Linux-libre 5.3-gnu
[librecmc/linux-libre.git] / drivers / net / ethernet / intel / igb / igb_ptp.c
1 // SPDX-License-Identifier: GPL-2.0+
2 /* Copyright (C) 2011 Richard Cochran <richardcochran@gmail.com> */
3
4 #include <linux/module.h>
5 #include <linux/device.h>
6 #include <linux/pci.h>
7 #include <linux/ptp_classify.h>
8
9 #include "igb.h"
10
11 #define INCVALUE_MASK           0x7fffffff
12 #define ISGN                    0x80000000
13
14 /* The 82580 timesync updates the system timer every 8ns by 8ns,
15  * and this update value cannot be reprogrammed.
16  *
17  * Neither the 82576 nor the 82580 offer registers wide enough to hold
18  * nanoseconds time values for very long. For the 82580, SYSTIM always
19  * counts nanoseconds, but the upper 24 bits are not available. The
20  * frequency is adjusted by changing the 32 bit fractional nanoseconds
21  * register, TIMINCA.
22  *
23  * For the 82576, the SYSTIM register time unit is affect by the
24  * choice of the 24 bit TININCA:IV (incvalue) field. Five bits of this
25  * field are needed to provide the nominal 16 nanosecond period,
26  * leaving 19 bits for fractional nanoseconds.
27  *
28  * We scale the NIC clock cycle by a large factor so that relatively
29  * small clock corrections can be added or subtracted at each clock
30  * tick. The drawbacks of a large factor are a) that the clock
31  * register overflows more quickly (not such a big deal) and b) that
32  * the increment per tick has to fit into 24 bits.  As a result we
33  * need to use a shift of 19 so we can fit a value of 16 into the
34  * TIMINCA register.
35  *
36  *
37  *             SYSTIMH            SYSTIML
38  *        +--------------+   +---+---+------+
39  *  82576 |      32      |   | 8 | 5 |  19  |
40  *        +--------------+   +---+---+------+
41  *         \________ 45 bits _______/  fract
42  *
43  *        +----------+---+   +--------------+
44  *  82580 |    24    | 8 |   |      32      |
45  *        +----------+---+   +--------------+
46  *          reserved  \______ 40 bits _____/
47  *
48  *
49  * The 45 bit 82576 SYSTIM overflows every
50  *   2^45 * 10^-9 / 3600 = 9.77 hours.
51  *
52  * The 40 bit 82580 SYSTIM overflows every
53  *   2^40 * 10^-9 /  60  = 18.3 minutes.
54  *
55  * SYSTIM is converted to real time using a timecounter. As
56  * timecounter_cyc2time() allows old timestamps, the timecounter needs
57  * to be updated at least once per half of the SYSTIM interval.
58  * Scheduling of delayed work is not very accurate, and also the NIC
59  * clock can be adjusted to run up to 6% faster and the system clock
60  * up to 10% slower, so we aim for 6 minutes to be sure the actual
61  * interval in the NIC time is shorter than 9.16 minutes.
62  */
63
64 #define IGB_SYSTIM_OVERFLOW_PERIOD      (HZ * 60 * 6)
65 #define IGB_PTP_TX_TIMEOUT              (HZ * 15)
66 #define INCPERIOD_82576                 BIT(E1000_TIMINCA_16NS_SHIFT)
67 #define INCVALUE_82576_MASK             GENMASK(E1000_TIMINCA_16NS_SHIFT - 1, 0)
68 #define INCVALUE_82576                  (16u << IGB_82576_TSYNC_SHIFT)
69 #define IGB_NBITS_82580                 40
70
71 static void igb_ptp_tx_hwtstamp(struct igb_adapter *adapter);
72
73 /* SYSTIM read access for the 82576 */
74 static u64 igb_ptp_read_82576(const struct cyclecounter *cc)
75 {
76         struct igb_adapter *igb = container_of(cc, struct igb_adapter, cc);
77         struct e1000_hw *hw = &igb->hw;
78         u64 val;
79         u32 lo, hi;
80
81         lo = rd32(E1000_SYSTIML);
82         hi = rd32(E1000_SYSTIMH);
83
84         val = ((u64) hi) << 32;
85         val |= lo;
86
87         return val;
88 }
89
90 /* SYSTIM read access for the 82580 */
91 static u64 igb_ptp_read_82580(const struct cyclecounter *cc)
92 {
93         struct igb_adapter *igb = container_of(cc, struct igb_adapter, cc);
94         struct e1000_hw *hw = &igb->hw;
95         u32 lo, hi;
96         u64 val;
97
98         /* The timestamp latches on lowest register read. For the 82580
99          * the lowest register is SYSTIMR instead of SYSTIML.  However we only
100          * need to provide nanosecond resolution, so we just ignore it.
101          */
102         rd32(E1000_SYSTIMR);
103         lo = rd32(E1000_SYSTIML);
104         hi = rd32(E1000_SYSTIMH);
105
106         val = ((u64) hi) << 32;
107         val |= lo;
108
109         return val;
110 }
111
112 /* SYSTIM read access for I210/I211 */
113 static void igb_ptp_read_i210(struct igb_adapter *adapter,
114                               struct timespec64 *ts)
115 {
116         struct e1000_hw *hw = &adapter->hw;
117         u32 sec, nsec;
118
119         /* The timestamp latches on lowest register read. For I210/I211, the
120          * lowest register is SYSTIMR. Since we only need to provide nanosecond
121          * resolution, we can ignore it.
122          */
123         rd32(E1000_SYSTIMR);
124         nsec = rd32(E1000_SYSTIML);
125         sec = rd32(E1000_SYSTIMH);
126
127         ts->tv_sec = sec;
128         ts->tv_nsec = nsec;
129 }
130
131 static void igb_ptp_write_i210(struct igb_adapter *adapter,
132                                const struct timespec64 *ts)
133 {
134         struct e1000_hw *hw = &adapter->hw;
135
136         /* Writing the SYSTIMR register is not necessary as it only provides
137          * sub-nanosecond resolution.
138          */
139         wr32(E1000_SYSTIML, ts->tv_nsec);
140         wr32(E1000_SYSTIMH, (u32)ts->tv_sec);
141 }
142
143 /**
144  * igb_ptp_systim_to_hwtstamp - convert system time value to hw timestamp
145  * @adapter: board private structure
146  * @hwtstamps: timestamp structure to update
147  * @systim: unsigned 64bit system time value.
148  *
149  * We need to convert the system time value stored in the RX/TXSTMP registers
150  * into a hwtstamp which can be used by the upper level timestamping functions.
151  *
152  * The 'tmreg_lock' spinlock is used to protect the consistency of the
153  * system time value. This is needed because reading the 64 bit time
154  * value involves reading two (or three) 32 bit registers. The first
155  * read latches the value. Ditto for writing.
156  *
157  * In addition, here have extended the system time with an overflow
158  * counter in software.
159  **/
160 static void igb_ptp_systim_to_hwtstamp(struct igb_adapter *adapter,
161                                        struct skb_shared_hwtstamps *hwtstamps,
162                                        u64 systim)
163 {
164         unsigned long flags;
165         u64 ns;
166
167         switch (adapter->hw.mac.type) {
168         case e1000_82576:
169         case e1000_82580:
170         case e1000_i354:
171         case e1000_i350:
172                 spin_lock_irqsave(&adapter->tmreg_lock, flags);
173
174                 ns = timecounter_cyc2time(&adapter->tc, systim);
175
176                 spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
177
178                 memset(hwtstamps, 0, sizeof(*hwtstamps));
179                 hwtstamps->hwtstamp = ns_to_ktime(ns);
180                 break;
181         case e1000_i210:
182         case e1000_i211:
183                 memset(hwtstamps, 0, sizeof(*hwtstamps));
184                 /* Upper 32 bits contain s, lower 32 bits contain ns. */
185                 hwtstamps->hwtstamp = ktime_set(systim >> 32,
186                                                 systim & 0xFFFFFFFF);
187                 break;
188         default:
189                 break;
190         }
191 }
192
193 /* PTP clock operations */
194 static int igb_ptp_adjfreq_82576(struct ptp_clock_info *ptp, s32 ppb)
195 {
196         struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
197                                                ptp_caps);
198         struct e1000_hw *hw = &igb->hw;
199         int neg_adj = 0;
200         u64 rate;
201         u32 incvalue;
202
203         if (ppb < 0) {
204                 neg_adj = 1;
205                 ppb = -ppb;
206         }
207         rate = ppb;
208         rate <<= 14;
209         rate = div_u64(rate, 1953125);
210
211         incvalue = 16 << IGB_82576_TSYNC_SHIFT;
212
213         if (neg_adj)
214                 incvalue -= rate;
215         else
216                 incvalue += rate;
217
218         wr32(E1000_TIMINCA, INCPERIOD_82576 | (incvalue & INCVALUE_82576_MASK));
219
220         return 0;
221 }
222
223 static int igb_ptp_adjfine_82580(struct ptp_clock_info *ptp, long scaled_ppm)
224 {
225         struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
226                                                ptp_caps);
227         struct e1000_hw *hw = &igb->hw;
228         int neg_adj = 0;
229         u64 rate;
230         u32 inca;
231
232         if (scaled_ppm < 0) {
233                 neg_adj = 1;
234                 scaled_ppm = -scaled_ppm;
235         }
236         rate = scaled_ppm;
237         rate <<= 13;
238         rate = div_u64(rate, 15625);
239
240         inca = rate & INCVALUE_MASK;
241         if (neg_adj)
242                 inca |= ISGN;
243
244         wr32(E1000_TIMINCA, inca);
245
246         return 0;
247 }
248
249 static int igb_ptp_adjtime_82576(struct ptp_clock_info *ptp, s64 delta)
250 {
251         struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
252                                                ptp_caps);
253         unsigned long flags;
254
255         spin_lock_irqsave(&igb->tmreg_lock, flags);
256         timecounter_adjtime(&igb->tc, delta);
257         spin_unlock_irqrestore(&igb->tmreg_lock, flags);
258
259         return 0;
260 }
261
262 static int igb_ptp_adjtime_i210(struct ptp_clock_info *ptp, s64 delta)
263 {
264         struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
265                                                ptp_caps);
266         unsigned long flags;
267         struct timespec64 now, then = ns_to_timespec64(delta);
268
269         spin_lock_irqsave(&igb->tmreg_lock, flags);
270
271         igb_ptp_read_i210(igb, &now);
272         now = timespec64_add(now, then);
273         igb_ptp_write_i210(igb, (const struct timespec64 *)&now);
274
275         spin_unlock_irqrestore(&igb->tmreg_lock, flags);
276
277         return 0;
278 }
279
280 static int igb_ptp_gettimex_82576(struct ptp_clock_info *ptp,
281                                   struct timespec64 *ts,
282                                   struct ptp_system_timestamp *sts)
283 {
284         struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
285                                                ptp_caps);
286         struct e1000_hw *hw = &igb->hw;
287         unsigned long flags;
288         u32 lo, hi;
289         u64 ns;
290
291         spin_lock_irqsave(&igb->tmreg_lock, flags);
292
293         ptp_read_system_prets(sts);
294         lo = rd32(E1000_SYSTIML);
295         ptp_read_system_postts(sts);
296         hi = rd32(E1000_SYSTIMH);
297
298         ns = timecounter_cyc2time(&igb->tc, ((u64)hi << 32) | lo);
299
300         spin_unlock_irqrestore(&igb->tmreg_lock, flags);
301
302         *ts = ns_to_timespec64(ns);
303
304         return 0;
305 }
306
307 static int igb_ptp_gettimex_82580(struct ptp_clock_info *ptp,
308                                   struct timespec64 *ts,
309                                   struct ptp_system_timestamp *sts)
310 {
311         struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
312                                                ptp_caps);
313         struct e1000_hw *hw = &igb->hw;
314         unsigned long flags;
315         u32 lo, hi;
316         u64 ns;
317
318         spin_lock_irqsave(&igb->tmreg_lock, flags);
319
320         ptp_read_system_prets(sts);
321         rd32(E1000_SYSTIMR);
322         ptp_read_system_postts(sts);
323         lo = rd32(E1000_SYSTIML);
324         hi = rd32(E1000_SYSTIMH);
325
326         ns = timecounter_cyc2time(&igb->tc, ((u64)hi << 32) | lo);
327
328         spin_unlock_irqrestore(&igb->tmreg_lock, flags);
329
330         *ts = ns_to_timespec64(ns);
331
332         return 0;
333 }
334
335 static int igb_ptp_gettimex_i210(struct ptp_clock_info *ptp,
336                                  struct timespec64 *ts,
337                                  struct ptp_system_timestamp *sts)
338 {
339         struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
340                                                ptp_caps);
341         struct e1000_hw *hw = &igb->hw;
342         unsigned long flags;
343
344         spin_lock_irqsave(&igb->tmreg_lock, flags);
345
346         ptp_read_system_prets(sts);
347         rd32(E1000_SYSTIMR);
348         ptp_read_system_postts(sts);
349         ts->tv_nsec = rd32(E1000_SYSTIML);
350         ts->tv_sec = rd32(E1000_SYSTIMH);
351
352         spin_unlock_irqrestore(&igb->tmreg_lock, flags);
353
354         return 0;
355 }
356
357 static int igb_ptp_settime_82576(struct ptp_clock_info *ptp,
358                                  const struct timespec64 *ts)
359 {
360         struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
361                                                ptp_caps);
362         unsigned long flags;
363         u64 ns;
364
365         ns = timespec64_to_ns(ts);
366
367         spin_lock_irqsave(&igb->tmreg_lock, flags);
368
369         timecounter_init(&igb->tc, &igb->cc, ns);
370
371         spin_unlock_irqrestore(&igb->tmreg_lock, flags);
372
373         return 0;
374 }
375
376 static int igb_ptp_settime_i210(struct ptp_clock_info *ptp,
377                                 const struct timespec64 *ts)
378 {
379         struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
380                                                ptp_caps);
381         unsigned long flags;
382
383         spin_lock_irqsave(&igb->tmreg_lock, flags);
384
385         igb_ptp_write_i210(igb, ts);
386
387         spin_unlock_irqrestore(&igb->tmreg_lock, flags);
388
389         return 0;
390 }
391
392 static void igb_pin_direction(int pin, int input, u32 *ctrl, u32 *ctrl_ext)
393 {
394         u32 *ptr = pin < 2 ? ctrl : ctrl_ext;
395         static const u32 mask[IGB_N_SDP] = {
396                 E1000_CTRL_SDP0_DIR,
397                 E1000_CTRL_SDP1_DIR,
398                 E1000_CTRL_EXT_SDP2_DIR,
399                 E1000_CTRL_EXT_SDP3_DIR,
400         };
401
402         if (input)
403                 *ptr &= ~mask[pin];
404         else
405                 *ptr |= mask[pin];
406 }
407
408 static void igb_pin_extts(struct igb_adapter *igb, int chan, int pin)
409 {
410         static const u32 aux0_sel_sdp[IGB_N_SDP] = {
411                 AUX0_SEL_SDP0, AUX0_SEL_SDP1, AUX0_SEL_SDP2, AUX0_SEL_SDP3,
412         };
413         static const u32 aux1_sel_sdp[IGB_N_SDP] = {
414                 AUX1_SEL_SDP0, AUX1_SEL_SDP1, AUX1_SEL_SDP2, AUX1_SEL_SDP3,
415         };
416         static const u32 ts_sdp_en[IGB_N_SDP] = {
417                 TS_SDP0_EN, TS_SDP1_EN, TS_SDP2_EN, TS_SDP3_EN,
418         };
419         struct e1000_hw *hw = &igb->hw;
420         u32 ctrl, ctrl_ext, tssdp = 0;
421
422         ctrl = rd32(E1000_CTRL);
423         ctrl_ext = rd32(E1000_CTRL_EXT);
424         tssdp = rd32(E1000_TSSDP);
425
426         igb_pin_direction(pin, 1, &ctrl, &ctrl_ext);
427
428         /* Make sure this pin is not enabled as an output. */
429         tssdp &= ~ts_sdp_en[pin];
430
431         if (chan == 1) {
432                 tssdp &= ~AUX1_SEL_SDP3;
433                 tssdp |= aux1_sel_sdp[pin] | AUX1_TS_SDP_EN;
434         } else {
435                 tssdp &= ~AUX0_SEL_SDP3;
436                 tssdp |= aux0_sel_sdp[pin] | AUX0_TS_SDP_EN;
437         }
438
439         wr32(E1000_TSSDP, tssdp);
440         wr32(E1000_CTRL, ctrl);
441         wr32(E1000_CTRL_EXT, ctrl_ext);
442 }
443
444 static void igb_pin_perout(struct igb_adapter *igb, int chan, int pin, int freq)
445 {
446         static const u32 aux0_sel_sdp[IGB_N_SDP] = {
447                 AUX0_SEL_SDP0, AUX0_SEL_SDP1, AUX0_SEL_SDP2, AUX0_SEL_SDP3,
448         };
449         static const u32 aux1_sel_sdp[IGB_N_SDP] = {
450                 AUX1_SEL_SDP0, AUX1_SEL_SDP1, AUX1_SEL_SDP2, AUX1_SEL_SDP3,
451         };
452         static const u32 ts_sdp_en[IGB_N_SDP] = {
453                 TS_SDP0_EN, TS_SDP1_EN, TS_SDP2_EN, TS_SDP3_EN,
454         };
455         static const u32 ts_sdp_sel_tt0[IGB_N_SDP] = {
456                 TS_SDP0_SEL_TT0, TS_SDP1_SEL_TT0,
457                 TS_SDP2_SEL_TT0, TS_SDP3_SEL_TT0,
458         };
459         static const u32 ts_sdp_sel_tt1[IGB_N_SDP] = {
460                 TS_SDP0_SEL_TT1, TS_SDP1_SEL_TT1,
461                 TS_SDP2_SEL_TT1, TS_SDP3_SEL_TT1,
462         };
463         static const u32 ts_sdp_sel_fc0[IGB_N_SDP] = {
464                 TS_SDP0_SEL_FC0, TS_SDP1_SEL_FC0,
465                 TS_SDP2_SEL_FC0, TS_SDP3_SEL_FC0,
466         };
467         static const u32 ts_sdp_sel_fc1[IGB_N_SDP] = {
468                 TS_SDP0_SEL_FC1, TS_SDP1_SEL_FC1,
469                 TS_SDP2_SEL_FC1, TS_SDP3_SEL_FC1,
470         };
471         static const u32 ts_sdp_sel_clr[IGB_N_SDP] = {
472                 TS_SDP0_SEL_FC1, TS_SDP1_SEL_FC1,
473                 TS_SDP2_SEL_FC1, TS_SDP3_SEL_FC1,
474         };
475         struct e1000_hw *hw = &igb->hw;
476         u32 ctrl, ctrl_ext, tssdp = 0;
477
478         ctrl = rd32(E1000_CTRL);
479         ctrl_ext = rd32(E1000_CTRL_EXT);
480         tssdp = rd32(E1000_TSSDP);
481
482         igb_pin_direction(pin, 0, &ctrl, &ctrl_ext);
483
484         /* Make sure this pin is not enabled as an input. */
485         if ((tssdp & AUX0_SEL_SDP3) == aux0_sel_sdp[pin])
486                 tssdp &= ~AUX0_TS_SDP_EN;
487
488         if ((tssdp & AUX1_SEL_SDP3) == aux1_sel_sdp[pin])
489                 tssdp &= ~AUX1_TS_SDP_EN;
490
491         tssdp &= ~ts_sdp_sel_clr[pin];
492         if (freq) {
493                 if (chan == 1)
494                         tssdp |= ts_sdp_sel_fc1[pin];
495                 else
496                         tssdp |= ts_sdp_sel_fc0[pin];
497         } else {
498                 if (chan == 1)
499                         tssdp |= ts_sdp_sel_tt1[pin];
500                 else
501                         tssdp |= ts_sdp_sel_tt0[pin];
502         }
503         tssdp |= ts_sdp_en[pin];
504
505         wr32(E1000_TSSDP, tssdp);
506         wr32(E1000_CTRL, ctrl);
507         wr32(E1000_CTRL_EXT, ctrl_ext);
508 }
509
510 static int igb_ptp_feature_enable_i210(struct ptp_clock_info *ptp,
511                                        struct ptp_clock_request *rq, int on)
512 {
513         struct igb_adapter *igb =
514                 container_of(ptp, struct igb_adapter, ptp_caps);
515         struct e1000_hw *hw = &igb->hw;
516         u32 tsauxc, tsim, tsauxc_mask, tsim_mask, trgttiml, trgttimh, freqout;
517         unsigned long flags;
518         struct timespec64 ts;
519         int use_freq = 0, pin = -1;
520         s64 ns;
521
522         switch (rq->type) {
523         case PTP_CLK_REQ_EXTTS:
524                 if (on) {
525                         pin = ptp_find_pin(igb->ptp_clock, PTP_PF_EXTTS,
526                                            rq->extts.index);
527                         if (pin < 0)
528                                 return -EBUSY;
529                 }
530                 if (rq->extts.index == 1) {
531                         tsauxc_mask = TSAUXC_EN_TS1;
532                         tsim_mask = TSINTR_AUTT1;
533                 } else {
534                         tsauxc_mask = TSAUXC_EN_TS0;
535                         tsim_mask = TSINTR_AUTT0;
536                 }
537                 spin_lock_irqsave(&igb->tmreg_lock, flags);
538                 tsauxc = rd32(E1000_TSAUXC);
539                 tsim = rd32(E1000_TSIM);
540                 if (on) {
541                         igb_pin_extts(igb, rq->extts.index, pin);
542                         tsauxc |= tsauxc_mask;
543                         tsim |= tsim_mask;
544                 } else {
545                         tsauxc &= ~tsauxc_mask;
546                         tsim &= ~tsim_mask;
547                 }
548                 wr32(E1000_TSAUXC, tsauxc);
549                 wr32(E1000_TSIM, tsim);
550                 spin_unlock_irqrestore(&igb->tmreg_lock, flags);
551                 return 0;
552
553         case PTP_CLK_REQ_PEROUT:
554                 if (on) {
555                         pin = ptp_find_pin(igb->ptp_clock, PTP_PF_PEROUT,
556                                            rq->perout.index);
557                         if (pin < 0)
558                                 return -EBUSY;
559                 }
560                 ts.tv_sec = rq->perout.period.sec;
561                 ts.tv_nsec = rq->perout.period.nsec;
562                 ns = timespec64_to_ns(&ts);
563                 ns = ns >> 1;
564                 if (on && ((ns <= 70000000LL) || (ns == 125000000LL) ||
565                            (ns == 250000000LL) || (ns == 500000000LL))) {
566                         if (ns < 8LL)
567                                 return -EINVAL;
568                         use_freq = 1;
569                 }
570                 ts = ns_to_timespec64(ns);
571                 if (rq->perout.index == 1) {
572                         if (use_freq) {
573                                 tsauxc_mask = TSAUXC_EN_CLK1 | TSAUXC_ST1;
574                                 tsim_mask = 0;
575                         } else {
576                                 tsauxc_mask = TSAUXC_EN_TT1;
577                                 tsim_mask = TSINTR_TT1;
578                         }
579                         trgttiml = E1000_TRGTTIML1;
580                         trgttimh = E1000_TRGTTIMH1;
581                         freqout = E1000_FREQOUT1;
582                 } else {
583                         if (use_freq) {
584                                 tsauxc_mask = TSAUXC_EN_CLK0 | TSAUXC_ST0;
585                                 tsim_mask = 0;
586                         } else {
587                                 tsauxc_mask = TSAUXC_EN_TT0;
588                                 tsim_mask = TSINTR_TT0;
589                         }
590                         trgttiml = E1000_TRGTTIML0;
591                         trgttimh = E1000_TRGTTIMH0;
592                         freqout = E1000_FREQOUT0;
593                 }
594                 spin_lock_irqsave(&igb->tmreg_lock, flags);
595                 tsauxc = rd32(E1000_TSAUXC);
596                 tsim = rd32(E1000_TSIM);
597                 if (rq->perout.index == 1) {
598                         tsauxc &= ~(TSAUXC_EN_TT1 | TSAUXC_EN_CLK1 | TSAUXC_ST1);
599                         tsim &= ~TSINTR_TT1;
600                 } else {
601                         tsauxc &= ~(TSAUXC_EN_TT0 | TSAUXC_EN_CLK0 | TSAUXC_ST0);
602                         tsim &= ~TSINTR_TT0;
603                 }
604                 if (on) {
605                         int i = rq->perout.index;
606                         igb_pin_perout(igb, i, pin, use_freq);
607                         igb->perout[i].start.tv_sec = rq->perout.start.sec;
608                         igb->perout[i].start.tv_nsec = rq->perout.start.nsec;
609                         igb->perout[i].period.tv_sec = ts.tv_sec;
610                         igb->perout[i].period.tv_nsec = ts.tv_nsec;
611                         wr32(trgttimh, rq->perout.start.sec);
612                         wr32(trgttiml, rq->perout.start.nsec);
613                         if (use_freq)
614                                 wr32(freqout, ns);
615                         tsauxc |= tsauxc_mask;
616                         tsim |= tsim_mask;
617                 }
618                 wr32(E1000_TSAUXC, tsauxc);
619                 wr32(E1000_TSIM, tsim);
620                 spin_unlock_irqrestore(&igb->tmreg_lock, flags);
621                 return 0;
622
623         case PTP_CLK_REQ_PPS:
624                 spin_lock_irqsave(&igb->tmreg_lock, flags);
625                 tsim = rd32(E1000_TSIM);
626                 if (on)
627                         tsim |= TSINTR_SYS_WRAP;
628                 else
629                         tsim &= ~TSINTR_SYS_WRAP;
630                 igb->pps_sys_wrap_on = !!on;
631                 wr32(E1000_TSIM, tsim);
632                 spin_unlock_irqrestore(&igb->tmreg_lock, flags);
633                 return 0;
634         }
635
636         return -EOPNOTSUPP;
637 }
638
639 static int igb_ptp_feature_enable(struct ptp_clock_info *ptp,
640                                   struct ptp_clock_request *rq, int on)
641 {
642         return -EOPNOTSUPP;
643 }
644
645 static int igb_ptp_verify_pin(struct ptp_clock_info *ptp, unsigned int pin,
646                               enum ptp_pin_function func, unsigned int chan)
647 {
648         switch (func) {
649         case PTP_PF_NONE:
650         case PTP_PF_EXTTS:
651         case PTP_PF_PEROUT:
652                 break;
653         case PTP_PF_PHYSYNC:
654                 return -1;
655         }
656         return 0;
657 }
658
659 /**
660  * igb_ptp_tx_work
661  * @work: pointer to work struct
662  *
663  * This work function polls the TSYNCTXCTL valid bit to determine when a
664  * timestamp has been taken for the current stored skb.
665  **/
666 static void igb_ptp_tx_work(struct work_struct *work)
667 {
668         struct igb_adapter *adapter = container_of(work, struct igb_adapter,
669                                                    ptp_tx_work);
670         struct e1000_hw *hw = &adapter->hw;
671         u32 tsynctxctl;
672
673         if (!adapter->ptp_tx_skb)
674                 return;
675
676         if (time_is_before_jiffies(adapter->ptp_tx_start +
677                                    IGB_PTP_TX_TIMEOUT)) {
678                 dev_kfree_skb_any(adapter->ptp_tx_skb);
679                 adapter->ptp_tx_skb = NULL;
680                 clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
681                 adapter->tx_hwtstamp_timeouts++;
682                 /* Clear the tx valid bit in TSYNCTXCTL register to enable
683                  * interrupt
684                  */
685                 rd32(E1000_TXSTMPH);
686                 dev_warn(&adapter->pdev->dev, "clearing Tx timestamp hang\n");
687                 return;
688         }
689
690         tsynctxctl = rd32(E1000_TSYNCTXCTL);
691         if (tsynctxctl & E1000_TSYNCTXCTL_VALID)
692                 igb_ptp_tx_hwtstamp(adapter);
693         else
694                 /* reschedule to check later */
695                 schedule_work(&adapter->ptp_tx_work);
696 }
697
698 static void igb_ptp_overflow_check(struct work_struct *work)
699 {
700         struct igb_adapter *igb =
701                 container_of(work, struct igb_adapter, ptp_overflow_work.work);
702         struct timespec64 ts;
703         u64 ns;
704
705         /* Update the timecounter */
706         ns = timecounter_read(&igb->tc);
707
708         ts = ns_to_timespec64(ns);
709         pr_debug("igb overflow check at %lld.%09lu\n",
710                  (long long) ts.tv_sec, ts.tv_nsec);
711
712         schedule_delayed_work(&igb->ptp_overflow_work,
713                               IGB_SYSTIM_OVERFLOW_PERIOD);
714 }
715
716 /**
717  * igb_ptp_rx_hang - detect error case when Rx timestamp registers latched
718  * @adapter: private network adapter structure
719  *
720  * This watchdog task is scheduled to detect error case where hardware has
721  * dropped an Rx packet that was timestamped when the ring is full. The
722  * particular error is rare but leaves the device in a state unable to timestamp
723  * any future packets.
724  **/
725 void igb_ptp_rx_hang(struct igb_adapter *adapter)
726 {
727         struct e1000_hw *hw = &adapter->hw;
728         u32 tsyncrxctl = rd32(E1000_TSYNCRXCTL);
729         unsigned long rx_event;
730
731         /* Other hardware uses per-packet timestamps */
732         if (hw->mac.type != e1000_82576)
733                 return;
734
735         /* If we don't have a valid timestamp in the registers, just update the
736          * timeout counter and exit
737          */
738         if (!(tsyncrxctl & E1000_TSYNCRXCTL_VALID)) {
739                 adapter->last_rx_ptp_check = jiffies;
740                 return;
741         }
742
743         /* Determine the most recent watchdog or rx_timestamp event */
744         rx_event = adapter->last_rx_ptp_check;
745         if (time_after(adapter->last_rx_timestamp, rx_event))
746                 rx_event = adapter->last_rx_timestamp;
747
748         /* Only need to read the high RXSTMP register to clear the lock */
749         if (time_is_before_jiffies(rx_event + 5 * HZ)) {
750                 rd32(E1000_RXSTMPH);
751                 adapter->last_rx_ptp_check = jiffies;
752                 adapter->rx_hwtstamp_cleared++;
753                 dev_warn(&adapter->pdev->dev, "clearing Rx timestamp hang\n");
754         }
755 }
756
757 /**
758  * igb_ptp_tx_hang - detect error case where Tx timestamp never finishes
759  * @adapter: private network adapter structure
760  */
761 void igb_ptp_tx_hang(struct igb_adapter *adapter)
762 {
763         struct e1000_hw *hw = &adapter->hw;
764         bool timeout = time_is_before_jiffies(adapter->ptp_tx_start +
765                                               IGB_PTP_TX_TIMEOUT);
766
767         if (!adapter->ptp_tx_skb)
768                 return;
769
770         if (!test_bit(__IGB_PTP_TX_IN_PROGRESS, &adapter->state))
771                 return;
772
773         /* If we haven't received a timestamp within the timeout, it is
774          * reasonable to assume that it will never occur, so we can unlock the
775          * timestamp bit when this occurs.
776          */
777         if (timeout) {
778                 cancel_work_sync(&adapter->ptp_tx_work);
779                 dev_kfree_skb_any(adapter->ptp_tx_skb);
780                 adapter->ptp_tx_skb = NULL;
781                 clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
782                 adapter->tx_hwtstamp_timeouts++;
783                 /* Clear the tx valid bit in TSYNCTXCTL register to enable
784                  * interrupt
785                  */
786                 rd32(E1000_TXSTMPH);
787                 dev_warn(&adapter->pdev->dev, "clearing Tx timestamp hang\n");
788         }
789 }
790
791 /**
792  * igb_ptp_tx_hwtstamp - utility function which checks for TX time stamp
793  * @adapter: Board private structure.
794  *
795  * If we were asked to do hardware stamping and such a time stamp is
796  * available, then it must have been for this skb here because we only
797  * allow only one such packet into the queue.
798  **/
799 static void igb_ptp_tx_hwtstamp(struct igb_adapter *adapter)
800 {
801         struct sk_buff *skb = adapter->ptp_tx_skb;
802         struct e1000_hw *hw = &adapter->hw;
803         struct skb_shared_hwtstamps shhwtstamps;
804         u64 regval;
805         int adjust = 0;
806
807         regval = rd32(E1000_TXSTMPL);
808         regval |= (u64)rd32(E1000_TXSTMPH) << 32;
809
810         igb_ptp_systim_to_hwtstamp(adapter, &shhwtstamps, regval);
811         /* adjust timestamp for the TX latency based on link speed */
812         if (adapter->hw.mac.type == e1000_i210) {
813                 switch (adapter->link_speed) {
814                 case SPEED_10:
815                         adjust = IGB_I210_TX_LATENCY_10;
816                         break;
817                 case SPEED_100:
818                         adjust = IGB_I210_TX_LATENCY_100;
819                         break;
820                 case SPEED_1000:
821                         adjust = IGB_I210_TX_LATENCY_1000;
822                         break;
823                 }
824         }
825
826         shhwtstamps.hwtstamp =
827                 ktime_add_ns(shhwtstamps.hwtstamp, adjust);
828
829         /* Clear the lock early before calling skb_tstamp_tx so that
830          * applications are not woken up before the lock bit is clear. We use
831          * a copy of the skb pointer to ensure other threads can't change it
832          * while we're notifying the stack.
833          */
834         adapter->ptp_tx_skb = NULL;
835         clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
836
837         /* Notify the stack and free the skb after we've unlocked */
838         skb_tstamp_tx(skb, &shhwtstamps);
839         dev_kfree_skb_any(skb);
840 }
841
842 /**
843  * igb_ptp_rx_pktstamp - retrieve Rx per packet timestamp
844  * @q_vector: Pointer to interrupt specific structure
845  * @va: Pointer to address containing Rx buffer
846  * @skb: Buffer containing timestamp and packet
847  *
848  * This function is meant to retrieve a timestamp from the first buffer of an
849  * incoming frame.  The value is stored in little endian format starting on
850  * byte 8.
851  **/
852 void igb_ptp_rx_pktstamp(struct igb_q_vector *q_vector, void *va,
853                          struct sk_buff *skb)
854 {
855         __le64 *regval = (__le64 *)va;
856         struct igb_adapter *adapter = q_vector->adapter;
857         int adjust = 0;
858
859         /* The timestamp is recorded in little endian format.
860          * DWORD: 0        1        2        3
861          * Field: Reserved Reserved SYSTIML  SYSTIMH
862          */
863         igb_ptp_systim_to_hwtstamp(adapter, skb_hwtstamps(skb),
864                                    le64_to_cpu(regval[1]));
865
866         /* adjust timestamp for the RX latency based on link speed */
867         if (adapter->hw.mac.type == e1000_i210) {
868                 switch (adapter->link_speed) {
869                 case SPEED_10:
870                         adjust = IGB_I210_RX_LATENCY_10;
871                         break;
872                 case SPEED_100:
873                         adjust = IGB_I210_RX_LATENCY_100;
874                         break;
875                 case SPEED_1000:
876                         adjust = IGB_I210_RX_LATENCY_1000;
877                         break;
878                 }
879         }
880         skb_hwtstamps(skb)->hwtstamp =
881                 ktime_sub_ns(skb_hwtstamps(skb)->hwtstamp, adjust);
882 }
883
884 /**
885  * igb_ptp_rx_rgtstamp - retrieve Rx timestamp stored in register
886  * @q_vector: Pointer to interrupt specific structure
887  * @skb: Buffer containing timestamp and packet
888  *
889  * This function is meant to retrieve a timestamp from the internal registers
890  * of the adapter and store it in the skb.
891  **/
892 void igb_ptp_rx_rgtstamp(struct igb_q_vector *q_vector,
893                          struct sk_buff *skb)
894 {
895         struct igb_adapter *adapter = q_vector->adapter;
896         struct e1000_hw *hw = &adapter->hw;
897         u64 regval;
898         int adjust = 0;
899
900         /* If this bit is set, then the RX registers contain the time stamp. No
901          * other packet will be time stamped until we read these registers, so
902          * read the registers to make them available again. Because only one
903          * packet can be time stamped at a time, we know that the register
904          * values must belong to this one here and therefore we don't need to
905          * compare any of the additional attributes stored for it.
906          *
907          * If nothing went wrong, then it should have a shared tx_flags that we
908          * can turn into a skb_shared_hwtstamps.
909          */
910         if (!(rd32(E1000_TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID))
911                 return;
912
913         regval = rd32(E1000_RXSTMPL);
914         regval |= (u64)rd32(E1000_RXSTMPH) << 32;
915
916         igb_ptp_systim_to_hwtstamp(adapter, skb_hwtstamps(skb), regval);
917
918         /* adjust timestamp for the RX latency based on link speed */
919         if (adapter->hw.mac.type == e1000_i210) {
920                 switch (adapter->link_speed) {
921                 case SPEED_10:
922                         adjust = IGB_I210_RX_LATENCY_10;
923                         break;
924                 case SPEED_100:
925                         adjust = IGB_I210_RX_LATENCY_100;
926                         break;
927                 case SPEED_1000:
928                         adjust = IGB_I210_RX_LATENCY_1000;
929                         break;
930                 }
931         }
932         skb_hwtstamps(skb)->hwtstamp =
933                 ktime_sub_ns(skb_hwtstamps(skb)->hwtstamp, adjust);
934
935         /* Update the last_rx_timestamp timer in order to enable watchdog check
936          * for error case of latched timestamp on a dropped packet.
937          */
938         adapter->last_rx_timestamp = jiffies;
939 }
940
941 /**
942  * igb_ptp_get_ts_config - get hardware time stamping config
943  * @netdev:
944  * @ifreq:
945  *
946  * Get the hwtstamp_config settings to return to the user. Rather than attempt
947  * to deconstruct the settings from the registers, just return a shadow copy
948  * of the last known settings.
949  **/
950 int igb_ptp_get_ts_config(struct net_device *netdev, struct ifreq *ifr)
951 {
952         struct igb_adapter *adapter = netdev_priv(netdev);
953         struct hwtstamp_config *config = &adapter->tstamp_config;
954
955         return copy_to_user(ifr->ifr_data, config, sizeof(*config)) ?
956                 -EFAULT : 0;
957 }
958
959 /**
960  * igb_ptp_set_timestamp_mode - setup hardware for timestamping
961  * @adapter: networking device structure
962  * @config: hwtstamp configuration
963  *
964  * Outgoing time stamping can be enabled and disabled. Play nice and
965  * disable it when requested, although it shouldn't case any overhead
966  * when no packet needs it. At most one packet in the queue may be
967  * marked for time stamping, otherwise it would be impossible to tell
968  * for sure to which packet the hardware time stamp belongs.
969  *
970  * Incoming time stamping has to be configured via the hardware
971  * filters. Not all combinations are supported, in particular event
972  * type has to be specified. Matching the kind of event packet is
973  * not supported, with the exception of "all V2 events regardless of
974  * level 2 or 4".
975  */
976 static int igb_ptp_set_timestamp_mode(struct igb_adapter *adapter,
977                                       struct hwtstamp_config *config)
978 {
979         struct e1000_hw *hw = &adapter->hw;
980         u32 tsync_tx_ctl = E1000_TSYNCTXCTL_ENABLED;
981         u32 tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
982         u32 tsync_rx_cfg = 0;
983         bool is_l4 = false;
984         bool is_l2 = false;
985         u32 regval;
986
987         /* reserved for future extensions */
988         if (config->flags)
989                 return -EINVAL;
990
991         switch (config->tx_type) {
992         case HWTSTAMP_TX_OFF:
993                 tsync_tx_ctl = 0;
994         case HWTSTAMP_TX_ON:
995                 break;
996         default:
997                 return -ERANGE;
998         }
999
1000         switch (config->rx_filter) {
1001         case HWTSTAMP_FILTER_NONE:
1002                 tsync_rx_ctl = 0;
1003                 break;
1004         case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
1005                 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
1006                 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_SYNC_MESSAGE;
1007                 is_l4 = true;
1008                 break;
1009         case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
1010                 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
1011                 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_DELAY_REQ_MESSAGE;
1012                 is_l4 = true;
1013                 break;
1014         case HWTSTAMP_FILTER_PTP_V2_EVENT:
1015         case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
1016         case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
1017         case HWTSTAMP_FILTER_PTP_V2_SYNC:
1018         case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
1019         case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
1020         case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
1021         case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
1022         case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
1023                 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_EVENT_V2;
1024                 config->rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
1025                 is_l2 = true;
1026                 is_l4 = true;
1027                 break;
1028         case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
1029         case HWTSTAMP_FILTER_NTP_ALL:
1030         case HWTSTAMP_FILTER_ALL:
1031                 /* 82576 cannot timestamp all packets, which it needs to do to
1032                  * support both V1 Sync and Delay_Req messages
1033                  */
1034                 if (hw->mac.type != e1000_82576) {
1035                         tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
1036                         config->rx_filter = HWTSTAMP_FILTER_ALL;
1037                         break;
1038                 }
1039                 /* fall through */
1040         default:
1041                 config->rx_filter = HWTSTAMP_FILTER_NONE;
1042                 return -ERANGE;
1043         }
1044
1045         if (hw->mac.type == e1000_82575) {
1046                 if (tsync_rx_ctl | tsync_tx_ctl)
1047                         return -EINVAL;
1048                 return 0;
1049         }
1050
1051         /* Per-packet timestamping only works if all packets are
1052          * timestamped, so enable timestamping in all packets as
1053          * long as one Rx filter was configured.
1054          */
1055         if ((hw->mac.type >= e1000_82580) && tsync_rx_ctl) {
1056                 tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
1057                 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
1058                 config->rx_filter = HWTSTAMP_FILTER_ALL;
1059                 is_l2 = true;
1060                 is_l4 = true;
1061
1062                 if ((hw->mac.type == e1000_i210) ||
1063                     (hw->mac.type == e1000_i211)) {
1064                         regval = rd32(E1000_RXPBS);
1065                         regval |= E1000_RXPBS_CFG_TS_EN;
1066                         wr32(E1000_RXPBS, regval);
1067                 }
1068         }
1069
1070         /* enable/disable TX */
1071         regval = rd32(E1000_TSYNCTXCTL);
1072         regval &= ~E1000_TSYNCTXCTL_ENABLED;
1073         regval |= tsync_tx_ctl;
1074         wr32(E1000_TSYNCTXCTL, regval);
1075
1076         /* enable/disable RX */
1077         regval = rd32(E1000_TSYNCRXCTL);
1078         regval &= ~(E1000_TSYNCRXCTL_ENABLED | E1000_TSYNCRXCTL_TYPE_MASK);
1079         regval |= tsync_rx_ctl;
1080         wr32(E1000_TSYNCRXCTL, regval);
1081
1082         /* define which PTP packets are time stamped */
1083         wr32(E1000_TSYNCRXCFG, tsync_rx_cfg);
1084
1085         /* define ethertype filter for timestamped packets */
1086         if (is_l2)
1087                 wr32(E1000_ETQF(IGB_ETQF_FILTER_1588),
1088                      (E1000_ETQF_FILTER_ENABLE | /* enable filter */
1089                       E1000_ETQF_1588 | /* enable timestamping */
1090                       ETH_P_1588));     /* 1588 eth protocol type */
1091         else
1092                 wr32(E1000_ETQF(IGB_ETQF_FILTER_1588), 0);
1093
1094         /* L4 Queue Filter[3]: filter by destination port and protocol */
1095         if (is_l4) {
1096                 u32 ftqf = (IPPROTO_UDP /* UDP */
1097                         | E1000_FTQF_VF_BP /* VF not compared */
1098                         | E1000_FTQF_1588_TIME_STAMP /* Enable Timestamping */
1099                         | E1000_FTQF_MASK); /* mask all inputs */
1100                 ftqf &= ~E1000_FTQF_MASK_PROTO_BP; /* enable protocol check */
1101
1102                 wr32(E1000_IMIR(3), htons(PTP_EV_PORT));
1103                 wr32(E1000_IMIREXT(3),
1104                      (E1000_IMIREXT_SIZE_BP | E1000_IMIREXT_CTRL_BP));
1105                 if (hw->mac.type == e1000_82576) {
1106                         /* enable source port check */
1107                         wr32(E1000_SPQF(3), htons(PTP_EV_PORT));
1108                         ftqf &= ~E1000_FTQF_MASK_SOURCE_PORT_BP;
1109                 }
1110                 wr32(E1000_FTQF(3), ftqf);
1111         } else {
1112                 wr32(E1000_FTQF(3), E1000_FTQF_MASK);
1113         }
1114         wrfl();
1115
1116         /* clear TX/RX time stamp registers, just to be sure */
1117         regval = rd32(E1000_TXSTMPL);
1118         regval = rd32(E1000_TXSTMPH);
1119         regval = rd32(E1000_RXSTMPL);
1120         regval = rd32(E1000_RXSTMPH);
1121
1122         return 0;
1123 }
1124
1125 /**
1126  * igb_ptp_set_ts_config - set hardware time stamping config
1127  * @netdev:
1128  * @ifreq:
1129  *
1130  **/
1131 int igb_ptp_set_ts_config(struct net_device *netdev, struct ifreq *ifr)
1132 {
1133         struct igb_adapter *adapter = netdev_priv(netdev);
1134         struct hwtstamp_config config;
1135         int err;
1136
1137         if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
1138                 return -EFAULT;
1139
1140         err = igb_ptp_set_timestamp_mode(adapter, &config);
1141         if (err)
1142                 return err;
1143
1144         /* save these settings for future reference */
1145         memcpy(&adapter->tstamp_config, &config,
1146                sizeof(adapter->tstamp_config));
1147
1148         return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
1149                 -EFAULT : 0;
1150 }
1151
1152 /**
1153  * igb_ptp_init - Initialize PTP functionality
1154  * @adapter: Board private structure
1155  *
1156  * This function is called at device probe to initialize the PTP
1157  * functionality.
1158  */
1159 void igb_ptp_init(struct igb_adapter *adapter)
1160 {
1161         struct e1000_hw *hw = &adapter->hw;
1162         struct net_device *netdev = adapter->netdev;
1163         int i;
1164
1165         switch (hw->mac.type) {
1166         case e1000_82576:
1167                 snprintf(adapter->ptp_caps.name, 16, "%pm", netdev->dev_addr);
1168                 adapter->ptp_caps.owner = THIS_MODULE;
1169                 adapter->ptp_caps.max_adj = 999999881;
1170                 adapter->ptp_caps.n_ext_ts = 0;
1171                 adapter->ptp_caps.pps = 0;
1172                 adapter->ptp_caps.adjfreq = igb_ptp_adjfreq_82576;
1173                 adapter->ptp_caps.adjtime = igb_ptp_adjtime_82576;
1174                 adapter->ptp_caps.gettimex64 = igb_ptp_gettimex_82576;
1175                 adapter->ptp_caps.settime64 = igb_ptp_settime_82576;
1176                 adapter->ptp_caps.enable = igb_ptp_feature_enable;
1177                 adapter->cc.read = igb_ptp_read_82576;
1178                 adapter->cc.mask = CYCLECOUNTER_MASK(64);
1179                 adapter->cc.mult = 1;
1180                 adapter->cc.shift = IGB_82576_TSYNC_SHIFT;
1181                 adapter->ptp_flags |= IGB_PTP_OVERFLOW_CHECK;
1182                 break;
1183         case e1000_82580:
1184         case e1000_i354:
1185         case e1000_i350:
1186                 snprintf(adapter->ptp_caps.name, 16, "%pm", netdev->dev_addr);
1187                 adapter->ptp_caps.owner = THIS_MODULE;
1188                 adapter->ptp_caps.max_adj = 62499999;
1189                 adapter->ptp_caps.n_ext_ts = 0;
1190                 adapter->ptp_caps.pps = 0;
1191                 adapter->ptp_caps.adjfine = igb_ptp_adjfine_82580;
1192                 adapter->ptp_caps.adjtime = igb_ptp_adjtime_82576;
1193                 adapter->ptp_caps.gettimex64 = igb_ptp_gettimex_82580;
1194                 adapter->ptp_caps.settime64 = igb_ptp_settime_82576;
1195                 adapter->ptp_caps.enable = igb_ptp_feature_enable;
1196                 adapter->cc.read = igb_ptp_read_82580;
1197                 adapter->cc.mask = CYCLECOUNTER_MASK(IGB_NBITS_82580);
1198                 adapter->cc.mult = 1;
1199                 adapter->cc.shift = 0;
1200                 adapter->ptp_flags |= IGB_PTP_OVERFLOW_CHECK;
1201                 break;
1202         case e1000_i210:
1203         case e1000_i211:
1204                 for (i = 0; i < IGB_N_SDP; i++) {
1205                         struct ptp_pin_desc *ppd = &adapter->sdp_config[i];
1206
1207                         snprintf(ppd->name, sizeof(ppd->name), "SDP%d", i);
1208                         ppd->index = i;
1209                         ppd->func = PTP_PF_NONE;
1210                 }
1211                 snprintf(adapter->ptp_caps.name, 16, "%pm", netdev->dev_addr);
1212                 adapter->ptp_caps.owner = THIS_MODULE;
1213                 adapter->ptp_caps.max_adj = 62499999;
1214                 adapter->ptp_caps.n_ext_ts = IGB_N_EXTTS;
1215                 adapter->ptp_caps.n_per_out = IGB_N_PEROUT;
1216                 adapter->ptp_caps.n_pins = IGB_N_SDP;
1217                 adapter->ptp_caps.pps = 1;
1218                 adapter->ptp_caps.pin_config = adapter->sdp_config;
1219                 adapter->ptp_caps.adjfine = igb_ptp_adjfine_82580;
1220                 adapter->ptp_caps.adjtime = igb_ptp_adjtime_i210;
1221                 adapter->ptp_caps.gettimex64 = igb_ptp_gettimex_i210;
1222                 adapter->ptp_caps.settime64 = igb_ptp_settime_i210;
1223                 adapter->ptp_caps.enable = igb_ptp_feature_enable_i210;
1224                 adapter->ptp_caps.verify = igb_ptp_verify_pin;
1225                 break;
1226         default:
1227                 adapter->ptp_clock = NULL;
1228                 return;
1229         }
1230
1231         spin_lock_init(&adapter->tmreg_lock);
1232         INIT_WORK(&adapter->ptp_tx_work, igb_ptp_tx_work);
1233
1234         if (adapter->ptp_flags & IGB_PTP_OVERFLOW_CHECK)
1235                 INIT_DELAYED_WORK(&adapter->ptp_overflow_work,
1236                                   igb_ptp_overflow_check);
1237
1238         adapter->tstamp_config.rx_filter = HWTSTAMP_FILTER_NONE;
1239         adapter->tstamp_config.tx_type = HWTSTAMP_TX_OFF;
1240
1241         igb_ptp_reset(adapter);
1242
1243         adapter->ptp_clock = ptp_clock_register(&adapter->ptp_caps,
1244                                                 &adapter->pdev->dev);
1245         if (IS_ERR(adapter->ptp_clock)) {
1246                 adapter->ptp_clock = NULL;
1247                 dev_err(&adapter->pdev->dev, "ptp_clock_register failed\n");
1248         } else if (adapter->ptp_clock) {
1249                 dev_info(&adapter->pdev->dev, "added PHC on %s\n",
1250                          adapter->netdev->name);
1251                 adapter->ptp_flags |= IGB_PTP_ENABLED;
1252         }
1253 }
1254
1255 /**
1256  * igb_ptp_suspend - Disable PTP work items and prepare for suspend
1257  * @adapter: Board private structure
1258  *
1259  * This function stops the overflow check work and PTP Tx timestamp work, and
1260  * will prepare the device for OS suspend.
1261  */
1262 void igb_ptp_suspend(struct igb_adapter *adapter)
1263 {
1264         if (!(adapter->ptp_flags & IGB_PTP_ENABLED))
1265                 return;
1266
1267         if (adapter->ptp_flags & IGB_PTP_OVERFLOW_CHECK)
1268                 cancel_delayed_work_sync(&adapter->ptp_overflow_work);
1269
1270         cancel_work_sync(&adapter->ptp_tx_work);
1271         if (adapter->ptp_tx_skb) {
1272                 dev_kfree_skb_any(adapter->ptp_tx_skb);
1273                 adapter->ptp_tx_skb = NULL;
1274                 clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
1275         }
1276 }
1277
1278 /**
1279  * igb_ptp_stop - Disable PTP device and stop the overflow check.
1280  * @adapter: Board private structure.
1281  *
1282  * This function stops the PTP support and cancels the delayed work.
1283  **/
1284 void igb_ptp_stop(struct igb_adapter *adapter)
1285 {
1286         igb_ptp_suspend(adapter);
1287
1288         if (adapter->ptp_clock) {
1289                 ptp_clock_unregister(adapter->ptp_clock);
1290                 dev_info(&adapter->pdev->dev, "removed PHC on %s\n",
1291                          adapter->netdev->name);
1292                 adapter->ptp_flags &= ~IGB_PTP_ENABLED;
1293         }
1294 }
1295
1296 /**
1297  * igb_ptp_reset - Re-enable the adapter for PTP following a reset.
1298  * @adapter: Board private structure.
1299  *
1300  * This function handles the reset work required to re-enable the PTP device.
1301  **/
1302 void igb_ptp_reset(struct igb_adapter *adapter)
1303 {
1304         struct e1000_hw *hw = &adapter->hw;
1305         unsigned long flags;
1306
1307         /* reset the tstamp_config */
1308         igb_ptp_set_timestamp_mode(adapter, &adapter->tstamp_config);
1309
1310         spin_lock_irqsave(&adapter->tmreg_lock, flags);
1311
1312         switch (adapter->hw.mac.type) {
1313         case e1000_82576:
1314                 /* Dial the nominal frequency. */
1315                 wr32(E1000_TIMINCA, INCPERIOD_82576 | INCVALUE_82576);
1316                 break;
1317         case e1000_82580:
1318         case e1000_i354:
1319         case e1000_i350:
1320         case e1000_i210:
1321         case e1000_i211:
1322                 wr32(E1000_TSAUXC, 0x0);
1323                 wr32(E1000_TSSDP, 0x0);
1324                 wr32(E1000_TSIM,
1325                      TSYNC_INTERRUPTS |
1326                      (adapter->pps_sys_wrap_on ? TSINTR_SYS_WRAP : 0));
1327                 wr32(E1000_IMS, E1000_IMS_TS);
1328                 break;
1329         default:
1330                 /* No work to do. */
1331                 goto out;
1332         }
1333
1334         /* Re-initialize the timer. */
1335         if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211)) {
1336                 struct timespec64 ts = ktime_to_timespec64(ktime_get_real());
1337
1338                 igb_ptp_write_i210(adapter, &ts);
1339         } else {
1340                 timecounter_init(&adapter->tc, &adapter->cc,
1341                                  ktime_to_ns(ktime_get_real()));
1342         }
1343 out:
1344         spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
1345
1346         wrfl();
1347
1348         if (adapter->ptp_flags & IGB_PTP_OVERFLOW_CHECK)
1349                 schedule_delayed_work(&adapter->ptp_overflow_work,
1350                                       IGB_SYSTIM_OVERFLOW_PERIOD);
1351 }