Linux-libre 5.3-gnu
[librecmc/linux-libre.git] / drivers / net / ethernet / natsemi / natsemi.c
1 /* natsemi.c: A Linux PCI Ethernet driver for the NatSemi DP8381x series. */
2 /*
3         Written/copyright 1999-2001 by Donald Becker.
4         Portions copyright (c) 2001,2002 Sun Microsystems (thockin@sun.com)
5         Portions copyright 2001,2002 Manfred Spraul (manfred@colorfullife.com)
6         Portions copyright 2004 Harald Welte <laforge@gnumonks.org>
7
8         This software may be used and distributed according to the terms of
9         the GNU General Public License (GPL), incorporated herein by reference.
10         Drivers based on or derived from this code fall under the GPL and must
11         retain the authorship, copyright and license notice.  This file is not
12         a complete program and may only be used when the entire operating
13         system is licensed under the GPL.  License for under other terms may be
14         available.  Contact the original author for details.
15
16         The original author may be reached as becker@scyld.com, or at
17         Scyld Computing Corporation
18         410 Severn Ave., Suite 210
19         Annapolis MD 21403
20
21         Support information and updates available at
22         http://www.scyld.com/network/netsemi.html
23         [link no longer provides useful info -jgarzik]
24
25
26         TODO:
27         * big endian support with CFG:BEM instead of cpu_to_le32
28 */
29
30 #include <linux/module.h>
31 #include <linux/kernel.h>
32 #include <linux/string.h>
33 #include <linux/timer.h>
34 #include <linux/errno.h>
35 #include <linux/ioport.h>
36 #include <linux/slab.h>
37 #include <linux/interrupt.h>
38 #include <linux/pci.h>
39 #include <linux/netdevice.h>
40 #include <linux/etherdevice.h>
41 #include <linux/skbuff.h>
42 #include <linux/init.h>
43 #include <linux/spinlock.h>
44 #include <linux/ethtool.h>
45 #include <linux/delay.h>
46 #include <linux/rtnetlink.h>
47 #include <linux/mii.h>
48 #include <linux/crc32.h>
49 #include <linux/bitops.h>
50 #include <linux/prefetch.h>
51 #include <asm/processor.h>      /* Processor type for cache alignment. */
52 #include <asm/io.h>
53 #include <asm/irq.h>
54 #include <linux/uaccess.h>
55
56 #define DRV_NAME        "natsemi"
57 #define DRV_VERSION     "2.1"
58 #define DRV_RELDATE     "Sept 11, 2006"
59
60 #define RX_OFFSET       2
61
62 /* Updated to recommendations in pci-skeleton v2.03. */
63
64 /* The user-configurable values.
65    These may be modified when a driver module is loaded.*/
66
67 #define NATSEMI_DEF_MSG         (NETIF_MSG_DRV          | \
68                                  NETIF_MSG_LINK         | \
69                                  NETIF_MSG_WOL          | \
70                                  NETIF_MSG_RX_ERR       | \
71                                  NETIF_MSG_TX_ERR)
72 static int debug = -1;
73
74 static int mtu;
75
76 /* Maximum number of multicast addresses to filter (vs. rx-all-multicast).
77    This chip uses a 512 element hash table based on the Ethernet CRC.  */
78 static const int multicast_filter_limit = 100;
79
80 /* Set the copy breakpoint for the copy-only-tiny-frames scheme.
81    Setting to > 1518 effectively disables this feature. */
82 static int rx_copybreak;
83
84 static int dspcfg_workaround = 1;
85
86 /* Used to pass the media type, etc.
87    Both 'options[]' and 'full_duplex[]' should exist for driver
88    interoperability.
89    The media type is usually passed in 'options[]'.
90 */
91 #define MAX_UNITS 8             /* More are supported, limit only on options */
92 static int options[MAX_UNITS];
93 static int full_duplex[MAX_UNITS];
94
95 /* Operational parameters that are set at compile time. */
96
97 /* Keep the ring sizes a power of two for compile efficiency.
98    The compiler will convert <unsigned>'%'<2^N> into a bit mask.
99    Making the Tx ring too large decreases the effectiveness of channel
100    bonding and packet priority.
101    There are no ill effects from too-large receive rings. */
102 #define TX_RING_SIZE    16
103 #define TX_QUEUE_LEN    10 /* Limit ring entries actually used, min 4. */
104 #define RX_RING_SIZE    32
105
106 /* Operational parameters that usually are not changed. */
107 /* Time in jiffies before concluding the transmitter is hung. */
108 #define TX_TIMEOUT  (2*HZ)
109
110 #define NATSEMI_HW_TIMEOUT      400
111 #define NATSEMI_TIMER_FREQ      5*HZ
112 #define NATSEMI_PG0_NREGS       64
113 #define NATSEMI_RFDR_NREGS      8
114 #define NATSEMI_PG1_NREGS       4
115 #define NATSEMI_NREGS           (NATSEMI_PG0_NREGS + NATSEMI_RFDR_NREGS + \
116                                  NATSEMI_PG1_NREGS)
117 #define NATSEMI_REGS_VER        1 /* v1 added RFDR registers */
118 #define NATSEMI_REGS_SIZE       (NATSEMI_NREGS * sizeof(u32))
119
120 /* Buffer sizes:
121  * The nic writes 32-bit values, even if the upper bytes of
122  * a 32-bit value are beyond the end of the buffer.
123  */
124 #define NATSEMI_HEADERS         22      /* 2*mac,type,vlan,crc */
125 #define NATSEMI_PADDING         16      /* 2 bytes should be sufficient */
126 #define NATSEMI_LONGPKT         1518    /* limit for normal packets */
127 #define NATSEMI_RX_LIMIT        2046    /* maximum supported by hardware */
128
129 /* These identify the driver base version and may not be removed. */
130 static const char version[] =
131   KERN_INFO DRV_NAME " dp8381x driver, version "
132       DRV_VERSION ", " DRV_RELDATE "\n"
133   "  originally by Donald Becker <becker@scyld.com>\n"
134   "  2.4.x kernel port by Jeff Garzik, Tjeerd Mulder\n";
135
136 MODULE_AUTHOR("Donald Becker <becker@scyld.com>");
137 MODULE_DESCRIPTION("National Semiconductor DP8381x series PCI Ethernet driver");
138 MODULE_LICENSE("GPL");
139
140 module_param(mtu, int, 0);
141 module_param(debug, int, 0);
142 module_param(rx_copybreak, int, 0);
143 module_param(dspcfg_workaround, int, 0);
144 module_param_array(options, int, NULL, 0);
145 module_param_array(full_duplex, int, NULL, 0);
146 MODULE_PARM_DESC(mtu, "DP8381x MTU (all boards)");
147 MODULE_PARM_DESC(debug, "DP8381x default debug level");
148 MODULE_PARM_DESC(rx_copybreak,
149         "DP8381x copy breakpoint for copy-only-tiny-frames");
150 MODULE_PARM_DESC(dspcfg_workaround, "DP8381x: control DspCfg workaround");
151 MODULE_PARM_DESC(options,
152         "DP8381x: Bits 0-3: media type, bit 17: full duplex");
153 MODULE_PARM_DESC(full_duplex, "DP8381x full duplex setting(s) (1)");
154
155 /*
156                                 Theory of Operation
157
158 I. Board Compatibility
159
160 This driver is designed for National Semiconductor DP83815 PCI Ethernet NIC.
161 It also works with other chips in in the DP83810 series.
162
163 II. Board-specific settings
164
165 This driver requires the PCI interrupt line to be valid.
166 It honors the EEPROM-set values.
167
168 III. Driver operation
169
170 IIIa. Ring buffers
171
172 This driver uses two statically allocated fixed-size descriptor lists
173 formed into rings by a branch from the final descriptor to the beginning of
174 the list.  The ring sizes are set at compile time by RX/TX_RING_SIZE.
175 The NatSemi design uses a 'next descriptor' pointer that the driver forms
176 into a list.
177
178 IIIb/c. Transmit/Receive Structure
179
180 This driver uses a zero-copy receive and transmit scheme.
181 The driver allocates full frame size skbuffs for the Rx ring buffers at
182 open() time and passes the skb->data field to the chip as receive data
183 buffers.  When an incoming frame is less than RX_COPYBREAK bytes long,
184 a fresh skbuff is allocated and the frame is copied to the new skbuff.
185 When the incoming frame is larger, the skbuff is passed directly up the
186 protocol stack.  Buffers consumed this way are replaced by newly allocated
187 skbuffs in a later phase of receives.
188
189 The RX_COPYBREAK value is chosen to trade-off the memory wasted by
190 using a full-sized skbuff for small frames vs. the copying costs of larger
191 frames.  New boards are typically used in generously configured machines
192 and the underfilled buffers have negligible impact compared to the benefit of
193 a single allocation size, so the default value of zero results in never
194 copying packets.  When copying is done, the cost is usually mitigated by using
195 a combined copy/checksum routine.  Copying also preloads the cache, which is
196 most useful with small frames.
197
198 A subtle aspect of the operation is that unaligned buffers are not permitted
199 by the hardware.  Thus the IP header at offset 14 in an ethernet frame isn't
200 longword aligned for further processing.  On copies frames are put into the
201 skbuff at an offset of "+2", 16-byte aligning the IP header.
202
203 IIId. Synchronization
204
205 Most operations are synchronized on the np->lock irq spinlock, except the
206 receive and transmit paths which are synchronised using a combination of
207 hardware descriptor ownership, disabling interrupts and NAPI poll scheduling.
208
209 IVb. References
210
211 http://www.scyld.com/expert/100mbps.html
212 http://www.scyld.com/expert/NWay.html
213 Datasheet is available from:
214 http://www.national.com/pf/DP/DP83815.html
215
216 IVc. Errata
217
218 None characterised.
219 */
220
221
222
223 /*
224  * Support for fibre connections on Am79C874:
225  * This phy needs a special setup when connected to a fibre cable.
226  * http://www.amd.com/files/connectivitysolutions/networking/archivednetworking/22235.pdf
227  */
228 #define PHYID_AM79C874  0x0022561b
229
230 enum {
231         MII_MCTRL       = 0x15,         /* mode control register */
232         MII_FX_SEL      = 0x0001,       /* 100BASE-FX (fiber) */
233         MII_EN_SCRM     = 0x0004,       /* enable scrambler (tp) */
234 };
235
236 enum {
237         NATSEMI_FLAG_IGNORE_PHY         = 0x1,
238 };
239
240 /* array of board data directly indexed by pci_tbl[x].driver_data */
241 static struct {
242         const char *name;
243         unsigned long flags;
244         unsigned int eeprom_size;
245 } natsemi_pci_info[] = {
246         { "Aculab E1/T1 PMXc cPCI carrier card", NATSEMI_FLAG_IGNORE_PHY, 128 },
247         { "NatSemi DP8381[56]", 0, 24 },
248 };
249
250 static const struct pci_device_id natsemi_pci_tbl[] = {
251         { PCI_VENDOR_ID_NS, 0x0020, 0x12d9,     0x000c,     0, 0, 0 },
252         { PCI_VENDOR_ID_NS, 0x0020, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 1 },
253         { }     /* terminate list */
254 };
255 MODULE_DEVICE_TABLE(pci, natsemi_pci_tbl);
256
257 /* Offsets to the device registers.
258    Unlike software-only systems, device drivers interact with complex hardware.
259    It's not useful to define symbolic names for every register bit in the
260    device.
261 */
262 enum register_offsets {
263         ChipCmd                 = 0x00,
264         ChipConfig              = 0x04,
265         EECtrl                  = 0x08,
266         PCIBusCfg               = 0x0C,
267         IntrStatus              = 0x10,
268         IntrMask                = 0x14,
269         IntrEnable              = 0x18,
270         IntrHoldoff             = 0x1C, /* DP83816 only */
271         TxRingPtr               = 0x20,
272         TxConfig                = 0x24,
273         RxRingPtr               = 0x30,
274         RxConfig                = 0x34,
275         ClkRun                  = 0x3C,
276         WOLCmd                  = 0x40,
277         PauseCmd                = 0x44,
278         RxFilterAddr            = 0x48,
279         RxFilterData            = 0x4C,
280         BootRomAddr             = 0x50,
281         BootRomData             = 0x54,
282         SiliconRev              = 0x58,
283         StatsCtrl               = 0x5C,
284         StatsData               = 0x60,
285         RxPktErrs               = 0x60,
286         RxMissed                = 0x68,
287         RxCRCErrs               = 0x64,
288         BasicControl            = 0x80,
289         BasicStatus             = 0x84,
290         AnegAdv                 = 0x90,
291         AnegPeer                = 0x94,
292         PhyStatus               = 0xC0,
293         MIntrCtrl               = 0xC4,
294         MIntrStatus             = 0xC8,
295         PhyCtrl                 = 0xE4,
296
297         /* These are from the spec, around page 78... on a separate table.
298          * The meaning of these registers depend on the value of PGSEL. */
299         PGSEL                   = 0xCC,
300         PMDCSR                  = 0xE4,
301         TSTDAT                  = 0xFC,
302         DSPCFG                  = 0xF4,
303         SDCFG                   = 0xF8
304 };
305 /* the values for the 'magic' registers above (PGSEL=1) */
306 #define PMDCSR_VAL      0x189c  /* enable preferred adaptation circuitry */
307 #define TSTDAT_VAL      0x0
308 #define DSPCFG_VAL      0x5040
309 #define SDCFG_VAL       0x008c  /* set voltage thresholds for Signal Detect */
310 #define DSPCFG_LOCK     0x20    /* coefficient lock bit in DSPCFG */
311 #define DSPCFG_COEF     0x1000  /* see coefficient (in TSTDAT) bit in DSPCFG */
312 #define TSTDAT_FIXED    0xe8    /* magic number for bad coefficients */
313
314 /* misc PCI space registers */
315 enum pci_register_offsets {
316         PCIPM                   = 0x44,
317 };
318
319 enum ChipCmd_bits {
320         ChipReset               = 0x100,
321         RxReset                 = 0x20,
322         TxReset                 = 0x10,
323         RxOff                   = 0x08,
324         RxOn                    = 0x04,
325         TxOff                   = 0x02,
326         TxOn                    = 0x01,
327 };
328
329 enum ChipConfig_bits {
330         CfgPhyDis               = 0x200,
331         CfgPhyRst               = 0x400,
332         CfgExtPhy               = 0x1000,
333         CfgAnegEnable           = 0x2000,
334         CfgAneg100              = 0x4000,
335         CfgAnegFull             = 0x8000,
336         CfgAnegDone             = 0x8000000,
337         CfgFullDuplex           = 0x20000000,
338         CfgSpeed100             = 0x40000000,
339         CfgLink                 = 0x80000000,
340 };
341
342 enum EECtrl_bits {
343         EE_ShiftClk             = 0x04,
344         EE_DataIn               = 0x01,
345         EE_ChipSelect           = 0x08,
346         EE_DataOut              = 0x02,
347         MII_Data                = 0x10,
348         MII_Write               = 0x20,
349         MII_ShiftClk            = 0x40,
350 };
351
352 enum PCIBusCfg_bits {
353         EepromReload            = 0x4,
354 };
355
356 /* Bits in the interrupt status/mask registers. */
357 enum IntrStatus_bits {
358         IntrRxDone              = 0x0001,
359         IntrRxIntr              = 0x0002,
360         IntrRxErr               = 0x0004,
361         IntrRxEarly             = 0x0008,
362         IntrRxIdle              = 0x0010,
363         IntrRxOverrun           = 0x0020,
364         IntrTxDone              = 0x0040,
365         IntrTxIntr              = 0x0080,
366         IntrTxErr               = 0x0100,
367         IntrTxIdle              = 0x0200,
368         IntrTxUnderrun          = 0x0400,
369         StatsMax                = 0x0800,
370         SWInt                   = 0x1000,
371         WOLPkt                  = 0x2000,
372         LinkChange              = 0x4000,
373         IntrHighBits            = 0x8000,
374         RxStatusFIFOOver        = 0x10000,
375         IntrPCIErr              = 0xf00000,
376         RxResetDone             = 0x1000000,
377         TxResetDone             = 0x2000000,
378         IntrAbnormalSummary     = 0xCD20,
379 };
380
381 /*
382  * Default Interrupts:
383  * Rx OK, Rx Packet Error, Rx Overrun,
384  * Tx OK, Tx Packet Error, Tx Underrun,
385  * MIB Service, Phy Interrupt, High Bits,
386  * Rx Status FIFO overrun,
387  * Received Target Abort, Received Master Abort,
388  * Signalled System Error, Received Parity Error
389  */
390 #define DEFAULT_INTR 0x00f1cd65
391
392 enum TxConfig_bits {
393         TxDrthMask              = 0x3f,
394         TxFlthMask              = 0x3f00,
395         TxMxdmaMask             = 0x700000,
396         TxMxdma_512             = 0x0,
397         TxMxdma_4               = 0x100000,
398         TxMxdma_8               = 0x200000,
399         TxMxdma_16              = 0x300000,
400         TxMxdma_32              = 0x400000,
401         TxMxdma_64              = 0x500000,
402         TxMxdma_128             = 0x600000,
403         TxMxdma_256             = 0x700000,
404         TxCollRetry             = 0x800000,
405         TxAutoPad               = 0x10000000,
406         TxMacLoop               = 0x20000000,
407         TxHeartIgn              = 0x40000000,
408         TxCarrierIgn            = 0x80000000
409 };
410
411 /*
412  * Tx Configuration:
413  * - 256 byte DMA burst length
414  * - fill threshold 512 bytes (i.e. restart DMA when 512 bytes are free)
415  * - 64 bytes initial drain threshold (i.e. begin actual transmission
416  *   when 64 byte are in the fifo)
417  * - on tx underruns, increase drain threshold by 64.
418  * - at most use a drain threshold of 1472 bytes: The sum of the fill
419  *   threshold and the drain threshold must be less than 2016 bytes.
420  *
421  */
422 #define TX_FLTH_VAL             ((512/32) << 8)
423 #define TX_DRTH_VAL_START       (64/32)
424 #define TX_DRTH_VAL_INC         2
425 #define TX_DRTH_VAL_LIMIT       (1472/32)
426
427 enum RxConfig_bits {
428         RxDrthMask              = 0x3e,
429         RxMxdmaMask             = 0x700000,
430         RxMxdma_512             = 0x0,
431         RxMxdma_4               = 0x100000,
432         RxMxdma_8               = 0x200000,
433         RxMxdma_16              = 0x300000,
434         RxMxdma_32              = 0x400000,
435         RxMxdma_64              = 0x500000,
436         RxMxdma_128             = 0x600000,
437         RxMxdma_256             = 0x700000,
438         RxAcceptLong            = 0x8000000,
439         RxAcceptTx              = 0x10000000,
440         RxAcceptRunt            = 0x40000000,
441         RxAcceptErr             = 0x80000000
442 };
443 #define RX_DRTH_VAL             (128/8)
444
445 enum ClkRun_bits {
446         PMEEnable               = 0x100,
447         PMEStatus               = 0x8000,
448 };
449
450 enum WolCmd_bits {
451         WakePhy                 = 0x1,
452         WakeUnicast             = 0x2,
453         WakeMulticast           = 0x4,
454         WakeBroadcast           = 0x8,
455         WakeArp                 = 0x10,
456         WakePMatch0             = 0x20,
457         WakePMatch1             = 0x40,
458         WakePMatch2             = 0x80,
459         WakePMatch3             = 0x100,
460         WakeMagic               = 0x200,
461         WakeMagicSecure         = 0x400,
462         SecureHack              = 0x100000,
463         WokePhy                 = 0x400000,
464         WokeUnicast             = 0x800000,
465         WokeMulticast           = 0x1000000,
466         WokeBroadcast           = 0x2000000,
467         WokeArp                 = 0x4000000,
468         WokePMatch0             = 0x8000000,
469         WokePMatch1             = 0x10000000,
470         WokePMatch2             = 0x20000000,
471         WokePMatch3             = 0x40000000,
472         WokeMagic               = 0x80000000,
473         WakeOptsSummary         = 0x7ff
474 };
475
476 enum RxFilterAddr_bits {
477         RFCRAddressMask         = 0x3ff,
478         AcceptMulticast         = 0x00200000,
479         AcceptMyPhys            = 0x08000000,
480         AcceptAllPhys           = 0x10000000,
481         AcceptAllMulticast      = 0x20000000,
482         AcceptBroadcast         = 0x40000000,
483         RxFilterEnable          = 0x80000000
484 };
485
486 enum StatsCtrl_bits {
487         StatsWarn               = 0x1,
488         StatsFreeze             = 0x2,
489         StatsClear              = 0x4,
490         StatsStrobe             = 0x8,
491 };
492
493 enum MIntrCtrl_bits {
494         MICRIntEn               = 0x2,
495 };
496
497 enum PhyCtrl_bits {
498         PhyAddrMask             = 0x1f,
499 };
500
501 #define PHY_ADDR_NONE           32
502 #define PHY_ADDR_INTERNAL       1
503
504 /* values we might find in the silicon revision register */
505 #define SRR_DP83815_C   0x0302
506 #define SRR_DP83815_D   0x0403
507 #define SRR_DP83816_A4  0x0504
508 #define SRR_DP83816_A5  0x0505
509
510 /* The Rx and Tx buffer descriptors. */
511 /* Note that using only 32 bit fields simplifies conversion to big-endian
512    architectures. */
513 struct netdev_desc {
514         __le32 next_desc;
515         __le32 cmd_status;
516         __le32 addr;
517         __le32 software_use;
518 };
519
520 /* Bits in network_desc.status */
521 enum desc_status_bits {
522         DescOwn=0x80000000, DescMore=0x40000000, DescIntr=0x20000000,
523         DescNoCRC=0x10000000, DescPktOK=0x08000000,
524         DescSizeMask=0xfff,
525
526         DescTxAbort=0x04000000, DescTxFIFO=0x02000000,
527         DescTxCarrier=0x01000000, DescTxDefer=0x00800000,
528         DescTxExcDefer=0x00400000, DescTxOOWCol=0x00200000,
529         DescTxExcColl=0x00100000, DescTxCollCount=0x000f0000,
530
531         DescRxAbort=0x04000000, DescRxOver=0x02000000,
532         DescRxDest=0x01800000, DescRxLong=0x00400000,
533         DescRxRunt=0x00200000, DescRxInvalid=0x00100000,
534         DescRxCRC=0x00080000, DescRxAlign=0x00040000,
535         DescRxLoop=0x00020000, DesRxColl=0x00010000,
536 };
537
538 struct netdev_private {
539         /* Descriptor rings first for alignment */
540         dma_addr_t ring_dma;
541         struct netdev_desc *rx_ring;
542         struct netdev_desc *tx_ring;
543         /* The addresses of receive-in-place skbuffs */
544         struct sk_buff *rx_skbuff[RX_RING_SIZE];
545         dma_addr_t rx_dma[RX_RING_SIZE];
546         /* address of a sent-in-place packet/buffer, for later free() */
547         struct sk_buff *tx_skbuff[TX_RING_SIZE];
548         dma_addr_t tx_dma[TX_RING_SIZE];
549         struct net_device *dev;
550         void __iomem *ioaddr;
551         struct napi_struct napi;
552         /* Media monitoring timer */
553         struct timer_list timer;
554         /* Frequently used values: keep some adjacent for cache effect */
555         struct pci_dev *pci_dev;
556         struct netdev_desc *rx_head_desc;
557         /* Producer/consumer ring indices */
558         unsigned int cur_rx, dirty_rx;
559         unsigned int cur_tx, dirty_tx;
560         /* Based on MTU+slack. */
561         unsigned int rx_buf_sz;
562         int oom;
563         /* Interrupt status */
564         u32 intr_status;
565         /* Do not touch the nic registers */
566         int hands_off;
567         /* Don't pay attention to the reported link state. */
568         int ignore_phy;
569         /* external phy that is used: only valid if dev->if_port != PORT_TP */
570         int mii;
571         int phy_addr_external;
572         unsigned int full_duplex;
573         /* Rx filter */
574         u32 cur_rx_mode;
575         u32 rx_filter[16];
576         /* FIFO and PCI burst thresholds */
577         u32 tx_config, rx_config;
578         /* original contents of ClkRun register */
579         u32 SavedClkRun;
580         /* silicon revision */
581         u32 srr;
582         /* expected DSPCFG value */
583         u16 dspcfg;
584         int dspcfg_workaround;
585         /* parms saved in ethtool format */
586         u16     speed;          /* The forced speed, 10Mb, 100Mb, gigabit */
587         u8      duplex;         /* Duplex, half or full */
588         u8      autoneg;        /* Autonegotiation enabled */
589         /* MII transceiver section */
590         u16 advertising;
591         unsigned int iosize;
592         spinlock_t lock;
593         u32 msg_enable;
594         /* EEPROM data */
595         int eeprom_size;
596 };
597
598 static void move_int_phy(struct net_device *dev, int addr);
599 static int eeprom_read(void __iomem *ioaddr, int location);
600 static int mdio_read(struct net_device *dev, int reg);
601 static void mdio_write(struct net_device *dev, int reg, u16 data);
602 static void init_phy_fixup(struct net_device *dev);
603 static int miiport_read(struct net_device *dev, int phy_id, int reg);
604 static void miiport_write(struct net_device *dev, int phy_id, int reg, u16 data);
605 static int find_mii(struct net_device *dev);
606 static void natsemi_reset(struct net_device *dev);
607 static void natsemi_reload_eeprom(struct net_device *dev);
608 static void natsemi_stop_rxtx(struct net_device *dev);
609 static int netdev_open(struct net_device *dev);
610 static void do_cable_magic(struct net_device *dev);
611 static void undo_cable_magic(struct net_device *dev);
612 static void check_link(struct net_device *dev);
613 static void netdev_timer(struct timer_list *t);
614 static void dump_ring(struct net_device *dev);
615 static void ns_tx_timeout(struct net_device *dev);
616 static int alloc_ring(struct net_device *dev);
617 static void refill_rx(struct net_device *dev);
618 static void init_ring(struct net_device *dev);
619 static void drain_tx(struct net_device *dev);
620 static void drain_ring(struct net_device *dev);
621 static void free_ring(struct net_device *dev);
622 static void reinit_ring(struct net_device *dev);
623 static void init_registers(struct net_device *dev);
624 static netdev_tx_t start_tx(struct sk_buff *skb, struct net_device *dev);
625 static irqreturn_t intr_handler(int irq, void *dev_instance);
626 static void netdev_error(struct net_device *dev, int intr_status);
627 static int natsemi_poll(struct napi_struct *napi, int budget);
628 static void netdev_rx(struct net_device *dev, int *work_done, int work_to_do);
629 static void netdev_tx_done(struct net_device *dev);
630 static int natsemi_change_mtu(struct net_device *dev, int new_mtu);
631 #ifdef CONFIG_NET_POLL_CONTROLLER
632 static void natsemi_poll_controller(struct net_device *dev);
633 #endif
634 static void __set_rx_mode(struct net_device *dev);
635 static void set_rx_mode(struct net_device *dev);
636 static void __get_stats(struct net_device *dev);
637 static struct net_device_stats *get_stats(struct net_device *dev);
638 static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
639 static int netdev_set_wol(struct net_device *dev, u32 newval);
640 static int netdev_get_wol(struct net_device *dev, u32 *supported, u32 *cur);
641 static int netdev_set_sopass(struct net_device *dev, u8 *newval);
642 static int netdev_get_sopass(struct net_device *dev, u8 *data);
643 static int netdev_get_ecmd(struct net_device *dev,
644                            struct ethtool_link_ksettings *ecmd);
645 static int netdev_set_ecmd(struct net_device *dev,
646                            const struct ethtool_link_ksettings *ecmd);
647 static void enable_wol_mode(struct net_device *dev, int enable_intr);
648 static int netdev_close(struct net_device *dev);
649 static int netdev_get_regs(struct net_device *dev, u8 *buf);
650 static int netdev_get_eeprom(struct net_device *dev, u8 *buf);
651 static const struct ethtool_ops ethtool_ops;
652
653 #define NATSEMI_ATTR(_name) \
654 static ssize_t natsemi_show_##_name(struct device *dev, \
655          struct device_attribute *attr, char *buf); \
656          static ssize_t natsemi_set_##_name(struct device *dev, \
657                 struct device_attribute *attr, \
658                 const char *buf, size_t count); \
659          static DEVICE_ATTR(_name, 0644, natsemi_show_##_name, natsemi_set_##_name)
660
661 #define NATSEMI_CREATE_FILE(_dev, _name) \
662          device_create_file(&_dev->dev, &dev_attr_##_name)
663 #define NATSEMI_REMOVE_FILE(_dev, _name) \
664          device_remove_file(&_dev->dev, &dev_attr_##_name)
665
666 NATSEMI_ATTR(dspcfg_workaround);
667
668 static ssize_t natsemi_show_dspcfg_workaround(struct device *dev,
669                                               struct device_attribute *attr,
670                                               char *buf)
671 {
672         struct netdev_private *np = netdev_priv(to_net_dev(dev));
673
674         return sprintf(buf, "%s\n", np->dspcfg_workaround ? "on" : "off");
675 }
676
677 static ssize_t natsemi_set_dspcfg_workaround(struct device *dev,
678                                              struct device_attribute *attr,
679                                              const char *buf, size_t count)
680 {
681         struct netdev_private *np = netdev_priv(to_net_dev(dev));
682         int new_setting;
683         unsigned long flags;
684
685         /* Find out the new setting */
686         if (!strncmp("on", buf, count - 1) || !strncmp("1", buf, count - 1))
687                 new_setting = 1;
688         else if (!strncmp("off", buf, count - 1) ||
689                  !strncmp("0", buf, count - 1))
690                 new_setting = 0;
691         else
692                  return count;
693
694         spin_lock_irqsave(&np->lock, flags);
695
696         np->dspcfg_workaround = new_setting;
697
698         spin_unlock_irqrestore(&np->lock, flags);
699
700         return count;
701 }
702
703 static inline void __iomem *ns_ioaddr(struct net_device *dev)
704 {
705         struct netdev_private *np = netdev_priv(dev);
706
707         return np->ioaddr;
708 }
709
710 static inline void natsemi_irq_enable(struct net_device *dev)
711 {
712         writel(1, ns_ioaddr(dev) + IntrEnable);
713         readl(ns_ioaddr(dev) + IntrEnable);
714 }
715
716 static inline void natsemi_irq_disable(struct net_device *dev)
717 {
718         writel(0, ns_ioaddr(dev) + IntrEnable);
719         readl(ns_ioaddr(dev) + IntrEnable);
720 }
721
722 static void move_int_phy(struct net_device *dev, int addr)
723 {
724         struct netdev_private *np = netdev_priv(dev);
725         void __iomem *ioaddr = ns_ioaddr(dev);
726         int target = 31;
727
728         /*
729          * The internal phy is visible on the external mii bus. Therefore we must
730          * move it away before we can send commands to an external phy.
731          * There are two addresses we must avoid:
732          * - the address on the external phy that is used for transmission.
733          * - the address that we want to access. User space can access phys
734          *   on the mii bus with SIOCGMIIREG/SIOCSMIIREG, independent from the
735          *   phy that is used for transmission.
736          */
737
738         if (target == addr)
739                 target--;
740         if (target == np->phy_addr_external)
741                 target--;
742         writew(target, ioaddr + PhyCtrl);
743         readw(ioaddr + PhyCtrl);
744         udelay(1);
745 }
746
747 static void natsemi_init_media(struct net_device *dev)
748 {
749         struct netdev_private *np = netdev_priv(dev);
750         u32 tmp;
751
752         if (np->ignore_phy)
753                 netif_carrier_on(dev);
754         else
755                 netif_carrier_off(dev);
756
757         /* get the initial settings from hardware */
758         tmp            = mdio_read(dev, MII_BMCR);
759         np->speed      = (tmp & BMCR_SPEED100)? SPEED_100     : SPEED_10;
760         np->duplex     = (tmp & BMCR_FULLDPLX)? DUPLEX_FULL   : DUPLEX_HALF;
761         np->autoneg    = (tmp & BMCR_ANENABLE)? AUTONEG_ENABLE: AUTONEG_DISABLE;
762         np->advertising= mdio_read(dev, MII_ADVERTISE);
763
764         if ((np->advertising & ADVERTISE_ALL) != ADVERTISE_ALL &&
765             netif_msg_probe(np)) {
766                 printk(KERN_INFO "natsemi %s: Transceiver default autonegotiation %s "
767                         "10%s %s duplex.\n",
768                         pci_name(np->pci_dev),
769                         (mdio_read(dev, MII_BMCR) & BMCR_ANENABLE)?
770                           "enabled, advertise" : "disabled, force",
771                         (np->advertising &
772                           (ADVERTISE_100FULL|ADVERTISE_100HALF))?
773                             "0" : "",
774                         (np->advertising &
775                           (ADVERTISE_100FULL|ADVERTISE_10FULL))?
776                             "full" : "half");
777         }
778         if (netif_msg_probe(np))
779                 printk(KERN_INFO
780                         "natsemi %s: Transceiver status %#04x advertising %#04x.\n",
781                         pci_name(np->pci_dev), mdio_read(dev, MII_BMSR),
782                         np->advertising);
783
784 }
785
786 static const struct net_device_ops natsemi_netdev_ops = {
787         .ndo_open               = netdev_open,
788         .ndo_stop               = netdev_close,
789         .ndo_start_xmit         = start_tx,
790         .ndo_get_stats          = get_stats,
791         .ndo_set_rx_mode        = set_rx_mode,
792         .ndo_change_mtu         = natsemi_change_mtu,
793         .ndo_do_ioctl           = netdev_ioctl,
794         .ndo_tx_timeout         = ns_tx_timeout,
795         .ndo_set_mac_address    = eth_mac_addr,
796         .ndo_validate_addr      = eth_validate_addr,
797 #ifdef CONFIG_NET_POLL_CONTROLLER
798         .ndo_poll_controller    = natsemi_poll_controller,
799 #endif
800 };
801
802 static int natsemi_probe1(struct pci_dev *pdev, const struct pci_device_id *ent)
803 {
804         struct net_device *dev;
805         struct netdev_private *np;
806         int i, option, irq, chip_idx = ent->driver_data;
807         static int find_cnt = -1;
808         resource_size_t iostart;
809         unsigned long iosize;
810         void __iomem *ioaddr;
811         const int pcibar = 1; /* PCI base address register */
812         int prev_eedata;
813         u32 tmp;
814
815 /* when built into the kernel, we only print version if device is found */
816 #ifndef MODULE
817         static int printed_version;
818         if (!printed_version++)
819                 printk(version);
820 #endif
821
822         i = pci_enable_device(pdev);
823         if (i) return i;
824
825         /* natsemi has a non-standard PM control register
826          * in PCI config space.  Some boards apparently need
827          * to be brought to D0 in this manner.
828          */
829         pci_read_config_dword(pdev, PCIPM, &tmp);
830         if (tmp & PCI_PM_CTRL_STATE_MASK) {
831                 /* D0 state, disable PME assertion */
832                 u32 newtmp = tmp & ~PCI_PM_CTRL_STATE_MASK;
833                 pci_write_config_dword(pdev, PCIPM, newtmp);
834         }
835
836         find_cnt++;
837         iostart = pci_resource_start(pdev, pcibar);
838         iosize = pci_resource_len(pdev, pcibar);
839         irq = pdev->irq;
840
841         pci_set_master(pdev);
842
843         dev = alloc_etherdev(sizeof (struct netdev_private));
844         if (!dev)
845                 return -ENOMEM;
846         SET_NETDEV_DEV(dev, &pdev->dev);
847
848         i = pci_request_regions(pdev, DRV_NAME);
849         if (i)
850                 goto err_pci_request_regions;
851
852         ioaddr = ioremap(iostart, iosize);
853         if (!ioaddr) {
854                 i = -ENOMEM;
855                 goto err_ioremap;
856         }
857
858         /* Work around the dropped serial bit. */
859         prev_eedata = eeprom_read(ioaddr, 6);
860         for (i = 0; i < 3; i++) {
861                 int eedata = eeprom_read(ioaddr, i + 7);
862                 dev->dev_addr[i*2] = (eedata << 1) + (prev_eedata >> 15);
863                 dev->dev_addr[i*2+1] = eedata >> 7;
864                 prev_eedata = eedata;
865         }
866
867         np = netdev_priv(dev);
868         np->ioaddr = ioaddr;
869
870         netif_napi_add(dev, &np->napi, natsemi_poll, 64);
871         np->dev = dev;
872
873         np->pci_dev = pdev;
874         pci_set_drvdata(pdev, dev);
875         np->iosize = iosize;
876         spin_lock_init(&np->lock);
877         np->msg_enable = (debug >= 0) ? (1<<debug)-1 : NATSEMI_DEF_MSG;
878         np->hands_off = 0;
879         np->intr_status = 0;
880         np->eeprom_size = natsemi_pci_info[chip_idx].eeprom_size;
881         if (natsemi_pci_info[chip_idx].flags & NATSEMI_FLAG_IGNORE_PHY)
882                 np->ignore_phy = 1;
883         else
884                 np->ignore_phy = 0;
885         np->dspcfg_workaround = dspcfg_workaround;
886
887         /* Initial port:
888          * - If configured to ignore the PHY set up for external.
889          * - If the nic was configured to use an external phy and if find_mii
890          *   finds a phy: use external port, first phy that replies.
891          * - Otherwise: internal port.
892          * Note that the phy address for the internal phy doesn't matter:
893          * The address would be used to access a phy over the mii bus, but
894          * the internal phy is accessed through mapped registers.
895          */
896         if (np->ignore_phy || readl(ioaddr + ChipConfig) & CfgExtPhy)
897                 dev->if_port = PORT_MII;
898         else
899                 dev->if_port = PORT_TP;
900         /* Reset the chip to erase previous misconfiguration. */
901         natsemi_reload_eeprom(dev);
902         natsemi_reset(dev);
903
904         if (dev->if_port != PORT_TP) {
905                 np->phy_addr_external = find_mii(dev);
906                 /* If we're ignoring the PHY it doesn't matter if we can't
907                  * find one. */
908                 if (!np->ignore_phy && np->phy_addr_external == PHY_ADDR_NONE) {
909                         dev->if_port = PORT_TP;
910                         np->phy_addr_external = PHY_ADDR_INTERNAL;
911                 }
912         } else {
913                 np->phy_addr_external = PHY_ADDR_INTERNAL;
914         }
915
916         option = find_cnt < MAX_UNITS ? options[find_cnt] : 0;
917         /* The lower four bits are the media type. */
918         if (option) {
919                 if (option & 0x200)
920                         np->full_duplex = 1;
921                 if (option & 15)
922                         printk(KERN_INFO
923                                 "natsemi %s: ignoring user supplied media type %d",
924                                 pci_name(np->pci_dev), option & 15);
925         }
926         if (find_cnt < MAX_UNITS  &&  full_duplex[find_cnt])
927                 np->full_duplex = 1;
928
929         dev->netdev_ops = &natsemi_netdev_ops;
930         dev->watchdog_timeo = TX_TIMEOUT;
931
932         dev->ethtool_ops = &ethtool_ops;
933
934         /* MTU range: 64 - 2024 */
935         dev->min_mtu = ETH_ZLEN + ETH_FCS_LEN;
936         dev->max_mtu = NATSEMI_RX_LIMIT - NATSEMI_HEADERS;
937
938         if (mtu)
939                 dev->mtu = mtu;
940
941         natsemi_init_media(dev);
942
943         /* save the silicon revision for later querying */
944         np->srr = readl(ioaddr + SiliconRev);
945         if (netif_msg_hw(np))
946                 printk(KERN_INFO "natsemi %s: silicon revision %#04x.\n",
947                                 pci_name(np->pci_dev), np->srr);
948
949         i = register_netdev(dev);
950         if (i)
951                 goto err_register_netdev;
952         i = NATSEMI_CREATE_FILE(pdev, dspcfg_workaround);
953         if (i)
954                 goto err_create_file;
955
956         if (netif_msg_drv(np)) {
957                 printk(KERN_INFO "natsemi %s: %s at %#08llx "
958                        "(%s), %pM, IRQ %d",
959                        dev->name, natsemi_pci_info[chip_idx].name,
960                        (unsigned long long)iostart, pci_name(np->pci_dev),
961                        dev->dev_addr, irq);
962                 if (dev->if_port == PORT_TP)
963                         printk(", port TP.\n");
964                 else if (np->ignore_phy)
965                         printk(", port MII, ignoring PHY\n");
966                 else
967                         printk(", port MII, phy ad %d.\n", np->phy_addr_external);
968         }
969         return 0;
970
971  err_create_file:
972         unregister_netdev(dev);
973
974  err_register_netdev:
975         iounmap(ioaddr);
976
977  err_ioremap:
978         pci_release_regions(pdev);
979
980  err_pci_request_regions:
981         free_netdev(dev);
982         return i;
983 }
984
985
986 /* Read the EEPROM and MII Management Data I/O (MDIO) interfaces.
987    The EEPROM code is for the common 93c06/46 EEPROMs with 6 bit addresses. */
988
989 /* Delay between EEPROM clock transitions.
990    No extra delay is needed with 33Mhz PCI, but future 66Mhz access may need
991    a delay.  Note that pre-2.0.34 kernels had a cache-alignment bug that
992    made udelay() unreliable.
993    The old method of using an ISA access as a delay, __SLOW_DOWN_IO__, is
994    deprecated.
995 */
996 #define eeprom_delay(ee_addr)   readl(ee_addr)
997
998 #define EE_Write0 (EE_ChipSelect)
999 #define EE_Write1 (EE_ChipSelect | EE_DataIn)
1000
1001 /* The EEPROM commands include the alway-set leading bit. */
1002 enum EEPROM_Cmds {
1003         EE_WriteCmd=(5 << 6), EE_ReadCmd=(6 << 6), EE_EraseCmd=(7 << 6),
1004 };
1005
1006 static int eeprom_read(void __iomem *addr, int location)
1007 {
1008         int i;
1009         int retval = 0;
1010         void __iomem *ee_addr = addr + EECtrl;
1011         int read_cmd = location | EE_ReadCmd;
1012
1013         writel(EE_Write0, ee_addr);
1014
1015         /* Shift the read command bits out. */
1016         for (i = 10; i >= 0; i--) {
1017                 short dataval = (read_cmd & (1 << i)) ? EE_Write1 : EE_Write0;
1018                 writel(dataval, ee_addr);
1019                 eeprom_delay(ee_addr);
1020                 writel(dataval | EE_ShiftClk, ee_addr);
1021                 eeprom_delay(ee_addr);
1022         }
1023         writel(EE_ChipSelect, ee_addr);
1024         eeprom_delay(ee_addr);
1025
1026         for (i = 0; i < 16; i++) {
1027                 writel(EE_ChipSelect | EE_ShiftClk, ee_addr);
1028                 eeprom_delay(ee_addr);
1029                 retval |= (readl(ee_addr) & EE_DataOut) ? 1 << i : 0;
1030                 writel(EE_ChipSelect, ee_addr);
1031                 eeprom_delay(ee_addr);
1032         }
1033
1034         /* Terminate the EEPROM access. */
1035         writel(EE_Write0, ee_addr);
1036         writel(0, ee_addr);
1037         return retval;
1038 }
1039
1040 /* MII transceiver control section.
1041  * The 83815 series has an internal transceiver, and we present the
1042  * internal management registers as if they were MII connected.
1043  * External Phy registers are referenced through the MII interface.
1044  */
1045
1046 /* clock transitions >= 20ns (25MHz)
1047  * One readl should be good to PCI @ 100MHz
1048  */
1049 #define mii_delay(ioaddr)  readl(ioaddr + EECtrl)
1050
1051 static int mii_getbit (struct net_device *dev)
1052 {
1053         int data;
1054         void __iomem *ioaddr = ns_ioaddr(dev);
1055
1056         writel(MII_ShiftClk, ioaddr + EECtrl);
1057         data = readl(ioaddr + EECtrl);
1058         writel(0, ioaddr + EECtrl);
1059         mii_delay(ioaddr);
1060         return (data & MII_Data)? 1 : 0;
1061 }
1062
1063 static void mii_send_bits (struct net_device *dev, u32 data, int len)
1064 {
1065         u32 i;
1066         void __iomem *ioaddr = ns_ioaddr(dev);
1067
1068         for (i = (1 << (len-1)); i; i >>= 1)
1069         {
1070                 u32 mdio_val = MII_Write | ((data & i)? MII_Data : 0);
1071                 writel(mdio_val, ioaddr + EECtrl);
1072                 mii_delay(ioaddr);
1073                 writel(mdio_val | MII_ShiftClk, ioaddr + EECtrl);
1074                 mii_delay(ioaddr);
1075         }
1076         writel(0, ioaddr + EECtrl);
1077         mii_delay(ioaddr);
1078 }
1079
1080 static int miiport_read(struct net_device *dev, int phy_id, int reg)
1081 {
1082         u32 cmd;
1083         int i;
1084         u32 retval = 0;
1085
1086         /* Ensure sync */
1087         mii_send_bits (dev, 0xffffffff, 32);
1088         /* ST(2), OP(2), ADDR(5), REG#(5), TA(2), Data(16) total 32 bits */
1089         /* ST,OP = 0110'b for read operation */
1090         cmd = (0x06 << 10) | (phy_id << 5) | reg;
1091         mii_send_bits (dev, cmd, 14);
1092         /* Turnaround */
1093         if (mii_getbit (dev))
1094                 return 0;
1095         /* Read data */
1096         for (i = 0; i < 16; i++) {
1097                 retval <<= 1;
1098                 retval |= mii_getbit (dev);
1099         }
1100         /* End cycle */
1101         mii_getbit (dev);
1102         return retval;
1103 }
1104
1105 static void miiport_write(struct net_device *dev, int phy_id, int reg, u16 data)
1106 {
1107         u32 cmd;
1108
1109         /* Ensure sync */
1110         mii_send_bits (dev, 0xffffffff, 32);
1111         /* ST(2), OP(2), ADDR(5), REG#(5), TA(2), Data(16) total 32 bits */
1112         /* ST,OP,AAAAA,RRRRR,TA = 0101xxxxxxxxxx10'b = 0x5002 for write */
1113         cmd = (0x5002 << 16) | (phy_id << 23) | (reg << 18) | data;
1114         mii_send_bits (dev, cmd, 32);
1115         /* End cycle */
1116         mii_getbit (dev);
1117 }
1118
1119 static int mdio_read(struct net_device *dev, int reg)
1120 {
1121         struct netdev_private *np = netdev_priv(dev);
1122         void __iomem *ioaddr = ns_ioaddr(dev);
1123
1124         /* The 83815 series has two ports:
1125          * - an internal transceiver
1126          * - an external mii bus
1127          */
1128         if (dev->if_port == PORT_TP)
1129                 return readw(ioaddr+BasicControl+(reg<<2));
1130         else
1131                 return miiport_read(dev, np->phy_addr_external, reg);
1132 }
1133
1134 static void mdio_write(struct net_device *dev, int reg, u16 data)
1135 {
1136         struct netdev_private *np = netdev_priv(dev);
1137         void __iomem *ioaddr = ns_ioaddr(dev);
1138
1139         /* The 83815 series has an internal transceiver; handle separately */
1140         if (dev->if_port == PORT_TP)
1141                 writew(data, ioaddr+BasicControl+(reg<<2));
1142         else
1143                 miiport_write(dev, np->phy_addr_external, reg, data);
1144 }
1145
1146 static void init_phy_fixup(struct net_device *dev)
1147 {
1148         struct netdev_private *np = netdev_priv(dev);
1149         void __iomem *ioaddr = ns_ioaddr(dev);
1150         int i;
1151         u32 cfg;
1152         u16 tmp;
1153
1154         /* restore stuff lost when power was out */
1155         tmp = mdio_read(dev, MII_BMCR);
1156         if (np->autoneg == AUTONEG_ENABLE) {
1157                 /* renegotiate if something changed */
1158                 if ((tmp & BMCR_ANENABLE) == 0 ||
1159                     np->advertising != mdio_read(dev, MII_ADVERTISE))
1160                 {
1161                         /* turn on autonegotiation and force negotiation */
1162                         tmp |= (BMCR_ANENABLE | BMCR_ANRESTART);
1163                         mdio_write(dev, MII_ADVERTISE, np->advertising);
1164                 }
1165         } else {
1166                 /* turn off auto negotiation, set speed and duplexity */
1167                 tmp &= ~(BMCR_ANENABLE | BMCR_SPEED100 | BMCR_FULLDPLX);
1168                 if (np->speed == SPEED_100)
1169                         tmp |= BMCR_SPEED100;
1170                 if (np->duplex == DUPLEX_FULL)
1171                         tmp |= BMCR_FULLDPLX;
1172                 /*
1173                  * Note: there is no good way to inform the link partner
1174                  * that our capabilities changed. The user has to unplug
1175                  * and replug the network cable after some changes, e.g.
1176                  * after switching from 10HD, autoneg off to 100 HD,
1177                  * autoneg off.
1178                  */
1179         }
1180         mdio_write(dev, MII_BMCR, tmp);
1181         readl(ioaddr + ChipConfig);
1182         udelay(1);
1183
1184         /* find out what phy this is */
1185         np->mii = (mdio_read(dev, MII_PHYSID1) << 16)
1186                                 + mdio_read(dev, MII_PHYSID2);
1187
1188         /* handle external phys here */
1189         switch (np->mii) {
1190         case PHYID_AM79C874:
1191                 /* phy specific configuration for fibre/tp operation */
1192                 tmp = mdio_read(dev, MII_MCTRL);
1193                 tmp &= ~(MII_FX_SEL | MII_EN_SCRM);
1194                 if (dev->if_port == PORT_FIBRE)
1195                         tmp |= MII_FX_SEL;
1196                 else
1197                         tmp |= MII_EN_SCRM;
1198                 mdio_write(dev, MII_MCTRL, tmp);
1199                 break;
1200         default:
1201                 break;
1202         }
1203         cfg = readl(ioaddr + ChipConfig);
1204         if (cfg & CfgExtPhy)
1205                 return;
1206
1207         /* On page 78 of the spec, they recommend some settings for "optimum
1208            performance" to be done in sequence.  These settings optimize some
1209            of the 100Mbit autodetection circuitry.  They say we only want to
1210            do this for rev C of the chip, but engineers at NSC (Bradley
1211            Kennedy) recommends always setting them.  If you don't, you get
1212            errors on some autonegotiations that make the device unusable.
1213
1214            It seems that the DSP needs a few usec to reinitialize after
1215            the start of the phy. Just retry writing these values until they
1216            stick.
1217         */
1218         for (i=0;i<NATSEMI_HW_TIMEOUT;i++) {
1219
1220                 int dspcfg;
1221                 writew(1, ioaddr + PGSEL);
1222                 writew(PMDCSR_VAL, ioaddr + PMDCSR);
1223                 writew(TSTDAT_VAL, ioaddr + TSTDAT);
1224                 np->dspcfg = (np->srr <= SRR_DP83815_C)?
1225                         DSPCFG_VAL : (DSPCFG_COEF | readw(ioaddr + DSPCFG));
1226                 writew(np->dspcfg, ioaddr + DSPCFG);
1227                 writew(SDCFG_VAL, ioaddr + SDCFG);
1228                 writew(0, ioaddr + PGSEL);
1229                 readl(ioaddr + ChipConfig);
1230                 udelay(10);
1231
1232                 writew(1, ioaddr + PGSEL);
1233                 dspcfg = readw(ioaddr + DSPCFG);
1234                 writew(0, ioaddr + PGSEL);
1235                 if (np->dspcfg == dspcfg)
1236                         break;
1237         }
1238
1239         if (netif_msg_link(np)) {
1240                 if (i==NATSEMI_HW_TIMEOUT) {
1241                         printk(KERN_INFO
1242                                 "%s: DSPCFG mismatch after retrying for %d usec.\n",
1243                                 dev->name, i*10);
1244                 } else {
1245                         printk(KERN_INFO
1246                                 "%s: DSPCFG accepted after %d usec.\n",
1247                                 dev->name, i*10);
1248                 }
1249         }
1250         /*
1251          * Enable PHY Specific event based interrupts.  Link state change
1252          * and Auto-Negotiation Completion are among the affected.
1253          * Read the intr status to clear it (needed for wake events).
1254          */
1255         readw(ioaddr + MIntrStatus);
1256         writew(MICRIntEn, ioaddr + MIntrCtrl);
1257 }
1258
1259 static int switch_port_external(struct net_device *dev)
1260 {
1261         struct netdev_private *np = netdev_priv(dev);
1262         void __iomem *ioaddr = ns_ioaddr(dev);
1263         u32 cfg;
1264
1265         cfg = readl(ioaddr + ChipConfig);
1266         if (cfg & CfgExtPhy)
1267                 return 0;
1268
1269         if (netif_msg_link(np)) {
1270                 printk(KERN_INFO "%s: switching to external transceiver.\n",
1271                                 dev->name);
1272         }
1273
1274         /* 1) switch back to external phy */
1275         writel(cfg | (CfgExtPhy | CfgPhyDis), ioaddr + ChipConfig);
1276         readl(ioaddr + ChipConfig);
1277         udelay(1);
1278
1279         /* 2) reset the external phy: */
1280         /* resetting the external PHY has been known to cause a hub supplying
1281          * power over Ethernet to kill the power.  We don't want to kill
1282          * power to this computer, so we avoid resetting the phy.
1283          */
1284
1285         /* 3) reinit the phy fixup, it got lost during power down. */
1286         move_int_phy(dev, np->phy_addr_external);
1287         init_phy_fixup(dev);
1288
1289         return 1;
1290 }
1291
1292 static int switch_port_internal(struct net_device *dev)
1293 {
1294         struct netdev_private *np = netdev_priv(dev);
1295         void __iomem *ioaddr = ns_ioaddr(dev);
1296         int i;
1297         u32 cfg;
1298         u16 bmcr;
1299
1300         cfg = readl(ioaddr + ChipConfig);
1301         if (!(cfg &CfgExtPhy))
1302                 return 0;
1303
1304         if (netif_msg_link(np)) {
1305                 printk(KERN_INFO "%s: switching to internal transceiver.\n",
1306                                 dev->name);
1307         }
1308         /* 1) switch back to internal phy: */
1309         cfg = cfg & ~(CfgExtPhy | CfgPhyDis);
1310         writel(cfg, ioaddr + ChipConfig);
1311         readl(ioaddr + ChipConfig);
1312         udelay(1);
1313
1314         /* 2) reset the internal phy: */
1315         bmcr = readw(ioaddr+BasicControl+(MII_BMCR<<2));
1316         writel(bmcr | BMCR_RESET, ioaddr+BasicControl+(MII_BMCR<<2));
1317         readl(ioaddr + ChipConfig);
1318         udelay(10);
1319         for (i=0;i<NATSEMI_HW_TIMEOUT;i++) {
1320                 bmcr = readw(ioaddr+BasicControl+(MII_BMCR<<2));
1321                 if (!(bmcr & BMCR_RESET))
1322                         break;
1323                 udelay(10);
1324         }
1325         if (i==NATSEMI_HW_TIMEOUT && netif_msg_link(np)) {
1326                 printk(KERN_INFO
1327                         "%s: phy reset did not complete in %d usec.\n",
1328                         dev->name, i*10);
1329         }
1330         /* 3) reinit the phy fixup, it got lost during power down. */
1331         init_phy_fixup(dev);
1332
1333         return 1;
1334 }
1335
1336 /* Scan for a PHY on the external mii bus.
1337  * There are two tricky points:
1338  * - Do not scan while the internal phy is enabled. The internal phy will
1339  *   crash: e.g. reads from the DSPCFG register will return odd values and
1340  *   the nasty random phy reset code will reset the nic every few seconds.
1341  * - The internal phy must be moved around, an external phy could
1342  *   have the same address as the internal phy.
1343  */
1344 static int find_mii(struct net_device *dev)
1345 {
1346         struct netdev_private *np = netdev_priv(dev);
1347         int tmp;
1348         int i;
1349         int did_switch;
1350
1351         /* Switch to external phy */
1352         did_switch = switch_port_external(dev);
1353
1354         /* Scan the possible phy addresses:
1355          *
1356          * PHY address 0 means that the phy is in isolate mode. Not yet
1357          * supported due to lack of test hardware. User space should
1358          * handle it through ethtool.
1359          */
1360         for (i = 1; i <= 31; i++) {
1361                 move_int_phy(dev, i);
1362                 tmp = miiport_read(dev, i, MII_BMSR);
1363                 if (tmp != 0xffff && tmp != 0x0000) {
1364                         /* found something! */
1365                         np->mii = (mdio_read(dev, MII_PHYSID1) << 16)
1366                                         + mdio_read(dev, MII_PHYSID2);
1367                         if (netif_msg_probe(np)) {
1368                                 printk(KERN_INFO "natsemi %s: found external phy %08x at address %d.\n",
1369                                                 pci_name(np->pci_dev), np->mii, i);
1370                         }
1371                         break;
1372                 }
1373         }
1374         /* And switch back to internal phy: */
1375         if (did_switch)
1376                 switch_port_internal(dev);
1377         return i;
1378 }
1379
1380 /* CFG bits [13:16] [18:23] */
1381 #define CFG_RESET_SAVE 0xfde000
1382 /* WCSR bits [0:4] [9:10] */
1383 #define WCSR_RESET_SAVE 0x61f
1384 /* RFCR bits [20] [22] [27:31] */
1385 #define RFCR_RESET_SAVE 0xf8500000
1386
1387 static void natsemi_reset(struct net_device *dev)
1388 {
1389         int i;
1390         u32 cfg;
1391         u32 wcsr;
1392         u32 rfcr;
1393         u16 pmatch[3];
1394         u16 sopass[3];
1395         struct netdev_private *np = netdev_priv(dev);
1396         void __iomem *ioaddr = ns_ioaddr(dev);
1397
1398         /*
1399          * Resetting the chip causes some registers to be lost.
1400          * Natsemi suggests NOT reloading the EEPROM while live, so instead
1401          * we save the state that would have been loaded from EEPROM
1402          * on a normal power-up (see the spec EEPROM map).  This assumes
1403          * whoever calls this will follow up with init_registers() eventually.
1404          */
1405
1406         /* CFG */
1407         cfg = readl(ioaddr + ChipConfig) & CFG_RESET_SAVE;
1408         /* WCSR */
1409         wcsr = readl(ioaddr + WOLCmd) & WCSR_RESET_SAVE;
1410         /* RFCR */
1411         rfcr = readl(ioaddr + RxFilterAddr) & RFCR_RESET_SAVE;
1412         /* PMATCH */
1413         for (i = 0; i < 3; i++) {
1414                 writel(i*2, ioaddr + RxFilterAddr);
1415                 pmatch[i] = readw(ioaddr + RxFilterData);
1416         }
1417         /* SOPAS */
1418         for (i = 0; i < 3; i++) {
1419                 writel(0xa+(i*2), ioaddr + RxFilterAddr);
1420                 sopass[i] = readw(ioaddr + RxFilterData);
1421         }
1422
1423         /* now whack the chip */
1424         writel(ChipReset, ioaddr + ChipCmd);
1425         for (i=0;i<NATSEMI_HW_TIMEOUT;i++) {
1426                 if (!(readl(ioaddr + ChipCmd) & ChipReset))
1427                         break;
1428                 udelay(5);
1429         }
1430         if (i==NATSEMI_HW_TIMEOUT) {
1431                 printk(KERN_WARNING "%s: reset did not complete in %d usec.\n",
1432                         dev->name, i*5);
1433         } else if (netif_msg_hw(np)) {
1434                 printk(KERN_DEBUG "%s: reset completed in %d usec.\n",
1435                         dev->name, i*5);
1436         }
1437
1438         /* restore CFG */
1439         cfg |= readl(ioaddr + ChipConfig) & ~CFG_RESET_SAVE;
1440         /* turn on external phy if it was selected */
1441         if (dev->if_port == PORT_TP)
1442                 cfg &= ~(CfgExtPhy | CfgPhyDis);
1443         else
1444                 cfg |= (CfgExtPhy | CfgPhyDis);
1445         writel(cfg, ioaddr + ChipConfig);
1446         /* restore WCSR */
1447         wcsr |= readl(ioaddr + WOLCmd) & ~WCSR_RESET_SAVE;
1448         writel(wcsr, ioaddr + WOLCmd);
1449         /* read RFCR */
1450         rfcr |= readl(ioaddr + RxFilterAddr) & ~RFCR_RESET_SAVE;
1451         /* restore PMATCH */
1452         for (i = 0; i < 3; i++) {
1453                 writel(i*2, ioaddr + RxFilterAddr);
1454                 writew(pmatch[i], ioaddr + RxFilterData);
1455         }
1456         for (i = 0; i < 3; i++) {
1457                 writel(0xa+(i*2), ioaddr + RxFilterAddr);
1458                 writew(sopass[i], ioaddr + RxFilterData);
1459         }
1460         /* restore RFCR */
1461         writel(rfcr, ioaddr + RxFilterAddr);
1462 }
1463
1464 static void reset_rx(struct net_device *dev)
1465 {
1466         int i;
1467         struct netdev_private *np = netdev_priv(dev);
1468         void __iomem *ioaddr = ns_ioaddr(dev);
1469
1470         np->intr_status &= ~RxResetDone;
1471
1472         writel(RxReset, ioaddr + ChipCmd);
1473
1474         for (i=0;i<NATSEMI_HW_TIMEOUT;i++) {
1475                 np->intr_status |= readl(ioaddr + IntrStatus);
1476                 if (np->intr_status & RxResetDone)
1477                         break;
1478                 udelay(15);
1479         }
1480         if (i==NATSEMI_HW_TIMEOUT) {
1481                 printk(KERN_WARNING "%s: RX reset did not complete in %d usec.\n",
1482                        dev->name, i*15);
1483         } else if (netif_msg_hw(np)) {
1484                 printk(KERN_WARNING "%s: RX reset took %d usec.\n",
1485                        dev->name, i*15);
1486         }
1487 }
1488
1489 static void natsemi_reload_eeprom(struct net_device *dev)
1490 {
1491         struct netdev_private *np = netdev_priv(dev);
1492         void __iomem *ioaddr = ns_ioaddr(dev);
1493         int i;
1494
1495         writel(EepromReload, ioaddr + PCIBusCfg);
1496         for (i=0;i<NATSEMI_HW_TIMEOUT;i++) {
1497                 udelay(50);
1498                 if (!(readl(ioaddr + PCIBusCfg) & EepromReload))
1499                         break;
1500         }
1501         if (i==NATSEMI_HW_TIMEOUT) {
1502                 printk(KERN_WARNING "natsemi %s: EEPROM did not reload in %d usec.\n",
1503                         pci_name(np->pci_dev), i*50);
1504         } else if (netif_msg_hw(np)) {
1505                 printk(KERN_DEBUG "natsemi %s: EEPROM reloaded in %d usec.\n",
1506                         pci_name(np->pci_dev), i*50);
1507         }
1508 }
1509
1510 static void natsemi_stop_rxtx(struct net_device *dev)
1511 {
1512         void __iomem * ioaddr = ns_ioaddr(dev);
1513         struct netdev_private *np = netdev_priv(dev);
1514         int i;
1515
1516         writel(RxOff | TxOff, ioaddr + ChipCmd);
1517         for(i=0;i< NATSEMI_HW_TIMEOUT;i++) {
1518                 if ((readl(ioaddr + ChipCmd) & (TxOn|RxOn)) == 0)
1519                         break;
1520                 udelay(5);
1521         }
1522         if (i==NATSEMI_HW_TIMEOUT) {
1523                 printk(KERN_WARNING "%s: Tx/Rx process did not stop in %d usec.\n",
1524                         dev->name, i*5);
1525         } else if (netif_msg_hw(np)) {
1526                 printk(KERN_DEBUG "%s: Tx/Rx process stopped in %d usec.\n",
1527                         dev->name, i*5);
1528         }
1529 }
1530
1531 static int netdev_open(struct net_device *dev)
1532 {
1533         struct netdev_private *np = netdev_priv(dev);
1534         void __iomem * ioaddr = ns_ioaddr(dev);
1535         const int irq = np->pci_dev->irq;
1536         int i;
1537
1538         /* Reset the chip, just in case. */
1539         natsemi_reset(dev);
1540
1541         i = request_irq(irq, intr_handler, IRQF_SHARED, dev->name, dev);
1542         if (i) return i;
1543
1544         if (netif_msg_ifup(np))
1545                 printk(KERN_DEBUG "%s: netdev_open() irq %d.\n",
1546                         dev->name, irq);
1547         i = alloc_ring(dev);
1548         if (i < 0) {
1549                 free_irq(irq, dev);
1550                 return i;
1551         }
1552         napi_enable(&np->napi);
1553
1554         init_ring(dev);
1555         spin_lock_irq(&np->lock);
1556         init_registers(dev);
1557         /* now set the MAC address according to dev->dev_addr */
1558         for (i = 0; i < 3; i++) {
1559                 u16 mac = (dev->dev_addr[2*i+1]<<8) + dev->dev_addr[2*i];
1560
1561                 writel(i*2, ioaddr + RxFilterAddr);
1562                 writew(mac, ioaddr + RxFilterData);
1563         }
1564         writel(np->cur_rx_mode, ioaddr + RxFilterAddr);
1565         spin_unlock_irq(&np->lock);
1566
1567         netif_start_queue(dev);
1568
1569         if (netif_msg_ifup(np))
1570                 printk(KERN_DEBUG "%s: Done netdev_open(), status: %#08x.\n",
1571                         dev->name, (int)readl(ioaddr + ChipCmd));
1572
1573         /* Set the timer to check for link beat. */
1574         timer_setup(&np->timer, netdev_timer, 0);
1575         np->timer.expires = round_jiffies(jiffies + NATSEMI_TIMER_FREQ);
1576         add_timer(&np->timer);
1577
1578         return 0;
1579 }
1580
1581 static void do_cable_magic(struct net_device *dev)
1582 {
1583         struct netdev_private *np = netdev_priv(dev);
1584         void __iomem *ioaddr = ns_ioaddr(dev);
1585
1586         if (dev->if_port != PORT_TP)
1587                 return;
1588
1589         if (np->srr >= SRR_DP83816_A5)
1590                 return;
1591
1592         /*
1593          * 100 MBit links with short cables can trip an issue with the chip.
1594          * The problem manifests as lots of CRC errors and/or flickering
1595          * activity LED while idle.  This process is based on instructions
1596          * from engineers at National.
1597          */
1598         if (readl(ioaddr + ChipConfig) & CfgSpeed100) {
1599                 u16 data;
1600
1601                 writew(1, ioaddr + PGSEL);
1602                 /*
1603                  * coefficient visibility should already be enabled via
1604                  * DSPCFG | 0x1000
1605                  */
1606                 data = readw(ioaddr + TSTDAT) & 0xff;
1607                 /*
1608                  * the value must be negative, and within certain values
1609                  * (these values all come from National)
1610                  */
1611                 if (!(data & 0x80) || ((data >= 0xd8) && (data <= 0xff))) {
1612                         np = netdev_priv(dev);
1613
1614                         /* the bug has been triggered - fix the coefficient */
1615                         writew(TSTDAT_FIXED, ioaddr + TSTDAT);
1616                         /* lock the value */
1617                         data = readw(ioaddr + DSPCFG);
1618                         np->dspcfg = data | DSPCFG_LOCK;
1619                         writew(np->dspcfg, ioaddr + DSPCFG);
1620                 }
1621                 writew(0, ioaddr + PGSEL);
1622         }
1623 }
1624
1625 static void undo_cable_magic(struct net_device *dev)
1626 {
1627         u16 data;
1628         struct netdev_private *np = netdev_priv(dev);
1629         void __iomem * ioaddr = ns_ioaddr(dev);
1630
1631         if (dev->if_port != PORT_TP)
1632                 return;
1633
1634         if (np->srr >= SRR_DP83816_A5)
1635                 return;
1636
1637         writew(1, ioaddr + PGSEL);
1638         /* make sure the lock bit is clear */
1639         data = readw(ioaddr + DSPCFG);
1640         np->dspcfg = data & ~DSPCFG_LOCK;
1641         writew(np->dspcfg, ioaddr + DSPCFG);
1642         writew(0, ioaddr + PGSEL);
1643 }
1644
1645 static void check_link(struct net_device *dev)
1646 {
1647         struct netdev_private *np = netdev_priv(dev);
1648         void __iomem * ioaddr = ns_ioaddr(dev);
1649         int duplex = np->duplex;
1650         u16 bmsr;
1651
1652         /* If we are ignoring the PHY then don't try reading it. */
1653         if (np->ignore_phy)
1654                 goto propagate_state;
1655
1656         /* The link status field is latched: it remains low after a temporary
1657          * link failure until it's read. We need the current link status,
1658          * thus read twice.
1659          */
1660         mdio_read(dev, MII_BMSR);
1661         bmsr = mdio_read(dev, MII_BMSR);
1662
1663         if (!(bmsr & BMSR_LSTATUS)) {
1664                 if (netif_carrier_ok(dev)) {
1665                         if (netif_msg_link(np))
1666                                 printk(KERN_NOTICE "%s: link down.\n",
1667                                        dev->name);
1668                         netif_carrier_off(dev);
1669                         undo_cable_magic(dev);
1670                 }
1671                 return;
1672         }
1673         if (!netif_carrier_ok(dev)) {
1674                 if (netif_msg_link(np))
1675                         printk(KERN_NOTICE "%s: link up.\n", dev->name);
1676                 netif_carrier_on(dev);
1677                 do_cable_magic(dev);
1678         }
1679
1680         duplex = np->full_duplex;
1681         if (!duplex) {
1682                 if (bmsr & BMSR_ANEGCOMPLETE) {
1683                         int tmp = mii_nway_result(
1684                                 np->advertising & mdio_read(dev, MII_LPA));
1685                         if (tmp == LPA_100FULL || tmp == LPA_10FULL)
1686                                 duplex = 1;
1687                 } else if (mdio_read(dev, MII_BMCR) & BMCR_FULLDPLX)
1688                         duplex = 1;
1689         }
1690
1691 propagate_state:
1692         /* if duplex is set then bit 28 must be set, too */
1693         if (duplex ^ !!(np->rx_config & RxAcceptTx)) {
1694                 if (netif_msg_link(np))
1695                         printk(KERN_INFO
1696                                 "%s: Setting %s-duplex based on negotiated "
1697                                 "link capability.\n", dev->name,
1698                                 duplex ? "full" : "half");
1699                 if (duplex) {
1700                         np->rx_config |= RxAcceptTx;
1701                         np->tx_config |= TxCarrierIgn | TxHeartIgn;
1702                 } else {
1703                         np->rx_config &= ~RxAcceptTx;
1704                         np->tx_config &= ~(TxCarrierIgn | TxHeartIgn);
1705                 }
1706                 writel(np->tx_config, ioaddr + TxConfig);
1707                 writel(np->rx_config, ioaddr + RxConfig);
1708         }
1709 }
1710
1711 static void init_registers(struct net_device *dev)
1712 {
1713         struct netdev_private *np = netdev_priv(dev);
1714         void __iomem * ioaddr = ns_ioaddr(dev);
1715
1716         init_phy_fixup(dev);
1717
1718         /* clear any interrupts that are pending, such as wake events */
1719         readl(ioaddr + IntrStatus);
1720
1721         writel(np->ring_dma, ioaddr + RxRingPtr);
1722         writel(np->ring_dma + RX_RING_SIZE * sizeof(struct netdev_desc),
1723                 ioaddr + TxRingPtr);
1724
1725         /* Initialize other registers.
1726          * Configure the PCI bus bursts and FIFO thresholds.
1727          * Configure for standard, in-spec Ethernet.
1728          * Start with half-duplex. check_link will update
1729          * to the correct settings.
1730          */
1731
1732         /* DRTH: 2: start tx if 64 bytes are in the fifo
1733          * FLTH: 0x10: refill with next packet if 512 bytes are free
1734          * MXDMA: 0: up to 256 byte bursts.
1735          *      MXDMA must be <= FLTH
1736          * ECRETRY=1
1737          * ATP=1
1738          */
1739         np->tx_config = TxAutoPad | TxCollRetry | TxMxdma_256 |
1740                                 TX_FLTH_VAL | TX_DRTH_VAL_START;
1741         writel(np->tx_config, ioaddr + TxConfig);
1742
1743         /* DRTH 0x10: start copying to memory if 128 bytes are in the fifo
1744          * MXDMA 0: up to 256 byte bursts
1745          */
1746         np->rx_config = RxMxdma_256 | RX_DRTH_VAL;
1747         /* if receive ring now has bigger buffers than normal, enable jumbo */
1748         if (np->rx_buf_sz > NATSEMI_LONGPKT)
1749                 np->rx_config |= RxAcceptLong;
1750
1751         writel(np->rx_config, ioaddr + RxConfig);
1752
1753         /* Disable PME:
1754          * The PME bit is initialized from the EEPROM contents.
1755          * PCI cards probably have PME disabled, but motherboard
1756          * implementations may have PME set to enable WakeOnLan.
1757          * With PME set the chip will scan incoming packets but
1758          * nothing will be written to memory. */
1759         np->SavedClkRun = readl(ioaddr + ClkRun);
1760         writel(np->SavedClkRun & ~PMEEnable, ioaddr + ClkRun);
1761         if (np->SavedClkRun & PMEStatus && netif_msg_wol(np)) {
1762                 printk(KERN_NOTICE "%s: Wake-up event %#08x\n",
1763                         dev->name, readl(ioaddr + WOLCmd));
1764         }
1765
1766         check_link(dev);
1767         __set_rx_mode(dev);
1768
1769         /* Enable interrupts by setting the interrupt mask. */
1770         writel(DEFAULT_INTR, ioaddr + IntrMask);
1771         natsemi_irq_enable(dev);
1772
1773         writel(RxOn | TxOn, ioaddr + ChipCmd);
1774         writel(StatsClear, ioaddr + StatsCtrl); /* Clear Stats */
1775 }
1776
1777 /*
1778  * netdev_timer:
1779  * Purpose:
1780  * 1) check for link changes. Usually they are handled by the MII interrupt
1781  *    but it doesn't hurt to check twice.
1782  * 2) check for sudden death of the NIC:
1783  *    It seems that a reference set for this chip went out with incorrect info,
1784  *    and there exist boards that aren't quite right.  An unexpected voltage
1785  *    drop can cause the PHY to get itself in a weird state (basically reset).
1786  *    NOTE: this only seems to affect revC chips.  The user can disable
1787  *    this check via dspcfg_workaround sysfs option.
1788  * 3) check of death of the RX path due to OOM
1789  */
1790 static void netdev_timer(struct timer_list *t)
1791 {
1792         struct netdev_private *np = from_timer(np, t, timer);
1793         struct net_device *dev = np->dev;
1794         void __iomem * ioaddr = ns_ioaddr(dev);
1795         int next_tick = NATSEMI_TIMER_FREQ;
1796         const int irq = np->pci_dev->irq;
1797
1798         if (netif_msg_timer(np)) {
1799                 /* DO NOT read the IntrStatus register,
1800                  * a read clears any pending interrupts.
1801                  */
1802                 printk(KERN_DEBUG "%s: Media selection timer tick.\n",
1803                         dev->name);
1804         }
1805
1806         if (dev->if_port == PORT_TP) {
1807                 u16 dspcfg;
1808
1809                 spin_lock_irq(&np->lock);
1810                 /* check for a nasty random phy-reset - use dspcfg as a flag */
1811                 writew(1, ioaddr+PGSEL);
1812                 dspcfg = readw(ioaddr+DSPCFG);
1813                 writew(0, ioaddr+PGSEL);
1814                 if (np->dspcfg_workaround && dspcfg != np->dspcfg) {
1815                         if (!netif_queue_stopped(dev)) {
1816                                 spin_unlock_irq(&np->lock);
1817                                 if (netif_msg_drv(np))
1818                                         printk(KERN_NOTICE "%s: possible phy reset: "
1819                                                 "re-initializing\n", dev->name);
1820                                 disable_irq(irq);
1821                                 spin_lock_irq(&np->lock);
1822                                 natsemi_stop_rxtx(dev);
1823                                 dump_ring(dev);
1824                                 reinit_ring(dev);
1825                                 init_registers(dev);
1826                                 spin_unlock_irq(&np->lock);
1827                                 enable_irq(irq);
1828                         } else {
1829                                 /* hurry back */
1830                                 next_tick = HZ;
1831                                 spin_unlock_irq(&np->lock);
1832                         }
1833                 } else {
1834                         /* init_registers() calls check_link() for the above case */
1835                         check_link(dev);
1836                         spin_unlock_irq(&np->lock);
1837                 }
1838         } else {
1839                 spin_lock_irq(&np->lock);
1840                 check_link(dev);
1841                 spin_unlock_irq(&np->lock);
1842         }
1843         if (np->oom) {
1844                 disable_irq(irq);
1845                 np->oom = 0;
1846                 refill_rx(dev);
1847                 enable_irq(irq);
1848                 if (!np->oom) {
1849                         writel(RxOn, ioaddr + ChipCmd);
1850                 } else {
1851                         next_tick = 1;
1852                 }
1853         }
1854
1855         if (next_tick > 1)
1856                 mod_timer(&np->timer, round_jiffies(jiffies + next_tick));
1857         else
1858                 mod_timer(&np->timer, jiffies + next_tick);
1859 }
1860
1861 static void dump_ring(struct net_device *dev)
1862 {
1863         struct netdev_private *np = netdev_priv(dev);
1864
1865         if (netif_msg_pktdata(np)) {
1866                 int i;
1867                 printk(KERN_DEBUG "  Tx ring at %p:\n", np->tx_ring);
1868                 for (i = 0; i < TX_RING_SIZE; i++) {
1869                         printk(KERN_DEBUG " #%d desc. %#08x %#08x %#08x.\n",
1870                                 i, np->tx_ring[i].next_desc,
1871                                 np->tx_ring[i].cmd_status,
1872                                 np->tx_ring[i].addr);
1873                 }
1874                 printk(KERN_DEBUG "  Rx ring %p:\n", np->rx_ring);
1875                 for (i = 0; i < RX_RING_SIZE; i++) {
1876                         printk(KERN_DEBUG " #%d desc. %#08x %#08x %#08x.\n",
1877                                 i, np->rx_ring[i].next_desc,
1878                                 np->rx_ring[i].cmd_status,
1879                                 np->rx_ring[i].addr);
1880                 }
1881         }
1882 }
1883
1884 static void ns_tx_timeout(struct net_device *dev)
1885 {
1886         struct netdev_private *np = netdev_priv(dev);
1887         void __iomem * ioaddr = ns_ioaddr(dev);
1888         const int irq = np->pci_dev->irq;
1889
1890         disable_irq(irq);
1891         spin_lock_irq(&np->lock);
1892         if (!np->hands_off) {
1893                 if (netif_msg_tx_err(np))
1894                         printk(KERN_WARNING
1895                                 "%s: Transmit timed out, status %#08x,"
1896                                 " resetting...\n",
1897                                 dev->name, readl(ioaddr + IntrStatus));
1898                 dump_ring(dev);
1899
1900                 natsemi_reset(dev);
1901                 reinit_ring(dev);
1902                 init_registers(dev);
1903         } else {
1904                 printk(KERN_WARNING
1905                         "%s: tx_timeout while in hands_off state?\n",
1906                         dev->name);
1907         }
1908         spin_unlock_irq(&np->lock);
1909         enable_irq(irq);
1910
1911         netif_trans_update(dev); /* prevent tx timeout */
1912         dev->stats.tx_errors++;
1913         netif_wake_queue(dev);
1914 }
1915
1916 static int alloc_ring(struct net_device *dev)
1917 {
1918         struct netdev_private *np = netdev_priv(dev);
1919         np->rx_ring = pci_alloc_consistent(np->pci_dev,
1920                 sizeof(struct netdev_desc) * (RX_RING_SIZE+TX_RING_SIZE),
1921                 &np->ring_dma);
1922         if (!np->rx_ring)
1923                 return -ENOMEM;
1924         np->tx_ring = &np->rx_ring[RX_RING_SIZE];
1925         return 0;
1926 }
1927
1928 static void refill_rx(struct net_device *dev)
1929 {
1930         struct netdev_private *np = netdev_priv(dev);
1931
1932         /* Refill the Rx ring buffers. */
1933         for (; np->cur_rx - np->dirty_rx > 0; np->dirty_rx++) {
1934                 struct sk_buff *skb;
1935                 int entry = np->dirty_rx % RX_RING_SIZE;
1936                 if (np->rx_skbuff[entry] == NULL) {
1937                         unsigned int buflen = np->rx_buf_sz+NATSEMI_PADDING;
1938                         skb = netdev_alloc_skb(dev, buflen);
1939                         np->rx_skbuff[entry] = skb;
1940                         if (skb == NULL)
1941                                 break; /* Better luck next round. */
1942                         np->rx_dma[entry] = pci_map_single(np->pci_dev,
1943                                 skb->data, buflen, PCI_DMA_FROMDEVICE);
1944                         if (pci_dma_mapping_error(np->pci_dev,
1945                                                   np->rx_dma[entry])) {
1946                                 dev_kfree_skb_any(skb);
1947                                 np->rx_skbuff[entry] = NULL;
1948                                 break; /* Better luck next round. */
1949                         }
1950                         np->rx_ring[entry].addr = cpu_to_le32(np->rx_dma[entry]);
1951                 }
1952                 np->rx_ring[entry].cmd_status = cpu_to_le32(np->rx_buf_sz);
1953         }
1954         if (np->cur_rx - np->dirty_rx == RX_RING_SIZE) {
1955                 if (netif_msg_rx_err(np))
1956                         printk(KERN_WARNING "%s: going OOM.\n", dev->name);
1957                 np->oom = 1;
1958         }
1959 }
1960
1961 static void set_bufsize(struct net_device *dev)
1962 {
1963         struct netdev_private *np = netdev_priv(dev);
1964         if (dev->mtu <= ETH_DATA_LEN)
1965                 np->rx_buf_sz = ETH_DATA_LEN + NATSEMI_HEADERS;
1966         else
1967                 np->rx_buf_sz = dev->mtu + NATSEMI_HEADERS;
1968 }
1969
1970 /* Initialize the Rx and Tx rings, along with various 'dev' bits. */
1971 static void init_ring(struct net_device *dev)
1972 {
1973         struct netdev_private *np = netdev_priv(dev);
1974         int i;
1975
1976         /* 1) TX ring */
1977         np->dirty_tx = np->cur_tx = 0;
1978         for (i = 0; i < TX_RING_SIZE; i++) {
1979                 np->tx_skbuff[i] = NULL;
1980                 np->tx_ring[i].next_desc = cpu_to_le32(np->ring_dma
1981                         +sizeof(struct netdev_desc)
1982                         *((i+1)%TX_RING_SIZE+RX_RING_SIZE));
1983                 np->tx_ring[i].cmd_status = 0;
1984         }
1985
1986         /* 2) RX ring */
1987         np->dirty_rx = 0;
1988         np->cur_rx = RX_RING_SIZE;
1989         np->oom = 0;
1990         set_bufsize(dev);
1991
1992         np->rx_head_desc = &np->rx_ring[0];
1993
1994         /* Please be careful before changing this loop - at least gcc-2.95.1
1995          * miscompiles it otherwise.
1996          */
1997         /* Initialize all Rx descriptors. */
1998         for (i = 0; i < RX_RING_SIZE; i++) {
1999                 np->rx_ring[i].next_desc = cpu_to_le32(np->ring_dma
2000                                 +sizeof(struct netdev_desc)
2001                                 *((i+1)%RX_RING_SIZE));
2002                 np->rx_ring[i].cmd_status = cpu_to_le32(DescOwn);
2003                 np->rx_skbuff[i] = NULL;
2004         }
2005         refill_rx(dev);
2006         dump_ring(dev);
2007 }
2008
2009 static void drain_tx(struct net_device *dev)
2010 {
2011         struct netdev_private *np = netdev_priv(dev);
2012         int i;
2013
2014         for (i = 0; i < TX_RING_SIZE; i++) {
2015                 if (np->tx_skbuff[i]) {
2016                         pci_unmap_single(np->pci_dev,
2017                                 np->tx_dma[i], np->tx_skbuff[i]->len,
2018                                 PCI_DMA_TODEVICE);
2019                         dev_kfree_skb(np->tx_skbuff[i]);
2020                         dev->stats.tx_dropped++;
2021                 }
2022                 np->tx_skbuff[i] = NULL;
2023         }
2024 }
2025
2026 static void drain_rx(struct net_device *dev)
2027 {
2028         struct netdev_private *np = netdev_priv(dev);
2029         unsigned int buflen = np->rx_buf_sz;
2030         int i;
2031
2032         /* Free all the skbuffs in the Rx queue. */
2033         for (i = 0; i < RX_RING_SIZE; i++) {
2034                 np->rx_ring[i].cmd_status = 0;
2035                 np->rx_ring[i].addr = cpu_to_le32(0xBADF00D0); /* An invalid address. */
2036                 if (np->rx_skbuff[i]) {
2037                         pci_unmap_single(np->pci_dev, np->rx_dma[i],
2038                                 buflen + NATSEMI_PADDING,
2039                                 PCI_DMA_FROMDEVICE);
2040                         dev_kfree_skb(np->rx_skbuff[i]);
2041                 }
2042                 np->rx_skbuff[i] = NULL;
2043         }
2044 }
2045
2046 static void drain_ring(struct net_device *dev)
2047 {
2048         drain_rx(dev);
2049         drain_tx(dev);
2050 }
2051
2052 static void free_ring(struct net_device *dev)
2053 {
2054         struct netdev_private *np = netdev_priv(dev);
2055         pci_free_consistent(np->pci_dev,
2056                 sizeof(struct netdev_desc) * (RX_RING_SIZE+TX_RING_SIZE),
2057                 np->rx_ring, np->ring_dma);
2058 }
2059
2060 static void reinit_rx(struct net_device *dev)
2061 {
2062         struct netdev_private *np = netdev_priv(dev);
2063         int i;
2064
2065         /* RX Ring */
2066         np->dirty_rx = 0;
2067         np->cur_rx = RX_RING_SIZE;
2068         np->rx_head_desc = &np->rx_ring[0];
2069         /* Initialize all Rx descriptors. */
2070         for (i = 0; i < RX_RING_SIZE; i++)
2071                 np->rx_ring[i].cmd_status = cpu_to_le32(DescOwn);
2072
2073         refill_rx(dev);
2074 }
2075
2076 static void reinit_ring(struct net_device *dev)
2077 {
2078         struct netdev_private *np = netdev_priv(dev);
2079         int i;
2080
2081         /* drain TX ring */
2082         drain_tx(dev);
2083         np->dirty_tx = np->cur_tx = 0;
2084         for (i=0;i<TX_RING_SIZE;i++)
2085                 np->tx_ring[i].cmd_status = 0;
2086
2087         reinit_rx(dev);
2088 }
2089
2090 static netdev_tx_t start_tx(struct sk_buff *skb, struct net_device *dev)
2091 {
2092         struct netdev_private *np = netdev_priv(dev);
2093         void __iomem * ioaddr = ns_ioaddr(dev);
2094         unsigned entry;
2095         unsigned long flags;
2096
2097         /* Note: Ordering is important here, set the field with the
2098            "ownership" bit last, and only then increment cur_tx. */
2099
2100         /* Calculate the next Tx descriptor entry. */
2101         entry = np->cur_tx % TX_RING_SIZE;
2102
2103         np->tx_skbuff[entry] = skb;
2104         np->tx_dma[entry] = pci_map_single(np->pci_dev,
2105                                 skb->data,skb->len, PCI_DMA_TODEVICE);
2106         if (pci_dma_mapping_error(np->pci_dev, np->tx_dma[entry])) {
2107                 np->tx_skbuff[entry] = NULL;
2108                 dev_kfree_skb_irq(skb);
2109                 dev->stats.tx_dropped++;
2110                 return NETDEV_TX_OK;
2111         }
2112
2113         np->tx_ring[entry].addr = cpu_to_le32(np->tx_dma[entry]);
2114
2115         spin_lock_irqsave(&np->lock, flags);
2116
2117         if (!np->hands_off) {
2118                 np->tx_ring[entry].cmd_status = cpu_to_le32(DescOwn | skb->len);
2119                 /* StrongARM: Explicitly cache flush np->tx_ring and
2120                  * skb->data,skb->len. */
2121                 wmb();
2122                 np->cur_tx++;
2123                 if (np->cur_tx - np->dirty_tx >= TX_QUEUE_LEN - 1) {
2124                         netdev_tx_done(dev);
2125                         if (np->cur_tx - np->dirty_tx >= TX_QUEUE_LEN - 1)
2126                                 netif_stop_queue(dev);
2127                 }
2128                 /* Wake the potentially-idle transmit channel. */
2129                 writel(TxOn, ioaddr + ChipCmd);
2130         } else {
2131                 dev_kfree_skb_irq(skb);
2132                 dev->stats.tx_dropped++;
2133         }
2134         spin_unlock_irqrestore(&np->lock, flags);
2135
2136         if (netif_msg_tx_queued(np)) {
2137                 printk(KERN_DEBUG "%s: Transmit frame #%d queued in slot %d.\n",
2138                         dev->name, np->cur_tx, entry);
2139         }
2140         return NETDEV_TX_OK;
2141 }
2142
2143 static void netdev_tx_done(struct net_device *dev)
2144 {
2145         struct netdev_private *np = netdev_priv(dev);
2146
2147         for (; np->cur_tx - np->dirty_tx > 0; np->dirty_tx++) {
2148                 int entry = np->dirty_tx % TX_RING_SIZE;
2149                 if (np->tx_ring[entry].cmd_status & cpu_to_le32(DescOwn))
2150                         break;
2151                 if (netif_msg_tx_done(np))
2152                         printk(KERN_DEBUG
2153                                 "%s: tx frame #%d finished, status %#08x.\n",
2154                                         dev->name, np->dirty_tx,
2155                                         le32_to_cpu(np->tx_ring[entry].cmd_status));
2156                 if (np->tx_ring[entry].cmd_status & cpu_to_le32(DescPktOK)) {
2157                         dev->stats.tx_packets++;
2158                         dev->stats.tx_bytes += np->tx_skbuff[entry]->len;
2159                 } else { /* Various Tx errors */
2160                         int tx_status =
2161                                 le32_to_cpu(np->tx_ring[entry].cmd_status);
2162                         if (tx_status & (DescTxAbort|DescTxExcColl))
2163                                 dev->stats.tx_aborted_errors++;
2164                         if (tx_status & DescTxFIFO)
2165                                 dev->stats.tx_fifo_errors++;
2166                         if (tx_status & DescTxCarrier)
2167                                 dev->stats.tx_carrier_errors++;
2168                         if (tx_status & DescTxOOWCol)
2169                                 dev->stats.tx_window_errors++;
2170                         dev->stats.tx_errors++;
2171                 }
2172                 pci_unmap_single(np->pci_dev,np->tx_dma[entry],
2173                                         np->tx_skbuff[entry]->len,
2174                                         PCI_DMA_TODEVICE);
2175                 /* Free the original skb. */
2176                 dev_consume_skb_irq(np->tx_skbuff[entry]);
2177                 np->tx_skbuff[entry] = NULL;
2178         }
2179         if (netif_queue_stopped(dev) &&
2180             np->cur_tx - np->dirty_tx < TX_QUEUE_LEN - 4) {
2181                 /* The ring is no longer full, wake queue. */
2182                 netif_wake_queue(dev);
2183         }
2184 }
2185
2186 /* The interrupt handler doesn't actually handle interrupts itself, it
2187  * schedules a NAPI poll if there is anything to do. */
2188 static irqreturn_t intr_handler(int irq, void *dev_instance)
2189 {
2190         struct net_device *dev = dev_instance;
2191         struct netdev_private *np = netdev_priv(dev);
2192         void __iomem * ioaddr = ns_ioaddr(dev);
2193
2194         /* Reading IntrStatus automatically acknowledges so don't do
2195          * that while interrupts are disabled, (for example, while a
2196          * poll is scheduled).  */
2197         if (np->hands_off || !readl(ioaddr + IntrEnable))
2198                 return IRQ_NONE;
2199
2200         np->intr_status = readl(ioaddr + IntrStatus);
2201
2202         if (!np->intr_status)
2203                 return IRQ_NONE;
2204
2205         if (netif_msg_intr(np))
2206                 printk(KERN_DEBUG
2207                        "%s: Interrupt, status %#08x, mask %#08x.\n",
2208                        dev->name, np->intr_status,
2209                        readl(ioaddr + IntrMask));
2210
2211         prefetch(&np->rx_skbuff[np->cur_rx % RX_RING_SIZE]);
2212
2213         if (napi_schedule_prep(&np->napi)) {
2214                 /* Disable interrupts and register for poll */
2215                 natsemi_irq_disable(dev);
2216                 __napi_schedule(&np->napi);
2217         } else
2218                 printk(KERN_WARNING
2219                        "%s: Ignoring interrupt, status %#08x, mask %#08x.\n",
2220                        dev->name, np->intr_status,
2221                        readl(ioaddr + IntrMask));
2222
2223         return IRQ_HANDLED;
2224 }
2225
2226 /* This is the NAPI poll routine.  As well as the standard RX handling
2227  * it also handles all other interrupts that the chip might raise.
2228  */
2229 static int natsemi_poll(struct napi_struct *napi, int budget)
2230 {
2231         struct netdev_private *np = container_of(napi, struct netdev_private, napi);
2232         struct net_device *dev = np->dev;
2233         void __iomem * ioaddr = ns_ioaddr(dev);
2234         int work_done = 0;
2235
2236         do {
2237                 if (netif_msg_intr(np))
2238                         printk(KERN_DEBUG
2239                                "%s: Poll, status %#08x, mask %#08x.\n",
2240                                dev->name, np->intr_status,
2241                                readl(ioaddr + IntrMask));
2242
2243                 /* netdev_rx() may read IntrStatus again if the RX state
2244                  * machine falls over so do it first. */
2245                 if (np->intr_status &
2246                     (IntrRxDone | IntrRxIntr | RxStatusFIFOOver |
2247                      IntrRxErr | IntrRxOverrun)) {
2248                         netdev_rx(dev, &work_done, budget);
2249                 }
2250
2251                 if (np->intr_status &
2252                     (IntrTxDone | IntrTxIntr | IntrTxIdle | IntrTxErr)) {
2253                         spin_lock(&np->lock);
2254                         netdev_tx_done(dev);
2255                         spin_unlock(&np->lock);
2256                 }
2257
2258                 /* Abnormal error summary/uncommon events handlers. */
2259                 if (np->intr_status & IntrAbnormalSummary)
2260                         netdev_error(dev, np->intr_status);
2261
2262                 if (work_done >= budget)
2263                         return work_done;
2264
2265                 np->intr_status = readl(ioaddr + IntrStatus);
2266         } while (np->intr_status);
2267
2268         napi_complete_done(napi, work_done);
2269
2270         /* Reenable interrupts providing nothing is trying to shut
2271          * the chip down. */
2272         spin_lock(&np->lock);
2273         if (!np->hands_off)
2274                 natsemi_irq_enable(dev);
2275         spin_unlock(&np->lock);
2276
2277         return work_done;
2278 }
2279
2280 /* This routine is logically part of the interrupt handler, but separated
2281    for clarity and better register allocation. */
2282 static void netdev_rx(struct net_device *dev, int *work_done, int work_to_do)
2283 {
2284         struct netdev_private *np = netdev_priv(dev);
2285         int entry = np->cur_rx % RX_RING_SIZE;
2286         int boguscnt = np->dirty_rx + RX_RING_SIZE - np->cur_rx;
2287         s32 desc_status = le32_to_cpu(np->rx_head_desc->cmd_status);
2288         unsigned int buflen = np->rx_buf_sz;
2289         void __iomem * ioaddr = ns_ioaddr(dev);
2290
2291         /* If the driver owns the next entry it's a new packet. Send it up. */
2292         while (desc_status < 0) { /* e.g. & DescOwn */
2293                 int pkt_len;
2294                 if (netif_msg_rx_status(np))
2295                         printk(KERN_DEBUG
2296                                 "  netdev_rx() entry %d status was %#08x.\n",
2297                                 entry, desc_status);
2298                 if (--boguscnt < 0)
2299                         break;
2300
2301                 if (*work_done >= work_to_do)
2302                         break;
2303
2304                 (*work_done)++;
2305
2306                 pkt_len = (desc_status & DescSizeMask) - 4;
2307                 if ((desc_status&(DescMore|DescPktOK|DescRxLong)) != DescPktOK){
2308                         if (desc_status & DescMore) {
2309                                 unsigned long flags;
2310
2311                                 if (netif_msg_rx_err(np))
2312                                         printk(KERN_WARNING
2313                                                 "%s: Oversized(?) Ethernet "
2314                                                 "frame spanned multiple "
2315                                                 "buffers, entry %#08x "
2316                                                 "status %#08x.\n", dev->name,
2317                                                 np->cur_rx, desc_status);
2318                                 dev->stats.rx_length_errors++;
2319
2320                                 /* The RX state machine has probably
2321                                  * locked up beneath us.  Follow the
2322                                  * reset procedure documented in
2323                                  * AN-1287. */
2324
2325                                 spin_lock_irqsave(&np->lock, flags);
2326                                 reset_rx(dev);
2327                                 reinit_rx(dev);
2328                                 writel(np->ring_dma, ioaddr + RxRingPtr);
2329                                 check_link(dev);
2330                                 spin_unlock_irqrestore(&np->lock, flags);
2331
2332                                 /* We'll enable RX on exit from this
2333                                  * function. */
2334                                 break;
2335
2336                         } else {
2337                                 /* There was an error. */
2338                                 dev->stats.rx_errors++;
2339                                 if (desc_status & (DescRxAbort|DescRxOver))
2340                                         dev->stats.rx_over_errors++;
2341                                 if (desc_status & (DescRxLong|DescRxRunt))
2342                                         dev->stats.rx_length_errors++;
2343                                 if (desc_status & (DescRxInvalid|DescRxAlign))
2344                                         dev->stats.rx_frame_errors++;
2345                                 if (desc_status & DescRxCRC)
2346                                         dev->stats.rx_crc_errors++;
2347                         }
2348                 } else if (pkt_len > np->rx_buf_sz) {
2349                         /* if this is the tail of a double buffer
2350                          * packet, we've already counted the error
2351                          * on the first part.  Ignore the second half.
2352                          */
2353                 } else {
2354                         struct sk_buff *skb;
2355                         /* Omit CRC size. */
2356                         /* Check if the packet is long enough to accept
2357                          * without copying to a minimally-sized skbuff. */
2358                         if (pkt_len < rx_copybreak &&
2359                             (skb = netdev_alloc_skb(dev, pkt_len + RX_OFFSET)) != NULL) {
2360                                 /* 16 byte align the IP header */
2361                                 skb_reserve(skb, RX_OFFSET);
2362                                 pci_dma_sync_single_for_cpu(np->pci_dev,
2363                                         np->rx_dma[entry],
2364                                         buflen,
2365                                         PCI_DMA_FROMDEVICE);
2366                                 skb_copy_to_linear_data(skb,
2367                                         np->rx_skbuff[entry]->data, pkt_len);
2368                                 skb_put(skb, pkt_len);
2369                                 pci_dma_sync_single_for_device(np->pci_dev,
2370                                         np->rx_dma[entry],
2371                                         buflen,
2372                                         PCI_DMA_FROMDEVICE);
2373                         } else {
2374                                 pci_unmap_single(np->pci_dev, np->rx_dma[entry],
2375                                                  buflen + NATSEMI_PADDING,
2376                                                  PCI_DMA_FROMDEVICE);
2377                                 skb_put(skb = np->rx_skbuff[entry], pkt_len);
2378                                 np->rx_skbuff[entry] = NULL;
2379                         }
2380                         skb->protocol = eth_type_trans(skb, dev);
2381                         netif_receive_skb(skb);
2382                         dev->stats.rx_packets++;
2383                         dev->stats.rx_bytes += pkt_len;
2384                 }
2385                 entry = (++np->cur_rx) % RX_RING_SIZE;
2386                 np->rx_head_desc = &np->rx_ring[entry];
2387                 desc_status = le32_to_cpu(np->rx_head_desc->cmd_status);
2388         }
2389         refill_rx(dev);
2390
2391         /* Restart Rx engine if stopped. */
2392         if (np->oom)
2393                 mod_timer(&np->timer, jiffies + 1);
2394         else
2395                 writel(RxOn, ioaddr + ChipCmd);
2396 }
2397
2398 static void netdev_error(struct net_device *dev, int intr_status)
2399 {
2400         struct netdev_private *np = netdev_priv(dev);
2401         void __iomem * ioaddr = ns_ioaddr(dev);
2402
2403         spin_lock(&np->lock);
2404         if (intr_status & LinkChange) {
2405                 u16 lpa = mdio_read(dev, MII_LPA);
2406                 if (mdio_read(dev, MII_BMCR) & BMCR_ANENABLE &&
2407                     netif_msg_link(np)) {
2408                         printk(KERN_INFO
2409                                 "%s: Autonegotiation advertising"
2410                                 " %#04x  partner %#04x.\n", dev->name,
2411                                 np->advertising, lpa);
2412                 }
2413
2414                 /* read MII int status to clear the flag */
2415                 readw(ioaddr + MIntrStatus);
2416                 check_link(dev);
2417         }
2418         if (intr_status & StatsMax) {
2419                 __get_stats(dev);
2420         }
2421         if (intr_status & IntrTxUnderrun) {
2422                 if ((np->tx_config & TxDrthMask) < TX_DRTH_VAL_LIMIT) {
2423                         np->tx_config += TX_DRTH_VAL_INC;
2424                         if (netif_msg_tx_err(np))
2425                                 printk(KERN_NOTICE
2426                                         "%s: increased tx threshold, txcfg %#08x.\n",
2427                                         dev->name, np->tx_config);
2428                 } else {
2429                         if (netif_msg_tx_err(np))
2430                                 printk(KERN_NOTICE
2431                                         "%s: tx underrun with maximum tx threshold, txcfg %#08x.\n",
2432                                         dev->name, np->tx_config);
2433                 }
2434                 writel(np->tx_config, ioaddr + TxConfig);
2435         }
2436         if (intr_status & WOLPkt && netif_msg_wol(np)) {
2437                 int wol_status = readl(ioaddr + WOLCmd);
2438                 printk(KERN_NOTICE "%s: Link wake-up event %#08x\n",
2439                         dev->name, wol_status);
2440         }
2441         if (intr_status & RxStatusFIFOOver) {
2442                 if (netif_msg_rx_err(np) && netif_msg_intr(np)) {
2443                         printk(KERN_NOTICE "%s: Rx status FIFO overrun\n",
2444                                 dev->name);
2445                 }
2446                 dev->stats.rx_fifo_errors++;
2447                 dev->stats.rx_errors++;
2448         }
2449         /* Hmmmmm, it's not clear how to recover from PCI faults. */
2450         if (intr_status & IntrPCIErr) {
2451                 printk(KERN_NOTICE "%s: PCI error %#08x\n", dev->name,
2452                         intr_status & IntrPCIErr);
2453                 dev->stats.tx_fifo_errors++;
2454                 dev->stats.tx_errors++;
2455                 dev->stats.rx_fifo_errors++;
2456                 dev->stats.rx_errors++;
2457         }
2458         spin_unlock(&np->lock);
2459 }
2460
2461 static void __get_stats(struct net_device *dev)
2462 {
2463         void __iomem * ioaddr = ns_ioaddr(dev);
2464
2465         /* The chip only need report frame silently dropped. */
2466         dev->stats.rx_crc_errors += readl(ioaddr + RxCRCErrs);
2467         dev->stats.rx_missed_errors += readl(ioaddr + RxMissed);
2468 }
2469
2470 static struct net_device_stats *get_stats(struct net_device *dev)
2471 {
2472         struct netdev_private *np = netdev_priv(dev);
2473
2474         /* The chip only need report frame silently dropped. */
2475         spin_lock_irq(&np->lock);
2476         if (netif_running(dev) && !np->hands_off)
2477                 __get_stats(dev);
2478         spin_unlock_irq(&np->lock);
2479
2480         return &dev->stats;
2481 }
2482
2483 #ifdef CONFIG_NET_POLL_CONTROLLER
2484 static void natsemi_poll_controller(struct net_device *dev)
2485 {
2486         struct netdev_private *np = netdev_priv(dev);
2487         const int irq = np->pci_dev->irq;
2488
2489         disable_irq(irq);
2490         intr_handler(irq, dev);
2491         enable_irq(irq);
2492 }
2493 #endif
2494
2495 #define HASH_TABLE      0x200
2496 static void __set_rx_mode(struct net_device *dev)
2497 {
2498         void __iomem * ioaddr = ns_ioaddr(dev);
2499         struct netdev_private *np = netdev_priv(dev);
2500         u8 mc_filter[64]; /* Multicast hash filter */
2501         u32 rx_mode;
2502
2503         if (dev->flags & IFF_PROMISC) { /* Set promiscuous. */
2504                 rx_mode = RxFilterEnable | AcceptBroadcast
2505                         | AcceptAllMulticast | AcceptAllPhys | AcceptMyPhys;
2506         } else if ((netdev_mc_count(dev) > multicast_filter_limit) ||
2507                    (dev->flags & IFF_ALLMULTI)) {
2508                 rx_mode = RxFilterEnable | AcceptBroadcast
2509                         | AcceptAllMulticast | AcceptMyPhys;
2510         } else {
2511                 struct netdev_hw_addr *ha;
2512                 int i;
2513
2514                 memset(mc_filter, 0, sizeof(mc_filter));
2515                 netdev_for_each_mc_addr(ha, dev) {
2516                         int b = (ether_crc(ETH_ALEN, ha->addr) >> 23) & 0x1ff;
2517                         mc_filter[b/8] |= (1 << (b & 0x07));
2518                 }
2519                 rx_mode = RxFilterEnable | AcceptBroadcast
2520                         | AcceptMulticast | AcceptMyPhys;
2521                 for (i = 0; i < 64; i += 2) {
2522                         writel(HASH_TABLE + i, ioaddr + RxFilterAddr);
2523                         writel((mc_filter[i + 1] << 8) + mc_filter[i],
2524                                ioaddr + RxFilterData);
2525                 }
2526         }
2527         writel(rx_mode, ioaddr + RxFilterAddr);
2528         np->cur_rx_mode = rx_mode;
2529 }
2530
2531 static int natsemi_change_mtu(struct net_device *dev, int new_mtu)
2532 {
2533         dev->mtu = new_mtu;
2534
2535         /* synchronized against open : rtnl_lock() held by caller */
2536         if (netif_running(dev)) {
2537                 struct netdev_private *np = netdev_priv(dev);
2538                 void __iomem * ioaddr = ns_ioaddr(dev);
2539                 const int irq = np->pci_dev->irq;
2540
2541                 disable_irq(irq);
2542                 spin_lock(&np->lock);
2543                 /* stop engines */
2544                 natsemi_stop_rxtx(dev);
2545                 /* drain rx queue */
2546                 drain_rx(dev);
2547                 /* change buffers */
2548                 set_bufsize(dev);
2549                 reinit_rx(dev);
2550                 writel(np->ring_dma, ioaddr + RxRingPtr);
2551                 /* restart engines */
2552                 writel(RxOn | TxOn, ioaddr + ChipCmd);
2553                 spin_unlock(&np->lock);
2554                 enable_irq(irq);
2555         }
2556         return 0;
2557 }
2558
2559 static void set_rx_mode(struct net_device *dev)
2560 {
2561         struct netdev_private *np = netdev_priv(dev);
2562         spin_lock_irq(&np->lock);
2563         if (!np->hands_off)
2564                 __set_rx_mode(dev);
2565         spin_unlock_irq(&np->lock);
2566 }
2567
2568 static void get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
2569 {
2570         struct netdev_private *np = netdev_priv(dev);
2571         strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
2572         strlcpy(info->version, DRV_VERSION, sizeof(info->version));
2573         strlcpy(info->bus_info, pci_name(np->pci_dev), sizeof(info->bus_info));
2574 }
2575
2576 static int get_regs_len(struct net_device *dev)
2577 {
2578         return NATSEMI_REGS_SIZE;
2579 }
2580
2581 static int get_eeprom_len(struct net_device *dev)
2582 {
2583         struct netdev_private *np = netdev_priv(dev);
2584         return np->eeprom_size;
2585 }
2586
2587 static int get_link_ksettings(struct net_device *dev,
2588                               struct ethtool_link_ksettings *ecmd)
2589 {
2590         struct netdev_private *np = netdev_priv(dev);
2591         spin_lock_irq(&np->lock);
2592         netdev_get_ecmd(dev, ecmd);
2593         spin_unlock_irq(&np->lock);
2594         return 0;
2595 }
2596
2597 static int set_link_ksettings(struct net_device *dev,
2598                               const struct ethtool_link_ksettings *ecmd)
2599 {
2600         struct netdev_private *np = netdev_priv(dev);
2601         int res;
2602         spin_lock_irq(&np->lock);
2603         res = netdev_set_ecmd(dev, ecmd);
2604         spin_unlock_irq(&np->lock);
2605         return res;
2606 }
2607
2608 static void get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
2609 {
2610         struct netdev_private *np = netdev_priv(dev);
2611         spin_lock_irq(&np->lock);
2612         netdev_get_wol(dev, &wol->supported, &wol->wolopts);
2613         netdev_get_sopass(dev, wol->sopass);
2614         spin_unlock_irq(&np->lock);
2615 }
2616
2617 static int set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
2618 {
2619         struct netdev_private *np = netdev_priv(dev);
2620         int res;
2621         spin_lock_irq(&np->lock);
2622         netdev_set_wol(dev, wol->wolopts);
2623         res = netdev_set_sopass(dev, wol->sopass);
2624         spin_unlock_irq(&np->lock);
2625         return res;
2626 }
2627
2628 static void get_regs(struct net_device *dev, struct ethtool_regs *regs, void *buf)
2629 {
2630         struct netdev_private *np = netdev_priv(dev);
2631         regs->version = NATSEMI_REGS_VER;
2632         spin_lock_irq(&np->lock);
2633         netdev_get_regs(dev, buf);
2634         spin_unlock_irq(&np->lock);
2635 }
2636
2637 static u32 get_msglevel(struct net_device *dev)
2638 {
2639         struct netdev_private *np = netdev_priv(dev);
2640         return np->msg_enable;
2641 }
2642
2643 static void set_msglevel(struct net_device *dev, u32 val)
2644 {
2645         struct netdev_private *np = netdev_priv(dev);
2646         np->msg_enable = val;
2647 }
2648
2649 static int nway_reset(struct net_device *dev)
2650 {
2651         int tmp;
2652         int r = -EINVAL;
2653         /* if autoneg is off, it's an error */
2654         tmp = mdio_read(dev, MII_BMCR);
2655         if (tmp & BMCR_ANENABLE) {
2656                 tmp |= (BMCR_ANRESTART);
2657                 mdio_write(dev, MII_BMCR, tmp);
2658                 r = 0;
2659         }
2660         return r;
2661 }
2662
2663 static u32 get_link(struct net_device *dev)
2664 {
2665         /* LSTATUS is latched low until a read - so read twice */
2666         mdio_read(dev, MII_BMSR);
2667         return (mdio_read(dev, MII_BMSR)&BMSR_LSTATUS) ? 1:0;
2668 }
2669
2670 static int get_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom, u8 *data)
2671 {
2672         struct netdev_private *np = netdev_priv(dev);
2673         u8 *eebuf;
2674         int res;
2675
2676         eebuf = kmalloc(np->eeprom_size, GFP_KERNEL);
2677         if (!eebuf)
2678                 return -ENOMEM;
2679
2680         eeprom->magic = PCI_VENDOR_ID_NS | (PCI_DEVICE_ID_NS_83815<<16);
2681         spin_lock_irq(&np->lock);
2682         res = netdev_get_eeprom(dev, eebuf);
2683         spin_unlock_irq(&np->lock);
2684         if (!res)
2685                 memcpy(data, eebuf+eeprom->offset, eeprom->len);
2686         kfree(eebuf);
2687         return res;
2688 }
2689
2690 static const struct ethtool_ops ethtool_ops = {
2691         .get_drvinfo = get_drvinfo,
2692         .get_regs_len = get_regs_len,
2693         .get_eeprom_len = get_eeprom_len,
2694         .get_wol = get_wol,
2695         .set_wol = set_wol,
2696         .get_regs = get_regs,
2697         .get_msglevel = get_msglevel,
2698         .set_msglevel = set_msglevel,
2699         .nway_reset = nway_reset,
2700         .get_link = get_link,
2701         .get_eeprom = get_eeprom,
2702         .get_link_ksettings = get_link_ksettings,
2703         .set_link_ksettings = set_link_ksettings,
2704 };
2705
2706 static int netdev_set_wol(struct net_device *dev, u32 newval)
2707 {
2708         struct netdev_private *np = netdev_priv(dev);
2709         void __iomem * ioaddr = ns_ioaddr(dev);
2710         u32 data = readl(ioaddr + WOLCmd) & ~WakeOptsSummary;
2711
2712         /* translate to bitmasks this chip understands */
2713         if (newval & WAKE_PHY)
2714                 data |= WakePhy;
2715         if (newval & WAKE_UCAST)
2716                 data |= WakeUnicast;
2717         if (newval & WAKE_MCAST)
2718                 data |= WakeMulticast;
2719         if (newval & WAKE_BCAST)
2720                 data |= WakeBroadcast;
2721         if (newval & WAKE_ARP)
2722                 data |= WakeArp;
2723         if (newval & WAKE_MAGIC)
2724                 data |= WakeMagic;
2725         if (np->srr >= SRR_DP83815_D) {
2726                 if (newval & WAKE_MAGICSECURE) {
2727                         data |= WakeMagicSecure;
2728                 }
2729         }
2730
2731         writel(data, ioaddr + WOLCmd);
2732
2733         return 0;
2734 }
2735
2736 static int netdev_get_wol(struct net_device *dev, u32 *supported, u32 *cur)
2737 {
2738         struct netdev_private *np = netdev_priv(dev);
2739         void __iomem * ioaddr = ns_ioaddr(dev);
2740         u32 regval = readl(ioaddr + WOLCmd);
2741
2742         *supported = (WAKE_PHY | WAKE_UCAST | WAKE_MCAST | WAKE_BCAST
2743                         | WAKE_ARP | WAKE_MAGIC);
2744
2745         if (np->srr >= SRR_DP83815_D) {
2746                 /* SOPASS works on revD and higher */
2747                 *supported |= WAKE_MAGICSECURE;
2748         }
2749         *cur = 0;
2750
2751         /* translate from chip bitmasks */
2752         if (regval & WakePhy)
2753                 *cur |= WAKE_PHY;
2754         if (regval & WakeUnicast)
2755                 *cur |= WAKE_UCAST;
2756         if (regval & WakeMulticast)
2757                 *cur |= WAKE_MCAST;
2758         if (regval & WakeBroadcast)
2759                 *cur |= WAKE_BCAST;
2760         if (regval & WakeArp)
2761                 *cur |= WAKE_ARP;
2762         if (regval & WakeMagic)
2763                 *cur |= WAKE_MAGIC;
2764         if (regval & WakeMagicSecure) {
2765                 /* this can be on in revC, but it's broken */
2766                 *cur |= WAKE_MAGICSECURE;
2767         }
2768
2769         return 0;
2770 }
2771
2772 static int netdev_set_sopass(struct net_device *dev, u8 *newval)
2773 {
2774         struct netdev_private *np = netdev_priv(dev);
2775         void __iomem * ioaddr = ns_ioaddr(dev);
2776         u16 *sval = (u16 *)newval;
2777         u32 addr;
2778
2779         if (np->srr < SRR_DP83815_D) {
2780                 return 0;
2781         }
2782
2783         /* enable writing to these registers by disabling the RX filter */
2784         addr = readl(ioaddr + RxFilterAddr) & ~RFCRAddressMask;
2785         addr &= ~RxFilterEnable;
2786         writel(addr, ioaddr + RxFilterAddr);
2787
2788         /* write the three words to (undocumented) RFCR vals 0xa, 0xc, 0xe */
2789         writel(addr | 0xa, ioaddr + RxFilterAddr);
2790         writew(sval[0], ioaddr + RxFilterData);
2791
2792         writel(addr | 0xc, ioaddr + RxFilterAddr);
2793         writew(sval[1], ioaddr + RxFilterData);
2794
2795         writel(addr | 0xe, ioaddr + RxFilterAddr);
2796         writew(sval[2], ioaddr + RxFilterData);
2797
2798         /* re-enable the RX filter */
2799         writel(addr | RxFilterEnable, ioaddr + RxFilterAddr);
2800
2801         return 0;
2802 }
2803
2804 static int netdev_get_sopass(struct net_device *dev, u8 *data)
2805 {
2806         struct netdev_private *np = netdev_priv(dev);
2807         void __iomem * ioaddr = ns_ioaddr(dev);
2808         u16 *sval = (u16 *)data;
2809         u32 addr;
2810
2811         if (np->srr < SRR_DP83815_D) {
2812                 sval[0] = sval[1] = sval[2] = 0;
2813                 return 0;
2814         }
2815
2816         /* read the three words from (undocumented) RFCR vals 0xa, 0xc, 0xe */
2817         addr = readl(ioaddr + RxFilterAddr) & ~RFCRAddressMask;
2818
2819         writel(addr | 0xa, ioaddr + RxFilterAddr);
2820         sval[0] = readw(ioaddr + RxFilterData);
2821
2822         writel(addr | 0xc, ioaddr + RxFilterAddr);
2823         sval[1] = readw(ioaddr + RxFilterData);
2824
2825         writel(addr | 0xe, ioaddr + RxFilterAddr);
2826         sval[2] = readw(ioaddr + RxFilterData);
2827
2828         writel(addr, ioaddr + RxFilterAddr);
2829
2830         return 0;
2831 }
2832
2833 static int netdev_get_ecmd(struct net_device *dev,
2834                            struct ethtool_link_ksettings *ecmd)
2835 {
2836         struct netdev_private *np = netdev_priv(dev);
2837         u32 supported, advertising;
2838         u32 tmp;
2839
2840         ecmd->base.port   = dev->if_port;
2841         ecmd->base.speed  = np->speed;
2842         ecmd->base.duplex = np->duplex;
2843         ecmd->base.autoneg = np->autoneg;
2844         advertising = 0;
2845
2846         if (np->advertising & ADVERTISE_10HALF)
2847                 advertising |= ADVERTISED_10baseT_Half;
2848         if (np->advertising & ADVERTISE_10FULL)
2849                 advertising |= ADVERTISED_10baseT_Full;
2850         if (np->advertising & ADVERTISE_100HALF)
2851                 advertising |= ADVERTISED_100baseT_Half;
2852         if (np->advertising & ADVERTISE_100FULL)
2853                 advertising |= ADVERTISED_100baseT_Full;
2854         supported   = (SUPPORTED_Autoneg |
2855                 SUPPORTED_10baseT_Half  | SUPPORTED_10baseT_Full  |
2856                 SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full |
2857                 SUPPORTED_TP | SUPPORTED_MII | SUPPORTED_FIBRE);
2858         ecmd->base.phy_address = np->phy_addr_external;
2859         /*
2860          * We intentionally report the phy address of the external
2861          * phy, even if the internal phy is used. This is necessary
2862          * to work around a deficiency of the ethtool interface:
2863          * It's only possible to query the settings of the active
2864          * port. Therefore
2865          * # ethtool -s ethX port mii
2866          * actually sends an ioctl to switch to port mii with the
2867          * settings that are used for the current active port.
2868          * If we would report a different phy address in this
2869          * command, then
2870          * # ethtool -s ethX port tp;ethtool -s ethX port mii
2871          * would unintentionally change the phy address.
2872          *
2873          * Fortunately the phy address doesn't matter with the
2874          * internal phy...
2875          */
2876
2877         /* set information based on active port type */
2878         switch (ecmd->base.port) {
2879         default:
2880         case PORT_TP:
2881                 advertising |= ADVERTISED_TP;
2882                 break;
2883         case PORT_MII:
2884                 advertising |= ADVERTISED_MII;
2885                 break;
2886         case PORT_FIBRE:
2887                 advertising |= ADVERTISED_FIBRE;
2888                 break;
2889         }
2890
2891         /* if autonegotiation is on, try to return the active speed/duplex */
2892         if (ecmd->base.autoneg == AUTONEG_ENABLE) {
2893                 advertising |= ADVERTISED_Autoneg;
2894                 tmp = mii_nway_result(
2895                         np->advertising & mdio_read(dev, MII_LPA));
2896                 if (tmp == LPA_100FULL || tmp == LPA_100HALF)
2897                         ecmd->base.speed = SPEED_100;
2898                 else
2899                         ecmd->base.speed = SPEED_10;
2900                 if (tmp == LPA_100FULL || tmp == LPA_10FULL)
2901                         ecmd->base.duplex = DUPLEX_FULL;
2902                 else
2903                         ecmd->base.duplex = DUPLEX_HALF;
2904         }
2905
2906         /* ignore maxtxpkt, maxrxpkt for now */
2907
2908         ethtool_convert_legacy_u32_to_link_mode(ecmd->link_modes.supported,
2909                                                 supported);
2910         ethtool_convert_legacy_u32_to_link_mode(ecmd->link_modes.advertising,
2911                                                 advertising);
2912
2913         return 0;
2914 }
2915
2916 static int netdev_set_ecmd(struct net_device *dev,
2917                            const struct ethtool_link_ksettings *ecmd)
2918 {
2919         struct netdev_private *np = netdev_priv(dev);
2920         u32 advertising;
2921
2922         ethtool_convert_link_mode_to_legacy_u32(&advertising,
2923                                                 ecmd->link_modes.advertising);
2924
2925         if (ecmd->base.port != PORT_TP &&
2926             ecmd->base.port != PORT_MII &&
2927             ecmd->base.port != PORT_FIBRE)
2928                 return -EINVAL;
2929         if (ecmd->base.autoneg == AUTONEG_ENABLE) {
2930                 if ((advertising & (ADVERTISED_10baseT_Half |
2931                                           ADVERTISED_10baseT_Full |
2932                                           ADVERTISED_100baseT_Half |
2933                                           ADVERTISED_100baseT_Full)) == 0) {
2934                         return -EINVAL;
2935                 }
2936         } else if (ecmd->base.autoneg == AUTONEG_DISABLE) {
2937                 u32 speed = ecmd->base.speed;
2938                 if (speed != SPEED_10 && speed != SPEED_100)
2939                         return -EINVAL;
2940                 if (ecmd->base.duplex != DUPLEX_HALF &&
2941                     ecmd->base.duplex != DUPLEX_FULL)
2942                         return -EINVAL;
2943         } else {
2944                 return -EINVAL;
2945         }
2946
2947         /*
2948          * If we're ignoring the PHY then autoneg and the internal
2949          * transceiver are really not going to work so don't let the
2950          * user select them.
2951          */
2952         if (np->ignore_phy && (ecmd->base.autoneg == AUTONEG_ENABLE ||
2953                                ecmd->base.port == PORT_TP))
2954                 return -EINVAL;
2955
2956         /*
2957          * maxtxpkt, maxrxpkt: ignored for now.
2958          *
2959          * transceiver:
2960          * PORT_TP is always XCVR_INTERNAL, PORT_MII and PORT_FIBRE are always
2961          * XCVR_EXTERNAL. The implementation thus ignores ecmd->transceiver and
2962          * selects based on ecmd->port.
2963          *
2964          * Actually PORT_FIBRE is nearly identical to PORT_MII: it's for fibre
2965          * phys that are connected to the mii bus. It's used to apply fibre
2966          * specific updates.
2967          */
2968
2969         /* WHEW! now lets bang some bits */
2970
2971         /* save the parms */
2972         dev->if_port          = ecmd->base.port;
2973         np->autoneg           = ecmd->base.autoneg;
2974         np->phy_addr_external = ecmd->base.phy_address & PhyAddrMask;
2975         if (np->autoneg == AUTONEG_ENABLE) {
2976                 /* advertise only what has been requested */
2977                 np->advertising &= ~(ADVERTISE_ALL | ADVERTISE_100BASE4);
2978                 if (advertising & ADVERTISED_10baseT_Half)
2979                         np->advertising |= ADVERTISE_10HALF;
2980                 if (advertising & ADVERTISED_10baseT_Full)
2981                         np->advertising |= ADVERTISE_10FULL;
2982                 if (advertising & ADVERTISED_100baseT_Half)
2983                         np->advertising |= ADVERTISE_100HALF;
2984                 if (advertising & ADVERTISED_100baseT_Full)
2985                         np->advertising |= ADVERTISE_100FULL;
2986         } else {
2987                 np->speed  = ecmd->base.speed;
2988                 np->duplex = ecmd->base.duplex;
2989                 /* user overriding the initial full duplex parm? */
2990                 if (np->duplex == DUPLEX_HALF)
2991                         np->full_duplex = 0;
2992         }
2993
2994         /* get the right phy enabled */
2995         if (ecmd->base.port == PORT_TP)
2996                 switch_port_internal(dev);
2997         else
2998                 switch_port_external(dev);
2999
3000         /* set parms and see how this affected our link status */
3001         init_phy_fixup(dev);
3002         check_link(dev);
3003         return 0;
3004 }
3005
3006 static int netdev_get_regs(struct net_device *dev, u8 *buf)
3007 {
3008         int i;
3009         int j;
3010         u32 rfcr;
3011         u32 *rbuf = (u32 *)buf;
3012         void __iomem * ioaddr = ns_ioaddr(dev);
3013
3014         /* read non-mii page 0 of registers */
3015         for (i = 0; i < NATSEMI_PG0_NREGS/2; i++) {
3016                 rbuf[i] = readl(ioaddr + i*4);
3017         }
3018
3019         /* read current mii registers */
3020         for (i = NATSEMI_PG0_NREGS/2; i < NATSEMI_PG0_NREGS; i++)
3021                 rbuf[i] = mdio_read(dev, i & 0x1f);
3022
3023         /* read only the 'magic' registers from page 1 */
3024         writew(1, ioaddr + PGSEL);
3025         rbuf[i++] = readw(ioaddr + PMDCSR);
3026         rbuf[i++] = readw(ioaddr + TSTDAT);
3027         rbuf[i++] = readw(ioaddr + DSPCFG);
3028         rbuf[i++] = readw(ioaddr + SDCFG);
3029         writew(0, ioaddr + PGSEL);
3030
3031         /* read RFCR indexed registers */
3032         rfcr = readl(ioaddr + RxFilterAddr);
3033         for (j = 0; j < NATSEMI_RFDR_NREGS; j++) {
3034                 writel(j*2, ioaddr + RxFilterAddr);
3035                 rbuf[i++] = readw(ioaddr + RxFilterData);
3036         }
3037         writel(rfcr, ioaddr + RxFilterAddr);
3038
3039         /* the interrupt status is clear-on-read - see if we missed any */
3040         if (rbuf[4] & rbuf[5]) {
3041                 printk(KERN_WARNING
3042                         "%s: shoot, we dropped an interrupt (%#08x)\n",
3043                         dev->name, rbuf[4] & rbuf[5]);
3044         }
3045
3046         return 0;
3047 }
3048
3049 #define SWAP_BITS(x)    ( (((x) & 0x0001) << 15) | (((x) & 0x0002) << 13) \
3050                         | (((x) & 0x0004) << 11) | (((x) & 0x0008) << 9)  \
3051                         | (((x) & 0x0010) << 7)  | (((x) & 0x0020) << 5)  \
3052                         | (((x) & 0x0040) << 3)  | (((x) & 0x0080) << 1)  \
3053                         | (((x) & 0x0100) >> 1)  | (((x) & 0x0200) >> 3)  \
3054                         | (((x) & 0x0400) >> 5)  | (((x) & 0x0800) >> 7)  \
3055                         | (((x) & 0x1000) >> 9)  | (((x) & 0x2000) >> 11) \
3056                         | (((x) & 0x4000) >> 13) | (((x) & 0x8000) >> 15) )
3057
3058 static int netdev_get_eeprom(struct net_device *dev, u8 *buf)
3059 {
3060         int i;
3061         u16 *ebuf = (u16 *)buf;
3062         void __iomem * ioaddr = ns_ioaddr(dev);
3063         struct netdev_private *np = netdev_priv(dev);
3064
3065         /* eeprom_read reads 16 bits, and indexes by 16 bits */
3066         for (i = 0; i < np->eeprom_size/2; i++) {
3067                 ebuf[i] = eeprom_read(ioaddr, i);
3068                 /* The EEPROM itself stores data bit-swapped, but eeprom_read
3069                  * reads it back "sanely". So we swap it back here in order to
3070                  * present it to userland as it is stored. */
3071                 ebuf[i] = SWAP_BITS(ebuf[i]);
3072         }
3073         return 0;
3074 }
3075
3076 static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
3077 {
3078         struct mii_ioctl_data *data = if_mii(rq);
3079         struct netdev_private *np = netdev_priv(dev);
3080
3081         switch(cmd) {
3082         case SIOCGMIIPHY:               /* Get address of MII PHY in use. */
3083                 data->phy_id = np->phy_addr_external;
3084                 /* Fall Through */
3085
3086         case SIOCGMIIREG:               /* Read MII PHY register. */
3087                 /* The phy_id is not enough to uniquely identify
3088                  * the intended target. Therefore the command is sent to
3089                  * the given mii on the current port.
3090                  */
3091                 if (dev->if_port == PORT_TP) {
3092                         if ((data->phy_id & 0x1f) == np->phy_addr_external)
3093                                 data->val_out = mdio_read(dev,
3094                                                         data->reg_num & 0x1f);
3095                         else
3096                                 data->val_out = 0;
3097                 } else {
3098                         move_int_phy(dev, data->phy_id & 0x1f);
3099                         data->val_out = miiport_read(dev, data->phy_id & 0x1f,
3100                                                         data->reg_num & 0x1f);
3101                 }
3102                 return 0;
3103
3104         case SIOCSMIIREG:               /* Write MII PHY register. */
3105                 if (dev->if_port == PORT_TP) {
3106                         if ((data->phy_id & 0x1f) == np->phy_addr_external) {
3107                                 if ((data->reg_num & 0x1f) == MII_ADVERTISE)
3108                                         np->advertising = data->val_in;
3109                                 mdio_write(dev, data->reg_num & 0x1f,
3110                                                         data->val_in);
3111                         }
3112                 } else {
3113                         if ((data->phy_id & 0x1f) == np->phy_addr_external) {
3114                                 if ((data->reg_num & 0x1f) == MII_ADVERTISE)
3115                                         np->advertising = data->val_in;
3116                         }
3117                         move_int_phy(dev, data->phy_id & 0x1f);
3118                         miiport_write(dev, data->phy_id & 0x1f,
3119                                                 data->reg_num & 0x1f,
3120                                                 data->val_in);
3121                 }
3122                 return 0;
3123         default:
3124                 return -EOPNOTSUPP;
3125         }
3126 }
3127
3128 static void enable_wol_mode(struct net_device *dev, int enable_intr)
3129 {
3130         void __iomem * ioaddr = ns_ioaddr(dev);
3131         struct netdev_private *np = netdev_priv(dev);
3132
3133         if (netif_msg_wol(np))
3134                 printk(KERN_INFO "%s: remaining active for wake-on-lan\n",
3135                         dev->name);
3136
3137         /* For WOL we must restart the rx process in silent mode.
3138          * Write NULL to the RxRingPtr. Only possible if
3139          * rx process is stopped
3140          */
3141         writel(0, ioaddr + RxRingPtr);
3142
3143         /* read WoL status to clear */
3144         readl(ioaddr + WOLCmd);
3145
3146         /* PME on, clear status */
3147         writel(np->SavedClkRun | PMEEnable | PMEStatus, ioaddr + ClkRun);
3148
3149         /* and restart the rx process */
3150         writel(RxOn, ioaddr + ChipCmd);
3151
3152         if (enable_intr) {
3153                 /* enable the WOL interrupt.
3154                  * Could be used to send a netlink message.
3155                  */
3156                 writel(WOLPkt | LinkChange, ioaddr + IntrMask);
3157                 natsemi_irq_enable(dev);
3158         }
3159 }
3160
3161 static int netdev_close(struct net_device *dev)
3162 {
3163         void __iomem * ioaddr = ns_ioaddr(dev);
3164         struct netdev_private *np = netdev_priv(dev);
3165         const int irq = np->pci_dev->irq;
3166
3167         if (netif_msg_ifdown(np))
3168                 printk(KERN_DEBUG
3169                         "%s: Shutting down ethercard, status was %#04x.\n",
3170                         dev->name, (int)readl(ioaddr + ChipCmd));
3171         if (netif_msg_pktdata(np))
3172                 printk(KERN_DEBUG
3173                         "%s: Queue pointers were Tx %d / %d,  Rx %d / %d.\n",
3174                         dev->name, np->cur_tx, np->dirty_tx,
3175                         np->cur_rx, np->dirty_rx);
3176
3177         napi_disable(&np->napi);
3178
3179         /*
3180          * FIXME: what if someone tries to close a device
3181          * that is suspended?
3182          * Should we reenable the nic to switch to
3183          * the final WOL settings?
3184          */
3185
3186         del_timer_sync(&np->timer);
3187         disable_irq(irq);
3188         spin_lock_irq(&np->lock);
3189         natsemi_irq_disable(dev);
3190         np->hands_off = 1;
3191         spin_unlock_irq(&np->lock);
3192         enable_irq(irq);
3193
3194         free_irq(irq, dev);
3195
3196         /* Interrupt disabled, interrupt handler released,
3197          * queue stopped, timer deleted, rtnl_lock held
3198          * All async codepaths that access the driver are disabled.
3199          */
3200         spin_lock_irq(&np->lock);
3201         np->hands_off = 0;
3202         readl(ioaddr + IntrMask);
3203         readw(ioaddr + MIntrStatus);
3204
3205         /* Freeze Stats */
3206         writel(StatsFreeze, ioaddr + StatsCtrl);
3207
3208         /* Stop the chip's Tx and Rx processes. */
3209         natsemi_stop_rxtx(dev);
3210
3211         __get_stats(dev);
3212         spin_unlock_irq(&np->lock);
3213
3214         /* clear the carrier last - an interrupt could reenable it otherwise */
3215         netif_carrier_off(dev);
3216         netif_stop_queue(dev);
3217
3218         dump_ring(dev);
3219         drain_ring(dev);
3220         free_ring(dev);
3221
3222         {
3223                 u32 wol = readl(ioaddr + WOLCmd) & WakeOptsSummary;
3224                 if (wol) {
3225                         /* restart the NIC in WOL mode.
3226                          * The nic must be stopped for this.
3227                          */
3228                         enable_wol_mode(dev, 0);
3229                 } else {
3230                         /* Restore PME enable bit unmolested */
3231                         writel(np->SavedClkRun, ioaddr + ClkRun);
3232                 }
3233         }
3234         return 0;
3235 }
3236
3237
3238 static void natsemi_remove1(struct pci_dev *pdev)
3239 {
3240         struct net_device *dev = pci_get_drvdata(pdev);
3241         void __iomem * ioaddr = ns_ioaddr(dev);
3242
3243         NATSEMI_REMOVE_FILE(pdev, dspcfg_workaround);
3244         unregister_netdev (dev);
3245         pci_release_regions (pdev);
3246         iounmap(ioaddr);
3247         free_netdev (dev);
3248 }
3249
3250 #ifdef CONFIG_PM
3251
3252 /*
3253  * The ns83815 chip doesn't have explicit RxStop bits.
3254  * Kicking the Rx or Tx process for a new packet reenables the Rx process
3255  * of the nic, thus this function must be very careful:
3256  *
3257  * suspend/resume synchronization:
3258  * entry points:
3259  *   netdev_open, netdev_close, netdev_ioctl, set_rx_mode, intr_handler,
3260  *   start_tx, ns_tx_timeout
3261  *
3262  * No function accesses the hardware without checking np->hands_off.
3263  *      the check occurs under spin_lock_irq(&np->lock);
3264  * exceptions:
3265  *      * netdev_ioctl: noncritical access.
3266  *      * netdev_open: cannot happen due to the device_detach
3267  *      * netdev_close: doesn't hurt.
3268  *      * netdev_timer: timer stopped by natsemi_suspend.
3269  *      * intr_handler: doesn't acquire the spinlock. suspend calls
3270  *              disable_irq() to enforce synchronization.
3271  *      * natsemi_poll: checks before reenabling interrupts.  suspend
3272  *              sets hands_off, disables interrupts and then waits with
3273  *              napi_disable().
3274  *
3275  * Interrupts must be disabled, otherwise hands_off can cause irq storms.
3276  */
3277
3278 static int natsemi_suspend (struct pci_dev *pdev, pm_message_t state)
3279 {
3280         struct net_device *dev = pci_get_drvdata (pdev);
3281         struct netdev_private *np = netdev_priv(dev);
3282         void __iomem * ioaddr = ns_ioaddr(dev);
3283
3284         rtnl_lock();
3285         if (netif_running (dev)) {
3286                 const int irq = np->pci_dev->irq;
3287
3288                 del_timer_sync(&np->timer);
3289
3290                 disable_irq(irq);
3291                 spin_lock_irq(&np->lock);
3292
3293                 natsemi_irq_disable(dev);
3294                 np->hands_off = 1;
3295                 natsemi_stop_rxtx(dev);
3296                 netif_stop_queue(dev);
3297
3298                 spin_unlock_irq(&np->lock);
3299                 enable_irq(irq);
3300
3301                 napi_disable(&np->napi);
3302
3303                 /* Update the error counts. */
3304                 __get_stats(dev);
3305
3306                 /* pci_power_off(pdev, -1); */
3307                 drain_ring(dev);
3308                 {
3309                         u32 wol = readl(ioaddr + WOLCmd) & WakeOptsSummary;
3310                         /* Restore PME enable bit */
3311                         if (wol) {
3312                                 /* restart the NIC in WOL mode.
3313                                  * The nic must be stopped for this.
3314                                  * FIXME: use the WOL interrupt
3315                                  */
3316                                 enable_wol_mode(dev, 0);
3317                         } else {
3318                                 /* Restore PME enable bit unmolested */
3319                                 writel(np->SavedClkRun, ioaddr + ClkRun);
3320                         }
3321                 }
3322         }
3323         netif_device_detach(dev);
3324         rtnl_unlock();
3325         return 0;
3326 }
3327
3328
3329 static int natsemi_resume (struct pci_dev *pdev)
3330 {
3331         struct net_device *dev = pci_get_drvdata (pdev);
3332         struct netdev_private *np = netdev_priv(dev);
3333         int ret = 0;
3334
3335         rtnl_lock();
3336         if (netif_device_present(dev))
3337                 goto out;
3338         if (netif_running(dev)) {
3339                 const int irq = np->pci_dev->irq;
3340
3341                 BUG_ON(!np->hands_off);
3342                 ret = pci_enable_device(pdev);
3343                 if (ret < 0) {
3344                         dev_err(&pdev->dev,
3345                                 "pci_enable_device() failed: %d\n", ret);
3346                         goto out;
3347                 }
3348         /*      pci_power_on(pdev); */
3349
3350                 napi_enable(&np->napi);
3351
3352                 natsemi_reset(dev);
3353                 init_ring(dev);
3354                 disable_irq(irq);
3355                 spin_lock_irq(&np->lock);
3356                 np->hands_off = 0;
3357                 init_registers(dev);
3358                 netif_device_attach(dev);
3359                 spin_unlock_irq(&np->lock);
3360                 enable_irq(irq);
3361
3362                 mod_timer(&np->timer, round_jiffies(jiffies + 1*HZ));
3363         }
3364         netif_device_attach(dev);
3365 out:
3366         rtnl_unlock();
3367         return ret;
3368 }
3369
3370 #endif /* CONFIG_PM */
3371
3372 static struct pci_driver natsemi_driver = {
3373         .name           = DRV_NAME,
3374         .id_table       = natsemi_pci_tbl,
3375         .probe          = natsemi_probe1,
3376         .remove         = natsemi_remove1,
3377 #ifdef CONFIG_PM
3378         .suspend        = natsemi_suspend,
3379         .resume         = natsemi_resume,
3380 #endif
3381 };
3382
3383 static int __init natsemi_init_mod (void)
3384 {
3385 /* when a module, this is printed whether or not devices are found in probe */
3386 #ifdef MODULE
3387         printk(version);
3388 #endif
3389
3390         return pci_register_driver(&natsemi_driver);
3391 }
3392
3393 static void __exit natsemi_exit_mod (void)
3394 {
3395         pci_unregister_driver (&natsemi_driver);
3396 }
3397
3398 module_init(natsemi_init_mod);
3399 module_exit(natsemi_exit_mod);
3400