Linux-libre 5.3-gnu
[librecmc/linux-libre.git] / drivers / net / ethernet / marvell / mvpp2 / mvpp2_cls.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * RSS and Classifier helpers for Marvell PPv2 Network Controller
4  *
5  * Copyright (C) 2014 Marvell
6  *
7  * Marcin Wojtas <mw@semihalf.com>
8  */
9
10 #include "mvpp2.h"
11 #include "mvpp2_cls.h"
12 #include "mvpp2_prs.h"
13
14 #define MVPP2_DEF_FLOW(_type, _id, _opts, _ri, _ri_mask)        \
15 {                                                               \
16         .flow_type = _type,                                     \
17         .flow_id = _id,                                         \
18         .supported_hash_opts = _opts,                           \
19         .prs_ri = {                                             \
20                 .ri = _ri,                                      \
21                 .ri_mask = _ri_mask                             \
22         }                                                       \
23 }
24
25 static const struct mvpp2_cls_flow cls_flows[MVPP2_N_PRS_FLOWS] = {
26         /* TCP over IPv4 flows, Not fragmented, no vlan tag */
27         MVPP2_DEF_FLOW(MVPP22_FLOW_TCP4, MVPP2_FL_IP4_TCP_NF_UNTAG,
28                        MVPP22_CLS_HEK_IP4_5T,
29                        MVPP2_PRS_RI_VLAN_NONE | MVPP2_PRS_RI_L3_IP4 |
30                        MVPP2_PRS_RI_L4_TCP,
31                        MVPP2_PRS_IP_MASK | MVPP2_PRS_RI_VLAN_MASK),
32
33         MVPP2_DEF_FLOW(MVPP22_FLOW_TCP4, MVPP2_FL_IP4_TCP_NF_UNTAG,
34                        MVPP22_CLS_HEK_IP4_5T,
35                        MVPP2_PRS_RI_VLAN_NONE | MVPP2_PRS_RI_L3_IP4_OPT |
36                        MVPP2_PRS_RI_L4_TCP,
37                        MVPP2_PRS_IP_MASK | MVPP2_PRS_RI_VLAN_MASK),
38
39         MVPP2_DEF_FLOW(MVPP22_FLOW_TCP4, MVPP2_FL_IP4_TCP_NF_UNTAG,
40                        MVPP22_CLS_HEK_IP4_5T,
41                        MVPP2_PRS_RI_VLAN_NONE | MVPP2_PRS_RI_L3_IP4_OTHER |
42                        MVPP2_PRS_RI_L4_TCP,
43                        MVPP2_PRS_IP_MASK | MVPP2_PRS_RI_VLAN_MASK),
44
45         /* TCP over IPv4 flows, Not fragmented, with vlan tag */
46         MVPP2_DEF_FLOW(MVPP22_FLOW_TCP4, MVPP2_FL_IP4_TCP_NF_TAG,
47                        MVPP22_CLS_HEK_IP4_5T | MVPP22_CLS_HEK_TAGGED,
48                        MVPP2_PRS_RI_L3_IP4 | MVPP2_PRS_RI_L4_TCP,
49                        MVPP2_PRS_IP_MASK),
50
51         MVPP2_DEF_FLOW(MVPP22_FLOW_TCP4, MVPP2_FL_IP4_TCP_NF_TAG,
52                        MVPP22_CLS_HEK_IP4_5T | MVPP22_CLS_HEK_TAGGED,
53                        MVPP2_PRS_RI_L3_IP4_OPT | MVPP2_PRS_RI_L4_TCP,
54                        MVPP2_PRS_IP_MASK),
55
56         MVPP2_DEF_FLOW(MVPP22_FLOW_TCP4, MVPP2_FL_IP4_TCP_NF_TAG,
57                        MVPP22_CLS_HEK_IP4_5T | MVPP22_CLS_HEK_TAGGED,
58                        MVPP2_PRS_RI_L3_IP4_OTHER | MVPP2_PRS_RI_L4_TCP,
59                        MVPP2_PRS_IP_MASK),
60
61         /* TCP over IPv4 flows, fragmented, no vlan tag */
62         MVPP2_DEF_FLOW(MVPP22_FLOW_TCP4, MVPP2_FL_IP4_TCP_FRAG_UNTAG,
63                        MVPP22_CLS_HEK_IP4_2T,
64                        MVPP2_PRS_RI_VLAN_NONE | MVPP2_PRS_RI_L3_IP4 |
65                        MVPP2_PRS_RI_L4_TCP,
66                        MVPP2_PRS_IP_MASK | MVPP2_PRS_RI_VLAN_MASK),
67
68         MVPP2_DEF_FLOW(MVPP22_FLOW_TCP4, MVPP2_FL_IP4_TCP_FRAG_UNTAG,
69                        MVPP22_CLS_HEK_IP4_2T,
70                        MVPP2_PRS_RI_VLAN_NONE | MVPP2_PRS_RI_L3_IP4_OPT |
71                        MVPP2_PRS_RI_L4_TCP,
72                        MVPP2_PRS_IP_MASK | MVPP2_PRS_RI_VLAN_MASK),
73
74         MVPP2_DEF_FLOW(MVPP22_FLOW_TCP4, MVPP2_FL_IP4_TCP_FRAG_UNTAG,
75                        MVPP22_CLS_HEK_IP4_2T,
76                        MVPP2_PRS_RI_VLAN_NONE | MVPP2_PRS_RI_L3_IP4_OTHER |
77                        MVPP2_PRS_RI_L4_TCP,
78                        MVPP2_PRS_IP_MASK | MVPP2_PRS_RI_VLAN_MASK),
79
80         /* TCP over IPv4 flows, fragmented, with vlan tag */
81         MVPP2_DEF_FLOW(MVPP22_FLOW_TCP4, MVPP2_FL_IP4_TCP_FRAG_TAG,
82                        MVPP22_CLS_HEK_IP4_2T | MVPP22_CLS_HEK_TAGGED,
83                        MVPP2_PRS_RI_L3_IP4 | MVPP2_PRS_RI_L4_TCP,
84                        MVPP2_PRS_IP_MASK),
85
86         MVPP2_DEF_FLOW(MVPP22_FLOW_TCP4, MVPP2_FL_IP4_TCP_FRAG_TAG,
87                        MVPP22_CLS_HEK_IP4_2T | MVPP22_CLS_HEK_TAGGED,
88                        MVPP2_PRS_RI_L3_IP4_OPT | MVPP2_PRS_RI_L4_TCP,
89                        MVPP2_PRS_IP_MASK),
90
91         MVPP2_DEF_FLOW(MVPP22_FLOW_TCP4, MVPP2_FL_IP4_TCP_FRAG_TAG,
92                        MVPP22_CLS_HEK_IP4_2T | MVPP22_CLS_HEK_TAGGED,
93                        MVPP2_PRS_RI_L3_IP4_OTHER | MVPP2_PRS_RI_L4_TCP,
94                        MVPP2_PRS_IP_MASK),
95
96         /* UDP over IPv4 flows, Not fragmented, no vlan tag */
97         MVPP2_DEF_FLOW(MVPP22_FLOW_UDP4, MVPP2_FL_IP4_UDP_NF_UNTAG,
98                        MVPP22_CLS_HEK_IP4_5T,
99                        MVPP2_PRS_RI_VLAN_NONE | MVPP2_PRS_RI_L3_IP4 |
100                        MVPP2_PRS_RI_L4_UDP,
101                        MVPP2_PRS_IP_MASK | MVPP2_PRS_RI_VLAN_MASK),
102
103         MVPP2_DEF_FLOW(MVPP22_FLOW_UDP4, MVPP2_FL_IP4_UDP_NF_UNTAG,
104                        MVPP22_CLS_HEK_IP4_5T,
105                        MVPP2_PRS_RI_VLAN_NONE | MVPP2_PRS_RI_L3_IP4_OPT |
106                        MVPP2_PRS_RI_L4_UDP,
107                        MVPP2_PRS_IP_MASK | MVPP2_PRS_RI_VLAN_MASK),
108
109         MVPP2_DEF_FLOW(MVPP22_FLOW_UDP4, MVPP2_FL_IP4_UDP_NF_UNTAG,
110                        MVPP22_CLS_HEK_IP4_5T,
111                        MVPP2_PRS_RI_VLAN_NONE | MVPP2_PRS_RI_L3_IP4_OTHER |
112                        MVPP2_PRS_RI_L4_UDP,
113                        MVPP2_PRS_IP_MASK | MVPP2_PRS_RI_VLAN_MASK),
114
115         /* UDP over IPv4 flows, Not fragmented, with vlan tag */
116         MVPP2_DEF_FLOW(MVPP22_FLOW_UDP4, MVPP2_FL_IP4_UDP_NF_TAG,
117                        MVPP22_CLS_HEK_IP4_5T | MVPP22_CLS_HEK_TAGGED,
118                        MVPP2_PRS_RI_L3_IP4 | MVPP2_PRS_RI_L4_UDP,
119                        MVPP2_PRS_IP_MASK),
120
121         MVPP2_DEF_FLOW(MVPP22_FLOW_UDP4, MVPP2_FL_IP4_UDP_NF_TAG,
122                        MVPP22_CLS_HEK_IP4_5T | MVPP22_CLS_HEK_TAGGED,
123                        MVPP2_PRS_RI_L3_IP4_OPT | MVPP2_PRS_RI_L4_UDP,
124                        MVPP2_PRS_IP_MASK),
125
126         MVPP2_DEF_FLOW(MVPP22_FLOW_UDP4, MVPP2_FL_IP4_UDP_NF_TAG,
127                        MVPP22_CLS_HEK_IP4_5T | MVPP22_CLS_HEK_TAGGED,
128                        MVPP2_PRS_RI_L3_IP4_OTHER | MVPP2_PRS_RI_L4_UDP,
129                        MVPP2_PRS_IP_MASK),
130
131         /* UDP over IPv4 flows, fragmented, no vlan tag */
132         MVPP2_DEF_FLOW(MVPP22_FLOW_UDP4, MVPP2_FL_IP4_UDP_FRAG_UNTAG,
133                        MVPP22_CLS_HEK_IP4_2T,
134                        MVPP2_PRS_RI_VLAN_NONE | MVPP2_PRS_RI_L3_IP4 |
135                        MVPP2_PRS_RI_L4_UDP,
136                        MVPP2_PRS_IP_MASK | MVPP2_PRS_RI_VLAN_MASK),
137
138         MVPP2_DEF_FLOW(MVPP22_FLOW_UDP4, MVPP2_FL_IP4_UDP_FRAG_UNTAG,
139                        MVPP22_CLS_HEK_IP4_2T,
140                        MVPP2_PRS_RI_VLAN_NONE | MVPP2_PRS_RI_L3_IP4_OPT |
141                        MVPP2_PRS_RI_L4_UDP,
142                        MVPP2_PRS_IP_MASK | MVPP2_PRS_RI_VLAN_MASK),
143
144         MVPP2_DEF_FLOW(MVPP22_FLOW_UDP4, MVPP2_FL_IP4_UDP_FRAG_UNTAG,
145                        MVPP22_CLS_HEK_IP4_2T,
146                        MVPP2_PRS_RI_VLAN_NONE | MVPP2_PRS_RI_L3_IP4_OTHER |
147                        MVPP2_PRS_RI_L4_UDP,
148                        MVPP2_PRS_IP_MASK | MVPP2_PRS_RI_VLAN_MASK),
149
150         /* UDP over IPv4 flows, fragmented, with vlan tag */
151         MVPP2_DEF_FLOW(MVPP22_FLOW_UDP4, MVPP2_FL_IP4_UDP_FRAG_TAG,
152                        MVPP22_CLS_HEK_IP4_2T | MVPP22_CLS_HEK_TAGGED,
153                        MVPP2_PRS_RI_L3_IP4 | MVPP2_PRS_RI_L4_UDP,
154                        MVPP2_PRS_IP_MASK),
155
156         MVPP2_DEF_FLOW(MVPP22_FLOW_UDP4, MVPP2_FL_IP4_UDP_FRAG_TAG,
157                        MVPP22_CLS_HEK_IP4_2T | MVPP22_CLS_HEK_TAGGED,
158                        MVPP2_PRS_RI_L3_IP4_OPT | MVPP2_PRS_RI_L4_UDP,
159                        MVPP2_PRS_IP_MASK),
160
161         MVPP2_DEF_FLOW(MVPP22_FLOW_UDP4, MVPP2_FL_IP4_UDP_FRAG_TAG,
162                        MVPP22_CLS_HEK_IP4_2T | MVPP22_CLS_HEK_TAGGED,
163                        MVPP2_PRS_RI_L3_IP4_OTHER | MVPP2_PRS_RI_L4_UDP,
164                        MVPP2_PRS_IP_MASK),
165
166         /* TCP over IPv6 flows, not fragmented, no vlan tag */
167         MVPP2_DEF_FLOW(MVPP22_FLOW_TCP6, MVPP2_FL_IP6_TCP_NF_UNTAG,
168                        MVPP22_CLS_HEK_IP6_5T,
169                        MVPP2_PRS_RI_VLAN_NONE | MVPP2_PRS_RI_L3_IP6 |
170                        MVPP2_PRS_RI_L4_TCP,
171                        MVPP2_PRS_IP_MASK | MVPP2_PRS_RI_VLAN_MASK),
172
173         MVPP2_DEF_FLOW(MVPP22_FLOW_TCP6, MVPP2_FL_IP6_TCP_NF_UNTAG,
174                        MVPP22_CLS_HEK_IP6_5T,
175                        MVPP2_PRS_RI_VLAN_NONE | MVPP2_PRS_RI_L3_IP6_EXT |
176                        MVPP2_PRS_RI_L4_TCP,
177                        MVPP2_PRS_IP_MASK | MVPP2_PRS_RI_VLAN_MASK),
178
179         /* TCP over IPv6 flows, not fragmented, with vlan tag */
180         MVPP2_DEF_FLOW(MVPP22_FLOW_TCP6, MVPP2_FL_IP6_TCP_NF_TAG,
181                        MVPP22_CLS_HEK_IP6_5T | MVPP22_CLS_HEK_TAGGED,
182                        MVPP2_PRS_RI_L3_IP6 | MVPP2_PRS_RI_L4_TCP,
183                        MVPP2_PRS_IP_MASK),
184
185         MVPP2_DEF_FLOW(MVPP22_FLOW_TCP6, MVPP2_FL_IP6_TCP_NF_TAG,
186                        MVPP22_CLS_HEK_IP6_5T | MVPP22_CLS_HEK_TAGGED,
187                        MVPP2_PRS_RI_L3_IP6_EXT | MVPP2_PRS_RI_L4_TCP,
188                        MVPP2_PRS_IP_MASK),
189
190         /* TCP over IPv6 flows, fragmented, no vlan tag */
191         MVPP2_DEF_FLOW(MVPP22_FLOW_TCP6, MVPP2_FL_IP6_TCP_FRAG_UNTAG,
192                        MVPP22_CLS_HEK_IP6_2T,
193                        MVPP2_PRS_RI_VLAN_NONE | MVPP2_PRS_RI_L3_IP6 |
194                        MVPP2_PRS_RI_IP_FRAG_TRUE | MVPP2_PRS_RI_L4_TCP,
195                        MVPP2_PRS_IP_MASK | MVPP2_PRS_RI_VLAN_MASK),
196
197         MVPP2_DEF_FLOW(MVPP22_FLOW_TCP6, MVPP2_FL_IP6_TCP_FRAG_UNTAG,
198                        MVPP22_CLS_HEK_IP6_2T,
199                        MVPP2_PRS_RI_VLAN_NONE | MVPP2_PRS_RI_L3_IP6_EXT |
200                        MVPP2_PRS_RI_IP_FRAG_TRUE | MVPP2_PRS_RI_L4_TCP,
201                        MVPP2_PRS_IP_MASK | MVPP2_PRS_RI_VLAN_MASK),
202
203         /* TCP over IPv6 flows, fragmented, with vlan tag */
204         MVPP2_DEF_FLOW(MVPP22_FLOW_TCP6, MVPP2_FL_IP6_TCP_FRAG_TAG,
205                        MVPP22_CLS_HEK_IP6_2T | MVPP22_CLS_HEK_TAGGED,
206                        MVPP2_PRS_RI_L3_IP6 | MVPP2_PRS_RI_IP_FRAG_TRUE |
207                        MVPP2_PRS_RI_L4_TCP,
208                        MVPP2_PRS_IP_MASK),
209
210         MVPP2_DEF_FLOW(MVPP22_FLOW_TCP6, MVPP2_FL_IP6_TCP_FRAG_TAG,
211                        MVPP22_CLS_HEK_IP6_2T | MVPP22_CLS_HEK_TAGGED,
212                        MVPP2_PRS_RI_L3_IP6_EXT | MVPP2_PRS_RI_IP_FRAG_TRUE |
213                        MVPP2_PRS_RI_L4_TCP,
214                        MVPP2_PRS_IP_MASK),
215
216         /* UDP over IPv6 flows, not fragmented, no vlan tag */
217         MVPP2_DEF_FLOW(MVPP22_FLOW_UDP6, MVPP2_FL_IP6_UDP_NF_UNTAG,
218                        MVPP22_CLS_HEK_IP6_5T,
219                        MVPP2_PRS_RI_VLAN_NONE | MVPP2_PRS_RI_L3_IP6 |
220                        MVPP2_PRS_RI_L4_UDP,
221                        MVPP2_PRS_IP_MASK | MVPP2_PRS_RI_VLAN_MASK),
222
223         MVPP2_DEF_FLOW(MVPP22_FLOW_UDP6, MVPP2_FL_IP6_UDP_NF_UNTAG,
224                        MVPP22_CLS_HEK_IP6_5T,
225                        MVPP2_PRS_RI_VLAN_NONE | MVPP2_PRS_RI_L3_IP6_EXT |
226                        MVPP2_PRS_RI_L4_UDP,
227                        MVPP2_PRS_IP_MASK | MVPP2_PRS_RI_VLAN_MASK),
228
229         /* UDP over IPv6 flows, not fragmented, with vlan tag */
230         MVPP2_DEF_FLOW(MVPP22_FLOW_UDP6, MVPP2_FL_IP6_UDP_NF_TAG,
231                        MVPP22_CLS_HEK_IP6_5T | MVPP22_CLS_HEK_TAGGED,
232                        MVPP2_PRS_RI_L3_IP6 | MVPP2_PRS_RI_L4_UDP,
233                        MVPP2_PRS_IP_MASK),
234
235         MVPP2_DEF_FLOW(MVPP22_FLOW_UDP6, MVPP2_FL_IP6_UDP_NF_TAG,
236                        MVPP22_CLS_HEK_IP6_5T | MVPP22_CLS_HEK_TAGGED,
237                        MVPP2_PRS_RI_L3_IP6_EXT | MVPP2_PRS_RI_L4_UDP,
238                        MVPP2_PRS_IP_MASK),
239
240         /* UDP over IPv6 flows, fragmented, no vlan tag */
241         MVPP2_DEF_FLOW(MVPP22_FLOW_UDP6, MVPP2_FL_IP6_UDP_FRAG_UNTAG,
242                        MVPP22_CLS_HEK_IP6_2T,
243                        MVPP2_PRS_RI_VLAN_NONE | MVPP2_PRS_RI_L3_IP6 |
244                        MVPP2_PRS_RI_IP_FRAG_TRUE | MVPP2_PRS_RI_L4_UDP,
245                        MVPP2_PRS_IP_MASK | MVPP2_PRS_RI_VLAN_MASK),
246
247         MVPP2_DEF_FLOW(MVPP22_FLOW_UDP6, MVPP2_FL_IP6_UDP_FRAG_UNTAG,
248                        MVPP22_CLS_HEK_IP6_2T,
249                        MVPP2_PRS_RI_VLAN_NONE | MVPP2_PRS_RI_L3_IP6_EXT |
250                        MVPP2_PRS_RI_IP_FRAG_TRUE | MVPP2_PRS_RI_L4_UDP,
251                        MVPP2_PRS_IP_MASK | MVPP2_PRS_RI_VLAN_MASK),
252
253         /* UDP over IPv6 flows, fragmented, with vlan tag */
254         MVPP2_DEF_FLOW(MVPP22_FLOW_UDP6, MVPP2_FL_IP6_UDP_FRAG_TAG,
255                        MVPP22_CLS_HEK_IP6_2T | MVPP22_CLS_HEK_TAGGED,
256                        MVPP2_PRS_RI_L3_IP6 | MVPP2_PRS_RI_IP_FRAG_TRUE |
257                        MVPP2_PRS_RI_L4_UDP,
258                        MVPP2_PRS_IP_MASK),
259
260         MVPP2_DEF_FLOW(MVPP22_FLOW_UDP6, MVPP2_FL_IP6_UDP_FRAG_TAG,
261                        MVPP22_CLS_HEK_IP6_2T | MVPP22_CLS_HEK_TAGGED,
262                        MVPP2_PRS_RI_L3_IP6_EXT | MVPP2_PRS_RI_IP_FRAG_TRUE |
263                        MVPP2_PRS_RI_L4_UDP,
264                        MVPP2_PRS_IP_MASK),
265
266         /* IPv4 flows, no vlan tag */
267         MVPP2_DEF_FLOW(MVPP22_FLOW_IP4, MVPP2_FL_IP4_UNTAG,
268                        MVPP22_CLS_HEK_IP4_2T,
269                        MVPP2_PRS_RI_VLAN_NONE | MVPP2_PRS_RI_L3_IP4,
270                        MVPP2_PRS_RI_VLAN_MASK | MVPP2_PRS_RI_L3_PROTO_MASK),
271         MVPP2_DEF_FLOW(MVPP22_FLOW_IP4, MVPP2_FL_IP4_UNTAG,
272                        MVPP22_CLS_HEK_IP4_2T,
273                        MVPP2_PRS_RI_VLAN_NONE | MVPP2_PRS_RI_L3_IP4_OPT,
274                        MVPP2_PRS_RI_VLAN_MASK | MVPP2_PRS_RI_L3_PROTO_MASK),
275         MVPP2_DEF_FLOW(MVPP22_FLOW_IP4, MVPP2_FL_IP4_UNTAG,
276                        MVPP22_CLS_HEK_IP4_2T,
277                        MVPP2_PRS_RI_VLAN_NONE | MVPP2_PRS_RI_L3_IP4_OTHER,
278                        MVPP2_PRS_RI_VLAN_MASK | MVPP2_PRS_RI_L3_PROTO_MASK),
279
280         /* IPv4 flows, with vlan tag */
281         MVPP2_DEF_FLOW(MVPP22_FLOW_IP4, MVPP2_FL_IP4_TAG,
282                        MVPP22_CLS_HEK_IP4_2T | MVPP22_CLS_HEK_TAGGED,
283                        MVPP2_PRS_RI_L3_IP4,
284                        MVPP2_PRS_RI_L3_PROTO_MASK),
285         MVPP2_DEF_FLOW(MVPP22_FLOW_IP4, MVPP2_FL_IP4_TAG,
286                        MVPP22_CLS_HEK_IP4_2T | MVPP22_CLS_HEK_TAGGED,
287                        MVPP2_PRS_RI_L3_IP4_OPT,
288                        MVPP2_PRS_RI_L3_PROTO_MASK),
289         MVPP2_DEF_FLOW(MVPP22_FLOW_IP4, MVPP2_FL_IP4_TAG,
290                        MVPP22_CLS_HEK_IP4_2T | MVPP22_CLS_HEK_TAGGED,
291                        MVPP2_PRS_RI_L3_IP4_OTHER,
292                        MVPP2_PRS_RI_L3_PROTO_MASK),
293
294         /* IPv6 flows, no vlan tag */
295         MVPP2_DEF_FLOW(MVPP22_FLOW_IP6, MVPP2_FL_IP6_UNTAG,
296                        MVPP22_CLS_HEK_IP6_2T,
297                        MVPP2_PRS_RI_VLAN_NONE | MVPP2_PRS_RI_L3_IP6,
298                        MVPP2_PRS_RI_VLAN_MASK | MVPP2_PRS_RI_L3_PROTO_MASK),
299         MVPP2_DEF_FLOW(MVPP22_FLOW_IP6, MVPP2_FL_IP6_UNTAG,
300                        MVPP22_CLS_HEK_IP6_2T,
301                        MVPP2_PRS_RI_VLAN_NONE | MVPP2_PRS_RI_L3_IP6,
302                        MVPP2_PRS_RI_VLAN_MASK | MVPP2_PRS_RI_L3_PROTO_MASK),
303
304         /* IPv6 flows, with vlan tag */
305         MVPP2_DEF_FLOW(MVPP22_FLOW_IP6, MVPP2_FL_IP6_TAG,
306                        MVPP22_CLS_HEK_IP6_2T | MVPP22_CLS_HEK_TAGGED,
307                        MVPP2_PRS_RI_L3_IP6,
308                        MVPP2_PRS_RI_L3_PROTO_MASK),
309         MVPP2_DEF_FLOW(MVPP22_FLOW_IP6, MVPP2_FL_IP6_TAG,
310                        MVPP22_CLS_HEK_IP6_2T | MVPP22_CLS_HEK_TAGGED,
311                        MVPP2_PRS_RI_L3_IP6,
312                        MVPP2_PRS_RI_L3_PROTO_MASK),
313
314         /* Non IP flow, no vlan tag */
315         MVPP2_DEF_FLOW(MVPP22_FLOW_ETHERNET, MVPP2_FL_NON_IP_UNTAG,
316                        0,
317                        MVPP2_PRS_RI_VLAN_NONE,
318                        MVPP2_PRS_RI_VLAN_MASK),
319         /* Non IP flow, with vlan tag */
320         MVPP2_DEF_FLOW(MVPP22_FLOW_ETHERNET, MVPP2_FL_NON_IP_TAG,
321                        MVPP22_CLS_HEK_OPT_VLAN,
322                        0, 0),
323 };
324
325 u32 mvpp2_cls_flow_hits(struct mvpp2 *priv, int index)
326 {
327         mvpp2_write(priv, MVPP2_CTRS_IDX, index);
328
329         return mvpp2_read(priv, MVPP2_CLS_FLOW_TBL_HIT_CTR);
330 }
331
332 void mvpp2_cls_flow_read(struct mvpp2 *priv, int index,
333                          struct mvpp2_cls_flow_entry *fe)
334 {
335         fe->index = index;
336         mvpp2_write(priv, MVPP2_CLS_FLOW_INDEX_REG, index);
337         fe->data[0] = mvpp2_read(priv, MVPP2_CLS_FLOW_TBL0_REG);
338         fe->data[1] = mvpp2_read(priv, MVPP2_CLS_FLOW_TBL1_REG);
339         fe->data[2] = mvpp2_read(priv, MVPP2_CLS_FLOW_TBL2_REG);
340 }
341
342 /* Update classification flow table registers */
343 static void mvpp2_cls_flow_write(struct mvpp2 *priv,
344                                  struct mvpp2_cls_flow_entry *fe)
345 {
346         mvpp2_write(priv, MVPP2_CLS_FLOW_INDEX_REG, fe->index);
347         mvpp2_write(priv, MVPP2_CLS_FLOW_TBL0_REG, fe->data[0]);
348         mvpp2_write(priv, MVPP2_CLS_FLOW_TBL1_REG, fe->data[1]);
349         mvpp2_write(priv, MVPP2_CLS_FLOW_TBL2_REG, fe->data[2]);
350 }
351
352 u32 mvpp2_cls_lookup_hits(struct mvpp2 *priv, int index)
353 {
354         mvpp2_write(priv, MVPP2_CTRS_IDX, index);
355
356         return mvpp2_read(priv, MVPP2_CLS_DEC_TBL_HIT_CTR);
357 }
358
359 void mvpp2_cls_lookup_read(struct mvpp2 *priv, int lkpid, int way,
360                            struct mvpp2_cls_lookup_entry *le)
361 {
362         u32 val;
363
364         val = (way << MVPP2_CLS_LKP_INDEX_WAY_OFFS) | lkpid;
365         mvpp2_write(priv, MVPP2_CLS_LKP_INDEX_REG, val);
366         le->way = way;
367         le->lkpid = lkpid;
368         le->data = mvpp2_read(priv, MVPP2_CLS_LKP_TBL_REG);
369 }
370
371 /* Update classification lookup table register */
372 static void mvpp2_cls_lookup_write(struct mvpp2 *priv,
373                                    struct mvpp2_cls_lookup_entry *le)
374 {
375         u32 val;
376
377         val = (le->way << MVPP2_CLS_LKP_INDEX_WAY_OFFS) | le->lkpid;
378         mvpp2_write(priv, MVPP2_CLS_LKP_INDEX_REG, val);
379         mvpp2_write(priv, MVPP2_CLS_LKP_TBL_REG, le->data);
380 }
381
382 /* Operations on flow entry */
383 static int mvpp2_cls_flow_hek_num_get(struct mvpp2_cls_flow_entry *fe)
384 {
385         return fe->data[1] & MVPP2_CLS_FLOW_TBL1_N_FIELDS_MASK;
386 }
387
388 static void mvpp2_cls_flow_hek_num_set(struct mvpp2_cls_flow_entry *fe,
389                                        int num_of_fields)
390 {
391         fe->data[1] &= ~MVPP2_CLS_FLOW_TBL1_N_FIELDS_MASK;
392         fe->data[1] |= MVPP2_CLS_FLOW_TBL1_N_FIELDS(num_of_fields);
393 }
394
395 static int mvpp2_cls_flow_hek_get(struct mvpp2_cls_flow_entry *fe,
396                                   int field_index)
397 {
398         return (fe->data[2] >> MVPP2_CLS_FLOW_TBL2_FLD_OFFS(field_index)) &
399                 MVPP2_CLS_FLOW_TBL2_FLD_MASK;
400 }
401
402 static void mvpp2_cls_flow_hek_set(struct mvpp2_cls_flow_entry *fe,
403                                    int field_index, int field_id)
404 {
405         fe->data[2] &= ~MVPP2_CLS_FLOW_TBL2_FLD(field_index,
406                                                 MVPP2_CLS_FLOW_TBL2_FLD_MASK);
407         fe->data[2] |= MVPP2_CLS_FLOW_TBL2_FLD(field_index, field_id);
408 }
409
410 static void mvpp2_cls_flow_eng_set(struct mvpp2_cls_flow_entry *fe,
411                                    int engine)
412 {
413         fe->data[0] &= ~MVPP2_CLS_FLOW_TBL0_ENG(MVPP2_CLS_FLOW_TBL0_ENG_MASK);
414         fe->data[0] |= MVPP2_CLS_FLOW_TBL0_ENG(engine);
415 }
416
417 int mvpp2_cls_flow_eng_get(struct mvpp2_cls_flow_entry *fe)
418 {
419         return (fe->data[0] >> MVPP2_CLS_FLOW_TBL0_OFFS) &
420                 MVPP2_CLS_FLOW_TBL0_ENG_MASK;
421 }
422
423 static void mvpp2_cls_flow_port_id_sel(struct mvpp2_cls_flow_entry *fe,
424                                        bool from_packet)
425 {
426         if (from_packet)
427                 fe->data[0] |= MVPP2_CLS_FLOW_TBL0_PORT_ID_SEL;
428         else
429                 fe->data[0] &= ~MVPP2_CLS_FLOW_TBL0_PORT_ID_SEL;
430 }
431
432 static void mvpp2_cls_flow_last_set(struct mvpp2_cls_flow_entry *fe,
433                                     bool is_last)
434 {
435         fe->data[0] &= ~MVPP2_CLS_FLOW_TBL0_LAST;
436         fe->data[0] |= !!is_last;
437 }
438
439 static void mvpp2_cls_flow_pri_set(struct mvpp2_cls_flow_entry *fe, int prio)
440 {
441         fe->data[1] &= ~MVPP2_CLS_FLOW_TBL1_PRIO(MVPP2_CLS_FLOW_TBL1_PRIO_MASK);
442         fe->data[1] |= MVPP2_CLS_FLOW_TBL1_PRIO(prio);
443 }
444
445 static void mvpp2_cls_flow_port_add(struct mvpp2_cls_flow_entry *fe,
446                                     u32 port)
447 {
448         fe->data[0] |= MVPP2_CLS_FLOW_TBL0_PORT_ID(port);
449 }
450
451 static void mvpp2_cls_flow_port_remove(struct mvpp2_cls_flow_entry *fe,
452                                        u32 port)
453 {
454         fe->data[0] &= ~MVPP2_CLS_FLOW_TBL0_PORT_ID(port);
455 }
456
457 static void mvpp2_cls_flow_lu_type_set(struct mvpp2_cls_flow_entry *fe,
458                                        u8 lu_type)
459 {
460         fe->data[1] &= ~MVPP2_CLS_FLOW_TBL1_LU_TYPE(MVPP2_CLS_LU_TYPE_MASK);
461         fe->data[1] |= MVPP2_CLS_FLOW_TBL1_LU_TYPE(lu_type);
462 }
463
464 /* Initialize the parser entry for the given flow */
465 static void mvpp2_cls_flow_prs_init(struct mvpp2 *priv,
466                                     const struct mvpp2_cls_flow *flow)
467 {
468         mvpp2_prs_add_flow(priv, flow->flow_id, flow->prs_ri.ri,
469                            flow->prs_ri.ri_mask);
470 }
471
472 /* Initialize the Lookup Id table entry for the given flow */
473 static void mvpp2_cls_flow_lkp_init(struct mvpp2 *priv,
474                                     const struct mvpp2_cls_flow *flow)
475 {
476         struct mvpp2_cls_lookup_entry le;
477
478         le.way = 0;
479         le.lkpid = flow->flow_id;
480
481         /* The default RxQ for this port is set in the C2 lookup */
482         le.data = 0;
483
484         /* We point on the first lookup in the sequence for the flow, that is
485          * the C2 lookup.
486          */
487         le.data |= MVPP2_CLS_LKP_FLOW_PTR(MVPP2_CLS_FLT_FIRST(flow->flow_id));
488
489         /* CLS is always enabled, RSS is enabled/disabled in C2 lookup */
490         le.data |= MVPP2_CLS_LKP_TBL_LOOKUP_EN_MASK;
491
492         mvpp2_cls_lookup_write(priv, &le);
493 }
494
495 static void mvpp2_cls_c2_write(struct mvpp2 *priv,
496                                struct mvpp2_cls_c2_entry *c2)
497 {
498         u32 val;
499         mvpp2_write(priv, MVPP22_CLS_C2_TCAM_IDX, c2->index);
500
501         val = mvpp2_read(priv, MVPP22_CLS_C2_TCAM_INV);
502         if (c2->valid)
503                 val &= ~MVPP22_CLS_C2_TCAM_INV_BIT;
504         else
505                 val |= MVPP22_CLS_C2_TCAM_INV_BIT;
506         mvpp2_write(priv, MVPP22_CLS_C2_TCAM_INV, val);
507
508         mvpp2_write(priv, MVPP22_CLS_C2_ACT, c2->act);
509
510         mvpp2_write(priv, MVPP22_CLS_C2_ATTR0, c2->attr[0]);
511         mvpp2_write(priv, MVPP22_CLS_C2_ATTR1, c2->attr[1]);
512         mvpp2_write(priv, MVPP22_CLS_C2_ATTR2, c2->attr[2]);
513         mvpp2_write(priv, MVPP22_CLS_C2_ATTR3, c2->attr[3]);
514
515         mvpp2_write(priv, MVPP22_CLS_C2_TCAM_DATA0, c2->tcam[0]);
516         mvpp2_write(priv, MVPP22_CLS_C2_TCAM_DATA1, c2->tcam[1]);
517         mvpp2_write(priv, MVPP22_CLS_C2_TCAM_DATA2, c2->tcam[2]);
518         mvpp2_write(priv, MVPP22_CLS_C2_TCAM_DATA3, c2->tcam[3]);
519         /* Writing TCAM_DATA4 flushes writes to TCAM_DATA0-4 and INV to HW */
520         mvpp2_write(priv, MVPP22_CLS_C2_TCAM_DATA4, c2->tcam[4]);
521 }
522
523 void mvpp2_cls_c2_read(struct mvpp2 *priv, int index,
524                        struct mvpp2_cls_c2_entry *c2)
525 {
526         u32 val;
527         mvpp2_write(priv, MVPP22_CLS_C2_TCAM_IDX, index);
528
529         c2->index = index;
530
531         c2->tcam[0] = mvpp2_read(priv, MVPP22_CLS_C2_TCAM_DATA0);
532         c2->tcam[1] = mvpp2_read(priv, MVPP22_CLS_C2_TCAM_DATA1);
533         c2->tcam[2] = mvpp2_read(priv, MVPP22_CLS_C2_TCAM_DATA2);
534         c2->tcam[3] = mvpp2_read(priv, MVPP22_CLS_C2_TCAM_DATA3);
535         c2->tcam[4] = mvpp2_read(priv, MVPP22_CLS_C2_TCAM_DATA4);
536
537         c2->act = mvpp2_read(priv, MVPP22_CLS_C2_ACT);
538
539         c2->attr[0] = mvpp2_read(priv, MVPP22_CLS_C2_ATTR0);
540         c2->attr[1] = mvpp2_read(priv, MVPP22_CLS_C2_ATTR1);
541         c2->attr[2] = mvpp2_read(priv, MVPP22_CLS_C2_ATTR2);
542         c2->attr[3] = mvpp2_read(priv, MVPP22_CLS_C2_ATTR3);
543
544         val = mvpp2_read(priv, MVPP22_CLS_C2_TCAM_INV);
545         c2->valid = !(val & MVPP22_CLS_C2_TCAM_INV_BIT);
546 }
547
548 static int mvpp2_cls_ethtool_flow_to_type(int flow_type)
549 {
550         switch (flow_type & ~(FLOW_EXT | FLOW_MAC_EXT | FLOW_RSS)) {
551         case ETHER_FLOW:
552                 return MVPP22_FLOW_ETHERNET;
553         case TCP_V4_FLOW:
554                 return MVPP22_FLOW_TCP4;
555         case TCP_V6_FLOW:
556                 return MVPP22_FLOW_TCP6;
557         case UDP_V4_FLOW:
558                 return MVPP22_FLOW_UDP4;
559         case UDP_V6_FLOW:
560                 return MVPP22_FLOW_UDP6;
561         case IPV4_FLOW:
562                 return MVPP22_FLOW_IP4;
563         case IPV6_FLOW:
564                 return MVPP22_FLOW_IP6;
565         default:
566                 return -EOPNOTSUPP;
567         }
568 }
569
570 static int mvpp2_cls_c2_port_flow_index(struct mvpp2_port *port, int loc)
571 {
572         return MVPP22_CLS_C2_RFS_LOC(port->id, loc);
573 }
574
575 /* Initialize the flow table entries for the given flow */
576 static void mvpp2_cls_flow_init(struct mvpp2 *priv,
577                                 const struct mvpp2_cls_flow *flow)
578 {
579         struct mvpp2_cls_flow_entry fe;
580         int i, pri = 0;
581
582         /* Assign default values to all entries in the flow */
583         for (i = MVPP2_CLS_FLT_FIRST(flow->flow_id);
584              i <= MVPP2_CLS_FLT_LAST(flow->flow_id); i++) {
585                 memset(&fe, 0, sizeof(fe));
586                 fe.index = i;
587                 mvpp2_cls_flow_pri_set(&fe, pri++);
588
589                 if (i == MVPP2_CLS_FLT_LAST(flow->flow_id))
590                         mvpp2_cls_flow_last_set(&fe, 1);
591
592                 mvpp2_cls_flow_write(priv, &fe);
593         }
594
595         /* RSS config C2 lookup */
596         mvpp2_cls_flow_read(priv, MVPP2_CLS_FLT_C2_RSS_ENTRY(flow->flow_id),
597                             &fe);
598
599         mvpp2_cls_flow_eng_set(&fe, MVPP22_CLS_ENGINE_C2);
600         mvpp2_cls_flow_port_id_sel(&fe, true);
601         mvpp2_cls_flow_lu_type_set(&fe, MVPP22_CLS_LU_TYPE_ALL);
602
603         /* Add all ports */
604         for (i = 0; i < MVPP2_MAX_PORTS; i++)
605                 mvpp2_cls_flow_port_add(&fe, BIT(i));
606
607         mvpp2_cls_flow_write(priv, &fe);
608
609         /* C3Hx lookups */
610         for (i = 0; i < MVPP2_MAX_PORTS; i++) {
611                 mvpp2_cls_flow_read(priv,
612                                     MVPP2_CLS_FLT_HASH_ENTRY(i, flow->flow_id),
613                                     &fe);
614
615                 /* Set a default engine. Will be overwritten when setting the
616                  * real HEK parameters
617                  */
618                 mvpp2_cls_flow_eng_set(&fe, MVPP22_CLS_ENGINE_C3HA);
619                 mvpp2_cls_flow_port_id_sel(&fe, true);
620                 mvpp2_cls_flow_port_add(&fe, BIT(i));
621
622                 mvpp2_cls_flow_write(priv, &fe);
623         }
624 }
625
626 /* Adds a field to the Header Extracted Key generation parameters*/
627 static int mvpp2_flow_add_hek_field(struct mvpp2_cls_flow_entry *fe,
628                                     u32 field_id)
629 {
630         int nb_fields = mvpp2_cls_flow_hek_num_get(fe);
631
632         if (nb_fields == MVPP2_FLOW_N_FIELDS)
633                 return -EINVAL;
634
635         mvpp2_cls_flow_hek_set(fe, nb_fields, field_id);
636
637         mvpp2_cls_flow_hek_num_set(fe, nb_fields + 1);
638
639         return 0;
640 }
641
642 static int mvpp2_flow_set_hek_fields(struct mvpp2_cls_flow_entry *fe,
643                                      unsigned long hash_opts)
644 {
645         u32 field_id;
646         int i;
647
648         /* Clear old fields */
649         mvpp2_cls_flow_hek_num_set(fe, 0);
650         fe->data[2] = 0;
651
652         for_each_set_bit(i, &hash_opts, MVPP22_CLS_HEK_N_FIELDS) {
653                 switch (BIT(i)) {
654                 case MVPP22_CLS_HEK_OPT_MAC_DA:
655                         field_id = MVPP22_CLS_FIELD_MAC_DA;
656                         break;
657                 case MVPP22_CLS_HEK_OPT_VLAN:
658                         field_id = MVPP22_CLS_FIELD_VLAN;
659                         break;
660                 case MVPP22_CLS_HEK_OPT_VLAN_PRI:
661                         field_id = MVPP22_CLS_FIELD_VLAN_PRI;
662                         break;
663                 case MVPP22_CLS_HEK_OPT_IP4SA:
664                         field_id = MVPP22_CLS_FIELD_IP4SA;
665                         break;
666                 case MVPP22_CLS_HEK_OPT_IP4DA:
667                         field_id = MVPP22_CLS_FIELD_IP4DA;
668                         break;
669                 case MVPP22_CLS_HEK_OPT_IP6SA:
670                         field_id = MVPP22_CLS_FIELD_IP6SA;
671                         break;
672                 case MVPP22_CLS_HEK_OPT_IP6DA:
673                         field_id = MVPP22_CLS_FIELD_IP6DA;
674                         break;
675                 case MVPP22_CLS_HEK_OPT_L4SIP:
676                         field_id = MVPP22_CLS_FIELD_L4SIP;
677                         break;
678                 case MVPP22_CLS_HEK_OPT_L4DIP:
679                         field_id = MVPP22_CLS_FIELD_L4DIP;
680                         break;
681                 default:
682                         return -EINVAL;
683                 }
684                 if (mvpp2_flow_add_hek_field(fe, field_id))
685                         return -EINVAL;
686         }
687
688         return 0;
689 }
690
691 /* Returns the size, in bits, of the corresponding HEK field */
692 static int mvpp2_cls_hek_field_size(u32 field)
693 {
694         switch (field) {
695         case MVPP22_CLS_HEK_OPT_MAC_DA:
696                 return 48;
697         case MVPP22_CLS_HEK_OPT_VLAN:
698                 return 12;
699         case MVPP22_CLS_HEK_OPT_VLAN_PRI:
700                 return 3;
701         case MVPP22_CLS_HEK_OPT_IP4SA:
702         case MVPP22_CLS_HEK_OPT_IP4DA:
703                 return 32;
704         case MVPP22_CLS_HEK_OPT_IP6SA:
705         case MVPP22_CLS_HEK_OPT_IP6DA:
706                 return 128;
707         case MVPP22_CLS_HEK_OPT_L4SIP:
708         case MVPP22_CLS_HEK_OPT_L4DIP:
709                 return 16;
710         default:
711                 return -1;
712         }
713 }
714
715 const struct mvpp2_cls_flow *mvpp2_cls_flow_get(int flow)
716 {
717         if (flow >= MVPP2_N_PRS_FLOWS)
718                 return NULL;
719
720         return &cls_flows[flow];
721 }
722
723 /* Set the hash generation options for the given traffic flow.
724  * One traffic flow (in the ethtool sense) has multiple classification flows,
725  * to handle specific cases such as fragmentation, or the presence of a
726  * VLAN / DSA Tag.
727  *
728  * Each of these individual flows has different constraints, for example we
729  * can't hash fragmented packets on L4 data (else we would risk having packet
730  * re-ordering), so each classification flows masks the options with their
731  * supported ones.
732  *
733  */
734 static int mvpp2_port_rss_hash_opts_set(struct mvpp2_port *port, int flow_type,
735                                         u16 requested_opts)
736 {
737         const struct mvpp2_cls_flow *flow;
738         struct mvpp2_cls_flow_entry fe;
739         int i, engine, flow_index;
740         u16 hash_opts;
741
742         for_each_cls_flow_id_with_type(i, flow_type) {
743                 flow = mvpp2_cls_flow_get(i);
744                 if (!flow)
745                         return -EINVAL;
746
747                 flow_index = MVPP2_CLS_FLT_HASH_ENTRY(port->id, flow->flow_id);
748
749                 mvpp2_cls_flow_read(port->priv, flow_index, &fe);
750
751                 hash_opts = flow->supported_hash_opts & requested_opts;
752
753                 /* Use C3HB engine to access L4 infos. This adds L4 infos to the
754                  * hash parameters
755                  */
756                 if (hash_opts & MVPP22_CLS_HEK_L4_OPTS)
757                         engine = MVPP22_CLS_ENGINE_C3HB;
758                 else
759                         engine = MVPP22_CLS_ENGINE_C3HA;
760
761                 if (mvpp2_flow_set_hek_fields(&fe, hash_opts))
762                         return -EINVAL;
763
764                 mvpp2_cls_flow_eng_set(&fe, engine);
765
766                 mvpp2_cls_flow_write(port->priv, &fe);
767         }
768
769         return 0;
770 }
771
772 u16 mvpp2_flow_get_hek_fields(struct mvpp2_cls_flow_entry *fe)
773 {
774         u16 hash_opts = 0;
775         int n_fields, i, field;
776
777         n_fields = mvpp2_cls_flow_hek_num_get(fe);
778
779         for (i = 0; i < n_fields; i++) {
780                 field = mvpp2_cls_flow_hek_get(fe, i);
781
782                 switch (field) {
783                 case MVPP22_CLS_FIELD_MAC_DA:
784                         hash_opts |= MVPP22_CLS_HEK_OPT_MAC_DA;
785                         break;
786                 case MVPP22_CLS_FIELD_VLAN:
787                         hash_opts |= MVPP22_CLS_HEK_OPT_VLAN;
788                         break;
789                 case MVPP22_CLS_FIELD_VLAN_PRI:
790                         hash_opts |= MVPP22_CLS_HEK_OPT_VLAN_PRI;
791                         break;
792                 case MVPP22_CLS_FIELD_L3_PROTO:
793                         hash_opts |= MVPP22_CLS_HEK_OPT_L3_PROTO;
794                         break;
795                 case MVPP22_CLS_FIELD_IP4SA:
796                         hash_opts |= MVPP22_CLS_HEK_OPT_IP4SA;
797                         break;
798                 case MVPP22_CLS_FIELD_IP4DA:
799                         hash_opts |= MVPP22_CLS_HEK_OPT_IP4DA;
800                         break;
801                 case MVPP22_CLS_FIELD_IP6SA:
802                         hash_opts |= MVPP22_CLS_HEK_OPT_IP6SA;
803                         break;
804                 case MVPP22_CLS_FIELD_IP6DA:
805                         hash_opts |= MVPP22_CLS_HEK_OPT_IP6DA;
806                         break;
807                 case MVPP22_CLS_FIELD_L4SIP:
808                         hash_opts |= MVPP22_CLS_HEK_OPT_L4SIP;
809                         break;
810                 case MVPP22_CLS_FIELD_L4DIP:
811                         hash_opts |= MVPP22_CLS_HEK_OPT_L4DIP;
812                         break;
813                 default:
814                         break;
815                 }
816         }
817         return hash_opts;
818 }
819
820 /* Returns the hash opts for this flow. There are several classifier flows
821  * for one traffic flow, this returns an aggregation of all configurations.
822  */
823 static u16 mvpp2_port_rss_hash_opts_get(struct mvpp2_port *port, int flow_type)
824 {
825         const struct mvpp2_cls_flow *flow;
826         struct mvpp2_cls_flow_entry fe;
827         int i, flow_index;
828         u16 hash_opts = 0;
829
830         for_each_cls_flow_id_with_type(i, flow_type) {
831                 flow = mvpp2_cls_flow_get(i);
832                 if (!flow)
833                         return 0;
834
835                 flow_index = MVPP2_CLS_FLT_HASH_ENTRY(port->id, flow->flow_id);
836
837                 mvpp2_cls_flow_read(port->priv, flow_index, &fe);
838
839                 hash_opts |= mvpp2_flow_get_hek_fields(&fe);
840         }
841
842         return hash_opts;
843 }
844
845 static void mvpp2_cls_port_init_flows(struct mvpp2 *priv)
846 {
847         const struct mvpp2_cls_flow *flow;
848         int i;
849
850         for (i = 0; i < MVPP2_N_PRS_FLOWS; i++) {
851                 flow = mvpp2_cls_flow_get(i);
852                 if (!flow)
853                         break;
854
855                 mvpp2_cls_flow_prs_init(priv, flow);
856                 mvpp2_cls_flow_lkp_init(priv, flow);
857                 mvpp2_cls_flow_init(priv, flow);
858         }
859 }
860
861 static void mvpp2_port_c2_cls_init(struct mvpp2_port *port)
862 {
863         struct mvpp2_cls_c2_entry c2;
864         u8 qh, ql, pmap;
865
866         memset(&c2, 0, sizeof(c2));
867
868         c2.index = MVPP22_CLS_C2_RSS_ENTRY(port->id);
869
870         pmap = BIT(port->id);
871         c2.tcam[4] = MVPP22_CLS_C2_PORT_ID(pmap);
872         c2.tcam[4] |= MVPP22_CLS_C2_TCAM_EN(MVPP22_CLS_C2_PORT_ID(pmap));
873
874         /* Match on Lookup Type */
875         c2.tcam[4] |= MVPP22_CLS_C2_TCAM_EN(MVPP22_CLS_C2_LU_TYPE(MVPP2_CLS_LU_TYPE_MASK));
876         c2.tcam[4] |= MVPP22_CLS_C2_LU_TYPE(MVPP22_CLS_LU_TYPE_ALL);
877
878         /* Update RSS status after matching this entry */
879         c2.act = MVPP22_CLS_C2_ACT_RSS_EN(MVPP22_C2_UPD_LOCK);
880
881         /* Mark packet as "forwarded to software", needed for RSS */
882         c2.act |= MVPP22_CLS_C2_ACT_FWD(MVPP22_C2_FWD_SW_LOCK);
883
884         /* Configure the default rx queue : Update Queue Low and Queue High, but
885          * don't lock, since the rx queue selection might be overridden by RSS
886          */
887         c2.act |= MVPP22_CLS_C2_ACT_QHIGH(MVPP22_C2_UPD) |
888                    MVPP22_CLS_C2_ACT_QLOW(MVPP22_C2_UPD);
889
890         qh = (port->first_rxq >> 3) & MVPP22_CLS_C2_ATTR0_QHIGH_MASK;
891         ql = port->first_rxq & MVPP22_CLS_C2_ATTR0_QLOW_MASK;
892
893         c2.attr[0] = MVPP22_CLS_C2_ATTR0_QHIGH(qh) |
894                       MVPP22_CLS_C2_ATTR0_QLOW(ql);
895
896         c2.valid = true;
897
898         mvpp2_cls_c2_write(port->priv, &c2);
899 }
900
901 /* Classifier default initialization */
902 void mvpp2_cls_init(struct mvpp2 *priv)
903 {
904         struct mvpp2_cls_lookup_entry le;
905         struct mvpp2_cls_flow_entry fe;
906         struct mvpp2_cls_c2_entry c2;
907         int index;
908
909         /* Enable classifier */
910         mvpp2_write(priv, MVPP2_CLS_MODE_REG, MVPP2_CLS_MODE_ACTIVE_MASK);
911
912         /* Clear classifier flow table */
913         memset(&fe.data, 0, sizeof(fe.data));
914         for (index = 0; index < MVPP2_CLS_FLOWS_TBL_SIZE; index++) {
915                 fe.index = index;
916                 mvpp2_cls_flow_write(priv, &fe);
917         }
918
919         /* Clear classifier lookup table */
920         le.data = 0;
921         for (index = 0; index < MVPP2_CLS_LKP_TBL_SIZE; index++) {
922                 le.lkpid = index;
923                 le.way = 0;
924                 mvpp2_cls_lookup_write(priv, &le);
925
926                 le.way = 1;
927                 mvpp2_cls_lookup_write(priv, &le);
928         }
929
930         /* Clear C2 TCAM engine table */
931         memset(&c2, 0, sizeof(c2));
932         c2.valid = false;
933         for (index = 0; index < MVPP22_CLS_C2_N_ENTRIES; index++) {
934                 c2.index = index;
935                 mvpp2_cls_c2_write(priv, &c2);
936         }
937
938         /* Disable the FIFO stages in C2 engine, which are only used in BIST
939          * mode
940          */
941         mvpp2_write(priv, MVPP22_CLS_C2_TCAM_CTRL,
942                     MVPP22_CLS_C2_TCAM_BYPASS_FIFO);
943
944         mvpp2_cls_port_init_flows(priv);
945 }
946
947 void mvpp2_cls_port_config(struct mvpp2_port *port)
948 {
949         struct mvpp2_cls_lookup_entry le;
950         u32 val;
951
952         /* Set way for the port */
953         val = mvpp2_read(port->priv, MVPP2_CLS_PORT_WAY_REG);
954         val &= ~MVPP2_CLS_PORT_WAY_MASK(port->id);
955         mvpp2_write(port->priv, MVPP2_CLS_PORT_WAY_REG, val);
956
957         /* Pick the entry to be accessed in lookup ID decoding table
958          * according to the way and lkpid.
959          */
960         le.lkpid = port->id;
961         le.way = 0;
962         le.data = 0;
963
964         /* Set initial CPU queue for receiving packets */
965         le.data &= ~MVPP2_CLS_LKP_TBL_RXQ_MASK;
966         le.data |= port->first_rxq;
967
968         /* Disable classification engines */
969         le.data &= ~MVPP2_CLS_LKP_TBL_LOOKUP_EN_MASK;
970
971         /* Update lookup ID table entry */
972         mvpp2_cls_lookup_write(port->priv, &le);
973
974         mvpp2_port_c2_cls_init(port);
975 }
976
977 u32 mvpp2_cls_c2_hit_count(struct mvpp2 *priv, int c2_index)
978 {
979         mvpp2_write(priv, MVPP22_CLS_C2_TCAM_IDX, c2_index);
980
981         return mvpp2_read(priv, MVPP22_CLS_C2_HIT_CTR);
982 }
983
984 static void mvpp2_rss_port_c2_enable(struct mvpp2_port *port, u32 ctx)
985 {
986         struct mvpp2_cls_c2_entry c2;
987         u8 qh, ql;
988
989         mvpp2_cls_c2_read(port->priv, MVPP22_CLS_C2_RSS_ENTRY(port->id), &c2);
990
991         /* The RxQ number is used to select the RSS table. It that case, we set
992          * it to be the ctx number.
993          */
994         qh = (ctx >> 3) & MVPP22_CLS_C2_ATTR0_QHIGH_MASK;
995         ql = ctx & MVPP22_CLS_C2_ATTR0_QLOW_MASK;
996
997         c2.attr[0] = MVPP22_CLS_C2_ATTR0_QHIGH(qh) |
998                      MVPP22_CLS_C2_ATTR0_QLOW(ql);
999
1000         c2.attr[2] |= MVPP22_CLS_C2_ATTR2_RSS_EN;
1001
1002         mvpp2_cls_c2_write(port->priv, &c2);
1003 }
1004
1005 static void mvpp2_rss_port_c2_disable(struct mvpp2_port *port)
1006 {
1007         struct mvpp2_cls_c2_entry c2;
1008         u8 qh, ql;
1009
1010         mvpp2_cls_c2_read(port->priv, MVPP22_CLS_C2_RSS_ENTRY(port->id), &c2);
1011
1012         /* Reset the default destination RxQ to the port's first rx queue. */
1013         qh = (port->first_rxq >> 3) & MVPP22_CLS_C2_ATTR0_QHIGH_MASK;
1014         ql = port->first_rxq & MVPP22_CLS_C2_ATTR0_QLOW_MASK;
1015
1016         c2.attr[0] = MVPP22_CLS_C2_ATTR0_QHIGH(qh) |
1017                       MVPP22_CLS_C2_ATTR0_QLOW(ql);
1018
1019         c2.attr[2] &= ~MVPP22_CLS_C2_ATTR2_RSS_EN;
1020
1021         mvpp2_cls_c2_write(port->priv, &c2);
1022 }
1023
1024 static inline int mvpp22_rss_ctx(struct mvpp2_port *port, int port_rss_ctx)
1025 {
1026         return port->rss_ctx[port_rss_ctx];
1027 }
1028
1029 int mvpp22_port_rss_enable(struct mvpp2_port *port)
1030 {
1031         if (mvpp22_rss_ctx(port, 0) < 0)
1032                 return -EINVAL;
1033
1034         mvpp2_rss_port_c2_enable(port, mvpp22_rss_ctx(port, 0));
1035
1036         return 0;
1037 }
1038
1039 int mvpp22_port_rss_disable(struct mvpp2_port *port)
1040 {
1041         if (mvpp22_rss_ctx(port, 0) < 0)
1042                 return -EINVAL;
1043
1044         mvpp2_rss_port_c2_disable(port);
1045
1046         return 0;
1047 }
1048
1049 static void mvpp22_port_c2_lookup_disable(struct mvpp2_port *port, int entry)
1050 {
1051         struct mvpp2_cls_c2_entry c2;
1052
1053         mvpp2_cls_c2_read(port->priv, entry, &c2);
1054
1055         /* Clear the port map so that the entry doesn't match anymore */
1056         c2.tcam[4] &= ~(MVPP22_CLS_C2_PORT_ID(BIT(port->id)));
1057
1058         mvpp2_cls_c2_write(port->priv, &c2);
1059 }
1060
1061 /* Set CPU queue number for oversize packets */
1062 void mvpp2_cls_oversize_rxq_set(struct mvpp2_port *port)
1063 {
1064         u32 val;
1065
1066         mvpp2_write(port->priv, MVPP2_CLS_OVERSIZE_RXQ_LOW_REG(port->id),
1067                     port->first_rxq & MVPP2_CLS_OVERSIZE_RXQ_LOW_MASK);
1068
1069         mvpp2_write(port->priv, MVPP2_CLS_SWFWD_P2HQ_REG(port->id),
1070                     (port->first_rxq >> MVPP2_CLS_OVERSIZE_RXQ_LOW_BITS));
1071
1072         val = mvpp2_read(port->priv, MVPP2_CLS_SWFWD_PCTRL_REG);
1073         val |= MVPP2_CLS_SWFWD_PCTRL_MASK(port->id);
1074         mvpp2_write(port->priv, MVPP2_CLS_SWFWD_PCTRL_REG, val);
1075 }
1076
1077 static int mvpp2_port_c2_tcam_rule_add(struct mvpp2_port *port,
1078                                        struct mvpp2_rfs_rule *rule)
1079 {
1080         struct flow_action_entry *act;
1081         struct mvpp2_cls_c2_entry c2;
1082         u8 qh, ql, pmap;
1083         int index, ctx;
1084
1085         memset(&c2, 0, sizeof(c2));
1086
1087         index = mvpp2_cls_c2_port_flow_index(port, rule->loc);
1088         if (index < 0)
1089                 return -EINVAL;
1090         c2.index = index;
1091
1092         act = &rule->flow->action.entries[0];
1093
1094         rule->c2_index = c2.index;
1095
1096         c2.tcam[3] = (rule->c2_tcam & 0xffff) |
1097                      ((rule->c2_tcam_mask & 0xffff) << 16);
1098         c2.tcam[2] = ((rule->c2_tcam >> 16) & 0xffff) |
1099                      (((rule->c2_tcam_mask >> 16) & 0xffff) << 16);
1100         c2.tcam[1] = ((rule->c2_tcam >> 32) & 0xffff) |
1101                      (((rule->c2_tcam_mask >> 32) & 0xffff) << 16);
1102         c2.tcam[0] = ((rule->c2_tcam >> 48) & 0xffff) |
1103                      (((rule->c2_tcam_mask >> 48) & 0xffff) << 16);
1104
1105         pmap = BIT(port->id);
1106         c2.tcam[4] = MVPP22_CLS_C2_PORT_ID(pmap);
1107         c2.tcam[4] |= MVPP22_CLS_C2_TCAM_EN(MVPP22_CLS_C2_PORT_ID(pmap));
1108
1109         /* Match on Lookup Type */
1110         c2.tcam[4] |= MVPP22_CLS_C2_TCAM_EN(MVPP22_CLS_C2_LU_TYPE(MVPP2_CLS_LU_TYPE_MASK));
1111         c2.tcam[4] |= MVPP22_CLS_C2_LU_TYPE(rule->loc);
1112
1113         if (act->id == FLOW_ACTION_DROP) {
1114                 c2.act = MVPP22_CLS_C2_ACT_COLOR(MVPP22_C2_COL_RED_LOCK);
1115         } else {
1116                 /* We want to keep the default color derived from the Header
1117                  * Parser drop entries, for VLAN and MAC filtering. This will
1118                  * assign a default color of Green or Red, and we want matches
1119                  * with a non-drop action to keep that color.
1120                  */
1121                 c2.act = MVPP22_CLS_C2_ACT_COLOR(MVPP22_C2_COL_NO_UPD_LOCK);
1122
1123                 /* Update RSS status after matching this entry */
1124                 if (act->queue.ctx)
1125                         c2.attr[2] |= MVPP22_CLS_C2_ATTR2_RSS_EN;
1126
1127                 /* Always lock the RSS_EN decision. We might have high prio
1128                  * rules steering to an RXQ, and a lower one steering to RSS,
1129                  * we don't want the low prio RSS rule overwriting this flag.
1130                  */
1131                 c2.act = MVPP22_CLS_C2_ACT_RSS_EN(MVPP22_C2_UPD_LOCK);
1132
1133                 /* Mark packet as "forwarded to software", needed for RSS */
1134                 c2.act |= MVPP22_CLS_C2_ACT_FWD(MVPP22_C2_FWD_SW_LOCK);
1135
1136                 c2.act |= MVPP22_CLS_C2_ACT_QHIGH(MVPP22_C2_UPD_LOCK) |
1137                            MVPP22_CLS_C2_ACT_QLOW(MVPP22_C2_UPD_LOCK);
1138
1139                 if (act->queue.ctx) {
1140                         /* Get the global ctx number */
1141                         ctx = mvpp22_rss_ctx(port, act->queue.ctx);
1142                         if (ctx < 0)
1143                                 return -EINVAL;
1144
1145                         qh = (ctx >> 3) & MVPP22_CLS_C2_ATTR0_QHIGH_MASK;
1146                         ql = ctx & MVPP22_CLS_C2_ATTR0_QLOW_MASK;
1147                 } else {
1148                         qh = ((act->queue.index + port->first_rxq) >> 3) &
1149                               MVPP22_CLS_C2_ATTR0_QHIGH_MASK;
1150                         ql = (act->queue.index + port->first_rxq) &
1151                               MVPP22_CLS_C2_ATTR0_QLOW_MASK;
1152                 }
1153
1154                 c2.attr[0] = MVPP22_CLS_C2_ATTR0_QHIGH(qh) |
1155                               MVPP22_CLS_C2_ATTR0_QLOW(ql);
1156         }
1157
1158         c2.valid = true;
1159
1160         mvpp2_cls_c2_write(port->priv, &c2);
1161
1162         return 0;
1163 }
1164
1165 static int mvpp2_port_c2_rfs_rule_insert(struct mvpp2_port *port,
1166                                          struct mvpp2_rfs_rule *rule)
1167 {
1168         return mvpp2_port_c2_tcam_rule_add(port, rule);
1169 }
1170
1171 static int mvpp2_port_cls_rfs_rule_remove(struct mvpp2_port *port,
1172                                           struct mvpp2_rfs_rule *rule)
1173 {
1174         const struct mvpp2_cls_flow *flow;
1175         struct mvpp2_cls_flow_entry fe;
1176         int index, i;
1177
1178         for_each_cls_flow_id_containing_type(i, rule->flow_type) {
1179                 flow = mvpp2_cls_flow_get(i);
1180                 if (!flow)
1181                         return 0;
1182
1183                 index = MVPP2_CLS_FLT_C2_RFS(port->id, flow->flow_id, rule->loc);
1184
1185                 mvpp2_cls_flow_read(port->priv, index, &fe);
1186                 mvpp2_cls_flow_port_remove(&fe, BIT(port->id));
1187                 mvpp2_cls_flow_write(port->priv, &fe);
1188         }
1189
1190         if (rule->c2_index >= 0)
1191                 mvpp22_port_c2_lookup_disable(port, rule->c2_index);
1192
1193         return 0;
1194 }
1195
1196 static int mvpp2_port_flt_rfs_rule_insert(struct mvpp2_port *port,
1197                                           struct mvpp2_rfs_rule *rule)
1198 {
1199         const struct mvpp2_cls_flow *flow;
1200         struct mvpp2 *priv = port->priv;
1201         struct mvpp2_cls_flow_entry fe;
1202         int index, ret, i;
1203
1204         if (rule->engine != MVPP22_CLS_ENGINE_C2)
1205                 return -EOPNOTSUPP;
1206
1207         ret = mvpp2_port_c2_rfs_rule_insert(port, rule);
1208         if (ret)
1209                 return ret;
1210
1211         for_each_cls_flow_id_containing_type(i, rule->flow_type) {
1212                 flow = mvpp2_cls_flow_get(i);
1213                 if (!flow)
1214                         return 0;
1215
1216                 if ((rule->hek_fields & flow->supported_hash_opts) != rule->hek_fields)
1217                         continue;
1218
1219                 index = MVPP2_CLS_FLT_C2_RFS(port->id, flow->flow_id, rule->loc);
1220
1221                 mvpp2_cls_flow_read(priv, index, &fe);
1222                 mvpp2_cls_flow_eng_set(&fe, rule->engine);
1223                 mvpp2_cls_flow_port_id_sel(&fe, true);
1224                 mvpp2_flow_set_hek_fields(&fe, rule->hek_fields);
1225                 mvpp2_cls_flow_lu_type_set(&fe, rule->loc);
1226                 mvpp2_cls_flow_port_add(&fe, 0xf);
1227
1228                 mvpp2_cls_flow_write(priv, &fe);
1229         }
1230
1231         return 0;
1232 }
1233
1234 static int mvpp2_cls_c2_build_match(struct mvpp2_rfs_rule *rule)
1235 {
1236         struct flow_rule *flow = rule->flow;
1237         int offs = 0;
1238
1239         /* The order of insertion in C2 tcam must match the order in which
1240          * the fields are found in the header
1241          */
1242         if (flow_rule_match_key(flow, FLOW_DISSECTOR_KEY_VLAN)) {
1243                 struct flow_match_vlan match;
1244
1245                 flow_rule_match_vlan(flow, &match);
1246                 if (match.mask->vlan_id) {
1247                         rule->hek_fields |= MVPP22_CLS_HEK_OPT_VLAN;
1248
1249                         rule->c2_tcam |= ((u64)match.key->vlan_id) << offs;
1250                         rule->c2_tcam_mask |= ((u64)match.mask->vlan_id) << offs;
1251
1252                         /* Don't update the offset yet */
1253                 }
1254
1255                 if (match.mask->vlan_priority) {
1256                         rule->hek_fields |= MVPP22_CLS_HEK_OPT_VLAN_PRI;
1257
1258                         /* VLAN pri is always at offset 13 relative to the
1259                          * current offset
1260                          */
1261                         rule->c2_tcam |= ((u64)match.key->vlan_priority) <<
1262                                 (offs + 13);
1263                         rule->c2_tcam_mask |= ((u64)match.mask->vlan_priority) <<
1264                                 (offs + 13);
1265                 }
1266
1267                 if (match.mask->vlan_dei)
1268                         return -EOPNOTSUPP;
1269
1270                 /* vlan id and prio always seem to take a full 16-bit slot in
1271                  * the Header Extracted Key.
1272                  */
1273                 offs += 16;
1274         }
1275
1276         if (flow_rule_match_key(flow, FLOW_DISSECTOR_KEY_PORTS)) {
1277                 struct flow_match_ports match;
1278
1279                 flow_rule_match_ports(flow, &match);
1280                 if (match.mask->src) {
1281                         rule->hek_fields |= MVPP22_CLS_HEK_OPT_L4SIP;
1282
1283                         rule->c2_tcam |= ((u64)ntohs(match.key->src)) << offs;
1284                         rule->c2_tcam_mask |= ((u64)ntohs(match.mask->src)) << offs;
1285                         offs += mvpp2_cls_hek_field_size(MVPP22_CLS_HEK_OPT_L4SIP);
1286                 }
1287
1288                 if (match.mask->dst) {
1289                         rule->hek_fields |= MVPP22_CLS_HEK_OPT_L4DIP;
1290
1291                         rule->c2_tcam |= ((u64)ntohs(match.key->dst)) << offs;
1292                         rule->c2_tcam_mask |= ((u64)ntohs(match.mask->dst)) << offs;
1293                         offs += mvpp2_cls_hek_field_size(MVPP22_CLS_HEK_OPT_L4DIP);
1294                 }
1295         }
1296
1297         if (hweight16(rule->hek_fields) > MVPP2_FLOW_N_FIELDS)
1298                 return -EOPNOTSUPP;
1299
1300         return 0;
1301 }
1302
1303 static int mvpp2_cls_rfs_parse_rule(struct mvpp2_rfs_rule *rule)
1304 {
1305         struct flow_rule *flow = rule->flow;
1306         struct flow_action_entry *act;
1307
1308         act = &flow->action.entries[0];
1309         if (act->id != FLOW_ACTION_QUEUE && act->id != FLOW_ACTION_DROP)
1310                 return -EOPNOTSUPP;
1311
1312         /* When both an RSS context and an queue index are set, the index
1313          * is considered as an offset to be added to the indirection table
1314          * entries. We don't support this, so reject this rule.
1315          */
1316         if (act->queue.ctx && act->queue.index)
1317                 return -EOPNOTSUPP;
1318
1319         /* For now, only use the C2 engine which has a HEK size limited to 64
1320          * bits for TCAM matching.
1321          */
1322         rule->engine = MVPP22_CLS_ENGINE_C2;
1323
1324         if (mvpp2_cls_c2_build_match(rule))
1325                 return -EINVAL;
1326
1327         return 0;
1328 }
1329
1330 int mvpp2_ethtool_cls_rule_get(struct mvpp2_port *port,
1331                                struct ethtool_rxnfc *rxnfc)
1332 {
1333         struct mvpp2_ethtool_fs *efs;
1334
1335         if (rxnfc->fs.location >= MVPP2_N_RFS_ENTRIES_PER_FLOW)
1336                 return -EINVAL;
1337
1338         efs = port->rfs_rules[rxnfc->fs.location];
1339         if (!efs)
1340                 return -ENOENT;
1341
1342         memcpy(rxnfc, &efs->rxnfc, sizeof(efs->rxnfc));
1343
1344         return 0;
1345 }
1346
1347 int mvpp2_ethtool_cls_rule_ins(struct mvpp2_port *port,
1348                                struct ethtool_rxnfc *info)
1349 {
1350         struct ethtool_rx_flow_spec_input input = {};
1351         struct ethtool_rx_flow_rule *ethtool_rule;
1352         struct mvpp2_ethtool_fs *efs, *old_efs;
1353         int ret = 0;
1354
1355         if (info->fs.location >= MVPP2_N_RFS_ENTRIES_PER_FLOW)
1356                 return -EINVAL;
1357
1358         efs = kzalloc(sizeof(*efs), GFP_KERNEL);
1359         if (!efs)
1360                 return -ENOMEM;
1361
1362         input.fs = &info->fs;
1363
1364         /* We need to manually set the rss_ctx, since this info isn't present
1365          * in info->fs
1366          */
1367         if (info->fs.flow_type & FLOW_RSS)
1368                 input.rss_ctx = info->rss_context;
1369
1370         ethtool_rule = ethtool_rx_flow_rule_create(&input);
1371         if (IS_ERR(ethtool_rule)) {
1372                 ret = PTR_ERR(ethtool_rule);
1373                 goto clean_rule;
1374         }
1375
1376         efs->rule.flow = ethtool_rule->rule;
1377         efs->rule.flow_type = mvpp2_cls_ethtool_flow_to_type(info->fs.flow_type);
1378         if (efs->rule.flow_type < 0) {
1379                 ret = efs->rule.flow_type;
1380                 goto clean_rule;
1381         }
1382
1383         ret = mvpp2_cls_rfs_parse_rule(&efs->rule);
1384         if (ret)
1385                 goto clean_eth_rule;
1386
1387         efs->rule.loc = info->fs.location;
1388
1389         /* Replace an already existing rule */
1390         if (port->rfs_rules[efs->rule.loc]) {
1391                 old_efs = port->rfs_rules[efs->rule.loc];
1392                 ret = mvpp2_port_cls_rfs_rule_remove(port, &old_efs->rule);
1393                 if (ret)
1394                         goto clean_eth_rule;
1395                 kfree(old_efs);
1396                 port->n_rfs_rules--;
1397         }
1398
1399         ret = mvpp2_port_flt_rfs_rule_insert(port, &efs->rule);
1400         if (ret)
1401                 goto clean_eth_rule;
1402
1403         ethtool_rx_flow_rule_destroy(ethtool_rule);
1404         efs->rule.flow = NULL;
1405
1406         memcpy(&efs->rxnfc, info, sizeof(*info));
1407         port->rfs_rules[efs->rule.loc] = efs;
1408         port->n_rfs_rules++;
1409
1410         return ret;
1411
1412 clean_eth_rule:
1413         ethtool_rx_flow_rule_destroy(ethtool_rule);
1414 clean_rule:
1415         kfree(efs);
1416         return ret;
1417 }
1418
1419 int mvpp2_ethtool_cls_rule_del(struct mvpp2_port *port,
1420                                struct ethtool_rxnfc *info)
1421 {
1422         struct mvpp2_ethtool_fs *efs;
1423         int ret;
1424
1425         efs = port->rfs_rules[info->fs.location];
1426         if (!efs)
1427                 return -EINVAL;
1428
1429         /* Remove the rule from the engines. */
1430         ret = mvpp2_port_cls_rfs_rule_remove(port, &efs->rule);
1431         if (ret)
1432                 return ret;
1433
1434         port->n_rfs_rules--;
1435         port->rfs_rules[info->fs.location] = NULL;
1436         kfree(efs);
1437
1438         return 0;
1439 }
1440
1441 static inline u32 mvpp22_rxfh_indir(struct mvpp2_port *port, u32 rxq)
1442 {
1443         int nrxqs, cpu, cpus = num_possible_cpus();
1444
1445         /* Number of RXQs per CPU */
1446         nrxqs = port->nrxqs / cpus;
1447
1448         /* CPU that will handle this rx queue */
1449         cpu = rxq / nrxqs;
1450
1451         if (!cpu_online(cpu))
1452                 return port->first_rxq;
1453
1454         /* Indirection to better distribute the paquets on the CPUs when
1455          * configuring the RSS queues.
1456          */
1457         return port->first_rxq + ((rxq * nrxqs + rxq / cpus) % port->nrxqs);
1458 }
1459
1460 static void mvpp22_rss_fill_table(struct mvpp2_port *port,
1461                                   struct mvpp2_rss_table *table,
1462                                   u32 rss_ctx)
1463 {
1464         struct mvpp2 *priv = port->priv;
1465         int i;
1466
1467         for (i = 0; i < MVPP22_RSS_TABLE_ENTRIES; i++) {
1468                 u32 sel = MVPP22_RSS_INDEX_TABLE(rss_ctx) |
1469                           MVPP22_RSS_INDEX_TABLE_ENTRY(i);
1470                 mvpp2_write(priv, MVPP22_RSS_INDEX, sel);
1471
1472                 mvpp2_write(priv, MVPP22_RSS_TABLE_ENTRY,
1473                             mvpp22_rxfh_indir(port, table->indir[i]));
1474         }
1475 }
1476
1477 static int mvpp22_rss_context_create(struct mvpp2_port *port, u32 *rss_ctx)
1478 {
1479         struct mvpp2 *priv = port->priv;
1480         u32 ctx;
1481
1482         /* Find the first free RSS table */
1483         for (ctx = 0; ctx < MVPP22_N_RSS_TABLES; ctx++) {
1484                 if (!priv->rss_tables[ctx])
1485                         break;
1486         }
1487
1488         if (ctx == MVPP22_N_RSS_TABLES)
1489                 return -EINVAL;
1490
1491         priv->rss_tables[ctx] = kzalloc(sizeof(*priv->rss_tables[ctx]),
1492                                         GFP_KERNEL);
1493         if (!priv->rss_tables[ctx])
1494                 return -ENOMEM;
1495
1496         *rss_ctx = ctx;
1497
1498         /* Set the table width: replace the whole classifier Rx queue number
1499          * with the ones configured in RSS table entries.
1500          */
1501         mvpp2_write(priv, MVPP22_RSS_INDEX, MVPP22_RSS_INDEX_TABLE(ctx));
1502         mvpp2_write(priv, MVPP22_RSS_WIDTH, 8);
1503
1504         mvpp2_write(priv, MVPP22_RSS_INDEX, MVPP22_RSS_INDEX_QUEUE(ctx));
1505         mvpp2_write(priv, MVPP22_RXQ2RSS_TABLE, MVPP22_RSS_TABLE_POINTER(ctx));
1506
1507         return 0;
1508 }
1509
1510 int mvpp22_port_rss_ctx_create(struct mvpp2_port *port, u32 *port_ctx)
1511 {
1512         u32 rss_ctx;
1513         int ret, i;
1514
1515         ret = mvpp22_rss_context_create(port, &rss_ctx);
1516         if (ret)
1517                 return ret;
1518
1519         /* Find the first available context number in the port, starting from 1.
1520          * Context 0 on each port is reserved for the default context.
1521          */
1522         for (i = 1; i < MVPP22_N_RSS_TABLES; i++) {
1523                 if (port->rss_ctx[i] < 0)
1524                         break;
1525         }
1526
1527         if (i == MVPP22_N_RSS_TABLES)
1528                 return -EINVAL;
1529
1530         port->rss_ctx[i] = rss_ctx;
1531         *port_ctx = i;
1532
1533         return 0;
1534 }
1535
1536 static struct mvpp2_rss_table *mvpp22_rss_table_get(struct mvpp2 *priv,
1537                                                     int rss_ctx)
1538 {
1539         if (rss_ctx < 0 || rss_ctx >= MVPP22_N_RSS_TABLES)
1540                 return NULL;
1541
1542         return priv->rss_tables[rss_ctx];
1543 }
1544
1545 int mvpp22_port_rss_ctx_delete(struct mvpp2_port *port, u32 port_ctx)
1546 {
1547         struct mvpp2 *priv = port->priv;
1548         struct ethtool_rxnfc *rxnfc;
1549         int i, rss_ctx, ret;
1550
1551         rss_ctx = mvpp22_rss_ctx(port, port_ctx);
1552
1553         if (rss_ctx < 0 || rss_ctx >= MVPP22_N_RSS_TABLES)
1554                 return -EINVAL;
1555
1556         /* Invalidate any active classification rule that use this context */
1557         for (i = 0; i < MVPP2_N_RFS_ENTRIES_PER_FLOW; i++) {
1558                 if (!port->rfs_rules[i])
1559                         continue;
1560
1561                 rxnfc = &port->rfs_rules[i]->rxnfc;
1562                 if (!(rxnfc->fs.flow_type & FLOW_RSS) ||
1563                     rxnfc->rss_context != port_ctx)
1564                         continue;
1565
1566                 ret = mvpp2_ethtool_cls_rule_del(port, rxnfc);
1567                 if (ret) {
1568                         netdev_warn(port->dev,
1569                                     "couldn't remove classification rule %d associated to this context",
1570                                     rxnfc->fs.location);
1571                 }
1572         }
1573
1574         kfree(priv->rss_tables[rss_ctx]);
1575
1576         priv->rss_tables[rss_ctx] = NULL;
1577         port->rss_ctx[port_ctx] = -1;
1578
1579         return 0;
1580 }
1581
1582 int mvpp22_port_rss_ctx_indir_set(struct mvpp2_port *port, u32 port_ctx,
1583                                   const u32 *indir)
1584 {
1585         int rss_ctx = mvpp22_rss_ctx(port, port_ctx);
1586         struct mvpp2_rss_table *rss_table = mvpp22_rss_table_get(port->priv,
1587                                                                  rss_ctx);
1588
1589         if (!rss_table)
1590                 return -EINVAL;
1591
1592         memcpy(rss_table->indir, indir,
1593                MVPP22_RSS_TABLE_ENTRIES * sizeof(rss_table->indir[0]));
1594
1595         mvpp22_rss_fill_table(port, rss_table, rss_ctx);
1596
1597         return 0;
1598 }
1599
1600 int mvpp22_port_rss_ctx_indir_get(struct mvpp2_port *port, u32 port_ctx,
1601                                   u32 *indir)
1602 {
1603         int rss_ctx =  mvpp22_rss_ctx(port, port_ctx);
1604         struct mvpp2_rss_table *rss_table = mvpp22_rss_table_get(port->priv,
1605                                                                  rss_ctx);
1606
1607         if (!rss_table)
1608                 return -EINVAL;
1609
1610         memcpy(indir, rss_table->indir,
1611                MVPP22_RSS_TABLE_ENTRIES * sizeof(rss_table->indir[0]));
1612
1613         return 0;
1614 }
1615
1616 int mvpp2_ethtool_rxfh_set(struct mvpp2_port *port, struct ethtool_rxnfc *info)
1617 {
1618         u16 hash_opts = 0;
1619         u32 flow_type;
1620
1621         flow_type = mvpp2_cls_ethtool_flow_to_type(info->flow_type);
1622
1623         switch (flow_type) {
1624         case MVPP22_FLOW_TCP4:
1625         case MVPP22_FLOW_UDP4:
1626         case MVPP22_FLOW_TCP6:
1627         case MVPP22_FLOW_UDP6:
1628                 if (info->data & RXH_L4_B_0_1)
1629                         hash_opts |= MVPP22_CLS_HEK_OPT_L4SIP;
1630                 if (info->data & RXH_L4_B_2_3)
1631                         hash_opts |= MVPP22_CLS_HEK_OPT_L4DIP;
1632                 /* Fallthrough */
1633         case MVPP22_FLOW_IP4:
1634         case MVPP22_FLOW_IP6:
1635                 if (info->data & RXH_L2DA)
1636                         hash_opts |= MVPP22_CLS_HEK_OPT_MAC_DA;
1637                 if (info->data & RXH_VLAN)
1638                         hash_opts |= MVPP22_CLS_HEK_OPT_VLAN;
1639                 if (info->data & RXH_L3_PROTO)
1640                         hash_opts |= MVPP22_CLS_HEK_OPT_L3_PROTO;
1641                 if (info->data & RXH_IP_SRC)
1642                         hash_opts |= (MVPP22_CLS_HEK_OPT_IP4SA |
1643                                      MVPP22_CLS_HEK_OPT_IP6SA);
1644                 if (info->data & RXH_IP_DST)
1645                         hash_opts |= (MVPP22_CLS_HEK_OPT_IP4DA |
1646                                      MVPP22_CLS_HEK_OPT_IP6DA);
1647                 break;
1648         default: return -EOPNOTSUPP;
1649         }
1650
1651         return mvpp2_port_rss_hash_opts_set(port, flow_type, hash_opts);
1652 }
1653
1654 int mvpp2_ethtool_rxfh_get(struct mvpp2_port *port, struct ethtool_rxnfc *info)
1655 {
1656         unsigned long hash_opts;
1657         u32 flow_type;
1658         int i;
1659
1660         flow_type = mvpp2_cls_ethtool_flow_to_type(info->flow_type);
1661
1662         hash_opts = mvpp2_port_rss_hash_opts_get(port, flow_type);
1663         info->data = 0;
1664
1665         for_each_set_bit(i, &hash_opts, MVPP22_CLS_HEK_N_FIELDS) {
1666                 switch (BIT(i)) {
1667                 case MVPP22_CLS_HEK_OPT_MAC_DA:
1668                         info->data |= RXH_L2DA;
1669                         break;
1670                 case MVPP22_CLS_HEK_OPT_VLAN:
1671                         info->data |= RXH_VLAN;
1672                         break;
1673                 case MVPP22_CLS_HEK_OPT_L3_PROTO:
1674                         info->data |= RXH_L3_PROTO;
1675                         break;
1676                 case MVPP22_CLS_HEK_OPT_IP4SA:
1677                 case MVPP22_CLS_HEK_OPT_IP6SA:
1678                         info->data |= RXH_IP_SRC;
1679                         break;
1680                 case MVPP22_CLS_HEK_OPT_IP4DA:
1681                 case MVPP22_CLS_HEK_OPT_IP6DA:
1682                         info->data |= RXH_IP_DST;
1683                         break;
1684                 case MVPP22_CLS_HEK_OPT_L4SIP:
1685                         info->data |= RXH_L4_B_0_1;
1686                         break;
1687                 case MVPP22_CLS_HEK_OPT_L4DIP:
1688                         info->data |= RXH_L4_B_2_3;
1689                         break;
1690                 default:
1691                         return -EINVAL;
1692                 }
1693         }
1694         return 0;
1695 }
1696
1697 int mvpp22_port_rss_init(struct mvpp2_port *port)
1698 {
1699         struct mvpp2_rss_table *table;
1700         u32 context = 0;
1701         int i, ret;
1702
1703         for (i = 0; i < MVPP22_N_RSS_TABLES; i++)
1704                 port->rss_ctx[i] = -1;
1705
1706         ret = mvpp22_rss_context_create(port, &context);
1707         if (ret)
1708                 return ret;
1709
1710         table = mvpp22_rss_table_get(port->priv, context);
1711         if (!table)
1712                 return -EINVAL;
1713
1714         port->rss_ctx[0] = context;
1715
1716         /* Configure the first table to evenly distribute the packets across
1717          * real Rx Queues. The table entries map a hash to a port Rx Queue.
1718          */
1719         for (i = 0; i < MVPP22_RSS_TABLE_ENTRIES; i++)
1720                 table->indir[i] = ethtool_rxfh_indir_default(i, port->nrxqs);
1721
1722         mvpp22_rss_fill_table(port, table, mvpp22_rss_ctx(port, 0));
1723
1724         /* Configure default flows */
1725         mvpp2_port_rss_hash_opts_set(port, MVPP22_FLOW_IP4, MVPP22_CLS_HEK_IP4_2T);
1726         mvpp2_port_rss_hash_opts_set(port, MVPP22_FLOW_IP6, MVPP22_CLS_HEK_IP6_2T);
1727         mvpp2_port_rss_hash_opts_set(port, MVPP22_FLOW_TCP4, MVPP22_CLS_HEK_IP4_5T);
1728         mvpp2_port_rss_hash_opts_set(port, MVPP22_FLOW_TCP6, MVPP22_CLS_HEK_IP6_5T);
1729         mvpp2_port_rss_hash_opts_set(port, MVPP22_FLOW_UDP4, MVPP22_CLS_HEK_IP4_5T);
1730         mvpp2_port_rss_hash_opts_set(port, MVPP22_FLOW_UDP6, MVPP22_CLS_HEK_IP6_5T);
1731
1732         return 0;
1733 }