udp_fifo_idx) &&
1147                             (i < (nic->udp_fifo_idx +
1148                                   nic->total_udp_fifos)))
1149                                 val64 = TTI_DATA2_MEM_TX_UFC_A(0x50) |
1150                                         TTI_DATA2_MEM_TX_UFC_B(0x80) |
1151                                         TTI_DATA2_MEM_TX_UFC_C(0x100) |
1152                                         TTI_DATA2_MEM_TX_UFC_D(0x120);
1153                         else
1154                                 val64 = TTI_DATA2_MEM_TX_UFC_A(0x10) |
1155                                         TTI_DATA2_MEM_TX_UFC_B(0x20) |
1156                                         TTI_DATA2_MEM_TX_UFC_C(0x40) |
1157                                         TTI_DATA2_MEM_TX_UFC_D(0x80);
1158                 }
1159
1160                 writeq(val64, &bar0->tti_data2_mem);
1161
1162                 val64 = TTI_CMD_MEM_WE |
1163                         TTI_CMD_MEM_STROBE_NEW_CMD |
1164                         TTI_CMD_MEM_OFFSET(i);
1165                 writeq(val64, &bar0->tti_command_mem);
1166
1167                 if (wait_for_cmd_complete(&bar0->tti_command_mem,
1168                                           TTI_CMD_MEM_STROBE_NEW_CMD,
1169                                           S2IO_BIT_RESET) != SUCCESS)
1170                         return FAILURE;
1171         }
1172
1173         return SUCCESS;
1174 }
1175
1176 /**
1177  *  init_nic - Initialization of hardware
1178  *  @nic: device private variable
1179  *  Description: The function sequentially configures every block
1180  *  of the H/W from their reset values.
1181  *  Return Value:  SUCCESS on success and
1182  *  '-1' on failure (endian settings incorrect).
1183  */
1184
1185 static int init_nic(struct s2io_nic *nic)
1186 {
1187         struct XENA_dev_config __iomem *bar0 = nic->bar0;
1188         struct net_device *dev = nic->dev;
1189         register u64 val64 = 0;
1190         void __iomem *add;
1191         u32 time;
1192         int i, j;
1193         int dtx_cnt = 0;
1194         unsigned long long mem_share;
1195         int mem_size;
1196         struct config_param *config = &nic->config;
1197         struct mac_info *mac_control = &nic->mac_control;
1198
1199         /* to set the swapper controle on the card */
1200         if (s2io_set_swapper(nic)) {
1201                 DBG_PRINT(ERR_DBG, "ERROR: Setting Swapper failed\n");
1202                 return -EIO;
1203         }
1204
1205         /*
1206          * Herc requires EOI to be removed from reset before XGXS, so..
1207          */
1208         if (nic->device_type & XFRAME_II_DEVICE) {
1209                 val64 = 0xA500000000ULL;
1210                 writeq(val64, &bar0->sw_reset);
1211                 msleep(500);
1212                 val64 = readq(&bar0->sw_reset);
1213         }
1214
1215         /* Remove XGXS from reset state */
1216         val64 = 0;
1217         writeq(val64, &bar0->sw_reset);
1218         msleep(500);
1219         val64 = readq(&bar0->sw_reset);
1220
1221         /* Ensure that it's safe to access registers by checking
1222          * RIC_RUNNING bit is reset. Check is valid only for XframeII.
1223          */
1224         if (nic->device_type == XFRAME_II_DEVICE) {
1225                 for (i = 0; i < 50; i++) {
1226                         val64 = readq(&bar0->adapter_status);
1227                         if (!(val64 & ADAPTER_STATUS_RIC_RUNNING))
1228                                 break;
1229                         msleep(10);
1230                 }
1231                 if (i == 50)
1232                         return -ENODEV;
1233         }
1234
1235         /*  Enable Receiving broadcasts */
1236         add = &bar0->mac_cfg;
1237         val64 = readq(&bar0->mac_cfg);
1238         val64 |= MAC_RMAC_BCAST_ENABLE;
1239         writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1240         writel((u32)val64, add);
1241         writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1242         writel((u32) (val64 >> 32), (add + 4));
1243
1244         /* Read registers in all blocks */
1245         val64 = readq(&bar0->mac_int_mask);
1246         val64 = readq(&bar0->mc_int_mask);
1247         val64 = readq(&bar0->xgxs_int_mask);
1248
1249         /*  Set MTU */
1250         val64 = dev->mtu;
1251         writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len);
1252
1253         if (nic->device_type & XFRAME_II_DEVICE) {
1254                 while (herc_act_dtx_cfg[dtx_cnt] != END_SIGN) {
1255                         SPECIAL_REG_WRITE(herc_act_dtx_cfg[dtx_cnt],
1256                                           &bar0->dtx_control, UF);
1257                         if (dtx_cnt & 0x1)
1258                                 msleep(1); /* Necessary!! */
1259                         dtx_cnt++;
1260                 }
1261         } else {
1262                 while (xena_dtx_cfg[dtx_cnt] != END_SIGN) {
1263                         SPECIAL_REG_WRITE(xena_dtx_cfg[dtx_cnt],
1264                                           &bar0->dtx_control, UF);
1265                         val64 = readq(&bar0->dtx_control);
1266                         dtx_cnt++;
1267                 }
1268         }
1269
1270         /*  Tx DMA Initialization */
1271         val64 = 0;
1272         writeq(val64, &bar0->tx_fifo_partition_0);
1273         writeq(val64, &bar0->tx_fifo_partition_1);
1274         writeq(val64, &bar0->tx_fifo_partition_2);
1275         writeq(val64, &bar0->tx_fifo_partition_3);
1276
1277         for (i = 0, j = 0; i < config->tx_fifo_num; i++) {
1278                 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
1279
1280                 val64 |= vBIT(tx_cfg->fifo_len - 1, ((j * 32) + 19), 13) |
1281                         vBIT(tx_cfg->fifo_priority, ((j * 32) + 5), 3);
1282
1283                 if (i == (config->tx_fifo_num - 1)) {
1284                         if (i % 2 == 0)
1285                                 i++;
1286                 }
1287
1288                 switch (i) {
1289                 case 1:
1290                         writeq(val64, &bar0->tx_fifo_partition_0);
1291                         val64 = 0;
1292                         j = 0;
1293                         break;
1294                 case 3:
1295                         writeq(val64, &bar0->tx_fifo_partition_1);
1296                         val64 = 0;
1297                         j = 0;
1298                         break;
1299                 case 5:
1300                         writeq(val64, &bar0->tx_fifo_partition_2);
1301                         val64 = 0;
1302                         j = 0;
1303                         break;
1304                 case 7:
1305                         writeq(val64, &bar0->tx_fifo_partition_3);
1306                         val64 = 0;
1307                         j = 0;
1308                         break;
1309                 default:
1310                         j++;
1311                         break;
1312                 }
1313         }
1314
1315         /*
1316          * Disable 4 PCCs for Xena1, 2 and 3 as per H/W bug
1317          * SXE-008 TRANSMIT DMA ARBITRATION ISSUE.
1318          */
1319         if ((nic->device_type == XFRAME_I_DEVICE) && (nic->pdev->revision < 4))
1320                 writeq(PCC_ENABLE_FOUR, &bar0->pcc_enable);
1321
1322         val64 = readq(&bar0->tx_fifo_partition_0);
1323         DBG_PRINT(INIT_DBG, "Fifo partition at: 0x%p is: 0x%llx\n",
1324                   &bar0->tx_fifo_partition_0, (unsigned long long)val64);
1325
1326         /*
1327          * Initialization of Tx_PA_CONFIG register to ignore packet
1328          * integrity checking.
1329          */
1330         val64 = readq(&bar0->tx_pa_cfg);
1331         val64 |= TX_PA_CFG_IGNORE_FRM_ERR |
1332                 TX_PA_CFG_IGNORE_SNAP_OUI |
1333                 TX_PA_CFG_IGNORE_LLC_CTRL |
1334                 TX_PA_CFG_IGNORE_L2_ERR;
1335         writeq(val64, &bar0->tx_pa_cfg);
1336
1337         /* Rx DMA initialization. */
1338         val64 = 0;
1339         for (i = 0; i < config->rx_ring_num; i++) {
1340                 struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
1341
1342                 val64 |= vBIT(rx_cfg->ring_priority, (5 + (i * 8)), 3);
1343         }
1344         writeq(val64, &bar0->rx_queue_priority);
1345
1346         /*
1347          * Allocating equal share of memory to all the
1348          * configured Rings.
1349          */
1350         val64 = 0;
1351         if (nic->device_type & XFRAME_II_DEVICE)
1352                 mem_size = 32;
1353         else
1354                 mem_size = 64;
1355
1356         for (i = 0; i < config->rx_ring_num; i++) {
1357                 switch (i) {
1358                 case 0:
1359                         mem_share = (mem_size / config->rx_ring_num +
1360                                      mem_size % config->rx_ring_num);
1361                         val64 |= RX_QUEUE_CFG_Q0_SZ(mem_share);
1362                         continue;
1363                 case 1:
1364                         mem_share = (mem_size / config->rx_ring_num);
1365                         val64 |= RX_QUEUE_CFG_Q1_SZ(mem_share);
1366                         continue;
1367                 case 2:
1368                         mem_share = (mem_size / config->rx_ring_num);
1369                         val64 |= RX_QUEUE_CFG_Q2_SZ(mem_share);
1370                         continue;
1371                 case 3:
1372                         mem_share = (mem_size / config->rx_ring_num);
1373                         val64 |= RX_QUEUE_CFG_Q3_SZ(mem_share);
1374                         continue;
1375                 case 4:
1376                         mem_share = (mem_size / config->rx_ring_num);
1377                         val64 |= RX_QUEUE_CFG_Q4_SZ(mem_share);
1378                         continue;
1379                 case 5:
1380                         mem_share = (mem_size / config->rx_ring_num);
1381                         val64 |= RX_QUEUE_CFG_Q5_SZ(mem_share);
1382                         continue;
1383                 case 6:
1384                         mem_share = (mem_size / config->rx_ring_num);
1385                         val64 |= RX_QUEUE_CFG_Q6_SZ(mem_share);
1386                         continue;
1387                 case 7:
1388                         mem_share = (mem_size / config->rx_ring_num);
1389                         val64 |= RX_QUEUE_CFG_Q7_SZ(mem_share);
1390                         continue;
1391                 }
1392         }
1393         writeq(val64, &bar0->rx_queue_cfg);
1394
1395         /*
1396          * Filling Tx round robin registers
1397          * as per the number of FIFOs for equal scheduling priority
1398          */
1399         switch (config->tx_fifo_num) {
1400         case 1:
1401                 val64 = 0x0;
1402                 writeq(val64, &bar0->tx_w_round_robin_0);
1403                 writeq(val64, &bar0->tx_w_round_robin_1);
1404                 writeq(val64, &bar0->tx_w_round_robin_2);
1405                 writeq(val64, &bar0->tx_w_round_robin_3);
1406                 writeq(val64, &bar0->tx_w_round_robin_4);
1407                 break;
1408         case 2:
1409                 val64 = 0x0001000100010001ULL;
1410                 writeq(val64, &bar0->tx_w_round_robin_0);
1411                 writeq(val64, &bar0->tx_w_round_robin_1);
1412                 writeq(val64, &bar0->tx_w_round_robin_2);
1413                 writeq(val64, &bar0->tx_w_round_robin_3);
1414                 val64 = 0x0001000100000000ULL;
1415                 writeq(val64, &bar0->tx_w_round_robin_4);
1416                 break;
1417         case 3:
1418                 val64 = 0x0001020001020001ULL;
1419                 writeq(val64, &bar0->tx_w_round_robin_0);
1420                 val64 = 0x0200010200010200ULL;
1421                 writeq(val64, &bar0->tx_w_round_robin_1);
1422                 val64 = 0x0102000102000102ULL;
1423                 writeq(val64, &bar0->tx_w_round_robin_2);
1424                 val64 = 0x0001020001020001ULL;
1425                 writeq(val64, &bar0->tx_w_round_robin_3);
1426                 val64 = 0x0200010200000000ULL;
1427                 writeq(val64, &bar0->tx_w_round_robin_4);
1428                 break;
1429         case 4:
1430                 val64 = 0x0001020300010203ULL;
1431                 writeq(val64, &bar0->tx_w_round_robin_0);
1432                 writeq(val64, &bar0->tx_w_round_robin_1);
1433                 writeq(val64, &bar0->tx_w_round_robin_2);
1434                 writeq(val64, &bar0->tx_w_round_robin_3);
1435                 val64 = 0x0001020300000000ULL;
1436                 writeq(val64, &bar0->tx_w_round_robin_4);
1437                 break;
1438         case 5:
1439                 val64 = 0x0001020304000102ULL;
1440                 writeq(val64, &bar0->tx_w_round_robin_0);
1441                 val64 = 0x0304000102030400ULL;
1442                 writeq(val64, &bar0->tx_w_round_robin_1);
1443                 val64 = 0x0102030400010203ULL;
1444                 writeq(val64, &bar0->tx_w_round_robin_2);
1445                 val64 = 0x0400010203040001ULL;
1446                 writeq(val64, &bar0->tx_w_round_robin_3);
1447                 val64 = 0x0203040000000000ULL;
1448                 writeq(val64, &bar0->tx_w_round_robin_4);
1449                 break;
1450         case 6:
1451                 val64 = 0x0001020304050001ULL;
1452                 writeq(val64, &bar0->tx_w_round_robin_0);
1453                 val64 = 0x0203040500010203ULL;
1454                 writeq(val64, &bar0->tx_w_round_robin_1);
1455                 val64 = 0x0405000102030405ULL;
1456                 writeq(val64, &bar0->tx_w_round_robin_2);
1457                 val64 = 0x0001020304050001ULL;
1458                 writeq(val64, &bar0->tx_w_round_robin_3);
1459                 val64 = 0x0203040500000000ULL;
1460                 writeq(val64, &bar0->tx_w_round_robin_4);
1461                 break;
1462         case 7:
1463                 val64 = 0x0001020304050600ULL;
1464                 writeq(val64, &bar0->tx_w_round_robin_0);
1465                 val64 = 0x0102030405060001ULL;
1466                 writeq(val64, &bar0->tx_w_round_robin_1);
1467                 val64 = 0x0203040506000102ULL;
1468                 writeq(val64, &bar0->tx_w_round_robin_2);
1469                 val64 = 0x0304050600010203ULL;
1470                 writeq(val64, &bar0->tx_w_round_robin_3);
1471                 val64 = 0x0405060000000000ULL;
1472                 writeq(val64, &bar0->tx_w_round_robin_4);
1473                 break;
1474         case 8:
1475                 val64 = 0x0001020304050607ULL;
1476                 writeq(val64, &bar0->tx_w_round_robin_0);
1477                 writeq(val64, &bar0->tx_w_round_robin_1);
1478                 writeq(val64, &bar0->tx_w_round_robin_2);
1479                 writeq(val64, &bar0->tx_w_round_robin_3);
1480                 val64 = 0x0001020300000000ULL;
1481                 writeq(val64, &bar0->tx_w_round_robin_4);
1482                 break;
1483         }
1484
1485         /* Enable all configured Tx FIFO partitions */
1486         val64 = readq(&bar0->tx_fifo_partition_0);
1487         val64 |= (TX_FIFO_PARTITION_EN);
1488         writeq(val64, &bar0->tx_fifo_partition_0);
1489
1490         /* Filling the Rx round robin registers as per the
1491          * number of Rings and steering based on QoS with
1492          * equal priority.
1493          */
1494         switch (config->rx_ring_num) {
1495         case 1:
1496                 val64 = 0x0;
1497                 writeq(val64, &bar0->rx_w_round_robin_0);
1498                 writeq(val64, &bar0->rx_w_round_robin_1);
1499                 writeq(val64, &bar0->rx_w_round_robin_2);
1500                 writeq(val64, &bar0->rx_w_round_robin_3);
1501                 writeq(val64, &bar0->rx_w_round_robin_4);
1502
1503                 val64 = 0x8080808080808080ULL;
1504                 writeq(val64, &bar0->rts_qos_steering);
1505                 break;
1506         case 2:
1507                 val64 = 0x0001000100010001ULL;
1508                 writeq(val64, &bar0->rx_w_round_robin_0);
1509                 writeq(val64, &bar0->rx_w_round_robin_1);
1510                 writeq(val64, &bar0->rx_w_round_robin_2);
1511                 writeq(val64, &bar0->rx_w_round_robin_3);
1512                 val64 = 0x0001000100000000ULL;
1513                 writeq(val64, &bar0->rx_w_round_robin_4);
1514
1515                 val64 = 0x8080808040404040ULL;
1516                 writeq(val64, &bar0->rts_qos_steering);
1517                 break;
1518         case 3:
1519                 val64 = 0x0001020001020001ULL;
1520                 writeq(val64, &bar0->rx_w_round_robin_0);
1521                 val64 = 0x0200010200010200ULL;
1522                 writeq(val64, &bar0->rx_w_round_robin_1);
1523                 val64 = 0x0102000102000102ULL;
1524                 writeq(val64, &bar0->rx_w_round_robin_2);
1525                 val64 = 0x0001020001020001ULL;
1526                 writeq(val64, &bar0->rx_w_round_robin_3);
1527                 val64 = 0x0200010200000000ULL;
1528                 writeq(val64, &bar0->rx_w_round_robin_4);
1529
1530                 val64 = 0x8080804040402020ULL;
1531                 writeq(val64, &bar0->rts_qos_steering);
1532                 break;
1533         case 4:
1534                 val64 = 0x0001020300010203ULL;
1535                 writeq(val64, &bar0->rx_w_round_robin_0);
1536                 writeq(val64, &bar0->rx_w_round_robin_1);
1537                 writeq(val64, &bar0->rx_w_round_robin_2);
1538                 writeq(val64, &bar0->rx_w_round_robin_3);
1539                 val64 = 0x0001020300000000ULL;
1540                 writeq(val64, &bar0->rx_w_round_robin_4);
1541
1542                 val64 = 0x8080404020201010ULL;
1543                 writeq(val64, &bar0->rts_qos_steering);
1544                 break;
1545         case 5:
1546                 val64 = 0x0001020304000102ULL;
1547                 writeq(val64, &bar0->rx_w_round_robin_0);
1548                 val64 = 0x0304000102030400ULL;
1549                 writeq(val64, &bar0->rx_w_round_robin_1);
1550                 val64 = 0x0102030400010203ULL;
1551                 writeq(val64, &bar0->rx_w_round_robin_2);
1552                 val64 = 0x0400010203040001ULL;
1553                 writeq(val64, &bar0->rx_w_round_robin_3);
1554                 val64 = 0x0203040000000000ULL;
1555                 writeq(val64, &bar0->rx_w_round_robin_4);
1556
1557                 val64 = 0x8080404020201008ULL;
1558                 writeq(val64, &bar0->rts_qos_steering);
1559                 break;
1560         case 6:
1561                 val64 = 0x0001020304050001ULL;
1562                 writeq(val64, &bar0->rx_w_round_robin_0);
1563                 val64 = 0x0203040500010203ULL;
1564                 writeq(val64, &bar0->rx_w_round_robin_1);
1565                 val64 = 0x0405000102030405ULL;
1566                 writeq(val64, &bar0->rx_w_round_robin_2);
1567                 val64 = 0x0001020304050001ULL;
1568                 writeq(val64, &bar0->rx_w_round_robin_3);
1569                 val64 = 0x0203040500000000ULL;
1570                 writeq(val64, &bar0->rx_w_round_robin_4);
1571
1572                 val64 = 0x8080404020100804ULL;
1573                 writeq(val64, &bar0->rts_qos_steering);
1574                 break;
1575         case 7:
1576                 val64 = 0x0001020304050600ULL;
1577                 writeq(val64, &bar0->rx_w_round_robin_0);
1578                 val64 = 0x0102030405060001ULL;
1579                 writeq(val64, &bar0->rx_w_round_robin_1);
1580                 val64 = 0x0203040506000102ULL;
1581                 writeq(val64, &bar0->rx_w_round_robin_2);
1582                 val64 = 0x0304050600010203ULL;
1583                 writeq(val64, &bar0->rx_w_round_robin_3);
1584                 val64 = 0x0405060000000000ULL;
1585                 writeq(val64, &bar0->rx_w_round_robin_4);
1586
1587                 val64 = 0x8080402010080402ULL;
1588                 writeq(val64, &bar0->rts_qos_steering);
1589                 break;
1590         case 8:
1591                 val64 = 0x0001020304050607ULL;
1592                 writeq(val64, &bar0->rx_w_round_robin_0);
1593                 writeq(val64, &bar0->rx_w_round_robin_1);
1594                 writeq(val64, &bar0->rx_w_round_robin_2);
1595                 writeq(val64, &bar0->rx_w_round_robin_3);
1596                 val64 = 0x0001020300000000ULL;
1597                 writeq(val64, &bar0->rx_w_round_robin_4);
1598
1599                 val64 = 0x8040201008040201ULL;
1600                 writeq(val64, &bar0->rts_qos_steering);
1601                 break;
1602         }
1603
1604         /* UDP Fix */
1605         val64 = 0;
1606         for (i = 0; i < 8; i++)
1607                 writeq(val64, &bar0->rts_frm_len_n[i]);
1608
1609         /* Set the default rts frame length for the rings configured */
1610         val64 = MAC_RTS_FRM_LEN_SET(dev->mtu+22);
1611         for (i = 0 ; i < config->rx_ring_num ; i++)
1612                 writeq(val64, &bar0->rts_frm_len_n[i]);
1613
1614         /* Set the frame length for the configured rings
1615          * desired by the user
1616          */
1617         for (i = 0; i < config->rx_ring_num; i++) {
1618                 /* If rts_frm_len[i] == 0 then it is assumed that user not
1619                  * specified frame length steering.
1620                  * If the user provides the frame length then program
1621                  * the rts_frm_len register for those values or else
1622                  * leave it as it is.
1623                  */
1624                 if (rts_frm_len[i] != 0) {
1625                         writeq(MAC_RTS_FRM_LEN_SET(rts_frm_len[i]),
1626                                &bar0->rts_frm_len_n[i]);
1627                 }
1628         }
1629
1630         /* Disable differentiated services steering logic */
1631         for (i = 0; i < 64; i++) {
1632                 if (rts_ds_steer(nic, i, 0) == FAILURE) {
1633                         DBG_PRINT(ERR_DBG,
1634                                   "%s: rts_ds_steer failed on codepoint %d\n",
1635                                   dev->name, i);
1636                         return -ENODEV;
1637                 }
1638         }
1639
1640         /* Program statistics memory */
1641         writeq(mac_control->stats_mem_phy, &bar0->stat_addr);
1642
1643         if (nic->device_type == XFRAME_II_DEVICE) {
1644                 val64 = STAT_BC(0x320);
1645                 writeq(val64, &bar0->stat_byte_cnt);
1646         }
1647
1648         /*
1649          * Initializing the sampling rate for the device to calculate the
1650          * bandwidth utilization.
1651          */
1652         val64 = MAC_TX_LINK_UTIL_VAL(tmac_util_period) |
1653                 MAC_RX_LINK_UTIL_VAL(rmac_util_period);
1654         writeq(val64, &bar0->mac_link_util);
1655
1656         /*
1657          * Initializing the Transmit and Receive Traffic Interrupt
1658          * Scheme.
1659          */
1660
1661         /* Initialize TTI */
1662         if (SUCCESS != init_tti(nic, nic->last_link_state))
1663                 return -ENODEV;
1664
1665         /* RTI Initialization */
1666         if (nic->device_type == XFRAME_II_DEVICE) {
1667                 /*
1668                  * Programmed to generate Apprx 500 Intrs per
1669                  * second
1670                  */
1671                 int count = (nic->config.bus_speed * 125)/4;
1672                 val64 = RTI_DATA1_MEM_RX_TIMER_VAL(count);
1673         } else
1674                 val64 = RTI_DATA1_MEM_RX_TIMER_VAL(0xFFF);
1675         val64 |= RTI_DATA1_MEM_RX_URNG_A(0xA) |
1676                 RTI_DATA1_MEM_RX_URNG_B(0x10) |
1677                 RTI_DATA1_MEM_RX_URNG_C(0x30) |
1678                 RTI_DATA1_MEM_RX_TIMER_AC_EN;
1679
1680         writeq(val64, &bar0->rti_data1_mem);
1681
1682         val64 = RTI_DATA2_MEM_RX_UFC_A(0x1) |
1683                 RTI_DATA2_MEM_RX_UFC_B(0x2) ;
1684         if (nic->config.intr_type == MSI_X)
1685                 val64 |= (RTI_DATA2_MEM_RX_UFC_C(0x20) |
1686                           RTI_DATA2_MEM_RX_UFC_D(0x40));
1687         else
1688                 val64 |= (RTI_DATA2_MEM_RX_UFC_C(0x40) |
1689                           RTI_DATA2_MEM_RX_UFC_D(0x80));
1690         writeq(val64, &bar0->rti_data2_mem);
1691
1692         for (i = 0; i < config->rx_ring_num; i++) {
1693                 val64 = RTI_CMD_MEM_WE |
1694                         RTI_CMD_MEM_STROBE_NEW_CMD |
1695                         RTI_CMD_MEM_OFFSET(i);
1696                 writeq(val64, &bar0->rti_command_mem);
1697
1698                 /*
1699                  * Once the operation completes, the Strobe bit of the
1700                  * command register will be reset. We poll for this
1701                  * particular condition. We wait for a maximum of 500ms
1702                  * for the operation to complete, if it's not complete
1703                  * by then we return error.
1704                  */
1705                 time = 0;
1706                 while (true) {
1707                         val64 = readq(&bar0->rti_command_mem);
1708                         if (!(val64 & RTI_CMD_MEM_STROBE_NEW_CMD))
1709                                 break;
1710
1711                         if (time > 10) {
1712                                 DBG_PRINT(ERR_DBG, "%s: RTI init failed\n",
1713                                           dev->name);
1714                                 return -ENODEV;
1715                         }
1716                         time++;
1717                         msleep(50);
1718                 }
1719         }
1720
1721         /*
1722          * Initializing proper values as Pause threshold into all
1723          * the 8 Queues on Rx side.
1724          */
1725         writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q0q3);
1726         writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q4q7);
1727
1728         /* Disable RMAC PAD STRIPPING */
1729         add = &bar0->mac_cfg;
1730         val64 = readq(&bar0->mac_cfg);
1731         val64 &= ~(MAC_CFG_RMAC_STRIP_PAD);
1732         writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1733         writel((u32) (val64), add);
1734         writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1735         writel((u32) (val64 >> 32), (add + 4));
1736         val64 = readq(&bar0->mac_cfg);
1737
1738         /* Enable FCS stripping by adapter */
1739         add = &bar0->mac_cfg;
1740         val64 = readq(&bar0->mac_cfg);
1741         val64 |= MAC_CFG_RMAC_STRIP_FCS;
1742         if (nic->device_type == XFRAME_II_DEVICE)
1743                 writeq(val64, &bar0->mac_cfg);
1744         else {
1745                 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1746                 writel((u32) (val64), add);
1747                 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1748                 writel((u32) (val64 >> 32), (add + 4));
1749         }
1750
1751         /*
1752          * Set the time value to be inserted in the pause frame
1753          * generated by xena.
1754          */
1755         val64 = readq(&bar0->rmac_pause_cfg);
1756         val64 &= ~(RMAC_PAUSE_HG_PTIME(0xffff));
1757         val64 |= RMAC_PAUSE_HG_PTIME(nic->mac_control.rmac_pause_time);
1758         writeq(val64, &bar0->rmac_pause_cfg);
1759
1760         /*
1761          * Set the Threshold Limit for Generating the pause frame
1762          * If the amount of data in any Queue exceeds ratio of
1763          * (mac_control.mc_pause_threshold_q0q3 or q4q7)/256
1764          * pause frame is generated
1765          */
1766         val64 = 0;
1767         for (i = 0; i < 4; i++) {
1768                 val64 |= (((u64)0xFF00 |
1769                            nic->mac_control.mc_pause_threshold_q0q3)
1770                           << (i * 2 * 8));
1771         }
1772         writeq(val64, &bar0->mc_pause_thresh_q0q3);
1773
1774         val64 = 0;
1775         for (i = 0; i < 4; i++) {
1776                 val64 |= (((u64)0xFF00 |
1777                            nic->mac_control.mc_pause_threshold_q4q7)
1778                           << (i * 2 * 8));
1779         }
1780         writeq(val64, &bar0->mc_pause_thresh_q4q7);
1781
1782         /*
1783          * TxDMA will stop Read request if the number of read split has
1784          * exceeded the limit pointed by shared_splits
1785          */
1786         val64 = readq(&bar0->pic_control);
1787         val64 |= PIC_CNTL_SHARED_SPLITS(shared_splits);
1788         writeq(val64, &bar0->pic_control);
1789
1790         if (nic->config.bus_speed == 266) {
1791                 writeq(TXREQTO_VAL(0x7f) | TXREQTO_EN, &bar0->txreqtimeout);
1792                 writeq(0x0, &bar0->read_retry_delay);
1793                 writeq(0x0, &bar0->write_retry_delay);
1794         }
1795
1796         /*
1797          * Programming the Herc to split every write transaction
1798          * that does not start on an ADB to reduce disconnects.
1799          */
1800         if (nic->device_type == XFRAME_II_DEVICE) {
1801                 val64 = FAULT_BEHAVIOUR | EXT_REQ_EN |
1802                         MISC_LINK_STABILITY_PRD(3);
1803                 writeq(val64, &bar0->misc_control);
1804                 val64 = readq(&bar0->pic_control2);
1805                 val64 &= ~(s2BIT(13)|s2BIT(14)|s2BIT(15));
1806                 writeq(val64, &bar0->pic_control2);
1807         }
1808         if (strstr(nic->product_name, "CX4")) {
1809                 val64 = TMAC_AVG_IPG(0x17);
1810                 writeq(val64, &bar0->tmac_avg_ipg);
1811         }
1812
1813         return SUCCESS;
1814 }
1815 #define LINK_UP_DOWN_INTERRUPT          1
1816 #define MAC_RMAC_ERR_TIMER              2
1817
1818 static int s2io_link_fault_indication(struct s2io_nic *nic)
1819 {
1820         if (nic->device_type == XFRAME_II_DEVICE)
1821                 return LINK_UP_DOWN_INTERRUPT;
1822         else
1823                 return MAC_RMAC_ERR_TIMER;
1824 }
1825
1826 /**
1827  *  do_s2io_write_bits -  update alarm bits in alarm register
1828  *  @value: alarm bits
1829  *  @flag: interrupt status
1830  *  @addr: address value
1831  *  Description: update alarm bits in alarm register
1832  *  Return Value:
1833  *  NONE.
1834  */
1835 static void do_s2io_write_bits(u64 value, int flag, void __iomem *addr)
1836 {
1837         u64 temp64;
1838
1839         temp64 = readq(addr);
1840
1841         if (flag == ENABLE_INTRS)
1842                 temp64 &= ~((u64)value);
1843         else
1844                 temp64 |= ((u64)value);
1845         writeq(temp64, addr);
1846 }
1847
1848 static void en_dis_err_alarms(struct s2io_nic *nic, u16 mask, int flag)
1849 {
1850         struct XENA_dev_config __iomem *bar0 = nic->bar0;
1851         register u64 gen_int_mask = 0;
1852         u64 interruptible;
1853
1854         writeq(DISABLE_ALL_INTRS, &bar0->general_int_mask);
1855         if (mask & TX_DMA_INTR) {
1856                 gen_int_mask |= TXDMA_INT_M;
1857
1858                 do_s2io_write_bits(TXDMA_TDA_INT | TXDMA_PFC_INT |
1859                                    TXDMA_PCC_INT | TXDMA_TTI_INT |
1860                                    TXDMA_LSO_INT | TXDMA_TPA_INT |
1861                                    TXDMA_SM_INT, flag, &bar0->txdma_int_mask);
1862
1863                 do_s2io_write_bits(PFC_ECC_DB_ERR | PFC_SM_ERR_ALARM |
1864                                    PFC_MISC_0_ERR | PFC_MISC_1_ERR |
1865                                    PFC_PCIX_ERR | PFC_ECC_SG_ERR, flag,
1866                                    &bar0->pfc_err_mask);
1867
1868                 do_s2io_write_bits(TDA_Fn_ECC_DB_ERR | TDA_SM0_ERR_ALARM |
1869                                    TDA_SM1_ERR_ALARM | TDA_Fn_ECC_SG_ERR |
1870                                    TDA_PCIX_ERR, flag, &bar0->tda_err_mask);
1871
1872                 do_s2io_write_bits(PCC_FB_ECC_DB_ERR | PCC_TXB_ECC_DB_ERR |
1873                                    PCC_SM_ERR_ALARM | PCC_WR_ERR_ALARM |
1874                                    PCC_N_SERR | PCC_6_COF_OV_ERR |
1875                                    PCC_7_COF_OV_ERR | PCC_6_LSO_OV_ERR |
1876                                    PCC_7_LSO_OV_ERR | PCC_FB_ECC_SG_ERR |
1877                                    PCC_TXB_ECC_SG_ERR,
1878                                    flag, &bar0->pcc_err_mask);
1879
1880                 do_s2io_write_bits(TTI_SM_ERR_ALARM | TTI_ECC_SG_ERR |
1881                                    TTI_ECC_DB_ERR, flag, &bar0->tti_err_mask);
1882
1883                 do_s2io_write_bits(LSO6_ABORT | LSO7_ABORT |
1884                                    LSO6_SM_ERR_ALARM | LSO7_SM_ERR_ALARM |
1885                                    LSO6_SEND_OFLOW | LSO7_SEND_OFLOW,
1886                                    flag, &bar0->lso_err_mask);
1887
1888                 do_s2io_write_bits(TPA_SM_ERR_ALARM | TPA_TX_FRM_DROP,
1889                                    flag, &bar0->tpa_err_mask);
1890
1891                 do_s2io_write_bits(SM_SM_ERR_ALARM, flag, &bar0->sm_err_mask);
1892         }
1893
1894         if (mask & TX_MAC_INTR) {
1895                 gen_int_mask |= TXMAC_INT_M;
1896                 do_s2io_write_bits(MAC_INT_STATUS_TMAC_INT, flag,
1897                                    &bar0->mac_int_mask);
1898                 do_s2io_write_bits(TMAC_TX_BUF_OVRN | TMAC_TX_SM_ERR |
1899                                    TMAC_ECC_SG_ERR | TMAC_ECC_DB_ERR |
1900                                    TMAC_DESC_ECC_SG_ERR | TMAC_DESC_ECC_DB_ERR,
1901                                    flag, &bar0->mac_tmac_err_mask);
1902         }
1903
1904         if (mask & TX_XGXS_INTR) {
1905                 gen_int_mask |= TXXGXS_INT_M;
1906                 do_s2io_write_bits(XGXS_INT_STATUS_TXGXS, flag,
1907                                    &bar0->xgxs_int_mask);
1908                 do_s2io_write_bits(TXGXS_ESTORE_UFLOW | TXGXS_TX_SM_ERR |
1909                                    TXGXS_ECC_SG_ERR | TXGXS_ECC_DB_ERR,
1910                                    flag, &bar0->xgxs_txgxs_err_mask);
1911         }
1912
1913         if (mask & RX_DMA_INTR) {
1914                 gen_int_mask |= RXDMA_INT_M;
1915                 do_s2io_write_bits(RXDMA_INT_RC_INT_M | RXDMA_INT_RPA_INT_M |
1916                                    RXDMA_INT_RDA_INT_M | RXDMA_INT_RTI_INT_M,
1917                                    flag, &bar0->rxdma_int_mask);
1918                 do_s2io_write_bits(RC_PRCn_ECC_DB_ERR | RC_FTC_ECC_DB_ERR |
1919                                    RC_PRCn_SM_ERR_ALARM | RC_FTC_SM_ERR_ALARM |
1920                                    RC_PRCn_ECC_SG_ERR | RC_FTC_ECC_SG_ERR |
1921                                    RC_RDA_FAIL_WR_Rn, flag, &bar0->rc_err_mask);
1922                 do_s2io_write_bits(PRC_PCI_AB_RD_Rn | PRC_PCI_AB_WR_Rn |
1923                                    PRC_PCI_AB_F_WR_Rn | PRC_PCI_DP_RD_Rn |
1924                                    PRC_PCI_DP_WR_Rn | PRC_PCI_DP_F_WR_Rn, flag,
1925                                    &bar0->prc_pcix_err_mask);
1926                 do_s2io_write_bits(RPA_SM_ERR_ALARM | RPA_CREDIT_ERR |
1927                                    RPA_ECC_SG_ERR | RPA_ECC_DB_ERR, flag,
1928                                    &bar0->rpa_err_mask);
1929                 do_s2io_write_bits(RDA_RXDn_ECC_DB_ERR | RDA_FRM_ECC_DB_N_AERR |
1930                                    RDA_SM1_ERR_ALARM | RDA_SM0_ERR_ALARM |
1931                                    RDA_RXD_ECC_DB_SERR | RDA_RXDn_ECC_SG_ERR |
1932                                    RDA_FRM_ECC_SG_ERR |
1933                                    RDA_MISC_ERR|RDA_PCIX_ERR,
1934                                    flag, &bar0->rda_err_mask);
1935                 do_s2io_write_bits(RTI_SM_ERR_ALARM |
1936                                    RTI_ECC_SG_ERR | RTI_ECC_DB_ERR,
1937                                    flag, &bar0->rti_err_mask);
1938         }
1939
1940         if (mask & RX_MAC_INTR) {
1941                 gen_int_mask |= RXMAC_INT_M;
1942                 do_s2io_write_bits(MAC_INT_STATUS_RMAC_INT, flag,
1943                                    &bar0->mac_int_mask);
1944                 interruptible = (RMAC_RX_BUFF_OVRN | RMAC_RX_SM_ERR |
1945                                  RMAC_UNUSED_INT | RMAC_SINGLE_ECC_ERR |
1946                                  RMAC_DOUBLE_ECC_ERR);
1947                 if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER)
1948                         interruptible |= RMAC_LINK_STATE_CHANGE_INT;
1949                 do_s2io_write_bits(interruptible,
1950                                    flag, &bar0->mac_rmac_err_mask);
1951         }
1952
1953         if (mask & RX_XGXS_INTR) {
1954                 gen_int_mask |= RXXGXS_INT_M;
1955                 do_s2io_write_bits(XGXS_INT_STATUS_RXGXS, flag,
1956                                    &bar0->xgxs_int_mask);
1957                 do_s2io_write_bits(RXGXS_ESTORE_OFLOW | RXGXS_RX_SM_ERR, flag,
1958                                    &bar0->xgxs_rxgxs_err_mask);
1959         }
1960
1961         if (mask & MC_INTR) {
1962                 gen_int_mask |= MC_INT_M;
1963                 do_s2io_write_bits(MC_INT_MASK_MC_INT,
1964                                    flag, &bar0->mc_int_mask);
1965                 do_s2io_write_bits(MC_ERR_REG_SM_ERR | MC_ERR_REG_ECC_ALL_SNG |
1966                                    MC_ERR_REG_ECC_ALL_DBL | PLL_LOCK_N, flag,
1967                                    &bar0->mc_err_mask);
1968         }
1969         nic->general_int_mask = gen_int_mask;
1970
1971         /* Remove this line when alarm interrupts are enabled */
1972         nic->general_int_mask = 0;
1973 }
1974
1975 /**
1976  *  en_dis_able_nic_intrs - Enable or Disable the interrupts
1977  *  @nic: device private variable,
1978  *  @mask: A mask indicating which Intr block must be modified and,
1979  *  @flag: A flag indicating whether to enable or disable the Intrs.
1980  *  Description: This function will either disable or enable the interrupts
1981  *  depending on the flag argument. The mask argument can be used to
1982  *  enable/disable any Intr block.
1983  *  Return Value: NONE.
1984  */
1985
1986 static void en_dis_able_nic_intrs(struct s2io_nic *nic, u16 mask, int flag)
1987 {
1988         struct XENA_dev_config __iomem *bar0 = nic->bar0;
1989         register u64 temp64 = 0, intr_mask = 0;
1990
1991         intr_mask = nic->general_int_mask;
1992
1993         /*  Top level interrupt classification */
1994         /*  PIC Interrupts */
1995         if (mask & TX_PIC_INTR) {
1996                 /*  Enable PIC Intrs in the general intr mask register */
1997                 intr_mask |= TXPIC_INT_M;
1998                 if (flag == ENABLE_INTRS) {
1999                         /*
2000                          * If Hercules adapter enable GPIO otherwise
2001                          * disable all PCIX, Flash, MDIO, IIC and GPIO
2002                          * interrupts for now.
2003                          * TODO
2004                          */
2005                         if (s2io_link_fault_indication(nic) ==
2006                             LINK_UP_DOWN_INTERRUPT) {
2007                                 do_s2io_write_bits(PIC_INT_GPIO, flag,
2008                                                    &bar0->pic_int_mask);
2009                                 do_s2io_write_bits(GPIO_INT_MASK_LINK_UP, flag,
2010                                                    &bar0->gpio_int_mask);
2011                         } else
2012                                 writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask);
2013                 } else if (flag == DISABLE_INTRS) {
2014                         /*
2015                          * Disable PIC Intrs in the general
2016                          * intr mask register
2017                          */
2018                         writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask);
2019                 }
2020         }
2021
2022         /*  Tx traffic interrupts */
2023         if (mask & TX_TRAFFIC_INTR) {
2024                 intr_mask |= TXTRAFFIC_INT_M;
2025                 if (flag == ENABLE_INTRS) {
2026                         /*
2027                          * Enable all the Tx side interrupts
2028                          * writing 0 Enables all 64 TX interrupt levels
2029                          */
2030                         writeq(0x0, &bar0->tx_traffic_mask);
2031                 } else if (flag == DISABLE_INTRS) {
2032                         /*
2033                          * Disable Tx Traffic Intrs in the general intr mask
2034                          * register.
2035                          */
2036                         writeq(DISABLE_ALL_INTRS, &bar0->tx_traffic_mask);
2037                 }
2038         }
2039
2040         /*  Rx traffic interrupts */
2041         if (mask & RX_TRAFFIC_INTR) {
2042                 intr_mask |= RXTRAFFIC_INT_M;
2043                 if (flag == ENABLE_INTRS) {
2044                         /* writing 0 Enables all 8 RX interrupt levels */
2045                         writeq(0x0, &bar0->rx_traffic_mask);
2046                 } else if (flag == DISABLE_INTRS) {
2047                         /*
2048                          * Disable Rx Traffic Intrs in the general intr mask
2049                          * register.
2050                          */
2051                         writeq(DISABLE_ALL_INTRS, &bar0->rx_traffic_mask);
2052                 }
2053         }
2054
2055         temp64 = readq(&bar0->general_int_mask);
2056         if (flag == ENABLE_INTRS)
2057                 temp64 &= ~((u64)intr_mask);
2058         else
2059                 temp64 = DISABLE_ALL_INTRS;
2060         writeq(temp64, &bar0->general_int_mask);
2061
2062         nic->general_int_mask = readq(&bar0->general_int_mask);
2063 }
2064
2065 /**
2066  *  verify_pcc_quiescent- Checks for PCC quiescent state
2067  *  Return: 1 If PCC is quiescence
2068  *          0 If PCC is not quiescence
2069  */
2070 static int verify_pcc_quiescent(struct s2io_nic *sp, int flag)
2071 {
2072         int ret = 0, herc;
2073         struct XENA_dev_config __iomem *bar0 = sp->bar0;
2074         u64 val64 = readq(&bar0->adapter_status);
2075
2076         herc = (sp->device_type == XFRAME_II_DEVICE);
2077
2078         if (flag == false) {
2079                 if ((!herc && (sp->pdev->revision >= 4)) || herc) {
2080                         if (!(val64 & ADAPTER_STATUS_RMAC_PCC_IDLE))
2081                                 ret = 1;
2082                 } else {
2083                         if (!(val64 & ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE))
2084                                 ret = 1;
2085                 }
2086         } else {
2087                 if ((!herc && (sp->pdev->revision >= 4)) || herc) {
2088                         if (((val64 & ADAPTER_STATUS_RMAC_PCC_IDLE) ==
2089                              ADAPTER_STATUS_RMAC_PCC_IDLE))
2090                                 ret = 1;
2091                 } else {
2092                         if (((val64 & ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE) ==
2093                              ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE))
2094                                 ret = 1;
2095                 }
2096         }
2097
2098         return ret;
2099 }
2100 /**
2101  *  verify_xena_quiescence - Checks whether the H/W is ready
2102  *  Description: Returns whether the H/W is ready to go or not. Depending
2103  *  on whether adapter enable bit was written or not the comparison
2104  *  differs and the calling function passes the input argument flag to
2105  *  indicate this.
2106  *  Return: 1 If xena is quiescence
2107  *          0 If Xena is not quiescence
2108  */
2109
2110 static int verify_xena_quiescence(struct s2io_nic *sp)
2111 {
2112         int  mode;
2113         struct XENA_dev_config __iomem *bar0 = sp->bar0;
2114         u64 val64 = readq(&bar0->adapter_status);
2115         mode = s2io_verify_pci_mode(sp);
2116
2117         if (!(val64 & ADAPTER_STATUS_TDMA_READY)) {
2118                 DBG_PRINT(ERR_DBG, "TDMA is not ready!\n");
2119                 return 0;
2120         }
2121         if (!(val64 & ADAPTER_STATUS_RDMA_READY)) {
2122                 DBG_PRINT(ERR_DBG, "RDMA is not ready!\n");
2123                 return 0;
2124         }
2125         if (!(val64 & ADAPTER_STATUS_PFC_READY)) {
2126                 DBG_PRINT(ERR_DBG, "PFC is not ready!\n");
2127                 return 0;
2128         }
2129         if (!(val64 & ADAPTER_STATUS_TMAC_BUF_EMPTY)) {
2130                 DBG_PRINT(ERR_DBG, "TMAC BUF is not empty!\n");
2131                 return 0;
2132         }
2133         if (!(val64 & ADAPTER_STATUS_PIC_QUIESCENT)) {
2134                 DBG_PRINT(ERR_DBG, "PIC is not QUIESCENT!\n");
2135                 return 0;
2136         }
2137         if (!(val64 & ADAPTER_STATUS_MC_DRAM_READY)) {
2138                 DBG_PRINT(ERR_DBG, "MC_DRAM is not ready!\n");
2139                 return 0;
2140         }
2141         if (!(val64 & ADAPTER_STATUS_MC_QUEUES_READY)) {
2142                 DBG_PRINT(ERR_DBG, "MC_QUEUES is not ready!\n");
2143                 return 0;
2144         }
2145         if (!(val64 & ADAPTER_STATUS_M_PLL_LOCK)) {
2146                 DBG_PRINT(ERR_DBG, "M_PLL is not locked!\n");
2147                 return 0;
2148         }
2149
2150         /*
2151          * In PCI 33 mode, the P_PLL is not used, and therefore,
2152          * the the P_PLL_LOCK bit in the adapter_status register will
2153          * not be asserted.
2154          */
2155         if (!(val64 & ADAPTER_STATUS_P_PLL_LOCK) &&
2156             sp->device_type == XFRAME_II_DEVICE &&
2157             mode != PCI_MODE_PCI_33) {
2158                 DBG_PRINT(ERR_DBG, "P_PLL is not locked!\n");
2159                 return 0;
2160         }
2161         if (!((val64 & ADAPTER_STATUS_RC_PRC_QUIESCENT) ==
2162               ADAPTER_STATUS_RC_PRC_QUIESCENT)) {
2163                 DBG_PRINT(ERR_DBG, "RC_PRC is not QUIESCENT!\n");
2164                 return 0;
2165         }
2166         return 1;
2167 }
2168
2169 /**
2170  * fix_mac_address -  Fix for Mac addr problem on Alpha platforms
2171  * @sp: Pointer to device specifc structure
2172  * Description :
2173  * New procedure to clear mac address reading  problems on Alpha platforms
2174  *
2175  */
2176
2177 static void fix_mac_address(struct s2io_nic *sp)
2178 {
2179         struct XENA_dev_config __iomem *bar0 = sp->bar0;
2180         int i = 0;
2181
2182         while (fix_mac[i] != END_SIGN) {
2183                 writeq(fix_mac[i++], &bar0->gpio_control);
2184                 udelay(10);
2185                 (void) readq(&bar0->gpio_control);
2186         }
2187 }
2188
2189 /**
2190  *  start_nic - Turns the device on
2191  *  @nic : device private variable.
2192  *  Description:
2193  *  This function actually turns the device on. Before this  function is
2194  *  called,all Registers are configured from their reset states
2195  *  and shared memory is allocated but the NIC is still quiescent. On
2196  *  calling this function, the device interrupts are cleared and the NIC is
2197  *  literally switched on by writing into the adapter control register.
2198  *  Return Value:
2199  *  SUCCESS on success and -1 on failure.
2200  */
2201
2202 static int start_nic(struct s2io_nic *nic)
2203 {
2204         struct XENA_dev_config __iomem *bar0 = nic->bar0;
2205         struct net_device *dev = nic->dev;
2206         register u64 val64 = 0;
2207         u16 subid, i;
2208         struct config_param *config = &nic->config;
2209         struct mac_info *mac_control = &nic->mac_control;
2210
2211         /*  PRC Initialization and configuration */
2212         for (i = 0; i < config->rx_ring_num; i++) {
2213                 struct ring_info *ring = &mac_control->rings[i];
2214
2215                 writeq((u64)ring->rx_blocks[0].block_dma_addr,
2216                        &bar0->prc_rxd0_n[i]);
2217
2218                 val64 = readq(&bar0->prc_ctrl_n[i]);
2219                 if (nic->rxd_mode == RXD_MODE_1)
2220                         val64 |= PRC_CTRL_RC_ENABLED;
2221                 else
2222                         val64 |= PRC_CTRL_RC_ENABLED | PRC_CTRL_RING_MODE_3;
2223                 if (nic->device_type == XFRAME_II_DEVICE)
2224                         val64 |= PRC_CTRL_GROUP_READS;
2225                 val64 &= ~PRC_CTRL_RXD_BACKOFF_INTERVAL(0xFFFFFF);
2226                 val64 |= PRC_CTRL_RXD_BACKOFF_INTERVAL(0x1000);
2227                 writeq(val64, &bar0->prc_ctrl_n[i]);
2228         }
2229
2230         if (nic->rxd_mode == RXD_MODE_3B) {
2231                 /* Enabling 2 buffer mode by writing into Rx_pa_cfg reg. */
2232                 val64 = readq(&bar0->rx_pa_cfg);
2233                 val64 |= RX_PA_CFG_IGNORE_L2_ERR;
2234                 writeq(val64, &bar0->rx_pa_cfg);
2235         }
2236
2237         if (vlan_tag_strip == 0) {
2238                 val64 = readq(&bar0->rx_pa_cfg);
2239                 val64 &= ~RX_PA_CFG_STRIP_VLAN_TAG;
2240                 writeq(val64, &bar0->rx_pa_cfg);
2241                 nic->vlan_strip_flag = 0;
2242         }
2243
2244         /*
2245          * Enabling MC-RLDRAM. After enabling the device, we timeout
2246          * for around 100ms, which is approximately the time required
2247          * for the device to be ready for operation.
2248          */
2249         val64 = readq(&bar0->mc_rldram_mrs);
2250         val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE | MC_RLDRAM_MRS_ENABLE;
2251         SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
2252         val64 = readq(&bar0->mc_rldram_mrs);
2253
2254         msleep(100);    /* Delay by around 100 ms. */
2255
2256         /* Enabling ECC Protection. */
2257         val64 = readq(&bar0->adapter_control);
2258         val64 &= ~ADAPTER_ECC_EN;
2259         writeq(val64, &bar0->adapter_control);
2260
2261         /*
2262          * Verify if the device is ready to be enabled, if so enable
2263          * it.
2264          */
2265         val64 = readq(&bar0->adapter_status);
2266         if (!verify_xena_quiescence(nic)) {
2267                 DBG_PRINT(ERR_DBG, "%s: device is not ready, "
2268                           "Adapter status reads: 0x%llx\n",
2269                           dev->name, (unsigned long long)val64);
2270                 return FAILURE;
2271         }
2272
2273         /*
2274          * With some switches, link might be already up at this point.
2275          * Because of this weird behavior, when we enable laser,
2276          * we may not get link. We need to handle this. We cannot
2277          * figure out which switch is misbehaving. So we are forced to
2278          * make a global change.
2279          */
2280
2281         /* Enabling Laser. */
2282         val64 = readq(&bar0->adapter_control);
2283         val64 |= ADAPTER_EOI_TX_ON;
2284         writeq(val64, &bar0->adapter_control);
2285
2286         if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) {
2287                 /*
2288                  * Dont see link state interrupts initially on some switches,
2289                  * so directly scheduling the link state task here.
2290                  */
2291                 schedule_work(&nic->set_link_task);
2292         }
2293         /* SXE-002: Initialize link and activity LED */
2294         subid = nic->pdev->subsystem_device;
2295         if (((subid & 0xFF) >= 0x07) &&
2296             (nic->device_type == XFRAME_I_DEVICE)) {
2297                 val64 = readq(&bar0->gpio_control);
2298                 val64 |= 0x0000800000000000ULL;
2299                 writeq(val64, &bar0->gpio_control);
2300                 val64 = 0x0411040400000000ULL;
2301                 writeq(val64, (void __iomem *)bar0 + 0x2700);
2302         }
2303
2304         return SUCCESS;
2305 }
2306 /**
2307  * s2io_txdl_getskb - Get the skb from txdl, unmap and return skb
2308  */
2309 static struct sk_buff *s2io_txdl_getskb(struct fifo_info *fifo_data,
2310                                         struct TxD *txdlp, int get_off)
2311 {
2312         struct s2io_nic *nic = fifo_data->nic;
2313         struct sk_buff *skb;
2314         struct TxD *txds;
2315         u16 j, frg_cnt;
2316
2317         txds = txdlp;
2318         if (txds->Host_Control == (u64)(long)fifo_data->ufo_in_band_v) {
2319                 pci_unmap_single(nic->pdev, (dma_addr_t)txds->Buffer_Pointer,
2320                                  sizeof(u64), PCI_DMA_TODEVICE);
2321                 txds++;
2322         }
2323
2324         skb = (struct sk_buff *)((unsigned long)txds->Host_Control);
2325         if (!skb) {
2326                 memset(txdlp, 0, (sizeof(struct TxD) * fifo_data->max_txds));
2327                 return NULL;
2328         }
2329         pci_unmap_single(nic->pdev, (dma_addr_t)txds->Buffer_Pointer,
2330                          skb_headlen(skb), PCI_DMA_TODEVICE);
2331         frg_cnt = skb_shinfo(skb)->nr_frags;
2332         if (frg_cnt) {
2333                 txds++;
2334                 for (j = 0; j < frg_cnt; j++, txds++) {
2335                         const skb_frag_t *frag = &skb_shinfo(skb)->frags[j];
2336                         if (!txds->Buffer_Pointer)
2337                                 break;
2338                         pci_unmap_page(nic->pdev,
2339                                        (dma_addr_t)txds->Buffer_Pointer,
2340                                        skb_frag_size(frag), PCI_DMA_TODEVICE);
2341                 }
2342         }
2343         memset(txdlp, 0, (sizeof(struct TxD) * fifo_data->max_txds));
2344         return skb;
2345 }
2346
2347 /**
2348  *  free_tx_buffers - Free all queued Tx buffers
2349  *  @nic : device private variable.
2350  *  Description:
2351  *  Free all queued Tx buffers.
2352  *  Return Value: void
2353  */
2354
2355 static void free_tx_buffers(struct s2io_nic *nic)
2356 {
2357         struct net_device *dev = nic->dev;
2358         struct sk_buff *skb;
2359         struct TxD *txdp;
2360         int i, j;
2361         int cnt = 0;
2362         struct config_param *config = &nic->config;
2363         struct mac_info *mac_control = &nic->mac_control;
2364         struct stat_block *stats = mac_control->stats_info;
2365         struct swStat *swstats = &stats->sw_stat;
2366
2367         for (i = 0; i < config->tx_fifo_num; i++) {
2368                 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
2369                 struct fifo_info *fifo = &mac_control->fifos[i];
2370                 unsigned long flags;
2371
2372                 spin_lock_irqsave(&fifo->tx_lock, flags);
2373                 for (j = 0; j < tx_cfg->fifo_len; j++) {
2374                         txdp = fifo->list_info[j].list_virt_addr;
2375                         skb = s2io_txdl_getskb(&mac_control->fifos[i], txdp, j);
2376                         if (skb) {
2377                                 swstats->mem_freed += skb->truesize;
2378                                 dev_kfree_skb(skb);
2379                                 cnt++;
2380                         }
2381                 }
2382                 DBG_PRINT(INTR_DBG,
2383                           "%s: forcibly freeing %d skbs on FIFO%d\n",
2384                           dev->name, cnt, i);
2385                 fifo->tx_curr_get_info.offset = 0;
2386                 fifo->tx_curr_put_info.offset = 0;
2387                 spin_unlock_irqrestore(&fifo->tx_lock, flags);
2388         }
2389 }
2390
2391 /**
2392  *   stop_nic -  To stop the nic
2393  *   @nic ; device private variable.
2394  *   Description:
2395  *   This function does exactly the opposite of what the start_nic()
2396  *   function does. This function is called to stop the device.
2397  *   Return Value:
2398  *   void.
2399  */
2400
2401 static void stop_nic(struct s2io_nic *nic)
2402 {
2403         struct XENA_dev_config __iomem *bar0 = nic->bar0;
2404         register u64 val64 = 0;
2405         u16 interruptible;
2406
2407         /*  Disable all interrupts */
2408         en_dis_err_alarms(nic, ENA_ALL_INTRS, DISABLE_INTRS);
2409         interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR;
2410         interruptible |= TX_PIC_INTR;
2411         en_dis_able_nic_intrs(nic, interruptible, DISABLE_INTRS);
2412
2413         /* Clearing Adapter_En bit of ADAPTER_CONTROL Register */
2414         val64 = readq(&bar0->adapter_control);
2415         val64 &= ~(ADAPTER_CNTL_EN);
2416         writeq(val64, &bar0->adapter_control);
2417 }
2418
2419 /**
2420  *  fill_rx_buffers - Allocates the Rx side skbs
2421  *  @ring_info: per ring structure
2422  *  @from_card_up: If this is true, we will map the buffer to get
2423  *     the dma address for buf0 and buf1 to give it to the card.
2424  *     Else we will sync the already mapped buffer to give it to the card.
2425  *  Description:
2426  *  The function allocates Rx side skbs and puts the physical
2427  *  address of these buffers into the RxD buffer pointers, so that the NIC
2428  *  can DMA the received frame into these locations.
2429  *  The NIC supports 3 receive modes, viz
2430  *  1. single buffer,
2431  *  2. three buffer and
2432  *  3. Five buffer modes.
2433  *  Each mode defines how many fragments the received frame will be split
2434  *  up into by the NIC. The frame is split into L3 header, L4 Header,
2435  *  L4 payload in three buffer mode and in 5 buffer mode, L4 payload itself
2436  *  is split into 3 fragments. As of now only single buffer mode is
2437  *  supported.
2438  *   Return Value:
2439  *  SUCCESS on success or an appropriate -ve value on failure.
2440  */
2441 static int fill_rx_buffers(struct s2io_nic *nic, struct ring_info *ring,
2442                            int from_card_up)
2443 {
2444         struct sk_buff *skb;
2445         struct RxD_t *rxdp;
2446         int off, size, block_no, block_no1;
2447         u32 alloc_tab = 0;
2448         u32 alloc_cnt;
2449         u64 tmp;
2450         struct buffAdd *ba;
2451         struct RxD_t *first_rxdp = NULL;
2452         u64 Buffer0_ptr = 0, Buffer1_ptr = 0;
2453         struct RxD1 *rxdp1;
2454         struct RxD3 *rxdp3;
2455         struct swStat *swstats = &ring->nic->mac_control.stats_info->sw_stat;
2456
2457         alloc_cnt = ring->pkt_cnt - ring->rx_bufs_left;
2458
2459         block_no1 = ring->rx_curr_get_info.block_index;
2460         while (alloc_tab < alloc_cnt) {
2461                 block_no = ring->rx_curr_put_info.block_index;
2462
2463                 off = ring->rx_curr_put_info.offset;
2464
2465                 rxdp = ring->rx_blocks[block_no].rxds[off].virt_addr;
2466
2467                 if ((block_no == block_no1) &&
2468                     (off == ring->rx_curr_get_info.offset) &&
2469                     (rxdp->Host_Control)) {
2470                         DBG_PRINT(INTR_DBG, "%s: Get and Put info equated\n",
2471                                   ring->dev->name);
2472                         goto end;
2473                 }
2474                 if (off && (off == ring->rxd_count)) {
2475                         ring->rx_curr_put_info.block_index++;
2476                         if (ring->rx_curr_put_info.block_index ==
2477                             ring->block_count)
2478                                 ring->rx_curr_put_info.block_index = 0;
2479                         block_no = ring->rx_curr_put_info.block_index;
2480                         off = 0;
2481                         ring->rx_curr_put_info.offset = off;
2482                         rxdp = ring->rx_blocks[block_no].block_virt_addr;
2483                         DBG_PRINT(INTR_DBG, "%s: Next block at: %p\n",
2484                                   ring->dev->name, rxdp);
2485
2486                 }
2487
2488                 if ((rxdp->Control_1 & RXD_OWN_XENA) &&
2489                     ((ring->rxd_mode == RXD_MODE_3B) &&
2490                      (rxdp->Control_2 & s2BIT(0)))) {
2491                         ring->rx_curr_put_info.offset = off;
2492                         goto end;
2493                 }
2494                 /* calculate size of skb based on ring mode */
2495                 size = ring->mtu +
2496                         HEADER_ETHERNET_II_802_3_SIZE +
2497                         HEADER_802_2_SIZE + HEADER_SNAP_SIZE;
2498                 if (ring->rxd_mode == RXD_MODE_1)
2499                         size += NET_IP_ALIGN;
2500                 else
2501                         size = ring->mtu + ALIGN_SIZE + BUF0_LEN + 4;
2502
2503                 /* allocate skb */
2504                 skb = netdev_alloc_skb(nic->dev, size);
2505                 if (!skb) {
2506                         DBG_PRINT(INFO_DBG, "%s: Could not allocate skb\n",
2507                                   ring->dev->name);
2508                         if (first_rxdp) {
2509                                 dma_wmb();
2510                                 first_rxdp->Control_1 |= RXD_OWN_XENA;
2511                         }
2512                         swstats->mem_alloc_fail_cnt++;
2513
2514                         return -ENOMEM ;
2515                 }
2516                 swstats->mem_allocated += skb->truesize;
2517
2518                 if (ring->rxd_mode == RXD_MODE_1) {
2519                         /* 1 buffer mode - normal operation mode */
2520                         rxdp1 = (struct RxD1 *)rxdp;
2521                         memset(rxdp, 0, sizeof(struct RxD1));
2522                         skb_reserve(skb, NET_IP_ALIGN);
2523                         rxdp1->Buffer0_ptr =
2524                                 pci_map_single(ring->pdev, skb->data,
2525                                                size - NET_IP_ALIGN,
2526                                                PCI_DMA_FROMDEVICE);
2527                         if (pci_dma_mapping_error(nic->pdev,
2528                                                   rxdp1->Buffer0_ptr))
2529                                 goto pci_map_failed;
2530
2531                         rxdp->Control_2 =
2532                                 SET_BUFFER0_SIZE_1(size - NET_IP_ALIGN);
2533                         rxdp->Host_Control = (unsigned long)skb;
2534                 } else if (ring->rxd_mode == RXD_MODE_3B) {
2535                         /*
2536                          * 2 buffer mode -
2537                          * 2 buffer mode provides 128
2538                          * byte aligned receive buffers.
2539                          */
2540
2541                         rxdp3 = (struct RxD3 *)rxdp;
2542                         /* save buffer pointers to avoid frequent dma mapping */
2543                         Buffer0_ptr = rxdp3->Buffer0_ptr;
2544                         Buffer1_ptr = rxdp3->Buffer1_ptr;
2545                         memset(rxdp, 0, sizeof(struct RxD3));
2546                         /* restore the buffer pointers for dma sync*/
2547                         rxdp3->Buffer0_ptr = Buffer0_ptr;
2548                         rxdp3->Buffer1_ptr = Buffer1_ptr;
2549
2550                         ba = &ring->ba[block_no][off];
2551                         skb_reserve(skb, BUF0_LEN);
2552                         tmp = (u64)(unsigned long)skb->data;
2553                         tmp += ALIGN_SIZE;
2554                         tmp &= ~ALIGN_SIZE;
2555                         skb->data = (void *) (unsigned long)tmp;
2556                         skb_reset_tail_pointer(skb);
2557
2558                         if (from_card_up) {
2559                                 rxdp3->Buffer0_ptr =
2560                                         pci_map_single(ring->pdev, ba->ba_0,
2561                                                        BUF0_LEN,
2562                                                        PCI_DMA_FROMDEVICE);
2563                                 if (pci_dma_mapping_error(nic->pdev,
2564                                                           rxdp3->Buffer0_ptr))
2565                                         goto pci_map_failed;
2566                         } else
2567                                 pci_dma_sync_single_for_device(ring->pdev,
2568                                                                (dma_addr_t)rxdp3->Buffer0_ptr,
2569                                                                BUF0_LEN,
2570                                                                PCI_DMA_FROMDEVICE);
2571
2572                         rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN);
2573                         if (ring->rxd_mode == RXD_MODE_3B) {
2574                                 /* Two buffer mode */
2575
2576                                 /*
2577                                  * Buffer2 will have L3/L4 header plus
2578                                  * L4 payload
2579                                  */
2580                                 rxdp3->Buffer2_ptr = pci_map_single(ring->pdev,
2581                                                                     skb->data,
2582                                                                     ring->mtu + 4,
2583                                                                     PCI_DMA_FROMDEVICE);
2584
2585                                 if (pci_dma_mapping_error(nic->pdev,
2586                                                           rxdp3->Buffer2_ptr))
2587                                         goto pci_map_failed;
2588
2589                                 if (from_card_up) {
2590                                         rxdp3->Buffer1_ptr =
2591                                                 pci_map_single(ring->pdev,
2592                                                                ba->ba_1,
2593                                                                BUF1_LEN,
2594                                                                PCI_DMA_FROMDEVICE);
2595
2596                                         if (pci_dma_mapping_error(nic->pdev,
2597                                                                   rxdp3->Buffer1_ptr)) {
2598                                                 pci_unmap_single(ring->pdev,
2599                                                                  (dma_addr_t)(unsigned long)
2600                                                                  skb->data,
2601                                                                  ring->mtu + 4,
2602                                                                  PCI_DMA_FROMDEVICE);
2603                                                 goto pci_map_failed;
2604                                         }
2605                                 }
2606                                 rxdp->Control_2 |= SET_BUFFER1_SIZE_3(1);
2607                                 rxdp->Control_2 |= SET_BUFFER2_SIZE_3
2608                                         (ring->mtu + 4);
2609                         }
2610                         rxdp->Control_2 |= s2BIT(0);
2611                         rxdp->Host_Control = (unsigned long) (skb);
2612                 }
2613                 if (alloc_tab & ((1 << rxsync_frequency) - 1))
2614                         rxdp->Control_1 |= RXD_OWN_XENA;
2615                 off++;
2616                 if (off == (ring->rxd_count + 1))
2617                         off = 0;
2618                 ring->rx_curr_put_info.offset = off;
2619
2620                 rxdp->Control_2 |= SET_RXD_MARKER;
2621                 if (!(alloc_tab & ((1 << rxsync_frequency) - 1))) {
2622                         if (first_rxdp) {
2623                                 dma_wmb();
2624                                 first_rxdp->Control_1 |= RXD_OWN_XENA;
2625                         }
2626                         first_rxdp = rxdp;
2627                 }
2628                 ring->rx_bufs_left += 1;
2629                 alloc_tab++;
2630         }
2631
2632 end:
2633         /* Transfer ownership of first descriptor to adapter just before
2634          * exiting. Before that, use memory barrier so that ownership
2635          * and other fields are seen by adapter correctly.
2636          */
2637         if (first_rxdp) {
2638                 dma_wmb();
2639                 first_rxdp->Control_1 |= RXD_OWN_XENA;
2640         }
2641
2642         return SUCCESS;
2643
2644 pci_map_failed:
2645         swstats->pci_map_fail_cnt++;
2646         swstats->mem_freed += skb->truesize;
2647         dev_kfree_skb_irq(skb);
2648         return -ENOMEM;
2649 }
2650
2651 static void free_rxd_blk(struct s2io_nic *sp, int ring_no, int blk)
2652 {
2653         struct net_device *dev = sp->dev;
2654         int j;
2655         struct sk_buff *skb;
2656         struct RxD_t *rxdp;
2657         struct RxD1 *rxdp1;
2658         struct RxD3 *rxdp3;
2659         struct mac_info *mac_control = &sp->mac_control;
2660         struct stat_block *stats = mac_control->stats_info;
2661         struct swStat *swstats = &stats->sw_stat;
2662
2663         for (j = 0 ; j < rxd_count[sp->rxd_mode]; j++) {
2664                 rxdp = mac_control->rings[ring_no].
2665                         rx_blocks[blk].rxds[j].virt_addr;
2666                 skb = (struct sk_buff *)((unsigned long)rxdp->Host_Control);
2667                 if (!skb)
2668                         continue;
2669                 if (sp->rxd_mode == RXD_MODE_1) {
2670                         rxdp1 = (struct RxD1 *)rxdp;
2671                         pci_unmap_single(sp->pdev,
2672                                          (dma_addr_t)rxdp1->Buffer0_ptr,
2673                                          dev->mtu +
2674                                          HEADER_ETHERNET_II_802_3_SIZE +
2675                                          HEADER_802_2_SIZE + HEADER_SNAP_SIZE,
2676                                          PCI_DMA_FROMDEVICE);
2677                         memset(rxdp, 0, sizeof(struct RxD1));
2678                 } else if (sp->rxd_mode == RXD_MODE_3B) {
2679                         rxdp3 = (struct RxD3 *)rxdp;
2680                         pci_unmap_single(sp->pdev,
2681                                          (dma_addr_t)rxdp3->Buffer0_ptr,
2682                                          BUF0_LEN,
2683                                          PCI_DMA_FROMDEVICE);
2684                         pci_unmap_single(sp->pdev,
2685                                          (dma_addr_t)rxdp3->Buffer1_ptr,
2686                                          BUF1_LEN,
2687                                          PCI_DMA_FROMDEVICE);
2688                         pci_unmap_single(sp->pdev,
2689                                          (dma_addr_t)rxdp3->Buffer2_ptr,
2690                                          dev->mtu + 4,
2691                                          PCI_DMA_FROMDEVICE);
2692                         memset(rxdp, 0, sizeof(struct RxD3));
2693                 }
2694                 swstats->mem_freed += skb->truesize;
2695                 dev_kfree_skb(skb);
2696                 mac_control->rings[ring_no].rx_bufs_left -= 1;
2697         }
2698 }
2699
2700 /**
2701  *  free_rx_buffers - Frees all Rx buffers
2702  *  @sp: device private variable.
2703  *  Description:
2704  *  This function will free all Rx buffers allocated by host.
2705  *  Return Value:
2706  *  NONE.
2707  */
2708
2709 static void free_rx_buffers(struct s2io_nic *sp)
2710 {
2711         struct net_device *dev = sp->dev;
2712         int i, blk = 0, buf_cnt = 0;
2713         struct config_param *config = &sp->config;
2714         struct mac_info *mac_control = &sp->mac_control;
2715
2716         for (i = 0; i < config->rx_ring_num; i++) {
2717                 struct ring_info *ring = &mac_control->rings[i];
2718
2719                 for (blk = 0; blk < rx_ring_sz[i]; blk++)
2720                         free_rxd_blk(sp, i, blk);
2721
2722                 ring->rx_curr_put_info.block_index = 0;
2723                 ring->rx_curr_get_info.block_index = 0;
2724                 ring->rx_curr_put_info.offset = 0;
2725                 ring->rx_curr_get_info.offset = 0;
2726                 ring->rx_bufs_left = 0;
2727                 DBG_PRINT(INIT_DBG, "%s: Freed 0x%x Rx Buffers on ring%d\n",
2728                           dev->name, buf_cnt, i);
2729         }
2730 }
2731
2732 static int s2io_chk_rx_buffers(struct s2io_nic *nic, struct ring_info *ring)
2733 {
2734         if (fill_rx_buffers(nic, ring, 0) == -ENOMEM) {
2735                 DBG_PRINT(INFO_DBG, "%s: Out of memory in Rx Intr!!\n",
2736                           ring->dev->name);
2737         }
2738         return 0;
2739 }
2740
2741 /**
2742  * s2io_poll - Rx interrupt handler for NAPI support
2743  * @napi : pointer to the napi structure.
2744  * @budget : The number of packets that were budgeted to be processed
2745  * during  one pass through the 'Poll" function.
2746  * Description:
2747  * Comes into picture only if NAPI support has been incorporated. It does
2748  * the same thing that rx_intr_handler does, but not in a interrupt context
2749  * also It will process only a given number of packets.
2750  * Return value:
2751  * 0 on success and 1 if there are No Rx packets to be processed.
2752  */
2753
2754 static int s2io_poll_msix(struct napi_struct *napi, int budget)
2755 {
2756         struct ring_info *ring = container_of(napi, struct ring_info, napi);
2757         struct net_device *dev = ring->dev;
2758         int pkts_processed = 0;
2759         u8 __iomem *addr = NULL;
2760         u8 val8 = 0;
2761         struct s2io_nic *nic = netdev_priv(dev);
2762         struct XENA_dev_config __iomem *bar0 = nic->bar0;
2763         int budget_org = budget;
2764
2765         if (unlikely(!is_s2io_card_up(nic)))
2766                 return 0;
2767
2768         pkts_processed = rx_intr_handler(ring, budget);
2769         s2io_chk_rx_buffers(nic, ring);
2770
2771         if (pkts_processed < budget_org) {
2772                 napi_complete_done(napi, pkts_processed);
2773                 /*Re Enable MSI-Rx Vector*/
2774                 addr = (u8 __iomem *)&bar0->xmsi_mask_reg;
2775                 addr += 7 - ring->ring_no;
2776                 val8 = (ring->ring_no == 0) ? 0x3f : 0xbf;
2777                 writeb(val8, addr);
2778                 val8 = readb(addr);
2779         }
2780         return pkts_processed;
2781 }
2782
2783 static int s2io_poll_inta(struct napi_struct *napi, int budget)
2784 {
2785         struct s2io_nic *nic = container_of(napi, struct s2io_nic, napi);
2786         int pkts_processed = 0;
2787         int ring_pkts_processed, i;
2788         struct XENA_dev_config __iomem *bar0 = nic->bar0;
2789         int budget_org = budget;
2790         struct config_param *config = &nic->config;
2791         struct mac_info *mac_control = &nic->mac_control;
2792
2793         if (unlikely(!is_s2io_card_up(nic)))
2794                 return 0;
2795
2796         for (i = 0; i < config->rx_ring_num; i++) {
2797                 struct ring_info *ring = &mac_control->rings[i];
2798                 ring_pkts_processed = rx_intr_handler(ring, budget);
2799                 s2io_chk_rx_buffers(nic, ring);
2800                 pkts_processed += ring_pkts_processed;
2801                 budget -= ring_pkts_processed;
2802                 if (budget <= 0)
2803                         break;
2804         }
2805         if (pkts_processed < budget_org) {
2806                 napi_complete_done(napi, pkts_processed);
2807                 /* Re enable the Rx interrupts for the ring */
2808                 writeq(0, &bar0->rx_traffic_mask);
2809                 readl(&bar0->rx_traffic_mask);
2810         }
2811         return pkts_processed;
2812 }
2813
2814 #ifdef CONFIG_NET_POLL_CONTROLLER
2815 /**
2816  * s2io_netpoll - netpoll event handler entry point
2817  * @dev : pointer to the device structure.
2818  * Description:
2819  *      This function will be called by upper layer to check for events on the
2820  * interface in situations where interrupts are disabled. It is used for
2821  * specific in-kernel networking tasks, such as remote consoles and kernel
2822  * debugging over the network (example netdump in RedHat).
2823  */
2824 static void s2io_netpoll(struct net_device *dev)
2825 {
2826         struct s2io_nic *nic = netdev_priv(dev);
2827         const int irq = nic->pdev->irq;
2828         struct XENA_dev_config __iomem *bar0 = nic->bar0;
2829         u64 val64 = 0xFFFFFFFFFFFFFFFFULL;
2830         int i;
2831         struct config_param *config = &nic->config;
2832         struct mac_info *mac_control = &nic->mac_control;
2833
2834         if (pci_channel_offline(nic->pdev))
2835                 return;
2836
2837         disable_irq(irq);
2838
2839         writeq(val64, &bar0->rx_traffic_int);
2840         writeq(val64, &bar0->tx_traffic_int);
2841
2842         /* we need to free up the transmitted skbufs or else netpoll will
2843          * run out of skbs and will fail and eventually netpoll application such
2844          * as netdump will fail.
2845          */
2846         for (i = 0; i < config->tx_fifo_num; i++)
2847                 tx_intr_handler(&mac_control->fifos[i]);
2848
2849         /* check for received packet and indicate up to network */
2850         for (i = 0; i < config->rx_ring_num; i++) {
2851                 struct ring_info *ring = &mac_control->rings[i];
2852
2853                 rx_intr_handler(ring, 0);
2854         }
2855
2856         for (i = 0; i < config->rx_ring_num; i++) {
2857                 struct ring_info *ring = &mac_control->rings[i];
2858
2859                 if (fill_rx_buffers(nic, ring, 0) == -ENOMEM) {
2860                         DBG_PRINT(INFO_DBG,
2861                                   "%s: Out of memory in Rx Netpoll!!\n",
2862                                   dev->name);
2863                         break;
2864                 }
2865         }
2866         enable_irq(irq);
2867 }
2868 #endif
2869
2870 /**
2871  *  rx_intr_handler - Rx interrupt handler
2872  *  @ring_info: per ring structure.
2873  *  @budget: budget for napi processing.
2874  *  Description:
2875  *  If the interrupt is because of a received frame or if the
2876  *  receive ring contains fresh as yet un-processed frames,this function is
2877  *  called. It picks out the RxD at which place the last Rx processing had
2878  *  stopped and sends the skb to the OSM's Rx handler and then increments
2879  *  the offset.
2880  *  Return Value:
2881  *  No. of napi packets processed.
2882  */
2883 static int rx_intr_handler(struct ring_info *ring_data, int budget)
2884 {
2885         int get_block, put_block;
2886         struct rx_curr_get_info get_info, put_info;
2887         struct RxD_t *rxdp;
2888         struct sk_buff *skb;
2889         int pkt_cnt = 0, napi_pkts = 0;
2890         int i;
2891         struct RxD1 *rxdp1;
2892         struct RxD3 *rxdp3;
2893
2894         if (budget <= 0)
2895                 return napi_pkts;
2896
2897         get_info = ring_data->rx_curr_get_info;
2898         get_block = get_info.block_index;
2899         memcpy(&put_info, &ring_data->rx_curr_put_info, sizeof(put_info));
2900         put_block = put_info.block_index;
2901         rxdp = ring_data->rx_blocks[get_block].rxds[get_info.offset].virt_addr;
2902
2903         while (RXD_IS_UP2DT(rxdp)) {
2904                 /*
2905                  * If your are next to put index then it's
2906                  * FIFO full condition
2907                  */
2908                 if ((get_block == put_block) &&
2909                     (get_info.offset + 1) == put_info.offset) {
2910                         DBG_PRINT(INTR_DBG, "%s: Ring Full\n",
2911                                   ring_data->dev->name);
2912                         break;
2913                 }
2914                 skb = (struct sk_buff *)((unsigned long)rxdp->Host_Control);
2915                 if (skb == NULL) {
2916                         DBG_PRINT(ERR_DBG, "%s: NULL skb in Rx Intr\n",
2917                                   ring_data->dev->name);
2918                         return 0;
2919                 }
2920                 if (ring_data->rxd_mode == RXD_MODE_1) {
2921                         rxdp1 = (struct RxD1 *)rxdp;
2922                         pci_unmap_single(ring_data->pdev, (dma_addr_t)
2923                                          rxdp1->Buffer0_ptr,
2924                                          ring_data->mtu +
2925                                          HEADER_ETHERNET_II_802_3_SIZE +
2926                                          HEADER_802_2_SIZE +
2927                                          HEADER_SNAP_SIZE,
2928                                          PCI_DMA_FROMDEVICE);
2929                 } else if (ring_data->rxd_mode == RXD_MODE_3B) {
2930                         rxdp3 = (struct RxD3 *)rxdp;
2931                         pci_dma_sync_single_for_cpu(ring_data->pdev,
2932                                                     (dma_addr_t)rxdp3->Buffer0_ptr,
2933                                                     BUF0_LEN,
2934                                                     PCI_DMA_FROMDEVICE);
2935                         pci_unmap_single(ring_data->pdev,
2936                                          (dma_addr_t)rxdp3->Buffer2_ptr,
2937                                          ring_data->mtu + 4,
2938                                          PCI_DMA_FROMDEVICE);
2939                 }
2940                 prefetch(skb->data);
2941                 rx_osm_handler(ring_data, rxdp);
2942                 get_info.offset++;
2943                 ring_data->rx_curr_get_info.offset = get_info.offset;
2944                 rxdp = ring_data->rx_blocks[get_block].
2945                         rxds[get_info.offset].virt_addr;
2946                 if (get_info.offset == rxd_count[ring_data->rxd_mode]) {
2947                         get_info.offset = 0;
2948                         ring_data->rx_curr_get_info.offset = get_info.offset;
2949                         get_block++;
2950                         if (get_block == ring_data->block_count)
2951                                 get_block = 0;
2952                         ring_data->rx_curr_get_info.block_index = get_block;
2953                         rxdp = ring_data->rx_blocks[get_block].block_virt_addr;
2954                 }
2955
2956                 if (ring_data->nic->config.napi) {
2957                         budget--;
2958                         napi_pkts++;
2959                         if (!budget)
2960                                 break;
2961                 }
2962                 pkt_cnt++;
2963                 if ((indicate_max_pkts) && (pkt_cnt > indicate_max_pkts))
2964                         break;
2965         }
2966         if (ring_data->lro) {
2967                 /* Clear all LRO sessions before exiting */
2968                 for (i = 0; i < MAX_LRO_SESSIONS; i++) {
2969                         struct lro *lro = &ring_data->lro0_n[i];
2970                         if (lro->in_use) {
2971                                 update_L3L4_header(ring_data->nic, lro);
2972                                 queue_rx_frame(lro->parent, lro->vlan_tag);
2973                                 clear_lro_session(lro);
2974                         }
2975                 }
2976         }
2977         return napi_pkts;
2978 }
2979
2980 /**
2981  *  tx_intr_handler - Transmit interrupt handler
2982  *  @nic : device private variable
2983  *  Description:
2984  *  If an interrupt was raised to indicate DMA complete of the
2985  *  Tx packet, this function is called. It identifies the last TxD
2986  *  whose buffer was freed and frees all skbs whose data have already
2987  *  DMA'ed into the NICs internal memory.
2988  *  Return Value:
2989  *  NONE
2990  */
2991
2992 static void tx_intr_handler(struct fifo_info *fifo_data)
2993 {
2994         struct s2io_nic *nic = fifo_data->nic;
2995         struct tx_curr_get_info get_info, put_info;
2996         struct sk_buff *skb = NULL;
2997         struct TxD *txdlp;
2998         int pkt_cnt = 0;
2999         unsigned long flags = 0;
3000         u8 err_mask;
3001         struct stat_block *stats = nic->mac_control.stats_info;
3002         struct swStat *swstats = &stats->sw_stat;
3003
3004         if (!spin_trylock_irqsave(&fifo_data->tx_lock, flags))
3005                 return;
3006
3007         get_info = fifo_data->tx_curr_get_info;
3008         memcpy(&put_info, &fifo_data->tx_curr_put_info, sizeof(put_info));
3009         txdlp = fifo_data->list_info[get_info.offset].list_virt_addr;
3010         while ((!(txdlp->Control_1 & TXD_LIST_OWN_XENA)) &&
3011                (get_info.offset != put_info.offset) &&
3012                (txdlp->Host_Control)) {
3013                 /* Check for TxD errors */
3014                 if (txdlp->Control_1 & TXD_T_CODE) {
3015                         unsigned long long err;
3016                         err = txdlp->Control_1 & TXD_T_CODE;
3017                         if (err & 0x1) {
3018                                 swstats->parity_err_cnt++;
3019                         }
3020
3021                         /* update t_code statistics */
3022                         err_mask = err >> 48;
3023                         switch (err_mask) {
3024                         case 2:
3025                                 swstats->tx_buf_abort_cnt++;
3026                                 break;
3027
3028                         case 3:
3029                                 swstats->tx_desc_abort_cnt++;
3030                                 break;
3031
3032                         case 7:
3033                                 swstats->tx_parity_err_cnt++;
3034                                 break;
3035
3036                         case 10:
3037                                 swstats->tx_link_loss_cnt++;
3038                                 break;
3039
3040                         case 15:
3041                                 swstats->tx_list_proc_err_cnt++;
3042                                 break;
3043                         }
3044                 }
3045
3046                 skb = s2io_txdl_getskb(fifo_data, txdlp, get_info.offset);
3047                 if (skb == NULL) {
3048                         spin_unlock_irqrestore(&fifo_data->tx_lock, flags);
3049                         DBG_PRINT(ERR_DBG, "%s: NULL skb in Tx Free Intr\n",
3050                                   __func__);
3051                         return;
3052                 }
3053                 pkt_cnt++;
3054
3055                 /* Updating the statistics block */
3056                 swstats->mem_freed += skb->truesize;
3057                 dev_consume_skb_irq(skb);
3058
3059                 get_info.offset++;
3060                 if (get_info.offset == get_info.fifo_len + 1)
3061                         get_info.offset = 0;
3062                 txdlp = fifo_data->list_info[get_info.offset].list_virt_addr;
3063                 fifo_data->tx_curr_get_info.offset = get_info.offset;
3064         }
3065
3066         s2io_wake_tx_queue(fifo_data, pkt_cnt, nic->config.multiq);
3067
3068         spin_unlock_irqrestore(&fifo_data->tx_lock, flags);
3069 }
3070
3071 /**
3072  *  s2io_mdio_write - Function to write in to MDIO registers
3073  *  @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS)
3074  *  @addr     : address value
3075  *  @value    : data value
3076  *  @dev      : pointer to net_device structure
3077  *  Description:
3078  *  This function is used to write values to the MDIO registers
3079  *  NONE
3080  */
3081 static void s2io_mdio_write(u32 mmd_type, u64 addr, u16 value,
3082                             struct net_device *dev)
3083 {
3084         u64 val64;
3085         struct s2io_nic *sp = netdev_priv(dev);
3086         struct XENA_dev_config __iomem *bar0 = sp->bar0;
3087
3088         /* address transaction */
3089         val64 = MDIO_MMD_INDX_ADDR(addr) |
3090                 MDIO_MMD_DEV_ADDR(mmd_type) |
3091                 MDIO_MMS_PRT_ADDR(0x0);
3092         writeq(val64, &bar0->mdio_control);
3093         val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3094         writeq(val64, &bar0->mdio_control);
3095         udelay(100);
3096
3097         /* Data transaction */
3098         val64 = MDIO_MMD_INDX_ADDR(addr) |
3099                 MDIO_MMD_DEV_ADDR(mmd_type) |
3100                 MDIO_MMS_PRT_ADDR(0x0) |
3101                 MDIO_MDIO_DATA(value) |
3102                 MDIO_OP(MDIO_OP_WRITE_TRANS);
3103         writeq(val64, &bar0->mdio_control);
3104         val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3105         writeq(val64, &bar0->mdio_control);
3106         udelay(100);
3107
3108         val64 = MDIO_MMD_INDX_ADDR(addr) |
3109                 MDIO_MMD_DEV_ADDR(mmd_type) |
3110                 MDIO_MMS_PRT_ADDR(0x0) |
3111                 MDIO_OP(MDIO_OP_READ_TRANS);
3112         writeq(val64, &bar0->mdio_control);
3113         val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3114         writeq(val64, &bar0->mdio_control);
3115         udelay(100);
3116 }
3117
3118 /**
3119  *  s2io_mdio_read - Function to write in to MDIO registers
3120  *  @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS)
3121  *  @addr     : address value
3122  *  @dev      : pointer to net_device structure
3123  *  Description:
3124  *  This function is used to read values to the MDIO registers
3125  *  NONE
3126  */
3127 static u64 s2io_mdio_read(u32 mmd_type, u64 addr, struct net_device *dev)
3128 {
3129         u64 val64 = 0x0;
3130         u64 rval64 = 0x0;
3131         struct s2io_nic *sp = netdev_priv(dev);
3132         struct XENA_dev_config __iomem *bar0 = sp->bar0;
3133
3134         /* address transaction */
3135         val64 = val64 | (MDIO_MMD_INDX_ADDR(addr)
3136                          | MDIO_MMD_DEV_ADDR(mmd_type)
3137                          | MDIO_MMS_PRT_ADDR(0x0));
3138         writeq(val64, &bar0->mdio_control);
3139         val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3140         writeq(val64, &bar0->mdio_control);
3141         udelay(100);
3142
3143         /* Data transaction */
3144         val64 = MDIO_MMD_INDX_ADDR(addr) |
3145                 MDIO_MMD_DEV_ADDR(mmd_type) |
3146                 MDIO_MMS_PRT_ADDR(0x0) |
3147                 MDIO_OP(MDIO_OP_READ_TRANS);
3148         writeq(val64, &bar0->mdio_control);
3149         val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3150         writeq(val64, &bar0->mdio_control);
3151         udelay(100);
3152
3153         /* Read the value from regs */
3154         rval64 = readq(&bar0->mdio_control);
3155         rval64 = rval64 & 0xFFFF0000;
3156         rval64 = rval64 >> 16;
3157         return rval64;
3158 }
3159
3160 /**
3161  *  s2io_chk_xpak_counter - Function to check the status of the xpak counters
3162  *  @counter      : counter value to be updated
3163  *  @flag         : flag to indicate the status
3164  *  @type         : counter type
3165  *  Description:
3166  *  This function is to check the status of the xpak counters value
3167  *  NONE
3168  */
3169
3170 static void s2io_chk_xpak_counter(u64 *counter, u64 * regs_stat, u32 index,
3171                                   u16 flag, u16 type)
3172 {
3173         u64 mask = 0x3;
3174         u64 val64;
3175         int i;
3176         for (i = 0; i < index; i++)
3177                 mask = mask << 0x2;
3178
3179         if (flag > 0) {
3180                 *counter = *counter + 1;
3181                 val64 = *regs_stat & mask;
3182                 val64 = val64 >> (index * 0x2);
3183                 val64 = val64 + 1;
3184                 if (val64 == 3) {
3185                         switch (type) {
3186                         case 1:
3187                                 DBG_PRINT(ERR_DBG,
3188                                           "Take Xframe NIC out of service.\n");
3189                                 DBG_PRINT(ERR_DBG,
3190 "Excessive temperatures may result in premature transceiver failure.\n");
3191                                 break;
3192                         case 2:
3193                                 DBG_PRINT(ERR_DBG,
3194                                           "Take Xframe NIC out of service.\n");
3195                                 DBG_PRINT(ERR_DBG,
3196 "Excessive bias currents may indicate imminent laser diode failure.\n");
3197                                 break;
3198                         case 3:
3199                                 DBG_PRINT(ERR_DBG,
3200                                           "Take Xframe NIC out of service.\n");
3201                                 DBG_PRINT(ERR_DBG,
3202 "Excessive laser output power may saturate far-end receiver.\n");
3203                                 break;
3204                         default:
3205                                 DBG_PRINT(ERR_DBG,
3206                                           "Incorrect XPAK Alarm type\n");
3207                         }
3208                         val64 = 0x0;
3209                 }
3210                 val64 = val64 << (index * 0x2);
3211                 *regs_stat = (*regs_stat & (~mask)) | (val64);
3212
3213         } else {
3214                 *regs_stat = *regs_stat & (~mask);
3215         }
3216 }
3217
3218 /**
3219  *  s2io_updt_xpak_counter - Function to update the xpak counters
3220  *  @dev         : pointer to net_device struct
3221  *  Description:
3222  *  This function is to upate the status of the xpak counters value
3223  *  NONE
3224  */
3225 static void s2io_updt_xpak_counter(struct net_device *dev)
3226 {
3227         u16 flag  = 0x0;
3228         u16 type  = 0x0;
3229         u16 val16 = 0x0;
3230         u64 val64 = 0x0;
3231         u64 addr  = 0x0;
3232
3233         struct s2io_nic *sp = netdev_priv(dev);
3234         struct stat_block *stats = sp->mac_control.stats_info;
3235         struct xpakStat *xstats = &stats->xpak_stat;
3236
3237         /* Check the communication with the MDIO slave */
3238         addr = MDIO_CTRL1;
3239         val64 = 0x0;
3240         val64 = s2io_mdio_read(MDIO_MMD_PMAPMD, addr, dev);
3241         if ((val64 == 0xFFFF) || (val64 == 0x0000)) {
3242                 DBG_PRINT(ERR_DBG,
3243                           "ERR: MDIO slave access failed - Returned %llx\n",
3244                           (unsigned long long)val64);
3245                 return;
3246         }
3247
3248         /* Check for the expected value of control reg 1 */
3249         if (val64 != MDIO_CTRL1_SPEED10G) {
3250                 DBG_PRINT(ERR_DBG, "Incorrect value at PMA address 0x0000 - "
3251                           "Returned: %llx- Expected: 0x%x\n",
3252                           (unsigned long long)val64, MDIO_CTRL1_SPEED10G);
3253                 return;
3254         }
3255
3256         /* Loading the DOM register to MDIO register */
3257         addr = 0xA100;
3258         s2io_mdio_write(MDIO_MMD_PMAPMD, addr, val16, dev);
3259         val64 = s2io_mdio_read(MDIO_MMD_PMAPMD, addr, dev);
3260
3261         /* Reading the Alarm flags */
3262         addr = 0xA070;
3263         val64 = 0x0;
3264         val64 = s2io_mdio_read(MDIO_MMD_PMAPMD, addr, dev);
3265
3266         flag = CHECKBIT(val64, 0x7);
3267         type = 1;
3268         s2io_chk_xpak_counter(&xstats->alarm_transceiver_temp_high,
3269                               &xstats->xpak_regs_stat,
3270                               0x0, flag, type);
3271
3272         if (CHECKBIT(val64, 0x6))
3273                 xstats->alarm_transceiver_temp_low++;
3274
3275         flag = CHECKBIT(val64, 0x3);
3276         type = 2;
3277         s2io_chk_xpak_counter(&xstats->alarm_laser_bias_current_high,
3278                               &xstats->xpak_regs_stat,
3279                               0x2, flag, type);
3280
3281         if (CHECKBIT(val64, 0x2))
3282                 xstats->alarm_laser_bias_current_low++;
3283
3284         flag = CHECKBIT(val64, 0x1);
3285         type = 3;
3286         s2io_chk_xpak_counter(&xstats->alarm_laser_output_power_high,
3287                               &xstats->xpak_regs_stat,
3288                               0x4, flag, type);
3289
3290         if (CHECKBIT(val64, 0x0))
3291                 xstats->alarm_laser_output_power_low++;
3292
3293         /* Reading the Warning flags */
3294         addr = 0xA074;
3295         val64 = 0x0;
3296         val64 = s2io_mdio_read(MDIO_MMD_PMAPMD, addr, dev);
3297
3298         if (CHECKBIT(val64, 0x7))
3299                 xstats->warn_transceiver_temp_high++;
3300
3301         if (CHECKBIT(val64, 0x6))
3302                 xstats->warn_transceiver_temp_low++;
3303
3304         if (CHECKBIT(val64, 0x3))
3305                 xstats->warn_laser_bias_current_high++;
3306
3307         if (CHECKBIT(val64, 0x2))
3308                 xstats->warn_laser_bias_current_low++;
3309
3310         if (CHECKBIT(val64, 0x1))
3311                 xstats->warn_laser_output_power_high++;
3312
3313         if (CHECKBIT(val64, 0x0))
3314                 xstats->warn_laser_output_power_low++;
3315 }
3316
3317 /**
3318  *  wait_for_cmd_complete - waits for a command to complete.
3319  *  @sp : private member of the device structure, which is a pointer to the
3320  *  s2io_nic structure.
3321  *  Description: Function that waits for a command to Write into RMAC
3322  *  ADDR DATA registers to be completed and returns either success or
3323  *  error depending on whether the command was complete or not.
3324  *  Return value:
3325  *   SUCCESS on success and FAILURE on failure.
3326  */
3327
3328 static int wait_for_cmd_complete(void __iomem *addr, u64 busy_bit,
3329                                  int bit_state)
3330 {
3331         int ret = FAILURE, cnt = 0, delay = 1;
3332         u64 val64;
3333
3334         if ((bit_state != S2IO_BIT_RESET) && (bit_state != S2IO_BIT_SET))
3335                 return FAILURE;
3336
3337         do {
3338                 val64 = readq(addr);
3339                 if (bit_state == S2IO_BIT_RESET) {
3340                         if (!(val64 & busy_bit)) {
3341                                 ret = SUCCESS;
3342                                 break;
3343                         }
3344                 } else {
3345                         if (val64 & busy_bit) {
3346                                 ret = SUCCESS;
3347                                 break;
3348                         }
3349                 }
3350
3351                 if (in_interrupt())
3352                         mdelay(delay);
3353                 else
3354                         msleep(delay);
3355
3356                 if (++cnt >= 10)
3357                         delay = 50;
3358         } while (cnt < 20);
3359         return ret;
3360 }
3361 /**
3362  * check_pci_device_id - Checks if the device id is supported
3363  * @id : device id
3364  * Description: Function to check if the pci device id is supported by driver.
3365  * Return value: Actual device id if supported else PCI_ANY_ID
3366  */
3367 static u16 check_pci_device_id(u16 id)
3368 {
3369         switch (id) {
3370         case PCI_DEVICE_ID_HERC_WIN:
3371         case PCI_DEVICE_ID_HERC_UNI:
3372                 return XFRAME_II_DEVICE;
3373         case PCI_DEVICE_ID_S2IO_UNI:
3374         case PCI_DEVICE_ID_S2IO_WIN:
3375                 return XFRAME_I_DEVICE;
3376         default:
3377                 return PCI_ANY_ID;
3378         }
3379 }
3380
3381 /**
3382  *  s2io_reset - Resets the card.
3383  *  @sp : private member of the device structure.
3384  *  Description: Function to Reset the card. This function then also
3385  *  restores the previously saved PCI configuration space registers as
3386  *  the card reset also resets the configuration space.
3387  *  Return value:
3388  *  void.
3389  */
3390
3391 static void s2io_reset(struct s2io_nic *sp)
3392 {
3393         struct XENA_dev_config __iomem *bar0 = sp->bar0;
3394         u64 val64;
3395         u16 subid, pci_cmd;
3396         int i;
3397         u16 val16;
3398         unsigned long long up_cnt, down_cnt, up_time, down_time, reset_cnt;
3399         unsigned long long mem_alloc_cnt, mem_free_cnt, watchdog_cnt;
3400         struct stat_block *stats;
3401         struct swStat *swstats;
3402
3403         DBG_PRINT(INIT_DBG, "%s: Resetting XFrame card %s\n",
3404                   __func__, pci_name(sp->pdev));
3405
3406         /* Back up  the PCI-X CMD reg, dont want to lose MMRBC, OST settings */
3407         pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER, &(pci_cmd));
3408
3409         val64 = SW_RESET_ALL;
3410         writeq(val64, &bar0->sw_reset);
3411         if (strstr(sp->product_name, "CX4"))
3412                 msleep(750);
3413         msleep(250);
3414         for (i = 0; i < S2IO_MAX_PCI_CONFIG_SPACE_REINIT; i++) {
3415
3416                 /* Restore the PCI state saved during initialization. */
3417                 pci_restore_state(sp->pdev);
3418                 pci_save_state(sp->pdev);
3419                 pci_read_config_word(sp->pdev, 0x2, &val16);
3420                 if (check_pci_device_id(val16) != (u16)PCI_ANY_ID)
3421                         break;
3422                 msleep(200);
3423         }
3424
3425         if (check_pci_device_id(val16) == (u16)PCI_ANY_ID)
3426                 DBG_PRINT(ERR_DBG, "%s SW_Reset failed!\n", __func__);
3427
3428         pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER, pci_cmd);
3429
3430         s2io_init_pci(sp);
3431
3432         /* Set swapper to enable I/O register access */
3433         s2io_set_swapper(sp);
3434
3435         /* restore mac_addr entries */
3436         do_s2io_restore_unicast_mc(sp);
3437
3438         /* Restore the MSIX table entries from local variables */
3439         restore_xmsi_data(sp);
3440
3441         /* Clear certain PCI/PCI-X fields after reset */
3442         if (sp->device_type == XFRAME_II_DEVICE) {
3443                 /* Clear "detected parity error" bit */
3444                 pci_write_config_word(sp->pdev, PCI_STATUS, 0x8000);
3445
3446                 /* Clearing PCIX Ecc status register */
3447                 pci_write_config_dword(sp->pdev, 0x68, 0x7C);
3448
3449                 /* Clearing PCI_STATUS error reflected here */
3450                 writeq(s2BIT(62), &bar0->txpic_int_reg);
3451         }
3452
3453         /* Reset device statistics maintained by OS */
3454         memset(&sp->stats, 0, sizeof(struct net_device_stats));
3455
3456         stats = sp->mac_control.stats_info;
3457         swstats = &stats->sw_stat;
3458
3459         /* save link up/down time/cnt, reset/memory/watchdog cnt */
3460         up_cnt = swstats->link_up_cnt;
3461         down_cnt = swstats->link_down_cnt;
3462         up_time = swstats->link_up_time;
3463         down_time = swstats->link_down_time;
3464         reset_cnt = swstats->soft_reset_cnt;
3465         mem_alloc_cnt = swstats->mem_allocated;
3466         mem_free_cnt = swstats->mem_freed;
3467         watchdog_cnt = swstats->watchdog_timer_cnt;
3468
3469         memset(stats, 0, sizeof(struct stat_block));
3470
3471         /* restore link up/down time/cnt, reset/memory/watchdog cnt */
3472         swstats->link_up_cnt = up_cnt;
3473         swstats->link_down_cnt = down_cnt;
3474         swstats->link_up_time = up_time;
3475         swstats->link_down_time = down_time;
3476         swstats->soft_reset_cnt = reset_cnt;
3477         swstats->mem_allocated = mem_alloc_cnt;
3478         swstats->mem_freed = mem_free_cnt;
3479         swstats->watchdog_timer_cnt = watchdog_cnt;
3480
3481         /* SXE-002: Configure link and activity LED to turn it off */
3482         subid = sp->pdev->subsystem_device;
3483         if (((subid & 0xFF) >= 0x07) &&
3484             (sp->device_type == XFRAME_I_DEVICE)) {
3485                 val64 = readq(&bar0->gpio_control);
3486                 val64 |= 0x0000800000000000ULL;
3487                 writeq(val64, &bar0->gpio_control);
3488                 val64 = 0x0411040400000000ULL;
3489                 writeq(val64, (void __iomem *)bar0 + 0x2700);
3490         }
3491
3492         /*
3493          * Clear spurious ECC interrupts that would have occurred on
3494          * XFRAME II cards after reset.
3495          */
3496         if (sp->device_type == XFRAME_II_DEVICE) {
3497                 val64 = readq(&bar0->pcc_err_reg);
3498                 writeq(val64, &bar0->pcc_err_reg);
3499         }
3500
3501         sp->device_enabled_once = false;
3502 }
3503
3504 /**
3505  *  s2io_set_swapper - to set the swapper controle on the card
3506  *  @sp : private member of the device structure,
3507  *  pointer to the s2io_nic structure.
3508  *  Description: Function to set the swapper control on the card
3509  *  correctly depending on the 'endianness' of the system.
3510  *  Return value:
3511  *  SUCCESS on success and FAILURE on failure.
3512  */
3513
3514 static int s2io_set_swapper(struct s2io_nic *sp)
3515 {
3516         struct net_device *dev = sp->dev;
3517         struct XENA_dev_config __iomem *bar0 = sp->bar0;
3518         u64 val64, valt, valr;
3519
3520         /*
3521          * Set proper endian settings and verify the same by reading
3522          * the PIF Feed-back register.
3523          */
3524
3525         val64 = readq(&bar0->pif_rd_swapper_fb);
3526         if (val64 != 0x0123456789ABCDEFULL) {
3527                 int i = 0;
3528                 static const u64 value[] = {
3529                         0xC30000C3C30000C3ULL,  /* FE=1, SE=1 */
3530                         0x8100008181000081ULL,  /* FE=1, SE=0 */
3531                         0x4200004242000042ULL,  /* FE=0, SE=1 */
3532                         0                       /* FE=0, SE=0 */
3533                 };
3534
3535                 while (i < 4) {
3536                         writeq(value[i], &bar0->swapper_ctrl);
3537                         val64 = readq(&bar0->pif_rd_swapper_fb);
3538                         if (val64 == 0x0123456789ABCDEFULL)
3539                                 break;
3540                         i++;
3541                 }
3542                 if (i == 4) {
3543                         DBG_PRINT(ERR_DBG, "%s: Endian settings are wrong, "
3544                                   "feedback read %llx\n",
3545                                   dev->name, (unsigned long long)val64);
3546                         return FAILURE;
3547                 }
3548                 valr = value[i];
3549         } else {
3550                 valr = readq(&bar0->swapper_ctrl);
3551         }
3552
3553         valt = 0x0123456789ABCDEFULL;
3554         writeq(valt, &bar0->xmsi_address);
3555         val64 = readq(&bar0->xmsi_address);
3556
3557         if (val64 != valt) {
3558                 int i = 0;
3559                 static const u64 value[] = {
3560                         0x00C3C30000C3C300ULL,  /* FE=1, SE=1 */
3561                         0x0081810000818100ULL,  /* FE=1, SE=0 */
3562                         0x0042420000424200ULL,  /* FE=0, SE=1 */
3563                         0                       /* FE=0, SE=0 */
3564                 };
3565
3566                 while (i < 4) {
3567                         writeq((value[i] | valr), &bar0->swapper_ctrl);
3568                         writeq(valt, &bar0->xmsi_address);
3569                         val64 = readq(&bar0->xmsi_address);
3570                         if (val64 == valt)
3571                                 break;
3572                         i++;
3573                 }
3574                 if (i == 4) {
3575                         unsigned long long x = val64;
3576                         DBG_PRINT(ERR_DBG,
3577                                   "Write failed, Xmsi_addr reads:0x%llx\n", x);
3578                         return FAILURE;
3579                 }
3580         }
3581         val64 = readq(&bar0->swapper_ctrl);
3582         val64 &= 0xFFFF000000000000ULL;
3583
3584 #ifdef __BIG_ENDIAN
3585         /*
3586          * The device by default set to a big endian format, so a
3587          * big endian driver need not set anything.
3588          */
3589         val64 |= (SWAPPER_CTRL_TXP_FE |
3590                   SWAPPER_CTRL_TXP_SE |
3591                   SWAPPER_CTRL_TXD_R_FE |
3592                   SWAPPER_CTRL_TXD_W_FE |
3593                   SWAPPER_CTRL_TXF_R_FE |
3594                   SWAPPER_CTRL_RXD_R_FE |
3595                   SWAPPER_CTRL_RXD_W_FE |
3596                   SWAPPER_CTRL_RXF_W_FE |
3597                   SWAPPER_CTRL_XMSI_FE |
3598                   SWAPPER_CTRL_STATS_FE |
3599                   SWAPPER_CTRL_STATS_SE);
3600         if (sp->config.intr_type == INTA)
3601                 val64 |= SWAPPER_CTRL_XMSI_SE;
3602         writeq(val64, &bar0->swapper_ctrl);
3603 #else
3604         /*
3605          * Initially we enable all bits to make it accessible by the
3606          * driver, then we selectively enable only those bits that
3607          * we want to set.
3608          */
3609         val64 |= (SWAPPER_CTRL_TXP_FE |
3610                   SWAPPER_CTRL_TXP_SE |
3611                   SWAPPER_CTRL_TXD_R_FE |
3612                   SWAPPER_CTRL_TXD_R_SE |
3613                   SWAPPER_CTRL_TXD_W_FE |
3614                   SWAPPER_CTRL_TXD_W_SE |
3615                   SWAPPER_CTRL_TXF_R_FE |
3616                   SWAPPER_CTRL_RXD_R_FE |
3617                   SWAPPER_CTRL_RXD_R_SE |
3618                   SWAPPER_CTRL_RXD_W_FE |
3619                   SWAPPER_CTRL_RXD_W_SE |
3620                   SWAPPER_CTRL_RXF_W_FE |
3621                   SWAPPER_CTRL_XMSI_FE |
3622                   SWAPPER_CTRL_STATS_FE |
3623                   SWAPPER_CTRL_STATS_SE);
3624         if (sp->config.intr_type == INTA)
3625                 val64 |= SWAPPER_CTRL_XMSI_SE;
3626         writeq(val64, &bar0->swapper_ctrl);
3627 #endif
3628         val64 = readq(&bar0->swapper_ctrl);
3629
3630         /*
3631          * Verifying if endian settings are accurate by reading a
3632          * feedback register.
3633          */
3634         val64 = readq(&bar0->pif_rd_swapper_fb);
3635         if (val64 != 0x0123456789ABCDEFULL) {
3636                 /* Endian settings are incorrect, calls for another dekko. */
3637                 DBG_PRINT(ERR_DBG,
3638                           "%s: Endian settings are wrong, feedback read %llx\n",
3639                           dev->name, (unsigned long long)val64);
3640                 return FAILURE;
3641         }
3642
3643         return SUCCESS;
3644 }
3645
3646 static int wait_for_msix_trans(struct s2io_nic *nic, int i)
3647 {
3648         struct XENA_dev_config __iomem *bar0 = nic->bar0;
3649         u64 val64;
3650         int ret = 0, cnt = 0;
3651
3652         do {
3653                 val64 = readq(&bar0->xmsi_access);
3654                 if (!(val64 & s2BIT(15)))
3655                         break;
3656                 mdelay(1);
3657                 cnt++;
3658         } while (cnt < 5);
3659         if (cnt == 5) {
3660                 DBG_PRINT(ERR_DBG, "XMSI # %d Access failed\n", i);
3661                 ret = 1;
3662         }
3663
3664         return ret;
3665 }
3666
3667 static void restore_xmsi_data(struct s2io_nic *nic)
3668 {
3669         struct XENA_dev_config __iomem *bar0 = nic->bar0;
3670         u64 val64;
3671         int i, msix_index;
3672
3673         if (nic->device_type == XFRAME_I_DEVICE)
3674                 return;
3675
3676         for (i = 0; i < MAX_REQUESTED_MSI_X; i++) {
3677                 msix_index = (i) ? ((i-1) * 8 + 1) : 0;
3678                 writeq(nic->msix_info[i].addr, &bar0->xmsi_address);
3679                 writeq(nic->msix_info[i].data, &bar0->xmsi_data);
3680                 val64 = (s2BIT(7) | s2BIT(15) | vBIT(msix_index, 26, 6));
3681                 writeq(val64, &bar0->xmsi_access);
3682                 if (wait_for_msix_trans(nic, msix_index))
3683                         DBG_PRINT(ERR_DBG, "%s: index: %d failed\n",
3684                                   __func__, msix_index);
3685         }
3686 }
3687
3688 static void store_xmsi_data(struct s2io_nic *nic)
3689 {
3690         struct XENA_dev_config __iomem *bar0 = nic->bar0;
3691         u64 val64, addr, data;
3692         int i, msix_index;
3693
3694         if (nic->device_type == XFRAME_I_DEVICE)
3695                 return;
3696
3697         /* Store and display */
3698         for (i = 0; i < MAX_REQUESTED_MSI_X; i++) {
3699                 msix_index = (i) ? ((i-1) * 8 + 1) : 0;
3700                 val64 = (s2BIT(15) | vBIT(msix_index, 26, 6));
3701                 writeq(val64, &bar0->xmsi_access);
3702                 if (wait_for_msix_trans(nic, msix_index)) {
3703                         DBG_PRINT(ERR_DBG, "%s: index: %d failed\n",
3704                                   __func__, msix_index);
3705                         continue;
3706                 }
3707                 addr = readq(&bar0->xmsi_address);
3708                 data = readq(&bar0->xmsi_data);
3709                 if (addr && data) {
3710                         nic->msix_info[i].addr = addr;
3711                         nic->msix_info[i].data = data;
3712                 }
3713         }
3714 }
3715
3716 static int s2io_enable_msi_x(struct s2io_nic *nic)
3717 {
3718         struct XENA_dev_config __iomem *bar0 = nic->bar0;
3719         u64 rx_mat;
3720         u16 msi_control; /* Temp variable */
3721         int ret, i, j, msix_indx = 1;
3722         int size;
3723         struct stat_block *stats = nic->mac_control.stats_info;
3724         struct swStat *swstats = &stats->sw_stat;
3725
3726         size = nic->num_entries * sizeof(struct msix_entry);
3727         nic->entries = kzalloc(size, GFP_KERNEL);
3728         if (!nic->entries) {
3729                 DBG_PRINT(INFO_DBG, "%s: Memory allocation failed\n",
3730                           __func__);
3731                 swstats->mem_alloc_fail_cnt++;
3732                 return -ENOMEM;
3733         }
3734         swstats->mem_allocated += size;
3735
3736         size = nic->num_entries * sizeof(struct s2io_msix_entry);
3737         nic->s2io_entries = kzalloc(size, GFP_KERNEL);
3738         if (!nic->s2io_entries) {
3739                 DBG_PRINT(INFO_DBG, "%s: Memory allocation failed\n",
3740                           __func__);
3741                 swstats->mem_alloc_fail_cnt++;
3742                 kfree(nic->entries);
3743                 swstats->mem_freed
3744                         += (nic->num_entries * sizeof(struct msix_entry));
3745                 return -ENOMEM;
3746         }
3747         swstats->mem_allocated += size;
3748
3749         nic->entries[0].entry = 0;
3750         nic->s2io_entries[0].entry = 0;
3751         nic->s2io_entries[0].in_use = MSIX_FLG;
3752         nic->s2io_entries[0].type = MSIX_ALARM_TYPE;
3753         nic->s2io_entries[0].arg = &nic->mac_control.fifos;
3754
3755         for (i = 1; i < nic->num_entries; i++) {
3756                 nic->entries[i].entry = ((i - 1) * 8) + 1;
3757                 nic->s2io_entries[i].entry = ((i - 1) * 8) + 1;
3758                 nic->s2io_entries[i].arg = NULL;
3759                 nic->s2io_entries[i].in_use = 0;
3760         }
3761
3762         rx_mat = readq(&bar0->rx_mat);
3763         for (j = 0; j < nic->config.rx_ring_num; j++) {
3764                 rx_mat |= RX_MAT_SET(j, msix_indx);
3765                 nic->s2io_entries[j+1].arg = &nic->mac_control.rings[j];
3766                 nic->s2io_entries[j+1].type = MSIX_RING_TYPE;
3767                 nic->s2io_entries[j+1].in_use = MSIX_FLG;
3768                 msix_indx += 8;
3769         }
3770         writeq(rx_mat, &bar0->rx_mat);
3771         readq(&bar0->rx_mat);
3772
3773         ret = pci_enable_msix_range(nic->pdev, nic->entries,
3774                                     nic->num_entries, nic->num_entries);
3775         /* We fail init if error or we get less vectors than min required */
3776         if (ret < 0) {
3777                 DBG_PRINT(ERR_DBG, "Enabling MSI-X failed\n");
3778                 kfree(nic->entries);
3779                 swstats->mem_freed += nic->num_entries *
3780                         sizeof(struct msix_entry);
3781                 kfree(nic->s2io_entries);
3782                 swstats->mem_freed += nic->num_entries *
3783                         sizeof(struct s2io_msix_entry);
3784                 nic->entries = NULL;
3785                 nic->s2io_entries = NULL;
3786                 return -ENOMEM;
3787         }
3788
3789         /*
3790          * To enable MSI-X, MSI also needs to be enabled, due to a bug
3791          * in the herc NIC. (Temp change, needs to be removed later)
3792          */
3793         pci_read_config_word(nic->pdev, 0x42, &msi_control);
3794         msi_control |= 0x1; /* Enable MSI */
3795         pci_write_config_word(nic->pdev, 0x42, msi_control);
3796
3797         return 0;
3798 }
3799
3800 /* Handle software interrupt used during MSI(X) test */
3801 static irqreturn_t s2io_test_intr(int irq, void *dev_id)
3802 {
3803         struct s2io_nic *sp = dev_id;
3804
3805         sp->msi_detected = 1;
3806         wake_up(&sp->msi_wait);
3807
3808         return IRQ_HANDLED;
3809 }
3810
3811 /* Test interrupt path by forcing a a software IRQ */
3812 static int s2io_test_msi(struct s2io_nic *sp)
3813 {
3814         struct pci_dev *pdev = sp->pdev;
3815         struct XENA_dev_config __iomem *bar0 = sp->bar0;
3816         int err;
3817         u64 val64, saved64;
3818
3819         err = request_irq(sp->entries[1].vector, s2io_test_intr, 0,
3820                           sp->name, sp);
3821         if (err) {
3822                 DBG_PRINT(ERR_DBG, "%s: PCI %s: cannot assign irq %d\n",
3823                           sp->dev->name, pci_name(pdev), pdev->irq);
3824                 return err;
3825         }
3826
3827         init_waitqueue_head(&sp->msi_wait);
3828         sp->msi_detected = 0;
3829
3830         saved64 = val64 = readq(&bar0->scheduled_int_ctrl);
3831         val64 |= SCHED_INT_CTRL_ONE_SHOT;
3832         val64 |= SCHED_INT_CTRL_TIMER_EN;
3833         val64 |= SCHED_INT_CTRL_INT2MSI(1);
3834         writeq(val64, &bar0->scheduled_int_ctrl);
3835
3836         wait_event_timeout(sp->msi_wait, sp->msi_detected, HZ/10);
3837
3838         if (!sp->msi_detected) {
3839                 /* MSI(X) test failed, go back to INTx mode */
3840                 DBG_PRINT(ERR_DBG, "%s: PCI %s: No interrupt was generated "
3841                           "using MSI(X) during test\n",
3842                           sp->dev->name, pci_name(pdev));
3843
3844                 err = -EOPNOTSUPP;
3845         }
3846
3847         free_irq(sp->entries[1].vector, sp);
3848
3849         writeq(saved64, &bar0->scheduled_int_ctrl);
3850
3851         return err;
3852 }
3853
3854 static void remove_msix_isr(struct s2io_nic *sp)
3855 {
3856         int i;
3857         u16 msi_control;
3858
3859         for (i = 0; i < sp->num_entries; i++) {
3860                 if (sp->s2io_entries[i].in_use == MSIX_REGISTERED_SUCCESS) {
3861                         int vector = sp->entries[i].vector;
3862                         void *arg = sp->s2io_entries[i].arg;
3863                         free_irq(vector, arg);
3864                 }
3865         }
3866
3867         kfree(sp->entries);
3868         kfree(sp->s2io_entries);
3869         sp->entries = NULL;
3870         sp->s2io_entries = NULL;
3871
3872         pci_read_config_word(sp->pdev, 0x42, &msi_control);
3873         msi_control &= 0xFFFE; /* Disable MSI */
3874         pci_write_config_word(sp->pdev, 0x42, msi_control);
3875
3876         pci_disable_msix(sp->pdev);
3877 }
3878
3879 static void remove_inta_isr(struct s2io_nic *sp)
3880 {
3881         free_irq(sp->pdev->irq, sp->dev);
3882 }
3883
3884 /* ********************************************************* *
3885  * Functions defined below concern the OS part of the driver *
3886  * ********************************************************* */
3887
3888 /**
3889  *  s2io_open - open entry point of the driver
3890  *  @dev : pointer to the device structure.
3891  *  Description:
3892  *  This function is the open entry point of the driver. It mainly calls a
3893  *  function to allocate Rx buffers and inserts them into the buffer
3894  *  descriptors and then enables the Rx part of the NIC.
3895  *  Return value:
3896  *  0 on success and an appropriate (-)ve integer as defined in errno.h
3897  *   file on failure.
3898  */
3899
3900 static int s2io_open(struct net_device *dev)
3901 {
3902         struct s2io_nic *sp = netdev_priv(dev);
3903         struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
3904         int err = 0;
3905
3906         /*
3907          * Make sure you have link off by default every time
3908          * Nic is initialized
3909          */
3910         netif_carrier_off(dev);
3911         sp->last_link_state = 0;
3912
3913         /* Initialize H/W and enable interrupts */
3914         err = s2io_card_up(sp);
3915         if (err) {
3916                 DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n",
3917                           dev->name);
3918                 goto hw_init_failed;
3919         }
3920
3921         if (do_s2io_prog_unicast(dev, dev->dev_addr) == FAILURE) {
3922                 DBG_PRINT(ERR_DBG, "Set Mac Address Failed\n");
3923                 s2io_card_down(sp);
3924                 err = -ENODEV;
3925                 goto hw_init_failed;
3926         }
3927         s2io_start_all_tx_queue(sp);
3928         return 0;
3929
3930 hw_init_failed:
3931         if (sp->config.intr_type == MSI_X) {
3932                 if (sp->entries) {
3933                         kfree(sp->entries);
3934                         swstats->mem_freed += sp->num_entries *
3935                                 sizeof(struct msix_entry);
3936                 }
3937                 if (sp->s2io_entries) {
3938                         kfree(sp->s2io_entries);
3939                         swstats->mem_freed += sp->num_entries *
3940                                 sizeof(struct s2io_msix_entry);
3941                 }
3942         }
3943         return err;
3944 }
3945
3946 /**
3947  *  s2io_close -close entry point of the driver
3948  *  @dev : device pointer.
3949  *  Description:
3950  *  This is the stop entry point of the driver. It needs to undo exactly
3951  *  whatever was done by the open entry point,thus it's usually referred to
3952  *  as the close function.Among other things this function mainly stops the
3953  *  Rx side of the NIC and frees all the Rx buffers in the Rx rings.
3954  *  Return value:
3955  *  0 on success and an appropriate (-)ve integer as defined in errno.h
3956  *  file on failure.
3957  */
3958
3959 static int s2io_close(struct net_device *dev)
3960 {
3961         struct s2io_nic *sp = netdev_priv(dev);
3962         struct config_param *config = &sp->config;
3963         u64 tmp64;
3964         int offset;
3965
3966         /* Return if the device is already closed               *
3967          *  Can happen when s2io_card_up failed in change_mtu    *
3968          */
3969         if (!is_s2io_card_up(sp))
3970                 return 0;
3971
3972         s2io_stop_all_tx_queue(sp);
3973         /* delete all populated mac entries */
3974         for (offset = 1; offset < config->max_mc_addr; offset++) {
3975                 tmp64 = do_s2io_read_unicast_mc(sp, offset);
3976                 if (tmp64 != S2IO_DISABLE_MAC_ENTRY)
3977                         do_s2io_delete_unicast_mc(sp, tmp64);
3978         }
3979
3980         s2io_card_down(sp);
3981
3982         return 0;
3983 }
3984
3985 /**
3986  *  s2io_xmit - Tx entry point of te driver
3987  *  @skb : the socket buffer containing the Tx data.
3988  *  @dev : device pointer.
3989  *  Description :
3990  *  This function is the Tx entry point of the driver. S2IO NIC supports
3991  *  certain protocol assist features on Tx side, namely  CSO, S/G, LSO.
3992  *  NOTE: when device can't queue the pkt,just the trans_start variable will
3993  *  not be upadted.
3994  *  Return value:
3995  *  0 on success & 1 on failure.
3996  */
3997
3998 static netdev_tx_t s2io_xmit(struct sk_buff *skb, struct net_device *dev)
3999 {
4000         struct s2io_nic *sp = netdev_priv(dev);
4001         u16 frg_cnt, frg_len, i, queue, queue_len, put_off, get_off;
4002         register u64 val64;
4003         struct TxD *txdp;
4004         struct TxFIFO_element __iomem *tx_fifo;
4005         unsigned long flags = 0;
4006         u16 vlan_tag = 0;
4007         struct fifo_info *fifo = NULL;
4008         int offload_type;
4009         int enable_per_list_interrupt = 0;
4010         struct config_param *config = &sp->config;
4011         struct mac_info *mac_control = &sp->mac_control;
4012         struct stat_block *stats = mac_control->stats_info;
4013         struct swStat *swstats = &stats->sw_stat;
4014
4015         DBG_PRINT(TX_DBG, "%s: In Neterion Tx routine\n", dev->name);
4016
4017         if (unlikely(skb->len <= 0)) {
4018                 DBG_PRINT(TX_DBG, "%s: Buffer has no data..\n", dev->name);
4019                 dev_kfree_skb_any(skb);
4020                 return NETDEV_TX_OK;
4021         }
4022
4023         if (!is_s2io_card_up(sp)) {
4024                 DBG_PRINT(TX_DBG, "%s: Card going down for reset\n",
4025                           dev->name);
4026                 dev_kfree_skb_any(skb);
4027                 return NETDEV_TX_OK;
4028         }
4029
4030         queue = 0;
4031         if (skb_vlan_tag_present(skb))
4032                 vlan_tag = skb_vlan_tag_get(skb);
4033         if (sp->config.tx_steering_type == TX_DEFAULT_STEERING) {
4034                 if (skb->protocol == htons(ETH_P_IP)) {
4035                         struct iphdr *ip;
4036                         struct tcphdr *th;
4037                         ip = ip_hdr(skb);
4038
4039                         if (!ip_is_fragment(ip)) {
4040                                 th = (struct tcphdr *)(((unsigned char *)ip) +
4041                                                        ip->ihl*4);
4042
4043                                 if (ip->protocol == IPPROTO_TCP) {
4044                                         queue_len = sp->total_tcp_fifos;
4045                                         queue = (ntohs(th->source) +
4046                                                  ntohs(th->dest)) &
4047                                                 sp->fifo_selector[queue_len - 1];
4048                                         if (queue >= queue_len)
4049                                                 queue = queue_len - 1;
4050                                 } else if (ip->protocol == IPPROTO_UDP) {
4051                                         queue_len = sp->total_udp_fifos;
4052                                         queue = (ntohs(th->source) +
4053                                                  ntohs(th->dest)) &
4054                                                 sp->fifo_selector[queue_len - 1];
4055                                         if (queue >= queue_len)
4056                                                 queue = queue_len - 1;
4057                                         queue += sp->udp_fifo_idx;
4058                                         if (skb->len > 1024)
4059                                                 enable_per_list_interrupt = 1;
4060                                 }
4061                         }
4062                 }
4063         } else if (sp->config.tx_steering_type == TX_PRIORITY_STEERING)
4064                 /* get fifo number based on skb->priority value */
4065                 queue = config->fifo_mapping
4066                         [skb->priority & (MAX_TX_FIFOS - 1)];
4067         fifo = &mac_control->fifos[queue];
4068
4069         spin_lock_irqsave(&fifo->tx_lock, flags);
4070
4071         if (sp->config.multiq) {
4072                 if (__netif_subqueue_stopped(dev, fifo->fifo_no)) {
4073                         spin_unlock_irqrestore(&fifo->tx_lock, flags);
4074                         return NETDEV_TX_BUSY;
4075                 }
4076         } else if (unlikely(fifo->queue_state == FIFO_QUEUE_STOP)) {
4077                 if (netif_queue_stopped(dev)) {
4078                         spin_unlock_irqrestore(&fifo->tx_lock, flags);
4079                         return NETDEV_TX_BUSY;
4080                 }
4081         }
4082
4083         put_off = (u16)fifo->tx_curr_put_info.offset;
4084         get_off = (u16)fifo->tx_curr_get_info.offset;
4085         txdp = fifo->list_info[put_off].list_virt_addr;
4086
4087         queue_len = fifo->tx_curr_put_info.fifo_len + 1;
4088         /* Avoid "put" pointer going beyond "get" pointer */
4089         if (txdp->Host_Control ||
4090             ((put_off+1) == queue_len ? 0 : (put_off+1)) == get_off) {
4091                 DBG_PRINT(TX_DBG, "Error in xmit, No free TXDs.\n");
4092                 s2io_stop_tx_queue(sp, fifo->fifo_no);
4093                 dev_kfree_skb_any(skb);
4094                 spin_unlock_irqrestore(&fifo->tx_lock, flags);
4095                 return NETDEV_TX_OK;
4096         }
4097
4098         offload_type = s2io_offload_type(skb);
4099         if (offload_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)) {
4100                 txdp->Control_1 |= TXD_TCP_LSO_EN;
4101                 txdp->Control_1 |= TXD_TCP_LSO_MSS(s2io_tcp_mss(skb));
4102         }
4103         if (skb->ip_summed == CHECKSUM_PARTIAL) {
4104                 txdp->Control_2 |= (TXD_TX_CKO_IPV4_EN |
4105                                     TXD_TX_CKO_TCP_EN |
4106                                     TXD_TX_CKO_UDP_EN);
4107         }
4108         txdp->Control_1 |= TXD_GATHER_CODE_FIRST;
4109         txdp->Control_1 |= TXD_LIST_OWN_XENA;
4110         txdp->Control_2 |= TXD_INT_NUMBER(fifo->fifo_no);
4111         if (enable_per_list_interrupt)
4112                 if (put_off & (queue_len >> 5))
4113                         txdp->Control_2 |= TXD_INT_TYPE_PER_LIST;
4114         if (vlan_tag) {
4115                 txdp->Control_2 |= TXD_VLAN_ENABLE;
4116                 txdp->Control_2 |= TXD_VLAN_TAG(vlan_tag);
4117         }
4118
4119         frg_len = skb_headlen(skb);
4120         txdp->Buffer_Pointer = pci_map_single(sp->pdev, skb->data,
4121                                               frg_len, PCI_DMA_TODEVICE);
4122         if (pci_dma_mapping_error(sp->pdev, txdp->Buffer_Pointer))
4123                 goto pci_map_failed;
4124
4125         txdp->Host_Control = (unsigned long)skb;
4126         txdp->Control_1 |= TXD_BUFFER0_SIZE(frg_len);
4127
4128         frg_cnt = skb_shinfo(skb)->nr_frags;
4129         /* For fragmented SKB. */
4130         for (i = 0; i < frg_cnt; i++) {
4131                 const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
4132                 /* A '0' length fragment will be ignored */
4133                 if (!skb_frag_size(frag))
4134                         continue;
4135                 txdp++;
4136                 txdp->Buffer_Pointer = (u64)skb_frag_dma_map(&sp->pdev->dev,
4137                                                              frag, 0,
4138                                                              skb_frag_size(frag),
4139                                                              DMA_TO_DEVICE);
4140                 txdp->Control_1 = TXD_BUFFER0_SIZE(skb_frag_size(frag));
4141         }
4142         txdp->Control_1 |= TXD_GATHER_CODE_LAST;
4143
4144         tx_fifo = mac_control->tx_FIFO_start[queue];
4145         val64 = fifo->list_info[put_off].list_phy_addr;
4146         writeq(val64, &tx_fifo->TxDL_Pointer);
4147
4148         val64 = (TX_FIFO_LAST_TXD_NUM(frg_cnt) | TX_FIFO_FIRST_LIST |
4149                  TX_FIFO_LAST_LIST);
4150         if (offload_type)
4151                 val64 |= TX_FIFO_SPECIAL_FUNC;
4152
4153         writeq(val64, &tx_fifo->List_Control);
4154
4155         put_off++;
4156         if (put_off == fifo->tx_curr_put_info.fifo_len + 1)
4157                 put_off = 0;
4158         fifo->tx_curr_put_info.offset = put_off;
4159
4160         /* Avoid "put" pointer going beyond "get" pointer */
4161         if (((put_off+1) == queue_len ? 0 : (put_off+1)) == get_off) {
4162                 swstats->fifo_full_cnt++;
4163                 DBG_PRINT(TX_DBG,
4164                           "No free TxDs for xmit, Put: 0x%x Get:0x%x\n",
4165                           put_off, get_off);
4166                 s2io_stop_tx_queue(sp, fifo->fifo_no);
4167         }
4168         swstats->mem_allocated += skb->truesize;
4169         spin_unlock_irqrestore(&fifo->tx_lock, flags);
4170
4171         if (sp->config.intr_type == MSI_X)
4172                 tx_intr_handler(fifo);
4173
4174         return NETDEV_TX_OK;
4175
4176 pci_map_failed:
4177         swstats->pci_map_fail_cnt++;
4178         s2io_stop_tx_queue(sp, fifo->fifo_no);
4179         swstats->mem_freed += skb->truesize;
4180         dev_kfree_skb_any(skb);
4181         spin_unlock_irqrestore(&fifo->tx_lock, flags);
4182         return NETDEV_TX_OK;
4183 }
4184
4185 static void
4186 s2io_alarm_handle(struct timer_list *t)
4187 {
4188         struct s2io_nic *sp = from_timer(sp, t, alarm_timer);
4189         struct net_device *dev = sp->dev;
4190
4191         s2io_handle_errors(dev);
4192         mod_timer(&sp->alarm_timer, jiffies + HZ / 2);
4193 }
4194
4195 static irqreturn_t s2io_msix_ring_handle(int irq, void *dev_id)
4196 {
4197         struct ring_info *ring = (struct ring_info *)dev_id;
4198         struct s2io_nic *sp = ring->nic;
4199         struct XENA_dev_config __iomem *bar0 = sp->bar0;
4200
4201         if (unlikely(!is_s2io_card_up(sp)))
4202                 return IRQ_HANDLED;
4203
4204         if (sp->config.napi) {
4205                 u8 __iomem *addr = NULL;
4206                 u8 val8 = 0;
4207
4208                 addr = (u8 __iomem *)&bar0->xmsi_mask_reg;
4209                 addr += (7 - ring->ring_no);
4210                 val8 = (ring->ring_no == 0) ? 0x7f : 0xff;
4211                 writeb(val8, addr);
4212                 val8 = readb(addr);
4213                 napi_schedule(&ring->napi);
4214         } else {
4215                 rx_intr_handler(ring, 0);
4216                 s2io_chk_rx_buffers(sp, ring);
4217         }
4218
4219         return IRQ_HANDLED;
4220 }
4221
4222 static irqreturn_t s2io_msix_fifo_handle(int irq, void *dev_id)
4223 {
4224         int i;
4225         struct fifo_info *fifos = (struct fifo_info *)dev_id;
4226         struct s2io_nic *sp = fifos->nic;
4227         struct XENA_dev_config __iomem *bar0 = sp->bar0;
4228         struct config_param *config  = &sp->config;
4229         u64 reason;
4230
4231         if (unlikely(!is_s2io_card_up(sp)))
4232                 return IRQ_NONE;
4233
4234         reason = readq(&bar0->general_int_status);
4235         if (unlikely(reason == S2IO_MINUS_ONE))
4236                 /* Nothing much can be done. Get out */
4237                 return IRQ_HANDLED;
4238
4239         if (reason & (GEN_INTR_TXPIC | GEN_INTR_TXTRAFFIC)) {
4240                 writeq(S2IO_MINUS_ONE, &bar0->general_int_mask);
4241
4242                 if (reason & GEN_INTR_TXPIC)
4243                         s2io_txpic_intr_handle(sp);
4244
4245                 if (reason & GEN_INTR_TXTRAFFIC)
4246                         writeq(S2IO_MINUS_ONE, &bar0->tx_traffic_int);
4247
4248                 for (i = 0; i < config->tx_fifo_num; i++)
4249                         tx_intr_handler(&fifos[i]);
4250
4251                 writeq(sp->general_int_mask, &bar0->general_int_mask);
4252                 readl(&bar0->general_int_status);
4253                 return IRQ_HANDLED;
4254         }
4255         /* The interrupt was not raised by us */
4256         return IRQ_NONE;
4257 }
4258
4259 static void s2io_txpic_intr_handle(struct s2io_nic *sp)
4260 {
4261         struct XENA_dev_config __iomem *bar0 = sp->bar0;
4262         u64 val64;
4263
4264         val64 = readq(&bar0->pic_int_status);
4265         if (val64 & PIC_INT_GPIO) {
4266                 val64 = readq(&bar0->gpio_int_reg);
4267                 if ((val64 & GPIO_INT_REG_LINK_DOWN) &&
4268                     (val64 & GPIO_INT_REG_LINK_UP)) {
4269                         /*
4270                          * This is unstable state so clear both up/down
4271                          * interrupt and adapter to re-evaluate the link state.
4272                          */
4273                         val64 |= GPIO_INT_REG_LINK_DOWN;
4274                         val64 |= GPIO_INT_REG_LINK_UP;
4275                         writeq(val64, &bar0->gpio_int_reg);
4276                         val64 = readq(&bar0->gpio_int_mask);
4277                         val64 &= ~(GPIO_INT_MASK_LINK_UP |
4278                                    GPIO_INT_MASK_LINK_DOWN);
4279                         writeq(val64, &bar0->gpio_int_mask);
4280                 } else if (val64 & GPIO_INT_REG_LINK_UP) {
4281                         val64 = readq(&bar0->adapter_status);
4282                         /* Enable Adapter */
4283                         val64 = readq(&bar0->adapter_control);
4284                         val64 |= ADAPTER_CNTL_EN;
4285                         writeq(val64, &bar0->adapter_control);
4286                         val64 |= ADAPTER_LED_ON;
4287                         writeq(val64, &bar0->adapter_control);
4288                         if (!sp->device_enabled_once)
4289                                 sp->device_enabled_once = 1;
4290
4291                         s2io_link(sp, LINK_UP);
4292                         /*
4293                          * unmask link down interrupt and mask link-up
4294                          * intr
4295                          */
4296                         val64 = readq(&bar0->gpio_int_mask);
4297                         val64 &= ~GPIO_INT_MASK_LINK_DOWN;
4298                         val64 |= GPIO_INT_MASK_LINK_UP;
4299                         writeq(val64, &bar0->gpio_int_mask);
4300
4301                 } else if (val64 & GPIO_INT_REG_LINK_DOWN) {
4302                         val64 = readq(&bar0->adapter_status);
4303                         s2io_link(sp, LINK_DOWN);
4304                         /* Link is down so unmaks link up interrupt */
4305                         val64 = readq(&bar0->gpio_int_mask);
4306                         val64 &= ~GPIO_INT_MASK_LINK_UP;
4307                         val64 |= GPIO_INT_MASK_LINK_DOWN;
4308                         writeq(val64, &bar0->gpio_int_mask);
4309
4310                         /* turn off LED */
4311                         val64 = readq(&bar0->adapter_control);
4312                         val64 = val64 & (~ADAPTER_LED_ON);
4313                         writeq(val64, &bar0->adapter_control);
4314                 }
4315         }
4316         val64 = readq(&bar0->gpio_int_mask);
4317 }
4318
4319 /**
4320  *  do_s2io_chk_alarm_bit - Check for alarm and incrment the counter
4321  *  @value: alarm bits
4322  *  @addr: address value
4323  *  @cnt: counter variable
4324  *  Description: Check for alarm and increment the counter
4325  *  Return Value:
4326  *  1 - if alarm bit set
4327  *  0 - if alarm bit is not set
4328  */
4329 static int do_s2io_chk_alarm_bit(u64 value, void __iomem *addr,
4330                                  unsigned long long *cnt)
4331 {
4332         u64 val64;
4333         val64 = readq(addr);
4334         if (val64 & value) {
4335                 writeq(val64, addr);
4336                 (*cnt)++;
4337                 return 1;
4338         }
4339         return 0;
4340
4341 }
4342
4343 /**
4344  *  s2io_handle_errors - Xframe error indication handler
4345  *  @nic: device private variable
4346  *  Description: Handle alarms such as loss of link, single or
4347  *  double ECC errors, critical and serious errors.
4348  *  Return Value:
4349  *  NONE
4350  */
4351 static void s2io_handle_errors(void *dev_id)
4352 {
4353         struct net_device *dev = (struct net_device *)dev_id;
4354         struct s2io_nic *sp = netdev_priv(dev);
4355         struct XENA_dev_config __iomem *bar0 = sp->bar0;
4356         u64 temp64 = 0, val64 = 0;
4357         int i = 0;
4358
4359         struct swStat *sw_stat = &sp->mac_control.stats_info->sw_stat;
4360         struct xpakStat *stats = &sp->mac_control.stats_info->xpak_stat;
4361
4362         if (!is_s2io_card_up(sp))
4363                 return;
4364
4365         if (pci_channel_offline(sp->pdev))
4366                 return;
4367
4368         memset(&sw_stat->ring_full_cnt, 0,
4369                sizeof(sw_stat->ring_full_cnt));
4370
4371         /* Handling the XPAK counters update */
4372         if (stats->xpak_timer_count < 72000) {
4373                 /* waiting for an hour */
4374                 stats->xpak_timer_count++;
4375         } else {
4376                 s2io_updt_xpak_counter(dev);
4377                 /* reset the count to zero */
4378                 stats->xpak_timer_count = 0;
4379         }
4380
4381         /* Handling link status change error Intr */
4382         if (s2io_link_fault_indication(sp) == MAC_RMAC_ERR_TIMER) {
4383                 val64 = readq(&bar0->mac_rmac_err_reg);
4384                 writeq(val64, &bar0->mac_rmac_err_reg);
4385                 if (val64 & RMAC_LINK_STATE_CHANGE_INT)
4386                         schedule_work(&sp->set_link_task);
4387         }
4388
4389         /* In case of a serious error, the device will be Reset. */
4390         if (do_s2io_chk_alarm_bit(SERR_SOURCE_ANY, &bar0->serr_source,
4391                                   &sw_stat->serious_err_cnt))
4392                 goto reset;
4393
4394         /* Check for data parity error */
4395         if (do_s2io_chk_alarm_bit(GPIO_INT_REG_DP_ERR_INT, &bar0->gpio_int_reg,
4396                                   &sw_stat->parity_err_cnt))
4397                 goto reset;
4398
4399         /* Check for ring full counter */
4400         if (sp->device_type == XFRAME_II_DEVICE) {
4401                 val64 = readq(&bar0->ring_bump_counter1);
4402                 for (i = 0; i < 4; i++) {
4403                         temp64 = (val64 & vBIT(0xFFFF, (i*16), 16));
4404                         temp64 >>= 64 - ((i+1)*16);
4405                         sw_stat->ring_full_cnt[i] += temp64;
4406                 }
4407
4408                 val64 = readq(&bar0->ring_bump_counter2);
4409                 for (i = 0; i < 4; i++) {
4410                         temp64 = (val64 & vBIT(0xFFFF, (i*16), 16));
4411                         temp64 >>= 64 - ((i+1)*16);
4412                         sw_stat->ring_full_cnt[i+4] += temp64;
4413                 }
4414         }
4415
4416         val64 = readq(&bar0->txdma_int_status);
4417         /*check for pfc_err*/
4418         if (val64 & TXDMA_PFC_INT) {
4419                 if (do_s2io_chk_alarm_bit(PFC_ECC_DB_ERR | PFC_SM_ERR_ALARM |
4420                                           PFC_MISC_0_ERR | PFC_MISC_1_ERR |
4421                                           PFC_PCIX_ERR,
4422                                           &bar0->pfc_err_reg,
4423                                           &sw_stat->pfc_err_cnt))
4424                         goto reset;
4425                 do_s2io_chk_alarm_bit(PFC_ECC_SG_ERR,
4426                                       &bar0->pfc_err_reg,
4427                                       &sw_stat->pfc_err_cnt);
4428         }
4429
4430         /*check for tda_err*/
4431         if (val64 & TXDMA_TDA_INT) {
4432                 if (do_s2io_chk_alarm_bit(TDA_Fn_ECC_DB_ERR |
4433                                           TDA_SM0_ERR_ALARM |
4434                                           TDA_SM1_ERR_ALARM,
4435                                           &bar0->tda_err_reg,
4436                                           &sw_stat->tda_err_cnt))
4437                         goto reset;
4438                 do_s2io_chk_alarm_bit(TDA_Fn_ECC_SG_ERR | TDA_PCIX_ERR,
4439                                       &bar0->tda_err_reg,
4440                                       &sw_stat->tda_err_cnt);
4441         }
4442         /*check for pcc_err*/
4443         if (val64 & TXDMA_PCC_INT) {
4444                 if (do_s2io_chk_alarm_bit(PCC_SM_ERR_ALARM | PCC_WR_ERR_ALARM |
4445                                           PCC_N_SERR | PCC_6_COF_OV_ERR |
4446                                           PCC_7_COF_OV_ERR | PCC_6_LSO_OV_ERR |
4447                                           PCC_7_LSO_OV_ERR | PCC_FB_ECC_DB_ERR |
4448                                           PCC_TXB_ECC_DB_ERR,
4449                                           &bar0->pcc_err_reg,
4450                                           &sw_stat->pcc_err_cnt))
4451                         goto reset;
4452                 do_s2io_chk_alarm_bit(PCC_FB_ECC_SG_ERR | PCC_TXB_ECC_SG_ERR,
4453                                       &bar0->pcc_err_reg,
4454                                       &sw_stat->pcc_err_cnt);
4455         }
4456
4457         /*check for tti_err*/
4458         if (val64 & TXDMA_TTI_INT) {
4459                 if (do_s2io_chk_alarm_bit(TTI_SM_ERR_ALARM,
4460                                           &bar0->tti_err_reg,
4461                                           &sw_stat->tti_err_cnt))
4462                         goto reset;
4463                 do_s2io_chk_alarm_bit(TTI_ECC_SG_ERR | TTI_ECC_DB_ERR,
4464                                       &bar0->tti_err_reg,
4465                                       &sw_stat->tti_err_cnt);
4466         }
4467
4468         /*check for lso_err*/
4469         if (val64 & TXDMA_LSO_INT) {
4470                 if (do_s2io_chk_alarm_bit(LSO6_ABORT | LSO7_ABORT |
4471                                           LSO6_SM_ERR_ALARM | LSO7_SM_ERR_ALARM,
4472                                           &bar0->lso_err_reg,
4473                                           &sw_stat->lso_err_cnt))
4474                         goto reset;
4475                 do_s2io_chk_alarm_bit(LSO6_SEND_OFLOW | LSO7_SEND_OFLOW,
4476                                       &bar0->lso_err_reg,
4477                                       &sw_stat->lso_err_cnt);
4478         }
4479
4480         /*check for tpa_err*/
4481         if (val64 & TXDMA_TPA_INT) {
4482                 if (do_s2io_chk_alarm_bit(TPA_SM_ERR_ALARM,
4483                                           &bar0->tpa_err_reg,
4484                                           &sw_stat->tpa_err_cnt))
4485                         goto reset;
4486                 do_s2io_chk_alarm_bit(TPA_TX_FRM_DROP,
4487                                       &bar0->tpa_err_reg,
4488                                       &sw_stat->tpa_err_cnt);
4489         }
4490
4491         /*check for sm_err*/
4492         if (val64 & TXDMA_SM_INT) {
4493                 if (do_s2io_chk_alarm_bit(SM_SM_ERR_ALARM,
4494                                           &bar0->sm_err_reg,
4495                                           &sw_stat->sm_err_cnt))
4496                         goto reset;
4497         }
4498
4499         val64 = readq(&bar0->mac_int_status);
4500         if (val64 & MAC_INT_STATUS_TMAC_INT) {
4501                 if (do_s2io_chk_alarm_bit(TMAC_TX_BUF_OVRN | TMAC_TX_SM_ERR,
4502                                           &bar0->mac_tmac_err_reg,
4503                                           &sw_stat->mac_tmac_err_cnt))
4504                         goto reset;
4505                 do_s2io_chk_alarm_bit(TMAC_ECC_SG_ERR | TMAC_ECC_DB_ERR |
4506                                       TMAC_DESC_ECC_SG_ERR |
4507                                       TMAC_DESC_ECC_DB_ERR,
4508                                       &bar0->mac_tmac_err_reg,
4509                                       &sw_stat->mac_tmac_err_cnt);
4510         }
4511
4512         val64 = readq(&bar0->xgxs_int_status);
4513         if (val64 & XGXS_INT_STATUS_TXGXS) {
4514                 if (do_s2io_chk_alarm_bit(TXGXS_ESTORE_UFLOW | TXGXS_TX_SM_ERR,
4515                                           &bar0->xgxs_txgxs_err_reg,
4516                                           &sw_stat->xgxs_txgxs_err_cnt))
4517                         goto reset;
4518                 do_s2io_chk_alarm_bit(TXGXS_ECC_SG_ERR | TXGXS_ECC_DB_ERR,
4519                                       &bar0->xgxs_txgxs_err_reg,
4520                                       &sw_stat->xgxs_txgxs_err_cnt);
4521         }
4522
4523         val64 = readq(&bar0->rxdma_int_status);
4524         if (val64 & RXDMA_INT_RC_INT_M) {
4525                 if (do_s2io_chk_alarm_bit(RC_PRCn_ECC_DB_ERR |
4526                                           RC_FTC_ECC_DB_ERR |
4527                                           RC_PRCn_SM_ERR_ALARM |
4528                                           RC_FTC_SM_ERR_ALARM,
4529                                           &bar0->rc_err_reg,
4530                                           &sw_stat->rc_err_cnt))
4531                         goto reset;
4532                 do_s2io_chk_alarm_bit(RC_PRCn_ECC_SG_ERR |
4533                                       RC_FTC_ECC_SG_ERR |
4534                                       RC_RDA_FAIL_WR_Rn, &bar0->rc_err_reg,
4535                                       &sw_stat->rc_err_cnt);
4536                 if (do_s2io_chk_alarm_bit(PRC_PCI_AB_RD_Rn |
4537                                           PRC_PCI_AB_WR_Rn |
4538                                           PRC_PCI_AB_F_WR_Rn,
4539                                           &bar0->prc_pcix_err_reg,
4540                                           &sw_stat->prc_pcix_err_cnt))
4541                         goto reset;
4542                 do_s2io_chk_alarm_bit(PRC_PCI_DP_RD_Rn |
4543                                       PRC_PCI_DP_WR_Rn |
4544                                       PRC_PCI_DP_F_WR_Rn,
4545                                       &bar0->prc_pcix_err_reg,
4546                                       &sw_stat->prc_pcix_err_cnt);
4547         }
4548
4549         if (val64 & RXDMA_INT_RPA_INT_M) {
4550                 if (do_s2io_chk_alarm_bit(RPA_SM_ERR_ALARM | RPA_CREDIT_ERR,
4551                                           &bar0->rpa_err_reg,
4552                                           &sw_stat->rpa_err_cnt))
4553                         goto reset;
4554                 do_s2io_chk_alarm_bit(RPA_ECC_SG_ERR | RPA_ECC_DB_ERR,
4555                                       &bar0->rpa_err_reg,
4556                                       &sw_stat->rpa_err_cnt);
4557         }
4558
4559         if (val64 & RXDMA_INT_RDA_INT_M) {
4560                 if (do_s2io_chk_alarm_bit(RDA_RXDn_ECC_DB_ERR |
4561                                           RDA_FRM_ECC_DB_N_AERR |
4562                                           RDA_SM1_ERR_ALARM |
4563                                           RDA_SM0_ERR_ALARM |
4564                                           RDA_RXD_ECC_DB_SERR,
4565                                           &bar0->rda_err_reg,
4566                                           &sw_stat->rda_err_cnt))
4567                         goto reset;
4568                 do_s2io_chk_alarm_bit(RDA_RXDn_ECC_SG_ERR |
4569                                       RDA_FRM_ECC_SG_ERR |
4570                                       RDA_MISC_ERR |
4571                                       RDA_PCIX_ERR,
4572                                       &bar0->rda_err_reg,
4573                                       &sw_stat->rda_err_cnt);
4574         }
4575
4576         if (val64 & RXDMA_INT_RTI_INT_M) {
4577                 if (do_s2io_chk_alarm_bit(RTI_SM_ERR_ALARM,
4578                                           &bar0->rti_err_reg,
4579                                           &sw_stat->rti_err_cnt))
4580                         goto reset;
4581                 do_s2io_chk_alarm_bit(RTI_ECC_SG_ERR | RTI_ECC_DB_ERR,
4582                                       &bar0->rti_err_reg,
4583                                       &sw_stat->rti_err_cnt);
4584         }
4585
4586         val64 = readq(&bar0->mac_int_status);
4587         if (val64 & MAC_INT_STATUS_RMAC_INT) {
4588                 if (do_s2io_chk_alarm_bit(RMAC_RX_BUFF_OVRN | RMAC_RX_SM_ERR,
4589                                           &bar0->mac_rmac_err_reg,
4590                                           &sw_stat->mac_rmac_err_cnt))
4591                         goto reset;
4592                 do_s2io_chk_alarm_bit(RMAC_UNUSED_INT |
4593                                       RMAC_SINGLE_ECC_ERR |
4594                                       RMAC_DOUBLE_ECC_ERR,
4595                                       &bar0->mac_rmac_err_reg,
4596                                       &sw_stat->mac_rmac_err_cnt);
4597         }
4598
4599         val64 = readq(&bar0->xgxs_int_status);
4600         if (val64 & XGXS_INT_STATUS_RXGXS) {
4601                 if (do_s2io_chk_alarm_bit(RXGXS_ESTORE_OFLOW | RXGXS_RX_SM_ERR,
4602                                           &bar0->xgxs_rxgxs_err_reg,
4603                                           &sw_stat->xgxs_rxgxs_err_cnt))
4604                         goto reset;
4605         }
4606
4607         val64 = readq(&bar0->mc_int_status);
4608         if (val64 & MC_INT_STATUS_MC_INT) {
4609                 if (do_s2io_chk_alarm_bit(MC_ERR_REG_SM_ERR,
4610                                           &bar0->mc_err_reg,
4611                                           &sw_stat->mc_err_cnt))
4612                         goto reset;
4613
4614                 /* Handling Ecc errors */
4615                 if (val64 & (MC_ERR_REG_ECC_ALL_SNG | MC_ERR_REG_ECC_ALL_DBL)) {
4616                         writeq(val64, &bar0->mc_err_reg);
4617                         if (val64 & MC_ERR_REG_ECC_ALL_DBL) {
4618                                 sw_stat->double_ecc_errs++;
4619                                 if (sp->device_type != XFRAME_II_DEVICE) {
4620                                         /*
4621                                          * Reset XframeI only if critical error
4622                                          */
4623                                         if (val64 &
4624                                             (MC_ERR_REG_MIRI_ECC_DB_ERR_0 |
4625                                              MC_ERR_REG_MIRI_ECC_DB_ERR_1))
4626                                                 goto reset;
4627                                 }
4628                         } else
4629                                 sw_stat->single_ecc_errs++;
4630                 }
4631         }
4632         return;
4633
4634 reset:
4635         s2io_stop_all_tx_queue(sp);
4636         schedule_work(&sp->rst_timer_task);
4637         sw_stat->soft_reset_cnt++;
4638 }
4639
4640 /**
4641  *  s2io_isr - ISR handler of the device .
4642  *  @irq: the irq of the device.
4643  *  @dev_id: a void pointer to the dev structure of the NIC.
4644  *  Description:  This function is the ISR handler of the device. It
4645  *  identifies the reason for the interrupt and calls the relevant
4646  *  service routines. As a contongency measure, this ISR allocates the
4647  *  recv buffers, if their numbers are below the panic value which is
4648  *  presently set to 25% of the original number of rcv buffers allocated.
4649  *  Return value:
4650  *   IRQ_HANDLED: will be returned if IRQ was handled by this routine
4651  *   IRQ_NONE: will be returned if interrupt is not from our device
4652  */
4653 static irqreturn_t s2io_isr(int irq, void *dev_id)
4654 {
4655         struct net_device *dev = (struct net_device *)dev_id;
4656         struct s2io_nic *sp = netdev_priv(dev);
4657         struct XENA_dev_config __iomem *bar0 = sp->bar0;
4658         int i;
4659         u64 reason = 0;
4660         struct mac_info *mac_control;
4661         struct config_param *config;
4662
4663         /* Pretend we handled any irq's from a disconnected card */
4664         if (pci_channel_offline(sp->pdev))
4665                 return IRQ_NONE;
4666
4667         if (!is_s2io_card_up(sp))
4668                 return IRQ_NONE;
4669
4670         config = &sp->config;
4671         mac_control = &sp->mac_control;
4672
4673         /*
4674          * Identify the cause for interrupt and call the appropriate
4675          * interrupt handler. Causes for the interrupt could be;
4676          * 1. Rx of packet.
4677          * 2. Tx complete.
4678          * 3. Link down.
4679          */
4680         reason = readq(&bar0->general_int_status);
4681
4682         if (unlikely(reason == S2IO_MINUS_ONE))
4683                 return IRQ_HANDLED;     /* Nothing much can be done. Get out */
4684
4685         if (reason &
4686             (GEN_INTR_RXTRAFFIC | GEN_INTR_TXTRAFFIC | GEN_INTR_TXPIC)) {
4687                 writeq(S2IO_MINUS_ONE, &bar0->general_int_mask);
4688
4689                 if (config->napi) {
4690                         if (reason & GEN_INTR_RXTRAFFIC) {
4691                                 napi_schedule(&sp->napi);
4692                                 writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_mask);
4693                                 writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_int);
4694                                 readl(&bar0->rx_traffic_int);
4695                         }
4696                 } else {
4697                         /*
4698                          * rx_traffic_int reg is an R1 register, writing all 1's
4699                          * will ensure that the actual interrupt causing bit
4700                          * get's cleared and hence a read can be avoided.
4701                          */
4702                         if (reason & GEN_INTR_RXTRAFFIC)
4703                                 writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_int);
4704
4705                         for (i = 0; i < config->rx_ring_num; i++) {
4706                                 struct ring_info *ring = &mac_control->rings[i];
4707
4708                                 rx_intr_handler(ring, 0);
4709                         }
4710                 }
4711
4712                 /*
4713                  * tx_traffic_int reg is an R1 register, writing all 1's
4714                  * will ensure that the actual interrupt causing bit get's
4715                  * cleared and hence a read can be avoided.
4716                  */
4717                 if (reason & GEN_INTR_TXTRAFFIC)
4718                         writeq(S2IO_MINUS_ONE, &bar0->tx_traffic_int);
4719
4720                 for (i = 0; i < config->tx_fifo_num; i++)
4721                         tx_intr_handler(&mac_control->fifos[i]);
4722
4723                 if (reason & GEN_INTR_TXPIC)
4724                         s2io_txpic_intr_handle(sp);
4725
4726                 /*
4727                  * Reallocate the buffers from the interrupt handler itself.
4728                  */
4729                 if (!config->napi) {
4730                         for (i = 0; i < config->rx_ring_num; i++) {
4731                                 struct ring_info *ring = &mac_control->rings[i];
4732
4733                                 s2io_chk_rx_buffers(sp, ring);
4734                         }
4735                 }
4736                 writeq(sp->general_int_mask, &bar0->general_int_mask);
4737                 readl(&bar0->general_int_status);
4738
4739                 return IRQ_HANDLED;
4740
4741         } else if (!reason) {
4742                 /* The interrupt was not raised by us */
4743                 return IRQ_NONE;
4744         }
4745
4746         return IRQ_HANDLED;
4747 }
4748
4749 /**
4750  * s2io_updt_stats -
4751  */
4752 static void s2io_updt_stats(struct s2io_nic *sp)
4753 {
4754         struct XENA_dev_config __iomem *bar0 = sp->bar0;
4755         u64 val64;
4756         int cnt = 0;
4757
4758         if (is_s2io_card_up(sp)) {
4759                 /* Apprx 30us on a 133 MHz bus */
4760                 val64 = SET_UPDT_CLICKS(10) |
4761                         STAT_CFG_ONE_SHOT_EN | STAT_CFG_STAT_EN;
4762                 writeq(val64, &bar0->stat_cfg);
4763                 do {
4764                         udelay(100);
4765                         val64 = readq(&bar0->stat_cfg);
4766                         if (!(val64 & s2BIT(0)))
4767                                 break;
4768                         cnt++;
4769                         if (cnt == 5)
4770                                 break; /* Updt failed */
4771                 } while (1);
4772         }
4773 }
4774
4775 /**
4776  *  s2io_get_stats - Updates the device statistics structure.
4777  *  @dev : pointer to the device structure.
4778  *  Description:
4779  *  This function updates the device statistics structure in the s2io_nic
4780  *  structure and returns a pointer to the same.
4781  *  Return value:
4782  *  pointer to the updated net_device_stats structure.
4783  */
4784 static struct net_device_stats *s2io_get_stats(struct net_device *dev)
4785 {
4786         struct s2io_nic *sp = netdev_priv(dev);
4787         struct mac_info *mac_control = &sp->mac_control;
4788         struct stat_block *stats = mac_control->stats_info;
4789         u64 delta;
4790
4791         /* Configure Stats for immediate updt */
4792         s2io_updt_stats(sp);
4793
4794         /* A device reset will cause the on-adapter statistics to be zero'ed.
4795          * This can be done while running by changing the MTU.  To prevent the
4796          * system from having the stats zero'ed, the driver keeps a copy of the
4797          * last update to the system (which is also zero'ed on reset).  This
4798          * enables the driver to accurately know the delta between the last
4799          * update and the current update.
4800          */
4801         delta = ((u64) le32_to_cpu(stats->rmac_vld_frms_oflow) << 32 |
4802                 le32_to_cpu(stats->rmac_vld_frms)) - sp->stats.rx_packets;
4803         sp->stats.rx_packets += delta;
4804         dev->stats.rx_packets += delta;
4805
4806         delta = ((u64) le32_to_cpu(stats->tmac_frms_oflow) << 32 |
4807                 le32_to_cpu(stats->tmac_frms)) - sp->stats.tx_packets;
4808         sp->stats.tx_packets += delta;
4809         dev->stats.tx_packets += delta;
4810
4811         delta = ((u64) le32_to_cpu(stats->rmac_data_octets_oflow) << 32 |
4812                 le32_to_cpu(stats->rmac_data_octets)) - sp->stats.rx_bytes;
4813         sp->stats.rx_bytes += delta;
4814         dev->stats.rx_bytes += delta;
4815
4816         delta = ((u64) le32_to_cpu(stats->tmac_data_octets_oflow) << 32 |
4817                 le32_to_cpu(stats->tmac_data_octets)) - sp->stats.tx_bytes;
4818         sp->stats.tx_bytes += delta;
4819         dev->stats.tx_bytes += delta;
4820
4821         delta = le64_to_cpu(stats->rmac_drop_frms) - sp->stats.rx_errors;
4822         sp->stats.rx_errors += delta;
4823         dev->stats.rx_errors += delta;
4824
4825         delta = ((u64) le32_to_cpu(stats->tmac_any_err_frms_oflow) << 32 |
4826                 le32_to_cpu(stats->tmac_any_err_frms)) - sp->stats.tx_errors;
4827         sp->stats.tx_errors += delta;
4828         dev->stats.tx_errors += delta;
4829
4830         delta = le64_to_cpu(stats->rmac_drop_frms) - sp->stats.rx_dropped;
4831         sp->stats.rx_dropped += delta;
4832         dev->stats.rx_dropped += delta;
4833
4834         delta = le64_to_cpu(stats->tmac_drop_frms) - sp->stats.tx_dropped;
4835         sp->stats.tx_dropped += delta;
4836         dev->stats.tx_dropped += delta;
4837
4838         /* The adapter MAC interprets pause frames as multicast packets, but
4839          * does not pass them up.  This erroneously increases the multicast
4840          * packet count and needs to be deducted when the multicast frame count
4841          * is queried.
4842          */
4843         delta = (u64) le32_to_cpu(stats->rmac_vld_mcst_frms_oflow) << 32 |
4844                 le32_to_cpu(stats->rmac_vld_mcst_frms);
4845         delta -= le64_to_cpu(stats->rmac_pause_ctrl_frms);
4846         delta -= sp->stats.multicast;
4847         sp->stats.multicast += delta;
4848         dev->stats.multicast += delta;
4849
4850         delta = ((u64) le32_to_cpu(stats->rmac_usized_frms_oflow) << 32 |
4851                 le32_to_cpu(stats->rmac_usized_frms)) +
4852                 le64_to_cpu(stats->rmac_long_frms) - sp->stats.rx_length_errors;
4853         sp->stats.rx_length_errors += delta;
4854         dev->stats.rx_length_errors += delta;
4855
4856         delta = le64_to_cpu(stats->rmac_fcs_err_frms) - sp->stats.rx_crc_errors;
4857         sp->stats.rx_crc_errors += delta;
4858         dev->stats.rx_crc_errors += delta;
4859
4860         return &dev->stats;
4861 }
4862
4863 /**
4864  *  s2io_set_multicast - entry point for multicast address enable/disable.
4865  *  @dev : pointer to the device structure
4866  *  Description:
4867  *  This function is a driver entry point which gets called by the kernel
4868  *  whenever multicast addresses must be enabled/disabled. This also gets
4869  *  called to set/reset promiscuous mode. Depending on the deivce flag, we
4870  *  determine, if multicast address must be enabled or if promiscuous mode
4871  *  is to be disabled etc.
4872  *  Return value:
4873  *  void.
4874  */
4875
4876 static void s2io_set_multicast(struct net_device *dev)
4877 {
4878         int i, j, prev_cnt;
4879         struct netdev_hw_addr *ha;
4880         struct s2io_nic *sp = netdev_priv(dev);
4881         struct XENA_dev_config __iomem *bar0 = sp->bar0;
4882         u64 val64 = 0, multi_mac = 0x010203040506ULL, mask =
4883                 0xfeffffffffffULL;
4884         u64 dis_addr = S2IO_DISABLE_MAC_ENTRY, mac_addr = 0;
4885         void __iomem *add;
4886         struct config_param *config = &sp->config;
4887
4888         if ((dev->flags & IFF_ALLMULTI) && (!sp->m_cast_flg)) {
4889                 /*  Enable all Multicast addresses */
4890                 writeq(RMAC_ADDR_DATA0_MEM_ADDR(multi_mac),
4891                        &bar0->rmac_addr_data0_mem);
4892                 writeq(RMAC_ADDR_DATA1_MEM_MASK(mask),
4893                        &bar0->rmac_addr_data1_mem);
4894                 val64 = RMAC_ADDR_CMD_MEM_WE |
4895                         RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4896                         RMAC_ADDR_CMD_MEM_OFFSET(config->max_mc_addr - 1);
4897                 writeq(val64, &bar0->rmac_addr_cmd_mem);
4898                 /* Wait till command completes */
4899                 wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
4900                                       RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
4901                                       S2IO_BIT_RESET);
4902
4903                 sp->m_cast_flg = 1;
4904                 sp->all_multi_pos = config->max_mc_addr - 1;
4905         } else if ((dev->flags & IFF_ALLMULTI) && (sp->m_cast_flg)) {
4906                 /*  Disable all Multicast addresses */
4907                 writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr),
4908                        &bar0->rmac_addr_data0_mem);
4909                 writeq(RMAC_ADDR_DATA1_MEM_MASK(0x0),
4910                        &bar0->rmac_addr_data1_mem);
4911                 val64 = RMAC_ADDR_CMD_MEM_WE |
4912                         RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4913                         RMAC_ADDR_CMD_MEM_OFFSET(sp->all_multi_pos);
4914                 writeq(val64, &bar0->rmac_addr_cmd_mem);
4915                 /* Wait till command completes */
4916                 wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
4917                                       RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
4918                                       S2IO_BIT_RESET);
4919
4920                 sp->m_cast_flg = 0;
4921                 sp->all_multi_pos = 0;
4922         }
4923
4924         if ((dev->flags & IFF_PROMISC) && (!sp->promisc_flg)) {
4925                 /*  Put the NIC into promiscuous mode */
4926                 add = &bar0->mac_cfg;
4927                 val64 = readq(&bar0->mac_cfg);
4928                 val64 |= MAC_CFG_RMAC_PROM_ENABLE;
4929
4930                 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
4931                 writel((u32)val64, add);
4932                 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
4933                 writel((u32) (val64 >> 32), (add + 4));
4934
4935                 if (vlan_tag_strip != 1) {
4936                         val64 = readq(&bar0->rx_pa_cfg);
4937                         val64 &= ~RX_PA_CFG_STRIP_VLAN_TAG;
4938                         writeq(val64, &bar0->rx_pa_cfg);
4939                         sp->vlan_strip_flag = 0;
4940                 }
4941
4942                 val64 = readq(&bar0->mac_cfg);
4943                 sp->promisc_flg = 1;
4944                 DBG_PRINT(INFO_DBG, "%s: entered promiscuous mode\n",
4945                           dev->name);
4946         } else if (!(dev->flags & IFF_PROMISC) && (sp->promisc_flg)) {
4947                 /*  Remove the NIC from promiscuous mode */
4948                 add = &bar0->mac_cfg;
4949                 val64 = readq(&bar0->mac_cfg);
4950                 val64 &= ~MAC_CFG_RMAC_PROM_ENABLE;
4951
4952                 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
4953                 writel((u32)val64, add);
4954                 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
4955                 writel((u32) (val64 >> 32), (add + 4));
4956
4957                 if (vlan_tag_strip != 0) {
4958                         val64 = readq(&bar0->rx_pa_cfg);
4959                         val64 |= RX_PA_CFG_STRIP_VLAN_TAG;
4960                         writeq(val64, &bar0->rx_pa_cfg);
4961                         sp->vlan_strip_flag = 1;
4962                 }
4963
4964                 val64 = readq(&bar0->mac_cfg);
4965                 sp->promisc_flg = 0;
4966                 DBG_PRINT(INFO_DBG, "%s: left promiscuous mode\n", dev->name);
4967         }
4968
4969         /*  Update individual M_CAST address list */
4970         if ((!sp->m_cast_flg) && netdev_mc_count(dev)) {
4971                 if (netdev_mc_count(dev) >
4972                     (config->max_mc_addr - config->max_mac_addr)) {
4973                         DBG_PRINT(ERR_DBG,
4974                                   "%s: No more Rx filters can be added - "
4975                                   "please enable ALL_MULTI instead\n",
4976                                   dev->name);
4977                         return;
4978                 }
4979
4980                 prev_cnt = sp->mc_addr_count;
4981                 sp->mc_addr_count = netdev_mc_count(dev);
4982
4983                 /* Clear out the previous list of Mc in the H/W. */
4984                 for (i = 0; i < prev_cnt; i++) {
4985                         writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr),
4986                                &bar0->rmac_addr_data0_mem);
4987                         writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
4988                                &bar0->rmac_addr_data1_mem);
4989                         val64 = RMAC_ADDR_CMD_MEM_WE |
4990                                 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4991                                 RMAC_ADDR_CMD_MEM_OFFSET
4992                                 (config->mc_start_offset + i);
4993                         writeq(val64, &bar0->rmac_addr_cmd_mem);
4994
4995                         /* Wait for command completes */
4996                         if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
4997                                                   RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
4998                                                   S2IO_BIT_RESET)) {
4999                                 DBG_PRINT(ERR_DBG,
5000                                           "%s: Adding Multicasts failed\n",
5001                                           dev->name);
5002                                 return;
5003                         }
5004                 }
5005
5006                 /* Create the new Rx filter list and update the same in H/W. */
5007                 i = 0;
5008                 netdev_for_each_mc_addr(ha, dev) {
5009                         mac_addr = 0;
5010                         for (j = 0; j < ETH_ALEN; j++) {
5011                                 mac_addr |= ha->addr[j];
5012                                 mac_addr <<= 8;
5013                         }
5014                         mac_addr >>= 8;
5015                         writeq(RMAC_ADDR_DATA0_MEM_ADDR(mac_addr),
5016                                &bar0->rmac_addr_data0_mem);
5017                         writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
5018                                &bar0->rmac_addr_data1_mem);
5019                         val64 = RMAC_ADDR_CMD_MEM_WE |
5020                                 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
5021                                 RMAC_ADDR_CMD_MEM_OFFSET
5022                                 (i + config->mc_start_offset);
5023                         writeq(val64, &bar0->rmac_addr_cmd_mem);
5024
5025                         /* Wait for command completes */
5026                         if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
5027                                                   RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
5028                                                   S2IO_BIT_RESET)) {
5029                                 DBG_PRINT(ERR_DBG,
5030                                           "%s: Adding Multicasts failed\n",
5031                                           dev->name);
5032                                 return;
5033                         }
5034                         i++;
5035                 }
5036         }
5037 }
5038
5039 /* read from CAM unicast & multicast addresses and store it in
5040  * def_mac_addr structure
5041  */
5042 static void do_s2io_store_unicast_mc(struct s2io_nic *sp)
5043 {
5044         int offset;
5045         u64 mac_addr = 0x0;
5046         struct config_param *config = &sp->config;
5047
5048         /* store unicast & multicast mac addresses */
5049         for (offset = 0; offset < config->max_mc_addr; offset++) {
5050                 mac_addr = do_s2io_read_unicast_mc(sp, offset);
5051                 /* if read fails disable the entry */
5052                 if (mac_addr == FAILURE)
5053                         mac_addr = S2IO_DISABLE_MAC_ENTRY;
5054                 do_s2io_copy_mac_addr(sp, offset, mac_addr);
5055         }
5056 }
5057
5058 /* restore unicast & multicast MAC to CAM from def_mac_addr structure */
5059 static void do_s2io_restore_unicast_mc(struct s2io_nic *sp)
5060 {
5061         int offset;
5062         struct config_param *config = &sp->config;
5063         /* restore unicast mac address */
5064         for (offset = 0; offset < config->max_mac_addr; offset++)
5065                 do_s2io_prog_unicast(sp->dev,
5066                                      sp->def_mac_addr[offset].mac_addr);
5067
5068         /* restore multicast mac address */
5069         for (offset = config->mc_start_offset;
5070              offset < config->max_mc_addr; offset++)
5071                 do_s2io_add_mc(sp, sp->def_mac_addr[offset].mac_addr);
5072 }
5073
5074 /* add a multicast MAC address to CAM */
5075 static int do_s2io_add_mc(struct s2io_nic *sp, u8 *addr)
5076 {
5077         int i;
5078         u64 mac_addr = 0;
5079         struct config_param *config = &sp->config;
5080
5081         for (i = 0; i < ETH_ALEN; i++) {
5082                 mac_addr <<= 8;
5083                 mac_addr |= addr[i];
5084         }
5085         if ((0ULL == mac_addr) || (mac_addr == S2IO_DISABLE_MAC_ENTRY))
5086                 return SUCCESS;
5087
5088         /* check if the multicast mac already preset in CAM */
5089         for (i = config->mc_start_offset; i < config->max_mc_addr; i++) {
5090                 u64 tmp64;
5091                 tmp64 = do_s2io_read_unicast_mc(sp, i);
5092                 if (tmp64 == S2IO_DISABLE_MAC_ENTRY) /* CAM entry is empty */
5093                         break;
5094
5095                 if (tmp64 == mac_addr)
5096                         return SUCCESS;
5097         }
5098         if (i == config->max_mc_addr) {
5099                 DBG_PRINT(ERR_DBG,
5100                           "CAM full no space left for multicast MAC\n");
5101                 return FAILURE;
5102         }
5103         /* Update the internal structure with this new mac address */
5104         do_s2io_copy_mac_addr(sp, i, mac_addr);
5105
5106         return do_s2io_add_mac(sp, mac_addr, i);
5107 }
5108
5109 /* add MAC address to CAM */
5110 static int do_s2io_add_mac(struct s2io_nic *sp, u64 addr, int off)
5111 {
5112         u64 val64;
5113         struct XENA_dev_config __iomem *bar0 = sp->bar0;
5114
5115         writeq(RMAC_ADDR_DATA0_MEM_ADDR(addr),
5116                &bar0->rmac_addr_data0_mem);
5117
5118         val64 = RMAC_ADDR_CMD_MEM_WE | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
5119                 RMAC_ADDR_CMD_MEM_OFFSET(off);
5120         writeq(val64, &bar0->rmac_addr_cmd_mem);
5121
5122         /* Wait till command completes */
5123         if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
5124                                   RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
5125                                   S2IO_BIT_RESET)) {
5126                 DBG_PRINT(INFO_DBG, "do_s2io_add_mac failed\n");
5127                 return FAILURE;
5128         }
5129         return SUCCESS;
5130 }
5131 /* deletes a specified unicast/multicast mac entry from CAM */
5132 static int do_s2io_delete_unicast_mc(struct s2io_nic *sp, u64 addr)
5133 {
5134         int offset;
5135         u64 dis_addr = S2IO_DISABLE_MAC_ENTRY, tmp64;
5136         struct config_param *config = &sp->config;
5137
5138         for (offset = 1;
5139              offset < config->max_mc_addr; offset++) {
5140                 tmp64 = do_s2io_read_unicast_mc(sp, offset);
5141                 if (tmp64 == addr) {
5142                         /* disable the entry by writing  0xffffffffffffULL */
5143                         if (do_s2io_add_mac(sp, dis_addr, offset) ==  FAILURE)
5144                                 return FAILURE;
5145                         /* store the new mac list from CAM */
5146                         do_s2io_store_unicast_mc(sp);
5147                         return SUCCESS;
5148                 }
5149         }
5150         DBG_PRINT(ERR_DBG, "MAC address 0x%llx not found in CAM\n",
5151                   (unsigned long long)addr);
5152         return FAILURE;
5153 }
5154
5155 /* read mac entries from CAM */
5156 static u64 do_s2io_read_unicast_mc(struct s2io_nic *sp, int offset)
5157 {
5158         u64 tmp64, val64;
5159         struct XENA_dev_config __iomem *bar0 = sp->bar0;
5160
5161         /* read mac addr */
5162         val64 = RMAC_ADDR_CMD_MEM_RD | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
5163                 RMAC_ADDR_CMD_MEM_OFFSET(offset);
5164         writeq(val64, &bar0->rmac_addr_cmd_mem);
5165
5166         /* Wait till command completes */
5167         if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
5168                                   RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
5169                                   S2IO_BIT_RESET)) {
5170                 DBG_PRINT(INFO_DBG, "do_s2io_read_unicast_mc failed\n");
5171                 return FAILURE;
5172         }
5173         tmp64 = readq(&bar0->rmac_addr_data0_mem);
5174
5175         return tmp64 >> 16;
5176 }
5177
5178 /**
5179  * s2io_set_mac_addr - driver entry point
5180  */
5181
5182 static int s2io_set_mac_addr(struct net_device *dev, void *p)
5183 {
5184         struct sockaddr *addr = p;
5185
5186         if (!is_valid_ether_addr(addr->sa_data))
5187                 return -EADDRNOTAVAIL;
5188
5189         memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
5190
5191         /* store the MAC address in CAM */
5192         return do_s2io_prog_unicast(dev, dev->dev_addr);
5193 }
5194 /**
5195  *  do_s2io_prog_unicast - Programs the Xframe mac address
5196  *  @dev : pointer to the device structure.
5197  *  @addr: a uchar pointer to the new mac address which is to be set.
5198  *  Description : This procedure will program the Xframe to receive
5199  *  frames with new Mac Address
5200  *  Return value: SUCCESS on success and an appropriate (-)ve integer
5201  *  as defined in errno.h file on failure.
5202  */
5203
5204 static int do_s2io_prog_unicast(struct net_device *dev, u8 *addr)
5205 {
5206         struct s2io_nic *sp = netdev_priv(dev);
5207         register u64 mac_addr = 0, perm_addr = 0;
5208         int i;
5209         u64 tmp64;
5210         struct config_param *config = &sp->config;
5211
5212         /*
5213          * Set the new MAC address as the new unicast filter and reflect this
5214          * change on the device address registered with the OS. It will be
5215          * at offset 0.
5216          */
5217         for (i = 0; i < ETH_ALEN; i++) {
5218                 mac_addr <<= 8;
5219                 mac_addr |= addr[i];
5220                 perm_addr <<= 8;
5221                 perm_addr |= sp->def_mac_addr[0].mac_addr[i];
5222         }
5223
5224         /* check if the dev_addr is different than perm_addr */
5225         if (mac_addr == perm_addr)
5226                 return SUCCESS;
5227
5228         /* check if the mac already preset in CAM */
5229         for (i = 1; i < config->max_mac_addr; i++) {
5230                 tmp64 = do_s2io_read_unicast_mc(sp, i);
5231                 if (tmp64 == S2IO_DISABLE_MAC_ENTRY) /* CAM entry is empty */
5232                         break;
5233
5234                 if (tmp64 == mac_addr) {
5235                         DBG_PRINT(INFO_DBG,
5236                                   "MAC addr:0x%llx already present in CAM\n",
5237                                   (unsigned long long)mac_addr);
5238                         return SUCCESS;
5239                 }
5240         }
5241         if (i == config->max_mac_addr) {
5242                 DBG_PRINT(ERR_DBG, "CAM full no space left for Unicast MAC\n");
5243                 return FAILURE;
5244         }
5245         /* Update the internal structure with this new mac address */
5246         do_s2io_copy_mac_addr(sp, i, mac_addr);
5247
5248         return do_s2io_add_mac(sp, mac_addr, i);
5249 }
5250
5251 /**
5252  * s2io_ethtool_set_link_ksettings - Sets different link parameters.
5253  * @sp : private member of the device structure, which is a pointer to the
5254  * s2io_nic structure.
5255  * @cmd: pointer to the structure with parameters given by ethtool to set
5256  * link information.
5257  * Description:
5258  * The function sets different link parameters provided by the user onto
5259  * the NIC.
5260  * Return value:
5261  * 0 on success.
5262  */
5263
5264 static int
5265 s2io_ethtool_set_link_ksettings(struct net_device *dev,
5266                                 const struct ethtool_link_ksettings *cmd)
5267 {
5268         struct s2io_nic *sp = netdev_priv(dev);
5269         if ((cmd->base.autoneg == AUTONEG_ENABLE) ||
5270             (cmd->base.speed != SPEED_10000) ||
5271             (cmd->base.duplex != DUPLEX_FULL))
5272                 return -EINVAL;
5273         else {
5274                 s2io_close(sp->dev);
5275                 s2io_open(sp->dev);
5276         }
5277
5278         return 0;
5279 }
5280
5281 /**
5282  * s2io_ethtol_get_link_ksettings - Return link specific information.
5283  * @sp : private member of the device structure, pointer to the
5284  *      s2io_nic structure.
5285  * @cmd : pointer to the structure with parameters given by ethtool
5286  * to return link information.
5287  * Description:
5288  * Returns link specific information like speed, duplex etc.. to ethtool.
5289  * Return value :
5290  * return 0 on success.
5291  */
5292
5293 static int
5294 s2io_ethtool_get_link_ksettings(struct net_device *dev,
5295                                 struct ethtool_link_ksettings *cmd)
5296 {
5297         struct s2io_nic *sp = netdev_priv(dev);
5298
5299         ethtool_link_ksettings_zero_link_mode(cmd, supported);
5300         ethtool_link_ksettings_add_link_mode(cmd, supported, 10000baseT_Full);
5301         ethtool_link_ksettings_add_link_mode(cmd, supported, FIBRE);
5302
5303         ethtool_link_ksettings_zero_link_mode(cmd, advertising);
5304         ethtool_link_ksettings_add_link_mode(cmd, advertising, 10000baseT_Full);
5305         ethtool_link_ksettings_add_link_mode(cmd, advertising, FIBRE);
5306
5307         cmd->base.port = PORT_FIBRE;
5308
5309         if (netif_carrier_ok(sp->dev)) {
5310                 cmd->base.speed = SPEED_10000;
5311                 cmd->base.duplex = DUPLEX_FULL;
5312         } else {
5313                 cmd->base.speed = SPEED_UNKNOWN;
5314                 cmd->base.duplex = DUPLEX_UNKNOWN;
5315         }
5316
5317         cmd->base.autoneg = AUTONEG_DISABLE;
5318         return 0;
5319 }
5320
5321 /**
5322  * s2io_ethtool_gdrvinfo - Returns driver specific information.
5323  * @sp : private member of the device structure, which is a pointer to the
5324  * s2io_nic structure.
5325  * @info : pointer to the structure with parameters given by ethtool to
5326  * return driver information.
5327  * Description:
5328  * Returns driver specefic information like name, version etc.. to ethtool.
5329  * Return value:
5330  *  void
5331  */
5332
5333 static void s2io_ethtool_gdrvinfo(struct net_device *dev,
5334                                   struct ethtool_drvinfo *info)
5335 {
5336         struct s2io_nic *sp = netdev_priv(dev);
5337
5338         strlcpy(info->driver, s2io_driver_name, sizeof(info->driver));
5339         strlcpy(info->version, s2io_driver_version, sizeof(info->version));
5340         strlcpy(info->bus_info, pci_name(sp->pdev), sizeof(info->bus_info));
5341 }
5342
5343 /**
5344  *  s2io_ethtool_gregs - dumps the entire space of Xfame into the buffer.
5345  *  @sp: private member of the device structure, which is a pointer to the
5346  *  s2io_nic structure.
5347  *  @regs : pointer to the structure with parameters given by ethtool for
5348  *  dumping the registers.
5349  *  @reg_space: The input argument into which all the registers are dumped.
5350  *  Description:
5351  *  Dumps the entire register space of xFrame NIC into the user given
5352  *  buffer area.
5353  * Return value :
5354  * void .
5355  */
5356
5357 static void s2io_ethtool_gregs(struct net_device *dev,
5358                                struct ethtool_regs *regs, void *space)
5359 {
5360         int i;
5361         u64 reg;
5362         u8 *reg_space = (u8 *)space;
5363         struct s2io_nic *sp = netdev_priv(dev);
5364
5365         regs->len = XENA_REG_SPACE;
5366         regs->version = sp->pdev->subsystem_device;
5367
5368         for (i = 0; i < regs->len; i += 8) {
5369                 reg = readq(sp->bar0 + i);
5370                 memcpy((reg_space + i), &reg, 8);
5371         }
5372 }
5373
5374 /*
5375  *  s2io_set_led - control NIC led
5376  */
5377 static void s2io_set_led(struct s2io_nic *sp, bool on)
5378 {
5379         struct XENA_dev_config __iomem *bar0 = sp->bar0;
5380         u16 subid = sp->pdev->subsystem_device;
5381         u64 val64;
5382
5383         if ((sp->device_type == XFRAME_II_DEVICE) ||
5384             ((subid & 0xFF) >= 0x07)) {
5385                 val64 = readq(&bar0->gpio_control);
5386                 if (on)
5387                         val64 |= GPIO_CTRL_GPIO_0;
5388                 else
5389                         val64 &= ~GPIO_CTRL_GPIO_0;
5390
5391                 writeq(val64, &bar0->gpio_control);
5392         } else {
5393                 val64 = readq(&bar0->adapter_control);
5394                 if (on)
5395                         val64 |= ADAPTER_LED_ON;
5396                 else
5397                         val64 &= ~ADAPTER_LED_ON;
5398
5399                 writeq(val64, &bar0->adapter_control);
5400         }
5401
5402 }
5403
5404 /**
5405  * s2io_ethtool_set_led - To physically identify the nic on the system.
5406  * @dev : network device
5407  * @state: led setting
5408  *
5409  * Description: Used to physically identify the NIC on the system.
5410  * The Link LED will blink for a time specified by the user for
5411  * identification.
5412  * NOTE: The Link has to be Up to be able to blink the LED. Hence
5413  * identification is possible only if it's link is up.
5414  */
5415
5416 static int s2io_ethtool_set_led(struct net_device *dev,
5417                                 enum ethtool_phys_id_state state)
5418 {
5419         struct s2io_nic *sp = netdev_priv(dev);
5420         struct XENA_dev_config __iomem *bar0 = sp->bar0;
5421         u16 subid = sp->pdev->subsystem_device;
5422
5423         if ((sp->device_type == XFRAME_I_DEVICE) && ((subid & 0xFF) < 0x07)) {
5424                 u64 val64 = readq(&bar0->adapter_control);
5425                 if (!(val64 & ADAPTER_CNTL_EN)) {
5426                         pr_err("Adapter Link down, cannot blink LED\n");
5427                         return -EAGAIN;
5428                 }
5429         }
5430
5431         switch (state) {
5432         case ETHTOOL_ID_ACTIVE:
5433                 sp->adapt_ctrl_org = readq(&bar0->gpio_control);
5434                 return 1;       /* cycle on/off once per second */
5435
5436         case ETHTOOL_ID_ON:
5437                 s2io_set_led(sp, true);
5438                 break;
5439
5440         case ETHTOOL_ID_OFF:
5441                 s2io_set_led(sp, false);
5442                 break;
5443
5444         case ETHTOOL_ID_INACTIVE:
5445                 if (CARDS_WITH_FAULTY_LINK_INDICATORS(sp->device_type, subid))
5446                         writeq(sp->adapt_ctrl_org, &bar0->gpio_control);
5447         }
5448
5449         return 0;
5450 }
5451
5452 static void s2io_ethtool_gringparam(struct net_device *dev,
5453                                     struct ethtool_ringparam *ering)
5454 {
5455         struct s2io_nic *sp = netdev_priv(dev);
5456         int i, tx_desc_count = 0, rx_desc_count = 0;
5457
5458         if (sp->rxd_mode == RXD_MODE_1) {
5459                 ering->rx_max_pending = MAX_RX_DESC_1;
5460                 ering->rx_jumbo_max_pending = MAX_RX_DESC_1;
5461         } else {
5462                 ering->rx_max_pending = MAX_RX_DESC_2;
5463                 ering->rx_jumbo_max_pending = MAX_RX_DESC_2;
5464         }
5465
5466         ering->tx_max_pending = MAX_TX_DESC;
5467
5468         for (i = 0; i < sp->config.rx_ring_num; i++)
5469                 rx_desc_count += sp->config.rx_cfg[i].num_rxd;
5470         ering->rx_pending = rx_desc_count;
5471         ering->rx_jumbo_pending = rx_desc_count;
5472
5473         for (i = 0; i < sp->config.tx_fifo_num; i++)
5474                 tx_desc_count += sp->config.tx_cfg[i].fifo_len;
5475         ering->tx_pending = tx_desc_count;
5476         DBG_PRINT(INFO_DBG, "max txds: %d\n", sp->config.max_txds);
5477 }
5478
5479 /**
5480  * s2io_ethtool_getpause_data -Pause frame frame generation and reception.
5481  * @sp : private member of the device structure, which is a pointer to the
5482  *      s2io_nic structure.
5483  * @ep : pointer to the structure with pause parameters given by ethtool.
5484  * Description:
5485  * Returns the Pause frame generation and reception capability of the NIC.
5486  * Return value:
5487  *  void
5488  */
5489 static void s2io_ethtool_getpause_data(struct net_device *dev,
5490                                        struct ethtool_pauseparam *ep)
5491 {
5492         u64 val64;
5493         struct s2io_nic *sp = netdev_priv(dev);
5494         struct XENA_dev_config __iomem *bar0 = sp->bar0;
5495
5496         val64 = readq(&bar0->rmac_pause_cfg);
5497         if (val64 & RMAC_PAUSE_GEN_ENABLE)
5498                 ep->tx_pause = true;
5499         if (val64 & RMAC_PAUSE_RX_ENABLE)
5500                 ep->rx_pause = true;
5501         ep->autoneg = false;
5502 }
5503
5504 /**
5505  * s2io_ethtool_setpause_data -  set/reset pause frame generation.
5506  * @sp : private member of the device structure, which is a pointer to the
5507  *      s2io_nic structure.
5508  * @ep : pointer to the structure with pause parameters given by ethtool.
5509  * Description:
5510  * It can be used to set or reset Pause frame generation or reception
5511  * support of the NIC.
5512  * Return value:
5513  * int, returns 0 on Success
5514  */
5515
5516 static int s2io_ethtool_setpause_data(struct net_device *dev,
5517                                       struct ethtool_pauseparam *ep)
5518 {
5519         u64 val64;
5520         struct s2io_nic *sp = netdev_priv(dev);
5521         struct XENA_dev_config __iomem *bar0 = sp->bar0;
5522
5523         val64 = readq(&bar0->rmac_pause_cfg);
5524         if (ep->tx_pause)
5525                 val64 |= RMAC_PAUSE_GEN_ENABLE;
5526         else
5527                 val64 &= ~RMAC_PAUSE_GEN_ENABLE;
5528         if (ep->rx_pause)
5529                 val64 |= RMAC_PAUSE_RX_ENABLE;
5530         else
5531                 val64 &= ~RMAC_PAUSE_RX_ENABLE;
5532         writeq(val64, &bar0->rmac_pause_cfg);
5533         return 0;
5534 }
5535
5536 /**
5537  * read_eeprom - reads 4 bytes of data from user given offset.
5538  * @sp : private member of the device structure, which is a pointer to the
5539  *      s2io_nic structure.
5540  * @off : offset at which the data must be written
5541  * @data : Its an output parameter where the data read at the given
5542  *      offset is stored.
5543  * Description:
5544  * Will read 4 bytes of data from the user given offset and return the
5545  * read data.
5546  * NOTE: Will allow to read only part of the EEPROM visible through the
5547  *   I2C bus.
5548  * Return value:
5549  *  -1 on failure and 0 on success.
5550  */
5551
5552 #define S2IO_DEV_ID             5
5553 static int read_eeprom(struct s2io_nic *sp, int off, u64 *data)
5554 {
5555         int ret = -1;
5556         u32 exit_cnt = 0;
5557         u64 val64;
5558         struct XENA_dev_config __iomem *bar0 = sp->bar0;
5559
5560         if (sp->device_type == XFRAME_I_DEVICE) {
5561                 val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) |
5562                         I2C_CONTROL_ADDR(off) |
5563                         I2C_CONTROL_BYTE_CNT(0x3) |
5564                         I2C_CONTROL_READ |
5565                         I2C_CONTROL_CNTL_START;
5566                 SPECIAL_REG_WRITE(val64, &bar0->i2c_control, LF);
5567
5568                 while (exit_cnt < 5) {
5569                         val64 = readq(&bar0->i2c_control);
5570                         if (I2C_CONTROL_CNTL_END(val64)) {
5571                                 *data = I2C_CONTROL_GET_DATA(val64);
5572                                 ret = 0;
5573                                 break;
5574                         }
5575                         msleep(50);
5576                         exit_cnt++;
5577                 }
5578         }
5579
5580         if (sp->device_type == XFRAME_II_DEVICE) {
5581                 val64 = SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1 |
5582                         SPI_CONTROL_BYTECNT(0x3) |
5583                         SPI_CONTROL_CMD(0x3) | SPI_CONTROL_ADDR(off);
5584                 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5585                 val64 |= SPI_CONTROL_REQ;
5586                 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5587                 while (exit_cnt < 5) {
5588                         val64 = readq(&bar0->spi_control);
5589                         if (val64 & SPI_CONTROL_NACK) {
5590                                 ret = 1;
5591                                 break;
5592                         } else if (val64 & SPI_CONTROL_DONE) {
5593                                 *data = readq(&bar0->spi_data);
5594                                 *data &= 0xffffff;
5595                                 ret = 0;
5596                                 break;
5597                         }
5598                         msleep(50);
5599                         exit_cnt++;
5600                 }
5601         }
5602         return ret;
5603 }
5604
5605 /**
5606  *  write_eeprom - actually writes the relevant part of the data value.
5607  *  @sp : private member of the device structure, which is a pointer to the
5608  *       s2io_nic structure.
5609  *  @off : offset at which the data must be written
5610  *  @data : The data that is to be written
5611  *  @cnt : Number of bytes of the data that are actually to be written into
5612  *  the Eeprom. (max of 3)
5613  * Description:
5614  *  Actually writes the relevant part of the data value into the Eeprom
5615  *  through the I2C bus.
5616  * Return value:
5617  *  0 on success, -1 on failure.
5618  */
5619
5620 static int write_eeprom(struct s2io_nic *sp, int off, u64 data, int cnt)
5621 {
5622         int exit_cnt = 0, ret = -1;
5623         u64 val64;
5624         struct XENA_dev_config __iomem *bar0 = sp->bar0;
5625
5626         if (sp->device_type == XFRAME_I_DEVICE) {
5627                 val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) |
5628                         I2C_CONTROL_ADDR(off) |
5629                         I2C_CONTROL_BYTE_CNT(cnt) |
5630                         I2C_CONTROL_SET_DATA((u32)data) |
5631                         I2C_CONTROL_CNTL_START;
5632                 SPECIAL_REG_WRITE(val64, &bar0->i2c_control, LF);
5633
5634                 while (exit_cnt < 5) {
5635                         val64 = readq(&bar0->i2c_control);
5636                         if (I2C_CONTROL_CNTL_END(val64)) {
5637                                 if (!(val64 & I2C_CONTROL_NACK))
5638                                         ret = 0;
5639                                 break;
5640                         }
5641                         msleep(50);
5642                         exit_cnt++;
5643                 }
5644         }
5645
5646         if (sp->device_type == XFRAME_II_DEVICE) {
5647                 int write_cnt = (cnt == 8) ? 0 : cnt;
5648                 writeq(SPI_DATA_WRITE(data, (cnt << 3)), &bar0->spi_data);
5649
5650                 val64 = SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1 |
5651                         SPI_CONTROL_BYTECNT(write_cnt) |
5652                         SPI_CONTROL_CMD(0x2) | SPI_CONTROL_ADDR(off);
5653                 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5654                 val64 |= SPI_CONTROL_REQ;
5655                 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5656                 while (exit_cnt < 5) {
5657                         val64 = readq(&bar0->spi_control);
5658                         if (val64 & SPI_CONTROL_NACK) {
5659                                 ret = 1;
5660                                 break;
5661                         } else if (val64 & SPI_CONTROL_DONE) {
5662                                 ret = 0;
5663                                 break;
5664                         }
5665                         msleep(50);
5666                         exit_cnt++;
5667                 }
5668         }
5669         return ret;
5670 }
5671 static void s2io_vpd_read(struct s2io_nic *nic)
5672 {
5673         u8 *vpd_data;
5674         u8 data;
5675         int i = 0, cnt, len, fail = 0;
5676         int vpd_addr = 0x80;
5677         struct swStat *swstats = &nic->mac_control.stats_info->sw_stat;
5678
5679         if (nic->device_type == XFRAME_II_DEVICE) {
5680                 strcpy(nic->product_name, "Xframe II 10GbE network adapter");
5681                 vpd_addr = 0x80;
5682         } else {
5683                 strcpy(nic->product_name, "Xframe I 10GbE network adapter");
5684                 vpd_addr = 0x50;
5685         }
5686         strcpy(nic->serial_num, "NOT AVAILABLE");
5687
5688         vpd_data = kmalloc(256, GFP_KERNEL);
5689         if (!vpd_data) {
5690                 swstats->mem_alloc_fail_cnt++;
5691                 return;
5692         }
5693         swstats->mem_allocated += 256;
5694
5695         for (i = 0; i < 256; i += 4) {
5696                 pci_write_config_byte(nic->pdev, (vpd_addr + 2), i);
5697                 pci_read_config_byte(nic->pdev,  (vpd_addr + 2), &data);
5698                 pci_write_config_byte(nic->pdev, (vpd_addr + 3), 0);
5699                 for (cnt = 0; cnt < 5; cnt++) {
5700                         msleep(2);
5701                         pci_read_config_byte(nic->pdev, (vpd_addr + 3), &data);
5702                         if (data == 0x80)
5703                                 break;
5704                 }
5705                 if (cnt >= 5) {
5706                         DBG_PRINT(ERR_DBG, "Read of VPD data failed\n");
5707                         fail = 1;
5708                         break;
5709                 }
5710                 pci_read_config_dword(nic->pdev,  (vpd_addr + 4),
5711                                       (u32 *)&vpd_data[i]);
5712         }
5713
5714         if (!fail) {
5715                 /* read serial number of adapter */
5716                 for (cnt = 0; cnt < 252; cnt++) {
5717                         if ((vpd_data[cnt] == 'S') &&
5718                             (vpd_data[cnt+1] == 'N')) {
5719                                 len = vpd_data[cnt+2];
5720                                 if (len < min(VPD_STRING_LEN, 256-cnt-2)) {
5721                                         memcpy(nic->serial_num,
5722                                                &vpd_data[cnt + 3],
5723                                                len);
5724                                         memset(nic->serial_num+len,
5725                                                0,
5726                                                VPD_STRING_LEN-len);
5727                                         break;
5728                                 }
5729                         }
5730                 }
5731         }
5732
5733         if ((!fail) && (vpd_data[1] < VPD_STRING_LEN)) {
5734                 len = vpd_data[1];
5735                 memcpy(nic->product_name, &vpd_data[3], len);
5736                 nic->product_name[len] = 0;
5737         }
5738         kfree(vpd_data);
5739         swstats->mem_freed += 256;
5740 }
5741
5742 /**
5743  *  s2io_ethtool_geeprom  - reads the value stored in the Eeprom.
5744  *  @sp : private member of the device structure, which is a pointer to the
5745  *  s2io_nic structure.
5746  *  @eeprom : pointer to the user level structure provided by ethtool,
5747  *  containing all relevant information.
5748  *  @data_buf : user defined value to be written into Eeprom.
5749  *  Description: Reads the values stored in the Eeprom at given offset
5750  *  for a given length. Stores these values int the input argument data
5751  *  buffer 'data_buf' and returns these to the caller (ethtool.)
5752  *  Return value:
5753  *  int  0 on success
5754  */
5755
5756 static int s2io_ethtool_geeprom(struct net_device *dev,
5757                                 struct ethtool_eeprom *eeprom, u8 * data_buf)
5758 {
5759         u32 i, valid;
5760         u64 data;
5761         struct s2io_nic *sp = netdev_priv(dev);
5762
5763         eeprom->magic = sp->pdev->vendor | (sp->pdev->device << 16);
5764
5765         if ((eeprom->offset + eeprom->len) > (XENA_EEPROM_SPACE))
5766                 eeprom->len = XENA_EEPROM_SPACE - eeprom->offset;
5767
5768         for (i = 0; i < eeprom->len; i += 4) {
5769                 if (read_eeprom(sp, (eeprom->offset + i), &data)) {
5770                         DBG_PRINT(ERR_DBG, "Read of EEPROM failed\n");
5771                         return -EFAULT;
5772                 }
5773                 valid = INV(data);
5774                 memcpy((data_buf + i), &valid, 4);
5775         }
5776         return 0;
5777 }
5778
5779 /**
5780  *  s2io_ethtool_seeprom - tries to write the user provided value in Eeprom
5781  *  @sp : private member of the device structure, which is a pointer to the
5782  *  s2io_nic structure.
5783  *  @eeprom : pointer to the user level structure provided by ethtool,
5784  *  containing all relevant information.
5785  *  @data_buf ; user defined value to be written into Eeprom.
5786  *  Description:
5787  *  Tries to write the user provided value in the Eeprom, at the offset
5788  *  given by the user.
5789  *  Return value:
5790  *  0 on success, -EFAULT on failure.
5791  */
5792
5793 static int s2io_ethtool_seeprom(struct net_device *dev,
5794                                 struct ethtool_eeprom *eeprom,
5795                                 u8 *data_buf)
5796 {
5797         int len = eeprom->len, cnt = 0;
5798         u64 valid = 0, data;
5799         struct s2io_nic *sp = netdev_priv(dev);
5800
5801         if (eeprom->magic != (sp->pdev->vendor | (sp->pdev->device << 16))) {
5802                 DBG_PRINT(ERR_DBG,
5803                           "ETHTOOL_WRITE_EEPROM Err: "
5804                           "Magic value is wrong, it is 0x%x should be 0x%x\n",
5805                           (sp->pdev->vendor | (sp->pdev->device << 16)),
5806                           eeprom->magic);
5807                 return -EFAULT;
5808         }
5809
5810         while (len) {
5811                 data = (u32)data_buf[cnt] & 0x000000FF;
5812                 if (data)
5813                         valid = (u32)(data << 24);
5814                 else
5815                         valid = data;
5816
5817                 if (write_eeprom(sp, (eeprom->offset + cnt), valid, 0)) {
5818                         DBG_PRINT(ERR_DBG,
5819                                   "ETHTOOL_WRITE_EEPROM Err: "
5820                                   "Cannot write into the specified offset\n");
5821                         return -EFAULT;
5822                 }
5823                 cnt++;
5824                 len--;
5825         }
5826
5827         return 0;
5828 }
5829
5830 /**
5831  * s2io_register_test - reads and writes into all clock domains.
5832  * @sp : private member of the device structure, which is a pointer to the
5833  * s2io_nic structure.
5834  * @data : variable that returns the result of each of the test conducted b
5835  * by the driver.
5836  * Description:
5837  * Read and write into all clock domains. The NIC has 3 clock domains,
5838  * see that registers in all the three regions are accessible.
5839  * Return value:
5840  * 0 on success.
5841  */
5842
5843 static int s2io_register_test(struct s2io_nic *sp, uint64_t *data)
5844 {
5845         struct XENA_dev_config __iomem *bar0 = sp->bar0;
5846         u64 val64 = 0, exp_val;
5847         int fail = 0;
5848
5849         val64 = readq(&bar0->pif_rd_swapper_fb);
5850         if (val64 != 0x123456789abcdefULL) {
5851                 fail = 1;
5852                 DBG_PRINT(INFO_DBG, "Read Test level %d fails\n", 1);
5853         }
5854
5855         val64 = readq(&bar0->rmac_pause_cfg);
5856         if (val64 != 0xc000ffff00000000ULL) {
5857                 fail = 1;
5858                 DBG_PRINT(INFO_DBG, "Read Test level %d fails\n", 2);
5859         }
5860
5861         val64 = readq(&bar0->rx_queue_cfg);
5862         if (sp->device_type == XFRAME_II_DEVICE)
5863                 exp_val = 0x0404040404040404ULL;
5864         else
5865                 exp_val = 0x0808080808080808ULL;
5866         if (val64 != exp_val) {
5867                 fail = 1;
5868                 DBG_PRINT(INFO_DBG, "Read Test level %d fails\n", 3);
5869         }
5870
5871         val64 = readq(&bar0->xgxs_efifo_cfg);
5872         if (val64 != 0x000000001923141EULL) {
5873                 fail = 1;
5874                 DBG_PRINT(INFO_DBG, "Read Test level %d fails\n", 4);
5875         }
5876
5877         val64 = 0x5A5A5A5A5A5A5A5AULL;
5878         writeq(val64, &bar0->xmsi_data);
5879         val64 = readq(&bar0->xmsi_data);
5880         if (val64 != 0x5A5A5A5A5A5A5A5AULL) {
5881                 fail = 1;
5882                 DBG_PRINT(ERR_DBG, "Write Test level %d fails\n", 1);
5883         }
5884
5885         val64 = 0xA5A5A5A5A5A5A5A5ULL;
5886         writeq(val64, &bar0->xmsi_data);
5887         val64 = readq(&bar0->xmsi_data);
5888         if (val64 != 0xA5A5A5A5A5A5A5A5ULL) {
5889                 fail = 1;
5890                 DBG_PRINT(ERR_DBG, "Write Test level %d fails\n", 2);
5891         }
5892
5893         *data = fail;
5894         return fail;
5895 }
5896
5897 /**
5898  * s2io_eeprom_test - to verify that EEprom in the xena can be programmed.
5899  * @sp : private member of the device structure, which is a pointer to the
5900  * s2io_nic structure.
5901  * @data:variable that returns the result of each of the test conducted by
5902  * the driver.
5903  * Description:
5904  * Verify that EEPROM in the xena can be programmed using I2C_CONTROL
5905  * register.
5906  * Return value:
5907  * 0 on success.
5908  */
5909
5910 static int s2io_eeprom_test(struct s2io_nic *sp, uint64_t *data)
5911 {
5912         int fail = 0;
5913         u64 ret_data, org_4F0, org_7F0;
5914         u8 saved_4F0 = 0, saved_7F0 = 0;
5915         struct net_device *dev = sp->dev;
5916
5917         /* Test Write Error at offset 0 */
5918         /* Note that SPI interface allows write access to all areas
5919          * of EEPROM. Hence doing all negative testing only for Xframe I.
5920          */
5921         if (sp->device_type == XFRAME_I_DEVICE)
5922                 if (!write_eeprom(sp, 0, 0, 3))
5923                         fail = 1;
5924
5925         /* Save current values at offsets 0x4F0 and 0x7F0 */
5926         if (!read_eeprom(sp, 0x4F0, &org_4F0))
5927                 saved_4F0 = 1;
5928         if (!read_eeprom(sp, 0x7F0, &org_7F0))
5929                 saved_7F0 = 1;
5930
5931         /* Test Write at offset 4f0 */
5932         if (write_eeprom(sp, 0x4F0, 0x012345, 3))
5933                 fail = 1;
5934         if (read_eeprom(sp, 0x4F0, &ret_data))
5935                 fail = 1;
5936
5937         if (ret_data != 0x012345) {
5938                 DBG_PRINT(ERR_DBG, "%s: eeprom test error at offset 0x4F0. "
5939                           "Data written %llx Data read %llx\n",
5940                           dev->name, (unsigned long long)0x12345,
5941                           (unsigned long long)ret_data);
5942                 fail = 1;
5943         }
5944
5945         /* Reset the EEPROM data go FFFF */
5946         write_eeprom(sp, 0x4F0, 0xFFFFFF, 3);
5947
5948         /* Test Write Request Error at offset 0x7c */
5949         if (sp->device_type == XFRAME_I_DEVICE)
5950                 if (!write_eeprom(sp, 0x07C, 0, 3))
5951                         fail = 1;
5952
5953         /* Test Write Request at offset 0x7f0 */
5954         if (write_eeprom(sp, 0x7F0, 0x012345, 3))
5955                 fail = 1;
5956         if (read_eeprom(sp, 0x7F0, &ret_data))
5957                 fail = 1;
5958
5959         if (ret_data != 0x012345) {
5960                 DBG_PRINT(ERR_DBG, "%s: eeprom test error at offset 0x7F0. "
5961                           "Data written %llx Data read %llx\n",
5962                           dev->name, (unsigned long long)0x12345,
5963                           (unsigned long long)ret_data);
5964                 fail = 1;
5965         }
5966
5967         /* Reset the EEPROM data go FFFF */
5968         write_eeprom(sp, 0x7F0, 0xFFFFFF, 3);
5969
5970         if (sp->device_type == XFRAME_I_DEVICE) {
5971                 /* Test Write Error at offset 0x80 */
5972                 if (!write_eeprom(sp, 0x080, 0, 3))
5973                         fail = 1;
5974
5975                 /* Test Write Error at offset 0xfc */
5976                 if (!write_eeprom(sp, 0x0FC, 0, 3))
5977                         fail = 1;
5978
5979                 /* Test Write Error at offset 0x100 */
5980                 if (!write_eeprom(sp, 0x100, 0, 3))
5981                         fail = 1;
5982
5983                 /* Test Write Error at offset 4ec */
5984                 if (!write_eeprom(sp, 0x4EC, 0, 3))
5985                         fail = 1;
5986         }
5987
5988         /* Restore values at offsets 0x4F0 and 0x7F0 */
5989         if (saved_4F0)
5990                 write_eeprom(sp, 0x4F0, org_4F0, 3);
5991         if (saved_7F0)
5992                 write_eeprom(sp, 0x7F0, org_7F0, 3);
5993
5994         *data = fail;
5995         return fail;
5996 }
5997
5998 /**
5999  * s2io_bist_test - invokes the MemBist test of the card .
6000  * @sp : private member of the device structure, which is a pointer to the
6001  * s2io_nic structure.
6002  * @data:variable that returns the result of each of the test conducted by
6003  * the driver.
6004  * Description:
6005  * This invokes the MemBist test of the card. We give around
6006  * 2 secs time for the Test to complete. If it's still not complete
6007  * within this peiod, we consider that the test failed.
6008  * Return value:
6009  * 0 on success and -1 on failure.
6010  */
6011
6012 static int s2io_bist_test(struct s2io_nic *sp, uint64_t *data)
6013 {
6014         u8 bist = 0;
6015         int cnt = 0, ret = -1;
6016
6017         pci_read_config_byte(sp->pdev, PCI_BIST, &bist);
6018         bist |= PCI_BIST_START;
6019         pci_write_config_word(sp->pdev, PCI_BIST, bist);
6020
6021         while (cnt < 20) {
6022                 pci_read_config_byte(sp->pdev, PCI_BIST, &bist);
6023                 if (!(bist & PCI_BIST_START)) {
6024                         *data = (bist & PCI_BIST_CODE_MASK);
6025                         ret = 0;
6026                         break;
6027                 }
6028                 msleep(100);
6029                 cnt++;
6030         }
6031
6032         return ret;
6033 }
6034
6035 /**
6036  * s2io_link_test - verifies the link state of the nic
6037  * @sp ; private member of the device structure, which is a pointer to the
6038  * s2io_nic structure.
6039  * @data: variable that returns the result of each of the test conducted by
6040  * the driver.
6041  * Description:
6042  * The function verifies the link state of the NIC and updates the input
6043  * argument 'data' appropriately.
6044  * Return value:
6045  * 0 on success.
6046  */
6047
6048 static int s2io_link_test(struct s2io_nic *sp, uint64_t *data)
6049 {
6050         struct XENA_dev_config __iomem *bar0 = sp->bar0;
6051         u64 val64;
6052
6053         val64 = readq(&bar0->adapter_status);
6054         if (!(LINK_IS_UP(val64)))
6055                 *data = 1;
6056         else
6057                 *data = 0;
6058
6059         return *data;
6060 }
6061
6062 /**
6063  * s2io_rldram_test - offline test for access to the RldRam chip on the NIC
6064  * @sp: private member of the device structure, which is a pointer to the
6065  * s2io_nic structure.
6066  * @data: variable that returns the result of each of the test
6067  * conducted by the driver.
6068  * Description:
6069  *  This is one of the offline test that tests the read and write
6070  *  access to the RldRam chip on the NIC.
6071  * Return value:
6072  *  0 on success.
6073  */
6074
6075 static int s2io_rldram_test(struct s2io_nic *sp, uint64_t *data)
6076 {
6077         struct XENA_dev_config __iomem *bar0 = sp->bar0;
6078         u64 val64;
6079         int cnt, iteration = 0, test_fail = 0;
6080
6081         val64 = readq(&bar0->adapter_control);
6082         val64 &= ~ADAPTER_ECC_EN;
6083         writeq(val64, &bar0->adapter_control);
6084
6085         val64 = readq(&bar0->mc_rldram_test_ctrl);
6086         val64 |= MC_RLDRAM_TEST_MODE;
6087         SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
6088
6089         val64 = readq(&bar0->mc_rldram_mrs);
6090         val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE;
6091         SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
6092
6093         val64 |= MC_RLDRAM_MRS_ENABLE;
6094         SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
6095
6096         while (iteration < 2) {
6097                 val64 = 0x55555555aaaa0000ULL;
6098                 if (iteration == 1)
6099                         val64 ^= 0xFFFFFFFFFFFF0000ULL;
6100                 writeq(val64, &bar0->mc_rldram_test_d0);
6101
6102                 val64 = 0xaaaa5a5555550000ULL;
6103                 if (iteration == 1)
6104                         val64 ^= 0xFFFFFFFFFFFF0000ULL;
6105                 writeq(val64, &bar0->mc_rldram_test_d1);
6106
6107                 val64 = 0x55aaaaaaaa5a0000ULL;
6108                 if (iteration == 1)
6109                         val64 ^= 0xFFFFFFFFFFFF0000ULL;
6110                 writeq(val64, &bar0->mc_rldram_test_d2);
6111
6112                 val64 = (u64) (0x0000003ffffe0100ULL);
6113                 writeq(val64, &bar0->mc_rldram_test_add);
6114
6115                 val64 = MC_RLDRAM_TEST_MODE |
6116                         MC_RLDRAM_TEST_WRITE |
6117                         MC_RLDRAM_TEST_GO;
6118                 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
6119
6120                 for (cnt = 0; cnt < 5; cnt++) {
6121                         val64 = readq(&bar0->mc_rldram_test_ctrl);
6122                         if (val64 & MC_RLDRAM_TEST_DONE)
6123                                 break;
6124                         msleep(200);
6125                 }
6126
6127                 if (cnt == 5)
6128                         break;
6129
6130                 val64 = MC_RLDRAM_TEST_MODE | MC_RLDRAM_TEST_GO;
6131                 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
6132
6133                 for (cnt = 0; cnt < 5; cnt++) {
6134                         val64 = readq(&bar0->mc_rldram_test_ctrl);
6135                         if (val64 & MC_RLDRAM_TEST_DONE)
6136                                 break;
6137                         msleep(500);
6138                 }
6139
6140                 if (cnt == 5)
6141                         break;
6142
6143                 val64 = readq(&bar0->mc_rldram_test_ctrl);
6144                 if (!(val64 & MC_RLDRAM_TEST_PASS))
6145                         test_fail = 1;
6146
6147                 iteration++;
6148         }
6149
6150         *data = test_fail;
6151
6152         /* Bring the adapter out of test mode */
6153         SPECIAL_REG_WRITE(0, &bar0->mc_rldram_test_ctrl, LF);
6154
6155         return test_fail;
6156 }
6157
6158 /**
6159  *  s2io_ethtool_test - conducts 6 tsets to determine the health of card.
6160  *  @sp : private member of the device structure, which is a pointer to the
6161  *  s2io_nic structure.
6162  *  @ethtest : pointer to a ethtool command specific structure that will be
6163  *  returned to the user.
6164  *  @data : variable that returns the result of each of the test
6165  * conducted by the driver.
6166  * Description:
6167  *  This function conducts 6 tests ( 4 offline and 2 online) to determine
6168  *  the health of the card.
6169  * Return value:
6170  *  void
6171  */
6172
6173 static void s2io_ethtool_test(struct net_device *dev,
6174                               struct ethtool_test *ethtest,
6175                               uint64_t *data)
6176 {
6177         struct s2io_nic *sp = netdev_priv(dev);
6178         int orig_state = netif_running(sp->dev);
6179
6180         if (ethtest->flags == ETH_TEST_FL_OFFLINE) {
6181                 /* Offline Tests. */
6182                 if (orig_state)
6183                         s2io_close(sp->dev);
6184
6185                 if (s2io_register_test(sp, &data[0]))
6186                         ethtest->flags |= ETH_TEST_FL_FAILED;
6187
6188                 s2io_reset(sp);
6189
6190                 if (s2io_rldram_test(sp, &data[3]))
6191                         ethtest->flags |= ETH_TEST_FL_FAILED;
6192
6193                 s2io_reset(sp);
6194
6195                 if (s2io_eeprom_test(sp, &data[1]))
6196                         ethtest->flags |= ETH_TEST_FL_FAILED;
6197
6198                 if (s2io_bist_test(sp, &data[4]))
6199                         ethtest->flags |= ETH_TEST_FL_FAILED;
6200
6201                 if (orig_state)
6202                         s2io_open(sp->dev);
6203
6204                 data[2] = 0;
6205         } else {
6206                 /* Online Tests. */
6207                 if (!orig_state) {
6208                         DBG_PRINT(ERR_DBG, "%s: is not up, cannot run test\n",
6209                                   dev->name);
6210                         data[0] = -1;
6211                         data[1] = -1;
6212                         data[2] = -1;
6213                         data[3] = -1;
6214                         data[4] = -1;
6215                 }
6216
6217                 if (s2io_link_test(sp, &data[2]))
6218                         ethtest->flags |= ETH_TEST_FL_FAILED;
6219
6220                 data[0] = 0;
6221                 data[1] = 0;
6222                 data[3] = 0;
6223                 data[4] = 0;
6224         }
6225 }
6226
6227 static void s2io_get_ethtool_stats(struct net_device *dev,
6228                                    struct ethtool_stats *estats,
6229                                    u64 *tmp_stats)
6230 {
6231         int i = 0, k;
6232         struct s2io_nic *sp = netdev_priv(dev);
6233         struct stat_block *stats = sp->mac_control.stats_info;
6234         struct swStat *swstats = &stats->sw_stat;
6235         struct xpakStat *xstats = &stats->xpak_stat;
6236
6237         s2io_updt_stats(sp);
6238         tmp_stats[i++] =
6239                 (u64)le32_to_cpu(stats->tmac_frms_oflow) << 32  |
6240                 le32_to_cpu(stats->tmac_frms);
6241         tmp_stats[i++] =
6242                 (u64)le32_to_cpu(stats->tmac_data_octets_oflow) << 32 |
6243                 le32_to_cpu(stats->tmac_data_octets);
6244         tmp_stats[i++] = le64_to_cpu(stats->tmac_drop_frms);
6245         tmp_stats[i++] =
6246                 (u64)le32_to_cpu(stats->tmac_mcst_frms_oflow) << 32 |
6247                 le32_to_cpu(stats->tmac_mcst_frms);
6248         tmp_stats[i++] =
6249                 (u64)le32_to_cpu(stats->tmac_bcst_frms_oflow) << 32 |
6250                 le32_to_cpu(stats->tmac_bcst_frms);
6251         tmp_stats[i++] = le64_to_cpu(stats->tmac_pause_ctrl_frms);
6252         tmp_stats[i++] =
6253                 (u64)le32_to_cpu(stats->tmac_ttl_octets_oflow) << 32 |
6254                 le32_to_cpu(stats->tmac_ttl_octets);
6255         tmp_stats[i++] =
6256                 (u64)le32_to_cpu(stats->tmac_ucst_frms_oflow) << 32 |
6257                 le32_to_cpu(stats->tmac_ucst_frms);
6258         tmp_stats[i++] =
6259                 (u64)le32_to_cpu(stats->tmac_nucst_frms_oflow) << 32 |
6260                 le32_to_cpu(stats->tmac_nucst_frms);
6261         tmp_stats[i++] =
6262                 (u64)le32_to_cpu(stats->tmac_any_err_frms_oflow) << 32 |
6263                 le32_to_cpu(stats->tmac_any_err_frms);
6264         tmp_stats[i++] = le64_to_cpu(stats->tmac_ttl_less_fb_octets);
6265         tmp_stats[i++] = le64_to_cpu(stats->tmac_vld_ip_octets);
6266         tmp_stats[i++] =
6267                 (u64)le32_to_cpu(stats->tmac_vld_ip_oflow) << 32 |
6268                 le32_to_cpu(stats->tmac_vld_ip);
6269         tmp_stats[i++] =
6270                 (u64)le32_to_cpu(stats->tmac_drop_ip_oflow) << 32 |
6271                 le32_to_cpu(stats->tmac_drop_ip);
6272         tmp_stats[i++] =
6273                 (u64)le32_to_cpu(stats->tmac_icmp_oflow) << 32 |
6274                 le32_to_cpu(stats->tmac_icmp);
6275         tmp_stats[i++] =
6276                 (u64)le32_to_cpu(stats->tmac_rst_tcp_oflow) << 32 |
6277                 le32_to_cpu(stats->tmac_rst_tcp);
6278         tmp_stats[i++] = le64_to_cpu(stats->tmac_tcp);
6279         tmp_stats[i++] = (u64)le32_to_cpu(stats->tmac_udp_oflow) << 32 |
6280                 le32_to_cpu(stats->tmac_udp);
6281         tmp_stats[i++] =
6282                 (u64)le32_to_cpu(stats->rmac_vld_frms_oflow) << 32 |
6283                 le32_to_cpu(stats->rmac_vld_frms);
6284         tmp_stats[i++] =
6285                 (u64)le32_to_cpu(stats->rmac_data_octets_oflow) << 32 |
6286                 le32_to_cpu(stats->rmac_data_octets);
6287         tmp_stats[i++] = le64_to_cpu(stats->rmac_fcs_err_frms);
6288         tmp_stats[i++] = le64_to_cpu(stats->rmac_drop_frms);
6289         tmp_stats[i++] =
6290                 (u64)le32_to_cpu(stats->rmac_vld_mcst_frms_oflow) << 32 |
6291                 le32_to_cpu(stats->rmac_vld_mcst_frms);
6292         tmp_stats[i++] =
6293                 (u64)le32_to_cpu(stats->rmac_vld_bcst_frms_oflow) << 32 |
6294                 le32_to_cpu(stats->rmac_vld_bcst_frms);
6295         tmp_stats[i++] = le32_to_cpu(stats->rmac_in_rng_len_err_frms);
6296         tmp_stats[i++] = le32_to_cpu(stats->rmac_out_rng_len_err_frms);
6297         tmp_stats[i++] = le64_to_cpu(stats->rmac_long_frms);
6298         tmp_stats[i++] = le64_to_cpu(stats->rmac_pause_ctrl_frms);
6299         tmp_stats[i++] = le64_to_cpu(stats->rmac_unsup_ctrl_frms);
6300         tmp_stats[i++] =
6301                 (u64)le32_to_cpu(stats->rmac_ttl_octets_oflow) << 32 |
6302                 le32_to_cpu(stats->rmac_ttl_octets);
6303         tmp_stats[i++] =
6304                 (u64)le32_to_cpu(stats->rmac_accepted_ucst_frms_oflow) << 32
6305                 | le32_to_cpu(stats->rmac_accepted_ucst_frms);
6306         tmp_stats[i++] =
6307                 (u64)le32_to_cpu(stats->rmac_accepted_nucst_frms_oflow)
6308                 << 32 | le32_to_cpu(stats->rmac_accepted_nucst_frms);
6309         tmp_stats[i++] =
6310                 (u64)le32_to_cpu(stats->rmac_discarded_frms_oflow) << 32 |
6311                 le32_to_cpu(stats->rmac_discarded_frms);
6312         tmp_stats[i++] =
6313                 (u64)le32_to_cpu(stats->rmac_drop_events_oflow)
6314                 << 32 | le32_to_cpu(stats->rmac_drop_events);
6315         tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_less_fb_octets);
6316         tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_frms);
6317         tmp_stats[i++] =
6318                 (u64)le32_to_cpu(stats->rmac_usized_frms_oflow) << 32 |
6319                 le32_to_cpu(stats->rmac_usized_frms);
6320         tmp_stats[i++] =
6321                 (u64)le32_to_cpu(stats->rmac_osized_frms_oflow) << 32 |
6322                 le32_to_cpu(stats->rmac_osized_frms);
6323         tmp_stats[i++] =
6324                 (u64)le32_to_cpu(stats->rmac_frag_frms_oflow) << 32 |
6325                 le32_to_cpu(stats->rmac_frag_frms);
6326         tmp_stats[i++] =
6327                 (u64)le32_to_cpu(stats->rmac_jabber_frms_oflow) << 32 |
6328                 le32_to_cpu(stats->rmac_jabber_frms);
6329         tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_64_frms);
6330         tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_65_127_frms);
6331         tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_128_255_frms);
6332         tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_256_511_frms);
6333         tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_512_1023_frms);
6334         tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_1024_1518_frms);
6335         tmp_stats[i++] =
6336                 (u64)le32_to_cpu(stats->rmac_ip_oflow) << 32 |
6337                 le32_to_cpu(stats->rmac_ip);
6338         tmp_stats[i++] = le64_to_cpu(stats->rmac_ip_octets);
6339         tmp_stats[i++] = le32_to_cpu(stats->rmac_hdr_err_ip);
6340         tmp_stats[i++] =
6341                 (u64)le32_to_cpu(stats->rmac_drop_ip_oflow) << 32 |
6342                 le32_to_cpu(stats->rmac_drop_ip);
6343         tmp_stats[i++] =
6344                 (u64)le32_to_cpu(stats->rmac_icmp_oflow) << 32 |
6345                 le32_to_cpu(stats->rmac_icmp);
6346         tmp_stats[i++] = le64_to_cpu(stats->rmac_tcp);
6347         tmp_stats[i++] =
6348                 (u64)le32_to_cpu(stats->rmac_udp_oflow) << 32 |
6349                 le32_to_cpu(stats->rmac_udp);
6350         tmp_stats[i++] =
6351                 (u64)le32_to_cpu(stats->rmac_err_drp_udp_oflow) << 32 |
6352                 le32_to_cpu(stats->rmac_err_drp_udp);
6353         tmp_stats[i++] = le64_to_cpu(stats->rmac_xgmii_err_sym);
6354         tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q0);
6355         tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q1);
6356         tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q2);
6357         tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q3);
6358         tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q4);
6359         tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q5);
6360         tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q6);
6361         tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q7);
6362         tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q0);
6363         tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q1);
6364         tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q2);
6365         tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q3);
6366         tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q4);
6367         tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q5);
6368         tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q6);
6369         tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q7);
6370         tmp_stats[i++] =
6371                 (u64)le32_to_cpu(stats->rmac_pause_cnt_oflow) << 32 |
6372                 le32_to_cpu(stats->rmac_pause_cnt);
6373         tmp_stats[i++] = le64_to_cpu(stats->rmac_xgmii_data_err_cnt);
6374         tmp_stats[i++] = le64_to_cpu(stats->rmac_xgmii_ctrl_err_cnt);
6375         tmp_stats[i++] =
6376                 (u64)le32_to_cpu(stats->rmac_accepted_ip_oflow) << 32 |
6377                 le32_to_cpu(stats->rmac_accepted_ip);
6378         tmp_stats[i++] = le32_to_cpu(stats->rmac_err_tcp);
6379         tmp_stats[i++] = le32_to_cpu(stats->rd_req_cnt);
6380         tmp_stats[i++] = le32_to_cpu(stats->new_rd_req_cnt);
6381         tmp_stats[i++] = le32_to_cpu(stats->new_rd_req_rtry_cnt);
6382         tmp_stats[i++] = le32_to_cpu(stats->rd_rtry_cnt);
6383         tmp_stats[i++] = le32_to_cpu(stats->wr_rtry_rd_ack_cnt);
6384         tmp_stats[i++] = le32_to_cpu(stats->wr_req_cnt);
6385         tmp_stats[i++] = le32_to_cpu(stats->new_wr_req_cnt);
6386         tmp_stats[i++] = le32_to_cpu(stats->new_wr_req_rtry_cnt);
6387         tmp_stats[i++] = le32_to_cpu(stats->wr_rtry_cnt);
6388         tmp_stats[i++] = le32_to_cpu(stats->wr_disc_cnt);
6389         tmp_stats[i++] = le32_to_cpu(stats->rd_rtry_wr_ack_cnt);
6390         tmp_stats[i++] = le32_to_cpu(stats->txp_wr_cnt);
6391         tmp_stats[i++] = le32_to_cpu(stats->txd_rd_cnt);
6392         tmp_stats[i++] = le32_to_cpu(stats->txd_wr_cnt);
6393         tmp_stats[i++] = le32_to_cpu(stats->rxd_rd_cnt);
6394         tmp_stats[i++] = le32_to_cpu(stats->rxd_wr_cnt);
6395         tmp_stats[i++] = le32_to_cpu(stats->txf_rd_cnt);
6396         tmp_stats[i++] = le32_to_cpu(stats->rxf_wr_cnt);
6397
6398         /* Enhanced statistics exist only for Hercules */
6399         if (sp->device_type == XFRAME_II_DEVICE) {
6400                 tmp_stats[i++] =
6401                         le64_to_cpu(stats->rmac_ttl_1519_4095_frms);
6402                 tmp_stats[i++] =
6403                         le64_to_cpu(stats->rmac_ttl_4096_8191_frms);
6404                 tmp_stats[i++] =
6405                         le64_to_cpu(stats->rmac_ttl_8192_max_frms);
6406                 tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_gt_max_frms);
6407                 tmp_stats[i++] = le64_to_cpu(stats->rmac_osized_alt_frms);
6408                 tmp_stats[i++] = le64_to_cpu(stats->rmac_jabber_alt_frms);
6409                 tmp_stats[i++] = le64_to_cpu(stats->rmac_gt_max_alt_frms);
6410                 tmp_stats[i++] = le64_to_cpu(stats->rmac_vlan_frms);
6411                 tmp_stats[i++] = le32_to_cpu(stats->rmac_len_discard);
6412                 tmp_stats[i++] = le32_to_cpu(stats->rmac_fcs_discard);
6413                 tmp_stats[i++] = le32_to_cpu(stats->rmac_pf_discard);
6414                 tmp_stats[i++] = le32_to_cpu(stats->rmac_da_discard);
6415                 tmp_stats[i++] = le32_to_cpu(stats->rmac_red_discard);
6416                 tmp_stats[i++] = le32_to_cpu(stats->rmac_rts_discard);
6417                 tmp_stats[i++] = le32_to_cpu(stats->rmac_ingm_full_discard);
6418                 tmp_stats[i++] = le32_to_cpu(stats->link_fault_cnt);
6419         }
6420
6421         tmp_stats[i++] = 0;
6422         tmp_stats[i++] = swstats->single_ecc_errs;
6423         tmp_stats[i++] = swstats->double_ecc_errs;
6424         tmp_stats[i++] = swstats->parity_err_cnt;
6425         tmp_stats[i++] = swstats->serious_err_cnt;
6426         tmp_stats[i++] = swstats->soft_reset_cnt;
6427         tmp_stats[i++] = swstats->fifo_full_cnt;
6428         for (k = 0; k < MAX_RX_RINGS; k++)
6429                 tmp_stats[i++] = swstats->ring_full_cnt[k];
6430         tmp_stats[i++] = xstats->alarm_transceiver_temp_high;
6431         tmp_stats[i++] = xstats->alarm_transceiver_temp_low;
6432         tmp_stats[i++] = xstats->alarm_laser_bias_current_high;
6433         tmp_stats[i++] = xstats->alarm_laser_bias_current_low;
6434         tmp_stats[i++] = xstats->alarm_laser_output_power_high;
6435         tmp_stats[i++] = xstats->alarm_laser_output_power_low;
6436         tmp_stats[i++] = xstats->warn_transceiver_temp_high;
6437         tmp_stats[i++] = xstats->warn_transceiver_temp_low;
6438         tmp_stats[i++] = xstats->warn_laser_bias_current_high;
6439         tmp_stats[i++] = xstats->warn_laser_bias_current_low;
6440         tmp_stats[i++] = xstats->warn_laser_output_power_high;
6441         tmp_stats[i++] = xstats->warn_laser_output_power_low;
6442         tmp_stats[i++] = swstats->clubbed_frms_cnt;
6443         tmp_stats[i++] = swstats->sending_both;
6444         tmp_stats[i++] = swstats->outof_sequence_pkts;
6445         tmp_stats[i++] = swstats->flush_max_pkts;
6446         if (swstats->num_aggregations) {
6447                 u64 tmp = swstats->sum_avg_pkts_aggregated;
6448                 int count = 0;
6449                 /*
6450                  * Since 64-bit divide does not work on all platforms,
6451                  * do repeated subtraction.
6452                  */
6453                 while (tmp >= swstats->num_aggregations) {
6454                         tmp -= swstats->num_aggregations;
6455                         count++;
6456                 }
6457                 tmp_stats[i++] = count;
6458         } else
6459                 tmp_stats[i++] = 0;
6460         tmp_stats[i++] = swstats->mem_alloc_fail_cnt;
6461         tmp_stats[i++] = swstats->pci_map_fail_cnt;
6462         tmp_stats[i++] = swstats->watchdog_timer_cnt;
6463         tmp_stats[i++] = swstats->mem_allocated;
6464         tmp_stats[i++] = swstats->mem_freed;
6465         tmp_stats[i++] = swstats->link_up_cnt;
6466         tmp_stats[i++] = swstats->link_down_cnt;
6467         tmp_stats[i++] = swstats->link_up_time;
6468         tmp_stats[i++] = swstats->link_down_time;
6469
6470         tmp_stats[i++] = swstats->tx_buf_abort_cnt;
6471         tmp_stats[i++] = swstats->tx_desc_abort_cnt;
6472         tmp_stats[i++] = swstats->tx_parity_err_cnt;
6473         tmp_stats[i++] = swstats->tx_link_loss_cnt;
6474         tmp_stats[i++] = swstats->tx_list_proc_err_cnt;
6475
6476         tmp_stats[i++] = swstats->rx_parity_err_cnt;
6477         tmp_stats[i++] = swstats->rx_abort_cnt;
6478         tmp_stats[i++] = swstats->rx_parity_abort_cnt;
6479         tmp_stats[i++] = swstats->rx_rda_fail_cnt;
6480         tmp_stats[i++] = swstats->rx_unkn_prot_cnt;
6481         tmp_stats[i++] = swstats->rx_fcs_err_cnt;
6482         tmp_stats[i++] = swstats->rx_buf_size_err_cnt;
6483         tmp_stats[i++] = swstats->rx_rxd_corrupt_cnt;
6484         tmp_stats[i++] = swstats->rx_unkn_err_cnt;
6485         tmp_stats[i++] = swstats->tda_err_cnt;
6486         tmp_stats[i++] = swstats->pfc_err_cnt;
6487         tmp_stats[i++] = swstats->pcc_err_cnt;
6488         tmp_stats[i++] = swstats->tti_err_cnt;
6489         tmp_stats[i++] = swstats->tpa_err_cnt;
6490         tmp_stats[i++] = swstats->sm_err_cnt;
6491         tmp_stats[i++] = swstats->lso_err_cnt;
6492         tmp_stats[i++] = swstats->mac_tmac_err_cnt;
6493         tmp_stats[i++] = swstats->mac_rmac_err_cnt;
6494         tmp_stats[i++] = swstats->xgxs_txgxs_err_cnt;
6495         tmp_stats[i++] = swstats->xgxs_rxgxs_err_cnt;
6496         tmp_stats[i++] = swstats->rc_err_cnt;
6497         tmp_stats[i++] = swstats->prc_pcix_err_cnt;
6498         tmp_stats[i++] = swstats->rpa_err_cnt;
6499         tmp_stats[i++] = swstats->rda_err_cnt;
6500         tmp_stats[i++] = swstats->rti_err_cnt;
6501         tmp_stats[i++] = swstats->mc_err_cnt;
6502 }
6503
6504 static int s2io_ethtool_get_regs_len(struct net_device *dev)
6505 {
6506         return XENA_REG_SPACE;
6507 }
6508
6509
6510 static int s2io_get_eeprom_len(struct net_device *dev)
6511 {
6512         return XENA_EEPROM_SPACE;
6513 }
6514
6515 static int s2io_get_sset_count(struct net_device *dev, int sset)
6516 {
6517         struct s2io_nic *sp = netdev_priv(dev);
6518
6519         switch (sset) {
6520         case ETH_SS_TEST:
6521                 return S2IO_TEST_LEN;
6522         case ETH_SS_STATS:
6523                 switch (sp->device_type) {
6524                 case XFRAME_I_DEVICE:
6525                         return XFRAME_I_STAT_LEN;
6526                 case XFRAME_II_DEVICE:
6527                         return XFRAME_II_STAT_LEN;
6528                 default:
6529                         return 0;
6530                 }
6531         default:
6532                 return -EOPNOTSUPP;
6533         }
6534 }
6535
6536 static void s2io_ethtool_get_strings(struct net_device *dev,
6537                                      u32 stringset, u8 *data)
6538 {
6539         int stat_size = 0;
6540         struct s2io_nic *sp = netdev_priv(dev);
6541
6542         switch (stringset) {
6543         case ETH_SS_TEST:
6544                 memcpy(data, s2io_gstrings, S2IO_STRINGS_LEN);
6545                 break;
6546         case ETH_SS_STATS:
6547                 stat_size = sizeof(ethtool_xena_stats_keys);
6548                 memcpy(data, &ethtool_xena_stats_keys, stat_size);
6549                 if (sp->device_type == XFRAME_II_DEVICE) {
6550                         memcpy(data + stat_size,
6551                                &ethtool_enhanced_stats_keys,
6552                                sizeof(ethtool_enhanced_stats_keys));
6553                         stat_size += sizeof(ethtool_enhanced_stats_keys);
6554                 }
6555
6556                 memcpy(data + stat_size, &ethtool_driver_stats_keys,
6557                        sizeof(ethtool_driver_stats_keys));
6558         }
6559 }
6560
6561 static int s2io_set_features(struct net_device *dev, netdev_features_t features)
6562 {
6563         struct s2io_nic *sp = netdev_priv(dev);
6564         netdev_features_t changed = (features ^ dev->features) & NETIF_F_LRO;
6565
6566         if (changed && netif_running(dev)) {
6567                 int rc;
6568
6569                 s2io_stop_all_tx_queue(sp);
6570                 s2io_card_down(sp);
6571                 dev->features = features;
6572                 rc = s2io_card_up(sp);
6573                 if (rc)
6574                         s2io_reset(sp);
6575                 else
6576                         s2io_start_all_tx_queue(sp);
6577
6578                 return rc ? rc : 1;
6579         }
6580
6581         return 0;
6582 }
6583
6584 static const struct ethtool_ops netdev_ethtool_ops = {
6585         .get_drvinfo = s2io_ethtool_gdrvinfo,
6586         .get_regs_len = s2io_ethtool_get_regs_len,
6587         .get_regs = s2io_ethtool_gregs,
6588         .get_link = ethtool_op_get_link,
6589         .get_eeprom_len = s2io_get_eeprom_len,
6590         .get_eeprom = s2io_ethtool_geeprom,
6591         .set_eeprom = s2io_ethtool_seeprom,
6592         .get_ringparam = s2io_ethtool_gringparam,
6593         .get_pauseparam = s2io_ethtool_getpause_data,
6594         .set_pauseparam = s2io_ethtool_setpause_data,
6595         .self_test = s2io_ethtool_test,
6596         .get_strings = s2io_ethtool_get_strings,
6597         .set_phys_id = s2io_ethtool_set_led,
6598         .get_ethtool_stats = s2io_get_ethtool_stats,
6599         .get_sset_count = s2io_get_sset_count,
6600         .get_link_ksettings = s2io_ethtool_get_link_ksettings,
6601         .set_link_ksettings = s2io_ethtool_set_link_ksettings,
6602 };
6603
6604 /**
6605  *  s2io_ioctl - Entry point for the Ioctl
6606  *  @dev :  Device pointer.
6607  *  @ifr :  An IOCTL specefic structure, that can contain a pointer to
6608  *  a proprietary structure used to pass information to the driver.
6609  *  @cmd :  This is used to distinguish between the different commands that
6610  *  can be passed to the IOCTL functions.
6611  *  Description:
6612  *  Currently there are no special functionality supported in IOCTL, hence
6613  *  function always return EOPNOTSUPPORTED
6614  */
6615
6616 static int s2io_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
6617 {
6618         return -EOPNOTSUPP;
6619 }
6620
6621 /**
6622  *  s2io_change_mtu - entry point to change MTU size for the device.
6623  *   @dev : device pointer.
6624  *   @new_mtu : the new MTU size for the device.
6625  *   Description: A driver entry point to change MTU size for the device.
6626  *   Before changing the MTU the device must be stopped.
6627  *  Return value:
6628  *   0 on success and an appropriate (-)ve integer as defined in errno.h
6629  *   file on failure.
6630  */
6631
6632 static int s2io_change_mtu(struct net_device *dev, int new_mtu)
6633 {
6634         struct s2io_nic *sp = netdev_priv(dev);
6635         int ret = 0;
6636
6637         dev->mtu = new_mtu;
6638         if (netif_running(dev)) {
6639                 s2io_stop_all_tx_queue(sp);
6640                 s2io_card_down(sp);
6641                 ret = s2io_card_up(sp);
6642                 if (ret) {
6643                         DBG_PRINT(ERR_DBG, "%s: Device bring up failed\n",
6644                                   __func__);
6645                         return ret;
6646                 }
6647                 s2io_wake_all_tx_queue(sp);
6648         } else { /* Device is down */
6649                 struct XENA_dev_config __iomem *bar0 = sp->bar0;
6650                 u64 val64 = new_mtu;
6651
6652                 writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len);
6653         }
6654
6655         return ret;
6656 }
6657
6658 /**
6659  * s2io_set_link - Set the LInk status
6660  * @data: long pointer to device private structue
6661  * Description: Sets the link status for the adapter
6662  */
6663
6664 static void s2io_set_link(struct work_struct *work)
6665 {
6666         struct s2io_nic *nic = container_of(work, struct s2io_nic,
6667                                             set_link_task);
6668         struct net_device *dev = nic->dev;
6669         struct XENA_dev_config __iomem *bar0 = nic->bar0;
6670         register u64 val64;
6671         u16 subid;
6672
6673         rtnl_lock();
6674
6675         if (!netif_running(dev))
6676                 goto out_unlock;
6677
6678         if (test_and_set_bit(__S2IO_STATE_LINK_TASK, &(nic->state))) {
6679                 /* The card is being reset, no point doing anything */
6680                 goto out_unlock;
6681         }
6682
6683         subid = nic->pdev->subsystem_device;
6684         if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) {
6685                 /*
6686                  * Allow a small delay for the NICs self initiated
6687                  * cleanup to complete.
6688                  */
6689                 msleep(100);
6690         }
6691
6692         val64 = readq(&bar0->adapter_status);
6693         if (LINK_IS_UP(val64)) {
6694                 if (!(readq(&bar0->adapter_control) & ADAPTER_CNTL_EN)) {
6695                         if (verify_xena_quiescence(nic)) {
6696                                 val64 = readq(&bar0->adapter_control);
6697                                 val64 |= ADAPTER_CNTL_EN;
6698                                 writeq(val64, &bar0->adapter_control);
6699                                 if (CARDS_WITH_FAULTY_LINK_INDICATORS(
6700                                             nic->device_type, subid)) {
6701                                         val64 = readq(&bar0->gpio_control);
6702                                         val64 |= GPIO_CTRL_GPIO_0;
6703                                         writeq(val64, &bar0->gpio_control);
6704                                         val64 = readq(&bar0->gpio_control);
6705                                 } else {
6706                                         val64 |= ADAPTER_LED_ON;
6707                                         writeq(val64, &bar0->adapter_control);
6708                                 }
6709                                 nic->device_enabled_once = true;
6710                         } else {
6711                                 DBG_PRINT(ERR_DBG,
6712                                           "%s: Error: device is not Quiescent\n",
6713                                           dev->name);
6714                                 s2io_stop_all_tx_queue(nic);
6715                         }
6716                 }
6717                 val64 = readq(&bar0->adapter_control);
6718                 val64 |= ADAPTER_LED_ON;
6719                 writeq(val64, &bar0->adapter_control);
6720                 s2io_link(nic, LINK_UP);
6721         } else {
6722                 if (CARDS_WITH_FAULTY_LINK_INDICATORS(nic->device_type,
6723                                                       subid)) {
6724                         val64 = readq(&bar0->gpio_control);
6725                         val64 &= ~GPIO_CTRL_GPIO_0;
6726                         writeq(val64, &bar0->gpio_control);
6727                         val64 = readq(&bar0->gpio_control);
6728                 }
6729                 /* turn off LED */
6730                 val64 = readq(&bar0->adapter_control);
6731                 val64 = val64 & (~ADAPTER_LED_ON);
6732                 writeq(val64, &bar0->adapter_control);
6733                 s2io_link(nic, LINK_DOWN);
6734         }
6735         clear_bit(__S2IO_STATE_LINK_TASK, &(nic->state));
6736
6737 out_unlock:
6738         rtnl_unlock();
6739 }
6740
6741 static int set_rxd_buffer_pointer(struct s2io_nic *sp, struct RxD_t *rxdp,
6742                                   struct buffAdd *ba,
6743                                   struct sk_buff **skb, u64 *temp0, u64 *temp1,
6744                                   u64 *temp2, int size)
6745 {
6746         struct net_device *dev = sp->dev;
6747         struct swStat *stats = &sp->mac_control.stats_info->sw_stat;
6748
6749         if ((sp->rxd_mode == RXD_MODE_1) && (rxdp->Host_Control == 0)) {
6750                 struct RxD1 *rxdp1 = (struct RxD1 *)rxdp;
6751                 /* allocate skb */
6752                 if (*skb) {
6753                         DBG_PRINT(INFO_DBG, "SKB is not NULL\n");
6754                         /*
6755                          * As Rx frame are not going to be processed,
6756                          * using same mapped address for the Rxd
6757                          * buffer pointer
6758                          */
6759                         rxdp1->Buffer0_ptr = *temp0;
6760                 } else {
6761                         *skb = netdev_alloc_skb(dev, size);
6762                         if (!(*skb)) {
6763                                 DBG_PRINT(INFO_DBG,
6764                                           "%s: Out of memory to allocate %s\n",
6765                                           dev->name, "1 buf mode SKBs");
6766                                 stats->mem_alloc_fail_cnt++;
6767                                 return -ENOMEM ;
6768                         }
6769                         stats->mem_allocated += (*skb)->truesize;
6770                         /* storing the mapped addr in a temp variable
6771                          * such it will be used for next rxd whose
6772                          * Host Control is NULL
6773                          */
6774                         rxdp1->Buffer0_ptr = *temp0 =
6775                                 pci_map_single(sp->pdev, (*skb)->data,
6776                                                size - NET_IP_ALIGN,
6777                                                PCI_DMA_FROMDEVICE);
6778                         if (pci_dma_mapping_error(sp->pdev, rxdp1->Buffer0_ptr))
6779                                 goto memalloc_failed;
6780                         rxdp->Host_Control = (unsigned long) (*skb);
6781                 }
6782         } else if ((sp->rxd_mode == RXD_MODE_3B) && (rxdp->Host_Control == 0)) {
6783                 struct RxD3 *rxdp3 = (struct RxD3 *)rxdp;
6784                 /* Two buffer Mode */
6785                 if (*skb) {
6786                         rxdp3->Buffer2_ptr = *temp2;
6787                         rxdp3->Buffer0_ptr = *temp0;
6788                         rxdp3->Buffer1_ptr = *temp1;
6789                 } else {
6790                         *skb = netdev_alloc_skb(dev, size);
6791                         if (!(*skb)) {
6792                                 DBG_PRINT(INFO_DBG,
6793                                           "%s: Out of memory to allocate %s\n",
6794                                           dev->name,
6795                                           "2 buf mode SKBs");
6796                                 stats->mem_alloc_fail_cnt++;
6797                                 return -ENOMEM;
6798                         }
6799                         stats->mem_allocated += (*skb)->truesize;
6800                         rxdp3->Buffer2_ptr = *temp2 =
6801                                 pci_map_single(sp->pdev, (*skb)->data,
6802                                                dev->mtu + 4,
6803                                                PCI_DMA_FROMDEVICE);
6804                         if (pci_dma_mapping_error(sp->pdev, rxdp3->Buffer2_ptr))
6805                                 goto memalloc_failed;
6806                         rxdp3->Buffer0_ptr = *temp0 =
6807                                 pci_map_single(sp->pdev, ba->ba_0, BUF0_LEN,
6808                                                PCI_DMA_FROMDEVICE);
6809                         if (pci_dma_mapping_error(sp->pdev,
6810                                                   rxdp3->Buffer0_ptr)) {
6811                                 pci_unmap_single(sp->pdev,
6812                                                  (dma_addr_t)rxdp3->Buffer2_ptr,
6813                                                  dev->mtu + 4,
6814                                                  PCI_DMA_FROMDEVICE);
6815                                 goto memalloc_failed;
6816                         }
6817                         rxdp->Host_Control = (unsigned long) (*skb);
6818
6819                         /* Buffer-1 will be dummy buffer not used */
6820                         rxdp3->Buffer1_ptr = *temp1 =
6821                                 pci_map_single(sp->pdev, ba->ba_1, BUF1_LEN,
6822                                                PCI_DMA_FROMDEVICE);
6823                         if (pci_dma_mapping_error(sp->pdev,
6824                                                   rxdp3->Buffer1_ptr)) {
6825                                 pci_unmap_single(sp->pdev,
6826                                                  (dma_addr_t)rxdp3->Buffer0_ptr,
6827                                                  BUF0_LEN, PCI_DMA_FROMDEVICE);
6828                                 pci_unmap_single(sp->pdev,
6829                                                  (dma_addr_t)rxdp3->Buffer2_ptr,
6830                                                  dev->mtu + 4,
6831                                                  PCI_DMA_FROMDEVICE);
6832                                 goto memalloc_failed;
6833                         }
6834                 }
6835         }
6836         return 0;
6837
6838 memalloc_failed:
6839         stats->pci_map_fail_cnt++;
6840         stats->mem_freed += (*skb)->truesize;
6841         dev_kfree_skb(*skb);
6842         return -ENOMEM;
6843 }
6844
6845 static void set_rxd_buffer_size(struct s2io_nic *sp, struct RxD_t *rxdp,
6846                                 int size)
6847 {
6848         struct net_device *dev = sp->dev;
6849         if (sp->rxd_mode == RXD_MODE_1) {
6850                 rxdp->Control_2 = SET_BUFFER0_SIZE_1(size - NET_IP_ALIGN);
6851         } else if (sp->rxd_mode == RXD_MODE_3B) {
6852                 rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN);
6853                 rxdp->Control_2 |= SET_BUFFER1_SIZE_3(1);
6854                 rxdp->Control_2 |= SET_BUFFER2_SIZE_3(dev->mtu + 4);
6855         }
6856 }
6857
6858 static  int rxd_owner_bit_reset(struct s2io_nic *sp)
6859 {
6860         int i, j, k, blk_cnt = 0, size;
6861         struct config_param *config = &sp->config;
6862         struct mac_info *mac_control = &sp->mac_control;
6863         struct net_device *dev = sp->dev;
6864         struct RxD_t *rxdp = NULL;
6865         struct sk_buff *skb = NULL;
6866         struct buffAdd *ba = NULL;
6867         u64 temp0_64 = 0, temp1_64 = 0, temp2_64 = 0;
6868
6869         /* Calculate the size based on ring mode */
6870         size = dev->mtu + HEADER_ETHERNET_II_802_3_SIZE +
6871                 HEADER_802_2_SIZE + HEADER_SNAP_SIZE;
6872         if (sp->rxd_mode == RXD_MODE_1)
6873                 size += NET_IP_ALIGN;
6874         else if (sp->rxd_mode == RXD_MODE_3B)
6875                 size = dev->mtu + ALIGN_SIZE + BUF0_LEN + 4;
6876
6877         for (i = 0; i < config->rx_ring_num; i++) {
6878                 struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
6879                 struct ring_info *ring = &mac_control->rings[i];
6880
6881                 blk_cnt = rx_cfg->num_rxd / (rxd_count[sp->rxd_mode] + 1);
6882
6883                 for (j = 0; j < blk_cnt; j++) {
6884                         for (k = 0; k < rxd_count[sp->rxd_mode]; k++) {
6885                                 rxdp = ring->rx_blocks[j].rxds[k].virt_addr;
6886                                 if (sp->rxd_mode == RXD_MODE_3B)
6887                                         ba = &ring->ba[j][k];
6888                                 if (set_rxd_buffer_pointer(sp, rxdp, ba, &skb,
6889                                                            &temp0_64,
6890                                                            &temp1_64,
6891                                                            &temp2_64,
6892                                                            size) == -ENOMEM) {
6893                                         return 0;
6894                                 }
6895
6896                                 set_rxd_buffer_size(sp, rxdp, size);
6897                                 dma_wmb();
6898                                 /* flip the Ownership bit to Hardware */
6899                                 rxdp->Control_1 |= RXD_OWN_XENA;
6900                         }
6901                 }
6902         }
6903         return 0;
6904
6905 }
6906
6907 static int s2io_add_isr(struct s2io_nic *sp)
6908 {
6909         int ret = 0;
6910         struct net_device *dev = sp->dev;
6911         int err = 0;
6912
6913         if (sp->config.intr_type == MSI_X)
6914                 ret = s2io_enable_msi_x(sp);
6915         if (ret) {
6916                 DBG_PRINT(ERR_DBG, "%s: Defaulting to INTA\n", dev->name);
6917                 sp->config.intr_type = INTA;
6918         }
6919
6920         /*
6921          * Store the values of the MSIX table in
6922          * the struct s2io_nic structure
6923          */
6924         store_xmsi_data(sp);
6925
6926         /* After proper initialization of H/W, register ISR */
6927         if (sp->config.intr_type == MSI_X) {
6928                 int i, msix_rx_cnt = 0;
6929
6930                 for (i = 0; i < sp->num_entries; i++) {
6931                         if (sp->s2io_entries[i].in_use == MSIX_FLG) {
6932                                 if (sp->s2io_entries[i].type ==
6933                                     MSIX_RING_TYPE) {
6934                                         snprintf(sp->desc[i],
6935                                                 sizeof(sp->desc[i]),
6936                                                 "%s:MSI-X-%d-RX",
6937                                                 dev->name, i);
6938                                         err = request_irq(sp->entries[i].vector,
6939                                                           s2io_msix_ring_handle,
6940                                                           0,
6941                                                           sp->desc[i],
6942                                                           sp->s2io_entries[i].arg);
6943                                 } else if (sp->s2io_entries[i].type ==
6944                                            MSIX_ALARM_TYPE) {
6945                                         snprintf(sp->desc[i],
6946                                                 sizeof(sp->desc[i]),
6947                                                 "%s:MSI-X-%d-TX",
6948                                                 dev->name, i);
6949                                         err = request_irq(sp->entries[i].vector,
6950                                                           s2io_msix_fifo_handle,
6951                                                           0,
6952                                                           sp->desc[i],
6953                                                           sp->s2io_entries[i].arg);
6954
6955                                 }
6956                                 /* if either data or addr is zero print it. */
6957                                 if (!(sp->msix_info[i].addr &&
6958                                       sp->msix_info[i].data)) {
6959                                         DBG_PRINT(ERR_DBG,
6960                                                   "%s @Addr:0x%llx Data:0x%llx\n",
6961                                                   sp->desc[i],
6962                                                   (unsigned long long)
6963                                                   sp->msix_info[i].addr,
6964                                                   (unsigned long long)
6965                                                   ntohl(sp->msix_info[i].data));
6966                                 } else
6967                                         msix_rx_cnt++;
6968                                 if (err) {
6969                                         remove_msix_isr(sp);
6970
6971                                         DBG_PRINT(ERR_DBG,
6972                                                   "%s:MSI-X-%d registration "
6973                                                   "failed\n", dev->name, i);
6974
6975                                         DBG_PRINT(ERR_DBG,
6976                                                   "%s: Defaulting to INTA\n",
6977                                                   dev->name);
6978                                         sp->config.intr_type = INTA;
6979                                         break;
6980                                 }
6981                                 sp->s2io_entries[i].in_use =
6982                                         MSIX_REGISTERED_SUCCESS;
6983                         }
6984                 }
6985                 if (!err) {
6986                         pr_info("MSI-X-RX %d entries enabled\n", --msix_rx_cnt);
6987                         DBG_PRINT(INFO_DBG,
6988                                   "MSI-X-TX entries enabled through alarm vector\n");
6989                 }
6990         }
6991         if (sp->config.intr_type == INTA) {
6992                 err = request_irq(sp->pdev->irq, s2io_isr, IRQF_SHARED,
6993                                   sp->name, dev);
6994                 if (err) {
6995                         DBG_PRINT(ERR_DBG, "%s: ISR registration failed\n",
6996                                   dev->name);
6997                         return -1;
6998                 }
6999         }
7000         return 0;
7001 }
7002
7003 static void s2io_rem_isr(struct s2io_nic *sp)
7004 {
7005         if (sp->config.intr_type == MSI_X)
7006                 remove_msix_isr(sp);
7007         else
7008                 remove_inta_isr(sp);
7009 }
7010
7011 static void do_s2io_card_down(struct s2io_nic *sp, int do_io)
7012 {
7013         int cnt = 0;
7014         struct XENA_dev_config __iomem *bar0 = sp->bar0;
7015         register u64 val64 = 0;
7016         struct config_param *config;
7017         config = &sp->config;
7018
7019         if (!is_s2io_card_up(sp))
7020                 return;
7021
7022         del_timer_sync(&sp->alarm_timer);
7023         /* If s2io_set_link task is executing, wait till it completes. */
7024         while (test_and_set_bit(__S2IO_STATE_LINK_TASK, &(sp->state)))
7025                 msleep(50);
7026         clear_bit(__S2IO_STATE_CARD_UP, &sp->state);
7027
7028         /* Disable napi */
7029         if (sp->config.napi) {
7030                 int off = 0;
7031                 if (config->intr_type ==  MSI_X) {
7032                         for (; off < sp->config.rx_ring_num; off++)
7033                                 napi_disable(&sp->mac_control.rings[off].napi);
7034                 }
7035                 else
7036                         napi_disable(&sp->napi);
7037         }
7038
7039         /* disable Tx and Rx traffic on the NIC */
7040         if (do_io)
7041                 stop_nic(sp);
7042
7043         s2io_rem_isr(sp);
7044
7045         /* stop the tx queue, indicate link down */
7046         s2io_link(sp, LINK_DOWN);
7047
7048         /* Check if the device is Quiescent and then Reset the NIC */
7049         while (do_io) {
7050                 /* As per the HW requirement we need to replenish the
7051                  * receive buffer to avoid the ring bump. Since there is
7052                  * no intention of processing the Rx frame at this pointwe are
7053                  * just setting the ownership bit of rxd in Each Rx
7054                  * ring to HW and set the appropriate buffer size
7055                  * based on the ring mode
7056                  */
7057                 rxd_owner_bit_reset(sp);
7058
7059                 val64 = readq(&bar0->adapter_status);
7060                 if (verify_xena_quiescence(sp)) {
7061                         if (verify_pcc_quiescent(sp, sp->device_enabled_once))
7062                                 break;
7063                 }
7064
7065                 msleep(50);
7066                 cnt++;
7067                 if (cnt == 10) {
7068                         DBG_PRINT(ERR_DBG, "Device not Quiescent - "
7069                                   "adapter status reads 0x%llx\n",
7070                                   (unsigned long long)val64);
7071                         break;
7072                 }
7073         }
7074         if (do_io)
7075                 s2io_reset(sp);
7076
7077         /* Free all Tx buffers */
7078         free_tx_buffers(sp);
7079
7080         /* Free all Rx buffers */
7081         free_rx_buffers(sp);
7082
7083         clear_bit(__S2IO_STATE_LINK_TASK, &(sp->state));
7084 }
7085
7086 static void s2io_card_down(struct s2io_nic *sp)
7087 {
7088         do_s2io_card_down(sp, 1);
7089 }
7090
7091 static int s2io_card_up(struct s2io_nic *sp)
7092 {
7093         int i, ret = 0;
7094         struct config_param *config;
7095         struct mac_info *mac_control;
7096         struct net_device *dev = sp->dev;
7097         u16 interruptible;
7098
7099         /* Initialize the H/W I/O registers */
7100         ret = init_nic(sp);
7101         if (ret != 0) {
7102                 DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n",
7103                           dev->name);
7104                 if (ret != -EIO)
7105                         s2io_reset(sp);
7106                 return ret;
7107         }
7108
7109         /*
7110          * Initializing the Rx buffers. For now we are considering only 1
7111          * Rx ring and initializing buffers into 30 Rx blocks
7112          */
7113         config = &sp->config;
7114         mac_control = &sp->mac_control;
7115
7116         for (i = 0; i < config->rx_ring_num; i++) {
7117                 struct ring_info *ring = &mac_control->rings[i];
7118
7119                 ring->mtu = dev->mtu;
7120                 ring->lro = !!(dev->features & NETIF_F_LRO);
7121                 ret = fill_rx_buffers(sp, ring, 1);
7122                 if (ret) {
7123                         DBG_PRINT(ERR_DBG, "%s: Out of memory in Open\n",
7124                                   dev->name);
7125                         s2io_reset(sp);
7126                         free_rx_buffers(sp);
7127                         return -ENOMEM;
7128                 }
7129                 DBG_PRINT(INFO_DBG, "Buf in ring:%d is %d:\n", i,
7130                           ring->rx_bufs_left);
7131         }
7132
7133         /* Initialise napi */
7134         if (config->napi) {
7135                 if (config->intr_type ==  MSI_X) {
7136                         for (i = 0; i < sp->config.rx_ring_num; i++)
7137                                 napi_enable(&sp->mac_control.rings[i].napi);
7138                 } else {
7139                         napi_enable(&sp->napi);
7140                 }
7141         }
7142
7143         /* Maintain the state prior to the open */
7144         if (sp->promisc_flg)
7145                 sp->promisc_flg = 0;
7146         if (sp->m_cast_flg) {
7147                 sp->m_cast_flg = 0;
7148                 sp->all_multi_pos = 0;
7149         }
7150
7151         /* Setting its receive mode */
7152         s2io_set_multicast(dev);
7153
7154         if (dev->features & NETIF_F_LRO) {
7155                 /* Initialize max aggregatable pkts per session based on MTU */
7156                 sp->lro_max_aggr_per_sess = ((1<<16) - 1) / dev->mtu;
7157                 /* Check if we can use (if specified) user provided value */
7158                 if (lro_max_pkts < sp->lro_max_aggr_per_sess)
7159                         sp->lro_max_aggr_per_sess = lro_max_pkts;
7160         }
7161
7162         /* Enable Rx Traffic and interrupts on the NIC */
7163         if (start_nic(sp)) {
7164                 DBG_PRINT(ERR_DBG, "%s: Starting NIC failed\n", dev->name);
7165                 s2io_reset(sp);
7166                 free_rx_buffers(sp);
7167                 return -ENODEV;
7168         }
7169
7170         /* Add interrupt service routine */
7171         if (s2io_add_isr(sp) != 0) {
7172                 if (sp->config.intr_type == MSI_X)
7173                         s2io_rem_isr(sp);
7174                 s2io_reset(sp);
7175                 free_rx_buffers(sp);
7176                 return -ENODEV;
7177         }
7178
7179         timer_setup(&sp->alarm_timer, s2io_alarm_handle, 0);
7180         mod_timer(&sp->alarm_timer, jiffies + HZ / 2);
7181
7182         set_bit(__S2IO_STATE_CARD_UP, &sp->state);
7183
7184         /*  Enable select interrupts */
7185         en_dis_err_alarms(sp, ENA_ALL_INTRS, ENABLE_INTRS);
7186         if (sp->config.intr_type != INTA) {
7187                 interruptible = TX_TRAFFIC_INTR | TX_PIC_INTR;
7188                 en_dis_able_nic_intrs(sp, interruptible, ENABLE_INTRS);
7189         } else {
7190                 interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR;
7191                 interruptible |= TX_PIC_INTR;
7192                 en_dis_able_nic_intrs(sp, interruptible, ENABLE_INTRS);
7193         }
7194
7195         return 0;
7196 }
7197
7198 /**
7199  * s2io_restart_nic - Resets the NIC.
7200  * @data : long pointer to the device private structure
7201  * Description:
7202  * This function is scheduled to be run by the s2io_tx_watchdog
7203  * function after 0.5 secs to reset the NIC. The idea is to reduce
7204  * the run time of the watch dog routine which is run holding a
7205  * spin lock.
7206  */
7207
7208 static void s2io_restart_nic(struct work_struct *work)
7209 {
7210         struct s2io_nic *sp = container_of(work, struct s2io_nic, rst_timer_task);
7211         struct net_device *dev = sp->dev;
7212
7213         rtnl_lock();
7214
7215         if (!netif_running(dev))
7216                 goto out_unlock;
7217
7218         s2io_card_down(sp);
7219         if (s2io_card_up(sp)) {
7220                 DBG_PRINT(ERR_DBG, "%s: Device bring up failed\n", dev->name);
7221         }
7222         s2io_wake_all_tx_queue(sp);
7223         DBG_PRINT(ERR_DBG, "%s: was reset by Tx watchdog timer\n", dev->name);
7224 out_unlock:
7225         rtnl_unlock();
7226 }
7227
7228 /**
7229  *  s2io_tx_watchdog - Watchdog for transmit side.
7230  *  @dev : Pointer to net device structure
7231  *  Description:
7232  *  This function is triggered if the Tx Queue is stopped
7233  *  for a pre-defined amount of time when the Interface is still up.
7234  *  If the Interface is jammed in such a situation, the hardware is
7235  *  reset (by s2io_close) and restarted again (by s2io_open) to
7236  *  overcome any problem that might have been caused in the hardware.
7237  *  Return value:
7238  *  void
7239  */
7240
7241 static void s2io_tx_watchdog(struct net_device *dev, unsigned int txqueue)
7242 {
7243         struct s2io_nic *sp = netdev_priv(dev);
7244         struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
7245
7246         if (netif_carrier_ok(dev)) {
7247                 swstats->watchdog_timer_cnt++;
7248                 schedule_work(&sp->rst_timer_task);
7249                 swstats->soft_reset_cnt++;
7250         }
7251 }
7252
7253 /**
7254  *   rx_osm_handler - To perform some OS related operations on SKB.
7255  *   @sp: private member of the device structure,pointer to s2io_nic structure.
7256  *   @skb : the socket buffer pointer.
7257  *   @len : length of the packet
7258  *   @cksum : FCS checksum of the frame.
7259  *   @ring_no : the ring from which this RxD was extracted.
7260  *   Description:
7261  *   This function is called by the Rx interrupt serivce routine to perform
7262  *   some OS related operations on the SKB before passing it to the upper
7263  *   layers. It mainly checks if the checksum is OK, if so adds it to the
7264  *   SKBs cksum variable, increments the Rx packet count and passes the SKB
7265  *   to the upper layer. If the checksum is wrong, it increments the Rx
7266  *   packet error count, frees the SKB and returns error.
7267  *   Return value:
7268  *   SUCCESS on success and -1 on failure.
7269  */
7270 static int rx_osm_handler(struct ring_info *ring_data, struct RxD_t * rxdp)
7271 {
7272         struct s2io_nic *sp = ring_data->nic;
7273         struct net_device *dev = ring_data->dev;
7274         struct sk_buff *skb = (struct sk_buff *)
7275                 ((unsigned long)rxdp->Host_Control);
7276         int ring_no = ring_data->ring_no;
7277         u16 l3_csum, l4_csum;
7278         unsigned long long err = rxdp->Control_1 & RXD_T_CODE;
7279         struct lro *uninitialized_var(lro);
7280         u8 err_mask;
7281         struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
7282
7283         skb->dev = dev;
7284
7285         if (err) {
7286                 /* Check for parity error */
7287                 if (err & 0x1)
7288                         swstats->parity_err_cnt++;
7289
7290                 err_mask = err >> 48;
7291                 switch (err_mask) {
7292                 case 1:
7293                         swstats->rx_parity_err_cnt++;
7294                         break;
7295
7296                 case 2:
7297                         swstats->rx_abort_cnt++;
7298                         break;
7299
7300                 case 3:
7301                         swstats->rx_parity_abort_cnt++;
7302                         break;
7303
7304                 case 4:
7305                         swstats->rx_rda_fail_cnt++;
7306                         break;
7307
7308                 case 5:
7309                         swstats->rx_unkn_prot_cnt++;
7310                         break;
7311
7312                 case 6:
7313                         swstats->rx_fcs_err_cnt++;
7314                         break;
7315
7316                 case 7:
7317                         swstats->rx_buf_size_err_cnt++;
7318                         break;
7319
7320                 case 8:
7321                         swstats->rx_rxd_corrupt_cnt++;
7322                         break;
7323
7324                 case 15:
7325                         swstats->rx_unkn_err_cnt++;
7326                         break;
7327                 }
7328                 /*
7329                  * Drop the packet if bad transfer code. Exception being
7330                  * 0x5, which could be due to unsupported IPv6 extension header.
7331                  * In this case, we let stack handle the packet.
7332                  * Note that in this case, since checksum will be incorrect,
7333                  * stack will validate the same.
7334                  */
7335                 if (err_mask != 0x5) {
7336                         DBG_PRINT(ERR_DBG, "%s: Rx error Value: 0x%x\n",
7337                                   dev->name, err_mask);
7338                         dev->stats.rx_crc_errors++;
7339                         swstats->mem_freed
7340                                 += skb->truesize;
7341                         dev_kfree_skb(skb);
7342                         ring_data->rx_bufs_left -= 1;
7343                         rxdp->Host_Control = 0;
7344                         return 0;
7345                 }
7346         }
7347
7348         rxdp->Host_Control = 0;
7349         if (sp->rxd_mode == RXD_MODE_1) {
7350                 int len = RXD_GET_BUFFER0_SIZE_1(rxdp->Control_2);
7351
7352                 skb_put(skb, len);
7353         } else if (sp->rxd_mode == RXD_MODE_3B) {
7354                 int get_block = ring_data->rx_curr_get_info.block_index;
7355                 int get_off = ring_data->rx_curr_get_info.offset;
7356                 int buf0_len = RXD_GET_BUFFER0_SIZE_3(rxdp->Control_2);
7357                 int buf2_len = RXD_GET_BUFFER2_SIZE_3(rxdp->Control_2);
7358                 unsigned char *buff = skb_push(skb, buf0_len);
7359
7360                 struct buffAdd *ba = &ring_data->ba[get_block][get_off];
7361                 memcpy(buff, ba->ba_0, buf0_len);
7362                 skb_put(skb, buf2_len);
7363         }
7364
7365         if ((rxdp->Control_1 & TCP_OR_UDP_FRAME) &&
7366             ((!ring_data->lro) ||
7367              (!(rxdp->Control_1 & RXD_FRAME_IP_FRAG))) &&
7368             (dev->features & NETIF_F_RXCSUM)) {
7369                 l3_csum = RXD_GET_L3_CKSUM(rxdp->Control_1);
7370                 l4_csum = RXD_GET_L4_CKSUM(rxdp->Control_1);
7371                 if ((l3_csum == L3_CKSUM_OK) && (l4_csum == L4_CKSUM_OK)) {
7372                         /*
7373                          * NIC verifies if the Checksum of the received
7374                          * frame is Ok or not and accordingly returns
7375                          * a flag in the RxD.
7376                          */
7377                         skb->ip_summed = CHECKSUM_UNNECESSARY;
7378                         if (ring_data->lro) {
7379                                 u32 tcp_len = 0;
7380                                 u8 *tcp;
7381                                 int ret = 0;
7382
7383                                 ret = s2io_club_tcp_session(ring_data,
7384                                                             skb->data, &tcp,
7385                                                             &tcp_len, &lro,
7386                                                             rxdp, sp);
7387                                 switch (ret) {
7388                                 case 3: /* Begin anew */
7389                                         lro->parent = skb;
7390                                         goto aggregate;
7391                                 case 1: /* Aggregate */
7392                                         lro_append_pkt(sp, lro, skb, tcp_len);
7393                                         goto aggregate;
7394                                 case 4: /* Flush session */
7395                                         lro_append_pkt(sp, lro, skb, tcp_len);
7396                                         queue_rx_frame(lro->parent,
7397                                                        lro->vlan_tag);
7398                                         clear_lro_session(lro);
7399                                         swstats->flush_max_pkts++;
7400                                         goto aggregate;
7401                                 case 2: /* Flush both */
7402                                         lro->parent->data_len = lro->frags_len;
7403                                         swstats->sending_both++;
7404                                         queue_rx_frame(lro->parent,
7405                                                        lro->vlan_tag);
7406                                         clear_lro_session(lro);
7407                                         goto send_up;
7408                                 case 0: /* sessions exceeded */
7409                                 case -1: /* non-TCP or not L2 aggregatable */
7410                                 case 5: /*
7411                                          * First pkt in session not
7412                                          * L3/L4 aggregatable
7413                                          */
7414                                         break;
7415                                 default:
7416                                         DBG_PRINT(ERR_DBG,
7417                                                   "%s: Samadhana!!\n",
7418                                                   __func__);
7419                                         BUG();
7420                                 }
7421                         }
7422                 } else {
7423                         /*
7424                          * Packet with erroneous checksum, let the
7425                          * upper layers deal with it.
7426                          */
7427                         skb_checksum_none_assert(skb);
7428                 }
7429         } else
7430                 skb_checksum_none_assert(skb);
7431
7432         swstats->mem_freed += skb->truesize;
7433 send_up:
7434         skb_record_rx_queue(skb, ring_no);
7435         queue_rx_frame(skb, RXD_GET_VLAN_TAG(rxdp->Control_2));
7436 aggregate:
7437         sp->mac_control.rings[ring_no].rx_bufs_left -= 1;
7438         return SUCCESS;
7439 }
7440
7441 /**
7442  *  s2io_link - stops/starts the Tx queue.
7443  *  @sp : private member of the device structure, which is a pointer to the
7444  *  s2io_nic structure.
7445  *  @link : inidicates whether link is UP/DOWN.
7446  *  Description:
7447  *  This function stops/starts the Tx queue depending on whether the link
7448  *  status of the NIC is is down or up. This is called by the Alarm
7449  *  interrupt handler whenever a link change interrupt comes up.
7450  *  Return value:
7451  *  void.
7452  */
7453
7454 static void s2io_link(struct s2io_nic *sp, int link)
7455 {
7456         struct net_device *dev = sp->dev;
7457         struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
7458
7459         if (link != sp->last_link_state) {
7460                 init_tti(sp, link);
7461                 if (link == LINK_DOWN) {
7462                         DBG_PRINT(ERR_DBG, "%s: Link down\n", dev->name);
7463                         s2io_stop_all_tx_queue(sp);
7464                         netif_carrier_off(dev);
7465                         if (swstats->link_up_cnt)
7466                                 swstats->link_up_time =
7467                                         jiffies - sp->start_time;
7468                         swstats->link_down_cnt++;
7469                 } else {
7470                         DBG_PRINT(ERR_DBG, "%s: Link Up\n", dev->name);
7471                         if (swstats->link_down_cnt)
7472                                 swstats->link_down_time =
7473                                         jiffies - sp->start_time;
7474                         swstats->link_up_cnt++;
7475                         netif_carrier_on(dev);
7476                         s2io_wake_all_tx_queue(sp);
7477                 }
7478         }
7479         sp->last_link_state = link;
7480         sp->start_time = jiffies;
7481 }
7482
7483 /**
7484  *  s2io_init_pci -Initialization of PCI and PCI-X configuration registers .
7485  *  @sp : private member of the device structure, which is a pointer to the
7486  *  s2io_nic structure.
7487  *  Description:
7488  *  This function initializes a few of the PCI and PCI-X configuration registers
7489  *  with recommended values.
7490  *  Return value:
7491  *  void
7492  */
7493
7494 static void s2io_init_pci(struct s2io_nic *sp)
7495 {
7496         u16 pci_cmd = 0, pcix_cmd = 0;
7497
7498         /* Enable Data Parity Error Recovery in PCI-X command register. */
7499         pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
7500                              &(pcix_cmd));
7501         pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
7502                               (pcix_cmd | 1));
7503         pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
7504                              &(pcix_cmd));
7505
7506         /* Set the PErr Response bit in PCI command register. */
7507         pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd);
7508         pci_write_config_word(sp->pdev, PCI_COMMAND,
7509                               (pci_cmd | PCI_COMMAND_PARITY));
7510         pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd);
7511 }
7512
7513 static int s2io_verify_parm(struct pci_dev *pdev, u8 *dev_intr_type,
7514                             u8 *dev_multiq)
7515 {
7516         int i;
7517
7518         if ((tx_fifo_num > MAX_TX_FIFOS) || (tx_fifo_num < 1)) {
7519                 DBG_PRINT(ERR_DBG, "Requested number of tx fifos "
7520                           "(%d) not supported\n", tx_fifo_num);
7521
7522                 if (tx_fifo_num < 1)
7523                         tx_fifo_num = 1;
7524                 else
7525                         tx_fifo_num = MAX_TX_FIFOS;
7526
7527                 DBG_PRINT(ERR_DBG, "Default to %d tx fifos\n", tx_fifo_num);
7528         }
7529
7530         if (multiq)
7531                 *dev_multiq = multiq;
7532
7533         if (tx_steering_type && (1 == tx_fifo_num)) {
7534                 if (tx_steering_type != TX_DEFAULT_STEERING)
7535                         DBG_PRINT(ERR_DBG,
7536                                   "Tx steering is not supported with "
7537                                   "one fifo. Disabling Tx steering.\n");
7538                 tx_steering_type = NO_STEERING;
7539         }
7540
7541         if ((tx_steering_type < NO_STEERING) ||
7542             (tx_steering_type > TX_DEFAULT_STEERING)) {
7543                 DBG_PRINT(ERR_DBG,
7544                           "Requested transmit steering not supported\n");
7545                 DBG_PRINT(ERR_DBG, "Disabling transmit steering\n");
7546                 tx_steering_type = NO_STEERING;
7547         }
7548
7549         if (rx_ring_num > MAX_RX_RINGS) {
7550                 DBG_PRINT(ERR_DBG,
7551                           "Requested number of rx rings not supported\n");
7552                 DBG_PRINT(ERR_DBG, "Default to %d rx rings\n",
7553                           MAX_RX_RINGS);
7554                 rx_ring_num = MAX_RX_RINGS;
7555         }
7556
7557         if ((*dev_intr_type != INTA) && (*dev_intr_type != MSI_X)) {
7558                 DBG_PRINT(ERR_DBG, "Wrong intr_type requested. "
7559                           "Defaulting to INTA\n");
7560                 *dev_intr_type = INTA;
7561         }
7562
7563         if ((*dev_intr_type == MSI_X) &&
7564             ((pdev->device != PCI_DEVICE_ID_HERC_WIN) &&
7565              (pdev->device != PCI_DEVICE_ID_HERC_UNI))) {
7566                 DBG_PRINT(ERR_DBG, "Xframe I does not support MSI_X. "
7567                           "Defaulting to INTA\n");
7568                 *dev_intr_type = INTA;
7569         }
7570
7571         if ((rx_ring_mode != 1) && (rx_ring_mode != 2)) {
7572                 DBG_PRINT(ERR_DBG, "Requested ring mode not supported\n");
7573                 DBG_PRINT(ERR_DBG, "Defaulting to 1-buffer mode\n");
7574                 rx_ring_mode = 1;
7575         }
7576
7577         for (i = 0; i < MAX_RX_RINGS; i++)
7578                 if (rx_ring_sz[i] > MAX_RX_BLOCKS_PER_RING) {
7579                         DBG_PRINT(ERR_DBG, "Requested rx ring size not "
7580                                   "supported\nDefaulting to %d\n",
7581                                   MAX_RX_BLOCKS_PER_RING);
7582                         rx_ring_sz[i] = MAX_RX_BLOCKS_PER_RING;
7583                 }
7584
7585         return SUCCESS;
7586 }
7587
7588 /**
7589  * rts_ds_steer - Receive traffic steering based on IPv4 or IPv6 TOS
7590  * or Traffic class respectively.
7591  * @nic: device private variable
7592  * Description: The function configures the receive steering to
7593  * desired receive ring.
7594  * Return Value:  SUCCESS on success and
7595  * '-1' on failure (endian settings incorrect).
7596  */
7597 static int rts_ds_steer(struct s2io_nic *nic, u8 ds_codepoint, u8 ring)
7598 {
7599         struct XENA_dev_config __iomem *bar0 = nic->bar0;
7600         register u64 val64 = 0;
7601
7602         if (ds_codepoint > 63)
7603                 return FAILURE;
7604
7605         val64 = RTS_DS_MEM_DATA(ring);
7606         writeq(val64, &bar0->rts_ds_mem_data);
7607
7608         val64 = RTS_DS_MEM_CTRL_WE |
7609                 RTS_DS_MEM_CTRL_STROBE_NEW_CMD |
7610                 RTS_DS_MEM_CTRL_OFFSET(ds_codepoint);
7611
7612         writeq(val64, &bar0->rts_ds_mem_ctrl);
7613
7614         return wait_for_cmd_complete(&bar0->rts_ds_mem_ctrl,
7615                                      RTS_DS_MEM_CTRL_STROBE_CMD_BEING_EXECUTED,
7616                                      S2IO_BIT_RESET);
7617 }
7618
7619 static const struct net_device_ops s2io_netdev_ops = {
7620         .ndo_open               = s2io_open,
7621         .ndo_stop               = s2io_close,
7622         .ndo_get_stats          = s2io_get_stats,
7623         .ndo_start_xmit         = s2io_xmit,
7624         .ndo_validate_addr      = eth_validate_addr,
7625         .ndo_set_rx_mode        = s2io_set_multicast,
7626         .ndo_do_ioctl           = s2io_ioctl,
7627         .ndo_set_mac_address    = s2io_set_mac_addr,
7628         .ndo_change_mtu         = s2io_change_mtu,
7629         .ndo_set_features       = s2io_set_features,
7630         .ndo_tx_timeout         = s2io_tx_watchdog,
7631 #ifdef CONFIG_NET_POLL_CONTROLLER
7632         .ndo_poll_controller    = s2io_netpoll,
7633 #endif
7634 };
7635
7636 /**
7637  *  s2io_init_nic - Initialization of the adapter .
7638  *  @pdev : structure containing the PCI related information of the device.
7639  *  @pre: List of PCI devices supported by the driver listed in s2io_tbl.
7640  *  Description:
7641  *  The function initializes an adapter identified by the pci_dec structure.
7642  *  All OS related initialization including memory and device structure and
7643  *  initlaization of the device private variable is done. Also the swapper
7644  *  control register is initialized to enable read and write into the I/O
7645  *  registers of the device.
7646  *  Return value:
7647  *  returns 0 on success and negative on failure.
7648  */
7649
7650 static int
7651 s2io_init_nic(struct pci_dev *pdev, const struct pci_device_id *pre)
7652 {
7653         struct s2io_nic *sp;
7654         struct net_device *dev;
7655         int i, j, ret;
7656         int dma_flag = false;
7657         u32 mac_up, mac_down;
7658         u64 val64 = 0, tmp64 = 0;
7659         struct XENA_dev_config __iomem *bar0 = NULL;
7660         u16 subid;
7661         struct config_param *config;
7662         struct mac_info *mac_control;
7663         int mode;
7664         u8 dev_intr_type = intr_type;
7665         u8 dev_multiq = 0;
7666
7667         ret = s2io_verify_parm(pdev, &dev_intr_type, &dev_multiq);
7668         if (ret)
7669                 return ret;
7670
7671         ret = pci_enable_device(pdev);
7672         if (ret) {
7673                 DBG_PRINT(ERR_DBG,
7674                           "%s: pci_enable_device failed\n", __func__);
7675                 return ret;
7676         }
7677
7678         if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
7679                 DBG_PRINT(INIT_DBG, "%s: Using 64bit DMA\n", __func__);
7680                 dma_flag = true;
7681                 if (pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64))) {
7682                         DBG_PRINT(ERR_DBG,
7683                                   "Unable to obtain 64bit DMA "
7684                                   "for consistent allocations\n");
7685                         pci_disable_device(pdev);
7686                         return -ENOMEM;
7687                 }
7688         } else if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(32))) {
7689                 DBG_PRINT(INIT_DBG, "%s: Using 32bit DMA\n", __func__);
7690         } else {
7691                 pci_disable_device(pdev);
7692                 return -ENOMEM;
7693         }
7694         ret = pci_request_regions(pdev, s2io_driver_name);
7695         if (ret) {
7696                 DBG_PRINT(ERR_DBG, "%s: Request Regions failed - %x\n",
7697                           __func__, ret);
7698                 pci_disable_device(pdev);
7699                 return -ENODEV;
7700         }
7701         if (dev_multiq)
7702                 dev = alloc_etherdev_mq(sizeof(struct s2io_nic), tx_fifo_num);
7703         else
7704                 dev = alloc_etherdev(sizeof(struct s2io_nic));
7705         if (dev == NULL) {
7706                 pci_disable_device(pdev);
7707                 pci_release_regions(pdev);
7708                 return -ENODEV;
7709         }
7710
7711         pci_set_master(pdev);
7712         pci_set_drvdata(pdev, dev);
7713         SET_NETDEV_DEV(dev, &pdev->dev);
7714
7715         /*  Private member variable initialized to s2io NIC structure */
7716         sp = netdev_priv(dev);
7717         sp->dev = dev;
7718         sp->pdev = pdev;
7719         sp->high_dma_flag = dma_flag;
7720         sp->device_enabled_once = false;
7721         if (rx_ring_mode == 1)
7722                 sp->rxd_mode = RXD_MODE_1;
7723         if (rx_ring_mode == 2)
7724                 sp->rxd_mode = RXD_MODE_3B;
7725
7726         sp->config.intr_type = dev_intr_type;
7727
7728         if ((pdev->device == PCI_DEVICE_ID_HERC_WIN) ||
7729             (pdev->device == PCI_DEVICE_ID_HERC_UNI))
7730                 sp->device_type = XFRAME_II_DEVICE;
7731         else
7732                 sp->device_type = XFRAME_I_DEVICE;
7733
7734
7735         /* Initialize some PCI/PCI-X fields of the NIC. */
7736         s2io_init_pci(sp);
7737
7738         /*
7739          * Setting the device configuration parameters.
7740          * Most of these parameters can be specified by the user during
7741          * module insertion as they are module loadable parameters. If
7742          * these parameters are not not specified during load time, they
7743          * are initialized with default values.
7744          */
7745         config = &sp->config;
7746         mac_control = &sp->mac_control;
7747
7748         config->napi = napi;
7749         config->tx_steering_type = tx_steering_type;
7750
7751         /* Tx side parameters. */
7752         if (config->tx_steering_type == TX_PRIORITY_STEERING)
7753                 config->tx_fifo_num = MAX_TX_FIFOS;
7754         else
7755                 config->tx_fifo_num = tx_fifo_num;
7756
7757         /* Initialize the fifos used for tx steering */
7758         if (config->tx_fifo_num < 5) {
7759                 if (config->tx_fifo_num  == 1)
7760                         sp->total_tcp_fifos = 1;
7761                 else
7762                         sp->total_tcp_fifos = config->tx_fifo_num - 1;
7763                 sp->udp_fifo_idx = config->tx_fifo_num - 1;
7764                 sp->total_udp_fifos = 1;
7765                 sp->other_fifo_idx = sp->total_tcp_fifos - 1;
7766         } else {
7767                 sp->total_tcp_fifos = (tx_fifo_num - FIFO_UDP_MAX_NUM -
7768                                        FIFO_OTHER_MAX_NUM);
7769                 sp->udp_fifo_idx = sp->total_tcp_fifos;
7770                 sp->total_udp_fifos = FIFO_UDP_MAX_NUM;
7771                 sp->other_fifo_idx = sp->udp_fifo_idx + FIFO_UDP_MAX_NUM;
7772         }
7773
7774         config->multiq = dev_multiq;
7775         for (i = 0; i < config->tx_fifo_num; i++) {
7776                 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
7777
7778                 tx_cfg->fifo_len = tx_fifo_len[i];
7779                 tx_cfg->fifo_priority = i;
7780         }
7781
7782         /* mapping the QoS priority to the configured fifos */
7783         for (i = 0; i < MAX_TX_FIFOS; i++)
7784                 config->fifo_mapping[i] = fifo_map[config->tx_fifo_num - 1][i];
7785
7786         /* map the hashing selector table to the configured fifos */
7787         for (i = 0; i < config->tx_fifo_num; i++)
7788                 sp->fifo_selector[i] = fifo_selector[i];
7789
7790
7791         config->tx_intr_type = TXD_INT_TYPE_UTILZ;
7792         for (i = 0; i < config->tx_fifo_num; i++) {
7793                 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
7794
7795                 tx_cfg->f_no_snoop = (NO_SNOOP_TXD | NO_SNOOP_TXD_BUFFER);
7796                 if (tx_cfg->fifo_len < 65) {
7797                         config->tx_intr_type = TXD_INT_TYPE_PER_LIST;
7798                         break;
7799                 }
7800         }
7801         /* + 2 because one Txd for skb->data and one Txd for UFO */
7802         config->max_txds = MAX_SKB_FRAGS + 2;
7803
7804         /* Rx side parameters. */
7805         config->rx_ring_num = rx_ring_num;
7806         for (i = 0; i < config->rx_ring_num; i++) {
7807                 struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
7808                 struct ring_info *ring = &mac_control->rings[i];
7809
7810                 rx_cfg->num_rxd = rx_ring_sz[i] * (rxd_count[sp->rxd_mode] + 1);
7811                 rx_cfg->ring_priority = i;
7812                 ring->rx_bufs_left = 0;
7813                 ring->rxd_mode = sp->rxd_mode;
7814                 ring->rxd_count = rxd_count[sp->rxd_mode];
7815                 ring->pdev = sp->pdev;
7816                 ring->dev = sp->dev;
7817         }
7818
7819         for (i = 0; i < rx_ring_num; i++) {
7820                 struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
7821
7822                 rx_cfg->ring_org = RING_ORG_BUFF1;
7823                 rx_cfg->f_no_snoop = (NO_SNOOP_RXD | NO_SNOOP_RXD_BUFFER);
7824         }
7825
7826         /*  Setting Mac Control parameters */
7827         mac_control->rmac_pause_time = rmac_pause_time;
7828         mac_control->mc_pause_threshold_q0q3 = mc_pause_threshold_q0q3;
7829         mac_control->mc_pause_threshold_q4q7 = mc_pause_threshold_q4q7;
7830
7831
7832         /*  initialize the shared memory used by the NIC and the host */
7833         if (init_shared_mem(sp)) {
7834                 DBG_PRINT(ERR_DBG, "%s: Memory allocation failed\n", dev->name);
7835                 ret = -ENOMEM;
7836                 goto mem_alloc_failed;
7837         }
7838
7839         sp->bar0 = pci_ioremap_bar(pdev, 0);
7840         if (!sp->bar0) {
7841                 DBG_PRINT(ERR_DBG, "%s: Neterion: cannot remap io mem1\n",
7842                           dev->name);
7843                 ret = -ENOMEM;
7844                 goto bar0_remap_failed;
7845         }
7846
7847         sp->bar1 = pci_ioremap_bar(pdev, 2);
7848         if (!sp->bar1) {
7849                 DBG_PRINT(ERR_DBG, "%s: Neterion: cannot remap io mem2\n",
7850                           dev->name);
7851                 ret = -ENOMEM;
7852                 goto bar1_remap_failed;
7853         }
7854
7855         /* Initializing the BAR1 address as the start of the FIFO pointer. */
7856         for (j = 0; j < MAX_TX_FIFOS; j++) {
7857                 mac_control->tx_FIFO_start[j] = sp->bar1 + (j * 0x00020000);
7858         }
7859
7860         /*  Driver entry points */
7861         dev->netdev_ops = &s2io_netdev_ops;
7862         dev->ethtool_ops = &netdev_ethtool_ops;
7863         dev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM |
7864                 NETIF_F_TSO | NETIF_F_TSO6 |
7865                 NETIF_F_RXCSUM | NETIF_F_LRO;
7866         dev->features |= dev->hw_features |
7867                 NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX;
7868         if (sp->high_dma_flag == true)
7869                 dev->features |= NETIF_F_HIGHDMA;
7870         dev->watchdog_timeo = WATCH_DOG_TIMEOUT;
7871         INIT_WORK(&sp->rst_timer_task, s2io_restart_nic);
7872         INIT_WORK(&sp->set_link_task, s2io_set_link);
7873
7874         pci_save_state(sp->pdev);
7875
7876         /* Setting swapper control on the NIC, for proper reset operation */
7877         if (s2io_set_swapper(sp)) {
7878                 DBG_PRINT(ERR_DBG, "%s: swapper settings are wrong\n",
7879                           dev->name);
7880                 ret = -EAGAIN;
7881                 goto set_swap_failed;
7882         }
7883
7884         /* Verify if the Herc works on the slot its placed into */
7885         if (sp->device_type & XFRAME_II_DEVICE) {
7886                 mode = s2io_verify_pci_mode(sp);
7887                 if (mode < 0) {
7888                         DBG_PRINT(ERR_DBG, "%s: Unsupported PCI bus mode\n",
7889                                   __func__);
7890                         ret = -EBADSLT;
7891                         goto set_swap_failed;
7892                 }
7893         }
7894
7895         if (sp->config.intr_type == MSI_X) {
7896                 sp->num_entries = config->rx_ring_num + 1;
7897                 ret = s2io_enable_msi_x(sp);
7898
7899                 if (!ret) {
7900                         ret = s2io_test_msi(sp);
7901                         /* rollback MSI-X, will re-enable during add_isr() */
7902                         remove_msix_isr(sp);
7903                 }
7904                 if (ret) {
7905
7906                         DBG_PRINT(ERR_DBG,
7907                                   "MSI-X requested but failed to enable\n");
7908                         sp->config.intr_type = INTA;
7909                 }
7910         }
7911
7912         if (config->intr_type ==  MSI_X) {
7913                 for (i = 0; i < config->rx_ring_num ; i++) {
7914                         struct ring_info *ring = &mac_control->rings[i];
7915
7916                         netif_napi_add(dev, &ring->napi, s2io_poll_msix, 64);
7917                 }
7918         } else {
7919                 netif_napi_add(dev, &sp->napi, s2io_poll_inta, 64);
7920         }
7921
7922         /* Not needed for Herc */
7923         if (sp->device_type & XFRAME_I_DEVICE) {
7924                 /*
7925                  * Fix for all "FFs" MAC address problems observed on
7926                  * Alpha platforms
7927                  */
7928                 fix_mac_address(sp);
7929                 s2io_reset(sp);
7930         }
7931
7932         /*
7933          * MAC address initialization.
7934          * For now only one mac address will be read and used.
7935          */
7936         bar0 = sp->bar0;
7937         val64 = RMAC_ADDR_CMD_MEM_RD | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
7938                 RMAC_ADDR_CMD_MEM_OFFSET(0 + S2IO_MAC_ADDR_START_OFFSET);
7939         writeq(val64, &bar0->rmac_addr_cmd_mem);
7940         wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
7941                               RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
7942                               S2IO_BIT_RESET);
7943         tmp64 = readq(&bar0->rmac_addr_data0_mem);
7944         mac_down = (u32)tmp64;
7945         mac_up = (u32) (tmp64 >> 32);
7946
7947         sp->def_mac_addr[0].mac_addr[3] = (u8) (mac_up);
7948         sp->def_mac_addr[0].mac_addr[2] = (u8) (mac_up >> 8);
7949         sp->def_mac_addr[0].mac_addr[1] = (u8) (mac_up >> 16);
7950         sp->def_mac_addr[0].mac_addr[0] = (u8) (mac_up >> 24);
7951         sp->def_mac_addr[0].mac_addr[5] = (u8) (mac_down >> 16);
7952         sp->def_mac_addr[0].mac_addr[4] = (u8) (mac_down >> 24);
7953
7954         /*  Set the factory defined MAC address initially   */
7955         dev->addr_len = ETH_ALEN;
7956         memcpy(dev->dev_addr, sp->def_mac_addr, ETH_ALEN);
7957
7958         /* initialize number of multicast & unicast MAC entries variables */
7959         if (sp->device_type == XFRAME_I_DEVICE) {
7960                 config->max_mc_addr = S2IO_XENA_MAX_MC_ADDRESSES;
7961                 config->max_mac_addr = S2IO_XENA_MAX_MAC_ADDRESSES;
7962                 config->mc_start_offset = S2IO_XENA_MC_ADDR_START_OFFSET;
7963         } else if (sp->device_type == XFRAME_II_DEVICE) {
7964                 config->max_mc_addr = S2IO_HERC_MAX_MC_ADDRESSES;
7965                 config->max_mac_addr = S2IO_HERC_MAX_MAC_ADDRESSES;
7966                 config->mc_start_offset = S2IO_HERC_MC_ADDR_START_OFFSET;
7967         }
7968
7969         /* MTU range: 46 - 9600 */
7970         dev->min_mtu = MIN_MTU;
7971         dev->max_mtu = S2IO_JUMBO_SIZE;
7972
7973         /* store mac addresses from CAM to s2io_nic structure */
7974         do_s2io_store_unicast_mc(sp);
7975
7976         /* Configure MSIX vector for number of rings configured plus one */
7977         if ((sp->device_type == XFRAME_II_DEVICE) &&
7978             (config->intr_type == MSI_X))
7979                 sp->num_entries = config->rx_ring_num + 1;
7980
7981         /* Store the values of the MSIX table in the s2io_nic structure */
7982         store_xmsi_data(sp);
7983         /* reset Nic and bring it to known state */
7984         s2io_reset(sp);
7985
7986         /*
7987          * Initialize link state flags
7988          * and the card state parameter
7989          */
7990         sp->state = 0;
7991
7992         /* Initialize spinlocks */
7993         for (i = 0; i < sp->config.tx_fifo_num; i++) {
7994                 struct fifo_info *fifo = &mac_control->fifos[i];
7995
7996                 spin_lock_init(&fifo->tx_lock);
7997         }
7998
7999         /*
8000          * SXE-002: Configure link and activity LED to init state
8001          * on driver load.
8002          */
8003         subid = sp->pdev->subsystem_device;
8004         if ((subid & 0xFF) >= 0x07) {
8005                 val64 = readq(&bar0->gpio_control);
8006                 val64 |= 0x0000800000000000ULL;
8007                 writeq(val64, &bar0->gpio_control);
8008                 val64 = 0x0411040400000000ULL;
8009                 writeq(val64, (void __iomem *)bar0 + 0x2700);
8010                 val64 = readq(&bar0->gpio_control);
8011         }
8012
8013         sp->rx_csum = 1;        /* Rx chksum verify enabled by default */
8014
8015         if (register_netdev(dev)) {
8016                 DBG_PRINT(ERR_DBG, "Device registration failed\n");
8017                 ret = -ENODEV;
8018                 goto register_failed;
8019         }
8020         s2io_vpd_read(sp);
8021         DBG_PRINT(ERR_DBG, "Copyright(c) 2002-2010 Exar Corp.\n");
8022         DBG_PRINT(ERR_DBG, "%s: Neterion %s (rev %d)\n", dev->name,
8023                   sp->product_name, pdev->revision);
8024         DBG_PRINT(ERR_DBG, "%s: Driver version %s\n", dev->name,
8025                   s2io_driver_version);
8026         DBG_PRINT(ERR_DBG, "%s: MAC Address: %pM\n", dev->name, dev->dev_addr);
8027         DBG_PRINT(ERR_DBG, "Serial number: %s\n", sp->serial_num);
8028         if (sp->device_type & XFRAME_II_DEVICE) {
8029                 mode = s2io_print_pci_mode(sp);
8030                 if (mode < 0) {
8031                         ret = -EBADSLT;
8032                         unregister_netdev(dev);
8033                         goto set_swap_failed;
8034                 }
8035         }
8036         switch (sp->rxd_mode) {
8037         case RXD_MODE_1:
8038                 DBG_PRINT(ERR_DBG, "%s: 1-Buffer receive mode enabled\n",
8039                           dev->name);
8040                 break;
8041         case RXD_MODE_3B:
8042                 DBG_PRINT(ERR_DBG, "%s: 2-Buffer receive mode enabled\n",
8043                           dev->name);
8044                 break;
8045         }
8046
8047         switch (sp->config.napi) {
8048         case 0:
8049                 DBG_PRINT(ERR_DBG, "%s: NAPI disabled\n", dev->name);
8050                 break;
8051         case 1:
8052                 DBG_PRINT(ERR_DBG, "%s: NAPI enabled\n", dev->name);
8053                 break;
8054         }
8055
8056         DBG_PRINT(ERR_DBG, "%s: Using %d Tx fifo(s)\n", dev->name,
8057                   sp->config.tx_fifo_num);
8058
8059         DBG_PRINT(ERR_DBG, "%s: Using %d Rx ring(s)\n", dev->name,
8060                   sp->config.rx_ring_num);
8061
8062         switch (sp->config.intr_type) {
8063         case INTA:
8064                 DBG_PRINT(ERR_DBG, "%s: Interrupt type INTA\n", dev->name);
8065                 break;
8066         case MSI_X:
8067                 DBG_PRINT(ERR_DBG, "%s: Interrupt type MSI-X\n", dev->name);
8068                 break;
8069         }
8070         if (sp->config.multiq) {
8071                 for (i = 0; i < sp->config.tx_fifo_num; i++) {
8072                         struct fifo_info *fifo = &mac_control->fifos[i];
8073
8074                         fifo->multiq = config->multiq;
8075                 }
8076                 DBG_PRINT(ERR_DBG, "%s: Multiqueue support enabled\n",
8077                           dev->name);
8078         } else
8079                 DBG_PRINT(ERR_DBG, "%s: Multiqueue support disabled\n",
8080                           dev->name);
8081
8082         switch (sp->config.tx_steering_type) {
8083         case NO_STEERING:
8084                 DBG_PRINT(ERR_DBG, "%s: No steering enabled for transmit\n",
8085                           dev->name);
8086                 break;
8087         case TX_PRIORITY_STEERING:
8088                 DBG_PRINT(ERR_DBG,
8089                           "%s: Priority steering enabled for transmit\n",
8090                           dev->name);
8091                 break;
8092         case TX_DEFAULT_STEERING:
8093                 DBG_PRINT(ERR_DBG,
8094                           "%s: Default steering enabled for transmit\n",
8095                           dev->name);
8096         }
8097
8098         DBG_PRINT(ERR_DBG, "%s: Large receive offload enabled\n",
8099                   dev->name);
8100         /* Initialize device name */
8101         snprintf(sp->name, sizeof(sp->name), "%s Neterion %s", dev->name,
8102                  sp->product_name);
8103
8104         if (vlan_tag_strip)
8105                 sp->vlan_strip_flag = 1;
8106         else
8107                 sp->vlan_strip_flag = 0;
8108
8109         /*
8110          * Make Link state as off at this point, when the Link change
8111          * interrupt comes the state will be automatically changed to
8112          * the right state.
8113          */
8114         netif_carrier_off(dev);
8115
8116         return 0;
8117
8118 register_failed:
8119 set_swap_failed:
8120         iounmap(sp->bar1);
8121 bar1_remap_failed:
8122         iounmap(sp->bar0);
8123 bar0_remap_failed:
8124 mem_alloc_failed:
8125         free_shared_mem(sp);
8126         pci_disable_device(pdev);
8127         pci_release_regions(pdev);
8128         free_netdev(dev);
8129
8130         return ret;
8131 }
8132
8133 /**
8134  * s2io_rem_nic - Free the PCI device
8135  * @pdev: structure containing the PCI related information of the device.
8136  * Description: This function is called by the Pci subsystem to release a
8137  * PCI device and free up all resource held up by the device. This could
8138  * be in response to a Hot plug event or when the driver is to be removed
8139  * from memory.
8140  */
8141
8142 static void s2io_rem_nic(struct pci_dev *pdev)
8143 {
8144         struct net_device *dev = pci_get_drvdata(pdev);
8145         struct s2io_nic *sp;
8146
8147         if (dev == NULL) {
8148                 DBG_PRINT(ERR_DBG, "Driver Data is NULL!!\n");
8149                 return;
8150         }
8151
8152         sp = netdev_priv(dev);
8153
8154         cancel_work_sync(&sp->rst_timer_task);
8155         cancel_work_sync(&sp->set_link_task);
8156
8157         unregister_netdev(dev);
8158
8159         free_shared_mem(sp);
8160         iounmap(sp->bar0);
8161         iounmap(sp->bar1);
8162         pci_release_regions(pdev);
8163         free_netdev(dev);
8164         pci_disable_device(pdev);
8165 }
8166
8167 module_pci_driver(s2io_driver);
8168
8169 static int check_L2_lro_capable(u8 *buffer, struct iphdr **ip,
8170                                 struct tcphdr **tcp, struct RxD_t *rxdp,
8171                                 struct s2io_nic *sp)
8172 {
8173         int ip_off;
8174         u8 l2_type = (u8)((rxdp->Control_1 >> 37) & 0x7), ip_len;
8175
8176         if (!(rxdp->Control_1 & RXD_FRAME_PROTO_TCP)) {
8177                 DBG_PRINT(INIT_DBG,
8178                           "%s: Non-TCP frames not supported for LRO\n",
8179                           __func__);
8180                 return -1;
8181         }
8182
8183         /* Checking for DIX type or DIX type with VLAN */
8184         if ((l2_type == 0) || (l2_type == 4)) {
8185                 ip_off = HEADER_ETHERNET_II_802_3_SIZE;
8186                 /*
8187                  * If vlan stripping is disabled and the frame is VLAN tagged,
8188                  * shift the offset by the VLAN header size bytes.
8189                  */
8190                 if ((!sp->vlan_strip_flag) &&
8191                     (rxdp->Control_1 & RXD_FRAME_VLAN_TAG))
8192                         ip_off += HEADER_VLAN_SIZE;
8193         } else {
8194                 /* LLC, SNAP etc are considered non-mergeable */
8195                 return -1;
8196         }
8197
8198         *ip = (struct iphdr *)(buffer + ip_off);
8199         ip_len = (u8)((*ip)->ihl);
8200         ip_len <<= 2;
8201         *tcp = (struct tcphdr *)((unsigned long)*ip + ip_len);
8202
8203         return 0;
8204 }
8205
8206 static int check_for_socket_match(struct lro *lro, struct iphdr *ip,
8207                                   struct tcphdr *tcp)
8208 {
8209         DBG_PRINT(INFO_DBG, "%s: Been here...\n", __func__);
8210         if ((lro->iph->saddr != ip->saddr) ||
8211             (lro->iph->daddr != ip->daddr) ||
8212             (lro->tcph->source != tcp->source) ||
8213             (lro->tcph->dest != tcp->dest))
8214                 return -1;
8215         return 0;
8216 }
8217
8218 static inline int get_l4_pyld_length(struct iphdr *ip, struct tcphdr *tcp)
8219 {
8220         return ntohs(ip->tot_len) - (ip->ihl << 2) - (tcp->doff << 2);
8221 }
8222
8223 static void initiate_new_session(struct lro *lro, u8 *l2h,
8224                                  struct iphdr *ip, struct tcphdr *tcp,
8225                                  u32 tcp_pyld_len, u16 vlan_tag)
8226 {
8227         DBG_PRINT(INFO_DBG, "%s: Been here...\n", __func__);
8228         lro->l2h = l2h;
8229         lro->iph = ip;
8230         lro->tcph = tcp;
8231         lro->tcp_next_seq = tcp_pyld_len + ntohl(tcp->seq);
8232         lro->tcp_ack = tcp->ack_seq;
8233         lro->sg_num = 1;
8234         lro->total_len = ntohs(ip->tot_len);
8235         lro->frags_len = 0;
8236         lro->vlan_tag = vlan_tag;
8237         /*
8238          * Check if we saw TCP timestamp.
8239          * Other consistency checks have already been done.
8240          */
8241         if (tcp->doff == 8) {
8242                 __be32 *ptr;
8243                 ptr = (__be32 *)(tcp+1);
8244                 lro->saw_ts = 1;
8245                 lro->cur_tsval = ntohl(*(ptr+1));
8246                 lro->cur_tsecr = *(ptr+2);
8247         }
8248         lro->in_use = 1;
8249 }
8250
8251 static void update_L3L4_header(struct s2io_nic *sp, struct lro *lro)
8252 {
8253         struct iphdr *ip = lro->iph;
8254         struct tcphdr *tcp = lro->tcph;
8255         struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
8256
8257         DBG_PRINT(INFO_DBG, "%s: Been here...\n", __func__);
8258
8259         /* Update L3 header */
8260         csum_replace2(&ip->check, ip->tot_len, htons(lro->total_len));
8261         ip->tot_len = htons(lro->total_len);
8262
8263         /* Update L4 header */
8264         tcp->ack_seq = lro->tcp_ack;
8265         tcp->window = lro->window;
8266
8267         /* Update tsecr field if this session has timestamps enabled */
8268         if (lro->saw_ts) {
8269                 __be32 *ptr = (__be32 *)(tcp + 1);
8270                 *(ptr+2) = lro->cur_tsecr;
8271         }
8272
8273         /* Update counters required for calculation of
8274          * average no. of packets aggregated.
8275          */
8276         swstats->sum_avg_pkts_aggregated += lro->sg_num;
8277         swstats->num_aggregations++;
8278 }
8279
8280 static void aggregate_new_rx(struct lro *lro, struct iphdr *ip,
8281                              struct tcphdr *tcp, u32 l4_pyld)
8282 {
8283         DBG_PRINT(INFO_DBG, "%s: Been here...\n", __func__);
8284         lro->total_len += l4_pyld;
8285         lro->frags_len += l4_pyld;
8286         lro->tcp_next_seq += l4_pyld;
8287         lro->sg_num++;
8288
8289         /* Update ack seq no. and window ad(from this pkt) in LRO object */
8290         lro->tcp_ack = tcp->ack_seq;
8291         lro->window = tcp->window;
8292
8293         if (lro->saw_ts) {
8294                 __be32 *ptr;
8295                 /* Update tsecr and tsval from this packet */
8296                 ptr = (__be32 *)(tcp+1);
8297                 lro->cur_tsval = ntohl(*(ptr+1));
8298                 lro->cur_tsecr = *(ptr + 2);
8299         }
8300 }
8301
8302 static int verify_l3_l4_lro_capable(struct lro *l_lro, struct iphdr *ip,
8303                                     struct tcphdr *tcp, u32 tcp_pyld_len)
8304 {
8305         u8 *ptr;
8306
8307         DBG_PRINT(INFO_DBG, "%s: Been here...\n", __func__);
8308
8309         if (!tcp_pyld_len) {
8310                 /* Runt frame or a pure ack */
8311                 return -1;
8312         }
8313
8314         if (ip->ihl != 5) /* IP has options */
8315                 return -1;
8316
8317         /* If we see CE codepoint in IP header, packet is not mergeable */
8318         if (INET_ECN_is_ce(ipv4_get_dsfield(ip)))
8319                 return -1;
8320
8321         /* If we see ECE or CWR flags in TCP header, packet is not mergeable */
8322         if (tcp->urg || tcp->psh || tcp->rst ||
8323             tcp->syn || tcp->fin ||
8324             tcp->ece || tcp->cwr || !tcp->ack) {
8325                 /*
8326                  * Currently recognize only the ack control word and
8327                  * any other control field being set would result in
8328                  * flushing the LRO session
8329                  */
8330                 return -1;
8331         }
8332
8333         /*
8334          * Allow only one TCP timestamp option. Don't aggregate if
8335          * any other options are detected.
8336          */
8337         if (tcp->doff != 5 && tcp->doff != 8)
8338                 return -1;
8339
8340         if (tcp->doff == 8) {
8341                 ptr = (u8 *)(tcp + 1);
8342                 while (*ptr == TCPOPT_NOP)
8343                         ptr++;
8344                 if (*ptr != TCPOPT_TIMESTAMP || *(ptr+1) != TCPOLEN_TIMESTAMP)
8345                         return -1;
8346
8347                 /* Ensure timestamp value increases monotonically */
8348                 if (l_lro)
8349                         if (l_lro->cur_tsval > ntohl(*((__be32 *)(ptr+2))))
8350                                 return -1;
8351
8352                 /* timestamp echo reply should be non-zero */
8353                 if (*((__be32 *)(ptr+6)) == 0)
8354                         return -1;
8355         }
8356
8357         return 0;
8358 }
8359
8360 static int s2io_club_tcp_session(struct ring_info *ring_data, u8 *buffer,
8361                                  u8 **tcp, u32 *tcp_len, struct lro **lro,
8362                                  struct RxD_t *rxdp, struct s2io_nic *sp)
8363 {
8364         struct iphdr *ip;
8365         struct tcphdr *tcph;
8366         int ret = 0, i;
8367         u16 vlan_tag = 0;
8368         struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
8369
8370         ret = check_L2_lro_capable(buffer, &ip, (struct tcphdr **)tcp,
8371                                    rxdp, sp);
8372         if (ret)
8373                 return ret;
8374
8375         DBG_PRINT(INFO_DBG, "IP Saddr: %x Daddr: %x\n", ip->saddr, ip->daddr);
8376
8377         vlan_tag = RXD_GET_VLAN_TAG(rxdp->Control_2);
8378         tcph = (struct tcphdr *)*tcp;
8379         *tcp_len = get_l4_pyld_length(ip, tcph);
8380         for (i = 0; i < MAX_LRO_SESSIONS; i++) {
8381                 struct lro *l_lro = &ring_data->lro0_n[i];
8382                 if (l_lro->in_use) {
8383                         if (check_for_socket_match(l_lro, ip, tcph))
8384                                 continue;
8385                         /* Sock pair matched */
8386                         *lro = l_lro;
8387
8388                         if ((*lro)->tcp_next_seq != ntohl(tcph->seq)) {
8389                                 DBG_PRINT(INFO_DBG, "%s: Out of sequence. "
8390                                           "expected 0x%x, actual 0x%x\n",
8391                                           __func__,
8392                                           (*lro)->tcp_next_seq,
8393                                           ntohl(tcph->seq));
8394
8395                                 swstats->outof_sequence_pkts++;
8396                                 ret = 2;
8397                                 break;
8398                         }
8399
8400                         if (!verify_l3_l4_lro_capable(l_lro, ip, tcph,
8401                                                       *tcp_len))
8402                                 ret = 1; /* Aggregate */
8403                         else
8404                                 ret = 2; /* Flush both */
8405                         break;
8406                 }
8407         }
8408
8409         if (ret == 0) {
8410                 /* Before searching for available LRO objects,
8411                  * check if the pkt is L3/L4 aggregatable. If not
8412                  * don't create new LRO session. Just send this
8413                  * packet up.
8414                  */
8415                 if (verify_l3_l4_lro_capable(NULL, ip, tcph, *tcp_len))
8416                         return 5;
8417
8418                 for (i = 0; i < MAX_LRO_SESSIONS; i++) {
8419                         struct lro *l_lro = &ring_data->lro0_n[i];
8420                         if (!(l_lro->in_use)) {
8421                                 *lro = l_lro;
8422                                 ret = 3; /* Begin anew */
8423                                 break;
8424                         }
8425                 }
8426         }
8427
8428         if (ret == 0) { /* sessions exceeded */
8429                 DBG_PRINT(INFO_DBG, "%s: All LRO sessions already in use\n",
8430                           __func__);
8431                 *lro = NULL;
8432                 return ret;
8433         }
8434
8435         switch (ret) {
8436         case 3:
8437                 initiate_new_session(*lro, buffer, ip, tcph, *tcp_len,
8438                                      vlan_tag);
8439                 break;
8440         case 2:
8441                 update_L3L4_header(sp, *lro);
8442                 break;
8443         case 1:
8444                 aggregate_new_rx(*lro, ip, tcph, *tcp_len);
8445                 if ((*lro)->sg_num == sp->lro_max_aggr_per_sess) {
8446                         update_L3L4_header(sp, *lro);
8447                         ret = 4; /* Flush the LRO */
8448                 }
8449                 break;
8450         default:
8451                 DBG_PRINT(ERR_DBG, "%s: Don't know, can't say!!\n", __func__);
8452                 break;
8453         }
8454
8455         return ret;
8456 }
8457
8458 static void clear_lro_session(struct lro *lro)
8459 {
8460         static u16 lro_struct_size = sizeof(struct lro);
8461
8462         memset(lro, 0, lro_struct_size);
8463 }
8464
8465 static void queue_rx_frame(struct sk_buff *skb, u16 vlan_tag)
8466 {
8467         struct net_device *dev = skb->dev;
8468         struct s2io_nic *sp = netdev_priv(dev);
8469
8470         skb->protocol = eth_type_trans(skb, dev);
8471         if (vlan_tag && sp->vlan_strip_flag)
8472                 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tag);
8473         if (sp->config.napi)
8474                 netif_receive_skb(skb);
8475         else
8476                 netif_rx(skb);
8477 }
8478
8479 static void lro_append_pkt(struct s2io_nic *sp, struct lro *lro,
8480                            struct sk_buff *skb, u32 tcp_len)
8481 {
8482         struct sk_buff *first = lro->parent;
8483         struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
8484
8485         first->len += tcp_len;
8486         first->data_len = lro->frags_len;
8487         skb_pull(skb, (skb->len - tcp_len));
8488         if (skb_shinfo(first)->frag_list)
8489                 lro->last_frag->next = skb;
8490         else
8491                 skb_shinfo(first)->frag_list = skb;
8492         first->truesize += skb->truesize;
8493         lro->last_frag = skb;
8494         swstats->clubbed_frms_cnt++;
8495 }
8496
8497 /**
8498  * s2io_io_error_detected - called when PCI error is detected
8499  * @pdev: Pointer to PCI device
8500  * @state: The current pci connection state
8501  *
8502  * This function is called after a PCI bus error affecting
8503  * this device has been detected.
8504  */
8505 static pci_ers_result_t s2io_io_error_detected(struct pci_dev *pdev,
8506                                                pci_channel_state_t state)
8507 {
8508         struct net_device *netdev = pci_get_drvdata(pdev);
8509         struct s2io_nic *sp = netdev_priv(netdev);
8510
8511         netif_device_detach(netdev);
8512
8513         if (state == pci_channel_io_perm_failure)
8514                 return PCI_ERS_RESULT_DISCONNECT;
8515
8516         if (netif_running(netdev)) {
8517                 /* Bring down the card, while avoiding PCI I/O */
8518                 do_s2io_card_down(sp, 0);
8519         }
8520         pci_disable_device(pdev);
8521
8522         return PCI_ERS_RESULT_NEED_RESET;
8523 }
8524
8525 /**
8526  * s2io_io_slot_reset - called after the pci bus has been reset.
8527  * @pdev: Pointer to PCI device
8528  *
8529  * Restart the card from scratch, as if from a cold-boot.
8530  * At this point, the card has exprienced a hard reset,
8531  * followed by fixups by BIOS, and has its config space
8532  * set up identically to what it was at cold boot.
8533  */
8534 static pci_ers_result_t s2io_io_slot_reset(struct pci_dev *pdev)
8535 {
8536         struct net_device *netdev = pci_get_drvdata(pdev);
8537         struct s2io_nic *sp = netdev_priv(netdev);
8538
8539         if (pci_enable_device(pdev)) {
8540                 pr_err("Cannot re-enable PCI device after reset.\n");
8541                 return PCI_ERS_RESULT_DISCONNECT;
8542         }
8543
8544         pci_set_master(pdev);
8545         s2io_reset(sp);
8546
8547         return PCI_ERS_RESULT_RECOVERED;
8548 }
8549
8550 /**
8551  * s2io_io_resume - called when traffic can start flowing again.
8552  * @pdev: Pointer to PCI device
8553  *
8554  * This callback is called when the error recovery driver tells
8555  * us that its OK to resume normal operation.
8556  */
8557 static void s2io_io_resume(struct pci_dev *pdev)
8558 {
8559         struct net_device *netdev = pci_get_drvdata(pdev);
8560         struct s2io_nic *sp = netdev_priv(netdev);
8561
8562         if (netif_running(netdev)) {
8563                 if (s2io_card_up(sp)) {
8564                         pr_err("Can't bring device back up after reset.\n");
8565                         return;
8566                 }
8567
8568                 if (s2io_set_mac_addr(netdev, netdev->dev_addr) == FAILURE) {
8569                         s2io_card_down(sp);
8570                         pr_err("Can't restore mac addr after reset.\n");
8571                         return;
8572                 }
8573         }
8574
8575         netif_device_attach(netdev);
8576         netif_tx_wake_all_queues(netdev);
8577 }