Linux-libre 4.9.135-gnu
[librecmc/linux-libre.git] / drivers / net / ethernet / intel / igbvf / netdev.c
1 /*******************************************************************************
2
3   Intel(R) 82576 Virtual Function Linux driver
4   Copyright(c) 2009 - 2012 Intel Corporation.
5
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, see <http://www.gnu.org/licenses/>.
17
18   The full GNU General Public License is included in this distribution in
19   the file called "COPYING".
20
21   Contact Information:
22   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
23   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
24
25 *******************************************************************************/
26
27 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
28
29 #include <linux/module.h>
30 #include <linux/types.h>
31 #include <linux/init.h>
32 #include <linux/pci.h>
33 #include <linux/vmalloc.h>
34 #include <linux/pagemap.h>
35 #include <linux/delay.h>
36 #include <linux/netdevice.h>
37 #include <linux/tcp.h>
38 #include <linux/ipv6.h>
39 #include <linux/slab.h>
40 #include <net/checksum.h>
41 #include <net/ip6_checksum.h>
42 #include <linux/mii.h>
43 #include <linux/ethtool.h>
44 #include <linux/if_vlan.h>
45 #include <linux/prefetch.h>
46 #include <linux/sctp.h>
47
48 #include "igbvf.h"
49
50 #define DRV_VERSION "2.4.0-k"
51 char igbvf_driver_name[] = "igbvf";
52 const char igbvf_driver_version[] = DRV_VERSION;
53 static const char igbvf_driver_string[] =
54                   "Intel(R) Gigabit Virtual Function Network Driver";
55 static const char igbvf_copyright[] =
56                   "Copyright (c) 2009 - 2012 Intel Corporation.";
57
58 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
59 static int debug = -1;
60 module_param(debug, int, 0);
61 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
62
63 static int igbvf_poll(struct napi_struct *napi, int budget);
64 static void igbvf_reset(struct igbvf_adapter *);
65 static void igbvf_set_interrupt_capability(struct igbvf_adapter *);
66 static void igbvf_reset_interrupt_capability(struct igbvf_adapter *);
67
68 static struct igbvf_info igbvf_vf_info = {
69         .mac            = e1000_vfadapt,
70         .flags          = 0,
71         .pba            = 10,
72         .init_ops       = e1000_init_function_pointers_vf,
73 };
74
75 static struct igbvf_info igbvf_i350_vf_info = {
76         .mac            = e1000_vfadapt_i350,
77         .flags          = 0,
78         .pba            = 10,
79         .init_ops       = e1000_init_function_pointers_vf,
80 };
81
82 static const struct igbvf_info *igbvf_info_tbl[] = {
83         [board_vf]      = &igbvf_vf_info,
84         [board_i350_vf] = &igbvf_i350_vf_info,
85 };
86
87 /**
88  * igbvf_desc_unused - calculate if we have unused descriptors
89  * @rx_ring: address of receive ring structure
90  **/
91 static int igbvf_desc_unused(struct igbvf_ring *ring)
92 {
93         if (ring->next_to_clean > ring->next_to_use)
94                 return ring->next_to_clean - ring->next_to_use - 1;
95
96         return ring->count + ring->next_to_clean - ring->next_to_use - 1;
97 }
98
99 /**
100  * igbvf_receive_skb - helper function to handle Rx indications
101  * @adapter: board private structure
102  * @status: descriptor status field as written by hardware
103  * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
104  * @skb: pointer to sk_buff to be indicated to stack
105  **/
106 static void igbvf_receive_skb(struct igbvf_adapter *adapter,
107                               struct net_device *netdev,
108                               struct sk_buff *skb,
109                               u32 status, u16 vlan)
110 {
111         u16 vid;
112
113         if (status & E1000_RXD_STAT_VP) {
114                 if ((adapter->flags & IGBVF_FLAG_RX_LB_VLAN_BSWAP) &&
115                     (status & E1000_RXDEXT_STATERR_LB))
116                         vid = be16_to_cpu(vlan) & E1000_RXD_SPC_VLAN_MASK;
117                 else
118                         vid = le16_to_cpu(vlan) & E1000_RXD_SPC_VLAN_MASK;
119                 if (test_bit(vid, adapter->active_vlans))
120                         __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
121         }
122
123         napi_gro_receive(&adapter->rx_ring->napi, skb);
124 }
125
126 static inline void igbvf_rx_checksum_adv(struct igbvf_adapter *adapter,
127                                          u32 status_err, struct sk_buff *skb)
128 {
129         skb_checksum_none_assert(skb);
130
131         /* Ignore Checksum bit is set or checksum is disabled through ethtool */
132         if ((status_err & E1000_RXD_STAT_IXSM) ||
133             (adapter->flags & IGBVF_FLAG_RX_CSUM_DISABLED))
134                 return;
135
136         /* TCP/UDP checksum error bit is set */
137         if (status_err &
138             (E1000_RXDEXT_STATERR_TCPE | E1000_RXDEXT_STATERR_IPE)) {
139                 /* let the stack verify checksum errors */
140                 adapter->hw_csum_err++;
141                 return;
142         }
143
144         /* It must be a TCP or UDP packet with a valid checksum */
145         if (status_err & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS))
146                 skb->ip_summed = CHECKSUM_UNNECESSARY;
147
148         adapter->hw_csum_good++;
149 }
150
151 /**
152  * igbvf_alloc_rx_buffers - Replace used receive buffers; packet split
153  * @rx_ring: address of ring structure to repopulate
154  * @cleaned_count: number of buffers to repopulate
155  **/
156 static void igbvf_alloc_rx_buffers(struct igbvf_ring *rx_ring,
157                                    int cleaned_count)
158 {
159         struct igbvf_adapter *adapter = rx_ring->adapter;
160         struct net_device *netdev = adapter->netdev;
161         struct pci_dev *pdev = adapter->pdev;
162         union e1000_adv_rx_desc *rx_desc;
163         struct igbvf_buffer *buffer_info;
164         struct sk_buff *skb;
165         unsigned int i;
166         int bufsz;
167
168         i = rx_ring->next_to_use;
169         buffer_info = &rx_ring->buffer_info[i];
170
171         if (adapter->rx_ps_hdr_size)
172                 bufsz = adapter->rx_ps_hdr_size;
173         else
174                 bufsz = adapter->rx_buffer_len;
175
176         while (cleaned_count--) {
177                 rx_desc = IGBVF_RX_DESC_ADV(*rx_ring, i);
178
179                 if (adapter->rx_ps_hdr_size && !buffer_info->page_dma) {
180                         if (!buffer_info->page) {
181                                 buffer_info->page = alloc_page(GFP_ATOMIC);
182                                 if (!buffer_info->page) {
183                                         adapter->alloc_rx_buff_failed++;
184                                         goto no_buffers;
185                                 }
186                                 buffer_info->page_offset = 0;
187                         } else {
188                                 buffer_info->page_offset ^= PAGE_SIZE / 2;
189                         }
190                         buffer_info->page_dma =
191                                 dma_map_page(&pdev->dev, buffer_info->page,
192                                              buffer_info->page_offset,
193                                              PAGE_SIZE / 2,
194                                              DMA_FROM_DEVICE);
195                         if (dma_mapping_error(&pdev->dev,
196                                               buffer_info->page_dma)) {
197                                 __free_page(buffer_info->page);
198                                 buffer_info->page = NULL;
199                                 dev_err(&pdev->dev, "RX DMA map failed\n");
200                                 break;
201                         }
202                 }
203
204                 if (!buffer_info->skb) {
205                         skb = netdev_alloc_skb_ip_align(netdev, bufsz);
206                         if (!skb) {
207                                 adapter->alloc_rx_buff_failed++;
208                                 goto no_buffers;
209                         }
210
211                         buffer_info->skb = skb;
212                         buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
213                                                           bufsz,
214                                                           DMA_FROM_DEVICE);
215                         if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
216                                 dev_kfree_skb(buffer_info->skb);
217                                 buffer_info->skb = NULL;
218                                 dev_err(&pdev->dev, "RX DMA map failed\n");
219                                 goto no_buffers;
220                         }
221                 }
222                 /* Refresh the desc even if buffer_addrs didn't change because
223                  * each write-back erases this info.
224                  */
225                 if (adapter->rx_ps_hdr_size) {
226                         rx_desc->read.pkt_addr =
227                              cpu_to_le64(buffer_info->page_dma);
228                         rx_desc->read.hdr_addr = cpu_to_le64(buffer_info->dma);
229                 } else {
230                         rx_desc->read.pkt_addr = cpu_to_le64(buffer_info->dma);
231                         rx_desc->read.hdr_addr = 0;
232                 }
233
234                 i++;
235                 if (i == rx_ring->count)
236                         i = 0;
237                 buffer_info = &rx_ring->buffer_info[i];
238         }
239
240 no_buffers:
241         if (rx_ring->next_to_use != i) {
242                 rx_ring->next_to_use = i;
243                 if (i == 0)
244                         i = (rx_ring->count - 1);
245                 else
246                         i--;
247
248                 /* Force memory writes to complete before letting h/w
249                  * know there are new descriptors to fetch.  (Only
250                  * applicable for weak-ordered memory model archs,
251                  * such as IA-64).
252                 */
253                 wmb();
254                 writel(i, adapter->hw.hw_addr + rx_ring->tail);
255         }
256 }
257
258 /**
259  * igbvf_clean_rx_irq - Send received data up the network stack; legacy
260  * @adapter: board private structure
261  *
262  * the return value indicates whether actual cleaning was done, there
263  * is no guarantee that everything was cleaned
264  **/
265 static bool igbvf_clean_rx_irq(struct igbvf_adapter *adapter,
266                                int *work_done, int work_to_do)
267 {
268         struct igbvf_ring *rx_ring = adapter->rx_ring;
269         struct net_device *netdev = adapter->netdev;
270         struct pci_dev *pdev = adapter->pdev;
271         union e1000_adv_rx_desc *rx_desc, *next_rxd;
272         struct igbvf_buffer *buffer_info, *next_buffer;
273         struct sk_buff *skb;
274         bool cleaned = false;
275         int cleaned_count = 0;
276         unsigned int total_bytes = 0, total_packets = 0;
277         unsigned int i;
278         u32 length, hlen, staterr;
279
280         i = rx_ring->next_to_clean;
281         rx_desc = IGBVF_RX_DESC_ADV(*rx_ring, i);
282         staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
283
284         while (staterr & E1000_RXD_STAT_DD) {
285                 if (*work_done >= work_to_do)
286                         break;
287                 (*work_done)++;
288                 rmb(); /* read descriptor and rx_buffer_info after status DD */
289
290                 buffer_info = &rx_ring->buffer_info[i];
291
292                 /* HW will not DMA in data larger than the given buffer, even
293                  * if it parses the (NFS, of course) header to be larger.  In
294                  * that case, it fills the header buffer and spills the rest
295                  * into the page.
296                  */
297                 hlen = (le16_to_cpu(rx_desc->wb.lower.lo_dword.hs_rss.hdr_info)
298                        & E1000_RXDADV_HDRBUFLEN_MASK) >>
299                        E1000_RXDADV_HDRBUFLEN_SHIFT;
300                 if (hlen > adapter->rx_ps_hdr_size)
301                         hlen = adapter->rx_ps_hdr_size;
302
303                 length = le16_to_cpu(rx_desc->wb.upper.length);
304                 cleaned = true;
305                 cleaned_count++;
306
307                 skb = buffer_info->skb;
308                 prefetch(skb->data - NET_IP_ALIGN);
309                 buffer_info->skb = NULL;
310                 if (!adapter->rx_ps_hdr_size) {
311                         dma_unmap_single(&pdev->dev, buffer_info->dma,
312                                          adapter->rx_buffer_len,
313                                          DMA_FROM_DEVICE);
314                         buffer_info->dma = 0;
315                         skb_put(skb, length);
316                         goto send_up;
317                 }
318
319                 if (!skb_shinfo(skb)->nr_frags) {
320                         dma_unmap_single(&pdev->dev, buffer_info->dma,
321                                          adapter->rx_ps_hdr_size,
322                                          DMA_FROM_DEVICE);
323                         buffer_info->dma = 0;
324                         skb_put(skb, hlen);
325                 }
326
327                 if (length) {
328                         dma_unmap_page(&pdev->dev, buffer_info->page_dma,
329                                        PAGE_SIZE / 2,
330                                        DMA_FROM_DEVICE);
331                         buffer_info->page_dma = 0;
332
333                         skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags,
334                                            buffer_info->page,
335                                            buffer_info->page_offset,
336                                            length);
337
338                         if ((adapter->rx_buffer_len > (PAGE_SIZE / 2)) ||
339                             (page_count(buffer_info->page) != 1))
340                                 buffer_info->page = NULL;
341                         else
342                                 get_page(buffer_info->page);
343
344                         skb->len += length;
345                         skb->data_len += length;
346                         skb->truesize += PAGE_SIZE / 2;
347                 }
348 send_up:
349                 i++;
350                 if (i == rx_ring->count)
351                         i = 0;
352                 next_rxd = IGBVF_RX_DESC_ADV(*rx_ring, i);
353                 prefetch(next_rxd);
354                 next_buffer = &rx_ring->buffer_info[i];
355
356                 if (!(staterr & E1000_RXD_STAT_EOP)) {
357                         buffer_info->skb = next_buffer->skb;
358                         buffer_info->dma = next_buffer->dma;
359                         next_buffer->skb = skb;
360                         next_buffer->dma = 0;
361                         goto next_desc;
362                 }
363
364                 if (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) {
365                         dev_kfree_skb_irq(skb);
366                         goto next_desc;
367                 }
368
369                 total_bytes += skb->len;
370                 total_packets++;
371
372                 igbvf_rx_checksum_adv(adapter, staterr, skb);
373
374                 skb->protocol = eth_type_trans(skb, netdev);
375
376                 igbvf_receive_skb(adapter, netdev, skb, staterr,
377                                   rx_desc->wb.upper.vlan);
378
379 next_desc:
380                 rx_desc->wb.upper.status_error = 0;
381
382                 /* return some buffers to hardware, one at a time is too slow */
383                 if (cleaned_count >= IGBVF_RX_BUFFER_WRITE) {
384                         igbvf_alloc_rx_buffers(rx_ring, cleaned_count);
385                         cleaned_count = 0;
386                 }
387
388                 /* use prefetched values */
389                 rx_desc = next_rxd;
390                 buffer_info = next_buffer;
391
392                 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
393         }
394
395         rx_ring->next_to_clean = i;
396         cleaned_count = igbvf_desc_unused(rx_ring);
397
398         if (cleaned_count)
399                 igbvf_alloc_rx_buffers(rx_ring, cleaned_count);
400
401         adapter->total_rx_packets += total_packets;
402         adapter->total_rx_bytes += total_bytes;
403         adapter->net_stats.rx_bytes += total_bytes;
404         adapter->net_stats.rx_packets += total_packets;
405         return cleaned;
406 }
407
408 static void igbvf_put_txbuf(struct igbvf_adapter *adapter,
409                             struct igbvf_buffer *buffer_info)
410 {
411         if (buffer_info->dma) {
412                 if (buffer_info->mapped_as_page)
413                         dma_unmap_page(&adapter->pdev->dev,
414                                        buffer_info->dma,
415                                        buffer_info->length,
416                                        DMA_TO_DEVICE);
417                 else
418                         dma_unmap_single(&adapter->pdev->dev,
419                                          buffer_info->dma,
420                                          buffer_info->length,
421                                          DMA_TO_DEVICE);
422                 buffer_info->dma = 0;
423         }
424         if (buffer_info->skb) {
425                 dev_kfree_skb_any(buffer_info->skb);
426                 buffer_info->skb = NULL;
427         }
428         buffer_info->time_stamp = 0;
429 }
430
431 /**
432  * igbvf_setup_tx_resources - allocate Tx resources (Descriptors)
433  * @adapter: board private structure
434  *
435  * Return 0 on success, negative on failure
436  **/
437 int igbvf_setup_tx_resources(struct igbvf_adapter *adapter,
438                              struct igbvf_ring *tx_ring)
439 {
440         struct pci_dev *pdev = adapter->pdev;
441         int size;
442
443         size = sizeof(struct igbvf_buffer) * tx_ring->count;
444         tx_ring->buffer_info = vzalloc(size);
445         if (!tx_ring->buffer_info)
446                 goto err;
447
448         /* round up to nearest 4K */
449         tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
450         tx_ring->size = ALIGN(tx_ring->size, 4096);
451
452         tx_ring->desc = dma_alloc_coherent(&pdev->dev, tx_ring->size,
453                                            &tx_ring->dma, GFP_KERNEL);
454         if (!tx_ring->desc)
455                 goto err;
456
457         tx_ring->adapter = adapter;
458         tx_ring->next_to_use = 0;
459         tx_ring->next_to_clean = 0;
460
461         return 0;
462 err:
463         vfree(tx_ring->buffer_info);
464         dev_err(&adapter->pdev->dev,
465                 "Unable to allocate memory for the transmit descriptor ring\n");
466         return -ENOMEM;
467 }
468
469 /**
470  * igbvf_setup_rx_resources - allocate Rx resources (Descriptors)
471  * @adapter: board private structure
472  *
473  * Returns 0 on success, negative on failure
474  **/
475 int igbvf_setup_rx_resources(struct igbvf_adapter *adapter,
476                              struct igbvf_ring *rx_ring)
477 {
478         struct pci_dev *pdev = adapter->pdev;
479         int size, desc_len;
480
481         size = sizeof(struct igbvf_buffer) * rx_ring->count;
482         rx_ring->buffer_info = vzalloc(size);
483         if (!rx_ring->buffer_info)
484                 goto err;
485
486         desc_len = sizeof(union e1000_adv_rx_desc);
487
488         /* Round up to nearest 4K */
489         rx_ring->size = rx_ring->count * desc_len;
490         rx_ring->size = ALIGN(rx_ring->size, 4096);
491
492         rx_ring->desc = dma_alloc_coherent(&pdev->dev, rx_ring->size,
493                                            &rx_ring->dma, GFP_KERNEL);
494         if (!rx_ring->desc)
495                 goto err;
496
497         rx_ring->next_to_clean = 0;
498         rx_ring->next_to_use = 0;
499
500         rx_ring->adapter = adapter;
501
502         return 0;
503
504 err:
505         vfree(rx_ring->buffer_info);
506         rx_ring->buffer_info = NULL;
507         dev_err(&adapter->pdev->dev,
508                 "Unable to allocate memory for the receive descriptor ring\n");
509         return -ENOMEM;
510 }
511
512 /**
513  * igbvf_clean_tx_ring - Free Tx Buffers
514  * @tx_ring: ring to be cleaned
515  **/
516 static void igbvf_clean_tx_ring(struct igbvf_ring *tx_ring)
517 {
518         struct igbvf_adapter *adapter = tx_ring->adapter;
519         struct igbvf_buffer *buffer_info;
520         unsigned long size;
521         unsigned int i;
522
523         if (!tx_ring->buffer_info)
524                 return;
525
526         /* Free all the Tx ring sk_buffs */
527         for (i = 0; i < tx_ring->count; i++) {
528                 buffer_info = &tx_ring->buffer_info[i];
529                 igbvf_put_txbuf(adapter, buffer_info);
530         }
531
532         size = sizeof(struct igbvf_buffer) * tx_ring->count;
533         memset(tx_ring->buffer_info, 0, size);
534
535         /* Zero out the descriptor ring */
536         memset(tx_ring->desc, 0, tx_ring->size);
537
538         tx_ring->next_to_use = 0;
539         tx_ring->next_to_clean = 0;
540
541         writel(0, adapter->hw.hw_addr + tx_ring->head);
542         writel(0, adapter->hw.hw_addr + tx_ring->tail);
543 }
544
545 /**
546  * igbvf_free_tx_resources - Free Tx Resources per Queue
547  * @tx_ring: ring to free resources from
548  *
549  * Free all transmit software resources
550  **/
551 void igbvf_free_tx_resources(struct igbvf_ring *tx_ring)
552 {
553         struct pci_dev *pdev = tx_ring->adapter->pdev;
554
555         igbvf_clean_tx_ring(tx_ring);
556
557         vfree(tx_ring->buffer_info);
558         tx_ring->buffer_info = NULL;
559
560         dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
561                           tx_ring->dma);
562
563         tx_ring->desc = NULL;
564 }
565
566 /**
567  * igbvf_clean_rx_ring - Free Rx Buffers per Queue
568  * @adapter: board private structure
569  **/
570 static void igbvf_clean_rx_ring(struct igbvf_ring *rx_ring)
571 {
572         struct igbvf_adapter *adapter = rx_ring->adapter;
573         struct igbvf_buffer *buffer_info;
574         struct pci_dev *pdev = adapter->pdev;
575         unsigned long size;
576         unsigned int i;
577
578         if (!rx_ring->buffer_info)
579                 return;
580
581         /* Free all the Rx ring sk_buffs */
582         for (i = 0; i < rx_ring->count; i++) {
583                 buffer_info = &rx_ring->buffer_info[i];
584                 if (buffer_info->dma) {
585                         if (adapter->rx_ps_hdr_size) {
586                                 dma_unmap_single(&pdev->dev, buffer_info->dma,
587                                                  adapter->rx_ps_hdr_size,
588                                                  DMA_FROM_DEVICE);
589                         } else {
590                                 dma_unmap_single(&pdev->dev, buffer_info->dma,
591                                                  adapter->rx_buffer_len,
592                                                  DMA_FROM_DEVICE);
593                         }
594                         buffer_info->dma = 0;
595                 }
596
597                 if (buffer_info->skb) {
598                         dev_kfree_skb(buffer_info->skb);
599                         buffer_info->skb = NULL;
600                 }
601
602                 if (buffer_info->page) {
603                         if (buffer_info->page_dma)
604                                 dma_unmap_page(&pdev->dev,
605                                                buffer_info->page_dma,
606                                                PAGE_SIZE / 2,
607                                                DMA_FROM_DEVICE);
608                         put_page(buffer_info->page);
609                         buffer_info->page = NULL;
610                         buffer_info->page_dma = 0;
611                         buffer_info->page_offset = 0;
612                 }
613         }
614
615         size = sizeof(struct igbvf_buffer) * rx_ring->count;
616         memset(rx_ring->buffer_info, 0, size);
617
618         /* Zero out the descriptor ring */
619         memset(rx_ring->desc, 0, rx_ring->size);
620
621         rx_ring->next_to_clean = 0;
622         rx_ring->next_to_use = 0;
623
624         writel(0, adapter->hw.hw_addr + rx_ring->head);
625         writel(0, adapter->hw.hw_addr + rx_ring->tail);
626 }
627
628 /**
629  * igbvf_free_rx_resources - Free Rx Resources
630  * @rx_ring: ring to clean the resources from
631  *
632  * Free all receive software resources
633  **/
634
635 void igbvf_free_rx_resources(struct igbvf_ring *rx_ring)
636 {
637         struct pci_dev *pdev = rx_ring->adapter->pdev;
638
639         igbvf_clean_rx_ring(rx_ring);
640
641         vfree(rx_ring->buffer_info);
642         rx_ring->buffer_info = NULL;
643
644         dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
645                           rx_ring->dma);
646         rx_ring->desc = NULL;
647 }
648
649 /**
650  * igbvf_update_itr - update the dynamic ITR value based on statistics
651  * @adapter: pointer to adapter
652  * @itr_setting: current adapter->itr
653  * @packets: the number of packets during this measurement interval
654  * @bytes: the number of bytes during this measurement interval
655  *
656  * Stores a new ITR value based on packets and byte counts during the last
657  * interrupt.  The advantage of per interrupt computation is faster updates
658  * and more accurate ITR for the current traffic pattern.  Constants in this
659  * function were computed based on theoretical maximum wire speed and thresholds
660  * were set based on testing data as well as attempting to minimize response
661  * time while increasing bulk throughput.
662  **/
663 static enum latency_range igbvf_update_itr(struct igbvf_adapter *adapter,
664                                            enum latency_range itr_setting,
665                                            int packets, int bytes)
666 {
667         enum latency_range retval = itr_setting;
668
669         if (packets == 0)
670                 goto update_itr_done;
671
672         switch (itr_setting) {
673         case lowest_latency:
674                 /* handle TSO and jumbo frames */
675                 if (bytes/packets > 8000)
676                         retval = bulk_latency;
677                 else if ((packets < 5) && (bytes > 512))
678                         retval = low_latency;
679                 break;
680         case low_latency:  /* 50 usec aka 20000 ints/s */
681                 if (bytes > 10000) {
682                         /* this if handles the TSO accounting */
683                         if (bytes/packets > 8000)
684                                 retval = bulk_latency;
685                         else if ((packets < 10) || ((bytes/packets) > 1200))
686                                 retval = bulk_latency;
687                         else if ((packets > 35))
688                                 retval = lowest_latency;
689                 } else if (bytes/packets > 2000) {
690                         retval = bulk_latency;
691                 } else if (packets <= 2 && bytes < 512) {
692                         retval = lowest_latency;
693                 }
694                 break;
695         case bulk_latency: /* 250 usec aka 4000 ints/s */
696                 if (bytes > 25000) {
697                         if (packets > 35)
698                                 retval = low_latency;
699                 } else if (bytes < 6000) {
700                         retval = low_latency;
701                 }
702                 break;
703         default:
704                 break;
705         }
706
707 update_itr_done:
708         return retval;
709 }
710
711 static int igbvf_range_to_itr(enum latency_range current_range)
712 {
713         int new_itr;
714
715         switch (current_range) {
716         /* counts and packets in update_itr are dependent on these numbers */
717         case lowest_latency:
718                 new_itr = IGBVF_70K_ITR;
719                 break;
720         case low_latency:
721                 new_itr = IGBVF_20K_ITR;
722                 break;
723         case bulk_latency:
724                 new_itr = IGBVF_4K_ITR;
725                 break;
726         default:
727                 new_itr = IGBVF_START_ITR;
728                 break;
729         }
730         return new_itr;
731 }
732
733 static void igbvf_set_itr(struct igbvf_adapter *adapter)
734 {
735         u32 new_itr;
736
737         adapter->tx_ring->itr_range =
738                         igbvf_update_itr(adapter,
739                                          adapter->tx_ring->itr_val,
740                                          adapter->total_tx_packets,
741                                          adapter->total_tx_bytes);
742
743         /* conservative mode (itr 3) eliminates the lowest_latency setting */
744         if (adapter->requested_itr == 3 &&
745             adapter->tx_ring->itr_range == lowest_latency)
746                 adapter->tx_ring->itr_range = low_latency;
747
748         new_itr = igbvf_range_to_itr(adapter->tx_ring->itr_range);
749
750         if (new_itr != adapter->tx_ring->itr_val) {
751                 u32 current_itr = adapter->tx_ring->itr_val;
752                 /* this attempts to bias the interrupt rate towards Bulk
753                  * by adding intermediate steps when interrupt rate is
754                  * increasing
755                  */
756                 new_itr = new_itr > current_itr ?
757                           min(current_itr + (new_itr >> 2), new_itr) :
758                           new_itr;
759                 adapter->tx_ring->itr_val = new_itr;
760
761                 adapter->tx_ring->set_itr = 1;
762         }
763
764         adapter->rx_ring->itr_range =
765                         igbvf_update_itr(adapter, adapter->rx_ring->itr_val,
766                                          adapter->total_rx_packets,
767                                          adapter->total_rx_bytes);
768         if (adapter->requested_itr == 3 &&
769             adapter->rx_ring->itr_range == lowest_latency)
770                 adapter->rx_ring->itr_range = low_latency;
771
772         new_itr = igbvf_range_to_itr(adapter->rx_ring->itr_range);
773
774         if (new_itr != adapter->rx_ring->itr_val) {
775                 u32 current_itr = adapter->rx_ring->itr_val;
776
777                 new_itr = new_itr > current_itr ?
778                           min(current_itr + (new_itr >> 2), new_itr) :
779                           new_itr;
780                 adapter->rx_ring->itr_val = new_itr;
781
782                 adapter->rx_ring->set_itr = 1;
783         }
784 }
785
786 /**
787  * igbvf_clean_tx_irq - Reclaim resources after transmit completes
788  * @adapter: board private structure
789  *
790  * returns true if ring is completely cleaned
791  **/
792 static bool igbvf_clean_tx_irq(struct igbvf_ring *tx_ring)
793 {
794         struct igbvf_adapter *adapter = tx_ring->adapter;
795         struct net_device *netdev = adapter->netdev;
796         struct igbvf_buffer *buffer_info;
797         struct sk_buff *skb;
798         union e1000_adv_tx_desc *tx_desc, *eop_desc;
799         unsigned int total_bytes = 0, total_packets = 0;
800         unsigned int i, count = 0;
801         bool cleaned = false;
802
803         i = tx_ring->next_to_clean;
804         buffer_info = &tx_ring->buffer_info[i];
805         eop_desc = buffer_info->next_to_watch;
806
807         do {
808                 /* if next_to_watch is not set then there is no work pending */
809                 if (!eop_desc)
810                         break;
811
812                 /* prevent any other reads prior to eop_desc */
813                 smp_rmb();
814
815                 /* if DD is not set pending work has not been completed */
816                 if (!(eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)))
817                         break;
818
819                 /* clear next_to_watch to prevent false hangs */
820                 buffer_info->next_to_watch = NULL;
821
822                 for (cleaned = false; !cleaned; count++) {
823                         tx_desc = IGBVF_TX_DESC_ADV(*tx_ring, i);
824                         cleaned = (tx_desc == eop_desc);
825                         skb = buffer_info->skb;
826
827                         if (skb) {
828                                 unsigned int segs, bytecount;
829
830                                 /* gso_segs is currently only valid for tcp */
831                                 segs = skb_shinfo(skb)->gso_segs ?: 1;
832                                 /* multiply data chunks by size of headers */
833                                 bytecount = ((segs - 1) * skb_headlen(skb)) +
834                                             skb->len;
835                                 total_packets += segs;
836                                 total_bytes += bytecount;
837                         }
838
839                         igbvf_put_txbuf(adapter, buffer_info);
840                         tx_desc->wb.status = 0;
841
842                         i++;
843                         if (i == tx_ring->count)
844                                 i = 0;
845
846                         buffer_info = &tx_ring->buffer_info[i];
847                 }
848
849                 eop_desc = buffer_info->next_to_watch;
850         } while (count < tx_ring->count);
851
852         tx_ring->next_to_clean = i;
853
854         if (unlikely(count && netif_carrier_ok(netdev) &&
855             igbvf_desc_unused(tx_ring) >= IGBVF_TX_QUEUE_WAKE)) {
856                 /* Make sure that anybody stopping the queue after this
857                  * sees the new next_to_clean.
858                  */
859                 smp_mb();
860                 if (netif_queue_stopped(netdev) &&
861                     !(test_bit(__IGBVF_DOWN, &adapter->state))) {
862                         netif_wake_queue(netdev);
863                         ++adapter->restart_queue;
864                 }
865         }
866
867         adapter->net_stats.tx_bytes += total_bytes;
868         adapter->net_stats.tx_packets += total_packets;
869         return count < tx_ring->count;
870 }
871
872 static irqreturn_t igbvf_msix_other(int irq, void *data)
873 {
874         struct net_device *netdev = data;
875         struct igbvf_adapter *adapter = netdev_priv(netdev);
876         struct e1000_hw *hw = &adapter->hw;
877
878         adapter->int_counter1++;
879
880         hw->mac.get_link_status = 1;
881         if (!test_bit(__IGBVF_DOWN, &adapter->state))
882                 mod_timer(&adapter->watchdog_timer, jiffies + 1);
883
884         ew32(EIMS, adapter->eims_other);
885
886         return IRQ_HANDLED;
887 }
888
889 static irqreturn_t igbvf_intr_msix_tx(int irq, void *data)
890 {
891         struct net_device *netdev = data;
892         struct igbvf_adapter *adapter = netdev_priv(netdev);
893         struct e1000_hw *hw = &adapter->hw;
894         struct igbvf_ring *tx_ring = adapter->tx_ring;
895
896         if (tx_ring->set_itr) {
897                 writel(tx_ring->itr_val,
898                        adapter->hw.hw_addr + tx_ring->itr_register);
899                 adapter->tx_ring->set_itr = 0;
900         }
901
902         adapter->total_tx_bytes = 0;
903         adapter->total_tx_packets = 0;
904
905         /* auto mask will automatically re-enable the interrupt when we write
906          * EICS
907          */
908         if (!igbvf_clean_tx_irq(tx_ring))
909                 /* Ring was not completely cleaned, so fire another interrupt */
910                 ew32(EICS, tx_ring->eims_value);
911         else
912                 ew32(EIMS, tx_ring->eims_value);
913
914         return IRQ_HANDLED;
915 }
916
917 static irqreturn_t igbvf_intr_msix_rx(int irq, void *data)
918 {
919         struct net_device *netdev = data;
920         struct igbvf_adapter *adapter = netdev_priv(netdev);
921
922         adapter->int_counter0++;
923
924         /* Write the ITR value calculated at the end of the
925          * previous interrupt.
926          */
927         if (adapter->rx_ring->set_itr) {
928                 writel(adapter->rx_ring->itr_val,
929                        adapter->hw.hw_addr + adapter->rx_ring->itr_register);
930                 adapter->rx_ring->set_itr = 0;
931         }
932
933         if (napi_schedule_prep(&adapter->rx_ring->napi)) {
934                 adapter->total_rx_bytes = 0;
935                 adapter->total_rx_packets = 0;
936                 __napi_schedule(&adapter->rx_ring->napi);
937         }
938
939         return IRQ_HANDLED;
940 }
941
942 #define IGBVF_NO_QUEUE -1
943
944 static void igbvf_assign_vector(struct igbvf_adapter *adapter, int rx_queue,
945                                 int tx_queue, int msix_vector)
946 {
947         struct e1000_hw *hw = &adapter->hw;
948         u32 ivar, index;
949
950         /* 82576 uses a table-based method for assigning vectors.
951          * Each queue has a single entry in the table to which we write
952          * a vector number along with a "valid" bit.  Sadly, the layout
953          * of the table is somewhat counterintuitive.
954          */
955         if (rx_queue > IGBVF_NO_QUEUE) {
956                 index = (rx_queue >> 1);
957                 ivar = array_er32(IVAR0, index);
958                 if (rx_queue & 0x1) {
959                         /* vector goes into third byte of register */
960                         ivar = ivar & 0xFF00FFFF;
961                         ivar |= (msix_vector | E1000_IVAR_VALID) << 16;
962                 } else {
963                         /* vector goes into low byte of register */
964                         ivar = ivar & 0xFFFFFF00;
965                         ivar |= msix_vector | E1000_IVAR_VALID;
966                 }
967                 adapter->rx_ring[rx_queue].eims_value = BIT(msix_vector);
968                 array_ew32(IVAR0, index, ivar);
969         }
970         if (tx_queue > IGBVF_NO_QUEUE) {
971                 index = (tx_queue >> 1);
972                 ivar = array_er32(IVAR0, index);
973                 if (tx_queue & 0x1) {
974                         /* vector goes into high byte of register */
975                         ivar = ivar & 0x00FFFFFF;
976                         ivar |= (msix_vector | E1000_IVAR_VALID) << 24;
977                 } else {
978                         /* vector goes into second byte of register */
979                         ivar = ivar & 0xFFFF00FF;
980                         ivar |= (msix_vector | E1000_IVAR_VALID) << 8;
981                 }
982                 adapter->tx_ring[tx_queue].eims_value = BIT(msix_vector);
983                 array_ew32(IVAR0, index, ivar);
984         }
985 }
986
987 /**
988  * igbvf_configure_msix - Configure MSI-X hardware
989  * @adapter: board private structure
990  *
991  * igbvf_configure_msix sets up the hardware to properly
992  * generate MSI-X interrupts.
993  **/
994 static void igbvf_configure_msix(struct igbvf_adapter *adapter)
995 {
996         u32 tmp;
997         struct e1000_hw *hw = &adapter->hw;
998         struct igbvf_ring *tx_ring = adapter->tx_ring;
999         struct igbvf_ring *rx_ring = adapter->rx_ring;
1000         int vector = 0;
1001
1002         adapter->eims_enable_mask = 0;
1003
1004         igbvf_assign_vector(adapter, IGBVF_NO_QUEUE, 0, vector++);
1005         adapter->eims_enable_mask |= tx_ring->eims_value;
1006         writel(tx_ring->itr_val, hw->hw_addr + tx_ring->itr_register);
1007         igbvf_assign_vector(adapter, 0, IGBVF_NO_QUEUE, vector++);
1008         adapter->eims_enable_mask |= rx_ring->eims_value;
1009         writel(rx_ring->itr_val, hw->hw_addr + rx_ring->itr_register);
1010
1011         /* set vector for other causes, i.e. link changes */
1012
1013         tmp = (vector++ | E1000_IVAR_VALID);
1014
1015         ew32(IVAR_MISC, tmp);
1016
1017         adapter->eims_enable_mask = GENMASK(vector - 1, 0);
1018         adapter->eims_other = BIT(vector - 1);
1019         e1e_flush();
1020 }
1021
1022 static void igbvf_reset_interrupt_capability(struct igbvf_adapter *adapter)
1023 {
1024         if (adapter->msix_entries) {
1025                 pci_disable_msix(adapter->pdev);
1026                 kfree(adapter->msix_entries);
1027                 adapter->msix_entries = NULL;
1028         }
1029 }
1030
1031 /**
1032  * igbvf_set_interrupt_capability - set MSI or MSI-X if supported
1033  * @adapter: board private structure
1034  *
1035  * Attempt to configure interrupts using the best available
1036  * capabilities of the hardware and kernel.
1037  **/
1038 static void igbvf_set_interrupt_capability(struct igbvf_adapter *adapter)
1039 {
1040         int err = -ENOMEM;
1041         int i;
1042
1043         /* we allocate 3 vectors, 1 for Tx, 1 for Rx, one for PF messages */
1044         adapter->msix_entries = kcalloc(3, sizeof(struct msix_entry),
1045                                         GFP_KERNEL);
1046         if (adapter->msix_entries) {
1047                 for (i = 0; i < 3; i++)
1048                         adapter->msix_entries[i].entry = i;
1049
1050                 err = pci_enable_msix_range(adapter->pdev,
1051                                             adapter->msix_entries, 3, 3);
1052         }
1053
1054         if (err < 0) {
1055                 /* MSI-X failed */
1056                 dev_err(&adapter->pdev->dev,
1057                         "Failed to initialize MSI-X interrupts.\n");
1058                 igbvf_reset_interrupt_capability(adapter);
1059         }
1060 }
1061
1062 /**
1063  * igbvf_request_msix - Initialize MSI-X interrupts
1064  * @adapter: board private structure
1065  *
1066  * igbvf_request_msix allocates MSI-X vectors and requests interrupts from the
1067  * kernel.
1068  **/
1069 static int igbvf_request_msix(struct igbvf_adapter *adapter)
1070 {
1071         struct net_device *netdev = adapter->netdev;
1072         int err = 0, vector = 0;
1073
1074         if (strlen(netdev->name) < (IFNAMSIZ - 5)) {
1075                 sprintf(adapter->tx_ring->name, "%s-tx-0", netdev->name);
1076                 sprintf(adapter->rx_ring->name, "%s-rx-0", netdev->name);
1077         } else {
1078                 memcpy(adapter->tx_ring->name, netdev->name, IFNAMSIZ);
1079                 memcpy(adapter->rx_ring->name, netdev->name, IFNAMSIZ);
1080         }
1081
1082         err = request_irq(adapter->msix_entries[vector].vector,
1083                           igbvf_intr_msix_tx, 0, adapter->tx_ring->name,
1084                           netdev);
1085         if (err)
1086                 goto out;
1087
1088         adapter->tx_ring->itr_register = E1000_EITR(vector);
1089         adapter->tx_ring->itr_val = adapter->current_itr;
1090         vector++;
1091
1092         err = request_irq(adapter->msix_entries[vector].vector,
1093                           igbvf_intr_msix_rx, 0, adapter->rx_ring->name,
1094                           netdev);
1095         if (err)
1096                 goto out;
1097
1098         adapter->rx_ring->itr_register = E1000_EITR(vector);
1099         adapter->rx_ring->itr_val = adapter->current_itr;
1100         vector++;
1101
1102         err = request_irq(adapter->msix_entries[vector].vector,
1103                           igbvf_msix_other, 0, netdev->name, netdev);
1104         if (err)
1105                 goto out;
1106
1107         igbvf_configure_msix(adapter);
1108         return 0;
1109 out:
1110         return err;
1111 }
1112
1113 /**
1114  * igbvf_alloc_queues - Allocate memory for all rings
1115  * @adapter: board private structure to initialize
1116  **/
1117 static int igbvf_alloc_queues(struct igbvf_adapter *adapter)
1118 {
1119         struct net_device *netdev = adapter->netdev;
1120
1121         adapter->tx_ring = kzalloc(sizeof(struct igbvf_ring), GFP_KERNEL);
1122         if (!adapter->tx_ring)
1123                 return -ENOMEM;
1124
1125         adapter->rx_ring = kzalloc(sizeof(struct igbvf_ring), GFP_KERNEL);
1126         if (!adapter->rx_ring) {
1127                 kfree(adapter->tx_ring);
1128                 return -ENOMEM;
1129         }
1130
1131         netif_napi_add(netdev, &adapter->rx_ring->napi, igbvf_poll, 64);
1132
1133         return 0;
1134 }
1135
1136 /**
1137  * igbvf_request_irq - initialize interrupts
1138  * @adapter: board private structure
1139  *
1140  * Attempts to configure interrupts using the best available
1141  * capabilities of the hardware and kernel.
1142  **/
1143 static int igbvf_request_irq(struct igbvf_adapter *adapter)
1144 {
1145         int err = -1;
1146
1147         /* igbvf supports msi-x only */
1148         if (adapter->msix_entries)
1149                 err = igbvf_request_msix(adapter);
1150
1151         if (!err)
1152                 return err;
1153
1154         dev_err(&adapter->pdev->dev,
1155                 "Unable to allocate interrupt, Error: %d\n", err);
1156
1157         return err;
1158 }
1159
1160 static void igbvf_free_irq(struct igbvf_adapter *adapter)
1161 {
1162         struct net_device *netdev = adapter->netdev;
1163         int vector;
1164
1165         if (adapter->msix_entries) {
1166                 for (vector = 0; vector < 3; vector++)
1167                         free_irq(adapter->msix_entries[vector].vector, netdev);
1168         }
1169 }
1170
1171 /**
1172  * igbvf_irq_disable - Mask off interrupt generation on the NIC
1173  * @adapter: board private structure
1174  **/
1175 static void igbvf_irq_disable(struct igbvf_adapter *adapter)
1176 {
1177         struct e1000_hw *hw = &adapter->hw;
1178
1179         ew32(EIMC, ~0);
1180
1181         if (adapter->msix_entries)
1182                 ew32(EIAC, 0);
1183 }
1184
1185 /**
1186  * igbvf_irq_enable - Enable default interrupt generation settings
1187  * @adapter: board private structure
1188  **/
1189 static void igbvf_irq_enable(struct igbvf_adapter *adapter)
1190 {
1191         struct e1000_hw *hw = &adapter->hw;
1192
1193         ew32(EIAC, adapter->eims_enable_mask);
1194         ew32(EIAM, adapter->eims_enable_mask);
1195         ew32(EIMS, adapter->eims_enable_mask);
1196 }
1197
1198 /**
1199  * igbvf_poll - NAPI Rx polling callback
1200  * @napi: struct associated with this polling callback
1201  * @budget: amount of packets driver is allowed to process this poll
1202  **/
1203 static int igbvf_poll(struct napi_struct *napi, int budget)
1204 {
1205         struct igbvf_ring *rx_ring = container_of(napi, struct igbvf_ring, napi);
1206         struct igbvf_adapter *adapter = rx_ring->adapter;
1207         struct e1000_hw *hw = &adapter->hw;
1208         int work_done = 0;
1209
1210         igbvf_clean_rx_irq(adapter, &work_done, budget);
1211
1212         /* If not enough Rx work done, exit the polling mode */
1213         if (work_done < budget) {
1214                 napi_complete_done(napi, work_done);
1215
1216                 if (adapter->requested_itr & 3)
1217                         igbvf_set_itr(adapter);
1218
1219                 if (!test_bit(__IGBVF_DOWN, &adapter->state))
1220                         ew32(EIMS, adapter->rx_ring->eims_value);
1221         }
1222
1223         return work_done;
1224 }
1225
1226 /**
1227  * igbvf_set_rlpml - set receive large packet maximum length
1228  * @adapter: board private structure
1229  *
1230  * Configure the maximum size of packets that will be received
1231  */
1232 static void igbvf_set_rlpml(struct igbvf_adapter *adapter)
1233 {
1234         int max_frame_size;
1235         struct e1000_hw *hw = &adapter->hw;
1236
1237         max_frame_size = adapter->max_frame_size + VLAN_TAG_SIZE;
1238         e1000_rlpml_set_vf(hw, max_frame_size);
1239 }
1240
1241 static int igbvf_vlan_rx_add_vid(struct net_device *netdev,
1242                                  __be16 proto, u16 vid)
1243 {
1244         struct igbvf_adapter *adapter = netdev_priv(netdev);
1245         struct e1000_hw *hw = &adapter->hw;
1246
1247         if (hw->mac.ops.set_vfta(hw, vid, true)) {
1248                 dev_err(&adapter->pdev->dev, "Failed to add vlan id %d\n", vid);
1249                 return -EINVAL;
1250         }
1251         set_bit(vid, adapter->active_vlans);
1252         return 0;
1253 }
1254
1255 static int igbvf_vlan_rx_kill_vid(struct net_device *netdev,
1256                                   __be16 proto, u16 vid)
1257 {
1258         struct igbvf_adapter *adapter = netdev_priv(netdev);
1259         struct e1000_hw *hw = &adapter->hw;
1260
1261         if (hw->mac.ops.set_vfta(hw, vid, false)) {
1262                 dev_err(&adapter->pdev->dev,
1263                         "Failed to remove vlan id %d\n", vid);
1264                 return -EINVAL;
1265         }
1266         clear_bit(vid, adapter->active_vlans);
1267         return 0;
1268 }
1269
1270 static void igbvf_restore_vlan(struct igbvf_adapter *adapter)
1271 {
1272         u16 vid;
1273
1274         for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
1275                 igbvf_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
1276 }
1277
1278 /**
1279  * igbvf_configure_tx - Configure Transmit Unit after Reset
1280  * @adapter: board private structure
1281  *
1282  * Configure the Tx unit of the MAC after a reset.
1283  **/
1284 static void igbvf_configure_tx(struct igbvf_adapter *adapter)
1285 {
1286         struct e1000_hw *hw = &adapter->hw;
1287         struct igbvf_ring *tx_ring = adapter->tx_ring;
1288         u64 tdba;
1289         u32 txdctl, dca_txctrl;
1290
1291         /* disable transmits */
1292         txdctl = er32(TXDCTL(0));
1293         ew32(TXDCTL(0), txdctl & ~E1000_TXDCTL_QUEUE_ENABLE);
1294         e1e_flush();
1295         msleep(10);
1296
1297         /* Setup the HW Tx Head and Tail descriptor pointers */
1298         ew32(TDLEN(0), tx_ring->count * sizeof(union e1000_adv_tx_desc));
1299         tdba = tx_ring->dma;
1300         ew32(TDBAL(0), (tdba & DMA_BIT_MASK(32)));
1301         ew32(TDBAH(0), (tdba >> 32));
1302         ew32(TDH(0), 0);
1303         ew32(TDT(0), 0);
1304         tx_ring->head = E1000_TDH(0);
1305         tx_ring->tail = E1000_TDT(0);
1306
1307         /* Turn off Relaxed Ordering on head write-backs.  The writebacks
1308          * MUST be delivered in order or it will completely screw up
1309          * our bookkeeping.
1310          */
1311         dca_txctrl = er32(DCA_TXCTRL(0));
1312         dca_txctrl &= ~E1000_DCA_TXCTRL_TX_WB_RO_EN;
1313         ew32(DCA_TXCTRL(0), dca_txctrl);
1314
1315         /* enable transmits */
1316         txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
1317         ew32(TXDCTL(0), txdctl);
1318
1319         /* Setup Transmit Descriptor Settings for eop descriptor */
1320         adapter->txd_cmd = E1000_ADVTXD_DCMD_EOP | E1000_ADVTXD_DCMD_IFCS;
1321
1322         /* enable Report Status bit */
1323         adapter->txd_cmd |= E1000_ADVTXD_DCMD_RS;
1324 }
1325
1326 /**
1327  * igbvf_setup_srrctl - configure the receive control registers
1328  * @adapter: Board private structure
1329  **/
1330 static void igbvf_setup_srrctl(struct igbvf_adapter *adapter)
1331 {
1332         struct e1000_hw *hw = &adapter->hw;
1333         u32 srrctl = 0;
1334
1335         srrctl &= ~(E1000_SRRCTL_DESCTYPE_MASK |
1336                     E1000_SRRCTL_BSIZEHDR_MASK |
1337                     E1000_SRRCTL_BSIZEPKT_MASK);
1338
1339         /* Enable queue drop to avoid head of line blocking */
1340         srrctl |= E1000_SRRCTL_DROP_EN;
1341
1342         /* Setup buffer sizes */
1343         srrctl |= ALIGN(adapter->rx_buffer_len, 1024) >>
1344                   E1000_SRRCTL_BSIZEPKT_SHIFT;
1345
1346         if (adapter->rx_buffer_len < 2048) {
1347                 adapter->rx_ps_hdr_size = 0;
1348                 srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
1349         } else {
1350                 adapter->rx_ps_hdr_size = 128;
1351                 srrctl |= adapter->rx_ps_hdr_size <<
1352                           E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
1353                 srrctl |= E1000_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS;
1354         }
1355
1356         ew32(SRRCTL(0), srrctl);
1357 }
1358
1359 /**
1360  * igbvf_configure_rx - Configure Receive Unit after Reset
1361  * @adapter: board private structure
1362  *
1363  * Configure the Rx unit of the MAC after a reset.
1364  **/
1365 static void igbvf_configure_rx(struct igbvf_adapter *adapter)
1366 {
1367         struct e1000_hw *hw = &adapter->hw;
1368         struct igbvf_ring *rx_ring = adapter->rx_ring;
1369         u64 rdba;
1370         u32 rxdctl;
1371
1372         /* disable receives */
1373         rxdctl = er32(RXDCTL(0));
1374         ew32(RXDCTL(0), rxdctl & ~E1000_RXDCTL_QUEUE_ENABLE);
1375         e1e_flush();
1376         msleep(10);
1377
1378         /* Setup the HW Rx Head and Tail Descriptor Pointers and
1379          * the Base and Length of the Rx Descriptor Ring
1380          */
1381         rdba = rx_ring->dma;
1382         ew32(RDBAL(0), (rdba & DMA_BIT_MASK(32)));
1383         ew32(RDBAH(0), (rdba >> 32));
1384         ew32(RDLEN(0), rx_ring->count * sizeof(union e1000_adv_rx_desc));
1385         rx_ring->head = E1000_RDH(0);
1386         rx_ring->tail = E1000_RDT(0);
1387         ew32(RDH(0), 0);
1388         ew32(RDT(0), 0);
1389
1390         rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
1391         rxdctl &= 0xFFF00000;
1392         rxdctl |= IGBVF_RX_PTHRESH;
1393         rxdctl |= IGBVF_RX_HTHRESH << 8;
1394         rxdctl |= IGBVF_RX_WTHRESH << 16;
1395
1396         igbvf_set_rlpml(adapter);
1397
1398         /* enable receives */
1399         ew32(RXDCTL(0), rxdctl);
1400 }
1401
1402 /**
1403  * igbvf_set_multi - Multicast and Promiscuous mode set
1404  * @netdev: network interface device structure
1405  *
1406  * The set_multi entry point is called whenever the multicast address
1407  * list or the network interface flags are updated.  This routine is
1408  * responsible for configuring the hardware for proper multicast,
1409  * promiscuous mode, and all-multi behavior.
1410  **/
1411 static void igbvf_set_multi(struct net_device *netdev)
1412 {
1413         struct igbvf_adapter *adapter = netdev_priv(netdev);
1414         struct e1000_hw *hw = &adapter->hw;
1415         struct netdev_hw_addr *ha;
1416         u8  *mta_list = NULL;
1417         int i;
1418
1419         if (!netdev_mc_empty(netdev)) {
1420                 mta_list = kmalloc_array(netdev_mc_count(netdev), ETH_ALEN,
1421                                          GFP_ATOMIC);
1422                 if (!mta_list)
1423                         return;
1424         }
1425
1426         /* prepare a packed array of only addresses. */
1427         i = 0;
1428         netdev_for_each_mc_addr(ha, netdev)
1429                 memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
1430
1431         hw->mac.ops.update_mc_addr_list(hw, mta_list, i, 0, 0);
1432         kfree(mta_list);
1433 }
1434
1435 /**
1436  * igbvf_configure - configure the hardware for Rx and Tx
1437  * @adapter: private board structure
1438  **/
1439 static void igbvf_configure(struct igbvf_adapter *adapter)
1440 {
1441         igbvf_set_multi(adapter->netdev);
1442
1443         igbvf_restore_vlan(adapter);
1444
1445         igbvf_configure_tx(adapter);
1446         igbvf_setup_srrctl(adapter);
1447         igbvf_configure_rx(adapter);
1448         igbvf_alloc_rx_buffers(adapter->rx_ring,
1449                                igbvf_desc_unused(adapter->rx_ring));
1450 }
1451
1452 /* igbvf_reset - bring the hardware into a known good state
1453  * @adapter: private board structure
1454  *
1455  * This function boots the hardware and enables some settings that
1456  * require a configuration cycle of the hardware - those cannot be
1457  * set/changed during runtime. After reset the device needs to be
1458  * properly configured for Rx, Tx etc.
1459  */
1460 static void igbvf_reset(struct igbvf_adapter *adapter)
1461 {
1462         struct e1000_mac_info *mac = &adapter->hw.mac;
1463         struct net_device *netdev = adapter->netdev;
1464         struct e1000_hw *hw = &adapter->hw;
1465
1466         /* Allow time for pending master requests to run */
1467         if (mac->ops.reset_hw(hw))
1468                 dev_err(&adapter->pdev->dev, "PF still resetting\n");
1469
1470         mac->ops.init_hw(hw);
1471
1472         if (is_valid_ether_addr(adapter->hw.mac.addr)) {
1473                 memcpy(netdev->dev_addr, adapter->hw.mac.addr,
1474                        netdev->addr_len);
1475                 memcpy(netdev->perm_addr, adapter->hw.mac.addr,
1476                        netdev->addr_len);
1477         }
1478
1479         adapter->last_reset = jiffies;
1480 }
1481
1482 int igbvf_up(struct igbvf_adapter *adapter)
1483 {
1484         struct e1000_hw *hw = &adapter->hw;
1485
1486         /* hardware has been reset, we need to reload some things */
1487         igbvf_configure(adapter);
1488
1489         clear_bit(__IGBVF_DOWN, &adapter->state);
1490
1491         napi_enable(&adapter->rx_ring->napi);
1492         if (adapter->msix_entries)
1493                 igbvf_configure_msix(adapter);
1494
1495         /* Clear any pending interrupts. */
1496         er32(EICR);
1497         igbvf_irq_enable(adapter);
1498
1499         /* start the watchdog */
1500         hw->mac.get_link_status = 1;
1501         mod_timer(&adapter->watchdog_timer, jiffies + 1);
1502
1503         return 0;
1504 }
1505
1506 void igbvf_down(struct igbvf_adapter *adapter)
1507 {
1508         struct net_device *netdev = adapter->netdev;
1509         struct e1000_hw *hw = &adapter->hw;
1510         u32 rxdctl, txdctl;
1511
1512         /* signal that we're down so the interrupt handler does not
1513          * reschedule our watchdog timer
1514          */
1515         set_bit(__IGBVF_DOWN, &adapter->state);
1516
1517         /* disable receives in the hardware */
1518         rxdctl = er32(RXDCTL(0));
1519         ew32(RXDCTL(0), rxdctl & ~E1000_RXDCTL_QUEUE_ENABLE);
1520
1521         netif_carrier_off(netdev);
1522         netif_stop_queue(netdev);
1523
1524         /* disable transmits in the hardware */
1525         txdctl = er32(TXDCTL(0));
1526         ew32(TXDCTL(0), txdctl & ~E1000_TXDCTL_QUEUE_ENABLE);
1527
1528         /* flush both disables and wait for them to finish */
1529         e1e_flush();
1530         msleep(10);
1531
1532         napi_disable(&adapter->rx_ring->napi);
1533
1534         igbvf_irq_disable(adapter);
1535
1536         del_timer_sync(&adapter->watchdog_timer);
1537
1538         /* record the stats before reset*/
1539         igbvf_update_stats(adapter);
1540
1541         adapter->link_speed = 0;
1542         adapter->link_duplex = 0;
1543
1544         igbvf_reset(adapter);
1545         igbvf_clean_tx_ring(adapter->tx_ring);
1546         igbvf_clean_rx_ring(adapter->rx_ring);
1547 }
1548
1549 void igbvf_reinit_locked(struct igbvf_adapter *adapter)
1550 {
1551         might_sleep();
1552         while (test_and_set_bit(__IGBVF_RESETTING, &adapter->state))
1553                 usleep_range(1000, 2000);
1554         igbvf_down(adapter);
1555         igbvf_up(adapter);
1556         clear_bit(__IGBVF_RESETTING, &adapter->state);
1557 }
1558
1559 /**
1560  * igbvf_sw_init - Initialize general software structures (struct igbvf_adapter)
1561  * @adapter: board private structure to initialize
1562  *
1563  * igbvf_sw_init initializes the Adapter private data structure.
1564  * Fields are initialized based on PCI device information and
1565  * OS network device settings (MTU size).
1566  **/
1567 static int igbvf_sw_init(struct igbvf_adapter *adapter)
1568 {
1569         struct net_device *netdev = adapter->netdev;
1570         s32 rc;
1571
1572         adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN;
1573         adapter->rx_ps_hdr_size = 0;
1574         adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
1575         adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
1576
1577         adapter->tx_int_delay = 8;
1578         adapter->tx_abs_int_delay = 32;
1579         adapter->rx_int_delay = 0;
1580         adapter->rx_abs_int_delay = 8;
1581         adapter->requested_itr = 3;
1582         adapter->current_itr = IGBVF_START_ITR;
1583
1584         /* Set various function pointers */
1585         adapter->ei->init_ops(&adapter->hw);
1586
1587         rc = adapter->hw.mac.ops.init_params(&adapter->hw);
1588         if (rc)
1589                 return rc;
1590
1591         rc = adapter->hw.mbx.ops.init_params(&adapter->hw);
1592         if (rc)
1593                 return rc;
1594
1595         igbvf_set_interrupt_capability(adapter);
1596
1597         if (igbvf_alloc_queues(adapter))
1598                 return -ENOMEM;
1599
1600         spin_lock_init(&adapter->tx_queue_lock);
1601
1602         /* Explicitly disable IRQ since the NIC can be in any state. */
1603         igbvf_irq_disable(adapter);
1604
1605         spin_lock_init(&adapter->stats_lock);
1606
1607         set_bit(__IGBVF_DOWN, &adapter->state);
1608         return 0;
1609 }
1610
1611 static void igbvf_initialize_last_counter_stats(struct igbvf_adapter *adapter)
1612 {
1613         struct e1000_hw *hw = &adapter->hw;
1614
1615         adapter->stats.last_gprc = er32(VFGPRC);
1616         adapter->stats.last_gorc = er32(VFGORC);
1617         adapter->stats.last_gptc = er32(VFGPTC);
1618         adapter->stats.last_gotc = er32(VFGOTC);
1619         adapter->stats.last_mprc = er32(VFMPRC);
1620         adapter->stats.last_gotlbc = er32(VFGOTLBC);
1621         adapter->stats.last_gptlbc = er32(VFGPTLBC);
1622         adapter->stats.last_gorlbc = er32(VFGORLBC);
1623         adapter->stats.last_gprlbc = er32(VFGPRLBC);
1624
1625         adapter->stats.base_gprc = er32(VFGPRC);
1626         adapter->stats.base_gorc = er32(VFGORC);
1627         adapter->stats.base_gptc = er32(VFGPTC);
1628         adapter->stats.base_gotc = er32(VFGOTC);
1629         adapter->stats.base_mprc = er32(VFMPRC);
1630         adapter->stats.base_gotlbc = er32(VFGOTLBC);
1631         adapter->stats.base_gptlbc = er32(VFGPTLBC);
1632         adapter->stats.base_gorlbc = er32(VFGORLBC);
1633         adapter->stats.base_gprlbc = er32(VFGPRLBC);
1634 }
1635
1636 /**
1637  * igbvf_open - Called when a network interface is made active
1638  * @netdev: network interface device structure
1639  *
1640  * Returns 0 on success, negative value on failure
1641  *
1642  * The open entry point is called when a network interface is made
1643  * active by the system (IFF_UP).  At this point all resources needed
1644  * for transmit and receive operations are allocated, the interrupt
1645  * handler is registered with the OS, the watchdog timer is started,
1646  * and the stack is notified that the interface is ready.
1647  **/
1648 static int igbvf_open(struct net_device *netdev)
1649 {
1650         struct igbvf_adapter *adapter = netdev_priv(netdev);
1651         struct e1000_hw *hw = &adapter->hw;
1652         int err;
1653
1654         /* disallow open during test */
1655         if (test_bit(__IGBVF_TESTING, &adapter->state))
1656                 return -EBUSY;
1657
1658         /* allocate transmit descriptors */
1659         err = igbvf_setup_tx_resources(adapter, adapter->tx_ring);
1660         if (err)
1661                 goto err_setup_tx;
1662
1663         /* allocate receive descriptors */
1664         err = igbvf_setup_rx_resources(adapter, adapter->rx_ring);
1665         if (err)
1666                 goto err_setup_rx;
1667
1668         /* before we allocate an interrupt, we must be ready to handle it.
1669          * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
1670          * as soon as we call pci_request_irq, so we have to setup our
1671          * clean_rx handler before we do so.
1672          */
1673         igbvf_configure(adapter);
1674
1675         err = igbvf_request_irq(adapter);
1676         if (err)
1677                 goto err_req_irq;
1678
1679         /* From here on the code is the same as igbvf_up() */
1680         clear_bit(__IGBVF_DOWN, &adapter->state);
1681
1682         napi_enable(&adapter->rx_ring->napi);
1683
1684         /* clear any pending interrupts */
1685         er32(EICR);
1686
1687         igbvf_irq_enable(adapter);
1688
1689         /* start the watchdog */
1690         hw->mac.get_link_status = 1;
1691         mod_timer(&adapter->watchdog_timer, jiffies + 1);
1692
1693         return 0;
1694
1695 err_req_irq:
1696         igbvf_free_rx_resources(adapter->rx_ring);
1697 err_setup_rx:
1698         igbvf_free_tx_resources(adapter->tx_ring);
1699 err_setup_tx:
1700         igbvf_reset(adapter);
1701
1702         return err;
1703 }
1704
1705 /**
1706  * igbvf_close - Disables a network interface
1707  * @netdev: network interface device structure
1708  *
1709  * Returns 0, this is not allowed to fail
1710  *
1711  * The close entry point is called when an interface is de-activated
1712  * by the OS.  The hardware is still under the drivers control, but
1713  * needs to be disabled.  A global MAC reset is issued to stop the
1714  * hardware, and all transmit and receive resources are freed.
1715  **/
1716 static int igbvf_close(struct net_device *netdev)
1717 {
1718         struct igbvf_adapter *adapter = netdev_priv(netdev);
1719
1720         WARN_ON(test_bit(__IGBVF_RESETTING, &adapter->state));
1721         igbvf_down(adapter);
1722
1723         igbvf_free_irq(adapter);
1724
1725         igbvf_free_tx_resources(adapter->tx_ring);
1726         igbvf_free_rx_resources(adapter->rx_ring);
1727
1728         return 0;
1729 }
1730
1731 /**
1732  * igbvf_set_mac - Change the Ethernet Address of the NIC
1733  * @netdev: network interface device structure
1734  * @p: pointer to an address structure
1735  *
1736  * Returns 0 on success, negative on failure
1737  **/
1738 static int igbvf_set_mac(struct net_device *netdev, void *p)
1739 {
1740         struct igbvf_adapter *adapter = netdev_priv(netdev);
1741         struct e1000_hw *hw = &adapter->hw;
1742         struct sockaddr *addr = p;
1743
1744         if (!is_valid_ether_addr(addr->sa_data))
1745                 return -EADDRNOTAVAIL;
1746
1747         memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
1748
1749         hw->mac.ops.rar_set(hw, hw->mac.addr, 0);
1750
1751         if (!ether_addr_equal(addr->sa_data, hw->mac.addr))
1752                 return -EADDRNOTAVAIL;
1753
1754         memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
1755
1756         return 0;
1757 }
1758
1759 #define UPDATE_VF_COUNTER(reg, name) \
1760 { \
1761         u32 current_counter = er32(reg); \
1762         if (current_counter < adapter->stats.last_##name) \
1763                 adapter->stats.name += 0x100000000LL; \
1764         adapter->stats.last_##name = current_counter; \
1765         adapter->stats.name &= 0xFFFFFFFF00000000LL; \
1766         adapter->stats.name |= current_counter; \
1767 }
1768
1769 /**
1770  * igbvf_update_stats - Update the board statistics counters
1771  * @adapter: board private structure
1772 **/
1773 void igbvf_update_stats(struct igbvf_adapter *adapter)
1774 {
1775         struct e1000_hw *hw = &adapter->hw;
1776         struct pci_dev *pdev = adapter->pdev;
1777
1778         /* Prevent stats update while adapter is being reset, link is down
1779          * or if the pci connection is down.
1780          */
1781         if (adapter->link_speed == 0)
1782                 return;
1783
1784         if (test_bit(__IGBVF_RESETTING, &adapter->state))
1785                 return;
1786
1787         if (pci_channel_offline(pdev))
1788                 return;
1789
1790         UPDATE_VF_COUNTER(VFGPRC, gprc);
1791         UPDATE_VF_COUNTER(VFGORC, gorc);
1792         UPDATE_VF_COUNTER(VFGPTC, gptc);
1793         UPDATE_VF_COUNTER(VFGOTC, gotc);
1794         UPDATE_VF_COUNTER(VFMPRC, mprc);
1795         UPDATE_VF_COUNTER(VFGOTLBC, gotlbc);
1796         UPDATE_VF_COUNTER(VFGPTLBC, gptlbc);
1797         UPDATE_VF_COUNTER(VFGORLBC, gorlbc);
1798         UPDATE_VF_COUNTER(VFGPRLBC, gprlbc);
1799
1800         /* Fill out the OS statistics structure */
1801         adapter->net_stats.multicast = adapter->stats.mprc;
1802 }
1803
1804 static void igbvf_print_link_info(struct igbvf_adapter *adapter)
1805 {
1806         dev_info(&adapter->pdev->dev, "Link is Up %d Mbps %s Duplex\n",
1807                  adapter->link_speed,
1808                  adapter->link_duplex == FULL_DUPLEX ? "Full" : "Half");
1809 }
1810
1811 static bool igbvf_has_link(struct igbvf_adapter *adapter)
1812 {
1813         struct e1000_hw *hw = &adapter->hw;
1814         s32 ret_val = E1000_SUCCESS;
1815         bool link_active;
1816
1817         /* If interface is down, stay link down */
1818         if (test_bit(__IGBVF_DOWN, &adapter->state))
1819                 return false;
1820
1821         ret_val = hw->mac.ops.check_for_link(hw);
1822         link_active = !hw->mac.get_link_status;
1823
1824         /* if check for link returns error we will need to reset */
1825         if (ret_val && time_after(jiffies, adapter->last_reset + (10 * HZ)))
1826                 schedule_work(&adapter->reset_task);
1827
1828         return link_active;
1829 }
1830
1831 /**
1832  * igbvf_watchdog - Timer Call-back
1833  * @data: pointer to adapter cast into an unsigned long
1834  **/
1835 static void igbvf_watchdog(unsigned long data)
1836 {
1837         struct igbvf_adapter *adapter = (struct igbvf_adapter *)data;
1838
1839         /* Do the rest outside of interrupt context */
1840         schedule_work(&adapter->watchdog_task);
1841 }
1842
1843 static void igbvf_watchdog_task(struct work_struct *work)
1844 {
1845         struct igbvf_adapter *adapter = container_of(work,
1846                                                      struct igbvf_adapter,
1847                                                      watchdog_task);
1848         struct net_device *netdev = adapter->netdev;
1849         struct e1000_mac_info *mac = &adapter->hw.mac;
1850         struct igbvf_ring *tx_ring = adapter->tx_ring;
1851         struct e1000_hw *hw = &adapter->hw;
1852         u32 link;
1853         int tx_pending = 0;
1854
1855         link = igbvf_has_link(adapter);
1856
1857         if (link) {
1858                 if (!netif_carrier_ok(netdev)) {
1859                         mac->ops.get_link_up_info(&adapter->hw,
1860                                                   &adapter->link_speed,
1861                                                   &adapter->link_duplex);
1862                         igbvf_print_link_info(adapter);
1863
1864                         netif_carrier_on(netdev);
1865                         netif_wake_queue(netdev);
1866                 }
1867         } else {
1868                 if (netif_carrier_ok(netdev)) {
1869                         adapter->link_speed = 0;
1870                         adapter->link_duplex = 0;
1871                         dev_info(&adapter->pdev->dev, "Link is Down\n");
1872                         netif_carrier_off(netdev);
1873                         netif_stop_queue(netdev);
1874                 }
1875         }
1876
1877         if (netif_carrier_ok(netdev)) {
1878                 igbvf_update_stats(adapter);
1879         } else {
1880                 tx_pending = (igbvf_desc_unused(tx_ring) + 1 <
1881                               tx_ring->count);
1882                 if (tx_pending) {
1883                         /* We've lost link, so the controller stops DMA,
1884                          * but we've got queued Tx work that's never going
1885                          * to get done, so reset controller to flush Tx.
1886                          * (Do the reset outside of interrupt context).
1887                          */
1888                         adapter->tx_timeout_count++;
1889                         schedule_work(&adapter->reset_task);
1890                 }
1891         }
1892
1893         /* Cause software interrupt to ensure Rx ring is cleaned */
1894         ew32(EICS, adapter->rx_ring->eims_value);
1895
1896         /* Reset the timer */
1897         if (!test_bit(__IGBVF_DOWN, &adapter->state))
1898                 mod_timer(&adapter->watchdog_timer,
1899                           round_jiffies(jiffies + (2 * HZ)));
1900 }
1901
1902 #define IGBVF_TX_FLAGS_CSUM             0x00000001
1903 #define IGBVF_TX_FLAGS_VLAN             0x00000002
1904 #define IGBVF_TX_FLAGS_TSO              0x00000004
1905 #define IGBVF_TX_FLAGS_IPV4             0x00000008
1906 #define IGBVF_TX_FLAGS_VLAN_MASK        0xffff0000
1907 #define IGBVF_TX_FLAGS_VLAN_SHIFT       16
1908
1909 static void igbvf_tx_ctxtdesc(struct igbvf_ring *tx_ring, u32 vlan_macip_lens,
1910                               u32 type_tucmd, u32 mss_l4len_idx)
1911 {
1912         struct e1000_adv_tx_context_desc *context_desc;
1913         struct igbvf_buffer *buffer_info;
1914         u16 i = tx_ring->next_to_use;
1915
1916         context_desc = IGBVF_TX_CTXTDESC_ADV(*tx_ring, i);
1917         buffer_info = &tx_ring->buffer_info[i];
1918
1919         i++;
1920         tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
1921
1922         /* set bits to identify this as an advanced context descriptor */
1923         type_tucmd |= E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT;
1924
1925         context_desc->vlan_macip_lens   = cpu_to_le32(vlan_macip_lens);
1926         context_desc->seqnum_seed       = 0;
1927         context_desc->type_tucmd_mlhl   = cpu_to_le32(type_tucmd);
1928         context_desc->mss_l4len_idx     = cpu_to_le32(mss_l4len_idx);
1929
1930         buffer_info->time_stamp = jiffies;
1931         buffer_info->dma = 0;
1932 }
1933
1934 static int igbvf_tso(struct igbvf_ring *tx_ring,
1935                      struct sk_buff *skb, u32 tx_flags, u8 *hdr_len)
1936 {
1937         u32 vlan_macip_lens, type_tucmd, mss_l4len_idx;
1938         union {
1939                 struct iphdr *v4;
1940                 struct ipv6hdr *v6;
1941                 unsigned char *hdr;
1942         } ip;
1943         union {
1944                 struct tcphdr *tcp;
1945                 unsigned char *hdr;
1946         } l4;
1947         u32 paylen, l4_offset;
1948         int err;
1949
1950         if (skb->ip_summed != CHECKSUM_PARTIAL)
1951                 return 0;
1952
1953         if (!skb_is_gso(skb))
1954                 return 0;
1955
1956         err = skb_cow_head(skb, 0);
1957         if (err < 0)
1958                 return err;
1959
1960         ip.hdr = skb_network_header(skb);
1961         l4.hdr = skb_checksum_start(skb);
1962
1963         /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
1964         type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
1965
1966         /* initialize outer IP header fields */
1967         if (ip.v4->version == 4) {
1968                 unsigned char *csum_start = skb_checksum_start(skb);
1969                 unsigned char *trans_start = ip.hdr + (ip.v4->ihl * 4);
1970
1971                 /* IP header will have to cancel out any data that
1972                  * is not a part of the outer IP header
1973                  */
1974                 ip.v4->check = csum_fold(csum_partial(trans_start,
1975                                                       csum_start - trans_start,
1976                                                       0));
1977                 type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
1978
1979                 ip.v4->tot_len = 0;
1980         } else {
1981                 ip.v6->payload_len = 0;
1982         }
1983
1984         /* determine offset of inner transport header */
1985         l4_offset = l4.hdr - skb->data;
1986
1987         /* compute length of segmentation header */
1988         *hdr_len = (l4.tcp->doff * 4) + l4_offset;
1989
1990         /* remove payload length from inner checksum */
1991         paylen = skb->len - l4_offset;
1992         csum_replace_by_diff(&l4.tcp->check, htonl(paylen));
1993
1994         /* MSS L4LEN IDX */
1995         mss_l4len_idx = (*hdr_len - l4_offset) << E1000_ADVTXD_L4LEN_SHIFT;
1996         mss_l4len_idx |= skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT;
1997
1998         /* VLAN MACLEN IPLEN */
1999         vlan_macip_lens = l4.hdr - ip.hdr;
2000         vlan_macip_lens |= (ip.hdr - skb->data) << E1000_ADVTXD_MACLEN_SHIFT;
2001         vlan_macip_lens |= tx_flags & IGBVF_TX_FLAGS_VLAN_MASK;
2002
2003         igbvf_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, mss_l4len_idx);
2004
2005         return 1;
2006 }
2007
2008 static inline bool igbvf_ipv6_csum_is_sctp(struct sk_buff *skb)
2009 {
2010         unsigned int offset = 0;
2011
2012         ipv6_find_hdr(skb, &offset, IPPROTO_SCTP, NULL, NULL);
2013
2014         return offset == skb_checksum_start_offset(skb);
2015 }
2016
2017 static bool igbvf_tx_csum(struct igbvf_ring *tx_ring, struct sk_buff *skb,
2018                           u32 tx_flags, __be16 protocol)
2019 {
2020         u32 vlan_macip_lens = 0;
2021         u32 type_tucmd = 0;
2022
2023         if (skb->ip_summed != CHECKSUM_PARTIAL) {
2024 csum_failed:
2025                 if (!(tx_flags & IGBVF_TX_FLAGS_VLAN))
2026                         return false;
2027                 goto no_csum;
2028         }
2029
2030         switch (skb->csum_offset) {
2031         case offsetof(struct tcphdr, check):
2032                 type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
2033                 /* fall through */
2034         case offsetof(struct udphdr, check):
2035                 break;
2036         case offsetof(struct sctphdr, checksum):
2037                 /* validate that this is actually an SCTP request */
2038                 if (((protocol == htons(ETH_P_IP)) &&
2039                      (ip_hdr(skb)->protocol == IPPROTO_SCTP)) ||
2040                     ((protocol == htons(ETH_P_IPV6)) &&
2041                      igbvf_ipv6_csum_is_sctp(skb))) {
2042                         type_tucmd = E1000_ADVTXD_TUCMD_L4T_SCTP;
2043                         break;
2044                 }
2045         default:
2046                 skb_checksum_help(skb);
2047                 goto csum_failed;
2048         }
2049
2050         vlan_macip_lens = skb_checksum_start_offset(skb) -
2051                           skb_network_offset(skb);
2052 no_csum:
2053         vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
2054         vlan_macip_lens |= tx_flags & IGBVF_TX_FLAGS_VLAN_MASK;
2055
2056         igbvf_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, 0);
2057         return true;
2058 }
2059
2060 static int igbvf_maybe_stop_tx(struct net_device *netdev, int size)
2061 {
2062         struct igbvf_adapter *adapter = netdev_priv(netdev);
2063
2064         /* there is enough descriptors then we don't need to worry  */
2065         if (igbvf_desc_unused(adapter->tx_ring) >= size)
2066                 return 0;
2067
2068         netif_stop_queue(netdev);
2069
2070         /* Herbert's original patch had:
2071          *  smp_mb__after_netif_stop_queue();
2072          * but since that doesn't exist yet, just open code it.
2073          */
2074         smp_mb();
2075
2076         /* We need to check again just in case room has been made available */
2077         if (igbvf_desc_unused(adapter->tx_ring) < size)
2078                 return -EBUSY;
2079
2080         netif_wake_queue(netdev);
2081
2082         ++adapter->restart_queue;
2083         return 0;
2084 }
2085
2086 #define IGBVF_MAX_TXD_PWR       16
2087 #define IGBVF_MAX_DATA_PER_TXD  (1u << IGBVF_MAX_TXD_PWR)
2088
2089 static inline int igbvf_tx_map_adv(struct igbvf_adapter *adapter,
2090                                    struct igbvf_ring *tx_ring,
2091                                    struct sk_buff *skb)
2092 {
2093         struct igbvf_buffer *buffer_info;
2094         struct pci_dev *pdev = adapter->pdev;
2095         unsigned int len = skb_headlen(skb);
2096         unsigned int count = 0, i;
2097         unsigned int f;
2098
2099         i = tx_ring->next_to_use;
2100
2101         buffer_info = &tx_ring->buffer_info[i];
2102         BUG_ON(len >= IGBVF_MAX_DATA_PER_TXD);
2103         buffer_info->length = len;
2104         /* set time_stamp *before* dma to help avoid a possible race */
2105         buffer_info->time_stamp = jiffies;
2106         buffer_info->mapped_as_page = false;
2107         buffer_info->dma = dma_map_single(&pdev->dev, skb->data, len,
2108                                           DMA_TO_DEVICE);
2109         if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2110                 goto dma_error;
2111
2112         for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) {
2113                 const struct skb_frag_struct *frag;
2114
2115                 count++;
2116                 i++;
2117                 if (i == tx_ring->count)
2118                         i = 0;
2119
2120                 frag = &skb_shinfo(skb)->frags[f];
2121                 len = skb_frag_size(frag);
2122
2123                 buffer_info = &tx_ring->buffer_info[i];
2124                 BUG_ON(len >= IGBVF_MAX_DATA_PER_TXD);
2125                 buffer_info->length = len;
2126                 buffer_info->time_stamp = jiffies;
2127                 buffer_info->mapped_as_page = true;
2128                 buffer_info->dma = skb_frag_dma_map(&pdev->dev, frag, 0, len,
2129                                                     DMA_TO_DEVICE);
2130                 if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2131                         goto dma_error;
2132         }
2133
2134         tx_ring->buffer_info[i].skb = skb;
2135
2136         return ++count;
2137
2138 dma_error:
2139         dev_err(&pdev->dev, "TX DMA map failed\n");
2140
2141         /* clear timestamp and dma mappings for failed buffer_info mapping */
2142         buffer_info->dma = 0;
2143         buffer_info->time_stamp = 0;
2144         buffer_info->length = 0;
2145         buffer_info->mapped_as_page = false;
2146         if (count)
2147                 count--;
2148
2149         /* clear timestamp and dma mappings for remaining portion of packet */
2150         while (count--) {
2151                 if (i == 0)
2152                         i += tx_ring->count;
2153                 i--;
2154                 buffer_info = &tx_ring->buffer_info[i];
2155                 igbvf_put_txbuf(adapter, buffer_info);
2156         }
2157
2158         return 0;
2159 }
2160
2161 static inline void igbvf_tx_queue_adv(struct igbvf_adapter *adapter,
2162                                       struct igbvf_ring *tx_ring,
2163                                       int tx_flags, int count,
2164                                       unsigned int first, u32 paylen,
2165                                       u8 hdr_len)
2166 {
2167         union e1000_adv_tx_desc *tx_desc = NULL;
2168         struct igbvf_buffer *buffer_info;
2169         u32 olinfo_status = 0, cmd_type_len;
2170         unsigned int i;
2171
2172         cmd_type_len = (E1000_ADVTXD_DTYP_DATA | E1000_ADVTXD_DCMD_IFCS |
2173                         E1000_ADVTXD_DCMD_DEXT);
2174
2175         if (tx_flags & IGBVF_TX_FLAGS_VLAN)
2176                 cmd_type_len |= E1000_ADVTXD_DCMD_VLE;
2177
2178         if (tx_flags & IGBVF_TX_FLAGS_TSO) {
2179                 cmd_type_len |= E1000_ADVTXD_DCMD_TSE;
2180
2181                 /* insert tcp checksum */
2182                 olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
2183
2184                 /* insert ip checksum */
2185                 if (tx_flags & IGBVF_TX_FLAGS_IPV4)
2186                         olinfo_status |= E1000_TXD_POPTS_IXSM << 8;
2187
2188         } else if (tx_flags & IGBVF_TX_FLAGS_CSUM) {
2189                 olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
2190         }
2191
2192         olinfo_status |= ((paylen - hdr_len) << E1000_ADVTXD_PAYLEN_SHIFT);
2193
2194         i = tx_ring->next_to_use;
2195         while (count--) {
2196                 buffer_info = &tx_ring->buffer_info[i];
2197                 tx_desc = IGBVF_TX_DESC_ADV(*tx_ring, i);
2198                 tx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
2199                 tx_desc->read.cmd_type_len =
2200                          cpu_to_le32(cmd_type_len | buffer_info->length);
2201                 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
2202                 i++;
2203                 if (i == tx_ring->count)
2204                         i = 0;
2205         }
2206
2207         tx_desc->read.cmd_type_len |= cpu_to_le32(adapter->txd_cmd);
2208         /* Force memory writes to complete before letting h/w
2209          * know there are new descriptors to fetch.  (Only
2210          * applicable for weak-ordered memory model archs,
2211          * such as IA-64).
2212          */
2213         wmb();
2214
2215         tx_ring->buffer_info[first].next_to_watch = tx_desc;
2216         tx_ring->next_to_use = i;
2217         writel(i, adapter->hw.hw_addr + tx_ring->tail);
2218         /* we need this if more than one processor can write to our tail
2219          * at a time, it synchronizes IO on IA64/Altix systems
2220          */
2221         mmiowb();
2222 }
2223
2224 static netdev_tx_t igbvf_xmit_frame_ring_adv(struct sk_buff *skb,
2225                                              struct net_device *netdev,
2226                                              struct igbvf_ring *tx_ring)
2227 {
2228         struct igbvf_adapter *adapter = netdev_priv(netdev);
2229         unsigned int first, tx_flags = 0;
2230         u8 hdr_len = 0;
2231         int count = 0;
2232         int tso = 0;
2233         __be16 protocol = vlan_get_protocol(skb);
2234
2235         if (test_bit(__IGBVF_DOWN, &adapter->state)) {
2236                 dev_kfree_skb_any(skb);
2237                 return NETDEV_TX_OK;
2238         }
2239
2240         if (skb->len <= 0) {
2241                 dev_kfree_skb_any(skb);
2242                 return NETDEV_TX_OK;
2243         }
2244
2245         /* need: count + 4 desc gap to keep tail from touching
2246          *       + 2 desc gap to keep tail from touching head,
2247          *       + 1 desc for skb->data,
2248          *       + 1 desc for context descriptor,
2249          * head, otherwise try next time
2250          */
2251         if (igbvf_maybe_stop_tx(netdev, skb_shinfo(skb)->nr_frags + 4)) {
2252                 /* this is a hard error */
2253                 return NETDEV_TX_BUSY;
2254         }
2255
2256         if (skb_vlan_tag_present(skb)) {
2257                 tx_flags |= IGBVF_TX_FLAGS_VLAN;
2258                 tx_flags |= (skb_vlan_tag_get(skb) <<
2259                              IGBVF_TX_FLAGS_VLAN_SHIFT);
2260         }
2261
2262         if (protocol == htons(ETH_P_IP))
2263                 tx_flags |= IGBVF_TX_FLAGS_IPV4;
2264
2265         first = tx_ring->next_to_use;
2266
2267         tso = igbvf_tso(tx_ring, skb, tx_flags, &hdr_len);
2268         if (unlikely(tso < 0)) {
2269                 dev_kfree_skb_any(skb);
2270                 return NETDEV_TX_OK;
2271         }
2272
2273         if (tso)
2274                 tx_flags |= IGBVF_TX_FLAGS_TSO;
2275         else if (igbvf_tx_csum(tx_ring, skb, tx_flags, protocol) &&
2276                  (skb->ip_summed == CHECKSUM_PARTIAL))
2277                 tx_flags |= IGBVF_TX_FLAGS_CSUM;
2278
2279         /* count reflects descriptors mapped, if 0 then mapping error
2280          * has occurred and we need to rewind the descriptor queue
2281          */
2282         count = igbvf_tx_map_adv(adapter, tx_ring, skb);
2283
2284         if (count) {
2285                 igbvf_tx_queue_adv(adapter, tx_ring, tx_flags, count,
2286                                    first, skb->len, hdr_len);
2287                 /* Make sure there is space in the ring for the next send. */
2288                 igbvf_maybe_stop_tx(netdev, MAX_SKB_FRAGS + 4);
2289         } else {
2290                 dev_kfree_skb_any(skb);
2291                 tx_ring->buffer_info[first].time_stamp = 0;
2292                 tx_ring->next_to_use = first;
2293         }
2294
2295         return NETDEV_TX_OK;
2296 }
2297
2298 static netdev_tx_t igbvf_xmit_frame(struct sk_buff *skb,
2299                                     struct net_device *netdev)
2300 {
2301         struct igbvf_adapter *adapter = netdev_priv(netdev);
2302         struct igbvf_ring *tx_ring;
2303
2304         if (test_bit(__IGBVF_DOWN, &adapter->state)) {
2305                 dev_kfree_skb_any(skb);
2306                 return NETDEV_TX_OK;
2307         }
2308
2309         tx_ring = &adapter->tx_ring[0];
2310
2311         return igbvf_xmit_frame_ring_adv(skb, netdev, tx_ring);
2312 }
2313
2314 /**
2315  * igbvf_tx_timeout - Respond to a Tx Hang
2316  * @netdev: network interface device structure
2317  **/
2318 static void igbvf_tx_timeout(struct net_device *netdev)
2319 {
2320         struct igbvf_adapter *adapter = netdev_priv(netdev);
2321
2322         /* Do the reset outside of interrupt context */
2323         adapter->tx_timeout_count++;
2324         schedule_work(&adapter->reset_task);
2325 }
2326
2327 static void igbvf_reset_task(struct work_struct *work)
2328 {
2329         struct igbvf_adapter *adapter;
2330
2331         adapter = container_of(work, struct igbvf_adapter, reset_task);
2332
2333         igbvf_reinit_locked(adapter);
2334 }
2335
2336 /**
2337  * igbvf_get_stats - Get System Network Statistics
2338  * @netdev: network interface device structure
2339  *
2340  * Returns the address of the device statistics structure.
2341  * The statistics are actually updated from the timer callback.
2342  **/
2343 static struct net_device_stats *igbvf_get_stats(struct net_device *netdev)
2344 {
2345         struct igbvf_adapter *adapter = netdev_priv(netdev);
2346
2347         /* only return the current stats */
2348         return &adapter->net_stats;
2349 }
2350
2351 /**
2352  * igbvf_change_mtu - Change the Maximum Transfer Unit
2353  * @netdev: network interface device structure
2354  * @new_mtu: new value for maximum frame size
2355  *
2356  * Returns 0 on success, negative on failure
2357  **/
2358 static int igbvf_change_mtu(struct net_device *netdev, int new_mtu)
2359 {
2360         struct igbvf_adapter *adapter = netdev_priv(netdev);
2361         int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
2362
2363         if (new_mtu < 68 || new_mtu > INT_MAX - ETH_HLEN - ETH_FCS_LEN ||
2364             max_frame > MAX_JUMBO_FRAME_SIZE)
2365                 return -EINVAL;
2366
2367 #define MAX_STD_JUMBO_FRAME_SIZE 9234
2368         if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
2369                 dev_err(&adapter->pdev->dev, "MTU > 9216 not supported.\n");
2370                 return -EINVAL;
2371         }
2372
2373         while (test_and_set_bit(__IGBVF_RESETTING, &adapter->state))
2374                 usleep_range(1000, 2000);
2375         /* igbvf_down has a dependency on max_frame_size */
2376         adapter->max_frame_size = max_frame;
2377         if (netif_running(netdev))
2378                 igbvf_down(adapter);
2379
2380         /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
2381          * means we reserve 2 more, this pushes us to allocate from the next
2382          * larger slab size.
2383          * i.e. RXBUFFER_2048 --> size-4096 slab
2384          * However with the new *_jumbo_rx* routines, jumbo receives will use
2385          * fragmented skbs
2386          */
2387
2388         if (max_frame <= 1024)
2389                 adapter->rx_buffer_len = 1024;
2390         else if (max_frame <= 2048)
2391                 adapter->rx_buffer_len = 2048;
2392         else
2393 #if (PAGE_SIZE / 2) > 16384
2394                 adapter->rx_buffer_len = 16384;
2395 #else
2396                 adapter->rx_buffer_len = PAGE_SIZE / 2;
2397 #endif
2398
2399         /* adjust allocation if LPE protects us, and we aren't using SBP */
2400         if ((max_frame == ETH_FRAME_LEN + ETH_FCS_LEN) ||
2401             (max_frame == ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN))
2402                 adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN +
2403                                          ETH_FCS_LEN;
2404
2405         dev_info(&adapter->pdev->dev, "changing MTU from %d to %d\n",
2406                  netdev->mtu, new_mtu);
2407         netdev->mtu = new_mtu;
2408
2409         if (netif_running(netdev))
2410                 igbvf_up(adapter);
2411         else
2412                 igbvf_reset(adapter);
2413
2414         clear_bit(__IGBVF_RESETTING, &adapter->state);
2415
2416         return 0;
2417 }
2418
2419 static int igbvf_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
2420 {
2421         switch (cmd) {
2422         default:
2423                 return -EOPNOTSUPP;
2424         }
2425 }
2426
2427 static int igbvf_suspend(struct pci_dev *pdev, pm_message_t state)
2428 {
2429         struct net_device *netdev = pci_get_drvdata(pdev);
2430         struct igbvf_adapter *adapter = netdev_priv(netdev);
2431 #ifdef CONFIG_PM
2432         int retval = 0;
2433 #endif
2434
2435         netif_device_detach(netdev);
2436
2437         if (netif_running(netdev)) {
2438                 WARN_ON(test_bit(__IGBVF_RESETTING, &adapter->state));
2439                 igbvf_down(adapter);
2440                 igbvf_free_irq(adapter);
2441         }
2442
2443 #ifdef CONFIG_PM
2444         retval = pci_save_state(pdev);
2445         if (retval)
2446                 return retval;
2447 #endif
2448
2449         pci_disable_device(pdev);
2450
2451         return 0;
2452 }
2453
2454 #ifdef CONFIG_PM
2455 static int igbvf_resume(struct pci_dev *pdev)
2456 {
2457         struct net_device *netdev = pci_get_drvdata(pdev);
2458         struct igbvf_adapter *adapter = netdev_priv(netdev);
2459         u32 err;
2460
2461         pci_restore_state(pdev);
2462         err = pci_enable_device_mem(pdev);
2463         if (err) {
2464                 dev_err(&pdev->dev, "Cannot enable PCI device from suspend\n");
2465                 return err;
2466         }
2467
2468         pci_set_master(pdev);
2469
2470         if (netif_running(netdev)) {
2471                 err = igbvf_request_irq(adapter);
2472                 if (err)
2473                         return err;
2474         }
2475
2476         igbvf_reset(adapter);
2477
2478         if (netif_running(netdev))
2479                 igbvf_up(adapter);
2480
2481         netif_device_attach(netdev);
2482
2483         return 0;
2484 }
2485 #endif
2486
2487 static void igbvf_shutdown(struct pci_dev *pdev)
2488 {
2489         igbvf_suspend(pdev, PMSG_SUSPEND);
2490 }
2491
2492 #ifdef CONFIG_NET_POLL_CONTROLLER
2493 /* Polling 'interrupt' - used by things like netconsole to send skbs
2494  * without having to re-enable interrupts. It's not called while
2495  * the interrupt routine is executing.
2496  */
2497 static void igbvf_netpoll(struct net_device *netdev)
2498 {
2499         struct igbvf_adapter *adapter = netdev_priv(netdev);
2500
2501         disable_irq(adapter->pdev->irq);
2502
2503         igbvf_clean_tx_irq(adapter->tx_ring);
2504
2505         enable_irq(adapter->pdev->irq);
2506 }
2507 #endif
2508
2509 /**
2510  * igbvf_io_error_detected - called when PCI error is detected
2511  * @pdev: Pointer to PCI device
2512  * @state: The current pci connection state
2513  *
2514  * This function is called after a PCI bus error affecting
2515  * this device has been detected.
2516  */
2517 static pci_ers_result_t igbvf_io_error_detected(struct pci_dev *pdev,
2518                                                 pci_channel_state_t state)
2519 {
2520         struct net_device *netdev = pci_get_drvdata(pdev);
2521         struct igbvf_adapter *adapter = netdev_priv(netdev);
2522
2523         netif_device_detach(netdev);
2524
2525         if (state == pci_channel_io_perm_failure)
2526                 return PCI_ERS_RESULT_DISCONNECT;
2527
2528         if (netif_running(netdev))
2529                 igbvf_down(adapter);
2530         pci_disable_device(pdev);
2531
2532         /* Request a slot slot reset. */
2533         return PCI_ERS_RESULT_NEED_RESET;
2534 }
2535
2536 /**
2537  * igbvf_io_slot_reset - called after the pci bus has been reset.
2538  * @pdev: Pointer to PCI device
2539  *
2540  * Restart the card from scratch, as if from a cold-boot. Implementation
2541  * resembles the first-half of the igbvf_resume routine.
2542  */
2543 static pci_ers_result_t igbvf_io_slot_reset(struct pci_dev *pdev)
2544 {
2545         struct net_device *netdev = pci_get_drvdata(pdev);
2546         struct igbvf_adapter *adapter = netdev_priv(netdev);
2547
2548         if (pci_enable_device_mem(pdev)) {
2549                 dev_err(&pdev->dev,
2550                         "Cannot re-enable PCI device after reset.\n");
2551                 return PCI_ERS_RESULT_DISCONNECT;
2552         }
2553         pci_set_master(pdev);
2554
2555         igbvf_reset(adapter);
2556
2557         return PCI_ERS_RESULT_RECOVERED;
2558 }
2559
2560 /**
2561  * igbvf_io_resume - called when traffic can start flowing again.
2562  * @pdev: Pointer to PCI device
2563  *
2564  * This callback is called when the error recovery driver tells us that
2565  * its OK to resume normal operation. Implementation resembles the
2566  * second-half of the igbvf_resume routine.
2567  */
2568 static void igbvf_io_resume(struct pci_dev *pdev)
2569 {
2570         struct net_device *netdev = pci_get_drvdata(pdev);
2571         struct igbvf_adapter *adapter = netdev_priv(netdev);
2572
2573         if (netif_running(netdev)) {
2574                 if (igbvf_up(adapter)) {
2575                         dev_err(&pdev->dev,
2576                                 "can't bring device back up after reset\n");
2577                         return;
2578                 }
2579         }
2580
2581         netif_device_attach(netdev);
2582 }
2583
2584 static void igbvf_print_device_info(struct igbvf_adapter *adapter)
2585 {
2586         struct e1000_hw *hw = &adapter->hw;
2587         struct net_device *netdev = adapter->netdev;
2588         struct pci_dev *pdev = adapter->pdev;
2589
2590         if (hw->mac.type == e1000_vfadapt_i350)
2591                 dev_info(&pdev->dev, "Intel(R) I350 Virtual Function\n");
2592         else
2593                 dev_info(&pdev->dev, "Intel(R) 82576 Virtual Function\n");
2594         dev_info(&pdev->dev, "Address: %pM\n", netdev->dev_addr);
2595 }
2596
2597 static int igbvf_set_features(struct net_device *netdev,
2598                               netdev_features_t features)
2599 {
2600         struct igbvf_adapter *adapter = netdev_priv(netdev);
2601
2602         if (features & NETIF_F_RXCSUM)
2603                 adapter->flags &= ~IGBVF_FLAG_RX_CSUM_DISABLED;
2604         else
2605                 adapter->flags |= IGBVF_FLAG_RX_CSUM_DISABLED;
2606
2607         return 0;
2608 }
2609
2610 #define IGBVF_MAX_MAC_HDR_LEN           127
2611 #define IGBVF_MAX_NETWORK_HDR_LEN       511
2612
2613 static netdev_features_t
2614 igbvf_features_check(struct sk_buff *skb, struct net_device *dev,
2615                      netdev_features_t features)
2616 {
2617         unsigned int network_hdr_len, mac_hdr_len;
2618
2619         /* Make certain the headers can be described by a context descriptor */
2620         mac_hdr_len = skb_network_header(skb) - skb->data;
2621         if (unlikely(mac_hdr_len > IGBVF_MAX_MAC_HDR_LEN))
2622                 return features & ~(NETIF_F_HW_CSUM |
2623                                     NETIF_F_SCTP_CRC |
2624                                     NETIF_F_HW_VLAN_CTAG_TX |
2625                                     NETIF_F_TSO |
2626                                     NETIF_F_TSO6);
2627
2628         network_hdr_len = skb_checksum_start(skb) - skb_network_header(skb);
2629         if (unlikely(network_hdr_len >  IGBVF_MAX_NETWORK_HDR_LEN))
2630                 return features & ~(NETIF_F_HW_CSUM |
2631                                     NETIF_F_SCTP_CRC |
2632                                     NETIF_F_TSO |
2633                                     NETIF_F_TSO6);
2634
2635         /* We can only support IPV4 TSO in tunnels if we can mangle the
2636          * inner IP ID field, so strip TSO if MANGLEID is not supported.
2637          */
2638         if (skb->encapsulation && !(features & NETIF_F_TSO_MANGLEID))
2639                 features &= ~NETIF_F_TSO;
2640
2641         return features;
2642 }
2643
2644 static const struct net_device_ops igbvf_netdev_ops = {
2645         .ndo_open               = igbvf_open,
2646         .ndo_stop               = igbvf_close,
2647         .ndo_start_xmit         = igbvf_xmit_frame,
2648         .ndo_get_stats          = igbvf_get_stats,
2649         .ndo_set_rx_mode        = igbvf_set_multi,
2650         .ndo_set_mac_address    = igbvf_set_mac,
2651         .ndo_change_mtu         = igbvf_change_mtu,
2652         .ndo_do_ioctl           = igbvf_ioctl,
2653         .ndo_tx_timeout         = igbvf_tx_timeout,
2654         .ndo_vlan_rx_add_vid    = igbvf_vlan_rx_add_vid,
2655         .ndo_vlan_rx_kill_vid   = igbvf_vlan_rx_kill_vid,
2656 #ifdef CONFIG_NET_POLL_CONTROLLER
2657         .ndo_poll_controller    = igbvf_netpoll,
2658 #endif
2659         .ndo_set_features       = igbvf_set_features,
2660         .ndo_features_check     = igbvf_features_check,
2661 };
2662
2663 /**
2664  * igbvf_probe - Device Initialization Routine
2665  * @pdev: PCI device information struct
2666  * @ent: entry in igbvf_pci_tbl
2667  *
2668  * Returns 0 on success, negative on failure
2669  *
2670  * igbvf_probe initializes an adapter identified by a pci_dev structure.
2671  * The OS initialization, configuring of the adapter private structure,
2672  * and a hardware reset occur.
2673  **/
2674 static int igbvf_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
2675 {
2676         struct net_device *netdev;
2677         struct igbvf_adapter *adapter;
2678         struct e1000_hw *hw;
2679         const struct igbvf_info *ei = igbvf_info_tbl[ent->driver_data];
2680
2681         static int cards_found;
2682         int err, pci_using_dac;
2683
2684         err = pci_enable_device_mem(pdev);
2685         if (err)
2686                 return err;
2687
2688         pci_using_dac = 0;
2689         err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
2690         if (!err) {
2691                 pci_using_dac = 1;
2692         } else {
2693                 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
2694                 if (err) {
2695                         dev_err(&pdev->dev,
2696                                 "No usable DMA configuration, aborting\n");
2697                         goto err_dma;
2698                 }
2699         }
2700
2701         err = pci_request_regions(pdev, igbvf_driver_name);
2702         if (err)
2703                 goto err_pci_reg;
2704
2705         pci_set_master(pdev);
2706
2707         err = -ENOMEM;
2708         netdev = alloc_etherdev(sizeof(struct igbvf_adapter));
2709         if (!netdev)
2710                 goto err_alloc_etherdev;
2711
2712         SET_NETDEV_DEV(netdev, &pdev->dev);
2713
2714         pci_set_drvdata(pdev, netdev);
2715         adapter = netdev_priv(netdev);
2716         hw = &adapter->hw;
2717         adapter->netdev = netdev;
2718         adapter->pdev = pdev;
2719         adapter->ei = ei;
2720         adapter->pba = ei->pba;
2721         adapter->flags = ei->flags;
2722         adapter->hw.back = adapter;
2723         adapter->hw.mac.type = ei->mac;
2724         adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
2725
2726         /* PCI config space info */
2727
2728         hw->vendor_id = pdev->vendor;
2729         hw->device_id = pdev->device;
2730         hw->subsystem_vendor_id = pdev->subsystem_vendor;
2731         hw->subsystem_device_id = pdev->subsystem_device;
2732         hw->revision_id = pdev->revision;
2733
2734         err = -EIO;
2735         adapter->hw.hw_addr = ioremap(pci_resource_start(pdev, 0),
2736                                       pci_resource_len(pdev, 0));
2737
2738         if (!adapter->hw.hw_addr)
2739                 goto err_ioremap;
2740
2741         if (ei->get_variants) {
2742                 err = ei->get_variants(adapter);
2743                 if (err)
2744                         goto err_get_variants;
2745         }
2746
2747         /* setup adapter struct */
2748         err = igbvf_sw_init(adapter);
2749         if (err)
2750                 goto err_sw_init;
2751
2752         /* construct the net_device struct */
2753         netdev->netdev_ops = &igbvf_netdev_ops;
2754
2755         igbvf_set_ethtool_ops(netdev);
2756         netdev->watchdog_timeo = 5 * HZ;
2757         strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
2758
2759         adapter->bd_number = cards_found++;
2760
2761         netdev->hw_features = NETIF_F_SG |
2762                               NETIF_F_TSO |
2763                               NETIF_F_TSO6 |
2764                               NETIF_F_RXCSUM |
2765                               NETIF_F_HW_CSUM |
2766                               NETIF_F_SCTP_CRC;
2767
2768 #define IGBVF_GSO_PARTIAL_FEATURES (NETIF_F_GSO_GRE | \
2769                                     NETIF_F_GSO_GRE_CSUM | \
2770                                     NETIF_F_GSO_IPXIP4 | \
2771                                     NETIF_F_GSO_IPXIP6 | \
2772                                     NETIF_F_GSO_UDP_TUNNEL | \
2773                                     NETIF_F_GSO_UDP_TUNNEL_CSUM)
2774
2775         netdev->gso_partial_features = IGBVF_GSO_PARTIAL_FEATURES;
2776         netdev->hw_features |= NETIF_F_GSO_PARTIAL |
2777                                IGBVF_GSO_PARTIAL_FEATURES;
2778
2779         netdev->features = netdev->hw_features;
2780
2781         if (pci_using_dac)
2782                 netdev->features |= NETIF_F_HIGHDMA;
2783
2784         netdev->vlan_features |= netdev->features | NETIF_F_TSO_MANGLEID;
2785         netdev->mpls_features |= NETIF_F_HW_CSUM;
2786         netdev->hw_enc_features |= netdev->vlan_features;
2787
2788         /* set this bit last since it cannot be part of vlan_features */
2789         netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER |
2790                             NETIF_F_HW_VLAN_CTAG_RX |
2791                             NETIF_F_HW_VLAN_CTAG_TX;
2792
2793         /*reset the controller to put the device in a known good state */
2794         err = hw->mac.ops.reset_hw(hw);
2795         if (err) {
2796                 dev_info(&pdev->dev,
2797                          "PF still in reset state. Is the PF interface up?\n");
2798         } else {
2799                 err = hw->mac.ops.read_mac_addr(hw);
2800                 if (err)
2801                         dev_info(&pdev->dev, "Error reading MAC address.\n");
2802                 else if (is_zero_ether_addr(adapter->hw.mac.addr))
2803                         dev_info(&pdev->dev,
2804                                  "MAC address not assigned by administrator.\n");
2805                 memcpy(netdev->dev_addr, adapter->hw.mac.addr,
2806                        netdev->addr_len);
2807         }
2808
2809         if (!is_valid_ether_addr(netdev->dev_addr)) {
2810                 dev_info(&pdev->dev, "Assigning random MAC address.\n");
2811                 eth_hw_addr_random(netdev);
2812                 memcpy(adapter->hw.mac.addr, netdev->dev_addr,
2813                        netdev->addr_len);
2814         }
2815
2816         setup_timer(&adapter->watchdog_timer, &igbvf_watchdog,
2817                     (unsigned long)adapter);
2818
2819         INIT_WORK(&adapter->reset_task, igbvf_reset_task);
2820         INIT_WORK(&adapter->watchdog_task, igbvf_watchdog_task);
2821
2822         /* ring size defaults */
2823         adapter->rx_ring->count = 1024;
2824         adapter->tx_ring->count = 1024;
2825
2826         /* reset the hardware with the new settings */
2827         igbvf_reset(adapter);
2828
2829         /* set hardware-specific flags */
2830         if (adapter->hw.mac.type == e1000_vfadapt_i350)
2831                 adapter->flags |= IGBVF_FLAG_RX_LB_VLAN_BSWAP;
2832
2833         strcpy(netdev->name, "eth%d");
2834         err = register_netdev(netdev);
2835         if (err)
2836                 goto err_hw_init;
2837
2838         /* tell the stack to leave us alone until igbvf_open() is called */
2839         netif_carrier_off(netdev);
2840         netif_stop_queue(netdev);
2841
2842         igbvf_print_device_info(adapter);
2843
2844         igbvf_initialize_last_counter_stats(adapter);
2845
2846         return 0;
2847
2848 err_hw_init:
2849         kfree(adapter->tx_ring);
2850         kfree(adapter->rx_ring);
2851 err_sw_init:
2852         igbvf_reset_interrupt_capability(adapter);
2853 err_get_variants:
2854         iounmap(adapter->hw.hw_addr);
2855 err_ioremap:
2856         free_netdev(netdev);
2857 err_alloc_etherdev:
2858         pci_release_regions(pdev);
2859 err_pci_reg:
2860 err_dma:
2861         pci_disable_device(pdev);
2862         return err;
2863 }
2864
2865 /**
2866  * igbvf_remove - Device Removal Routine
2867  * @pdev: PCI device information struct
2868  *
2869  * igbvf_remove is called by the PCI subsystem to alert the driver
2870  * that it should release a PCI device.  The could be caused by a
2871  * Hot-Plug event, or because the driver is going to be removed from
2872  * memory.
2873  **/
2874 static void igbvf_remove(struct pci_dev *pdev)
2875 {
2876         struct net_device *netdev = pci_get_drvdata(pdev);
2877         struct igbvf_adapter *adapter = netdev_priv(netdev);
2878         struct e1000_hw *hw = &adapter->hw;
2879
2880         /* The watchdog timer may be rescheduled, so explicitly
2881          * disable it from being rescheduled.
2882          */
2883         set_bit(__IGBVF_DOWN, &adapter->state);
2884         del_timer_sync(&adapter->watchdog_timer);
2885
2886         cancel_work_sync(&adapter->reset_task);
2887         cancel_work_sync(&adapter->watchdog_task);
2888
2889         unregister_netdev(netdev);
2890
2891         igbvf_reset_interrupt_capability(adapter);
2892
2893         /* it is important to delete the NAPI struct prior to freeing the
2894          * Rx ring so that you do not end up with null pointer refs
2895          */
2896         netif_napi_del(&adapter->rx_ring->napi);
2897         kfree(adapter->tx_ring);
2898         kfree(adapter->rx_ring);
2899
2900         iounmap(hw->hw_addr);
2901         if (hw->flash_address)
2902                 iounmap(hw->flash_address);
2903         pci_release_regions(pdev);
2904
2905         free_netdev(netdev);
2906
2907         pci_disable_device(pdev);
2908 }
2909
2910 /* PCI Error Recovery (ERS) */
2911 static const struct pci_error_handlers igbvf_err_handler = {
2912         .error_detected = igbvf_io_error_detected,
2913         .slot_reset = igbvf_io_slot_reset,
2914         .resume = igbvf_io_resume,
2915 };
2916
2917 static const struct pci_device_id igbvf_pci_tbl[] = {
2918         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_VF), board_vf },
2919         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_VF), board_i350_vf },
2920         { } /* terminate list */
2921 };
2922 MODULE_DEVICE_TABLE(pci, igbvf_pci_tbl);
2923
2924 /* PCI Device API Driver */
2925 static struct pci_driver igbvf_driver = {
2926         .name           = igbvf_driver_name,
2927         .id_table       = igbvf_pci_tbl,
2928         .probe          = igbvf_probe,
2929         .remove         = igbvf_remove,
2930 #ifdef CONFIG_PM
2931         /* Power Management Hooks */
2932         .suspend        = igbvf_suspend,
2933         .resume         = igbvf_resume,
2934 #endif
2935         .shutdown       = igbvf_shutdown,
2936         .err_handler    = &igbvf_err_handler
2937 };
2938
2939 /**
2940  * igbvf_init_module - Driver Registration Routine
2941  *
2942  * igbvf_init_module is the first routine called when the driver is
2943  * loaded. All it does is register with the PCI subsystem.
2944  **/
2945 static int __init igbvf_init_module(void)
2946 {
2947         int ret;
2948
2949         pr_info("%s - version %s\n", igbvf_driver_string, igbvf_driver_version);
2950         pr_info("%s\n", igbvf_copyright);
2951
2952         ret = pci_register_driver(&igbvf_driver);
2953
2954         return ret;
2955 }
2956 module_init(igbvf_init_module);
2957
2958 /**
2959  * igbvf_exit_module - Driver Exit Cleanup Routine
2960  *
2961  * igbvf_exit_module is called just before the driver is removed
2962  * from memory.
2963  **/
2964 static void __exit igbvf_exit_module(void)
2965 {
2966         pci_unregister_driver(&igbvf_driver);
2967 }
2968 module_exit(igbvf_exit_module);
2969
2970 MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
2971 MODULE_DESCRIPTION("Intel(R) Gigabit Virtual Function Network Driver");
2972 MODULE_LICENSE("GPL");
2973 MODULE_VERSION(DRV_VERSION);
2974
2975 /* netdev.c */