Linux-libre 4.13.7-gnu
[librecmc/linux-libre.git] / drivers / net / ethernet / intel / igb / igb_main.c
1 /* Intel(R) Gigabit Ethernet Linux driver
2  * Copyright(c) 2007-2014 Intel Corporation.
3  *
4  * This program is free software; you can redistribute it and/or modify it
5  * under the terms and conditions of the GNU General Public License,
6  * version 2, as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope it will be useful, but WITHOUT
9  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
11  * more details.
12  *
13  * You should have received a copy of the GNU General Public License along with
14  * this program; if not, see <http://www.gnu.org/licenses/>.
15  *
16  * The full GNU General Public License is included in this distribution in
17  * the file called "COPYING".
18  *
19  * Contact Information:
20  * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
21  * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
22  */
23
24 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
25
26 #include <linux/module.h>
27 #include <linux/types.h>
28 #include <linux/init.h>
29 #include <linux/bitops.h>
30 #include <linux/vmalloc.h>
31 #include <linux/pagemap.h>
32 #include <linux/netdevice.h>
33 #include <linux/ipv6.h>
34 #include <linux/slab.h>
35 #include <net/checksum.h>
36 #include <net/ip6_checksum.h>
37 #include <linux/net_tstamp.h>
38 #include <linux/mii.h>
39 #include <linux/ethtool.h>
40 #include <linux/if.h>
41 #include <linux/if_vlan.h>
42 #include <linux/pci.h>
43 #include <linux/pci-aspm.h>
44 #include <linux/delay.h>
45 #include <linux/interrupt.h>
46 #include <linux/ip.h>
47 #include <linux/tcp.h>
48 #include <linux/sctp.h>
49 #include <linux/if_ether.h>
50 #include <linux/aer.h>
51 #include <linux/prefetch.h>
52 #include <linux/pm_runtime.h>
53 #include <linux/etherdevice.h>
54 #ifdef CONFIG_IGB_DCA
55 #include <linux/dca.h>
56 #endif
57 #include <linux/i2c.h>
58 #include "igb.h"
59
60 #define MAJ 5
61 #define MIN 4
62 #define BUILD 0
63 #define DRV_VERSION __stringify(MAJ) "." __stringify(MIN) "." \
64 __stringify(BUILD) "-k"
65 char igb_driver_name[] = "igb";
66 char igb_driver_version[] = DRV_VERSION;
67 static const char igb_driver_string[] =
68                                 "Intel(R) Gigabit Ethernet Network Driver";
69 static const char igb_copyright[] =
70                                 "Copyright (c) 2007-2014 Intel Corporation.";
71
72 static const struct e1000_info *igb_info_tbl[] = {
73         [board_82575] = &e1000_82575_info,
74 };
75
76 static const struct pci_device_id igb_pci_tbl[] = {
77         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_1GBPS) },
78         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_SGMII) },
79         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_2_5GBPS) },
80         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I211_COPPER), board_82575 },
81         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER), board_82575 },
82         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_FIBER), board_82575 },
83         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES), board_82575 },
84         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SGMII), board_82575 },
85         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER_FLASHLESS), board_82575 },
86         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES_FLASHLESS), board_82575 },
87         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_COPPER), board_82575 },
88         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_FIBER), board_82575 },
89         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SERDES), board_82575 },
90         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SGMII), board_82575 },
91         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER), board_82575 },
92         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_FIBER), board_82575 },
93         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_QUAD_FIBER), board_82575 },
94         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SERDES), board_82575 },
95         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SGMII), board_82575 },
96         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER_DUAL), board_82575 },
97         { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SGMII), board_82575 },
98         { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SERDES), board_82575 },
99         { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_BACKPLANE), board_82575 },
100         { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SFP), board_82575 },
101         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576), board_82575 },
102         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS), board_82575 },
103         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS_SERDES), board_82575 },
104         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_FIBER), board_82575 },
105         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES), board_82575 },
106         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES_QUAD), board_82575 },
107         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER_ET2), board_82575 },
108         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER), board_82575 },
109         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 },
110         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 },
111         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 },
112         /* required last entry */
113         {0, }
114 };
115
116 MODULE_DEVICE_TABLE(pci, igb_pci_tbl);
117
118 static int igb_setup_all_tx_resources(struct igb_adapter *);
119 static int igb_setup_all_rx_resources(struct igb_adapter *);
120 static void igb_free_all_tx_resources(struct igb_adapter *);
121 static void igb_free_all_rx_resources(struct igb_adapter *);
122 static void igb_setup_mrqc(struct igb_adapter *);
123 static int igb_probe(struct pci_dev *, const struct pci_device_id *);
124 static void igb_remove(struct pci_dev *pdev);
125 static int igb_sw_init(struct igb_adapter *);
126 int igb_open(struct net_device *);
127 int igb_close(struct net_device *);
128 static void igb_configure(struct igb_adapter *);
129 static void igb_configure_tx(struct igb_adapter *);
130 static void igb_configure_rx(struct igb_adapter *);
131 static void igb_clean_all_tx_rings(struct igb_adapter *);
132 static void igb_clean_all_rx_rings(struct igb_adapter *);
133 static void igb_clean_tx_ring(struct igb_ring *);
134 static void igb_clean_rx_ring(struct igb_ring *);
135 static void igb_set_rx_mode(struct net_device *);
136 static void igb_update_phy_info(unsigned long);
137 static void igb_watchdog(unsigned long);
138 static void igb_watchdog_task(struct work_struct *);
139 static netdev_tx_t igb_xmit_frame(struct sk_buff *skb, struct net_device *);
140 static void igb_get_stats64(struct net_device *dev,
141                             struct rtnl_link_stats64 *stats);
142 static int igb_change_mtu(struct net_device *, int);
143 static int igb_set_mac(struct net_device *, void *);
144 static void igb_set_uta(struct igb_adapter *adapter, bool set);
145 static irqreturn_t igb_intr(int irq, void *);
146 static irqreturn_t igb_intr_msi(int irq, void *);
147 static irqreturn_t igb_msix_other(int irq, void *);
148 static irqreturn_t igb_msix_ring(int irq, void *);
149 #ifdef CONFIG_IGB_DCA
150 static void igb_update_dca(struct igb_q_vector *);
151 static void igb_setup_dca(struct igb_adapter *);
152 #endif /* CONFIG_IGB_DCA */
153 static int igb_poll(struct napi_struct *, int);
154 static bool igb_clean_tx_irq(struct igb_q_vector *, int);
155 static int igb_clean_rx_irq(struct igb_q_vector *, int);
156 static int igb_ioctl(struct net_device *, struct ifreq *, int cmd);
157 static void igb_tx_timeout(struct net_device *);
158 static void igb_reset_task(struct work_struct *);
159 static void igb_vlan_mode(struct net_device *netdev,
160                           netdev_features_t features);
161 static int igb_vlan_rx_add_vid(struct net_device *, __be16, u16);
162 static int igb_vlan_rx_kill_vid(struct net_device *, __be16, u16);
163 static void igb_restore_vlan(struct igb_adapter *);
164 static void igb_rar_set_index(struct igb_adapter *, u32);
165 static void igb_ping_all_vfs(struct igb_adapter *);
166 static void igb_msg_task(struct igb_adapter *);
167 static void igb_vmm_control(struct igb_adapter *);
168 static int igb_set_vf_mac(struct igb_adapter *, int, unsigned char *);
169 static void igb_flush_mac_table(struct igb_adapter *);
170 static int igb_available_rars(struct igb_adapter *, u8);
171 static void igb_set_default_mac_filter(struct igb_adapter *);
172 static int igb_uc_sync(struct net_device *, const unsigned char *);
173 static int igb_uc_unsync(struct net_device *, const unsigned char *);
174 static void igb_restore_vf_multicasts(struct igb_adapter *adapter);
175 static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac);
176 static int igb_ndo_set_vf_vlan(struct net_device *netdev,
177                                int vf, u16 vlan, u8 qos, __be16 vlan_proto);
178 static int igb_ndo_set_vf_bw(struct net_device *, int, int, int);
179 static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
180                                    bool setting);
181 static int igb_ndo_get_vf_config(struct net_device *netdev, int vf,
182                                  struct ifla_vf_info *ivi);
183 static void igb_check_vf_rate_limit(struct igb_adapter *);
184 static void igb_nfc_filter_exit(struct igb_adapter *adapter);
185 static void igb_nfc_filter_restore(struct igb_adapter *adapter);
186
187 #ifdef CONFIG_PCI_IOV
188 static int igb_vf_configure(struct igb_adapter *adapter, int vf);
189 static int igb_pci_enable_sriov(struct pci_dev *dev, int num_vfs);
190 static int igb_disable_sriov(struct pci_dev *dev);
191 static int igb_pci_disable_sriov(struct pci_dev *dev);
192 #endif
193
194 static int igb_suspend(struct device *);
195 static int igb_resume(struct device *);
196 static int igb_runtime_suspend(struct device *dev);
197 static int igb_runtime_resume(struct device *dev);
198 static int igb_runtime_idle(struct device *dev);
199 static const struct dev_pm_ops igb_pm_ops = {
200         SET_SYSTEM_SLEEP_PM_OPS(igb_suspend, igb_resume)
201         SET_RUNTIME_PM_OPS(igb_runtime_suspend, igb_runtime_resume,
202                         igb_runtime_idle)
203 };
204 static void igb_shutdown(struct pci_dev *);
205 static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs);
206 #ifdef CONFIG_IGB_DCA
207 static int igb_notify_dca(struct notifier_block *, unsigned long, void *);
208 static struct notifier_block dca_notifier = {
209         .notifier_call  = igb_notify_dca,
210         .next           = NULL,
211         .priority       = 0
212 };
213 #endif
214 #ifdef CONFIG_NET_POLL_CONTROLLER
215 /* for netdump / net console */
216 static void igb_netpoll(struct net_device *);
217 #endif
218 #ifdef CONFIG_PCI_IOV
219 static unsigned int max_vfs;
220 module_param(max_vfs, uint, 0);
221 MODULE_PARM_DESC(max_vfs, "Maximum number of virtual functions to allocate per physical function");
222 #endif /* CONFIG_PCI_IOV */
223
224 static pci_ers_result_t igb_io_error_detected(struct pci_dev *,
225                      pci_channel_state_t);
226 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *);
227 static void igb_io_resume(struct pci_dev *);
228
229 static const struct pci_error_handlers igb_err_handler = {
230         .error_detected = igb_io_error_detected,
231         .slot_reset = igb_io_slot_reset,
232         .resume = igb_io_resume,
233 };
234
235 static void igb_init_dmac(struct igb_adapter *adapter, u32 pba);
236
237 static struct pci_driver igb_driver = {
238         .name     = igb_driver_name,
239         .id_table = igb_pci_tbl,
240         .probe    = igb_probe,
241         .remove   = igb_remove,
242 #ifdef CONFIG_PM
243         .driver.pm = &igb_pm_ops,
244 #endif
245         .shutdown = igb_shutdown,
246         .sriov_configure = igb_pci_sriov_configure,
247         .err_handler = &igb_err_handler
248 };
249
250 MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
251 MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
252 MODULE_LICENSE("GPL");
253 MODULE_VERSION(DRV_VERSION);
254
255 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
256 static int debug = -1;
257 module_param(debug, int, 0);
258 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
259
260 struct igb_reg_info {
261         u32 ofs;
262         char *name;
263 };
264
265 static const struct igb_reg_info igb_reg_info_tbl[] = {
266
267         /* General Registers */
268         {E1000_CTRL, "CTRL"},
269         {E1000_STATUS, "STATUS"},
270         {E1000_CTRL_EXT, "CTRL_EXT"},
271
272         /* Interrupt Registers */
273         {E1000_ICR, "ICR"},
274
275         /* RX Registers */
276         {E1000_RCTL, "RCTL"},
277         {E1000_RDLEN(0), "RDLEN"},
278         {E1000_RDH(0), "RDH"},
279         {E1000_RDT(0), "RDT"},
280         {E1000_RXDCTL(0), "RXDCTL"},
281         {E1000_RDBAL(0), "RDBAL"},
282         {E1000_RDBAH(0), "RDBAH"},
283
284         /* TX Registers */
285         {E1000_TCTL, "TCTL"},
286         {E1000_TDBAL(0), "TDBAL"},
287         {E1000_TDBAH(0), "TDBAH"},
288         {E1000_TDLEN(0), "TDLEN"},
289         {E1000_TDH(0), "TDH"},
290         {E1000_TDT(0), "TDT"},
291         {E1000_TXDCTL(0), "TXDCTL"},
292         {E1000_TDFH, "TDFH"},
293         {E1000_TDFT, "TDFT"},
294         {E1000_TDFHS, "TDFHS"},
295         {E1000_TDFPC, "TDFPC"},
296
297         /* List Terminator */
298         {}
299 };
300
301 /* igb_regdump - register printout routine */
302 static void igb_regdump(struct e1000_hw *hw, struct igb_reg_info *reginfo)
303 {
304         int n = 0;
305         char rname[16];
306         u32 regs[8];
307
308         switch (reginfo->ofs) {
309         case E1000_RDLEN(0):
310                 for (n = 0; n < 4; n++)
311                         regs[n] = rd32(E1000_RDLEN(n));
312                 break;
313         case E1000_RDH(0):
314                 for (n = 0; n < 4; n++)
315                         regs[n] = rd32(E1000_RDH(n));
316                 break;
317         case E1000_RDT(0):
318                 for (n = 0; n < 4; n++)
319                         regs[n] = rd32(E1000_RDT(n));
320                 break;
321         case E1000_RXDCTL(0):
322                 for (n = 0; n < 4; n++)
323                         regs[n] = rd32(E1000_RXDCTL(n));
324                 break;
325         case E1000_RDBAL(0):
326                 for (n = 0; n < 4; n++)
327                         regs[n] = rd32(E1000_RDBAL(n));
328                 break;
329         case E1000_RDBAH(0):
330                 for (n = 0; n < 4; n++)
331                         regs[n] = rd32(E1000_RDBAH(n));
332                 break;
333         case E1000_TDBAL(0):
334                 for (n = 0; n < 4; n++)
335                         regs[n] = rd32(E1000_RDBAL(n));
336                 break;
337         case E1000_TDBAH(0):
338                 for (n = 0; n < 4; n++)
339                         regs[n] = rd32(E1000_TDBAH(n));
340                 break;
341         case E1000_TDLEN(0):
342                 for (n = 0; n < 4; n++)
343                         regs[n] = rd32(E1000_TDLEN(n));
344                 break;
345         case E1000_TDH(0):
346                 for (n = 0; n < 4; n++)
347                         regs[n] = rd32(E1000_TDH(n));
348                 break;
349         case E1000_TDT(0):
350                 for (n = 0; n < 4; n++)
351                         regs[n] = rd32(E1000_TDT(n));
352                 break;
353         case E1000_TXDCTL(0):
354                 for (n = 0; n < 4; n++)
355                         regs[n] = rd32(E1000_TXDCTL(n));
356                 break;
357         default:
358                 pr_info("%-15s %08x\n", reginfo->name, rd32(reginfo->ofs));
359                 return;
360         }
361
362         snprintf(rname, 16, "%s%s", reginfo->name, "[0-3]");
363         pr_info("%-15s %08x %08x %08x %08x\n", rname, regs[0], regs[1],
364                 regs[2], regs[3]);
365 }
366
367 /* igb_dump - Print registers, Tx-rings and Rx-rings */
368 static void igb_dump(struct igb_adapter *adapter)
369 {
370         struct net_device *netdev = adapter->netdev;
371         struct e1000_hw *hw = &adapter->hw;
372         struct igb_reg_info *reginfo;
373         struct igb_ring *tx_ring;
374         union e1000_adv_tx_desc *tx_desc;
375         struct my_u0 { u64 a; u64 b; } *u0;
376         struct igb_ring *rx_ring;
377         union e1000_adv_rx_desc *rx_desc;
378         u32 staterr;
379         u16 i, n;
380
381         if (!netif_msg_hw(adapter))
382                 return;
383
384         /* Print netdevice Info */
385         if (netdev) {
386                 dev_info(&adapter->pdev->dev, "Net device Info\n");
387                 pr_info("Device Name     state            trans_start\n");
388                 pr_info("%-15s %016lX %016lX\n", netdev->name,
389                         netdev->state, dev_trans_start(netdev));
390         }
391
392         /* Print Registers */
393         dev_info(&adapter->pdev->dev, "Register Dump\n");
394         pr_info(" Register Name   Value\n");
395         for (reginfo = (struct igb_reg_info *)igb_reg_info_tbl;
396              reginfo->name; reginfo++) {
397                 igb_regdump(hw, reginfo);
398         }
399
400         /* Print TX Ring Summary */
401         if (!netdev || !netif_running(netdev))
402                 goto exit;
403
404         dev_info(&adapter->pdev->dev, "TX Rings Summary\n");
405         pr_info("Queue [NTU] [NTC] [bi(ntc)->dma  ] leng ntw timestamp\n");
406         for (n = 0; n < adapter->num_tx_queues; n++) {
407                 struct igb_tx_buffer *buffer_info;
408                 tx_ring = adapter->tx_ring[n];
409                 buffer_info = &tx_ring->tx_buffer_info[tx_ring->next_to_clean];
410                 pr_info(" %5d %5X %5X %016llX %04X %p %016llX\n",
411                         n, tx_ring->next_to_use, tx_ring->next_to_clean,
412                         (u64)dma_unmap_addr(buffer_info, dma),
413                         dma_unmap_len(buffer_info, len),
414                         buffer_info->next_to_watch,
415                         (u64)buffer_info->time_stamp);
416         }
417
418         /* Print TX Rings */
419         if (!netif_msg_tx_done(adapter))
420                 goto rx_ring_summary;
421
422         dev_info(&adapter->pdev->dev, "TX Rings Dump\n");
423
424         /* Transmit Descriptor Formats
425          *
426          * Advanced Transmit Descriptor
427          *   +--------------------------------------------------------------+
428          * 0 |         Buffer Address [63:0]                                |
429          *   +--------------------------------------------------------------+
430          * 8 | PAYLEN  | PORTS  |CC|IDX | STA | DCMD  |DTYP|MAC|RSV| DTALEN |
431          *   +--------------------------------------------------------------+
432          *   63      46 45    40 39 38 36 35 32 31   24             15       0
433          */
434
435         for (n = 0; n < adapter->num_tx_queues; n++) {
436                 tx_ring = adapter->tx_ring[n];
437                 pr_info("------------------------------------\n");
438                 pr_info("TX QUEUE INDEX = %d\n", tx_ring->queue_index);
439                 pr_info("------------------------------------\n");
440                 pr_info("T [desc]     [address 63:0  ] [PlPOCIStDDM Ln] [bi->dma       ] leng  ntw timestamp        bi->skb\n");
441
442                 for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
443                         const char *next_desc;
444                         struct igb_tx_buffer *buffer_info;
445                         tx_desc = IGB_TX_DESC(tx_ring, i);
446                         buffer_info = &tx_ring->tx_buffer_info[i];
447                         u0 = (struct my_u0 *)tx_desc;
448                         if (i == tx_ring->next_to_use &&
449                             i == tx_ring->next_to_clean)
450                                 next_desc = " NTC/U";
451                         else if (i == tx_ring->next_to_use)
452                                 next_desc = " NTU";
453                         else if (i == tx_ring->next_to_clean)
454                                 next_desc = " NTC";
455                         else
456                                 next_desc = "";
457
458                         pr_info("T [0x%03X]    %016llX %016llX %016llX %04X  %p %016llX %p%s\n",
459                                 i, le64_to_cpu(u0->a),
460                                 le64_to_cpu(u0->b),
461                                 (u64)dma_unmap_addr(buffer_info, dma),
462                                 dma_unmap_len(buffer_info, len),
463                                 buffer_info->next_to_watch,
464                                 (u64)buffer_info->time_stamp,
465                                 buffer_info->skb, next_desc);
466
467                         if (netif_msg_pktdata(adapter) && buffer_info->skb)
468                                 print_hex_dump(KERN_INFO, "",
469                                         DUMP_PREFIX_ADDRESS,
470                                         16, 1, buffer_info->skb->data,
471                                         dma_unmap_len(buffer_info, len),
472                                         true);
473                 }
474         }
475
476         /* Print RX Rings Summary */
477 rx_ring_summary:
478         dev_info(&adapter->pdev->dev, "RX Rings Summary\n");
479         pr_info("Queue [NTU] [NTC]\n");
480         for (n = 0; n < adapter->num_rx_queues; n++) {
481                 rx_ring = adapter->rx_ring[n];
482                 pr_info(" %5d %5X %5X\n",
483                         n, rx_ring->next_to_use, rx_ring->next_to_clean);
484         }
485
486         /* Print RX Rings */
487         if (!netif_msg_rx_status(adapter))
488                 goto exit;
489
490         dev_info(&adapter->pdev->dev, "RX Rings Dump\n");
491
492         /* Advanced Receive Descriptor (Read) Format
493          *    63                                           1        0
494          *    +-----------------------------------------------------+
495          *  0 |       Packet Buffer Address [63:1]           |A0/NSE|
496          *    +----------------------------------------------+------+
497          *  8 |       Header Buffer Address [63:1]           |  DD  |
498          *    +-----------------------------------------------------+
499          *
500          *
501          * Advanced Receive Descriptor (Write-Back) Format
502          *
503          *   63       48 47    32 31  30      21 20 17 16   4 3     0
504          *   +------------------------------------------------------+
505          * 0 | Packet     IP     |SPH| HDR_LEN   | RSV|Packet|  RSS |
506          *   | Checksum   Ident  |   |           |    | Type | Type |
507          *   +------------------------------------------------------+
508          * 8 | VLAN Tag | Length | Extended Error | Extended Status |
509          *   +------------------------------------------------------+
510          *   63       48 47    32 31            20 19               0
511          */
512
513         for (n = 0; n < adapter->num_rx_queues; n++) {
514                 rx_ring = adapter->rx_ring[n];
515                 pr_info("------------------------------------\n");
516                 pr_info("RX QUEUE INDEX = %d\n", rx_ring->queue_index);
517                 pr_info("------------------------------------\n");
518                 pr_info("R  [desc]      [ PktBuf     A0] [  HeadBuf   DD] [bi->dma       ] [bi->skb] <-- Adv Rx Read format\n");
519                 pr_info("RWB[desc]      [PcsmIpSHl PtRs] [vl er S cks ln] ---------------- [bi->skb] <-- Adv Rx Write-Back format\n");
520
521                 for (i = 0; i < rx_ring->count; i++) {
522                         const char *next_desc;
523                         struct igb_rx_buffer *buffer_info;
524                         buffer_info = &rx_ring->rx_buffer_info[i];
525                         rx_desc = IGB_RX_DESC(rx_ring, i);
526                         u0 = (struct my_u0 *)rx_desc;
527                         staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
528
529                         if (i == rx_ring->next_to_use)
530                                 next_desc = " NTU";
531                         else if (i == rx_ring->next_to_clean)
532                                 next_desc = " NTC";
533                         else
534                                 next_desc = "";
535
536                         if (staterr & E1000_RXD_STAT_DD) {
537                                 /* Descriptor Done */
538                                 pr_info("%s[0x%03X]     %016llX %016llX ---------------- %s\n",
539                                         "RWB", i,
540                                         le64_to_cpu(u0->a),
541                                         le64_to_cpu(u0->b),
542                                         next_desc);
543                         } else {
544                                 pr_info("%s[0x%03X]     %016llX %016llX %016llX %s\n",
545                                         "R  ", i,
546                                         le64_to_cpu(u0->a),
547                                         le64_to_cpu(u0->b),
548                                         (u64)buffer_info->dma,
549                                         next_desc);
550
551                                 if (netif_msg_pktdata(adapter) &&
552                                     buffer_info->dma && buffer_info->page) {
553                                         print_hex_dump(KERN_INFO, "",
554                                           DUMP_PREFIX_ADDRESS,
555                                           16, 1,
556                                           page_address(buffer_info->page) +
557                                                       buffer_info->page_offset,
558                                           igb_rx_bufsz(rx_ring), true);
559                                 }
560                         }
561                 }
562         }
563
564 exit:
565         return;
566 }
567
568 /**
569  *  igb_get_i2c_data - Reads the I2C SDA data bit
570  *  @hw: pointer to hardware structure
571  *  @i2cctl: Current value of I2CCTL register
572  *
573  *  Returns the I2C data bit value
574  **/
575 static int igb_get_i2c_data(void *data)
576 {
577         struct igb_adapter *adapter = (struct igb_adapter *)data;
578         struct e1000_hw *hw = &adapter->hw;
579         s32 i2cctl = rd32(E1000_I2CPARAMS);
580
581         return !!(i2cctl & E1000_I2C_DATA_IN);
582 }
583
584 /**
585  *  igb_set_i2c_data - Sets the I2C data bit
586  *  @data: pointer to hardware structure
587  *  @state: I2C data value (0 or 1) to set
588  *
589  *  Sets the I2C data bit
590  **/
591 static void igb_set_i2c_data(void *data, int state)
592 {
593         struct igb_adapter *adapter = (struct igb_adapter *)data;
594         struct e1000_hw *hw = &adapter->hw;
595         s32 i2cctl = rd32(E1000_I2CPARAMS);
596
597         if (state)
598                 i2cctl |= E1000_I2C_DATA_OUT;
599         else
600                 i2cctl &= ~E1000_I2C_DATA_OUT;
601
602         i2cctl &= ~E1000_I2C_DATA_OE_N;
603         i2cctl |= E1000_I2C_CLK_OE_N;
604         wr32(E1000_I2CPARAMS, i2cctl);
605         wrfl();
606
607 }
608
609 /**
610  *  igb_set_i2c_clk - Sets the I2C SCL clock
611  *  @data: pointer to hardware structure
612  *  @state: state to set clock
613  *
614  *  Sets the I2C clock line to state
615  **/
616 static void igb_set_i2c_clk(void *data, int state)
617 {
618         struct igb_adapter *adapter = (struct igb_adapter *)data;
619         struct e1000_hw *hw = &adapter->hw;
620         s32 i2cctl = rd32(E1000_I2CPARAMS);
621
622         if (state) {
623                 i2cctl |= E1000_I2C_CLK_OUT;
624                 i2cctl &= ~E1000_I2C_CLK_OE_N;
625         } else {
626                 i2cctl &= ~E1000_I2C_CLK_OUT;
627                 i2cctl &= ~E1000_I2C_CLK_OE_N;
628         }
629         wr32(E1000_I2CPARAMS, i2cctl);
630         wrfl();
631 }
632
633 /**
634  *  igb_get_i2c_clk - Gets the I2C SCL clock state
635  *  @data: pointer to hardware structure
636  *
637  *  Gets the I2C clock state
638  **/
639 static int igb_get_i2c_clk(void *data)
640 {
641         struct igb_adapter *adapter = (struct igb_adapter *)data;
642         struct e1000_hw *hw = &adapter->hw;
643         s32 i2cctl = rd32(E1000_I2CPARAMS);
644
645         return !!(i2cctl & E1000_I2C_CLK_IN);
646 }
647
648 static const struct i2c_algo_bit_data igb_i2c_algo = {
649         .setsda         = igb_set_i2c_data,
650         .setscl         = igb_set_i2c_clk,
651         .getsda         = igb_get_i2c_data,
652         .getscl         = igb_get_i2c_clk,
653         .udelay         = 5,
654         .timeout        = 20,
655 };
656
657 /**
658  *  igb_get_hw_dev - return device
659  *  @hw: pointer to hardware structure
660  *
661  *  used by hardware layer to print debugging information
662  **/
663 struct net_device *igb_get_hw_dev(struct e1000_hw *hw)
664 {
665         struct igb_adapter *adapter = hw->back;
666         return adapter->netdev;
667 }
668
669 /**
670  *  igb_init_module - Driver Registration Routine
671  *
672  *  igb_init_module is the first routine called when the driver is
673  *  loaded. All it does is register with the PCI subsystem.
674  **/
675 static int __init igb_init_module(void)
676 {
677         int ret;
678
679         pr_info("%s - version %s\n",
680                igb_driver_string, igb_driver_version);
681         pr_info("%s\n", igb_copyright);
682
683 #ifdef CONFIG_IGB_DCA
684         dca_register_notify(&dca_notifier);
685 #endif
686         ret = pci_register_driver(&igb_driver);
687         return ret;
688 }
689
690 module_init(igb_init_module);
691
692 /**
693  *  igb_exit_module - Driver Exit Cleanup Routine
694  *
695  *  igb_exit_module is called just before the driver is removed
696  *  from memory.
697  **/
698 static void __exit igb_exit_module(void)
699 {
700 #ifdef CONFIG_IGB_DCA
701         dca_unregister_notify(&dca_notifier);
702 #endif
703         pci_unregister_driver(&igb_driver);
704 }
705
706 module_exit(igb_exit_module);
707
708 #define Q_IDX_82576(i) (((i & 0x1) << 3) + (i >> 1))
709 /**
710  *  igb_cache_ring_register - Descriptor ring to register mapping
711  *  @adapter: board private structure to initialize
712  *
713  *  Once we know the feature-set enabled for the device, we'll cache
714  *  the register offset the descriptor ring is assigned to.
715  **/
716 static void igb_cache_ring_register(struct igb_adapter *adapter)
717 {
718         int i = 0, j = 0;
719         u32 rbase_offset = adapter->vfs_allocated_count;
720
721         switch (adapter->hw.mac.type) {
722         case e1000_82576:
723                 /* The queues are allocated for virtualization such that VF 0
724                  * is allocated queues 0 and 8, VF 1 queues 1 and 9, etc.
725                  * In order to avoid collision we start at the first free queue
726                  * and continue consuming queues in the same sequence
727                  */
728                 if (adapter->vfs_allocated_count) {
729                         for (; i < adapter->rss_queues; i++)
730                                 adapter->rx_ring[i]->reg_idx = rbase_offset +
731                                                                Q_IDX_82576(i);
732                 }
733                 /* Fall through */
734         case e1000_82575:
735         case e1000_82580:
736         case e1000_i350:
737         case e1000_i354:
738         case e1000_i210:
739         case e1000_i211:
740                 /* Fall through */
741         default:
742                 for (; i < adapter->num_rx_queues; i++)
743                         adapter->rx_ring[i]->reg_idx = rbase_offset + i;
744                 for (; j < adapter->num_tx_queues; j++)
745                         adapter->tx_ring[j]->reg_idx = rbase_offset + j;
746                 break;
747         }
748 }
749
750 u32 igb_rd32(struct e1000_hw *hw, u32 reg)
751 {
752         struct igb_adapter *igb = container_of(hw, struct igb_adapter, hw);
753         u8 __iomem *hw_addr = ACCESS_ONCE(hw->hw_addr);
754         u32 value = 0;
755
756         if (E1000_REMOVED(hw_addr))
757                 return ~value;
758
759         value = readl(&hw_addr[reg]);
760
761         /* reads should not return all F's */
762         if (!(~value) && (!reg || !(~readl(hw_addr)))) {
763                 struct net_device *netdev = igb->netdev;
764                 hw->hw_addr = NULL;
765                 netif_device_detach(netdev);
766                 netdev_err(netdev, "PCIe link lost, device now detached\n");
767         }
768
769         return value;
770 }
771
772 /**
773  *  igb_write_ivar - configure ivar for given MSI-X vector
774  *  @hw: pointer to the HW structure
775  *  @msix_vector: vector number we are allocating to a given ring
776  *  @index: row index of IVAR register to write within IVAR table
777  *  @offset: column offset of in IVAR, should be multiple of 8
778  *
779  *  This function is intended to handle the writing of the IVAR register
780  *  for adapters 82576 and newer.  The IVAR table consists of 2 columns,
781  *  each containing an cause allocation for an Rx and Tx ring, and a
782  *  variable number of rows depending on the number of queues supported.
783  **/
784 static void igb_write_ivar(struct e1000_hw *hw, int msix_vector,
785                            int index, int offset)
786 {
787         u32 ivar = array_rd32(E1000_IVAR0, index);
788
789         /* clear any bits that are currently set */
790         ivar &= ~((u32)0xFF << offset);
791
792         /* write vector and valid bit */
793         ivar |= (msix_vector | E1000_IVAR_VALID) << offset;
794
795         array_wr32(E1000_IVAR0, index, ivar);
796 }
797
798 #define IGB_N0_QUEUE -1
799 static void igb_assign_vector(struct igb_q_vector *q_vector, int msix_vector)
800 {
801         struct igb_adapter *adapter = q_vector->adapter;
802         struct e1000_hw *hw = &adapter->hw;
803         int rx_queue = IGB_N0_QUEUE;
804         int tx_queue = IGB_N0_QUEUE;
805         u32 msixbm = 0;
806
807         if (q_vector->rx.ring)
808                 rx_queue = q_vector->rx.ring->reg_idx;
809         if (q_vector->tx.ring)
810                 tx_queue = q_vector->tx.ring->reg_idx;
811
812         switch (hw->mac.type) {
813         case e1000_82575:
814                 /* The 82575 assigns vectors using a bitmask, which matches the
815                  * bitmask for the EICR/EIMS/EIMC registers.  To assign one
816                  * or more queues to a vector, we write the appropriate bits
817                  * into the MSIXBM register for that vector.
818                  */
819                 if (rx_queue > IGB_N0_QUEUE)
820                         msixbm = E1000_EICR_RX_QUEUE0 << rx_queue;
821                 if (tx_queue > IGB_N0_QUEUE)
822                         msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue;
823                 if (!(adapter->flags & IGB_FLAG_HAS_MSIX) && msix_vector == 0)
824                         msixbm |= E1000_EIMS_OTHER;
825                 array_wr32(E1000_MSIXBM(0), msix_vector, msixbm);
826                 q_vector->eims_value = msixbm;
827                 break;
828         case e1000_82576:
829                 /* 82576 uses a table that essentially consists of 2 columns
830                  * with 8 rows.  The ordering is column-major so we use the
831                  * lower 3 bits as the row index, and the 4th bit as the
832                  * column offset.
833                  */
834                 if (rx_queue > IGB_N0_QUEUE)
835                         igb_write_ivar(hw, msix_vector,
836                                        rx_queue & 0x7,
837                                        (rx_queue & 0x8) << 1);
838                 if (tx_queue > IGB_N0_QUEUE)
839                         igb_write_ivar(hw, msix_vector,
840                                        tx_queue & 0x7,
841                                        ((tx_queue & 0x8) << 1) + 8);
842                 q_vector->eims_value = BIT(msix_vector);
843                 break;
844         case e1000_82580:
845         case e1000_i350:
846         case e1000_i354:
847         case e1000_i210:
848         case e1000_i211:
849                 /* On 82580 and newer adapters the scheme is similar to 82576
850                  * however instead of ordering column-major we have things
851                  * ordered row-major.  So we traverse the table by using
852                  * bit 0 as the column offset, and the remaining bits as the
853                  * row index.
854                  */
855                 if (rx_queue > IGB_N0_QUEUE)
856                         igb_write_ivar(hw, msix_vector,
857                                        rx_queue >> 1,
858                                        (rx_queue & 0x1) << 4);
859                 if (tx_queue > IGB_N0_QUEUE)
860                         igb_write_ivar(hw, msix_vector,
861                                        tx_queue >> 1,
862                                        ((tx_queue & 0x1) << 4) + 8);
863                 q_vector->eims_value = BIT(msix_vector);
864                 break;
865         default:
866                 BUG();
867                 break;
868         }
869
870         /* add q_vector eims value to global eims_enable_mask */
871         adapter->eims_enable_mask |= q_vector->eims_value;
872
873         /* configure q_vector to set itr on first interrupt */
874         q_vector->set_itr = 1;
875 }
876
877 /**
878  *  igb_configure_msix - Configure MSI-X hardware
879  *  @adapter: board private structure to initialize
880  *
881  *  igb_configure_msix sets up the hardware to properly
882  *  generate MSI-X interrupts.
883  **/
884 static void igb_configure_msix(struct igb_adapter *adapter)
885 {
886         u32 tmp;
887         int i, vector = 0;
888         struct e1000_hw *hw = &adapter->hw;
889
890         adapter->eims_enable_mask = 0;
891
892         /* set vector for other causes, i.e. link changes */
893         switch (hw->mac.type) {
894         case e1000_82575:
895                 tmp = rd32(E1000_CTRL_EXT);
896                 /* enable MSI-X PBA support*/
897                 tmp |= E1000_CTRL_EXT_PBA_CLR;
898
899                 /* Auto-Mask interrupts upon ICR read. */
900                 tmp |= E1000_CTRL_EXT_EIAME;
901                 tmp |= E1000_CTRL_EXT_IRCA;
902
903                 wr32(E1000_CTRL_EXT, tmp);
904
905                 /* enable msix_other interrupt */
906                 array_wr32(E1000_MSIXBM(0), vector++, E1000_EIMS_OTHER);
907                 adapter->eims_other = E1000_EIMS_OTHER;
908
909                 break;
910
911         case e1000_82576:
912         case e1000_82580:
913         case e1000_i350:
914         case e1000_i354:
915         case e1000_i210:
916         case e1000_i211:
917                 /* Turn on MSI-X capability first, or our settings
918                  * won't stick.  And it will take days to debug.
919                  */
920                 wr32(E1000_GPIE, E1000_GPIE_MSIX_MODE |
921                      E1000_GPIE_PBA | E1000_GPIE_EIAME |
922                      E1000_GPIE_NSICR);
923
924                 /* enable msix_other interrupt */
925                 adapter->eims_other = BIT(vector);
926                 tmp = (vector++ | E1000_IVAR_VALID) << 8;
927
928                 wr32(E1000_IVAR_MISC, tmp);
929                 break;
930         default:
931                 /* do nothing, since nothing else supports MSI-X */
932                 break;
933         } /* switch (hw->mac.type) */
934
935         adapter->eims_enable_mask |= adapter->eims_other;
936
937         for (i = 0; i < adapter->num_q_vectors; i++)
938                 igb_assign_vector(adapter->q_vector[i], vector++);
939
940         wrfl();
941 }
942
943 /**
944  *  igb_request_msix - Initialize MSI-X interrupts
945  *  @adapter: board private structure to initialize
946  *
947  *  igb_request_msix allocates MSI-X vectors and requests interrupts from the
948  *  kernel.
949  **/
950 static int igb_request_msix(struct igb_adapter *adapter)
951 {
952         struct net_device *netdev = adapter->netdev;
953         int i, err = 0, vector = 0, free_vector = 0;
954
955         err = request_irq(adapter->msix_entries[vector].vector,
956                           igb_msix_other, 0, netdev->name, adapter);
957         if (err)
958                 goto err_out;
959
960         for (i = 0; i < adapter->num_q_vectors; i++) {
961                 struct igb_q_vector *q_vector = adapter->q_vector[i];
962
963                 vector++;
964
965                 q_vector->itr_register = adapter->io_addr + E1000_EITR(vector);
966
967                 if (q_vector->rx.ring && q_vector->tx.ring)
968                         sprintf(q_vector->name, "%s-TxRx-%u", netdev->name,
969                                 q_vector->rx.ring->queue_index);
970                 else if (q_vector->tx.ring)
971                         sprintf(q_vector->name, "%s-tx-%u", netdev->name,
972                                 q_vector->tx.ring->queue_index);
973                 else if (q_vector->rx.ring)
974                         sprintf(q_vector->name, "%s-rx-%u", netdev->name,
975                                 q_vector->rx.ring->queue_index);
976                 else
977                         sprintf(q_vector->name, "%s-unused", netdev->name);
978
979                 err = request_irq(adapter->msix_entries[vector].vector,
980                                   igb_msix_ring, 0, q_vector->name,
981                                   q_vector);
982                 if (err)
983                         goto err_free;
984         }
985
986         igb_configure_msix(adapter);
987         return 0;
988
989 err_free:
990         /* free already assigned IRQs */
991         free_irq(adapter->msix_entries[free_vector++].vector, adapter);
992
993         vector--;
994         for (i = 0; i < vector; i++) {
995                 free_irq(adapter->msix_entries[free_vector++].vector,
996                          adapter->q_vector[i]);
997         }
998 err_out:
999         return err;
1000 }
1001
1002 /**
1003  *  igb_free_q_vector - Free memory allocated for specific interrupt vector
1004  *  @adapter: board private structure to initialize
1005  *  @v_idx: Index of vector to be freed
1006  *
1007  *  This function frees the memory allocated to the q_vector.
1008  **/
1009 static void igb_free_q_vector(struct igb_adapter *adapter, int v_idx)
1010 {
1011         struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
1012
1013         adapter->q_vector[v_idx] = NULL;
1014
1015         /* igb_get_stats64() might access the rings on this vector,
1016          * we must wait a grace period before freeing it.
1017          */
1018         if (q_vector)
1019                 kfree_rcu(q_vector, rcu);
1020 }
1021
1022 /**
1023  *  igb_reset_q_vector - Reset config for interrupt vector
1024  *  @adapter: board private structure to initialize
1025  *  @v_idx: Index of vector to be reset
1026  *
1027  *  If NAPI is enabled it will delete any references to the
1028  *  NAPI struct. This is preparation for igb_free_q_vector.
1029  **/
1030 static void igb_reset_q_vector(struct igb_adapter *adapter, int v_idx)
1031 {
1032         struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
1033
1034         /* Coming from igb_set_interrupt_capability, the vectors are not yet
1035          * allocated. So, q_vector is NULL so we should stop here.
1036          */
1037         if (!q_vector)
1038                 return;
1039
1040         if (q_vector->tx.ring)
1041                 adapter->tx_ring[q_vector->tx.ring->queue_index] = NULL;
1042
1043         if (q_vector->rx.ring)
1044                 adapter->rx_ring[q_vector->rx.ring->queue_index] = NULL;
1045
1046         netif_napi_del(&q_vector->napi);
1047
1048 }
1049
1050 static void igb_reset_interrupt_capability(struct igb_adapter *adapter)
1051 {
1052         int v_idx = adapter->num_q_vectors;
1053
1054         if (adapter->flags & IGB_FLAG_HAS_MSIX)
1055                 pci_disable_msix(adapter->pdev);
1056         else if (adapter->flags & IGB_FLAG_HAS_MSI)
1057                 pci_disable_msi(adapter->pdev);
1058
1059         while (v_idx--)
1060                 igb_reset_q_vector(adapter, v_idx);
1061 }
1062
1063 /**
1064  *  igb_free_q_vectors - Free memory allocated for interrupt vectors
1065  *  @adapter: board private structure to initialize
1066  *
1067  *  This function frees the memory allocated to the q_vectors.  In addition if
1068  *  NAPI is enabled it will delete any references to the NAPI struct prior
1069  *  to freeing the q_vector.
1070  **/
1071 static void igb_free_q_vectors(struct igb_adapter *adapter)
1072 {
1073         int v_idx = adapter->num_q_vectors;
1074
1075         adapter->num_tx_queues = 0;
1076         adapter->num_rx_queues = 0;
1077         adapter->num_q_vectors = 0;
1078
1079         while (v_idx--) {
1080                 igb_reset_q_vector(adapter, v_idx);
1081                 igb_free_q_vector(adapter, v_idx);
1082         }
1083 }
1084
1085 /**
1086  *  igb_clear_interrupt_scheme - reset the device to a state of no interrupts
1087  *  @adapter: board private structure to initialize
1088  *
1089  *  This function resets the device so that it has 0 Rx queues, Tx queues, and
1090  *  MSI-X interrupts allocated.
1091  */
1092 static void igb_clear_interrupt_scheme(struct igb_adapter *adapter)
1093 {
1094         igb_free_q_vectors(adapter);
1095         igb_reset_interrupt_capability(adapter);
1096 }
1097
1098 /**
1099  *  igb_set_interrupt_capability - set MSI or MSI-X if supported
1100  *  @adapter: board private structure to initialize
1101  *  @msix: boolean value of MSIX capability
1102  *
1103  *  Attempt to configure interrupts using the best available
1104  *  capabilities of the hardware and kernel.
1105  **/
1106 static void igb_set_interrupt_capability(struct igb_adapter *adapter, bool msix)
1107 {
1108         int err;
1109         int numvecs, i;
1110
1111         if (!msix)
1112                 goto msi_only;
1113         adapter->flags |= IGB_FLAG_HAS_MSIX;
1114
1115         /* Number of supported queues. */
1116         adapter->num_rx_queues = adapter->rss_queues;
1117         if (adapter->vfs_allocated_count)
1118                 adapter->num_tx_queues = 1;
1119         else
1120                 adapter->num_tx_queues = adapter->rss_queues;
1121
1122         /* start with one vector for every Rx queue */
1123         numvecs = adapter->num_rx_queues;
1124
1125         /* if Tx handler is separate add 1 for every Tx queue */
1126         if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS))
1127                 numvecs += adapter->num_tx_queues;
1128
1129         /* store the number of vectors reserved for queues */
1130         adapter->num_q_vectors = numvecs;
1131
1132         /* add 1 vector for link status interrupts */
1133         numvecs++;
1134         for (i = 0; i < numvecs; i++)
1135                 adapter->msix_entries[i].entry = i;
1136
1137         err = pci_enable_msix_range(adapter->pdev,
1138                                     adapter->msix_entries,
1139                                     numvecs,
1140                                     numvecs);
1141         if (err > 0)
1142                 return;
1143
1144         igb_reset_interrupt_capability(adapter);
1145
1146         /* If we can't do MSI-X, try MSI */
1147 msi_only:
1148         adapter->flags &= ~IGB_FLAG_HAS_MSIX;
1149 #ifdef CONFIG_PCI_IOV
1150         /* disable SR-IOV for non MSI-X configurations */
1151         if (adapter->vf_data) {
1152                 struct e1000_hw *hw = &adapter->hw;
1153                 /* disable iov and allow time for transactions to clear */
1154                 pci_disable_sriov(adapter->pdev);
1155                 msleep(500);
1156
1157                 kfree(adapter->vf_mac_list);
1158                 adapter->vf_mac_list = NULL;
1159                 kfree(adapter->vf_data);
1160                 adapter->vf_data = NULL;
1161                 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
1162                 wrfl();
1163                 msleep(100);
1164                 dev_info(&adapter->pdev->dev, "IOV Disabled\n");
1165         }
1166 #endif
1167         adapter->vfs_allocated_count = 0;
1168         adapter->rss_queues = 1;
1169         adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
1170         adapter->num_rx_queues = 1;
1171         adapter->num_tx_queues = 1;
1172         adapter->num_q_vectors = 1;
1173         if (!pci_enable_msi(adapter->pdev))
1174                 adapter->flags |= IGB_FLAG_HAS_MSI;
1175 }
1176
1177 static void igb_add_ring(struct igb_ring *ring,
1178                          struct igb_ring_container *head)
1179 {
1180         head->ring = ring;
1181         head->count++;
1182 }
1183
1184 /**
1185  *  igb_alloc_q_vector - Allocate memory for a single interrupt vector
1186  *  @adapter: board private structure to initialize
1187  *  @v_count: q_vectors allocated on adapter, used for ring interleaving
1188  *  @v_idx: index of vector in adapter struct
1189  *  @txr_count: total number of Tx rings to allocate
1190  *  @txr_idx: index of first Tx ring to allocate
1191  *  @rxr_count: total number of Rx rings to allocate
1192  *  @rxr_idx: index of first Rx ring to allocate
1193  *
1194  *  We allocate one q_vector.  If allocation fails we return -ENOMEM.
1195  **/
1196 static int igb_alloc_q_vector(struct igb_adapter *adapter,
1197                               int v_count, int v_idx,
1198                               int txr_count, int txr_idx,
1199                               int rxr_count, int rxr_idx)
1200 {
1201         struct igb_q_vector *q_vector;
1202         struct igb_ring *ring;
1203         int ring_count, size;
1204
1205         /* igb only supports 1 Tx and/or 1 Rx queue per vector */
1206         if (txr_count > 1 || rxr_count > 1)
1207                 return -ENOMEM;
1208
1209         ring_count = txr_count + rxr_count;
1210         size = sizeof(struct igb_q_vector) +
1211                (sizeof(struct igb_ring) * ring_count);
1212
1213         /* allocate q_vector and rings */
1214         q_vector = adapter->q_vector[v_idx];
1215         if (!q_vector) {
1216                 q_vector = kzalloc(size, GFP_KERNEL);
1217         } else if (size > ksize(q_vector)) {
1218                 kfree_rcu(q_vector, rcu);
1219                 q_vector = kzalloc(size, GFP_KERNEL);
1220         } else {
1221                 memset(q_vector, 0, size);
1222         }
1223         if (!q_vector)
1224                 return -ENOMEM;
1225
1226         /* initialize NAPI */
1227         netif_napi_add(adapter->netdev, &q_vector->napi,
1228                        igb_poll, 64);
1229
1230         /* tie q_vector and adapter together */
1231         adapter->q_vector[v_idx] = q_vector;
1232         q_vector->adapter = adapter;
1233
1234         /* initialize work limits */
1235         q_vector->tx.work_limit = adapter->tx_work_limit;
1236
1237         /* initialize ITR configuration */
1238         q_vector->itr_register = adapter->io_addr + E1000_EITR(0);
1239         q_vector->itr_val = IGB_START_ITR;
1240
1241         /* initialize pointer to rings */
1242         ring = q_vector->ring;
1243
1244         /* intialize ITR */
1245         if (rxr_count) {
1246                 /* rx or rx/tx vector */
1247                 if (!adapter->rx_itr_setting || adapter->rx_itr_setting > 3)
1248                         q_vector->itr_val = adapter->rx_itr_setting;
1249         } else {
1250                 /* tx only vector */
1251                 if (!adapter->tx_itr_setting || adapter->tx_itr_setting > 3)
1252                         q_vector->itr_val = adapter->tx_itr_setting;
1253         }
1254
1255         if (txr_count) {
1256                 /* assign generic ring traits */
1257                 ring->dev = &adapter->pdev->dev;
1258                 ring->netdev = adapter->netdev;
1259
1260                 /* configure backlink on ring */
1261                 ring->q_vector = q_vector;
1262
1263                 /* update q_vector Tx values */
1264                 igb_add_ring(ring, &q_vector->tx);
1265
1266                 /* For 82575, context index must be unique per ring. */
1267                 if (adapter->hw.mac.type == e1000_82575)
1268                         set_bit(IGB_RING_FLAG_TX_CTX_IDX, &ring->flags);
1269
1270                 /* apply Tx specific ring traits */
1271                 ring->count = adapter->tx_ring_count;
1272                 ring->queue_index = txr_idx;
1273
1274                 u64_stats_init(&ring->tx_syncp);
1275                 u64_stats_init(&ring->tx_syncp2);
1276
1277                 /* assign ring to adapter */
1278                 adapter->tx_ring[txr_idx] = ring;
1279
1280                 /* push pointer to next ring */
1281                 ring++;
1282         }
1283
1284         if (rxr_count) {
1285                 /* assign generic ring traits */
1286                 ring->dev = &adapter->pdev->dev;
1287                 ring->netdev = adapter->netdev;
1288
1289                 /* configure backlink on ring */
1290                 ring->q_vector = q_vector;
1291
1292                 /* update q_vector Rx values */
1293                 igb_add_ring(ring, &q_vector->rx);
1294
1295                 /* set flag indicating ring supports SCTP checksum offload */
1296                 if (adapter->hw.mac.type >= e1000_82576)
1297                         set_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags);
1298
1299                 /* On i350, i354, i210, and i211, loopback VLAN packets
1300                  * have the tag byte-swapped.
1301                  */
1302                 if (adapter->hw.mac.type >= e1000_i350)
1303                         set_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &ring->flags);
1304
1305                 /* apply Rx specific ring traits */
1306                 ring->count = adapter->rx_ring_count;
1307                 ring->queue_index = rxr_idx;
1308
1309                 u64_stats_init(&ring->rx_syncp);
1310
1311                 /* assign ring to adapter */
1312                 adapter->rx_ring[rxr_idx] = ring;
1313         }
1314
1315         return 0;
1316 }
1317
1318
1319 /**
1320  *  igb_alloc_q_vectors - Allocate memory for interrupt vectors
1321  *  @adapter: board private structure to initialize
1322  *
1323  *  We allocate one q_vector per queue interrupt.  If allocation fails we
1324  *  return -ENOMEM.
1325  **/
1326 static int igb_alloc_q_vectors(struct igb_adapter *adapter)
1327 {
1328         int q_vectors = adapter->num_q_vectors;
1329         int rxr_remaining = adapter->num_rx_queues;
1330         int txr_remaining = adapter->num_tx_queues;
1331         int rxr_idx = 0, txr_idx = 0, v_idx = 0;
1332         int err;
1333
1334         if (q_vectors >= (rxr_remaining + txr_remaining)) {
1335                 for (; rxr_remaining; v_idx++) {
1336                         err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
1337                                                  0, 0, 1, rxr_idx);
1338
1339                         if (err)
1340                                 goto err_out;
1341
1342                         /* update counts and index */
1343                         rxr_remaining--;
1344                         rxr_idx++;
1345                 }
1346         }
1347
1348         for (; v_idx < q_vectors; v_idx++) {
1349                 int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx);
1350                 int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx);
1351
1352                 err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
1353                                          tqpv, txr_idx, rqpv, rxr_idx);
1354
1355                 if (err)
1356                         goto err_out;
1357
1358                 /* update counts and index */
1359                 rxr_remaining -= rqpv;
1360                 txr_remaining -= tqpv;
1361                 rxr_idx++;
1362                 txr_idx++;
1363         }
1364
1365         return 0;
1366
1367 err_out:
1368         adapter->num_tx_queues = 0;
1369         adapter->num_rx_queues = 0;
1370         adapter->num_q_vectors = 0;
1371
1372         while (v_idx--)
1373                 igb_free_q_vector(adapter, v_idx);
1374
1375         return -ENOMEM;
1376 }
1377
1378 /**
1379  *  igb_init_interrupt_scheme - initialize interrupts, allocate queues/vectors
1380  *  @adapter: board private structure to initialize
1381  *  @msix: boolean value of MSIX capability
1382  *
1383  *  This function initializes the interrupts and allocates all of the queues.
1384  **/
1385 static int igb_init_interrupt_scheme(struct igb_adapter *adapter, bool msix)
1386 {
1387         struct pci_dev *pdev = adapter->pdev;
1388         int err;
1389
1390         igb_set_interrupt_capability(adapter, msix);
1391
1392         err = igb_alloc_q_vectors(adapter);
1393         if (err) {
1394                 dev_err(&pdev->dev, "Unable to allocate memory for vectors\n");
1395                 goto err_alloc_q_vectors;
1396         }
1397
1398         igb_cache_ring_register(adapter);
1399
1400         return 0;
1401
1402 err_alloc_q_vectors:
1403         igb_reset_interrupt_capability(adapter);
1404         return err;
1405 }
1406
1407 /**
1408  *  igb_request_irq - initialize interrupts
1409  *  @adapter: board private structure to initialize
1410  *
1411  *  Attempts to configure interrupts using the best available
1412  *  capabilities of the hardware and kernel.
1413  **/
1414 static int igb_request_irq(struct igb_adapter *adapter)
1415 {
1416         struct net_device *netdev = adapter->netdev;
1417         struct pci_dev *pdev = adapter->pdev;
1418         int err = 0;
1419
1420         if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1421                 err = igb_request_msix(adapter);
1422                 if (!err)
1423                         goto request_done;
1424                 /* fall back to MSI */
1425                 igb_free_all_tx_resources(adapter);
1426                 igb_free_all_rx_resources(adapter);
1427
1428                 igb_clear_interrupt_scheme(adapter);
1429                 err = igb_init_interrupt_scheme(adapter, false);
1430                 if (err)
1431                         goto request_done;
1432
1433                 igb_setup_all_tx_resources(adapter);
1434                 igb_setup_all_rx_resources(adapter);
1435                 igb_configure(adapter);
1436         }
1437
1438         igb_assign_vector(adapter->q_vector[0], 0);
1439
1440         if (adapter->flags & IGB_FLAG_HAS_MSI) {
1441                 err = request_irq(pdev->irq, igb_intr_msi, 0,
1442                                   netdev->name, adapter);
1443                 if (!err)
1444                         goto request_done;
1445
1446                 /* fall back to legacy interrupts */
1447                 igb_reset_interrupt_capability(adapter);
1448                 adapter->flags &= ~IGB_FLAG_HAS_MSI;
1449         }
1450
1451         err = request_irq(pdev->irq, igb_intr, IRQF_SHARED,
1452                           netdev->name, adapter);
1453
1454         if (err)
1455                 dev_err(&pdev->dev, "Error %d getting interrupt\n",
1456                         err);
1457
1458 request_done:
1459         return err;
1460 }
1461
1462 static void igb_free_irq(struct igb_adapter *adapter)
1463 {
1464         if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1465                 int vector = 0, i;
1466
1467                 free_irq(adapter->msix_entries[vector++].vector, adapter);
1468
1469                 for (i = 0; i < adapter->num_q_vectors; i++)
1470                         free_irq(adapter->msix_entries[vector++].vector,
1471                                  adapter->q_vector[i]);
1472         } else {
1473                 free_irq(adapter->pdev->irq, adapter);
1474         }
1475 }
1476
1477 /**
1478  *  igb_irq_disable - Mask off interrupt generation on the NIC
1479  *  @adapter: board private structure
1480  **/
1481 static void igb_irq_disable(struct igb_adapter *adapter)
1482 {
1483         struct e1000_hw *hw = &adapter->hw;
1484
1485         /* we need to be careful when disabling interrupts.  The VFs are also
1486          * mapped into these registers and so clearing the bits can cause
1487          * issues on the VF drivers so we only need to clear what we set
1488          */
1489         if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1490                 u32 regval = rd32(E1000_EIAM);
1491
1492                 wr32(E1000_EIAM, regval & ~adapter->eims_enable_mask);
1493                 wr32(E1000_EIMC, adapter->eims_enable_mask);
1494                 regval = rd32(E1000_EIAC);
1495                 wr32(E1000_EIAC, regval & ~adapter->eims_enable_mask);
1496         }
1497
1498         wr32(E1000_IAM, 0);
1499         wr32(E1000_IMC, ~0);
1500         wrfl();
1501         if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1502                 int i;
1503
1504                 for (i = 0; i < adapter->num_q_vectors; i++)
1505                         synchronize_irq(adapter->msix_entries[i].vector);
1506         } else {
1507                 synchronize_irq(adapter->pdev->irq);
1508         }
1509 }
1510
1511 /**
1512  *  igb_irq_enable - Enable default interrupt generation settings
1513  *  @adapter: board private structure
1514  **/
1515 static void igb_irq_enable(struct igb_adapter *adapter)
1516 {
1517         struct e1000_hw *hw = &adapter->hw;
1518
1519         if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1520                 u32 ims = E1000_IMS_LSC | E1000_IMS_DOUTSYNC | E1000_IMS_DRSTA;
1521                 u32 regval = rd32(E1000_EIAC);
1522
1523                 wr32(E1000_EIAC, regval | adapter->eims_enable_mask);
1524                 regval = rd32(E1000_EIAM);
1525                 wr32(E1000_EIAM, regval | adapter->eims_enable_mask);
1526                 wr32(E1000_EIMS, adapter->eims_enable_mask);
1527                 if (adapter->vfs_allocated_count) {
1528                         wr32(E1000_MBVFIMR, 0xFF);
1529                         ims |= E1000_IMS_VMMB;
1530                 }
1531                 wr32(E1000_IMS, ims);
1532         } else {
1533                 wr32(E1000_IMS, IMS_ENABLE_MASK |
1534                                 E1000_IMS_DRSTA);
1535                 wr32(E1000_IAM, IMS_ENABLE_MASK |
1536                                 E1000_IMS_DRSTA);
1537         }
1538 }
1539
1540 static void igb_update_mng_vlan(struct igb_adapter *adapter)
1541 {
1542         struct e1000_hw *hw = &adapter->hw;
1543         u16 pf_id = adapter->vfs_allocated_count;
1544         u16 vid = adapter->hw.mng_cookie.vlan_id;
1545         u16 old_vid = adapter->mng_vlan_id;
1546
1547         if (hw->mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
1548                 /* add VID to filter table */
1549                 igb_vfta_set(hw, vid, pf_id, true, true);
1550                 adapter->mng_vlan_id = vid;
1551         } else {
1552                 adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
1553         }
1554
1555         if ((old_vid != (u16)IGB_MNG_VLAN_NONE) &&
1556             (vid != old_vid) &&
1557             !test_bit(old_vid, adapter->active_vlans)) {
1558                 /* remove VID from filter table */
1559                 igb_vfta_set(hw, vid, pf_id, false, true);
1560         }
1561 }
1562
1563 /**
1564  *  igb_release_hw_control - release control of the h/w to f/w
1565  *  @adapter: address of board private structure
1566  *
1567  *  igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
1568  *  For ASF and Pass Through versions of f/w this means that the
1569  *  driver is no longer loaded.
1570  **/
1571 static void igb_release_hw_control(struct igb_adapter *adapter)
1572 {
1573         struct e1000_hw *hw = &adapter->hw;
1574         u32 ctrl_ext;
1575
1576         /* Let firmware take over control of h/w */
1577         ctrl_ext = rd32(E1000_CTRL_EXT);
1578         wr32(E1000_CTRL_EXT,
1579                         ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
1580 }
1581
1582 /**
1583  *  igb_get_hw_control - get control of the h/w from f/w
1584  *  @adapter: address of board private structure
1585  *
1586  *  igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
1587  *  For ASF and Pass Through versions of f/w this means that
1588  *  the driver is loaded.
1589  **/
1590 static void igb_get_hw_control(struct igb_adapter *adapter)
1591 {
1592         struct e1000_hw *hw = &adapter->hw;
1593         u32 ctrl_ext;
1594
1595         /* Let firmware know the driver has taken over */
1596         ctrl_ext = rd32(E1000_CTRL_EXT);
1597         wr32(E1000_CTRL_EXT,
1598                         ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
1599 }
1600
1601 /**
1602  *  igb_configure - configure the hardware for RX and TX
1603  *  @adapter: private board structure
1604  **/
1605 static void igb_configure(struct igb_adapter *adapter)
1606 {
1607         struct net_device *netdev = adapter->netdev;
1608         int i;
1609
1610         igb_get_hw_control(adapter);
1611         igb_set_rx_mode(netdev);
1612
1613         igb_restore_vlan(adapter);
1614
1615         igb_setup_tctl(adapter);
1616         igb_setup_mrqc(adapter);
1617         igb_setup_rctl(adapter);
1618
1619         igb_nfc_filter_restore(adapter);
1620         igb_configure_tx(adapter);
1621         igb_configure_rx(adapter);
1622
1623         igb_rx_fifo_flush_82575(&adapter->hw);
1624
1625         /* call igb_desc_unused which always leaves
1626          * at least 1 descriptor unused to make sure
1627          * next_to_use != next_to_clean
1628          */
1629         for (i = 0; i < adapter->num_rx_queues; i++) {
1630                 struct igb_ring *ring = adapter->rx_ring[i];
1631                 igb_alloc_rx_buffers(ring, igb_desc_unused(ring));
1632         }
1633 }
1634
1635 /**
1636  *  igb_power_up_link - Power up the phy/serdes link
1637  *  @adapter: address of board private structure
1638  **/
1639 void igb_power_up_link(struct igb_adapter *adapter)
1640 {
1641         igb_reset_phy(&adapter->hw);
1642
1643         if (adapter->hw.phy.media_type == e1000_media_type_copper)
1644                 igb_power_up_phy_copper(&adapter->hw);
1645         else
1646                 igb_power_up_serdes_link_82575(&adapter->hw);
1647
1648         igb_setup_link(&adapter->hw);
1649 }
1650
1651 /**
1652  *  igb_power_down_link - Power down the phy/serdes link
1653  *  @adapter: address of board private structure
1654  */
1655 static void igb_power_down_link(struct igb_adapter *adapter)
1656 {
1657         if (adapter->hw.phy.media_type == e1000_media_type_copper)
1658                 igb_power_down_phy_copper_82575(&adapter->hw);
1659         else
1660                 igb_shutdown_serdes_link_82575(&adapter->hw);
1661 }
1662
1663 /**
1664  * Detect and switch function for Media Auto Sense
1665  * @adapter: address of the board private structure
1666  **/
1667 static void igb_check_swap_media(struct igb_adapter *adapter)
1668 {
1669         struct e1000_hw *hw = &adapter->hw;
1670         u32 ctrl_ext, connsw;
1671         bool swap_now = false;
1672
1673         ctrl_ext = rd32(E1000_CTRL_EXT);
1674         connsw = rd32(E1000_CONNSW);
1675
1676         /* need to live swap if current media is copper and we have fiber/serdes
1677          * to go to.
1678          */
1679
1680         if ((hw->phy.media_type == e1000_media_type_copper) &&
1681             (!(connsw & E1000_CONNSW_AUTOSENSE_EN))) {
1682                 swap_now = true;
1683         } else if (!(connsw & E1000_CONNSW_SERDESD)) {
1684                 /* copper signal takes time to appear */
1685                 if (adapter->copper_tries < 4) {
1686                         adapter->copper_tries++;
1687                         connsw |= E1000_CONNSW_AUTOSENSE_CONF;
1688                         wr32(E1000_CONNSW, connsw);
1689                         return;
1690                 } else {
1691                         adapter->copper_tries = 0;
1692                         if ((connsw & E1000_CONNSW_PHYSD) &&
1693                             (!(connsw & E1000_CONNSW_PHY_PDN))) {
1694                                 swap_now = true;
1695                                 connsw &= ~E1000_CONNSW_AUTOSENSE_CONF;
1696                                 wr32(E1000_CONNSW, connsw);
1697                         }
1698                 }
1699         }
1700
1701         if (!swap_now)
1702                 return;
1703
1704         switch (hw->phy.media_type) {
1705         case e1000_media_type_copper:
1706                 netdev_info(adapter->netdev,
1707                         "MAS: changing media to fiber/serdes\n");
1708                 ctrl_ext |=
1709                         E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
1710                 adapter->flags |= IGB_FLAG_MEDIA_RESET;
1711                 adapter->copper_tries = 0;
1712                 break;
1713         case e1000_media_type_internal_serdes:
1714         case e1000_media_type_fiber:
1715                 netdev_info(adapter->netdev,
1716                         "MAS: changing media to copper\n");
1717                 ctrl_ext &=
1718                         ~E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
1719                 adapter->flags |= IGB_FLAG_MEDIA_RESET;
1720                 break;
1721         default:
1722                 /* shouldn't get here during regular operation */
1723                 netdev_err(adapter->netdev,
1724                         "AMS: Invalid media type found, returning\n");
1725                 break;
1726         }
1727         wr32(E1000_CTRL_EXT, ctrl_ext);
1728 }
1729
1730 /**
1731  *  igb_up - Open the interface and prepare it to handle traffic
1732  *  @adapter: board private structure
1733  **/
1734 int igb_up(struct igb_adapter *adapter)
1735 {
1736         struct e1000_hw *hw = &adapter->hw;
1737         int i;
1738
1739         /* hardware has been reset, we need to reload some things */
1740         igb_configure(adapter);
1741
1742         clear_bit(__IGB_DOWN, &adapter->state);
1743
1744         for (i = 0; i < adapter->num_q_vectors; i++)
1745                 napi_enable(&(adapter->q_vector[i]->napi));
1746
1747         if (adapter->flags & IGB_FLAG_HAS_MSIX)
1748                 igb_configure_msix(adapter);
1749         else
1750                 igb_assign_vector(adapter->q_vector[0], 0);
1751
1752         /* Clear any pending interrupts. */
1753         rd32(E1000_ICR);
1754         igb_irq_enable(adapter);
1755
1756         /* notify VFs that reset has been completed */
1757         if (adapter->vfs_allocated_count) {
1758                 u32 reg_data = rd32(E1000_CTRL_EXT);
1759
1760                 reg_data |= E1000_CTRL_EXT_PFRSTD;
1761                 wr32(E1000_CTRL_EXT, reg_data);
1762         }
1763
1764         netif_tx_start_all_queues(adapter->netdev);
1765
1766         /* start the watchdog. */
1767         hw->mac.get_link_status = 1;
1768         schedule_work(&adapter->watchdog_task);
1769
1770         if ((adapter->flags & IGB_FLAG_EEE) &&
1771             (!hw->dev_spec._82575.eee_disable))
1772                 adapter->eee_advert = MDIO_EEE_100TX | MDIO_EEE_1000T;
1773
1774         return 0;
1775 }
1776
1777 void igb_down(struct igb_adapter *adapter)
1778 {
1779         struct net_device *netdev = adapter->netdev;
1780         struct e1000_hw *hw = &adapter->hw;
1781         u32 tctl, rctl;
1782         int i;
1783
1784         /* signal that we're down so the interrupt handler does not
1785          * reschedule our watchdog timer
1786          */
1787         set_bit(__IGB_DOWN, &adapter->state);
1788
1789         /* disable receives in the hardware */
1790         rctl = rd32(E1000_RCTL);
1791         wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
1792         /* flush and sleep below */
1793
1794         netif_carrier_off(netdev);
1795         netif_tx_stop_all_queues(netdev);
1796
1797         /* disable transmits in the hardware */
1798         tctl = rd32(E1000_TCTL);
1799         tctl &= ~E1000_TCTL_EN;
1800         wr32(E1000_TCTL, tctl);
1801         /* flush both disables and wait for them to finish */
1802         wrfl();
1803         usleep_range(10000, 11000);
1804
1805         igb_irq_disable(adapter);
1806
1807         adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
1808
1809         for (i = 0; i < adapter->num_q_vectors; i++) {
1810                 if (adapter->q_vector[i]) {
1811                         napi_synchronize(&adapter->q_vector[i]->napi);
1812                         napi_disable(&adapter->q_vector[i]->napi);
1813                 }
1814         }
1815
1816         del_timer_sync(&adapter->watchdog_timer);
1817         del_timer_sync(&adapter->phy_info_timer);
1818
1819         /* record the stats before reset*/
1820         spin_lock(&adapter->stats64_lock);
1821         igb_update_stats(adapter);
1822         spin_unlock(&adapter->stats64_lock);
1823
1824         adapter->link_speed = 0;
1825         adapter->link_duplex = 0;
1826
1827         if (!pci_channel_offline(adapter->pdev))
1828                 igb_reset(adapter);
1829
1830         /* clear VLAN promisc flag so VFTA will be updated if necessary */
1831         adapter->flags &= ~IGB_FLAG_VLAN_PROMISC;
1832
1833         igb_clean_all_tx_rings(adapter);
1834         igb_clean_all_rx_rings(adapter);
1835 #ifdef CONFIG_IGB_DCA
1836
1837         /* since we reset the hardware DCA settings were cleared */
1838         igb_setup_dca(adapter);
1839 #endif
1840 }
1841
1842 void igb_reinit_locked(struct igb_adapter *adapter)
1843 {
1844         WARN_ON(in_interrupt());
1845         while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
1846                 usleep_range(1000, 2000);
1847         igb_down(adapter);
1848         igb_up(adapter);
1849         clear_bit(__IGB_RESETTING, &adapter->state);
1850 }
1851
1852 /** igb_enable_mas - Media Autosense re-enable after swap
1853  *
1854  * @adapter: adapter struct
1855  **/
1856 static void igb_enable_mas(struct igb_adapter *adapter)
1857 {
1858         struct e1000_hw *hw = &adapter->hw;
1859         u32 connsw = rd32(E1000_CONNSW);
1860
1861         /* configure for SerDes media detect */
1862         if ((hw->phy.media_type == e1000_media_type_copper) &&
1863             (!(connsw & E1000_CONNSW_SERDESD))) {
1864                 connsw |= E1000_CONNSW_ENRGSRC;
1865                 connsw |= E1000_CONNSW_AUTOSENSE_EN;
1866                 wr32(E1000_CONNSW, connsw);
1867                 wrfl();
1868         }
1869 }
1870
1871 void igb_reset(struct igb_adapter *adapter)
1872 {
1873         struct pci_dev *pdev = adapter->pdev;
1874         struct e1000_hw *hw = &adapter->hw;
1875         struct e1000_mac_info *mac = &hw->mac;
1876         struct e1000_fc_info *fc = &hw->fc;
1877         u32 pba, hwm;
1878
1879         /* Repartition Pba for greater than 9k mtu
1880          * To take effect CTRL.RST is required.
1881          */
1882         switch (mac->type) {
1883         case e1000_i350:
1884         case e1000_i354:
1885         case e1000_82580:
1886                 pba = rd32(E1000_RXPBS);
1887                 pba = igb_rxpbs_adjust_82580(pba);
1888                 break;
1889         case e1000_82576:
1890                 pba = rd32(E1000_RXPBS);
1891                 pba &= E1000_RXPBS_SIZE_MASK_82576;
1892                 break;
1893         case e1000_82575:
1894         case e1000_i210:
1895         case e1000_i211:
1896         default:
1897                 pba = E1000_PBA_34K;
1898                 break;
1899         }
1900
1901         if (mac->type == e1000_82575) {
1902                 u32 min_rx_space, min_tx_space, needed_tx_space;
1903
1904                 /* write Rx PBA so that hardware can report correct Tx PBA */
1905                 wr32(E1000_PBA, pba);
1906
1907                 /* To maintain wire speed transmits, the Tx FIFO should be
1908                  * large enough to accommodate two full transmit packets,
1909                  * rounded up to the next 1KB and expressed in KB.  Likewise,
1910                  * the Rx FIFO should be large enough to accommodate at least
1911                  * one full receive packet and is similarly rounded up and
1912                  * expressed in KB.
1913                  */
1914                 min_rx_space = DIV_ROUND_UP(MAX_JUMBO_FRAME_SIZE, 1024);
1915
1916                 /* The Tx FIFO also stores 16 bytes of information about the Tx
1917                  * but don't include Ethernet FCS because hardware appends it.
1918                  * We only need to round down to the nearest 512 byte block
1919                  * count since the value we care about is 2 frames, not 1.
1920                  */
1921                 min_tx_space = adapter->max_frame_size;
1922                 min_tx_space += sizeof(union e1000_adv_tx_desc) - ETH_FCS_LEN;
1923                 min_tx_space = DIV_ROUND_UP(min_tx_space, 512);
1924
1925                 /* upper 16 bits has Tx packet buffer allocation size in KB */
1926                 needed_tx_space = min_tx_space - (rd32(E1000_PBA) >> 16);
1927
1928                 /* If current Tx allocation is less than the min Tx FIFO size,
1929                  * and the min Tx FIFO size is less than the current Rx FIFO
1930                  * allocation, take space away from current Rx allocation.
1931                  */
1932                 if (needed_tx_space < pba) {
1933                         pba -= needed_tx_space;
1934
1935                         /* if short on Rx space, Rx wins and must trump Tx
1936                          * adjustment
1937                          */
1938                         if (pba < min_rx_space)
1939                                 pba = min_rx_space;
1940                 }
1941
1942                 /* adjust PBA for jumbo frames */
1943                 wr32(E1000_PBA, pba);
1944         }
1945
1946         /* flow control settings
1947          * The high water mark must be low enough to fit one full frame
1948          * after transmitting the pause frame.  As such we must have enough
1949          * space to allow for us to complete our current transmit and then
1950          * receive the frame that is in progress from the link partner.
1951          * Set it to:
1952          * - the full Rx FIFO size minus one full Tx plus one full Rx frame
1953          */
1954         hwm = (pba << 10) - (adapter->max_frame_size + MAX_JUMBO_FRAME_SIZE);
1955
1956         fc->high_water = hwm & 0xFFFFFFF0;      /* 16-byte granularity */
1957         fc->low_water = fc->high_water - 16;
1958         fc->pause_time = 0xFFFF;
1959         fc->send_xon = 1;
1960         fc->current_mode = fc->requested_mode;
1961
1962         /* disable receive for all VFs and wait one second */
1963         if (adapter->vfs_allocated_count) {
1964                 int i;
1965
1966                 for (i = 0 ; i < adapter->vfs_allocated_count; i++)
1967                         adapter->vf_data[i].flags &= IGB_VF_FLAG_PF_SET_MAC;
1968
1969                 /* ping all the active vfs to let them know we are going down */
1970                 igb_ping_all_vfs(adapter);
1971
1972                 /* disable transmits and receives */
1973                 wr32(E1000_VFRE, 0);
1974                 wr32(E1000_VFTE, 0);
1975         }
1976
1977         /* Allow time for pending master requests to run */
1978         hw->mac.ops.reset_hw(hw);
1979         wr32(E1000_WUC, 0);
1980
1981         if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
1982                 /* need to resetup here after media swap */
1983                 adapter->ei.get_invariants(hw);
1984                 adapter->flags &= ~IGB_FLAG_MEDIA_RESET;
1985         }
1986         if ((mac->type == e1000_82575) &&
1987             (adapter->flags & IGB_FLAG_MAS_ENABLE)) {
1988                 igb_enable_mas(adapter);
1989         }
1990         if (hw->mac.ops.init_hw(hw))
1991                 dev_err(&pdev->dev, "Hardware Error\n");
1992
1993         /* RAR registers were cleared during init_hw, clear mac table */
1994         igb_flush_mac_table(adapter);
1995         __dev_uc_unsync(adapter->netdev, NULL);
1996
1997         /* Recover default RAR entry */
1998         igb_set_default_mac_filter(adapter);
1999
2000         /* Flow control settings reset on hardware reset, so guarantee flow
2001          * control is off when forcing speed.
2002          */
2003         if (!hw->mac.autoneg)
2004                 igb_force_mac_fc(hw);
2005
2006         igb_init_dmac(adapter, pba);
2007 #ifdef CONFIG_IGB_HWMON
2008         /* Re-initialize the thermal sensor on i350 devices. */
2009         if (!test_bit(__IGB_DOWN, &adapter->state)) {
2010                 if (mac->type == e1000_i350 && hw->bus.func == 0) {
2011                         /* If present, re-initialize the external thermal sensor
2012                          * interface.
2013                          */
2014                         if (adapter->ets)
2015                                 mac->ops.init_thermal_sensor_thresh(hw);
2016                 }
2017         }
2018 #endif
2019         /* Re-establish EEE setting */
2020         if (hw->phy.media_type == e1000_media_type_copper) {
2021                 switch (mac->type) {
2022                 case e1000_i350:
2023                 case e1000_i210:
2024                 case e1000_i211:
2025                         igb_set_eee_i350(hw, true, true);
2026                         break;
2027                 case e1000_i354:
2028                         igb_set_eee_i354(hw, true, true);
2029                         break;
2030                 default:
2031                         break;
2032                 }
2033         }
2034         if (!netif_running(adapter->netdev))
2035                 igb_power_down_link(adapter);
2036
2037         igb_update_mng_vlan(adapter);
2038
2039         /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
2040         wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE);
2041
2042         /* Re-enable PTP, where applicable. */
2043         if (adapter->ptp_flags & IGB_PTP_ENABLED)
2044                 igb_ptp_reset(adapter);
2045
2046         igb_get_phy_info(hw);
2047 }
2048
2049 static netdev_features_t igb_fix_features(struct net_device *netdev,
2050         netdev_features_t features)
2051 {
2052         /* Since there is no support for separate Rx/Tx vlan accel
2053          * enable/disable make sure Tx flag is always in same state as Rx.
2054          */
2055         if (features & NETIF_F_HW_VLAN_CTAG_RX)
2056                 features |= NETIF_F_HW_VLAN_CTAG_TX;
2057         else
2058                 features &= ~NETIF_F_HW_VLAN_CTAG_TX;
2059
2060         return features;
2061 }
2062
2063 static int igb_set_features(struct net_device *netdev,
2064         netdev_features_t features)
2065 {
2066         netdev_features_t changed = netdev->features ^ features;
2067         struct igb_adapter *adapter = netdev_priv(netdev);
2068
2069         if (changed & NETIF_F_HW_VLAN_CTAG_RX)
2070                 igb_vlan_mode(netdev, features);
2071
2072         if (!(changed & (NETIF_F_RXALL | NETIF_F_NTUPLE)))
2073                 return 0;
2074
2075         if (!(features & NETIF_F_NTUPLE)) {
2076                 struct hlist_node *node2;
2077                 struct igb_nfc_filter *rule;
2078
2079                 spin_lock(&adapter->nfc_lock);
2080                 hlist_for_each_entry_safe(rule, node2,
2081                                           &adapter->nfc_filter_list, nfc_node) {
2082                         igb_erase_filter(adapter, rule);
2083                         hlist_del(&rule->nfc_node);
2084                         kfree(rule);
2085                 }
2086                 spin_unlock(&adapter->nfc_lock);
2087                 adapter->nfc_filter_count = 0;
2088         }
2089
2090         netdev->features = features;
2091
2092         if (netif_running(netdev))
2093                 igb_reinit_locked(adapter);
2094         else
2095                 igb_reset(adapter);
2096
2097         return 0;
2098 }
2099
2100 static int igb_ndo_fdb_add(struct ndmsg *ndm, struct nlattr *tb[],
2101                            struct net_device *dev,
2102                            const unsigned char *addr, u16 vid,
2103                            u16 flags)
2104 {
2105         /* guarantee we can provide a unique filter for the unicast address */
2106         if (is_unicast_ether_addr(addr) || is_link_local_ether_addr(addr)) {
2107                 struct igb_adapter *adapter = netdev_priv(dev);
2108                 int vfn = adapter->vfs_allocated_count;
2109
2110                 if (netdev_uc_count(dev) >= igb_available_rars(adapter, vfn))
2111                         return -ENOMEM;
2112         }
2113
2114         return ndo_dflt_fdb_add(ndm, tb, dev, addr, vid, flags);
2115 }
2116
2117 #define IGB_MAX_MAC_HDR_LEN     127
2118 #define IGB_MAX_NETWORK_HDR_LEN 511
2119
2120 static netdev_features_t
2121 igb_features_check(struct sk_buff *skb, struct net_device *dev,
2122                    netdev_features_t features)
2123 {
2124         unsigned int network_hdr_len, mac_hdr_len;
2125
2126         /* Make certain the headers can be described by a context descriptor */
2127         mac_hdr_len = skb_network_header(skb) - skb->data;
2128         if (unlikely(mac_hdr_len > IGB_MAX_MAC_HDR_LEN))
2129                 return features & ~(NETIF_F_HW_CSUM |
2130                                     NETIF_F_SCTP_CRC |
2131                                     NETIF_F_HW_VLAN_CTAG_TX |
2132                                     NETIF_F_TSO |
2133                                     NETIF_F_TSO6);
2134
2135         network_hdr_len = skb_checksum_start(skb) - skb_network_header(skb);
2136         if (unlikely(network_hdr_len >  IGB_MAX_NETWORK_HDR_LEN))
2137                 return features & ~(NETIF_F_HW_CSUM |
2138                                     NETIF_F_SCTP_CRC |
2139                                     NETIF_F_TSO |
2140                                     NETIF_F_TSO6);
2141
2142         /* We can only support IPV4 TSO in tunnels if we can mangle the
2143          * inner IP ID field, so strip TSO if MANGLEID is not supported.
2144          */
2145         if (skb->encapsulation && !(features & NETIF_F_TSO_MANGLEID))
2146                 features &= ~NETIF_F_TSO;
2147
2148         return features;
2149 }
2150
2151 static const struct net_device_ops igb_netdev_ops = {
2152         .ndo_open               = igb_open,
2153         .ndo_stop               = igb_close,
2154         .ndo_start_xmit         = igb_xmit_frame,
2155         .ndo_get_stats64        = igb_get_stats64,
2156         .ndo_set_rx_mode        = igb_set_rx_mode,
2157         .ndo_set_mac_address    = igb_set_mac,
2158         .ndo_change_mtu         = igb_change_mtu,
2159         .ndo_do_ioctl           = igb_ioctl,
2160         .ndo_tx_timeout         = igb_tx_timeout,
2161         .ndo_validate_addr      = eth_validate_addr,
2162         .ndo_vlan_rx_add_vid    = igb_vlan_rx_add_vid,
2163         .ndo_vlan_rx_kill_vid   = igb_vlan_rx_kill_vid,
2164         .ndo_set_vf_mac         = igb_ndo_set_vf_mac,
2165         .ndo_set_vf_vlan        = igb_ndo_set_vf_vlan,
2166         .ndo_set_vf_rate        = igb_ndo_set_vf_bw,
2167         .ndo_set_vf_spoofchk    = igb_ndo_set_vf_spoofchk,
2168         .ndo_get_vf_config      = igb_ndo_get_vf_config,
2169 #ifdef CONFIG_NET_POLL_CONTROLLER
2170         .ndo_poll_controller    = igb_netpoll,
2171 #endif
2172         .ndo_fix_features       = igb_fix_features,
2173         .ndo_set_features       = igb_set_features,
2174         .ndo_fdb_add            = igb_ndo_fdb_add,
2175         .ndo_features_check     = igb_features_check,
2176 };
2177
2178 /**
2179  * igb_set_fw_version - Configure version string for ethtool
2180  * @adapter: adapter struct
2181  **/
2182 void igb_set_fw_version(struct igb_adapter *adapter)
2183 {
2184         struct e1000_hw *hw = &adapter->hw;
2185         struct e1000_fw_version fw;
2186
2187         igb_get_fw_version(hw, &fw);
2188
2189         switch (hw->mac.type) {
2190         case e1000_i210:
2191         case e1000_i211:
2192                 if (!(igb_get_flash_presence_i210(hw))) {
2193                         snprintf(adapter->fw_version,
2194                                  sizeof(adapter->fw_version),
2195                                  "%2d.%2d-%d",
2196                                  fw.invm_major, fw.invm_minor,
2197                                  fw.invm_img_type);
2198                         break;
2199                 }
2200                 /* fall through */
2201         default:
2202                 /* if option is rom valid, display its version too */
2203                 if (fw.or_valid) {
2204                         snprintf(adapter->fw_version,
2205                                  sizeof(adapter->fw_version),
2206                                  "%d.%d, 0x%08x, %d.%d.%d",
2207                                  fw.eep_major, fw.eep_minor, fw.etrack_id,
2208                                  fw.or_major, fw.or_build, fw.or_patch);
2209                 /* no option rom */
2210                 } else if (fw.etrack_id != 0X0000) {
2211                         snprintf(adapter->fw_version,
2212                             sizeof(adapter->fw_version),
2213                             "%d.%d, 0x%08x",
2214                             fw.eep_major, fw.eep_minor, fw.etrack_id);
2215                 } else {
2216                 snprintf(adapter->fw_version,
2217                     sizeof(adapter->fw_version),
2218                     "%d.%d.%d",
2219                     fw.eep_major, fw.eep_minor, fw.eep_build);
2220                 }
2221                 break;
2222         }
2223 }
2224
2225 /**
2226  * igb_init_mas - init Media Autosense feature if enabled in the NVM
2227  *
2228  * @adapter: adapter struct
2229  **/
2230 static void igb_init_mas(struct igb_adapter *adapter)
2231 {
2232         struct e1000_hw *hw = &adapter->hw;
2233         u16 eeprom_data;
2234
2235         hw->nvm.ops.read(hw, NVM_COMPAT, 1, &eeprom_data);
2236         switch (hw->bus.func) {
2237         case E1000_FUNC_0:
2238                 if (eeprom_data & IGB_MAS_ENABLE_0) {
2239                         adapter->flags |= IGB_FLAG_MAS_ENABLE;
2240                         netdev_info(adapter->netdev,
2241                                 "MAS: Enabling Media Autosense for port %d\n",
2242                                 hw->bus.func);
2243                 }
2244                 break;
2245         case E1000_FUNC_1:
2246                 if (eeprom_data & IGB_MAS_ENABLE_1) {
2247                         adapter->flags |= IGB_FLAG_MAS_ENABLE;
2248                         netdev_info(adapter->netdev,
2249                                 "MAS: Enabling Media Autosense for port %d\n",
2250                                 hw->bus.func);
2251                 }
2252                 break;
2253         case E1000_FUNC_2:
2254                 if (eeprom_data & IGB_MAS_ENABLE_2) {
2255                         adapter->flags |= IGB_FLAG_MAS_ENABLE;
2256                         netdev_info(adapter->netdev,
2257                                 "MAS: Enabling Media Autosense for port %d\n",
2258                                 hw->bus.func);
2259                 }
2260                 break;
2261         case E1000_FUNC_3:
2262                 if (eeprom_data & IGB_MAS_ENABLE_3) {
2263                         adapter->flags |= IGB_FLAG_MAS_ENABLE;
2264                         netdev_info(adapter->netdev,
2265                                 "MAS: Enabling Media Autosense for port %d\n",
2266                                 hw->bus.func);
2267                 }
2268                 break;
2269         default:
2270                 /* Shouldn't get here */
2271                 netdev_err(adapter->netdev,
2272                         "MAS: Invalid port configuration, returning\n");
2273                 break;
2274         }
2275 }
2276
2277 /**
2278  *  igb_init_i2c - Init I2C interface
2279  *  @adapter: pointer to adapter structure
2280  **/
2281 static s32 igb_init_i2c(struct igb_adapter *adapter)
2282 {
2283         s32 status = 0;
2284
2285         /* I2C interface supported on i350 devices */
2286         if (adapter->hw.mac.type != e1000_i350)
2287                 return 0;
2288
2289         /* Initialize the i2c bus which is controlled by the registers.
2290          * This bus will use the i2c_algo_bit structue that implements
2291          * the protocol through toggling of the 4 bits in the register.
2292          */
2293         adapter->i2c_adap.owner = THIS_MODULE;
2294         adapter->i2c_algo = igb_i2c_algo;
2295         adapter->i2c_algo.data = adapter;
2296         adapter->i2c_adap.algo_data = &adapter->i2c_algo;
2297         adapter->i2c_adap.dev.parent = &adapter->pdev->dev;
2298         strlcpy(adapter->i2c_adap.name, "igb BB",
2299                 sizeof(adapter->i2c_adap.name));
2300         status = i2c_bit_add_bus(&adapter->i2c_adap);
2301         return status;
2302 }
2303
2304 /**
2305  *  igb_probe - Device Initialization Routine
2306  *  @pdev: PCI device information struct
2307  *  @ent: entry in igb_pci_tbl
2308  *
2309  *  Returns 0 on success, negative on failure
2310  *
2311  *  igb_probe initializes an adapter identified by a pci_dev structure.
2312  *  The OS initialization, configuring of the adapter private structure,
2313  *  and a hardware reset occur.
2314  **/
2315 static int igb_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
2316 {
2317         struct net_device *netdev;
2318         struct igb_adapter *adapter;
2319         struct e1000_hw *hw;
2320         u16 eeprom_data = 0;
2321         s32 ret_val;
2322         static int global_quad_port_a; /* global quad port a indication */
2323         const struct e1000_info *ei = igb_info_tbl[ent->driver_data];
2324         int err, pci_using_dac;
2325         u8 part_str[E1000_PBANUM_LENGTH];
2326
2327         /* Catch broken hardware that put the wrong VF device ID in
2328          * the PCIe SR-IOV capability.
2329          */
2330         if (pdev->is_virtfn) {
2331                 WARN(1, KERN_ERR "%s (%hx:%hx) should not be a VF!\n",
2332                         pci_name(pdev), pdev->vendor, pdev->device);
2333                 return -EINVAL;
2334         }
2335
2336         err = pci_enable_device_mem(pdev);
2337         if (err)
2338                 return err;
2339
2340         pci_using_dac = 0;
2341         err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
2342         if (!err) {
2343                 pci_using_dac = 1;
2344         } else {
2345                 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
2346                 if (err) {
2347                         dev_err(&pdev->dev,
2348                                 "No usable DMA configuration, aborting\n");
2349                         goto err_dma;
2350                 }
2351         }
2352
2353         err = pci_request_mem_regions(pdev, igb_driver_name);
2354         if (err)
2355                 goto err_pci_reg;
2356
2357         pci_enable_pcie_error_reporting(pdev);
2358
2359         pci_set_master(pdev);
2360         pci_save_state(pdev);
2361
2362         err = -ENOMEM;
2363         netdev = alloc_etherdev_mq(sizeof(struct igb_adapter),
2364                                    IGB_MAX_TX_QUEUES);
2365         if (!netdev)
2366                 goto err_alloc_etherdev;
2367
2368         SET_NETDEV_DEV(netdev, &pdev->dev);
2369
2370         pci_set_drvdata(pdev, netdev);
2371         adapter = netdev_priv(netdev);
2372         adapter->netdev = netdev;
2373         adapter->pdev = pdev;
2374         hw = &adapter->hw;
2375         hw->back = adapter;
2376         adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
2377
2378         err = -EIO;
2379         adapter->io_addr = pci_iomap(pdev, 0, 0);
2380         if (!adapter->io_addr)
2381                 goto err_ioremap;
2382         /* hw->hw_addr can be altered, we'll use adapter->io_addr for unmap */
2383         hw->hw_addr = adapter->io_addr;
2384
2385         netdev->netdev_ops = &igb_netdev_ops;
2386         igb_set_ethtool_ops(netdev);
2387         netdev->watchdog_timeo = 5 * HZ;
2388
2389         strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
2390
2391         netdev->mem_start = pci_resource_start(pdev, 0);
2392         netdev->mem_end = pci_resource_end(pdev, 0);
2393
2394         /* PCI config space info */
2395         hw->vendor_id = pdev->vendor;
2396         hw->device_id = pdev->device;
2397         hw->revision_id = pdev->revision;
2398         hw->subsystem_vendor_id = pdev->subsystem_vendor;
2399         hw->subsystem_device_id = pdev->subsystem_device;
2400
2401         /* Copy the default MAC, PHY and NVM function pointers */
2402         memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
2403         memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
2404         memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
2405         /* Initialize skew-specific constants */
2406         err = ei->get_invariants(hw);
2407         if (err)
2408                 goto err_sw_init;
2409
2410         /* setup the private structure */
2411         err = igb_sw_init(adapter);
2412         if (err)
2413                 goto err_sw_init;
2414
2415         igb_get_bus_info_pcie(hw);
2416
2417         hw->phy.autoneg_wait_to_complete = false;
2418
2419         /* Copper options */
2420         if (hw->phy.media_type == e1000_media_type_copper) {
2421                 hw->phy.mdix = AUTO_ALL_MODES;
2422                 hw->phy.disable_polarity_correction = false;
2423                 hw->phy.ms_type = e1000_ms_hw_default;
2424         }
2425
2426         if (igb_check_reset_block(hw))
2427                 dev_info(&pdev->dev,
2428                         "PHY reset is blocked due to SOL/IDER session.\n");
2429
2430         /* features is initialized to 0 in allocation, it might have bits
2431          * set by igb_sw_init so we should use an or instead of an
2432          * assignment.
2433          */
2434         netdev->features |= NETIF_F_SG |
2435                             NETIF_F_TSO |
2436                             NETIF_F_TSO6 |
2437                             NETIF_F_RXHASH |
2438                             NETIF_F_RXCSUM |
2439                             NETIF_F_HW_CSUM;
2440
2441         if (hw->mac.type >= e1000_82576)
2442                 netdev->features |= NETIF_F_SCTP_CRC;
2443
2444 #define IGB_GSO_PARTIAL_FEATURES (NETIF_F_GSO_GRE | \
2445                                   NETIF_F_GSO_GRE_CSUM | \
2446                                   NETIF_F_GSO_IPXIP4 | \
2447                                   NETIF_F_GSO_IPXIP6 | \
2448                                   NETIF_F_GSO_UDP_TUNNEL | \
2449                                   NETIF_F_GSO_UDP_TUNNEL_CSUM)
2450
2451         netdev->gso_partial_features = IGB_GSO_PARTIAL_FEATURES;
2452         netdev->features |= NETIF_F_GSO_PARTIAL | IGB_GSO_PARTIAL_FEATURES;
2453
2454         /* copy netdev features into list of user selectable features */
2455         netdev->hw_features |= netdev->features |
2456                                NETIF_F_HW_VLAN_CTAG_RX |
2457                                NETIF_F_HW_VLAN_CTAG_TX |
2458                                NETIF_F_RXALL;
2459
2460         if (hw->mac.type >= e1000_i350)
2461                 netdev->hw_features |= NETIF_F_NTUPLE;
2462
2463         if (pci_using_dac)
2464                 netdev->features |= NETIF_F_HIGHDMA;
2465
2466         netdev->vlan_features |= netdev->features | NETIF_F_TSO_MANGLEID;
2467         netdev->mpls_features |= NETIF_F_HW_CSUM;
2468         netdev->hw_enc_features |= netdev->vlan_features;
2469
2470         /* set this bit last since it cannot be part of vlan_features */
2471         netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER |
2472                             NETIF_F_HW_VLAN_CTAG_RX |
2473                             NETIF_F_HW_VLAN_CTAG_TX;
2474
2475         netdev->priv_flags |= IFF_SUPP_NOFCS;
2476
2477         netdev->priv_flags |= IFF_UNICAST_FLT;
2478
2479         /* MTU range: 68 - 9216 */
2480         netdev->min_mtu = ETH_MIN_MTU;
2481         netdev->max_mtu = MAX_STD_JUMBO_FRAME_SIZE;
2482
2483         adapter->en_mng_pt = igb_enable_mng_pass_thru(hw);
2484
2485         /* before reading the NVM, reset the controller to put the device in a
2486          * known good starting state
2487          */
2488         hw->mac.ops.reset_hw(hw);
2489
2490         /* make sure the NVM is good , i211/i210 parts can have special NVM
2491          * that doesn't contain a checksum
2492          */
2493         switch (hw->mac.type) {
2494         case e1000_i210:
2495         case e1000_i211:
2496                 if (igb_get_flash_presence_i210(hw)) {
2497                         if (hw->nvm.ops.validate(hw) < 0) {
2498                                 dev_err(&pdev->dev,
2499                                         "The NVM Checksum Is Not Valid\n");
2500                                 err = -EIO;
2501                                 goto err_eeprom;
2502                         }
2503                 }
2504                 break;
2505         default:
2506                 if (hw->nvm.ops.validate(hw) < 0) {
2507                         dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
2508                         err = -EIO;
2509                         goto err_eeprom;
2510                 }
2511                 break;
2512         }
2513
2514         if (eth_platform_get_mac_address(&pdev->dev, hw->mac.addr)) {
2515                 /* copy the MAC address out of the NVM */
2516                 if (hw->mac.ops.read_mac_addr(hw))
2517                         dev_err(&pdev->dev, "NVM Read Error\n");
2518         }
2519
2520         memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);
2521
2522         if (!is_valid_ether_addr(netdev->dev_addr)) {
2523                 dev_err(&pdev->dev, "Invalid MAC Address\n");
2524                 err = -EIO;
2525                 goto err_eeprom;
2526         }
2527
2528         igb_set_default_mac_filter(adapter);
2529
2530         /* get firmware version for ethtool -i */
2531         igb_set_fw_version(adapter);
2532
2533         /* configure RXPBSIZE and TXPBSIZE */
2534         if (hw->mac.type == e1000_i210) {
2535                 wr32(E1000_RXPBS, I210_RXPBSIZE_DEFAULT);
2536                 wr32(E1000_TXPBS, I210_TXPBSIZE_DEFAULT);
2537         }
2538
2539         setup_timer(&adapter->watchdog_timer, igb_watchdog,
2540                     (unsigned long) adapter);
2541         setup_timer(&adapter->phy_info_timer, igb_update_phy_info,
2542                     (unsigned long) adapter);
2543
2544         INIT_WORK(&adapter->reset_task, igb_reset_task);
2545         INIT_WORK(&adapter->watchdog_task, igb_watchdog_task);
2546
2547         /* Initialize link properties that are user-changeable */
2548         adapter->fc_autoneg = true;
2549         hw->mac.autoneg = true;
2550         hw->phy.autoneg_advertised = 0x2f;
2551
2552         hw->fc.requested_mode = e1000_fc_default;
2553         hw->fc.current_mode = e1000_fc_default;
2554
2555         igb_validate_mdi_setting(hw);
2556
2557         /* By default, support wake on port A */
2558         if (hw->bus.func == 0)
2559                 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2560
2561         /* Check the NVM for wake support on non-port A ports */
2562         if (hw->mac.type >= e1000_82580)
2563                 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
2564                                  NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
2565                                  &eeprom_data);
2566         else if (hw->bus.func == 1)
2567                 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
2568
2569         if (eeprom_data & IGB_EEPROM_APME)
2570                 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2571
2572         /* now that we have the eeprom settings, apply the special cases where
2573          * the eeprom may be wrong or the board simply won't support wake on
2574          * lan on a particular port
2575          */
2576         switch (pdev->device) {
2577         case E1000_DEV_ID_82575GB_QUAD_COPPER:
2578                 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2579                 break;
2580         case E1000_DEV_ID_82575EB_FIBER_SERDES:
2581         case E1000_DEV_ID_82576_FIBER:
2582         case E1000_DEV_ID_82576_SERDES:
2583                 /* Wake events only supported on port A for dual fiber
2584                  * regardless of eeprom setting
2585                  */
2586                 if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1)
2587                         adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2588                 break;
2589         case E1000_DEV_ID_82576_QUAD_COPPER:
2590         case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
2591                 /* if quad port adapter, disable WoL on all but port A */
2592                 if (global_quad_port_a != 0)
2593                         adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2594                 else
2595                         adapter->flags |= IGB_FLAG_QUAD_PORT_A;
2596                 /* Reset for multiple quad port adapters */
2597                 if (++global_quad_port_a == 4)
2598                         global_quad_port_a = 0;
2599                 break;
2600         default:
2601                 /* If the device can't wake, don't set software support */
2602                 if (!device_can_wakeup(&adapter->pdev->dev))
2603                         adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2604         }
2605
2606         /* initialize the wol settings based on the eeprom settings */
2607         if (adapter->flags & IGB_FLAG_WOL_SUPPORTED)
2608                 adapter->wol |= E1000_WUFC_MAG;
2609
2610         /* Some vendors want WoL disabled by default, but still supported */
2611         if ((hw->mac.type == e1000_i350) &&
2612             (pdev->subsystem_vendor == PCI_VENDOR_ID_HP)) {
2613                 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2614                 adapter->wol = 0;
2615         }
2616
2617         /* Some vendors want the ability to Use the EEPROM setting as
2618          * enable/disable only, and not for capability
2619          */
2620         if (((hw->mac.type == e1000_i350) ||
2621              (hw->mac.type == e1000_i354)) &&
2622             (pdev->subsystem_vendor == PCI_VENDOR_ID_DELL)) {
2623                 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2624                 adapter->wol = 0;
2625         }
2626         if (hw->mac.type == e1000_i350) {
2627                 if (((pdev->subsystem_device == 0x5001) ||
2628                      (pdev->subsystem_device == 0x5002)) &&
2629                                 (hw->bus.func == 0)) {
2630                         adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2631                         adapter->wol = 0;
2632                 }
2633                 if (pdev->subsystem_device == 0x1F52)
2634                         adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2635         }
2636
2637         device_set_wakeup_enable(&adapter->pdev->dev,
2638                                  adapter->flags & IGB_FLAG_WOL_SUPPORTED);
2639
2640         /* reset the hardware with the new settings */
2641         igb_reset(adapter);
2642
2643         /* Init the I2C interface */
2644         err = igb_init_i2c(adapter);
2645         if (err) {
2646                 dev_err(&pdev->dev, "failed to init i2c interface\n");
2647                 goto err_eeprom;
2648         }
2649
2650         /* let the f/w know that the h/w is now under the control of the
2651          * driver.
2652          */
2653         igb_get_hw_control(adapter);
2654
2655         strcpy(netdev->name, "eth%d");
2656         err = register_netdev(netdev);
2657         if (err)
2658                 goto err_register;
2659
2660         /* carrier off reporting is important to ethtool even BEFORE open */
2661         netif_carrier_off(netdev);
2662
2663 #ifdef CONFIG_IGB_DCA
2664         if (dca_add_requester(&pdev->dev) == 0) {
2665                 adapter->flags |= IGB_FLAG_DCA_ENABLED;
2666                 dev_info(&pdev->dev, "DCA enabled\n");
2667                 igb_setup_dca(adapter);
2668         }
2669
2670 #endif
2671 #ifdef CONFIG_IGB_HWMON
2672         /* Initialize the thermal sensor on i350 devices. */
2673         if (hw->mac.type == e1000_i350 && hw->bus.func == 0) {
2674                 u16 ets_word;
2675
2676                 /* Read the NVM to determine if this i350 device supports an
2677                  * external thermal sensor.
2678                  */
2679                 hw->nvm.ops.read(hw, NVM_ETS_CFG, 1, &ets_word);
2680                 if (ets_word != 0x0000 && ets_word != 0xFFFF)
2681                         adapter->ets = true;
2682                 else
2683                         adapter->ets = false;
2684                 if (igb_sysfs_init(adapter))
2685                         dev_err(&pdev->dev,
2686                                 "failed to allocate sysfs resources\n");
2687         } else {
2688                 adapter->ets = false;
2689         }
2690 #endif
2691         /* Check if Media Autosense is enabled */
2692         adapter->ei = *ei;
2693         if (hw->dev_spec._82575.mas_capable)
2694                 igb_init_mas(adapter);
2695
2696         /* do hw tstamp init after resetting */
2697         igb_ptp_init(adapter);
2698
2699         dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n");
2700         /* print bus type/speed/width info, not applicable to i354 */
2701         if (hw->mac.type != e1000_i354) {
2702                 dev_info(&pdev->dev, "%s: (PCIe:%s:%s) %pM\n",
2703                          netdev->name,
2704                          ((hw->bus.speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
2705                           (hw->bus.speed == e1000_bus_speed_5000) ? "5.0Gb/s" :
2706                            "unknown"),
2707                          ((hw->bus.width == e1000_bus_width_pcie_x4) ?
2708                           "Width x4" :
2709                           (hw->bus.width == e1000_bus_width_pcie_x2) ?
2710                           "Width x2" :
2711                           (hw->bus.width == e1000_bus_width_pcie_x1) ?
2712                           "Width x1" : "unknown"), netdev->dev_addr);
2713         }
2714
2715         if ((hw->mac.type >= e1000_i210 ||
2716              igb_get_flash_presence_i210(hw))) {
2717                 ret_val = igb_read_part_string(hw, part_str,
2718                                                E1000_PBANUM_LENGTH);
2719         } else {
2720                 ret_val = -E1000_ERR_INVM_VALUE_NOT_FOUND;
2721         }
2722
2723         if (ret_val)
2724                 strcpy(part_str, "Unknown");
2725         dev_info(&pdev->dev, "%s: PBA No: %s\n", netdev->name, part_str);
2726         dev_info(&pdev->dev,
2727                 "Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
2728                 (adapter->flags & IGB_FLAG_HAS_MSIX) ? "MSI-X" :
2729                 (adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy",
2730                 adapter->num_rx_queues, adapter->num_tx_queues);
2731         if (hw->phy.media_type == e1000_media_type_copper) {
2732                 switch (hw->mac.type) {
2733                 case e1000_i350:
2734                 case e1000_i210:
2735                 case e1000_i211:
2736                         /* Enable EEE for internal copper PHY devices */
2737                         err = igb_set_eee_i350(hw, true, true);
2738                         if ((!err) &&
2739                             (!hw->dev_spec._82575.eee_disable)) {
2740                                 adapter->eee_advert =
2741                                         MDIO_EEE_100TX | MDIO_EEE_1000T;
2742                                 adapter->flags |= IGB_FLAG_EEE;
2743                         }
2744                         break;
2745                 case e1000_i354:
2746                         if ((rd32(E1000_CTRL_EXT) &
2747                             E1000_CTRL_EXT_LINK_MODE_SGMII)) {
2748                                 err = igb_set_eee_i354(hw, true, true);
2749                                 if ((!err) &&
2750                                         (!hw->dev_spec._82575.eee_disable)) {
2751                                         adapter->eee_advert =
2752                                            MDIO_EEE_100TX | MDIO_EEE_1000T;
2753                                         adapter->flags |= IGB_FLAG_EEE;
2754                                 }
2755                         }
2756                         break;
2757                 default:
2758                         break;
2759                 }
2760         }
2761         pm_runtime_put_noidle(&pdev->dev);
2762         return 0;
2763
2764 err_register:
2765         igb_release_hw_control(adapter);
2766         memset(&adapter->i2c_adap, 0, sizeof(adapter->i2c_adap));
2767 err_eeprom:
2768         if (!igb_check_reset_block(hw))
2769                 igb_reset_phy(hw);
2770
2771         if (hw->flash_address)
2772                 iounmap(hw->flash_address);
2773 err_sw_init:
2774         kfree(adapter->mac_table);
2775         kfree(adapter->shadow_vfta);
2776         igb_clear_interrupt_scheme(adapter);
2777 #ifdef CONFIG_PCI_IOV
2778         igb_disable_sriov(pdev);
2779 #endif
2780         pci_iounmap(pdev, adapter->io_addr);
2781 err_ioremap:
2782         free_netdev(netdev);
2783 err_alloc_etherdev:
2784         pci_release_mem_regions(pdev);
2785 err_pci_reg:
2786 err_dma:
2787         pci_disable_device(pdev);
2788         return err;
2789 }
2790
2791 #ifdef CONFIG_PCI_IOV
2792 static int igb_disable_sriov(struct pci_dev *pdev)
2793 {
2794         struct net_device *netdev = pci_get_drvdata(pdev);
2795         struct igb_adapter *adapter = netdev_priv(netdev);
2796         struct e1000_hw *hw = &adapter->hw;
2797
2798         /* reclaim resources allocated to VFs */
2799         if (adapter->vf_data) {
2800                 /* disable iov and allow time for transactions to clear */
2801                 if (pci_vfs_assigned(pdev)) {
2802                         dev_warn(&pdev->dev,
2803                                  "Cannot deallocate SR-IOV virtual functions while they are assigned - VFs will not be deallocated\n");
2804                         return -EPERM;
2805                 } else {
2806                         pci_disable_sriov(pdev);
2807                         msleep(500);
2808                 }
2809
2810                 kfree(adapter->vf_mac_list);
2811                 adapter->vf_mac_list = NULL;
2812                 kfree(adapter->vf_data);
2813                 adapter->vf_data = NULL;
2814                 adapter->vfs_allocated_count = 0;
2815                 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
2816                 wrfl();
2817                 msleep(100);
2818                 dev_info(&pdev->dev, "IOV Disabled\n");
2819
2820                 /* Re-enable DMA Coalescing flag since IOV is turned off */
2821                 adapter->flags |= IGB_FLAG_DMAC;
2822         }
2823
2824         return 0;
2825 }
2826
2827 static int igb_enable_sriov(struct pci_dev *pdev, int num_vfs)
2828 {
2829         struct net_device *netdev = pci_get_drvdata(pdev);
2830         struct igb_adapter *adapter = netdev_priv(netdev);
2831         int old_vfs = pci_num_vf(pdev);
2832         struct vf_mac_filter *mac_list;
2833         int err = 0;
2834         int num_vf_mac_filters, i;
2835
2836         if (!(adapter->flags & IGB_FLAG_HAS_MSIX) || num_vfs > 7) {
2837                 err = -EPERM;
2838                 goto out;
2839         }
2840         if (!num_vfs)
2841                 goto out;
2842
2843         if (old_vfs) {
2844                 dev_info(&pdev->dev, "%d pre-allocated VFs found - override max_vfs setting of %d\n",
2845                          old_vfs, max_vfs);
2846                 adapter->vfs_allocated_count = old_vfs;
2847         } else
2848                 adapter->vfs_allocated_count = num_vfs;
2849
2850         adapter->vf_data = kcalloc(adapter->vfs_allocated_count,
2851                                 sizeof(struct vf_data_storage), GFP_KERNEL);
2852
2853         /* if allocation failed then we do not support SR-IOV */
2854         if (!adapter->vf_data) {
2855                 adapter->vfs_allocated_count = 0;
2856                 dev_err(&pdev->dev,
2857                         "Unable to allocate memory for VF Data Storage\n");
2858                 err = -ENOMEM;
2859                 goto out;
2860         }
2861
2862         /* Due to the limited number of RAR entries calculate potential
2863          * number of MAC filters available for the VFs. Reserve entries
2864          * for PF default MAC, PF MAC filters and at least one RAR entry
2865          * for each VF for VF MAC.
2866          */
2867         num_vf_mac_filters = adapter->hw.mac.rar_entry_count -
2868                              (1 + IGB_PF_MAC_FILTERS_RESERVED +
2869                               adapter->vfs_allocated_count);
2870
2871         adapter->vf_mac_list = kcalloc(num_vf_mac_filters,
2872                                        sizeof(struct vf_mac_filter),
2873                                        GFP_KERNEL);
2874
2875         mac_list = adapter->vf_mac_list;
2876         INIT_LIST_HEAD(&adapter->vf_macs.l);
2877
2878         if (adapter->vf_mac_list) {
2879                 /* Initialize list of VF MAC filters */
2880                 for (i = 0; i < num_vf_mac_filters; i++) {
2881                         mac_list->vf = -1;
2882                         mac_list->free = true;
2883                         list_add(&mac_list->l, &adapter->vf_macs.l);
2884                         mac_list++;
2885                 }
2886         } else {
2887                 /* If we could not allocate memory for the VF MAC filters
2888                  * we can continue without this feature but warn user.
2889                  */
2890                 dev_err(&pdev->dev,
2891                         "Unable to allocate memory for VF MAC filter list\n");
2892         }
2893
2894         /* only call pci_enable_sriov() if no VFs are allocated already */
2895         if (!old_vfs) {
2896                 err = pci_enable_sriov(pdev, adapter->vfs_allocated_count);
2897                 if (err)
2898                         goto err_out;
2899         }
2900         dev_info(&pdev->dev, "%d VFs allocated\n",
2901                  adapter->vfs_allocated_count);
2902         for (i = 0; i < adapter->vfs_allocated_count; i++)
2903                 igb_vf_configure(adapter, i);
2904
2905         /* DMA Coalescing is not supported in IOV mode. */
2906         adapter->flags &= ~IGB_FLAG_DMAC;
2907         goto out;
2908
2909 err_out:
2910         kfree(adapter->vf_mac_list);
2911         adapter->vf_mac_list = NULL;
2912         kfree(adapter->vf_data);
2913         adapter->vf_data = NULL;
2914         adapter->vfs_allocated_count = 0;
2915 out:
2916         return err;
2917 }
2918
2919 #endif
2920 /**
2921  *  igb_remove_i2c - Cleanup  I2C interface
2922  *  @adapter: pointer to adapter structure
2923  **/
2924 static void igb_remove_i2c(struct igb_adapter *adapter)
2925 {
2926         /* free the adapter bus structure */
2927         i2c_del_adapter(&adapter->i2c_adap);
2928 }
2929
2930 /**
2931  *  igb_remove - Device Removal Routine
2932  *  @pdev: PCI device information struct
2933  *
2934  *  igb_remove is called by the PCI subsystem to alert the driver
2935  *  that it should release a PCI device.  The could be caused by a
2936  *  Hot-Plug event, or because the driver is going to be removed from
2937  *  memory.
2938  **/
2939 static void igb_remove(struct pci_dev *pdev)
2940 {
2941         struct net_device *netdev = pci_get_drvdata(pdev);
2942         struct igb_adapter *adapter = netdev_priv(netdev);
2943         struct e1000_hw *hw = &adapter->hw;
2944
2945         pm_runtime_get_noresume(&pdev->dev);
2946 #ifdef CONFIG_IGB_HWMON
2947         igb_sysfs_exit(adapter);
2948 #endif
2949         igb_remove_i2c(adapter);
2950         igb_ptp_stop(adapter);
2951         /* The watchdog timer may be rescheduled, so explicitly
2952          * disable watchdog from being rescheduled.
2953          */
2954         set_bit(__IGB_DOWN, &adapter->state);
2955         del_timer_sync(&adapter->watchdog_timer);
2956         del_timer_sync(&adapter->phy_info_timer);
2957
2958         cancel_work_sync(&adapter->reset_task);
2959         cancel_work_sync(&adapter->watchdog_task);
2960
2961 #ifdef CONFIG_IGB_DCA
2962         if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
2963                 dev_info(&pdev->dev, "DCA disabled\n");
2964                 dca_remove_requester(&pdev->dev);
2965                 adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
2966                 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
2967         }
2968 #endif
2969
2970         /* Release control of h/w to f/w.  If f/w is AMT enabled, this
2971          * would have already happened in close and is redundant.
2972          */
2973         igb_release_hw_control(adapter);
2974
2975 #ifdef CONFIG_PCI_IOV
2976         igb_disable_sriov(pdev);
2977 #endif
2978
2979         unregister_netdev(netdev);
2980
2981         igb_clear_interrupt_scheme(adapter);
2982
2983         pci_iounmap(pdev, adapter->io_addr);
2984         if (hw->flash_address)
2985                 iounmap(hw->flash_address);
2986         pci_release_mem_regions(pdev);
2987
2988         kfree(adapter->mac_table);
2989         kfree(adapter->shadow_vfta);
2990         free_netdev(netdev);
2991
2992         pci_disable_pcie_error_reporting(pdev);
2993
2994         pci_disable_device(pdev);
2995 }
2996
2997 /**
2998  *  igb_probe_vfs - Initialize vf data storage and add VFs to pci config space
2999  *  @adapter: board private structure to initialize
3000  *
3001  *  This function initializes the vf specific data storage and then attempts to
3002  *  allocate the VFs.  The reason for ordering it this way is because it is much
3003  *  mor expensive time wise to disable SR-IOV than it is to allocate and free
3004  *  the memory for the VFs.
3005  **/
3006 static void igb_probe_vfs(struct igb_adapter *adapter)
3007 {
3008 #ifdef CONFIG_PCI_IOV
3009         struct pci_dev *pdev = adapter->pdev;
3010         struct e1000_hw *hw = &adapter->hw;
3011
3012         /* Virtualization features not supported on i210 family. */
3013         if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211))
3014                 return;
3015
3016         /* Of the below we really only want the effect of getting
3017          * IGB_FLAG_HAS_MSIX set (if available), without which
3018          * igb_enable_sriov() has no effect.
3019          */
3020         igb_set_interrupt_capability(adapter, true);
3021         igb_reset_interrupt_capability(adapter);
3022
3023         pci_sriov_set_totalvfs(pdev, 7);
3024         igb_enable_sriov(pdev, max_vfs);
3025
3026 #endif /* CONFIG_PCI_IOV */
3027 }
3028
3029 static void igb_init_queue_configuration(struct igb_adapter *adapter)
3030 {
3031         struct e1000_hw *hw = &adapter->hw;
3032         u32 max_rss_queues;
3033
3034         /* Determine the maximum number of RSS queues supported. */
3035         switch (hw->mac.type) {
3036         case e1000_i211:
3037                 max_rss_queues = IGB_MAX_RX_QUEUES_I211;
3038                 break;
3039         case e1000_82575:
3040         case e1000_i210:
3041                 max_rss_queues = IGB_MAX_RX_QUEUES_82575;
3042                 break;
3043         case e1000_i350:
3044                 /* I350 cannot do RSS and SR-IOV at the same time */
3045                 if (!!adapter->vfs_allocated_count) {
3046                         max_rss_queues = 1;
3047                         break;
3048                 }
3049                 /* fall through */
3050         case e1000_82576:
3051                 if (!!adapter->vfs_allocated_count) {
3052                         max_rss_queues = 2;
3053                         break;
3054                 }
3055                 /* fall through */
3056         case e1000_82580:
3057         case e1000_i354:
3058         default:
3059                 max_rss_queues = IGB_MAX_RX_QUEUES;
3060                 break;
3061         }
3062
3063         adapter->rss_queues = min_t(u32, max_rss_queues, num_online_cpus());
3064
3065         igb_set_flag_queue_pairs(adapter, max_rss_queues);
3066 }
3067
3068 void igb_set_flag_queue_pairs(struct igb_adapter *adapter,
3069                               const u32 max_rss_queues)
3070 {
3071         struct e1000_hw *hw = &adapter->hw;
3072
3073         /* Determine if we need to pair queues. */
3074         switch (hw->mac.type) {
3075         case e1000_82575:
3076         case e1000_i211:
3077                 /* Device supports enough interrupts without queue pairing. */
3078                 break;
3079         case e1000_82576:
3080         case e1000_82580:
3081         case e1000_i350:
3082         case e1000_i354:
3083         case e1000_i210:
3084         default:
3085                 /* If rss_queues > half of max_rss_queues, pair the queues in
3086                  * order to conserve interrupts due to limited supply.
3087                  */
3088                 if (adapter->rss_queues > (max_rss_queues / 2))
3089                         adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
3090                 else
3091                         adapter->flags &= ~IGB_FLAG_QUEUE_PAIRS;
3092                 break;
3093         }
3094 }
3095
3096 /**
3097  *  igb_sw_init - Initialize general software structures (struct igb_adapter)
3098  *  @adapter: board private structure to initialize
3099  *
3100  *  igb_sw_init initializes the Adapter private data structure.
3101  *  Fields are initialized based on PCI device information and
3102  *  OS network device settings (MTU size).
3103  **/
3104 static int igb_sw_init(struct igb_adapter *adapter)
3105 {
3106         struct e1000_hw *hw = &adapter->hw;
3107         struct net_device *netdev = adapter->netdev;
3108         struct pci_dev *pdev = adapter->pdev;
3109
3110         pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
3111
3112         /* set default ring sizes */
3113         adapter->tx_ring_count = IGB_DEFAULT_TXD;
3114         adapter->rx_ring_count = IGB_DEFAULT_RXD;
3115
3116         /* set default ITR values */
3117         adapter->rx_itr_setting = IGB_DEFAULT_ITR;
3118         adapter->tx_itr_setting = IGB_DEFAULT_ITR;
3119
3120         /* set default work limits */
3121         adapter->tx_work_limit = IGB_DEFAULT_TX_WORK;
3122
3123         adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN +
3124                                   VLAN_HLEN;
3125         adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
3126
3127         spin_lock_init(&adapter->nfc_lock);
3128         spin_lock_init(&adapter->stats64_lock);
3129 #ifdef CONFIG_PCI_IOV
3130         switch (hw->mac.type) {
3131         case e1000_82576:
3132         case e1000_i350:
3133                 if (max_vfs > 7) {
3134                         dev_warn(&pdev->dev,
3135                                  "Maximum of 7 VFs per PF, using max\n");
3136                         max_vfs = adapter->vfs_allocated_count = 7;
3137                 } else
3138                         adapter->vfs_allocated_count = max_vfs;
3139                 if (adapter->vfs_allocated_count)
3140                         dev_warn(&pdev->dev,
3141                                  "Enabling SR-IOV VFs using the module parameter is deprecated - please use the pci sysfs interface.\n");
3142                 break;
3143         default:
3144                 break;
3145         }
3146 #endif /* CONFIG_PCI_IOV */
3147
3148         /* Assume MSI-X interrupts, will be checked during IRQ allocation */
3149         adapter->flags |= IGB_FLAG_HAS_MSIX;
3150
3151         adapter->mac_table = kzalloc(sizeof(struct igb_mac_addr) *
3152                                      hw->mac.rar_entry_count, GFP_ATOMIC);
3153         if (!adapter->mac_table)
3154                 return -ENOMEM;
3155
3156         igb_probe_vfs(adapter);
3157
3158         igb_init_queue_configuration(adapter);
3159
3160         /* Setup and initialize a copy of the hw vlan table array */
3161         adapter->shadow_vfta = kcalloc(E1000_VLAN_FILTER_TBL_SIZE, sizeof(u32),
3162                                        GFP_ATOMIC);
3163
3164         /* This call may decrease the number of queues */
3165         if (igb_init_interrupt_scheme(adapter, true)) {
3166                 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
3167                 return -ENOMEM;
3168         }
3169
3170         /* Explicitly disable IRQ since the NIC can be in any state. */
3171         igb_irq_disable(adapter);
3172
3173         if (hw->mac.type >= e1000_i350)
3174                 adapter->flags &= ~IGB_FLAG_DMAC;
3175
3176         set_bit(__IGB_DOWN, &adapter->state);
3177         return 0;
3178 }
3179
3180 /**
3181  *  igb_open - Called when a network interface is made active
3182  *  @netdev: network interface device structure
3183  *
3184  *  Returns 0 on success, negative value on failure
3185  *
3186  *  The open entry point is called when a network interface is made
3187  *  active by the system (IFF_UP).  At this point all resources needed
3188  *  for transmit and receive operations are allocated, the interrupt
3189  *  handler is registered with the OS, the watchdog timer is started,
3190  *  and the stack is notified that the interface is ready.
3191  **/
3192 static int __igb_open(struct net_device *netdev, bool resuming)
3193 {
3194         struct igb_adapter *adapter = netdev_priv(netdev);
3195         struct e1000_hw *hw = &adapter->hw;
3196         struct pci_dev *pdev = adapter->pdev;
3197         int err;
3198         int i;
3199
3200         /* disallow open during test */
3201         if (test_bit(__IGB_TESTING, &adapter->state)) {
3202                 WARN_ON(resuming);
3203                 return -EBUSY;
3204         }
3205
3206         if (!resuming)
3207                 pm_runtime_get_sync(&pdev->dev);
3208
3209         netif_carrier_off(netdev);
3210
3211         /* allocate transmit descriptors */
3212         err = igb_setup_all_tx_resources(adapter);
3213         if (err)
3214                 goto err_setup_tx;
3215
3216         /* allocate receive descriptors */
3217         err = igb_setup_all_rx_resources(adapter);
3218         if (err)
3219                 goto err_setup_rx;
3220
3221         igb_power_up_link(adapter);
3222
3223         /* before we allocate an interrupt, we must be ready to handle it.
3224          * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
3225          * as soon as we call pci_request_irq, so we have to setup our
3226          * clean_rx handler before we do so.
3227          */
3228         igb_configure(adapter);
3229
3230         err = igb_request_irq(adapter);
3231         if (err)
3232                 goto err_req_irq;
3233
3234         /* Notify the stack of the actual queue counts. */
3235         err = netif_set_real_num_tx_queues(adapter->netdev,
3236                                            adapter->num_tx_queues);
3237         if (err)
3238                 goto err_set_queues;
3239
3240         err = netif_set_real_num_rx_queues(adapter->netdev,
3241                                            adapter->num_rx_queues);
3242         if (err)
3243                 goto err_set_queues;
3244
3245         /* From here on the code is the same as igb_up() */
3246         clear_bit(__IGB_DOWN, &adapter->state);
3247
3248         for (i = 0; i < adapter->num_q_vectors; i++)
3249                 napi_enable(&(adapter->q_vector[i]->napi));
3250
3251         /* Clear any pending interrupts. */
3252         rd32(E1000_ICR);
3253
3254         igb_irq_enable(adapter);
3255
3256         /* notify VFs that reset has been completed */
3257         if (adapter->vfs_allocated_count) {
3258                 u32 reg_data = rd32(E1000_CTRL_EXT);
3259
3260                 reg_data |= E1000_CTRL_EXT_PFRSTD;
3261                 wr32(E1000_CTRL_EXT, reg_data);
3262         }
3263
3264         netif_tx_start_all_queues(netdev);
3265
3266         if (!resuming)
3267                 pm_runtime_put(&pdev->dev);
3268
3269         /* start the watchdog. */
3270         hw->mac.get_link_status = 1;
3271         schedule_work(&adapter->watchdog_task);
3272
3273         return 0;
3274
3275 err_set_queues:
3276         igb_free_irq(adapter);
3277 err_req_irq:
3278         igb_release_hw_control(adapter);
3279         igb_power_down_link(adapter);
3280         igb_free_all_rx_resources(adapter);
3281 err_setup_rx:
3282         igb_free_all_tx_resources(adapter);
3283 err_setup_tx:
3284         igb_reset(adapter);
3285         if (!resuming)
3286                 pm_runtime_put(&pdev->dev);
3287
3288         return err;
3289 }
3290
3291 int igb_open(struct net_device *netdev)
3292 {
3293         return __igb_open(netdev, false);
3294 }
3295
3296 /**
3297  *  igb_close - Disables a network interface
3298  *  @netdev: network interface device structure
3299  *
3300  *  Returns 0, this is not allowed to fail
3301  *
3302  *  The close entry point is called when an interface is de-activated
3303  *  by the OS.  The hardware is still under the driver's control, but
3304  *  needs to be disabled.  A global MAC reset is issued to stop the
3305  *  hardware, and all transmit and receive resources are freed.
3306  **/
3307 static int __igb_close(struct net_device *netdev, bool suspending)
3308 {
3309         struct igb_adapter *adapter = netdev_priv(netdev);
3310         struct pci_dev *pdev = adapter->pdev;
3311
3312         WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));
3313
3314         if (!suspending)
3315                 pm_runtime_get_sync(&pdev->dev);
3316
3317         igb_down(adapter);
3318         igb_free_irq(adapter);
3319
3320         igb_nfc_filter_exit(adapter);
3321
3322         igb_free_all_tx_resources(adapter);
3323         igb_free_all_rx_resources(adapter);
3324
3325         if (!suspending)
3326                 pm_runtime_put_sync(&pdev->dev);
3327         return 0;
3328 }
3329
3330 int igb_close(struct net_device *netdev)
3331 {
3332         if (netif_device_present(netdev))
3333                 return __igb_close(netdev, false);
3334         return 0;
3335 }
3336
3337 /**
3338  *  igb_setup_tx_resources - allocate Tx resources (Descriptors)
3339  *  @tx_ring: tx descriptor ring (for a specific queue) to setup
3340  *
3341  *  Return 0 on success, negative on failure
3342  **/
3343 int igb_setup_tx_resources(struct igb_ring *tx_ring)
3344 {
3345         struct device *dev = tx_ring->dev;
3346         int size;
3347
3348         size = sizeof(struct igb_tx_buffer) * tx_ring->count;
3349
3350         tx_ring->tx_buffer_info = vmalloc(size);
3351         if (!tx_ring->tx_buffer_info)
3352                 goto err;
3353
3354         /* round up to nearest 4K */
3355         tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
3356         tx_ring->size = ALIGN(tx_ring->size, 4096);
3357
3358         tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
3359                                            &tx_ring->dma, GFP_KERNEL);
3360         if (!tx_ring->desc)
3361                 goto err;
3362
3363         tx_ring->next_to_use = 0;
3364         tx_ring->next_to_clean = 0;
3365
3366         return 0;
3367
3368 err:
3369         vfree(tx_ring->tx_buffer_info);
3370         tx_ring->tx_buffer_info = NULL;
3371         dev_err(dev, "Unable to allocate memory for the Tx descriptor ring\n");
3372         return -ENOMEM;
3373 }
3374
3375 /**
3376  *  igb_setup_all_tx_resources - wrapper to allocate Tx resources
3377  *                               (Descriptors) for all queues
3378  *  @adapter: board private structure
3379  *
3380  *  Return 0 on success, negative on failure
3381  **/
3382 static int igb_setup_all_tx_resources(struct igb_adapter *adapter)
3383 {
3384         struct pci_dev *pdev = adapter->pdev;
3385         int i, err = 0;
3386
3387         for (i = 0; i < adapter->num_tx_queues; i++) {
3388                 err = igb_setup_tx_resources(adapter->tx_ring[i]);
3389                 if (err) {
3390                         dev_err(&pdev->dev,
3391                                 "Allocation for Tx Queue %u failed\n", i);
3392                         for (i--; i >= 0; i--)
3393                                 igb_free_tx_resources(adapter->tx_ring[i]);
3394                         break;
3395                 }
3396         }
3397
3398         return err;
3399 }
3400
3401 /**
3402  *  igb_setup_tctl - configure the transmit control registers
3403  *  @adapter: Board private structure
3404  **/
3405 void igb_setup_tctl(struct igb_adapter *adapter)
3406 {
3407         struct e1000_hw *hw = &adapter->hw;
3408         u32 tctl;
3409
3410         /* disable queue 0 which is enabled by default on 82575 and 82576 */
3411         wr32(E1000_TXDCTL(0), 0);
3412
3413         /* Program the Transmit Control Register */
3414         tctl = rd32(E1000_TCTL);
3415         tctl &= ~E1000_TCTL_CT;
3416         tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
3417                 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
3418
3419         igb_config_collision_dist(hw);
3420
3421         /* Enable transmits */
3422         tctl |= E1000_TCTL_EN;
3423
3424         wr32(E1000_TCTL, tctl);
3425 }
3426
3427 /**
3428  *  igb_configure_tx_ring - Configure transmit ring after Reset
3429  *  @adapter: board private structure
3430  *  @ring: tx ring to configure
3431  *
3432  *  Configure a transmit ring after a reset.
3433  **/
3434 void igb_configure_tx_ring(struct igb_adapter *adapter,
3435                            struct igb_ring *ring)
3436 {
3437         struct e1000_hw *hw = &adapter->hw;
3438         u32 txdctl = 0;
3439         u64 tdba = ring->dma;
3440         int reg_idx = ring->reg_idx;
3441
3442         /* disable the queue */
3443         wr32(E1000_TXDCTL(reg_idx), 0);
3444         wrfl();
3445         mdelay(10);
3446
3447         wr32(E1000_TDLEN(reg_idx),
3448              ring->count * sizeof(union e1000_adv_tx_desc));
3449         wr32(E1000_TDBAL(reg_idx),
3450              tdba & 0x00000000ffffffffULL);
3451         wr32(E1000_TDBAH(reg_idx), tdba >> 32);
3452
3453         ring->tail = adapter->io_addr + E1000_TDT(reg_idx);
3454         wr32(E1000_TDH(reg_idx), 0);
3455         writel(0, ring->tail);
3456
3457         txdctl |= IGB_TX_PTHRESH;
3458         txdctl |= IGB_TX_HTHRESH << 8;
3459         txdctl |= IGB_TX_WTHRESH << 16;
3460
3461         /* reinitialize tx_buffer_info */
3462         memset(ring->tx_buffer_info, 0,
3463                sizeof(struct igb_tx_buffer) * ring->count);
3464
3465         txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
3466         wr32(E1000_TXDCTL(reg_idx), txdctl);
3467 }
3468
3469 /**
3470  *  igb_configure_tx - Configure transmit Unit after Reset
3471  *  @adapter: board private structure
3472  *
3473  *  Configure the Tx unit of the MAC after a reset.
3474  **/
3475 static void igb_configure_tx(struct igb_adapter *adapter)
3476 {
3477         int i;
3478
3479         for (i = 0; i < adapter->num_tx_queues; i++)
3480                 igb_configure_tx_ring(adapter, adapter->tx_ring[i]);
3481 }
3482
3483 /**
3484  *  igb_setup_rx_resources - allocate Rx resources (Descriptors)
3485  *  @rx_ring: Rx descriptor ring (for a specific queue) to setup
3486  *
3487  *  Returns 0 on success, negative on failure
3488  **/
3489 int igb_setup_rx_resources(struct igb_ring *rx_ring)
3490 {
3491         struct device *dev = rx_ring->dev;
3492         int size;
3493
3494         size = sizeof(struct igb_rx_buffer) * rx_ring->count;
3495
3496         rx_ring->rx_buffer_info = vmalloc(size);
3497         if (!rx_ring->rx_buffer_info)
3498                 goto err;
3499
3500         /* Round up to nearest 4K */
3501         rx_ring->size = rx_ring->count * sizeof(union e1000_adv_rx_desc);
3502         rx_ring->size = ALIGN(rx_ring->size, 4096);
3503
3504         rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
3505                                            &rx_ring->dma, GFP_KERNEL);
3506         if (!rx_ring->desc)
3507                 goto err;
3508
3509         rx_ring->next_to_alloc = 0;
3510         rx_ring->next_to_clean = 0;
3511         rx_ring->next_to_use = 0;
3512
3513         return 0;
3514
3515 err:
3516         vfree(rx_ring->rx_buffer_info);
3517         rx_ring->rx_buffer_info = NULL;
3518         dev_err(dev, "Unable to allocate memory for the Rx descriptor ring\n");
3519         return -ENOMEM;
3520 }
3521
3522 /**
3523  *  igb_setup_all_rx_resources - wrapper to allocate Rx resources
3524  *                               (Descriptors) for all queues
3525  *  @adapter: board private structure
3526  *
3527  *  Return 0 on success, negative on failure
3528  **/
3529 static int igb_setup_all_rx_resources(struct igb_adapter *adapter)
3530 {
3531         struct pci_dev *pdev = adapter->pdev;
3532         int i, err = 0;
3533
3534         for (i = 0; i < adapter->num_rx_queues; i++) {
3535                 err = igb_setup_rx_resources(adapter->rx_ring[i]);
3536                 if (err) {
3537                         dev_err(&pdev->dev,
3538                                 "Allocation for Rx Queue %u failed\n", i);
3539                         for (i--; i >= 0; i--)
3540                                 igb_free_rx_resources(adapter->rx_ring[i]);
3541                         break;
3542                 }
3543         }
3544
3545         return err;
3546 }
3547
3548 /**
3549  *  igb_setup_mrqc - configure the multiple receive queue control registers
3550  *  @adapter: Board private structure
3551  **/
3552 static void igb_setup_mrqc(struct igb_adapter *adapter)
3553 {
3554         struct e1000_hw *hw = &adapter->hw;
3555         u32 mrqc, rxcsum;
3556         u32 j, num_rx_queues;
3557         u32 rss_key[10];
3558
3559         netdev_rss_key_fill(rss_key, sizeof(rss_key));
3560         for (j = 0; j < 10; j++)
3561                 wr32(E1000_RSSRK(j), rss_key[j]);
3562
3563         num_rx_queues = adapter->rss_queues;
3564
3565         switch (hw->mac.type) {
3566         case e1000_82576:
3567                 /* 82576 supports 2 RSS queues for SR-IOV */
3568                 if (adapter->vfs_allocated_count)
3569                         num_rx_queues = 2;
3570                 break;
3571         default:
3572                 break;
3573         }
3574
3575         if (adapter->rss_indir_tbl_init != num_rx_queues) {
3576                 for (j = 0; j < IGB_RETA_SIZE; j++)
3577                         adapter->rss_indir_tbl[j] =
3578                         (j * num_rx_queues) / IGB_RETA_SIZE;
3579                 adapter->rss_indir_tbl_init = num_rx_queues;
3580         }
3581         igb_write_rss_indir_tbl(adapter);
3582
3583         /* Disable raw packet checksumming so that RSS hash is placed in
3584          * descriptor on writeback.  No need to enable TCP/UDP/IP checksum
3585          * offloads as they are enabled by default
3586          */
3587         rxcsum = rd32(E1000_RXCSUM);
3588         rxcsum |= E1000_RXCSUM_PCSD;
3589
3590         if (adapter->hw.mac.type >= e1000_82576)
3591                 /* Enable Receive Checksum Offload for SCTP */
3592                 rxcsum |= E1000_RXCSUM_CRCOFL;
3593
3594         /* Don't need to set TUOFL or IPOFL, they default to 1 */
3595         wr32(E1000_RXCSUM, rxcsum);
3596
3597         /* Generate RSS hash based on packet types, TCP/UDP
3598          * port numbers and/or IPv4/v6 src and dst addresses
3599          */
3600         mrqc = E1000_MRQC_RSS_FIELD_IPV4 |
3601                E1000_MRQC_RSS_FIELD_IPV4_TCP |
3602                E1000_MRQC_RSS_FIELD_IPV6 |
3603                E1000_MRQC_RSS_FIELD_IPV6_TCP |
3604                E1000_MRQC_RSS_FIELD_IPV6_TCP_EX;
3605
3606         if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV4_UDP)
3607                 mrqc |= E1000_MRQC_RSS_FIELD_IPV4_UDP;
3608         if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV6_UDP)
3609                 mrqc |= E1000_MRQC_RSS_FIELD_IPV6_UDP;
3610
3611         /* If VMDq is enabled then we set the appropriate mode for that, else
3612          * we default to RSS so that an RSS hash is calculated per packet even
3613          * if we are only using one queue
3614          */
3615         if (adapter->vfs_allocated_count) {
3616                 if (hw->mac.type > e1000_82575) {
3617                         /* Set the default pool for the PF's first queue */
3618                         u32 vtctl = rd32(E1000_VT_CTL);
3619
3620                         vtctl &= ~(E1000_VT_CTL_DEFAULT_POOL_MASK |
3621                                    E1000_VT_CTL_DISABLE_DEF_POOL);
3622                         vtctl |= adapter->vfs_allocated_count <<
3623                                 E1000_VT_CTL_DEFAULT_POOL_SHIFT;
3624                         wr32(E1000_VT_CTL, vtctl);
3625                 }
3626                 if (adapter->rss_queues > 1)
3627                         mrqc |= E1000_MRQC_ENABLE_VMDQ_RSS_MQ;
3628                 else
3629                         mrqc |= E1000_MRQC_ENABLE_VMDQ;
3630         } else {
3631                 if (hw->mac.type != e1000_i211)
3632                         mrqc |= E1000_MRQC_ENABLE_RSS_MQ;
3633         }
3634         igb_vmm_control(adapter);
3635
3636         wr32(E1000_MRQC, mrqc);
3637 }
3638
3639 /**
3640  *  igb_setup_rctl - configure the receive control registers
3641  *  @adapter: Board private structure
3642  **/
3643 void igb_setup_rctl(struct igb_adapter *adapter)
3644 {
3645         struct e1000_hw *hw = &adapter->hw;
3646         u32 rctl;
3647
3648         rctl = rd32(E1000_RCTL);
3649
3650         rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
3651         rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
3652
3653         rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_RDMTS_HALF |
3654                 (hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
3655
3656         /* enable stripping of CRC. It's unlikely this will break BMC
3657          * redirection as it did with e1000. Newer features require
3658          * that the HW strips the CRC.
3659          */
3660         rctl |= E1000_RCTL_SECRC;
3661
3662         /* disable store bad packets and clear size bits. */
3663         rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_SZ_256);
3664
3665         /* enable LPE to allow for reception of jumbo frames */
3666         rctl |= E1000_RCTL_LPE;
3667
3668         /* disable queue 0 to prevent tail write w/o re-config */
3669         wr32(E1000_RXDCTL(0), 0);
3670
3671         /* Attention!!!  For SR-IOV PF driver operations you must enable
3672          * queue drop for all VF and PF queues to prevent head of line blocking
3673          * if an un-trusted VF does not provide descriptors to hardware.
3674          */
3675         if (adapter->vfs_allocated_count) {
3676                 /* set all queue drop enable bits */
3677                 wr32(E1000_QDE, ALL_QUEUES);
3678         }
3679
3680         /* This is useful for sniffing bad packets. */
3681         if (adapter->netdev->features & NETIF_F_RXALL) {
3682                 /* UPE and MPE will be handled by normal PROMISC logic
3683                  * in e1000e_set_rx_mode
3684                  */
3685                 rctl |= (E1000_RCTL_SBP | /* Receive bad packets */
3686                          E1000_RCTL_BAM | /* RX All Bcast Pkts */
3687                          E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
3688
3689                 rctl &= ~(E1000_RCTL_DPF | /* Allow filtered pause */
3690                           E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */
3691                 /* Do not mess with E1000_CTRL_VME, it affects transmit as well,
3692                  * and that breaks VLANs.
3693                  */
3694         }
3695
3696         wr32(E1000_RCTL, rctl);
3697 }
3698
3699 static inline int igb_set_vf_rlpml(struct igb_adapter *adapter, int size,
3700                                    int vfn)
3701 {
3702         struct e1000_hw *hw = &adapter->hw;
3703         u32 vmolr;
3704
3705         if (size > MAX_JUMBO_FRAME_SIZE)
3706                 size = MAX_JUMBO_FRAME_SIZE;
3707
3708         vmolr = rd32(E1000_VMOLR(vfn));
3709         vmolr &= ~E1000_VMOLR_RLPML_MASK;
3710         vmolr |= size | E1000_VMOLR_LPE;
3711         wr32(E1000_VMOLR(vfn), vmolr);
3712
3713         return 0;
3714 }
3715
3716 static inline void igb_set_vf_vlan_strip(struct igb_adapter *adapter,
3717                                          int vfn, bool enable)
3718 {
3719         struct e1000_hw *hw = &adapter->hw;
3720         u32 val, reg;
3721
3722         if (hw->mac.type < e1000_82576)
3723                 return;
3724
3725         if (hw->mac.type == e1000_i350)
3726                 reg = E1000_DVMOLR(vfn);
3727         else
3728                 reg = E1000_VMOLR(vfn);
3729
3730         val = rd32(reg);
3731         if (enable)
3732                 val |= E1000_VMOLR_STRVLAN;
3733         else
3734                 val &= ~(E1000_VMOLR_STRVLAN);
3735         wr32(reg, val);
3736 }
3737
3738 static inline void igb_set_vmolr(struct igb_adapter *adapter,
3739                                  int vfn, bool aupe)
3740 {
3741         struct e1000_hw *hw = &adapter->hw;
3742         u32 vmolr;
3743
3744         /* This register exists only on 82576 and newer so if we are older then
3745          * we should exit and do nothing
3746          */
3747         if (hw->mac.type < e1000_82576)
3748                 return;
3749
3750         vmolr = rd32(E1000_VMOLR(vfn));
3751         if (aupe)
3752                 vmolr |= E1000_VMOLR_AUPE; /* Accept untagged packets */
3753         else
3754                 vmolr &= ~(E1000_VMOLR_AUPE); /* Tagged packets ONLY */
3755
3756         /* clear all bits that might not be set */
3757         vmolr &= ~(E1000_VMOLR_BAM | E1000_VMOLR_RSSE);
3758
3759         if (adapter->rss_queues > 1 && vfn == adapter->vfs_allocated_count)
3760                 vmolr |= E1000_VMOLR_RSSE; /* enable RSS */
3761         /* for VMDq only allow the VFs and pool 0 to accept broadcast and
3762          * multicast packets
3763          */
3764         if (vfn <= adapter->vfs_allocated_count)
3765                 vmolr |= E1000_VMOLR_BAM; /* Accept broadcast */
3766
3767         wr32(E1000_VMOLR(vfn), vmolr);
3768 }
3769
3770 /**
3771  *  igb_configure_rx_ring - Configure a receive ring after Reset
3772  *  @adapter: board private structure
3773  *  @ring: receive ring to be configured
3774  *
3775  *  Configure the Rx unit of the MAC after a reset.
3776  **/
3777 void igb_configure_rx_ring(struct igb_adapter *adapter,
3778                            struct igb_ring *ring)
3779 {
3780         struct e1000_hw *hw = &adapter->hw;
3781         union e1000_adv_rx_desc *rx_desc;
3782         u64 rdba = ring->dma;
3783         int reg_idx = ring->reg_idx;
3784         u32 srrctl = 0, rxdctl = 0;
3785
3786         /* disable the queue */
3787         wr32(E1000_RXDCTL(reg_idx), 0);
3788
3789         /* Set DMA base address registers */
3790         wr32(E1000_RDBAL(reg_idx),
3791              rdba & 0x00000000ffffffffULL);
3792         wr32(E1000_RDBAH(reg_idx), rdba >> 32);
3793         wr32(E1000_RDLEN(reg_idx),
3794              ring->count * sizeof(union e1000_adv_rx_desc));
3795
3796         /* initialize head and tail */
3797         ring->tail = adapter->io_addr + E1000_RDT(reg_idx);
3798         wr32(E1000_RDH(reg_idx), 0);
3799         writel(0, ring->tail);
3800
3801         /* set descriptor configuration */
3802         srrctl = IGB_RX_HDR_LEN << E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
3803         if (ring_uses_large_buffer(ring))
3804                 srrctl |= IGB_RXBUFFER_3072 >> E1000_SRRCTL_BSIZEPKT_SHIFT;
3805         else
3806                 srrctl |= IGB_RXBUFFER_2048 >> E1000_SRRCTL_BSIZEPKT_SHIFT;
3807         srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
3808         if (hw->mac.type >= e1000_82580)
3809                 srrctl |= E1000_SRRCTL_TIMESTAMP;
3810         /* Only set Drop Enable if we are supporting multiple queues */
3811         if (adapter->vfs_allocated_count || adapter->num_rx_queues > 1)
3812                 srrctl |= E1000_SRRCTL_DROP_EN;
3813
3814         wr32(E1000_SRRCTL(reg_idx), srrctl);
3815
3816         /* set filtering for VMDQ pools */
3817         igb_set_vmolr(adapter, reg_idx & 0x7, true);
3818
3819         rxdctl |= IGB_RX_PTHRESH;
3820         rxdctl |= IGB_RX_HTHRESH << 8;
3821         rxdctl |= IGB_RX_WTHRESH << 16;
3822
3823         /* initialize rx_buffer_info */
3824         memset(ring->rx_buffer_info, 0,
3825                sizeof(struct igb_rx_buffer) * ring->count);
3826
3827         /* initialize Rx descriptor 0 */
3828         rx_desc = IGB_RX_DESC(ring, 0);
3829         rx_desc->wb.upper.length = 0;
3830
3831         /* enable receive descriptor fetching */
3832         rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
3833         wr32(E1000_RXDCTL(reg_idx), rxdctl);
3834 }
3835
3836 static void igb_set_rx_buffer_len(struct igb_adapter *adapter,
3837                                   struct igb_ring *rx_ring)
3838 {
3839         /* set build_skb and buffer size flags */
3840         clear_ring_build_skb_enabled(rx_ring);
3841         clear_ring_uses_large_buffer(rx_ring);
3842
3843         if (adapter->flags & IGB_FLAG_RX_LEGACY)
3844                 return;
3845
3846         set_ring_build_skb_enabled(rx_ring);
3847
3848 #if (PAGE_SIZE < 8192)
3849         if (adapter->max_frame_size <= IGB_MAX_FRAME_BUILD_SKB)
3850                 return;
3851
3852         set_ring_uses_large_buffer(rx_ring);
3853 #endif
3854 }
3855
3856 /**
3857  *  igb_configure_rx - Configure receive Unit after Reset
3858  *  @adapter: board private structure
3859  *
3860  *  Configure the Rx unit of the MAC after a reset.
3861  **/
3862 static void igb_configure_rx(struct igb_adapter *adapter)
3863 {
3864         int i;
3865
3866         /* set the correct pool for the PF default MAC address in entry 0 */
3867         igb_set_default_mac_filter(adapter);
3868
3869         /* Setup the HW Rx Head and Tail Descriptor Pointers and
3870          * the Base and Length of the Rx Descriptor Ring
3871          */
3872         for (i = 0; i < adapter->num_rx_queues; i++) {
3873                 struct igb_ring *rx_ring = adapter->rx_ring[i];
3874
3875                 igb_set_rx_buffer_len(adapter, rx_ring);
3876                 igb_configure_rx_ring(adapter, rx_ring);
3877         }
3878 }
3879
3880 /**
3881  *  igb_free_tx_resources - Free Tx Resources per Queue
3882  *  @tx_ring: Tx descriptor ring for a specific queue
3883  *
3884  *  Free all transmit software resources
3885  **/
3886 void igb_free_tx_resources(struct igb_ring *tx_ring)
3887 {
3888         igb_clean_tx_ring(tx_ring);
3889
3890         vfree(tx_ring->tx_buffer_info);
3891         tx_ring->tx_buffer_info = NULL;
3892
3893         /* if not set, then don't free */
3894         if (!tx_ring->desc)
3895                 return;
3896
3897         dma_free_coherent(tx_ring->dev, tx_ring->size,
3898                           tx_ring->desc, tx_ring->dma);
3899
3900         tx_ring->desc = NULL;
3901 }
3902
3903 /**
3904  *  igb_free_all_tx_resources - Free Tx Resources for All Queues
3905  *  @adapter: board private structure
3906  *
3907  *  Free all transmit software resources
3908  **/
3909 static void igb_free_all_tx_resources(struct igb_adapter *adapter)
3910 {
3911         int i;
3912
3913         for (i = 0; i < adapter->num_tx_queues; i++)
3914                 if (adapter->tx_ring[i])
3915                         igb_free_tx_resources(adapter->tx_ring[i]);
3916 }
3917
3918 /**
3919  *  igb_clean_tx_ring - Free Tx Buffers
3920  *  @tx_ring: ring to be cleaned
3921  **/
3922 static void igb_clean_tx_ring(struct igb_ring *tx_ring)
3923 {
3924         u16 i = tx_ring->next_to_clean;
3925         struct igb_tx_buffer *tx_buffer = &tx_ring->tx_buffer_info[i];
3926
3927         while (i != tx_ring->next_to_use) {
3928                 union e1000_adv_tx_desc *eop_desc, *tx_desc;
3929
3930                 /* Free all the Tx ring sk_buffs */
3931                 dev_kfree_skb_any(tx_buffer->skb);
3932
3933                 /* unmap skb header data */
3934                 dma_unmap_single(tx_ring->dev,
3935                                  dma_unmap_addr(tx_buffer, dma),
3936                                  dma_unmap_len(tx_buffer, len),
3937                                  DMA_TO_DEVICE);
3938
3939                 /* check for eop_desc to determine the end of the packet */
3940                 eop_desc = tx_buffer->next_to_watch;
3941                 tx_desc = IGB_TX_DESC(tx_ring, i);
3942
3943                 /* unmap remaining buffers */
3944                 while (tx_desc != eop_desc) {
3945                         tx_buffer++;
3946                         tx_desc++;
3947                         i++;
3948                         if (unlikely(i == tx_ring->count)) {
3949                                 i = 0;
3950                                 tx_buffer = tx_ring->tx_buffer_info;
3951                                 tx_desc = IGB_TX_DESC(tx_ring, 0);
3952                         }
3953
3954                         /* unmap any remaining paged data */
3955                         if (dma_unmap_len(tx_buffer, len))
3956                                 dma_unmap_page(tx_ring->dev,
3957                                                dma_unmap_addr(tx_buffer, dma),
3958                                                dma_unmap_len(tx_buffer, len),
3959                                                DMA_TO_DEVICE);
3960                 }
3961
3962                 /* move us one more past the eop_desc for start of next pkt */
3963                 tx_buffer++;
3964                 i++;
3965                 if (unlikely(i == tx_ring->count)) {
3966                         i = 0;
3967                         tx_buffer = tx_ring->tx_buffer_info;
3968                 }
3969         }
3970
3971         /* reset BQL for queue */
3972         netdev_tx_reset_queue(txring_txq(tx_ring));
3973
3974         /* reset next_to_use and next_to_clean */
3975         tx_ring->next_to_use = 0;
3976         tx_ring->next_to_clean = 0;
3977 }
3978
3979 /**
3980  *  igb_clean_all_tx_rings - Free Tx Buffers for all queues
3981  *  @adapter: board private structure
3982  **/
3983 static void igb_clean_all_tx_rings(struct igb_adapter *adapter)
3984 {
3985         int i;
3986
3987         for (i = 0; i < adapter->num_tx_queues; i++)
3988                 if (adapter->tx_ring[i])
3989                         igb_clean_tx_ring(adapter->tx_ring[i]);
3990 }
3991
3992 /**
3993  *  igb_free_rx_resources - Free Rx Resources
3994  *  @rx_ring: ring to clean the resources from
3995  *
3996  *  Free all receive software resources
3997  **/
3998 void igb_free_rx_resources(struct igb_ring *rx_ring)
3999 {
4000         igb_clean_rx_ring(rx_ring);
4001
4002         vfree(rx_ring->rx_buffer_info);
4003         rx_ring->rx_buffer_info = NULL;
4004
4005         /* if not set, then don't free */
4006         if (!rx_ring->desc)
4007                 return;
4008
4009         dma_free_coherent(rx_ring->dev, rx_ring->size,
4010                           rx_ring->desc, rx_ring->dma);
4011
4012         rx_ring->desc = NULL;
4013 }
4014
4015 /**
4016  *  igb_free_all_rx_resources - Free Rx Resources for All Queues
4017  *  @adapter: board private structure
4018  *
4019  *  Free all receive software resources
4020  **/
4021 static void igb_free_all_rx_resources(struct igb_adapter *adapter)
4022 {
4023         int i;
4024
4025         for (i = 0; i < adapter->num_rx_queues; i++)
4026                 if (adapter->rx_ring[i])
4027                         igb_free_rx_resources(adapter->rx_ring[i]);
4028 }
4029
4030 /**
4031  *  igb_clean_rx_ring - Free Rx Buffers per Queue
4032  *  @rx_ring: ring to free buffers from
4033  **/
4034 static void igb_clean_rx_ring(struct igb_ring *rx_ring)
4035 {
4036         u16 i = rx_ring->next_to_clean;
4037
4038         if (rx_ring->skb)
4039                 dev_kfree_skb(rx_ring->skb);
4040         rx_ring->skb = NULL;
4041
4042         /* Free all the Rx ring sk_buffs */
4043         while (i != rx_ring->next_to_alloc) {
4044                 struct igb_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i];
4045
4046                 /* Invalidate cache lines that may have been written to by
4047                  * device so that we avoid corrupting memory.
4048                  */
4049                 dma_sync_single_range_for_cpu(rx_ring->dev,
4050                                               buffer_info->dma,
4051                                               buffer_info->page_offset,
4052                                               igb_rx_bufsz(rx_ring),
4053                                               DMA_FROM_DEVICE);
4054
4055                 /* free resources associated with mapping */
4056                 dma_unmap_page_attrs(rx_ring->dev,
4057                                      buffer_info->dma,
4058                                      igb_rx_pg_size(rx_ring),
4059                                      DMA_FROM_DEVICE,
4060                                      IGB_RX_DMA_ATTR);
4061                 __page_frag_cache_drain(buffer_info->page,
4062                                         buffer_info->pagecnt_bias);
4063
4064                 i++;
4065                 if (i == rx_ring->count)
4066                         i = 0;
4067         }
4068
4069         rx_ring->next_to_alloc = 0;
4070         rx_ring->next_to_clean = 0;
4071         rx_ring->next_to_use = 0;
4072 }
4073
4074 /**
4075  *  igb_clean_all_rx_rings - Free Rx Buffers for all queues
4076  *  @adapter: board private structure
4077  **/
4078 static void igb_clean_all_rx_rings(struct igb_adapter *adapter)
4079 {
4080         int i;
4081
4082         for (i = 0; i < adapter->num_rx_queues; i++)
4083                 if (adapter->rx_ring[i])
4084                         igb_clean_rx_ring(adapter->rx_ring[i]);
4085 }
4086
4087 /**
4088  *  igb_set_mac - Change the Ethernet Address of the NIC
4089  *  @netdev: network interface device structure
4090  *  @p: pointer to an address structure
4091  *
4092  *  Returns 0 on success, negative on failure
4093  **/
4094 static int igb_set_mac(struct net_device *netdev, void *p)
4095 {
4096         struct igb_adapter *adapter = netdev_priv(netdev);
4097         struct e1000_hw *hw = &adapter->hw;
4098         struct sockaddr *addr = p;
4099
4100         if (!is_valid_ether_addr(addr->sa_data))
4101                 return -EADDRNOTAVAIL;
4102
4103         memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
4104         memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
4105
4106         /* set the correct pool for the new PF MAC address in entry 0 */
4107         igb_set_default_mac_filter(adapter);
4108
4109         return 0;
4110 }
4111
4112 /**
4113  *  igb_write_mc_addr_list - write multicast addresses to MTA
4114  *  @netdev: network interface device structure
4115  *
4116  *  Writes multicast address list to the MTA hash table.
4117  *  Returns: -ENOMEM on failure
4118  *           0 on no addresses written
4119  *           X on writing X addresses to MTA
4120  **/
4121 static int igb_write_mc_addr_list(struct net_device *netdev)
4122 {
4123         struct igb_adapter *adapter = netdev_priv(netdev);
4124         struct e1000_hw *hw = &adapter->hw;
4125         struct netdev_hw_addr *ha;
4126         u8  *mta_list;
4127         int i;
4128
4129         if (netdev_mc_empty(netdev)) {
4130                 /* nothing to program, so clear mc list */
4131                 igb_update_mc_addr_list(hw, NULL, 0);
4132                 igb_restore_vf_multicasts(adapter);
4133                 return 0;
4134         }
4135
4136         mta_list = kzalloc(netdev_mc_count(netdev) * 6, GFP_ATOMIC);
4137         if (!mta_list)
4138                 return -ENOMEM;
4139
4140         /* The shared function expects a packed array of only addresses. */
4141         i = 0;
4142         netdev_for_each_mc_addr(ha, netdev)
4143                 memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
4144
4145         igb_update_mc_addr_list(hw, mta_list, i);
4146         kfree(mta_list);
4147
4148         return netdev_mc_count(netdev);
4149 }
4150
4151 static int igb_vlan_promisc_enable(struct igb_adapter *adapter)
4152 {
4153         struct e1000_hw *hw = &adapter->hw;
4154         u32 i, pf_id;
4155
4156         switch (hw->mac.type) {
4157         case e1000_i210:
4158         case e1000_i211:
4159         case e1000_i350:
4160                 /* VLAN filtering needed for VLAN prio filter */
4161                 if (adapter->netdev->features & NETIF_F_NTUPLE)
4162                         break;
4163                 /* fall through */
4164         case e1000_82576:
4165         case e1000_82580:
4166         case e1000_i354:
4167                 /* VLAN filtering needed for pool filtering */
4168                 if (adapter->vfs_allocated_count)
4169                         break;
4170                 /* fall through */
4171         default:
4172                 return 1;
4173         }
4174
4175         /* We are already in VLAN promisc, nothing to do */
4176         if (adapter->flags & IGB_FLAG_VLAN_PROMISC)
4177                 return 0;
4178
4179         if (!adapter->vfs_allocated_count)
4180                 goto set_vfta;
4181
4182         /* Add PF to all active pools */
4183         pf_id = adapter->vfs_allocated_count + E1000_VLVF_POOLSEL_SHIFT;
4184
4185         for (i = E1000_VLVF_ARRAY_SIZE; --i;) {
4186                 u32 vlvf = rd32(E1000_VLVF(i));
4187
4188                 vlvf |= BIT(pf_id);
4189                 wr32(E1000_VLVF(i), vlvf);
4190         }
4191
4192 set_vfta:
4193         /* Set all bits in the VLAN filter table array */
4194         for (i = E1000_VLAN_FILTER_TBL_SIZE; i--;)
4195                 hw->mac.ops.write_vfta(hw, i, ~0U);
4196
4197         /* Set flag so we don't redo unnecessary work */
4198         adapter->flags |= IGB_FLAG_VLAN_PROMISC;
4199
4200         return 0;
4201 }
4202
4203 #define VFTA_BLOCK_SIZE 8
4204 static void igb_scrub_vfta(struct igb_adapter *adapter, u32 vfta_offset)
4205 {
4206         struct e1000_hw *hw = &adapter->hw;
4207         u32 vfta[VFTA_BLOCK_SIZE] = { 0 };
4208         u32 vid_start = vfta_offset * 32;
4209         u32 vid_end = vid_start + (VFTA_BLOCK_SIZE * 32);
4210         u32 i, vid, word, bits, pf_id;
4211
4212         /* guarantee that we don't scrub out management VLAN */
4213         vid = adapter->mng_vlan_id;
4214         if (vid >= vid_start && vid < vid_end)
4215                 vfta[(vid - vid_start) / 32] |= BIT(vid % 32);
4216
4217         if (!adapter->vfs_allocated_count)
4218                 goto set_vfta;
4219
4220         pf_id = adapter->vfs_allocated_count + E1000_VLVF_POOLSEL_SHIFT;
4221
4222         for (i = E1000_VLVF_ARRAY_SIZE; --i;) {
4223                 u32 vlvf = rd32(E1000_VLVF(i));
4224
4225                 /* pull VLAN ID from VLVF */
4226                 vid = vlvf & VLAN_VID_MASK;
4227
4228                 /* only concern ourselves with a certain range */
4229                 if (vid < vid_start || vid >= vid_end)
4230                         continue;
4231
4232                 if (vlvf & E1000_VLVF_VLANID_ENABLE) {
4233                         /* record VLAN ID in VFTA */
4234                         vfta[(vid - vid_start) / 32] |= BIT(vid % 32);
4235
4236                         /* if PF is part of this then continue */
4237                         if (test_bit(vid, adapter->active_vlans))
4238                                 continue;
4239                 }
4240
4241                 /* remove PF from the pool */
4242                 bits = ~BIT(pf_id);
4243                 bits &= rd32(E1000_VLVF(i));
4244                 wr32(E1000_VLVF(i), bits);
4245         }
4246
4247 set_vfta:
4248         /* extract values from active_vlans and write back to VFTA */
4249         for (i = VFTA_BLOCK_SIZE; i--;) {
4250                 vid = (vfta_offset + i) * 32;
4251                 word = vid / BITS_PER_LONG;
4252                 bits = vid % BITS_PER_LONG;
4253
4254                 vfta[i] |= adapter->active_vlans[word] >> bits;
4255
4256                 hw->mac.ops.write_vfta(hw, vfta_offset + i, vfta[i]);
4257         }
4258 }
4259
4260 static void igb_vlan_promisc_disable(struct igb_adapter *adapter)
4261 {
4262         u32 i;
4263
4264         /* We are not in VLAN promisc, nothing to do */
4265         if (!(adapter->flags & IGB_FLAG_VLAN_PROMISC))
4266                 return;
4267
4268         /* Set flag so we don't redo unnecessary work */
4269         adapter->flags &= ~IGB_FLAG_VLAN_PROMISC;
4270
4271         for (i = 0; i < E1000_VLAN_FILTER_TBL_SIZE; i += VFTA_BLOCK_SIZE)
4272                 igb_scrub_vfta(adapter, i);
4273 }
4274
4275 /**
4276  *  igb_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
4277  *  @netdev: network interface device structure
4278  *
4279  *  The set_rx_mode entry point is called whenever the unicast or multicast
4280  *  address lists or the network interface flags are updated.  This routine is
4281  *  responsible for configuring the hardware for proper unicast, multicast,
4282  *  promiscuous mode, and all-multi behavior.
4283  **/
4284 static void igb_set_rx_mode(struct net_device *netdev)
4285 {
4286         struct igb_adapter *adapter = netdev_priv(netdev);
4287         struct e1000_hw *hw = &adapter->hw;
4288         unsigned int vfn = adapter->vfs_allocated_count;
4289         u32 rctl = 0, vmolr = 0, rlpml = MAX_JUMBO_FRAME_SIZE;
4290         int count;
4291
4292         /* Check for Promiscuous and All Multicast modes */
4293         if (netdev->flags & IFF_PROMISC) {
4294                 rctl |= E1000_RCTL_UPE | E1000_RCTL_MPE;
4295                 vmolr |= E1000_VMOLR_MPME;
4296
4297                 /* enable use of UTA filter to force packets to default pool */
4298                 if (hw->mac.type == e1000_82576)
4299                         vmolr |= E1000_VMOLR_ROPE;
4300         } else {
4301                 if (netdev->flags & IFF_ALLMULTI) {
4302                         rctl |= E1000_RCTL_MPE;
4303                         vmolr |= E1000_VMOLR_MPME;
4304                 } else {
4305                         /* Write addresses to the MTA, if the attempt fails
4306                          * then we should just turn on promiscuous mode so
4307                          * that we can at least receive multicast traffic
4308                          */
4309                         count = igb_write_mc_addr_list(netdev);
4310                         if (count < 0) {
4311                                 rctl |= E1000_RCTL_MPE;
4312                                 vmolr |= E1000_VMOLR_MPME;
4313                         } else if (count) {
4314                                 vmolr |= E1000_VMOLR_ROMPE;
4315                         }
4316                 }
4317         }
4318
4319         /* Write addresses to available RAR registers, if there is not
4320          * sufficient space to store all the addresses then enable
4321          * unicast promiscuous mode
4322          */
4323         if (__dev_uc_sync(netdev, igb_uc_sync, igb_uc_unsync)) {
4324                 rctl |= E1000_RCTL_UPE;
4325                 vmolr |= E1000_VMOLR_ROPE;
4326         }
4327
4328         /* enable VLAN filtering by default */
4329         rctl |= E1000_RCTL_VFE;
4330
4331         /* disable VLAN filtering for modes that require it */
4332         if ((netdev->flags & IFF_PROMISC) ||
4333             (netdev->features & NETIF_F_RXALL)) {
4334                 /* if we fail to set all rules then just clear VFE */
4335                 if (igb_vlan_promisc_enable(adapter))
4336                         rctl &= ~E1000_RCTL_VFE;
4337         } else {
4338                 igb_vlan_promisc_disable(adapter);
4339         }
4340
4341         /* update state of unicast, multicast, and VLAN filtering modes */
4342         rctl |= rd32(E1000_RCTL) & ~(E1000_RCTL_UPE | E1000_RCTL_MPE |
4343                                      E1000_RCTL_VFE);
4344         wr32(E1000_RCTL, rctl);
4345
4346 #if (PAGE_SIZE < 8192)
4347         if (!adapter->vfs_allocated_count) {
4348                 if (adapter->max_frame_size <= IGB_MAX_FRAME_BUILD_SKB)
4349                         rlpml = IGB_MAX_FRAME_BUILD_SKB;
4350         }
4351 #endif
4352         wr32(E1000_RLPML, rlpml);
4353
4354         /* In order to support SR-IOV and eventually VMDq it is necessary to set
4355          * the VMOLR to enable the appropriate modes.  Without this workaround
4356          * we will have issues with VLAN tag stripping not being done for frames
4357          * that are only arriving because we are the default pool
4358          */
4359         if ((hw->mac.type < e1000_82576) || (hw->mac.type > e1000_i350))
4360                 return;
4361
4362         /* set UTA to appropriate mode */
4363         igb_set_uta(adapter, !!(vmolr & E1000_VMOLR_ROPE));
4364
4365         vmolr |= rd32(E1000_VMOLR(vfn)) &
4366                  ~(E1000_VMOLR_ROPE | E1000_VMOLR_MPME | E1000_VMOLR_ROMPE);
4367
4368         /* enable Rx jumbo frames, restrict as needed to support build_skb */
4369         vmolr &= ~E1000_VMOLR_RLPML_MASK;
4370 #if (PAGE_SIZE < 8192)
4371         if (adapter->max_frame_size <= IGB_MAX_FRAME_BUILD_SKB)
4372                 vmolr |= IGB_MAX_FRAME_BUILD_SKB;
4373         else
4374 #endif
4375                 vmolr |= MAX_JUMBO_FRAME_SIZE;
4376         vmolr |= E1000_VMOLR_LPE;
4377
4378         wr32(E1000_VMOLR(vfn), vmolr);
4379
4380         igb_restore_vf_multicasts(adapter);
4381 }
4382
4383 static void igb_check_wvbr(struct igb_adapter *adapter)
4384 {
4385         struct e1000_hw *hw = &adapter->hw;
4386         u32 wvbr = 0;
4387
4388         switch (hw->mac.type) {
4389         case e1000_82576:
4390         case e1000_i350:
4391                 wvbr = rd32(E1000_WVBR);
4392                 if (!wvbr)
4393                         return;
4394                 break;
4395         default:
4396                 break;
4397         }
4398
4399         adapter->wvbr |= wvbr;
4400 }
4401
4402 #define IGB_STAGGERED_QUEUE_OFFSET 8
4403
4404 static void igb_spoof_check(struct igb_adapter *adapter)
4405 {
4406         int j;
4407
4408         if (!adapter->wvbr)
4409                 return;
4410
4411         for (j = 0; j < adapter->vfs_allocated_count; j++) {
4412                 if (adapter->wvbr & BIT(j) ||
4413                     adapter->wvbr & BIT(j + IGB_STAGGERED_QUEUE_OFFSET)) {
4414                         dev_warn(&adapter->pdev->dev,
4415                                 "Spoof event(s) detected on VF %d\n", j);
4416                         adapter->wvbr &=
4417                                 ~(BIT(j) |
4418                                   BIT(j + IGB_STAGGERED_QUEUE_OFFSET));
4419                 }
4420         }
4421 }
4422
4423 /* Need to wait a few seconds after link up to get diagnostic information from
4424  * the phy
4425  */
4426 static void igb_update_phy_info(unsigned long data)
4427 {
4428         struct igb_adapter *adapter = (struct igb_adapter *) data;
4429         igb_get_phy_info(&adapter->hw);
4430 }
4431
4432 /**
4433  *  igb_has_link - check shared code for link and determine up/down
4434  *  @adapter: pointer to driver private info
4435  **/
4436 bool igb_has_link(struct igb_adapter *adapter)
4437 {
4438         struct e1000_hw *hw = &adapter->hw;
4439         bool link_active = false;
4440
4441         /* get_link_status is set on LSC (link status) interrupt or
4442          * rx sequence error interrupt.  get_link_status will stay
4443          * false until the e1000_check_for_link establishes link
4444          * for copper adapters ONLY
4445          */
4446         switch (hw->phy.media_type) {
4447         case e1000_media_type_copper:
4448                 if (!hw->mac.get_link_status)
4449                         return true;
4450         case e1000_media_type_internal_serdes:
4451                 hw->mac.ops.check_for_link(hw);
4452                 link_active = !hw->mac.get_link_status;
4453                 break;
4454         default:
4455         case e1000_media_type_unknown:
4456                 break;
4457         }
4458
4459         if (((hw->mac.type == e1000_i210) ||
4460              (hw->mac.type == e1000_i211)) &&
4461              (hw->phy.id == I210_I_PHY_ID)) {
4462                 if (!netif_carrier_ok(adapter->netdev)) {
4463                         adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
4464                 } else if (!(adapter->flags & IGB_FLAG_NEED_LINK_UPDATE)) {
4465                         adapter->flags |= IGB_FLAG_NEED_LINK_UPDATE;
4466                         adapter->link_check_timeout = jiffies;
4467                 }
4468         }
4469
4470         return link_active;
4471 }
4472
4473 static bool igb_thermal_sensor_event(struct e1000_hw *hw, u32 event)
4474 {
4475         bool ret = false;
4476         u32 ctrl_ext, thstat;
4477
4478         /* check for thermal sensor event on i350 copper only */
4479         if (hw->mac.type == e1000_i350) {
4480                 thstat = rd32(E1000_THSTAT);
4481                 ctrl_ext = rd32(E1000_CTRL_EXT);
4482
4483                 if ((hw->phy.media_type == e1000_media_type_copper) &&
4484                     !(ctrl_ext & E1000_CTRL_EXT_LINK_MODE_SGMII))
4485                         ret = !!(thstat & event);
4486         }
4487
4488         return ret;
4489 }
4490
4491 /**
4492  *  igb_check_lvmmc - check for malformed packets received
4493  *  and indicated in LVMMC register
4494  *  @adapter: pointer to adapter
4495  **/
4496 static void igb_check_lvmmc(struct igb_adapter *adapter)
4497 {
4498         struct e1000_hw *hw = &adapter->hw;
4499         u32 lvmmc;
4500
4501         lvmmc = rd32(E1000_LVMMC);
4502         if (lvmmc) {
4503                 if (unlikely(net_ratelimit())) {
4504                         netdev_warn(adapter->netdev,
4505                                     "malformed Tx packet detected and dropped, LVMMC:0x%08x\n",
4506                                     lvmmc);
4507                 }
4508         }
4509 }
4510
4511 /**
4512  *  igb_watchdog - Timer Call-back
4513  *  @data: pointer to adapter cast into an unsigned long
4514  **/
4515 static void igb_watchdog(unsigned long data)
4516 {
4517         struct igb_adapter *adapter = (struct igb_adapter *)data;
4518         /* Do the rest outside of interrupt context */
4519         schedule_work(&adapter->watchdog_task);
4520 }
4521
4522 static void igb_watchdog_task(struct work_struct *work)
4523 {
4524         struct igb_adapter *adapter = container_of(work,
4525                                                    struct igb_adapter,
4526                                                    watchdog_task);
4527         struct e1000_hw *hw = &adapter->hw;
4528         struct e1000_phy_info *phy = &hw->phy;
4529         struct net_device *netdev = adapter->netdev;
4530         u32 link;
4531         int i;
4532         u32 connsw;
4533         u16 phy_data, retry_count = 20;
4534
4535         link = igb_has_link(adapter);
4536
4537         if (adapter->flags & IGB_FLAG_NEED_LINK_UPDATE) {
4538                 if (time_after(jiffies, (adapter->link_check_timeout + HZ)))
4539                         adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
4540                 else
4541                         link = false;
4542         }
4543
4544         /* Force link down if we have fiber to swap to */
4545         if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
4546                 if (hw->phy.media_type == e1000_media_type_copper) {
4547                         connsw = rd32(E1000_CONNSW);
4548                         if (!(connsw & E1000_CONNSW_AUTOSENSE_EN))
4549                                 link = 0;
4550                 }
4551         }
4552         if (link) {
4553                 /* Perform a reset if the media type changed. */
4554                 if (hw->dev_spec._82575.media_changed) {
4555                         hw->dev_spec._82575.media_changed = false;
4556                         adapter->flags |= IGB_FLAG_MEDIA_RESET;
4557                         igb_reset(adapter);
4558                 }
4559                 /* Cancel scheduled suspend requests. */
4560                 pm_runtime_resume(netdev->dev.parent);
4561
4562                 if (!netif_carrier_ok(netdev)) {
4563                         u32 ctrl;
4564
4565                         hw->mac.ops.get_speed_and_duplex(hw,
4566                                                          &adapter->link_speed,
4567                                                          &adapter->link_duplex);
4568
4569                         ctrl = rd32(E1000_CTRL);
4570                         /* Links status message must follow this format */
4571                         netdev_info(netdev,
4572                                "igb: %s NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n",
4573                                netdev->name,
4574                                adapter->link_speed,
4575                                adapter->link_duplex == FULL_DUPLEX ?
4576                                "Full" : "Half",
4577                                (ctrl & E1000_CTRL_TFCE) &&
4578                                (ctrl & E1000_CTRL_RFCE) ? "RX/TX" :
4579                                (ctrl & E1000_CTRL_RFCE) ?  "RX" :
4580                                (ctrl & E1000_CTRL_TFCE) ?  "TX" : "None");
4581
4582                         /* disable EEE if enabled */
4583                         if ((adapter->flags & IGB_FLAG_EEE) &&
4584                                 (adapter->link_duplex == HALF_DUPLEX)) {
4585                                 dev_info(&adapter->pdev->dev,
4586                                 "EEE Disabled: unsupported at half duplex. Re-enable using ethtool when at full duplex.\n");
4587                                 adapter->hw.dev_spec._82575.eee_disable = true;
4588                                 adapter->flags &= ~IGB_FLAG_EEE;
4589                         }
4590
4591                         /* check if SmartSpeed worked */
4592                         igb_check_downshift(hw);
4593                         if (phy->speed_downgraded)
4594                                 netdev_warn(netdev, "Link Speed was downgraded by SmartSpeed\n");
4595
4596                         /* check for thermal sensor event */
4597                         if (igb_thermal_sensor_event(hw,
4598                             E1000_THSTAT_LINK_THROTTLE))
4599                                 netdev_info(netdev, "The network adapter link speed was downshifted because it overheated\n");
4600
4601                         /* adjust timeout factor according to speed/duplex */
4602                         adapter->tx_timeout_factor = 1;
4603                         switch (adapter->link_speed) {
4604                         case SPEED_10:
4605                                 adapter->tx_timeout_factor = 14;
4606                                 break;
4607                         case SPEED_100:
4608                                 /* maybe add some timeout factor ? */
4609                                 break;
4610                         }
4611
4612                         if (adapter->link_speed != SPEED_1000)
4613                                 goto no_wait;
4614
4615                         /* wait for Remote receiver status OK */
4616 retry_read_status:
4617                         if (!igb_read_phy_reg(hw, PHY_1000T_STATUS,
4618                                               &phy_data)) {
4619                                 if (!(phy_data & SR_1000T_REMOTE_RX_STATUS) &&
4620                                     retry_count) {
4621                                         msleep(100);
4622                                         retry_count--;
4623                                         goto retry_read_status;
4624                                 } else if (!retry_count) {
4625                                         dev_err(&adapter->pdev->dev, "exceed max 2 second\n");
4626                                 }
4627                         } else {
4628                                 dev_err(&adapter->pdev->dev, "read 1000Base-T Status Reg\n");
4629                         }
4630 no_wait:
4631                         netif_carrier_on(netdev);
4632
4633                         igb_ping_all_vfs(adapter);
4634                         igb_check_vf_rate_limit(adapter);
4635
4636                         /* link state has changed, schedule phy info update */
4637                         if (!test_bit(__IGB_DOWN, &adapter->state))
4638                                 mod_timer(&adapter->phy_info_timer,
4639                                           round_jiffies(jiffies + 2 * HZ));
4640                 }
4641         } else {
4642                 if (netif_carrier_ok(netdev)) {
4643                         adapter->link_speed = 0;
4644                         adapter->link_duplex = 0;
4645
4646                         /* check for thermal sensor event */
4647                         if (igb_thermal_sensor_event(hw,
4648                             E1000_THSTAT_PWR_DOWN)) {
4649                                 netdev_err(netdev, "The network adapter was stopped because it overheated\n");
4650                         }
4651
4652                         /* Links status message must follow this format */
4653                         netdev_info(netdev, "igb: %s NIC Link is Down\n",
4654                                netdev->name);
4655                         netif_carrier_off(netdev);
4656
4657                         igb_ping_all_vfs(adapter);
4658
4659                         /* link state has changed, schedule phy info update */
4660                         if (!test_bit(__IGB_DOWN, &adapter->state))
4661                                 mod_timer(&adapter->phy_info_timer,
4662                                           round_jiffies(jiffies + 2 * HZ));
4663
4664                         /* link is down, time to check for alternate media */
4665                         if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
4666                                 igb_check_swap_media(adapter);
4667                                 if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
4668                                         schedule_work(&adapter->reset_task);
4669                                         /* return immediately */
4670                                         return;
4671                                 }
4672                         }
4673                         pm_schedule_suspend(netdev->dev.parent,
4674                                             MSEC_PER_SEC * 5);
4675
4676                 /* also check for alternate media here */
4677                 } else if (!netif_carrier_ok(netdev) &&
4678                            (adapter->flags & IGB_FLAG_MAS_ENABLE)) {
4679                         igb_check_swap_media(adapter);
4680                         if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
4681                                 schedule_work(&adapter->reset_task);
4682                                 /* return immediately */
4683                                 return;
4684                         }
4685                 }
4686         }
4687
4688         spin_lock(&adapter->stats64_lock);
4689         igb_update_stats(adapter);
4690         spin_unlock(&adapter->stats64_lock);
4691
4692         for (i = 0; i < adapter->num_tx_queues; i++) {
4693                 struct igb_ring *tx_ring = adapter->tx_ring[i];
4694                 if (!netif_carrier_ok(netdev)) {
4695                         /* We've lost link, so the controller stops DMA,
4696                          * but we've got queued Tx work that's never going
4697                          * to get done, so reset controller to flush Tx.
4698                          * (Do the reset outside of interrupt context).
4699                          */
4700                         if (igb_desc_unused(tx_ring) + 1 < tx_ring->count) {
4701                                 adapter->tx_timeout_count++;
4702                                 schedule_work(&adapter->reset_task);
4703                                 /* return immediately since reset is imminent */
4704                                 return;
4705                         }
4706                 }
4707
4708                 /* Force detection of hung controller every watchdog period */
4709                 set_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
4710         }
4711
4712         /* Cause software interrupt to ensure Rx ring is cleaned */
4713         if (adapter->flags & IGB_FLAG_HAS_MSIX) {
4714                 u32 eics = 0;
4715
4716                 for (i = 0; i < adapter->num_q_vectors; i++)
4717                         eics |= adapter->q_vector[i]->eims_value;
4718                 wr32(E1000_EICS, eics);
4719         } else {
4720                 wr32(E1000_ICS, E1000_ICS_RXDMT0);
4721         }
4722
4723         igb_spoof_check(adapter);
4724         igb_ptp_rx_hang(adapter);
4725         igb_ptp_tx_hang(adapter);
4726
4727         /* Check LVMMC register on i350/i354 only */
4728         if ((adapter->hw.mac.type == e1000_i350) ||
4729             (adapter->hw.mac.type == e1000_i354))
4730                 igb_check_lvmmc(adapter);
4731
4732         /* Reset the timer */
4733         if (!test_bit(__IGB_DOWN, &adapter->state)) {
4734                 if (adapter->flags & IGB_FLAG_NEED_LINK_UPDATE)
4735                         mod_timer(&adapter->watchdog_timer,
4736                                   round_jiffies(jiffies +  HZ));
4737                 else
4738                         mod_timer(&adapter->watchdog_timer,
4739                                   round_jiffies(jiffies + 2 * HZ));
4740         }
4741 }
4742
4743 enum latency_range {
4744         lowest_latency = 0,
4745         low_latency = 1,
4746         bulk_latency = 2,
4747         latency_invalid = 255
4748 };
4749
4750 /**
4751  *  igb_update_ring_itr - update the dynamic ITR value based on packet size
4752  *  @q_vector: pointer to q_vector
4753  *
4754  *  Stores a new ITR value based on strictly on packet size.  This
4755  *  algorithm is less sophisticated than that used in igb_update_itr,
4756  *  due to the difficulty of synchronizing statistics across multiple
4757  *  receive rings.  The divisors and thresholds used by this function
4758  *  were determined based on theoretical maximum wire speed and testing
4759  *  data, in order to minimize response time while increasing bulk
4760  *  throughput.
4761  *  This functionality is controlled by ethtool's coalescing settings.
4762  *  NOTE:  This function is called only when operating in a multiqueue
4763  *         receive environment.
4764  **/
4765 static void igb_update_ring_itr(struct igb_q_vector *q_vector)
4766 {
4767         int new_val = q_vector->itr_val;
4768         int avg_wire_size = 0;
4769         struct igb_adapter *adapter = q_vector->adapter;
4770         unsigned int packets;
4771
4772         /* For non-gigabit speeds, just fix the interrupt rate at 4000
4773          * ints/sec - ITR timer value of 120 ticks.
4774          */
4775         if (adapter->link_speed != SPEED_1000) {
4776                 new_val = IGB_4K_ITR;
4777                 goto set_itr_val;
4778         }
4779
4780         packets = q_vector->rx.total_packets;
4781         if (packets)
4782                 avg_wire_size = q_vector->rx.total_bytes / packets;
4783
4784         packets = q_vector->tx.total_packets;
4785         if (packets)
4786                 avg_wire_size = max_t(u32, avg_wire_size,
4787                                       q_vector->tx.total_bytes / packets);
4788
4789         /* if avg_wire_size isn't set no work was done */
4790         if (!avg_wire_size)
4791                 goto clear_counts;
4792
4793         /* Add 24 bytes to size to account for CRC, preamble, and gap */
4794         avg_wire_size += 24;
4795
4796         /* Don't starve jumbo frames */
4797         avg_wire_size = min(avg_wire_size, 3000);
4798
4799         /* Give a little boost to mid-size frames */
4800         if ((avg_wire_size > 300) && (avg_wire_size < 1200))
4801                 new_val = avg_wire_size / 3;
4802         else
4803                 new_val = avg_wire_size / 2;
4804
4805         /* conservative mode (itr 3) eliminates the lowest_latency setting */
4806         if (new_val < IGB_20K_ITR &&
4807             ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
4808              (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
4809                 new_val = IGB_20K_ITR;
4810
4811 set_itr_val:
4812         if (new_val != q_vector->itr_val) {
4813                 q_vector->itr_val = new_val;
4814                 q_vector->set_itr = 1;
4815         }
4816 clear_counts:
4817         q_vector->rx.total_bytes = 0;
4818         q_vector->rx.total_packets = 0;
4819         q_vector->tx.total_bytes = 0;
4820         q_vector->tx.total_packets = 0;
4821 }
4822
4823 /**
4824  *  igb_update_itr - update the dynamic ITR value based on statistics
4825  *  @q_vector: pointer to q_vector
4826  *  @ring_container: ring info to update the itr for
4827  *
4828  *  Stores a new ITR value based on packets and byte
4829  *  counts during the last interrupt.  The advantage of per interrupt
4830  *  computation is faster updates and more accurate ITR for the current
4831  *  traffic pattern.  Constants in this function were computed
4832  *  based on theoretical maximum wire speed and thresholds were set based
4833  *  on testing data as well as attempting to minimize response time
4834  *  while increasing bulk throughput.
4835  *  This functionality is controlled by ethtool's coalescing settings.
4836  *  NOTE:  These calculations are only valid when operating in a single-
4837  *         queue environment.
4838  **/
4839 static void igb_update_itr(struct igb_q_vector *q_vector,
4840                            struct igb_ring_container *ring_container)
4841 {
4842         unsigned int packets = ring_container->total_packets;
4843         unsigned int bytes = ring_container->total_bytes;
4844         u8 itrval = ring_container->itr;
4845
4846         /* no packets, exit with status unchanged */
4847         if (packets == 0)
4848                 return;
4849
4850         switch (itrval) {
4851         case lowest_latency:
4852                 /* handle TSO and jumbo frames */
4853                 if (bytes/packets > 8000)
4854                         itrval = bulk_latency;
4855                 else if ((packets < 5) && (bytes > 512))
4856                         itrval = low_latency;
4857                 break;
4858         case low_latency:  /* 50 usec aka 20000 ints/s */
4859                 if (bytes > 10000) {
4860                         /* this if handles the TSO accounting */
4861                         if (bytes/packets > 8000)
4862                                 itrval = bulk_latency;
4863                         else if ((packets < 10) || ((bytes/packets) > 1200))
4864                                 itrval = bulk_latency;
4865                         else if ((packets > 35))
4866                                 itrval = lowest_latency;
4867                 } else if (bytes/packets > 2000) {
4868                         itrval = bulk_latency;
4869                 } else if (packets <= 2 && bytes < 512) {
4870                         itrval = lowest_latency;
4871                 }
4872                 break;
4873         case bulk_latency: /* 250 usec aka 4000 ints/s */
4874                 if (bytes > 25000) {
4875                         if (packets > 35)
4876                                 itrval = low_latency;
4877                 } else if (bytes < 1500) {
4878                         itrval = low_latency;
4879                 }
4880                 break;
4881         }
4882
4883         /* clear work counters since we have the values we need */
4884         ring_container->total_bytes = 0;
4885         ring_container->total_packets = 0;
4886
4887         /* write updated itr to ring container */
4888         ring_container->itr = itrval;
4889 }
4890
4891 static void igb_set_itr(struct igb_q_vector *q_vector)
4892 {
4893         struct igb_adapter *adapter = q_vector->adapter;
4894         u32 new_itr = q_vector->itr_val;
4895         u8 current_itr = 0;
4896
4897         /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
4898         if (adapter->link_speed != SPEED_1000) {
4899                 current_itr = 0;
4900                 new_itr = IGB_4K_ITR;
4901                 goto set_itr_now;
4902         }
4903
4904         igb_update_itr(q_vector, &q_vector->tx);
4905         igb_update_itr(q_vector, &q_vector->rx);
4906
4907         current_itr = max(q_vector->rx.itr, q_vector->tx.itr);
4908
4909         /* conservative mode (itr 3) eliminates the lowest_latency setting */
4910         if (current_itr == lowest_latency &&
4911             ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
4912              (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
4913                 current_itr = low_latency;
4914
4915         switch (current_itr) {
4916         /* counts and packets in update_itr are dependent on these numbers */
4917         case lowest_latency:
4918                 new_itr = IGB_70K_ITR; /* 70,000 ints/sec */
4919                 break;
4920         case low_latency:
4921                 new_itr = IGB_20K_ITR; /* 20,000 ints/sec */
4922                 break;
4923         case bulk_latency:
4924                 new_itr = IGB_4K_ITR;  /* 4,000 ints/sec */
4925                 break;
4926         default:
4927                 break;
4928         }
4929
4930 set_itr_now:
4931         if (new_itr != q_vector->itr_val) {
4932                 /* this attempts to bias the interrupt rate towards Bulk
4933                  * by adding intermediate steps when interrupt rate is
4934                  * increasing
4935                  */
4936                 new_itr = new_itr > q_vector->itr_val ?
4937                           max((new_itr * q_vector->itr_val) /
4938                           (new_itr + (q_vector->itr_val >> 2)),
4939                           new_itr) : new_itr;
4940                 /* Don't write the value here; it resets the adapter's
4941                  * internal timer, and causes us to delay far longer than
4942                  * we should between interrupts.  Instead, we write the ITR
4943                  * value at the beginning of the next interrupt so the timing
4944                  * ends up being correct.
4945                  */
4946                 q_vector->itr_val = new_itr;
4947                 q_vector->set_itr = 1;
4948         }
4949 }
4950
4951 static void igb_tx_ctxtdesc(struct igb_ring *tx_ring, u32 vlan_macip_lens,
4952                             u32 type_tucmd, u32 mss_l4len_idx)
4953 {
4954         struct e1000_adv_tx_context_desc *context_desc;
4955         u16 i = tx_ring->next_to_use;
4956
4957         context_desc = IGB_TX_CTXTDESC(tx_ring, i);
4958
4959         i++;
4960         tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
4961
4962         /* set bits to identify this as an advanced context descriptor */
4963         type_tucmd |= E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT;
4964
4965         /* For 82575, context index must be unique per ring. */
4966         if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
4967                 mss_l4len_idx |= tx_ring->reg_idx << 4;
4968
4969         context_desc->vlan_macip_lens   = cpu_to_le32(vlan_macip_lens);
4970         context_desc->seqnum_seed       = 0;
4971         context_desc->type_tucmd_mlhl   = cpu_to_le32(type_tucmd);
4972         context_desc->mss_l4len_idx     = cpu_to_le32(mss_l4len_idx);
4973 }
4974
4975 static int igb_tso(struct igb_ring *tx_ring,
4976                    struct igb_tx_buffer *first,
4977                    u8 *hdr_len)
4978 {
4979         u32 vlan_macip_lens, type_tucmd, mss_l4len_idx;
4980         struct sk_buff *skb = first->skb;
4981         union {
4982                 struct iphdr *v4;
4983                 struct ipv6hdr *v6;
4984                 unsigned char *hdr;
4985         } ip;
4986         union {
4987                 struct tcphdr *tcp;
4988                 unsigned char *hdr;
4989         } l4;
4990         u32 paylen, l4_offset;
4991         int err;
4992
4993         if (skb->ip_summed != CHECKSUM_PARTIAL)
4994                 return 0;
4995
4996         if (!skb_is_gso(skb))
4997                 return 0;
4998
4999         err = skb_cow_head(skb, 0);
5000         if (err < 0)
5001                 return err;
5002
5003         ip.hdr = skb_network_header(skb);
5004         l4.hdr = skb_checksum_start(skb);
5005
5006         /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
5007         type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
5008
5009         /* initialize outer IP header fields */
5010         if (ip.v4->version == 4) {
5011                 unsigned char *csum_start = skb_checksum_start(skb);
5012                 unsigned char *trans_start = ip.hdr + (ip.v4->ihl * 4);
5013
5014                 /* IP header will have to cancel out any data that
5015                  * is not a part of the outer IP header
5016                  */
5017                 ip.v4->check = csum_fold(csum_partial(trans_start,
5018                                                       csum_start - trans_start,
5019                                                       0));
5020                 type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
5021
5022                 ip.v4->tot_len = 0;
5023                 first->tx_flags |= IGB_TX_FLAGS_TSO |
5024                                    IGB_TX_FLAGS_CSUM |
5025                                    IGB_TX_FLAGS_IPV4;
5026         } else {
5027                 ip.v6->payload_len = 0;
5028                 first->tx_flags |= IGB_TX_FLAGS_TSO |
5029                                    IGB_TX_FLAGS_CSUM;
5030         }
5031
5032         /* determine offset of inner transport header */
5033         l4_offset = l4.hdr - skb->data;
5034
5035         /* compute length of segmentation header */
5036         *hdr_len = (l4.tcp->doff * 4) + l4_offset;
5037
5038         /* remove payload length from inner checksum */
5039         paylen = skb->len - l4_offset;
5040         csum_replace_by_diff(&l4.tcp->check, htonl(paylen));
5041
5042         /* update gso size and bytecount with header size */
5043         first->gso_segs = skb_shinfo(skb)->gso_segs;
5044         first->bytecount += (first->gso_segs - 1) * *hdr_len;
5045
5046         /* MSS L4LEN IDX */
5047         mss_l4len_idx = (*hdr_len - l4_offset) << E1000_ADVTXD_L4LEN_SHIFT;
5048         mss_l4len_idx |= skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT;
5049
5050         /* VLAN MACLEN IPLEN */
5051         vlan_macip_lens = l4.hdr - ip.hdr;
5052         vlan_macip_lens |= (ip.hdr - skb->data) << E1000_ADVTXD_MACLEN_SHIFT;
5053         vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
5054
5055         igb_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, mss_l4len_idx);
5056
5057         return 1;
5058 }
5059
5060 static inline bool igb_ipv6_csum_is_sctp(struct sk_buff *skb)
5061 {
5062         unsigned int offset = 0;
5063
5064         ipv6_find_hdr(skb, &offset, IPPROTO_SCTP, NULL, NULL);
5065
5066         return offset == skb_checksum_start_offset(skb);
5067 }
5068
5069 static void igb_tx_csum(struct igb_ring *tx_ring, struct igb_tx_buffer *first)
5070 {
5071         struct sk_buff *skb = first->skb;
5072         u32 vlan_macip_lens = 0;
5073         u32 type_tucmd = 0;
5074
5075         if (skb->ip_summed != CHECKSUM_PARTIAL) {
5076 csum_failed:
5077                 if (!(first->tx_flags & IGB_TX_FLAGS_VLAN))
5078                         return;
5079                 goto no_csum;
5080         }
5081
5082         switch (skb->csum_offset) {
5083         case offsetof(struct tcphdr, check):
5084                 type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
5085                 /* fall through */
5086         case offsetof(struct udphdr, check):
5087                 break;
5088         case offsetof(struct sctphdr, checksum):
5089                 /* validate that this is actually an SCTP request */
5090                 if (((first->protocol == htons(ETH_P_IP)) &&
5091                      (ip_hdr(skb)->protocol == IPPROTO_SCTP)) ||
5092                     ((first->protocol == htons(ETH_P_IPV6)) &&
5093                      igb_ipv6_csum_is_sctp(skb))) {
5094                         type_tucmd = E1000_ADVTXD_TUCMD_L4T_SCTP;
5095                         break;
5096                 }
5097         default:
5098                 skb_checksum_help(skb);
5099                 goto csum_failed;
5100         }
5101
5102         /* update TX checksum flag */
5103         first->tx_flags |= IGB_TX_FLAGS_CSUM;
5104         vlan_macip_lens = skb_checksum_start_offset(skb) -
5105                           skb_network_offset(skb);
5106 no_csum:
5107         vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
5108         vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
5109
5110         igb_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, 0);
5111 }
5112
5113 #define IGB_SET_FLAG(_input, _flag, _result) \
5114         ((_flag <= _result) ? \
5115          ((u32)(_input & _flag) * (_result / _flag)) : \
5116          ((u32)(_input & _flag) / (_flag / _result)))
5117
5118 static u32 igb_tx_cmd_type(struct sk_buff *skb, u32 tx_flags)
5119 {
5120         /* set type for advanced descriptor with frame checksum insertion */
5121         u32 cmd_type = E1000_ADVTXD_DTYP_DATA |
5122                        E1000_ADVTXD_DCMD_DEXT |
5123                        E1000_ADVTXD_DCMD_IFCS;
5124
5125         /* set HW vlan bit if vlan is present */
5126         cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_VLAN,
5127                                  (E1000_ADVTXD_DCMD_VLE));
5128
5129         /* set segmentation bits for TSO */
5130         cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSO,
5131                                  (E1000_ADVTXD_DCMD_TSE));
5132
5133         /* set timestamp bit if present */
5134         cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSTAMP,
5135                                  (E1000_ADVTXD_MAC_TSTAMP));
5136
5137         /* insert frame checksum */
5138         cmd_type ^= IGB_SET_FLAG(skb->no_fcs, 1, E1000_ADVTXD_DCMD_IFCS);
5139
5140         return cmd_type;
5141 }
5142
5143 static void igb_tx_olinfo_status(struct igb_ring *tx_ring,
5144                                  union e1000_adv_tx_desc *tx_desc,
5145                                  u32 tx_flags, unsigned int paylen)
5146 {
5147         u32 olinfo_status = paylen << E1000_ADVTXD_PAYLEN_SHIFT;
5148
5149         /* 82575 requires a unique index per ring */
5150         if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
5151                 olinfo_status |= tx_ring->reg_idx << 4;
5152
5153         /* insert L4 checksum */
5154         olinfo_status |= IGB_SET_FLAG(tx_flags,
5155                                       IGB_TX_FLAGS_CSUM,
5156                                       (E1000_TXD_POPTS_TXSM << 8));
5157
5158         /* insert IPv4 checksum */
5159         olinfo_status |= IGB_SET_FLAG(tx_flags,
5160                                       IGB_TX_FLAGS_IPV4,
5161                                       (E1000_TXD_POPTS_IXSM << 8));
5162
5163         tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
5164 }
5165
5166 static int __igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
5167 {
5168         struct net_device *netdev = tx_ring->netdev;
5169
5170         netif_stop_subqueue(netdev, tx_ring->queue_index);
5171
5172         /* Herbert's original patch had:
5173          *  smp_mb__after_netif_stop_queue();
5174          * but since that doesn't exist yet, just open code it.
5175          */
5176         smp_mb();
5177
5178         /* We need to check again in a case another CPU has just
5179          * made room available.
5180          */
5181         if (igb_desc_unused(tx_ring) < size)
5182                 return -EBUSY;
5183
5184         /* A reprieve! */
5185         netif_wake_subqueue(netdev, tx_ring->queue_index);
5186
5187         u64_stats_update_begin(&tx_ring->tx_syncp2);
5188         tx_ring->tx_stats.restart_queue2++;
5189         u64_stats_update_end(&tx_ring->tx_syncp2);
5190
5191         return 0;
5192 }
5193
5194 static inline int igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
5195 {
5196         if (igb_desc_unused(tx_ring) >= size)
5197                 return 0;
5198         return __igb_maybe_stop_tx(tx_ring, size);
5199 }
5200
5201 static int igb_tx_map(struct igb_ring *tx_ring,
5202                       struct igb_tx_buffer *first,
5203                       const u8 hdr_len)
5204 {
5205         struct sk_buff *skb = first->skb;
5206         struct igb_tx_buffer *tx_buffer;
5207         union e1000_adv_tx_desc *tx_desc;
5208         struct skb_frag_struct *frag;
5209         dma_addr_t dma;
5210         unsigned int data_len, size;
5211         u32 tx_flags = first->tx_flags;
5212         u32 cmd_type = igb_tx_cmd_type(skb, tx_flags);
5213         u16 i = tx_ring->next_to_use;
5214
5215         tx_desc = IGB_TX_DESC(tx_ring, i);
5216
5217         igb_tx_olinfo_status(tx_ring, tx_desc, tx_flags, skb->len - hdr_len);
5218
5219         size = skb_headlen(skb);
5220         data_len = skb->data_len;
5221
5222         dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
5223
5224         tx_buffer = first;
5225
5226         for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
5227                 if (dma_mapping_error(tx_ring->dev, dma))
5228                         goto dma_error;
5229
5230                 /* record length, and DMA address */
5231                 dma_unmap_len_set(tx_buffer, len, size);
5232                 dma_unmap_addr_set(tx_buffer, dma, dma);
5233
5234                 tx_desc->read.buffer_addr = cpu_to_le64(dma);
5235
5236                 while (unlikely(size > IGB_MAX_DATA_PER_TXD)) {
5237                         tx_desc->read.cmd_type_len =
5238                                 cpu_to_le32(cmd_type ^ IGB_MAX_DATA_PER_TXD);
5239
5240                         i++;
5241                         tx_desc++;
5242                         if (i == tx_ring->count) {
5243                                 tx_desc = IGB_TX_DESC(tx_ring, 0);
5244                                 i = 0;
5245                         }
5246                         tx_desc->read.olinfo_status = 0;
5247
5248                         dma += IGB_MAX_DATA_PER_TXD;
5249                         size -= IGB_MAX_DATA_PER_TXD;
5250
5251                         tx_desc->read.buffer_addr = cpu_to_le64(dma);
5252                 }
5253
5254                 if (likely(!data_len))
5255                         break;
5256
5257                 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type ^ size);
5258
5259                 i++;
5260                 tx_desc++;
5261                 if (i == tx_ring->count) {
5262                         tx_desc = IGB_TX_DESC(tx_ring, 0);
5263                         i = 0;
5264                 }
5265                 tx_desc->read.olinfo_status = 0;
5266
5267                 size = skb_frag_size(frag);
5268                 data_len -= size;
5269
5270                 dma = skb_frag_dma_map(tx_ring->dev, frag, 0,
5271                                        size, DMA_TO_DEVICE);
5272
5273                 tx_buffer = &tx_ring->tx_buffer_info[i];
5274         }
5275
5276         /* write last descriptor with RS and EOP bits */
5277         cmd_type |= size | IGB_TXD_DCMD;
5278         tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
5279
5280         netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
5281
5282         /* set the timestamp */
5283         first->time_stamp = jiffies;
5284
5285         /* Force memory writes to complete before letting h/w know there
5286          * are new descriptors to fetch.  (Only applicable for weak-ordered
5287          * memory model archs, such as IA-64).
5288          *
5289          * We also need this memory barrier to make certain all of the
5290          * status bits have been updated before next_to_watch is written.
5291          */
5292         wmb();
5293
5294         /* set next_to_watch value indicating a packet is present */
5295         first->next_to_watch = tx_desc;
5296
5297         i++;
5298         if (i == tx_ring->count)
5299                 i = 0;
5300
5301         tx_ring->next_to_use = i;
5302
5303         /* Make sure there is space in the ring for the next send. */
5304         igb_maybe_stop_tx(tx_ring, DESC_NEEDED);
5305
5306         if (netif_xmit_stopped(txring_txq(tx_ring)) || !skb->xmit_more) {
5307                 writel(i, tx_ring->tail);
5308
5309                 /* we need this if more than one processor can write to our tail
5310                  * at a time, it synchronizes IO on IA64/Altix systems
5311                  */
5312                 mmiowb();
5313         }
5314         return 0;
5315
5316 dma_error:
5317         dev_err(tx_ring->dev, "TX DMA map failed\n");
5318         tx_buffer = &tx_ring->tx_buffer_info[i];
5319
5320         /* clear dma mappings for failed tx_buffer_info map */
5321         while (tx_buffer != first) {
5322                 if (dma_unmap_len(tx_buffer, len))
5323                         dma_unmap_page(tx_ring->dev,
5324                                        dma_unmap_addr(tx_buffer, dma),
5325                                        dma_unmap_len(tx_buffer, len),
5326                                        DMA_TO_DEVICE);
5327                 dma_unmap_len_set(tx_buffer, len, 0);
5328
5329                 if (i--)
5330                         i += tx_ring->count;
5331                 tx_buffer = &tx_ring->tx_buffer_info[i];
5332         }
5333
5334         if (dma_unmap_len(tx_buffer, len))
5335                 dma_unmap_single(tx_ring->dev,
5336                                  dma_unmap_addr(tx_buffer, dma),
5337                                  dma_unmap_len(tx_buffer, len),
5338                                  DMA_TO_DEVICE);
5339         dma_unmap_len_set(tx_buffer, len, 0);
5340
5341         dev_kfree_skb_any(tx_buffer->skb);
5342         tx_buffer->skb = NULL;
5343
5344         tx_ring->next_to_use = i;
5345
5346         return -1;
5347 }
5348
5349 netdev_tx_t igb_xmit_frame_ring(struct sk_buff *skb,
5350                                 struct igb_ring *tx_ring)
5351 {
5352         struct igb_tx_buffer *first;
5353         int tso;
5354         u32 tx_flags = 0;
5355         unsigned short f;
5356         u16 count = TXD_USE_COUNT(skb_headlen(skb));
5357         __be16 protocol = vlan_get_protocol(skb);
5358         u8 hdr_len = 0;
5359
5360         /* need: 1 descriptor per page * PAGE_SIZE/IGB_MAX_DATA_PER_TXD,
5361          *       + 1 desc for skb_headlen/IGB_MAX_DATA_PER_TXD,
5362          *       + 2 desc gap to keep tail from touching head,
5363          *       + 1 desc for context descriptor,
5364          * otherwise try next time
5365          */
5366         for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
5367                 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size);
5368
5369         if (igb_maybe_stop_tx(tx_ring, count + 3)) {
5370                 /* this is a hard error */
5371                 return NETDEV_TX_BUSY;
5372         }
5373
5374         /* record the location of the first descriptor for this packet */
5375         first = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
5376         first->skb = skb;
5377         first->bytecount = skb->len;
5378         first->gso_segs = 1;
5379
5380         if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
5381                 struct igb_adapter *adapter = netdev_priv(tx_ring->netdev);
5382
5383                 if (!test_and_set_bit_lock(__IGB_PTP_TX_IN_PROGRESS,
5384                                            &adapter->state)) {
5385                         skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
5386                         tx_flags |= IGB_TX_FLAGS_TSTAMP;
5387
5388                         adapter->ptp_tx_skb = skb_get(skb);
5389                         adapter->ptp_tx_start = jiffies;
5390                         if (adapter->hw.mac.type == e1000_82576)
5391                                 schedule_work(&adapter->ptp_tx_work);
5392                 } else {
5393                         adapter->tx_hwtstamp_skipped++;
5394                 }
5395         }
5396
5397         skb_tx_timestamp(skb);
5398
5399         if (skb_vlan_tag_present(skb)) {
5400                 tx_flags |= IGB_TX_FLAGS_VLAN;
5401                 tx_flags |= (skb_vlan_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT);
5402         }
5403
5404         /* record initial flags and protocol */
5405         first->tx_flags = tx_flags;
5406         first->protocol = protocol;
5407
5408         tso = igb_tso(tx_ring, first, &hdr_len);
5409         if (tso < 0)
5410                 goto out_drop;
5411         else if (!tso)
5412                 igb_tx_csum(tx_ring, first);
5413
5414         if (igb_tx_map(tx_ring, first, hdr_len))
5415                 goto cleanup_tx_tstamp;
5416
5417         return NETDEV_TX_OK;
5418
5419 out_drop:
5420         dev_kfree_skb_any(first->skb);
5421         first->skb = NULL;
5422 cleanup_tx_tstamp:
5423         if (unlikely(tx_flags & IGB_TX_FLAGS_TSTAMP)) {
5424                 struct igb_adapter *adapter = netdev_priv(tx_ring->netdev);
5425
5426                 dev_kfree_skb_any(adapter->ptp_tx_skb);
5427                 adapter->ptp_tx_skb = NULL;
5428                 if (adapter->hw.mac.type == e1000_82576)
5429                         cancel_work_sync(&adapter->ptp_tx_work);
5430                 clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
5431         }
5432
5433         return NETDEV_TX_OK;
5434 }
5435
5436 static inline struct igb_ring *igb_tx_queue_mapping(struct igb_adapter *adapter,
5437                                                     struct sk_buff *skb)
5438 {
5439         unsigned int r_idx = skb->queue_mapping;
5440
5441         if (r_idx >= adapter->num_tx_queues)
5442                 r_idx = r_idx % adapter->num_tx_queues;
5443
5444         return adapter->tx_ring[r_idx];
5445 }
5446
5447 static netdev_tx_t igb_xmit_frame(struct sk_buff *skb,
5448                                   struct net_device *netdev)
5449 {
5450         struct igb_adapter *adapter = netdev_priv(netdev);
5451
5452         /* The minimum packet size with TCTL.PSP set is 17 so pad the skb
5453          * in order to meet this minimum size requirement.
5454          */
5455         if (skb_put_padto(skb, 17))
5456                 return NETDEV_TX_OK;
5457
5458         return igb_xmit_frame_ring(skb, igb_tx_queue_mapping(adapter, skb));
5459 }
5460
5461 /**
5462  *  igb_tx_timeout - Respond to a Tx Hang
5463  *  @netdev: network interface device structure
5464  **/
5465 static void igb_tx_timeout(struct net_device *netdev)
5466 {
5467         struct igb_adapter *adapter = netdev_priv(netdev);
5468         struct e1000_hw *hw = &adapter->hw;
5469
5470         /* Do the reset outside of interrupt context */
5471         adapter->tx_timeout_count++;
5472
5473         if (hw->mac.type >= e1000_82580)
5474                 hw->dev_spec._82575.global_device_reset = true;
5475
5476         schedule_work(&adapter->reset_task);
5477         wr32(E1000_EICS,
5478              (adapter->eims_enable_mask & ~adapter->eims_other));
5479 }
5480
5481 static void igb_reset_task(struct work_struct *work)
5482 {
5483         struct igb_adapter *adapter;
5484         adapter = container_of(work, struct igb_adapter, reset_task);
5485
5486         igb_dump(adapter);
5487         netdev_err(adapter->netdev, "Reset adapter\n");
5488         igb_reinit_locked(adapter);
5489 }
5490
5491 /**
5492  *  igb_get_stats64 - Get System Network Statistics
5493  *  @netdev: network interface device structure
5494  *  @stats: rtnl_link_stats64 pointer
5495  **/
5496 static void igb_get_stats64(struct net_device *netdev,
5497                             struct rtnl_link_stats64 *stats)
5498 {
5499         struct igb_adapter *adapter = netdev_priv(netdev);
5500
5501         spin_lock(&adapter->stats64_lock);
5502         igb_update_stats(adapter);
5503         memcpy(stats, &adapter->stats64, sizeof(*stats));
5504         spin_unlock(&adapter->stats64_lock);
5505 }
5506
5507 /**
5508  *  igb_change_mtu - Change the Maximum Transfer Unit
5509  *  @netdev: network interface device structure
5510  *  @new_mtu: new value for maximum frame size
5511  *
5512  *  Returns 0 on success, negative on failure
5513  **/
5514 static int igb_change_mtu(struct net_device *netdev, int new_mtu)
5515 {
5516         struct igb_adapter *adapter = netdev_priv(netdev);
5517         struct pci_dev *pdev = adapter->pdev;
5518         int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
5519
5520         /* adjust max frame to be at least the size of a standard frame */
5521         if (max_frame < (ETH_FRAME_LEN + ETH_FCS_LEN))
5522                 max_frame = ETH_FRAME_LEN + ETH_FCS_LEN;
5523
5524         while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
5525                 usleep_range(1000, 2000);
5526
5527         /* igb_down has a dependency on max_frame_size */
5528         adapter->max_frame_size = max_frame;
5529
5530         if (netif_running(netdev))
5531                 igb_down(adapter);
5532
5533         dev_info(&pdev->dev, "changing MTU from %d to %d\n",
5534                  netdev->mtu, new_mtu);
5535         netdev->mtu = new_mtu;
5536
5537         if (netif_running(netdev))
5538                 igb_up(adapter);
5539         else
5540                 igb_reset(adapter);
5541
5542         clear_bit(__IGB_RESETTING, &adapter->state);
5543
5544         return 0;
5545 }
5546
5547 /**
5548  *  igb_update_stats - Update the board statistics counters
5549  *  @adapter: board private structure
5550  **/
5551 void igb_update_stats(struct igb_adapter *adapter)
5552 {
5553         struct rtnl_link_stats64 *net_stats = &adapter->stats64;
5554         struct e1000_hw *hw = &adapter->hw;
5555         struct pci_dev *pdev = adapter->pdev;
5556         u32 reg, mpc;
5557         int i;
5558         u64 bytes, packets;
5559         unsigned int start;
5560         u64 _bytes, _packets;
5561
5562         /* Prevent stats update while adapter is being reset, or if the pci
5563          * connection is down.
5564          */
5565         if (adapter->link_speed == 0)
5566                 return;
5567         if (pci_channel_offline(pdev))
5568                 return;
5569
5570         bytes = 0;
5571         packets = 0;
5572
5573         rcu_read_lock();
5574         for (i = 0; i < adapter->num_rx_queues; i++) {
5575                 struct igb_ring *ring = adapter->rx_ring[i];
5576                 u32 rqdpc = rd32(E1000_RQDPC(i));
5577                 if (hw->mac.type >= e1000_i210)
5578                         wr32(E1000_RQDPC(i), 0);
5579
5580                 if (rqdpc) {
5581                         ring->rx_stats.drops += rqdpc;
5582                         net_stats->rx_fifo_errors += rqdpc;
5583                 }
5584
5585                 do {
5586                         start = u64_stats_fetch_begin_irq(&ring->rx_syncp);
5587                         _bytes = ring->rx_stats.bytes;
5588                         _packets = ring->rx_stats.packets;
5589                 } while (u64_stats_fetch_retry_irq(&ring->rx_syncp, start));
5590                 bytes += _bytes;
5591                 packets += _packets;
5592         }
5593
5594         net_stats->rx_bytes = bytes;
5595         net_stats->rx_packets = packets;
5596
5597         bytes = 0;
5598         packets = 0;
5599         for (i = 0; i < adapter->num_tx_queues; i++) {
5600                 struct igb_ring *ring = adapter->tx_ring[i];
5601                 do {
5602                         start = u64_stats_fetch_begin_irq(&ring->tx_syncp);
5603                         _bytes = ring->tx_stats.bytes;
5604                         _packets = ring->tx_stats.packets;
5605                 } while (u64_stats_fetch_retry_irq(&ring->tx_syncp, start));
5606                 bytes += _bytes;
5607                 packets += _packets;
5608         }
5609         net_stats->tx_bytes = bytes;
5610         net_stats->tx_packets = packets;
5611         rcu_read_unlock();
5612
5613         /* read stats registers */
5614         adapter->stats.crcerrs += rd32(E1000_CRCERRS);
5615         adapter->stats.gprc += rd32(E1000_GPRC);
5616         adapter->stats.gorc += rd32(E1000_GORCL);
5617         rd32(E1000_GORCH); /* clear GORCL */
5618         adapter->stats.bprc += rd32(E1000_BPRC);
5619         adapter->stats.mprc += rd32(E1000_MPRC);
5620         adapter->stats.roc += rd32(E1000_ROC);
5621
5622         adapter->stats.prc64 += rd32(E1000_PRC64);
5623         adapter->stats.prc127 += rd32(E1000_PRC127);
5624         adapter->stats.prc255 += rd32(E1000_PRC255);
5625         adapter->stats.prc511 += rd32(E1000_PRC511);
5626         adapter->stats.prc1023 += rd32(E1000_PRC1023);
5627         adapter->stats.prc1522 += rd32(E1000_PRC1522);
5628         adapter->stats.symerrs += rd32(E1000_SYMERRS);
5629         adapter->stats.sec += rd32(E1000_SEC);
5630
5631         mpc = rd32(E1000_MPC);
5632         adapter->stats.mpc += mpc;
5633         net_stats->rx_fifo_errors += mpc;
5634         adapter->stats.scc += rd32(E1000_SCC);
5635         adapter->stats.ecol += rd32(E1000_ECOL);
5636         adapter->stats.mcc += rd32(E1000_MCC);
5637         adapter->stats.latecol += rd32(E1000_LATECOL);
5638         adapter->stats.dc += rd32(E1000_DC);
5639         adapter->stats.rlec += rd32(E1000_RLEC);
5640         adapter->stats.xonrxc += rd32(E1000_XONRXC);
5641         adapter->stats.xontxc += rd32(E1000_XONTXC);
5642         adapter->stats.xoffrxc += rd32(E1000_XOFFRXC);
5643         adapter->stats.xofftxc += rd32(E1000_XOFFTXC);
5644         adapter->stats.fcruc += rd32(E1000_FCRUC);
5645         adapter->stats.gptc += rd32(E1000_GPTC);
5646         adapter->stats.gotc += rd32(E1000_GOTCL);
5647         rd32(E1000_GOTCH); /* clear GOTCL */
5648         adapter->stats.rnbc += rd32(E1000_RNBC);
5649         adapter->stats.ruc += rd32(E1000_RUC);
5650         adapter->stats.rfc += rd32(E1000_RFC);
5651         adapter->stats.rjc += rd32(E1000_RJC);
5652         adapter->stats.tor += rd32(E1000_TORH);
5653         adapter->stats.tot += rd32(E1000_TOTH);
5654         adapter->stats.tpr += rd32(E1000_TPR);
5655
5656         adapter->stats.ptc64 += rd32(E1000_PTC64);
5657         adapter->stats.ptc127 += rd32(E1000_PTC127);
5658         adapter->stats.ptc255 += rd32(E1000_PTC255);
5659         adapter->stats.ptc511 += rd32(E1000_PTC511);
5660         adapter->stats.ptc1023 += rd32(E1000_PTC1023);
5661         adapter->stats.ptc1522 += rd32(E1000_PTC1522);
5662
5663         adapter->stats.mptc += rd32(E1000_MPTC);
5664         adapter->stats.bptc += rd32(E1000_BPTC);
5665
5666         adapter->stats.tpt += rd32(E1000_TPT);
5667         adapter->stats.colc += rd32(E1000_COLC);
5668
5669         adapter->stats.algnerrc += rd32(E1000_ALGNERRC);
5670         /* read internal phy specific stats */
5671         reg = rd32(E1000_CTRL_EXT);
5672         if (!(reg & E1000_CTRL_EXT_LINK_MODE_MASK)) {
5673                 adapter->stats.rxerrc += rd32(E1000_RXERRC);
5674
5675                 /* this stat has invalid values on i210/i211 */
5676                 if ((hw->mac.type != e1000_i210) &&
5677                     (hw->mac.type != e1000_i211))
5678                         adapter->stats.tncrs += rd32(E1000_TNCRS);
5679         }
5680
5681         adapter->stats.tsctc += rd32(E1000_TSCTC);
5682         adapter->stats.tsctfc += rd32(E1000_TSCTFC);
5683
5684         adapter->stats.iac += rd32(E1000_IAC);
5685         adapter->stats.icrxoc += rd32(E1000_ICRXOC);
5686         adapter->stats.icrxptc += rd32(E1000_ICRXPTC);
5687         adapter->stats.icrxatc += rd32(E1000_ICRXATC);
5688         adapter->stats.ictxptc += rd32(E1000_ICTXPTC);
5689         adapter->stats.ictxatc += rd32(E1000_ICTXATC);
5690         adapter->stats.ictxqec += rd32(E1000_ICTXQEC);
5691         adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC);
5692         adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC);
5693
5694         /* Fill out the OS statistics structure */
5695         net_stats->multicast = adapter->stats.mprc;
5696         net_stats->collisions = adapter->stats.colc;
5697
5698         /* Rx Errors */
5699
5700         /* RLEC on some newer hardware can be incorrect so build
5701          * our own version based on RUC and ROC
5702          */
5703         net_stats->rx_errors = adapter->stats.rxerrc +
5704                 adapter->stats.crcerrs + adapter->stats.algnerrc +
5705                 adapter->stats.ruc + adapter->stats.roc +
5706                 adapter->stats.cexterr;
5707         net_stats->rx_length_errors = adapter->stats.ruc +
5708                                       adapter->stats.roc;
5709         net_stats->rx_crc_errors = adapter->stats.crcerrs;
5710         net_stats->rx_frame_errors = adapter->stats.algnerrc;
5711         net_stats->rx_missed_errors = adapter->stats.mpc;
5712
5713         /* Tx Errors */
5714         net_stats->tx_errors = adapter->stats.ecol +
5715                                adapter->stats.latecol;
5716         net_stats->tx_aborted_errors = adapter->stats.ecol;
5717         net_stats->tx_window_errors = adapter->stats.latecol;
5718         net_stats->tx_carrier_errors = adapter->stats.tncrs;
5719
5720         /* Tx Dropped needs to be maintained elsewhere */
5721
5722         /* Management Stats */
5723         adapter->stats.mgptc += rd32(E1000_MGTPTC);
5724         adapter->stats.mgprc += rd32(E1000_MGTPRC);
5725         adapter->stats.mgpdc += rd32(E1000_MGTPDC);
5726
5727         /* OS2BMC Stats */
5728         reg = rd32(E1000_MANC);
5729         if (reg & E1000_MANC_EN_BMC2OS) {
5730                 adapter->stats.o2bgptc += rd32(E1000_O2BGPTC);
5731                 adapter->stats.o2bspc += rd32(E1000_O2BSPC);
5732                 adapter->stats.b2ospc += rd32(E1000_B2OSPC);
5733                 adapter->stats.b2ogprc += rd32(E1000_B2OGPRC);
5734         }
5735 }
5736
5737 static void igb_tsync_interrupt(struct igb_adapter *adapter)
5738 {
5739         struct e1000_hw *hw = &adapter->hw;
5740         struct ptp_clock_event event;
5741         struct timespec64 ts;
5742         u32 ack = 0, tsauxc, sec, nsec, tsicr = rd32(E1000_TSICR);
5743
5744         if (tsicr & TSINTR_SYS_WRAP) {
5745                 event.type = PTP_CLOCK_PPS;
5746                 if (adapter->ptp_caps.pps)
5747                         ptp_clock_event(adapter->ptp_clock, &event);
5748                 else
5749                         dev_err(&adapter->pdev->dev, "unexpected SYS WRAP");
5750                 ack |= TSINTR_SYS_WRAP;
5751         }
5752
5753         if (tsicr & E1000_TSICR_TXTS) {
5754                 /* retrieve hardware timestamp */
5755                 schedule_work(&adapter->ptp_tx_work);
5756                 ack |= E1000_TSICR_TXTS;
5757         }
5758
5759         if (tsicr & TSINTR_TT0) {
5760                 spin_lock(&adapter->tmreg_lock);
5761                 ts = timespec64_add(adapter->perout[0].start,
5762                                     adapter->perout[0].period);
5763                 /* u32 conversion of tv_sec is safe until y2106 */
5764                 wr32(E1000_TRGTTIML0, ts.tv_nsec);
5765                 wr32(E1000_TRGTTIMH0, (u32)ts.tv_sec);
5766                 tsauxc = rd32(E1000_TSAUXC);
5767                 tsauxc |= TSAUXC_EN_TT0;
5768                 wr32(E1000_TSAUXC, tsauxc);
5769                 adapter->perout[0].start = ts;
5770                 spin_unlock(&adapter->tmreg_lock);
5771                 ack |= TSINTR_TT0;
5772         }
5773
5774         if (tsicr & TSINTR_TT1) {
5775                 spin_lock(&adapter->tmreg_lock);
5776                 ts = timespec64_add(adapter->perout[1].start,
5777                                     adapter->perout[1].period);
5778                 wr32(E1000_TRGTTIML1, ts.tv_nsec);
5779                 wr32(E1000_TRGTTIMH1, (u32)ts.tv_sec);
5780                 tsauxc = rd32(E1000_TSAUXC);
5781                 tsauxc |= TSAUXC_EN_TT1;
5782                 wr32(E1000_TSAUXC, tsauxc);
5783                 adapter->perout[1].start = ts;
5784                 spin_unlock(&adapter->tmreg_lock);
5785                 ack |= TSINTR_TT1;
5786         }
5787
5788         if (tsicr & TSINTR_AUTT0) {
5789                 nsec = rd32(E1000_AUXSTMPL0);
5790                 sec  = rd32(E1000_AUXSTMPH0);
5791                 event.type = PTP_CLOCK_EXTTS;
5792                 event.index = 0;
5793                 event.timestamp = sec * 1000000000ULL + nsec;
5794                 ptp_clock_event(adapter->ptp_clock, &event);
5795                 ack |= TSINTR_AUTT0;
5796         }
5797
5798         if (tsicr & TSINTR_AUTT1) {
5799                 nsec = rd32(E1000_AUXSTMPL1);
5800                 sec  = rd32(E1000_AUXSTMPH1);
5801                 event.type = PTP_CLOCK_EXTTS;
5802                 event.index = 1;
5803                 event.timestamp = sec * 1000000000ULL + nsec;
5804                 ptp_clock_event(adapter->ptp_clock, &event);
5805                 ack |= TSINTR_AUTT1;
5806         }
5807
5808         /* acknowledge the interrupts */
5809         wr32(E1000_TSICR, ack);
5810 }
5811
5812 static irqreturn_t igb_msix_other(int irq, void *data)
5813 {
5814         struct igb_adapter *adapter = data;
5815         struct e1000_hw *hw = &adapter->hw;
5816         u32 icr = rd32(E1000_ICR);
5817         /* reading ICR causes bit 31 of EICR to be cleared */
5818
5819         if (icr & E1000_ICR_DRSTA)
5820                 schedule_work(&adapter->reset_task);
5821
5822         if (icr & E1000_ICR_DOUTSYNC) {
5823                 /* HW is reporting DMA is out of sync */
5824                 adapter->stats.doosync++;
5825                 /* The DMA Out of Sync is also indication of a spoof event
5826                  * in IOV mode. Check the Wrong VM Behavior register to
5827                  * see if it is really a spoof event.
5828                  */
5829                 igb_check_wvbr(adapter);
5830         }
5831
5832         /* Check for a mailbox event */
5833         if (icr & E1000_ICR_VMMB)
5834                 igb_msg_task(adapter);
5835
5836         if (icr & E1000_ICR_LSC) {
5837                 hw->mac.get_link_status = 1;
5838                 /* guard against interrupt when we're going down */
5839                 if (!test_bit(__IGB_DOWN, &adapter->state))
5840                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
5841         }
5842
5843         if (icr & E1000_ICR_TS)
5844                 igb_tsync_interrupt(adapter);
5845
5846         wr32(E1000_EIMS, adapter->eims_other);
5847
5848         return IRQ_HANDLED;
5849 }
5850
5851 static void igb_write_itr(struct igb_q_vector *q_vector)
5852 {
5853         struct igb_adapter *adapter = q_vector->adapter;
5854         u32 itr_val = q_vector->itr_val & 0x7FFC;
5855
5856         if (!q_vector->set_itr)
5857                 return;
5858
5859         if (!itr_val)
5860                 itr_val = 0x4;
5861
5862         if (adapter->hw.mac.type == e1000_82575)
5863                 itr_val |= itr_val << 16;
5864         else
5865                 itr_val |= E1000_EITR_CNT_IGNR;
5866
5867         writel(itr_val, q_vector->itr_register);
5868         q_vector->set_itr = 0;
5869 }
5870
5871 static irqreturn_t igb_msix_ring(int irq, void *data)
5872 {
5873         struct igb_q_vector *q_vector = data;
5874
5875         /* Write the ITR value calculated from the previous interrupt. */
5876         igb_write_itr(q_vector);
5877
5878         napi_schedule(&q_vector->napi);
5879
5880         return IRQ_HANDLED;
5881 }
5882
5883 #ifdef CONFIG_IGB_DCA
5884 static void igb_update_tx_dca(struct igb_adapter *adapter,
5885                               struct igb_ring *tx_ring,
5886                               int cpu)
5887 {
5888         struct e1000_hw *hw = &adapter->hw;
5889         u32 txctrl = dca3_get_tag(tx_ring->dev, cpu);
5890
5891         if (hw->mac.type != e1000_82575)
5892                 txctrl <<= E1000_DCA_TXCTRL_CPUID_SHIFT;
5893
5894         /* We can enable relaxed ordering for reads, but not writes when
5895          * DCA is enabled.  This is due to a known issue in some chipsets
5896          * which will cause the DCA tag to be cleared.
5897          */
5898         txctrl |= E1000_DCA_TXCTRL_DESC_RRO_EN |
5899                   E1000_DCA_TXCTRL_DATA_RRO_EN |
5900                   E1000_DCA_TXCTRL_DESC_DCA_EN;
5901
5902         wr32(E1000_DCA_TXCTRL(tx_ring->reg_idx), txctrl);
5903 }
5904
5905 static void igb_update_rx_dca(struct igb_adapter *adapter,
5906                               struct igb_ring *rx_ring,
5907                               int cpu)
5908 {
5909         struct e1000_hw *hw = &adapter->hw;
5910         u32 rxctrl = dca3_get_tag(&adapter->pdev->dev, cpu);
5911
5912         if (hw->mac.type != e1000_82575)
5913                 rxctrl <<= E1000_DCA_RXCTRL_CPUID_SHIFT;
5914
5915         /* We can enable relaxed ordering for reads, but not writes when
5916          * DCA is enabled.  This is due to a known issue in some chipsets
5917          * which will cause the DCA tag to be cleared.
5918          */
5919         rxctrl |= E1000_DCA_RXCTRL_DESC_RRO_EN |
5920                   E1000_DCA_RXCTRL_DESC_DCA_EN;
5921
5922         wr32(E1000_DCA_RXCTRL(rx_ring->reg_idx), rxctrl);
5923 }
5924
5925 static void igb_update_dca(struct igb_q_vector *q_vector)
5926 {
5927         struct igb_adapter *adapter = q_vector->adapter;
5928         int cpu = get_cpu();
5929
5930         if (q_vector->cpu == cpu)
5931                 goto out_no_update;
5932
5933         if (q_vector->tx.ring)
5934                 igb_update_tx_dca(adapter, q_vector->tx.ring, cpu);
5935
5936         if (q_vector->rx.ring)
5937                 igb_update_rx_dca(adapter, q_vector->rx.ring, cpu);
5938
5939         q_vector->cpu = cpu;
5940 out_no_update:
5941         put_cpu();
5942 }
5943
5944 static void igb_setup_dca(struct igb_adapter *adapter)
5945 {
5946         struct e1000_hw *hw = &adapter->hw;
5947         int i;
5948
5949         if (!(adapter->flags & IGB_FLAG_DCA_ENABLED))
5950                 return;
5951
5952         /* Always use CB2 mode, difference is masked in the CB driver. */
5953         wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_CB2);
5954
5955         for (i = 0; i < adapter->num_q_vectors; i++) {
5956                 adapter->q_vector[i]->cpu = -1;
5957                 igb_update_dca(adapter->q_vector[i]);
5958         }
5959 }
5960
5961 static int __igb_notify_dca(struct device *dev, void *data)
5962 {
5963         struct net_device *netdev = dev_get_drvdata(dev);
5964         struct igb_adapter *adapter = netdev_priv(netdev);
5965         struct pci_dev *pdev = adapter->pdev;
5966         struct e1000_hw *hw = &adapter->hw;
5967         unsigned long event = *(unsigned long *)data;
5968
5969         switch (event) {
5970         case DCA_PROVIDER_ADD:
5971                 /* if already enabled, don't do it again */
5972                 if (adapter->flags & IGB_FLAG_DCA_ENABLED)
5973                         break;
5974                 if (dca_add_requester(dev) == 0) {
5975                         adapter->flags |= IGB_FLAG_DCA_ENABLED;
5976                         dev_info(&pdev->dev, "DCA enabled\n");
5977                         igb_setup_dca(adapter);
5978                         break;
5979                 }
5980                 /* Fall Through since DCA is disabled. */
5981         case DCA_PROVIDER_REMOVE:
5982                 if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
5983                         /* without this a class_device is left
5984                          * hanging around in the sysfs model
5985                          */
5986                         dca_remove_requester(dev);
5987                         dev_info(&pdev->dev, "DCA disabled\n");
5988                         adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
5989                         wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
5990                 }
5991                 break;
5992         }
5993
5994         return 0;
5995 }
5996
5997 static int igb_notify_dca(struct notifier_block *nb, unsigned long event,
5998                           void *p)
5999 {
6000         int ret_val;
6001
6002         ret_val = driver_for_each_device(&igb_driver.driver, NULL, &event,
6003                                          __igb_notify_dca);
6004
6005         return ret_val ? NOTIFY_BAD : NOTIFY_DONE;
6006 }
6007 #endif /* CONFIG_IGB_DCA */
6008
6009 #ifdef CONFIG_PCI_IOV
6010 static int igb_vf_configure(struct igb_adapter *adapter, int vf)
6011 {
6012         unsigned char mac_addr[ETH_ALEN];
6013
6014         eth_zero_addr(mac_addr);
6015         igb_set_vf_mac(adapter, vf, mac_addr);
6016
6017         /* By default spoof check is enabled for all VFs */
6018         adapter->vf_data[vf].spoofchk_enabled = true;
6019
6020         return 0;
6021 }
6022
6023 #endif
6024 static void igb_ping_all_vfs(struct igb_adapter *adapter)
6025 {
6026         struct e1000_hw *hw = &adapter->hw;
6027         u32 ping;
6028         int i;
6029
6030         for (i = 0 ; i < adapter->vfs_allocated_count; i++) {
6031                 ping = E1000_PF_CONTROL_MSG;
6032                 if (adapter->vf_data[i].flags & IGB_VF_FLAG_CTS)
6033                         ping |= E1000_VT_MSGTYPE_CTS;
6034                 igb_write_mbx(hw, &ping, 1, i);
6035         }
6036 }
6037
6038 static int igb_set_vf_promisc(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
6039 {
6040         struct e1000_hw *hw = &adapter->hw;
6041         u32 vmolr = rd32(E1000_VMOLR(vf));
6042         struct vf_data_storage *vf_data = &adapter->vf_data[vf];
6043
6044         vf_data->flags &= ~(IGB_VF_FLAG_UNI_PROMISC |
6045                             IGB_VF_FLAG_MULTI_PROMISC);
6046         vmolr &= ~(E1000_VMOLR_ROPE | E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
6047
6048         if (*msgbuf & E1000_VF_SET_PROMISC_MULTICAST) {
6049                 vmolr |= E1000_VMOLR_MPME;
6050                 vf_data->flags |= IGB_VF_FLAG_MULTI_PROMISC;
6051                 *msgbuf &= ~E1000_VF_SET_PROMISC_MULTICAST;
6052         } else {
6053                 /* if we have hashes and we are clearing a multicast promisc
6054                  * flag we need to write the hashes to the MTA as this step
6055                  * was previously skipped
6056                  */
6057                 if (vf_data->num_vf_mc_hashes > 30) {
6058                         vmolr |= E1000_VMOLR_MPME;
6059                 } else if (vf_data->num_vf_mc_hashes) {
6060                         int j;
6061
6062                         vmolr |= E1000_VMOLR_ROMPE;
6063                         for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
6064                                 igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
6065                 }
6066         }
6067
6068         wr32(E1000_VMOLR(vf), vmolr);
6069
6070         /* there are flags left unprocessed, likely not supported */
6071         if (*msgbuf & E1000_VT_MSGINFO_MASK)
6072                 return -EINVAL;
6073
6074         return 0;
6075 }
6076
6077 static int igb_set_vf_multicasts(struct igb_adapter *adapter,
6078                                   u32 *msgbuf, u32 vf)
6079 {
6080         int n = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
6081         u16 *hash_list = (u16 *)&msgbuf[1];
6082         struct vf_data_storage *vf_data = &adapter->vf_data[vf];
6083         int i;
6084
6085         /* salt away the number of multicast addresses assigned
6086          * to this VF for later use to restore when the PF multi cast
6087          * list changes
6088          */
6089         vf_data->num_vf_mc_hashes = n;
6090
6091         /* only up to 30 hash values supported */
6092         if (n > 30)
6093                 n = 30;
6094
6095         /* store the hashes for later use */
6096         for (i = 0; i < n; i++)
6097                 vf_data->vf_mc_hashes[i] = hash_list[i];
6098
6099         /* Flush and reset the mta with the new values */
6100         igb_set_rx_mode(adapter->netdev);
6101
6102         return 0;
6103 }
6104
6105 static void igb_restore_vf_multicasts(struct igb_adapter *adapter)
6106 {
6107         struct e1000_hw *hw = &adapter->hw;
6108         struct vf_data_storage *vf_data;
6109         int i, j;
6110
6111         for (i = 0; i < adapter->vfs_allocated_count; i++) {
6112                 u32 vmolr = rd32(E1000_VMOLR(i));
6113
6114                 vmolr &= ~(E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
6115
6116                 vf_data = &adapter->vf_data[i];
6117
6118                 if ((vf_data->num_vf_mc_hashes > 30) ||
6119                     (vf_data->flags & IGB_VF_FLAG_MULTI_PROMISC)) {
6120                         vmolr |= E1000_VMOLR_MPME;
6121                 } else if (vf_data->num_vf_mc_hashes) {
6122                         vmolr |= E1000_VMOLR_ROMPE;
6123                         for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
6124                                 igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
6125                 }
6126                 wr32(E1000_VMOLR(i), vmolr);
6127         }
6128 }
6129
6130 static void igb_clear_vf_vfta(struct igb_adapter *adapter, u32 vf)
6131 {
6132         struct e1000_hw *hw = &adapter->hw;
6133         u32 pool_mask, vlvf_mask, i;
6134
6135         /* create mask for VF and other pools */
6136         pool_mask = E1000_VLVF_POOLSEL_MASK;
6137         vlvf_mask = BIT(E1000_VLVF_POOLSEL_SHIFT + vf);
6138
6139         /* drop PF from pool bits */
6140         pool_mask &= ~BIT(E1000_VLVF_POOLSEL_SHIFT +
6141                              adapter->vfs_allocated_count);
6142
6143         /* Find the vlan filter for this id */
6144         for (i = E1000_VLVF_ARRAY_SIZE; i--;) {
6145                 u32 vlvf = rd32(E1000_VLVF(i));
6146                 u32 vfta_mask, vid, vfta;
6147
6148                 /* remove the vf from the pool */
6149                 if (!(vlvf & vlvf_mask))
6150                         continue;
6151
6152                 /* clear out bit from VLVF */
6153                 vlvf ^= vlvf_mask;
6154
6155                 /* if other pools are present, just remove ourselves */
6156                 if (vlvf & pool_mask)
6157                         goto update_vlvfb;
6158
6159                 /* if PF is present, leave VFTA */
6160                 if (vlvf & E1000_VLVF_POOLSEL_MASK)
6161                         goto update_vlvf;
6162
6163                 vid = vlvf & E1000_VLVF_VLANID_MASK;
6164                 vfta_mask = BIT(vid % 32);
6165
6166                 /* clear bit from VFTA */
6167                 vfta = adapter->shadow_vfta[vid / 32];
6168                 if (vfta & vfta_mask)
6169                         hw->mac.ops.write_vfta(hw, vid / 32, vfta ^ vfta_mask);
6170 update_vlvf:
6171                 /* clear pool selection enable */
6172                 if (adapter->flags & IGB_FLAG_VLAN_PROMISC)
6173                         vlvf &= E1000_VLVF_POOLSEL_MASK;
6174                 else
6175                         vlvf = 0;
6176 update_vlvfb:
6177                 /* clear pool bits */
6178                 wr32(E1000_VLVF(i), vlvf);
6179         }
6180 }
6181
6182 static int igb_find_vlvf_entry(struct e1000_hw *hw, u32 vlan)
6183 {
6184         u32 vlvf;
6185         int idx;
6186
6187         /* short cut the special case */
6188         if (vlan == 0)
6189                 return 0;
6190
6191         /* Search for the VLAN id in the VLVF entries */
6192         for (idx = E1000_VLVF_ARRAY_SIZE; --idx;) {
6193                 vlvf = rd32(E1000_VLVF(idx));
6194                 if ((vlvf & VLAN_VID_MASK) == vlan)
6195                         break;
6196         }
6197
6198         return idx;
6199 }
6200
6201 static void igb_update_pf_vlvf(struct igb_adapter *adapter, u32 vid)
6202 {
6203         struct e1000_hw *hw = &adapter->hw;
6204         u32 bits, pf_id;
6205         int idx;
6206
6207         idx = igb_find_vlvf_entry(hw, vid);
6208         if (!idx)
6209                 return;
6210
6211         /* See if any other pools are set for this VLAN filter
6212          * entry other than the PF.
6213          */
6214         pf_id = adapter->vfs_allocated_count + E1000_VLVF_POOLSEL_SHIFT;
6215         bits = ~BIT(pf_id) & E1000_VLVF_POOLSEL_MASK;
6216         bits &= rd32(E1000_VLVF(idx));
6217
6218         /* Disable the filter so this falls into the default pool. */
6219         if (!bits) {
6220                 if (adapter->flags & IGB_FLAG_VLAN_PROMISC)
6221                         wr32(E1000_VLVF(idx), BIT(pf_id));
6222                 else
6223                         wr32(E1000_VLVF(idx), 0);
6224         }
6225 }
6226
6227 static s32 igb_set_vf_vlan(struct igb_adapter *adapter, u32 vid,
6228                            bool add, u32 vf)
6229 {
6230         int pf_id = adapter->vfs_allocated_count;
6231         struct e1000_hw *hw = &adapter->hw;
6232         int err;
6233
6234         /* If VLAN overlaps with one the PF is currently monitoring make
6235          * sure that we are able to allocate a VLVF entry.  This may be
6236          * redundant but it guarantees PF will maintain visibility to
6237          * the VLAN.
6238          */
6239         if (add && test_bit(vid, adapter->active_vlans)) {
6240                 err = igb_vfta_set(hw, vid, pf_id, true, false);
6241                 if (err)
6242                         return err;
6243         }
6244
6245         err = igb_vfta_set(hw, vid, vf, add, false);
6246
6247         if (add && !err)
6248                 return err;
6249
6250         /* If we failed to add the VF VLAN or we are removing the VF VLAN
6251          * we may need to drop the PF pool bit in order to allow us to free
6252          * up the VLVF resources.
6253          */
6254         if (test_bit(vid, adapter->active_vlans) ||
6255             (adapter->flags & IGB_FLAG_VLAN_PROMISC))
6256                 igb_update_pf_vlvf(adapter, vid);
6257
6258         return err;
6259 }
6260
6261 static void igb_set_vmvir(struct igb_adapter *adapter, u32 vid, u32 vf)
6262 {
6263         struct e1000_hw *hw = &adapter->hw;
6264
6265         if (vid)
6266                 wr32(E1000_VMVIR(vf), (vid | E1000_VMVIR_VLANA_DEFAULT));
6267         else
6268                 wr32(E1000_VMVIR(vf), 0);
6269 }
6270
6271 static int igb_enable_port_vlan(struct igb_adapter *adapter, int vf,
6272                                 u16 vlan, u8 qos)
6273 {
6274         int err;
6275
6276         err = igb_set_vf_vlan(adapter, vlan, true, vf);
6277         if (err)
6278                 return err;
6279
6280         igb_set_vmvir(adapter, vlan | (qos << VLAN_PRIO_SHIFT), vf);
6281         igb_set_vmolr(adapter, vf, !vlan);
6282
6283         /* revoke access to previous VLAN */
6284         if (vlan != adapter->vf_data[vf].pf_vlan)
6285                 igb_set_vf_vlan(adapter, adapter->vf_data[vf].pf_vlan,
6286                                 false, vf);
6287
6288         adapter->vf_data[vf].pf_vlan = vlan;
6289         adapter->vf_data[vf].pf_qos = qos;
6290         igb_set_vf_vlan_strip(adapter, vf, true);
6291         dev_info(&adapter->pdev->dev,
6292                  "Setting VLAN %d, QOS 0x%x on VF %d\n", vlan, qos, vf);
6293         if (test_bit(__IGB_DOWN, &adapter->state)) {
6294                 dev_warn(&adapter->pdev->dev,
6295                          "The VF VLAN has been set, but the PF device is not up.\n");
6296                 dev_warn(&adapter->pdev->dev,
6297                          "Bring the PF device up before attempting to use the VF device.\n");
6298         }
6299
6300         return err;
6301 }
6302
6303 static int igb_disable_port_vlan(struct igb_adapter *adapter, int vf)
6304 {
6305         /* Restore tagless access via VLAN 0 */
6306         igb_set_vf_vlan(adapter, 0, true, vf);
6307
6308         igb_set_vmvir(adapter, 0, vf);
6309         igb_set_vmolr(adapter, vf, true);
6310
6311         /* Remove any PF assigned VLAN */
6312         if (adapter->vf_data[vf].pf_vlan)
6313                 igb_set_vf_vlan(adapter, adapter->vf_data[vf].pf_vlan,
6314                                 false, vf);
6315
6316         adapter->vf_data[vf].pf_vlan = 0;
6317         adapter->vf_data[vf].pf_qos = 0;
6318         igb_set_vf_vlan_strip(adapter, vf, false);
6319
6320         return 0;
6321 }
6322
6323 static int igb_ndo_set_vf_vlan(struct net_device *netdev, int vf,
6324                                u16 vlan, u8 qos, __be16 vlan_proto)
6325 {
6326         struct igb_adapter *adapter = netdev_priv(netdev);
6327
6328         if ((vf >= adapter->vfs_allocated_count) || (vlan > 4095) || (qos > 7))
6329                 return -EINVAL;
6330
6331         if (vlan_proto != htons(ETH_P_8021Q))
6332                 return -EPROTONOSUPPORT;
6333
6334         return (vlan || qos) ? igb_enable_port_vlan(adapter, vf, vlan, qos) :
6335                                igb_disable_port_vlan(adapter, vf);
6336 }
6337
6338 static int igb_set_vf_vlan_msg(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
6339 {
6340         int add = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
6341         int vid = (msgbuf[1] & E1000_VLVF_VLANID_MASK);
6342         int ret;
6343
6344         if (adapter->vf_data[vf].pf_vlan)
6345                 return -1;
6346
6347         /* VLAN 0 is a special case, don't allow it to be removed */
6348         if (!vid && !add)
6349                 return 0;
6350
6351         ret = igb_set_vf_vlan(adapter, vid, !!add, vf);
6352         if (!ret)
6353                 igb_set_vf_vlan_strip(adapter, vf, !!vid);
6354         return ret;
6355 }
6356
6357 static inline void igb_vf_reset(struct igb_adapter *adapter, u32 vf)
6358 {
6359         struct vf_data_storage *vf_data = &adapter->vf_data[vf];
6360
6361         /* clear flags - except flag that indicates PF has set the MAC */
6362         vf_data->flags &= IGB_VF_FLAG_PF_SET_MAC;
6363         vf_data->last_nack = jiffies;
6364
6365         /* reset vlans for device */
6366         igb_clear_vf_vfta(adapter, vf);
6367         igb_set_vf_vlan(adapter, vf_data->pf_vlan, true, vf);
6368         igb_set_vmvir(adapter, vf_data->pf_vlan |
6369                                (vf_data->pf_qos << VLAN_PRIO_SHIFT), vf);
6370         igb_set_vmolr(adapter, vf, !vf_data->pf_vlan);
6371         igb_set_vf_vlan_strip(adapter, vf, !!(vf_data->pf_vlan));
6372
6373         /* reset multicast table array for vf */
6374         adapter->vf_data[vf].num_vf_mc_hashes = 0;
6375
6376         /* Flush and reset the mta with the new values */
6377         igb_set_rx_mode(adapter->netdev);
6378 }
6379
6380 static void igb_vf_reset_event(struct igb_adapter *adapter, u32 vf)
6381 {
6382         unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
6383
6384         /* clear mac address as we were hotplug removed/added */
6385         if (!(adapter->vf_data[vf].flags & IGB_VF_FLAG_PF_SET_MAC))
6386                 eth_zero_addr(vf_mac);
6387
6388         /* process remaining reset events */
6389         igb_vf_reset(adapter, vf);
6390 }
6391
6392 static void igb_vf_reset_msg(struct igb_adapter *adapter, u32 vf)
6393 {
6394         struct e1000_hw *hw = &adapter->hw;
6395         unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
6396         u32 reg, msgbuf[3];
6397         u8 *addr = (u8 *)(&msgbuf[1]);
6398
6399         /* process all the same items cleared in a function level reset */
6400         igb_vf_reset(adapter, vf);
6401
6402         /* set vf mac address */
6403         igb_set_vf_mac(adapter, vf, vf_mac);
6404
6405         /* enable transmit and receive for vf */
6406         reg = rd32(E1000_VFTE);
6407         wr32(E1000_VFTE, reg | BIT(vf));
6408         reg = rd32(E1000_VFRE);
6409         wr32(E1000_VFRE, reg | BIT(vf));
6410
6411         adapter->vf_data[vf].flags |= IGB_VF_FLAG_CTS;
6412
6413         /* reply to reset with ack and vf mac address */
6414         if (!is_zero_ether_addr(vf_mac)) {
6415                 msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_ACK;
6416                 memcpy(addr, vf_mac, ETH_ALEN);
6417         } else {
6418                 msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_NACK;
6419         }
6420         igb_write_mbx(hw, msgbuf, 3, vf);
6421 }
6422
6423 static void igb_flush_mac_table(struct igb_adapter *adapter)
6424 {
6425         struct e1000_hw *hw = &adapter->hw;
6426         int i;
6427
6428         for (i = 0; i < hw->mac.rar_entry_count; i++) {
6429                 adapter->mac_table[i].state &= ~IGB_MAC_STATE_IN_USE;
6430                 memset(adapter->mac_table[i].addr, 0, ETH_ALEN);
6431                 adapter->mac_table[i].queue = 0;
6432                 igb_rar_set_index(adapter, i);
6433         }
6434 }
6435
6436 static int igb_available_rars(struct igb_adapter *adapter, u8 queue)
6437 {
6438         struct e1000_hw *hw = &adapter->hw;
6439         /* do not count rar entries reserved for VFs MAC addresses */
6440         int rar_entries = hw->mac.rar_entry_count -
6441                           adapter->vfs_allocated_count;
6442         int i, count = 0;
6443
6444         for (i = 0; i < rar_entries; i++) {
6445                 /* do not count default entries */
6446                 if (adapter->mac_table[i].state & IGB_MAC_STATE_DEFAULT)
6447                         continue;
6448
6449                 /* do not count "in use" entries for different queues */
6450                 if ((adapter->mac_table[i].state & IGB_MAC_STATE_IN_USE) &&
6451                     (adapter->mac_table[i].queue != queue))
6452                         continue;
6453
6454                 count++;
6455         }
6456
6457         return count;
6458 }
6459
6460 /* Set default MAC address for the PF in the first RAR entry */
6461 static void igb_set_default_mac_filter(struct igb_adapter *adapter)
6462 {
6463         struct igb_mac_addr *mac_table = &adapter->mac_table[0];
6464
6465         ether_addr_copy(mac_table->addr, adapter->hw.mac.addr);
6466         mac_table->queue = adapter->vfs_allocated_count;
6467         mac_table->state = IGB_MAC_STATE_DEFAULT | IGB_MAC_STATE_IN_USE;
6468
6469         igb_rar_set_index(adapter, 0);
6470 }
6471
6472 static int igb_add_mac_filter(struct igb_adapter *adapter, const u8 *addr,
6473                               const u8 queue)
6474 {
6475         struct e1000_hw *hw = &adapter->hw;
6476         int rar_entries = hw->mac.rar_entry_count -
6477                           adapter->vfs_allocated_count;
6478         int i;
6479
6480         if (is_zero_ether_addr(addr))
6481                 return -EINVAL;
6482
6483         /* Search for the first empty entry in the MAC table.
6484          * Do not touch entries at the end of the table reserved for the VF MAC
6485          * addresses.
6486          */
6487         for (i = 0; i < rar_entries; i++) {
6488                 if (adapter->mac_table[i].state & IGB_MAC_STATE_IN_USE)
6489                         continue;
6490
6491                 ether_addr_copy(adapter->mac_table[i].addr, addr);
6492                 adapter->mac_table[i].queue = queue;
6493                 adapter->mac_table[i].state |= IGB_MAC_STATE_IN_USE;
6494
6495                 igb_rar_set_index(adapter, i);
6496                 return i;
6497         }
6498
6499         return -ENOSPC;
6500 }
6501
6502 static int igb_del_mac_filter(struct igb_adapter *adapter, const u8 *addr,
6503                               const u8 queue)
6504 {
6505         struct e1000_hw *hw = &adapter->hw;
6506         int rar_entries = hw->mac.rar_entry_count -
6507                           adapter->vfs_allocated_count;
6508         int i;
6509
6510         if (is_zero_ether_addr(addr))
6511                 return -EINVAL;
6512
6513         /* Search for matching entry in the MAC table based on given address
6514          * and queue. Do not touch entries at the end of the table reserved
6515          * for the VF MAC addresses.
6516          */
6517         for (i = 0; i < rar_entries; i++) {
6518                 if (!(adapter->mac_table[i].state & IGB_MAC_STATE_IN_USE))
6519                         continue;
6520                 if (adapter->mac_table[i].queue != queue)
6521                         continue;
6522                 if (!ether_addr_equal(adapter->mac_table[i].addr, addr))
6523                         continue;
6524
6525                 adapter->mac_table[i].state &= ~IGB_MAC_STATE_IN_USE;
6526                 memset(adapter->mac_table[i].addr, 0, ETH_ALEN);
6527                 adapter->mac_table[i].queue = 0;
6528
6529                 igb_rar_set_index(adapter, i);
6530                 return 0;
6531         }
6532
6533         return -ENOENT;
6534 }
6535
6536 static int igb_uc_sync(struct net_device *netdev, const unsigned char *addr)
6537 {
6538         struct igb_adapter *adapter = netdev_priv(netdev);
6539         int ret;
6540
6541         ret = igb_add_mac_filter(adapter, addr, adapter->vfs_allocated_count);
6542
6543         return min_t(int, ret, 0);
6544 }
6545
6546 static int igb_uc_unsync(struct net_device *netdev, const unsigned char *addr)
6547 {
6548         struct igb_adapter *adapter = netdev_priv(netdev);
6549
6550         igb_del_mac_filter(adapter, addr, adapter->vfs_allocated_count);
6551
6552         return 0;
6553 }
6554
6555 static int igb_set_vf_mac_filter(struct igb_adapter *adapter, const int vf,
6556                                  const u32 info, const u8 *addr)
6557 {
6558         struct pci_dev *pdev = adapter->pdev;
6559         struct vf_data_storage *vf_data = &adapter->vf_data[vf];
6560         struct list_head *pos;
6561         struct vf_mac_filter *entry = NULL;
6562         int ret = 0;
6563
6564         switch (info) {
6565         case E1000_VF_MAC_FILTER_CLR:
6566                 /* remove all unicast MAC filters related to the current VF */
6567                 list_for_each(pos, &adapter->vf_macs.l) {
6568                         entry = list_entry(pos, struct vf_mac_filter, l);
6569                         if (entry->vf == vf) {
6570                                 entry->vf = -1;
6571                                 entry->free = true;
6572                                 igb_del_mac_filter(adapter, entry->vf_mac, vf);
6573                         }
6574                 }
6575                 break;
6576         case E1000_VF_MAC_FILTER_ADD:
6577                 if (vf_data->flags & IGB_VF_FLAG_PF_SET_MAC) {
6578                         dev_warn(&pdev->dev,
6579                                  "VF %d requested MAC filter but is administratively denied\n",
6580                                  vf);
6581                         return -EINVAL;
6582                 }
6583
6584                 if (!is_valid_ether_addr(addr)) {
6585                         dev_warn(&pdev->dev,
6586                                  "VF %d attempted to set invalid MAC filter\n",
6587                                  vf);
6588                         return -EINVAL;
6589                 }
6590
6591                 /* try to find empty slot in the list */
6592                 list_for_each(pos, &adapter->vf_macs.l) {
6593                         entry = list_entry(pos, struct vf_mac_filter, l);
6594                         if (entry->free)
6595                                 break;
6596                 }
6597
6598                 if (entry && entry->free) {
6599                         entry->free = false;
6600                         entry->vf = vf;
6601                         ether_addr_copy(entry->vf_mac, addr);
6602
6603                         ret = igb_add_mac_filter(adapter, addr, vf);
6604                         ret = min_t(int, ret, 0);
6605                 } else {
6606                         ret = -ENOSPC;
6607                 }
6608
6609                 if (ret == -ENOSPC)
6610                         dev_warn(&pdev->dev,
6611                                  "VF %d has requested MAC filter but there is no space for it\n",
6612                                  vf);
6613                 break;
6614         default:
6615                 ret = -EINVAL;
6616                 break;
6617         }
6618
6619         return ret;
6620 }
6621
6622 static int igb_set_vf_mac_addr(struct igb_adapter *adapter, u32 *msg, int vf)
6623 {
6624         struct pci_dev *pdev = adapter->pdev;
6625         struct vf_data_storage *vf_data = &adapter->vf_data[vf];
6626         u32 info = msg[0] & E1000_VT_MSGINFO_MASK;
6627
6628         /* The VF MAC Address is stored in a packed array of bytes
6629          * starting at the second 32 bit word of the msg array
6630          */
6631         unsigned char *addr = (unsigned char *)&msg[1];
6632         int ret = 0;
6633
6634         if (!info) {
6635                 if (vf_data->flags & IGB_VF_FLAG_PF_SET_MAC) {
6636                         dev_warn(&pdev->dev,
6637                                  "VF %d attempted to override administratively set MAC address\nReload the VF driver to resume operations\n",
6638                                  vf);
6639                         return -EINVAL;
6640                 }
6641
6642                 if (!is_valid_ether_addr(addr)) {
6643                         dev_warn(&pdev->dev,
6644                                  "VF %d attempted to set invalid MAC\n",
6645                                  vf);
6646                         return -EINVAL;
6647                 }
6648
6649                 ret = igb_set_vf_mac(adapter, vf, addr);
6650         } else {
6651                 ret = igb_set_vf_mac_filter(adapter, vf, info, addr);
6652         }
6653
6654         return ret;
6655 }
6656
6657 static void igb_rcv_ack_from_vf(struct igb_adapter *adapter, u32 vf)
6658 {
6659         struct e1000_hw *hw = &adapter->hw;
6660         struct vf_data_storage *vf_data = &adapter->vf_data[vf];
6661         u32 msg = E1000_VT_MSGTYPE_NACK;
6662
6663         /* if device isn't clear to send it shouldn't be reading either */
6664         if (!(vf_data->flags & IGB_VF_FLAG_CTS) &&
6665             time_after(jiffies, vf_data->last_nack + (2 * HZ))) {
6666                 igb_write_mbx(hw, &msg, 1, vf);
6667                 vf_data->last_nack = jiffies;
6668         }
6669 }
6670
6671 static void igb_rcv_msg_from_vf(struct igb_adapter *adapter, u32 vf)
6672 {
6673         struct pci_dev *pdev = adapter->pdev;
6674         u32 msgbuf[E1000_VFMAILBOX_SIZE];
6675         struct e1000_hw *hw = &adapter->hw;
6676         struct vf_data_storage *vf_data = &adapter->vf_data[vf];
6677         s32 retval;
6678
6679         retval = igb_read_mbx(hw, msgbuf, E1000_VFMAILBOX_SIZE, vf);
6680
6681         if (retval) {
6682                 /* if receive failed revoke VF CTS stats and restart init */
6683                 dev_err(&pdev->dev, "Error receiving message from VF\n");
6684                 vf_data->flags &= ~IGB_VF_FLAG_CTS;
6685                 if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
6686                         return;
6687                 goto out;
6688         }
6689
6690         /* this is a message we already processed, do nothing */
6691         if (msgbuf[0] & (E1000_VT_MSGTYPE_ACK | E1000_VT_MSGTYPE_NACK))
6692                 return;
6693
6694         /* until the vf completes a reset it should not be
6695          * allowed to start any configuration.
6696          */
6697         if (msgbuf[0] == E1000_VF_RESET) {
6698                 igb_vf_reset_msg(adapter, vf);
6699                 return;
6700         }
6701
6702         if (!(vf_data->flags & IGB_VF_FLAG_CTS)) {
6703                 if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
6704                         return;
6705                 retval = -1;
6706                 goto out;
6707         }
6708
6709         switch ((msgbuf[0] & 0xFFFF)) {
6710         case E1000_VF_SET_MAC_ADDR:
6711                 retval = igb_set_vf_mac_addr(adapter, msgbuf, vf);
6712                 break;
6713         case E1000_VF_SET_PROMISC:
6714                 retval = igb_set_vf_promisc(adapter, msgbuf, vf);
6715                 break;
6716         case E1000_VF_SET_MULTICAST:
6717                 retval = igb_set_vf_multicasts(adapter, msgbuf, vf);
6718                 break;
6719         case E1000_VF_SET_LPE:
6720                 retval = igb_set_vf_rlpml(adapter, msgbuf[1], vf);
6721                 break;
6722         case E1000_VF_SET_VLAN:
6723                 retval = -1;
6724                 if (vf_data->pf_vlan)
6725                         dev_warn(&pdev->dev,
6726                                  "VF %d attempted to override administratively set VLAN tag\nReload the VF driver to resume operations\n",
6727                                  vf);
6728                 else
6729                         retval = igb_set_vf_vlan_msg(adapter, msgbuf, vf);
6730                 break;
6731         default:
6732                 dev_err(&pdev->dev, "Unhandled Msg %08x\n", msgbuf[0]);
6733                 retval = -1;
6734                 break;
6735         }
6736
6737         msgbuf[0] |= E1000_VT_MSGTYPE_CTS;
6738 out:
6739         /* notify the VF of the results of what it sent us */
6740         if (retval)
6741                 msgbuf[0] |= E1000_VT_MSGTYPE_NACK;
6742         else
6743                 msgbuf[0] |= E1000_VT_MSGTYPE_ACK;
6744
6745         igb_write_mbx(hw, msgbuf, 1, vf);
6746 }
6747
6748 static void igb_msg_task(struct igb_adapter *adapter)
6749 {
6750         struct e1000_hw *hw = &adapter->hw;
6751         u32 vf;
6752
6753         for (vf = 0; vf < adapter->vfs_allocated_count; vf++) {
6754                 /* process any reset requests */
6755                 if (!igb_check_for_rst(hw, vf))
6756                         igb_vf_reset_event(adapter, vf);
6757
6758                 /* process any messages pending */
6759                 if (!igb_check_for_msg(hw, vf))
6760                         igb_rcv_msg_from_vf(adapter, vf);
6761
6762                 /* process any acks */
6763                 if (!igb_check_for_ack(hw, vf))
6764                         igb_rcv_ack_from_vf(adapter, vf);
6765         }
6766 }
6767
6768 /**
6769  *  igb_set_uta - Set unicast filter table address
6770  *  @adapter: board private structure
6771  *  @set: boolean indicating if we are setting or clearing bits
6772  *
6773  *  The unicast table address is a register array of 32-bit registers.
6774  *  The table is meant to be used in a way similar to how the MTA is used
6775  *  however due to certain limitations in the hardware it is necessary to
6776  *  set all the hash bits to 1 and use the VMOLR ROPE bit as a promiscuous
6777  *  enable bit to allow vlan tag stripping when promiscuous mode is enabled
6778  **/
6779 static void igb_set_uta(struct igb_adapter *adapter, bool set)
6780 {
6781         struct e1000_hw *hw = &adapter->hw;
6782         u32 uta = set ? ~0 : 0;
6783         int i;
6784
6785         /* we only need to do this if VMDq is enabled */
6786         if (!adapter->vfs_allocated_count)
6787                 return;
6788
6789         for (i = hw->mac.uta_reg_count; i--;)
6790                 array_wr32(E1000_UTA, i, uta);
6791 }
6792
6793 /**
6794  *  igb_intr_msi - Interrupt Handler
6795  *  @irq: interrupt number
6796  *  @data: pointer to a network interface device structure
6797  **/
6798 static irqreturn_t igb_intr_msi(int irq, void *data)
6799 {
6800         struct igb_adapter *adapter = data;
6801         struct igb_q_vector *q_vector = adapter->q_vector[0];
6802         struct e1000_hw *hw = &adapter->hw;
6803         /* read ICR disables interrupts using IAM */
6804         u32 icr = rd32(E1000_ICR);
6805
6806         igb_write_itr(q_vector);
6807
6808         if (icr & E1000_ICR_DRSTA)
6809                 schedule_work(&adapter->reset_task);
6810
6811         if (icr & E1000_ICR_DOUTSYNC) {
6812                 /* HW is reporting DMA is out of sync */
6813                 adapter->stats.doosync++;
6814         }
6815
6816         if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
6817                 hw->mac.get_link_status = 1;
6818                 if (!test_bit(__IGB_DOWN, &adapter->state))
6819                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
6820         }
6821
6822         if (icr & E1000_ICR_TS)
6823                 igb_tsync_interrupt(adapter);
6824
6825         napi_schedule(&q_vector->napi);
6826
6827         return IRQ_HANDLED;
6828 }
6829
6830 /**
6831  *  igb_intr - Legacy Interrupt Handler
6832  *  @irq: interrupt number
6833  *  @data: pointer to a network interface device structure
6834  **/
6835 static irqreturn_t igb_intr(int irq, void *data)
6836 {
6837         struct igb_adapter *adapter = data;
6838         struct igb_q_vector *q_vector = adapter->q_vector[0];
6839         struct e1000_hw *hw = &adapter->hw;
6840         /* Interrupt Auto-Mask...upon reading ICR, interrupts are masked.  No
6841          * need for the IMC write
6842          */
6843         u32 icr = rd32(E1000_ICR);
6844
6845         /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
6846          * not set, then the adapter didn't send an interrupt
6847          */
6848         if (!(icr & E1000_ICR_INT_ASSERTED))
6849                 return IRQ_NONE;
6850
6851         igb_write_itr(q_vector);
6852
6853         if (icr & E1000_ICR_DRSTA)
6854                 schedule_work(&adapter->reset_task);
6855
6856         if (icr & E1000_ICR_DOUTSYNC) {
6857                 /* HW is reporting DMA is out of sync */
6858                 adapter->stats.doosync++;
6859         }
6860
6861         if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
6862                 hw->mac.get_link_status = 1;
6863                 /* guard against interrupt when we're going down */
6864                 if (!test_bit(__IGB_DOWN, &adapter->state))
6865                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
6866         }
6867
6868         if (icr & E1000_ICR_TS)
6869                 igb_tsync_interrupt(adapter);
6870
6871         napi_schedule(&q_vector->napi);
6872
6873         return IRQ_HANDLED;
6874 }
6875
6876 static void igb_ring_irq_enable(struct igb_q_vector *q_vector)
6877 {
6878         struct igb_adapter *adapter = q_vector->adapter;
6879         struct e1000_hw *hw = &adapter->hw;
6880
6881         if ((q_vector->rx.ring && (adapter->rx_itr_setting & 3)) ||
6882             (!q_vector->rx.ring && (adapter->tx_itr_setting & 3))) {
6883                 if ((adapter->num_q_vectors == 1) && !adapter->vf_data)
6884                         igb_set_itr(q_vector);
6885                 else
6886                         igb_update_ring_itr(q_vector);
6887         }
6888
6889         if (!test_bit(__IGB_DOWN, &adapter->state)) {
6890                 if (adapter->flags & IGB_FLAG_HAS_MSIX)
6891                         wr32(E1000_EIMS, q_vector->eims_value);
6892                 else
6893                         igb_irq_enable(adapter);
6894         }
6895 }
6896
6897 /**
6898  *  igb_poll - NAPI Rx polling callback
6899  *  @napi: napi polling structure
6900  *  @budget: count of how many packets we should handle
6901  **/
6902 static int igb_poll(struct napi_struct *napi, int budget)
6903 {
6904         struct igb_q_vector *q_vector = container_of(napi,
6905                                                      struct igb_q_vector,
6906                                                      napi);
6907         bool clean_complete = true;
6908         int work_done = 0;
6909
6910 #ifdef CONFIG_IGB_DCA
6911         if (q_vector->adapter->flags & IGB_FLAG_DCA_ENABLED)
6912                 igb_update_dca(q_vector);
6913 #endif
6914         if (q_vector->tx.ring)
6915                 clean_complete = igb_clean_tx_irq(q_vector, budget);
6916
6917         if (q_vector->rx.ring) {
6918                 int cleaned = igb_clean_rx_irq(q_vector, budget);
6919
6920                 work_done += cleaned;
6921                 if (cleaned >= budget)
6922                         clean_complete = false;
6923         }
6924
6925         /* If all work not completed, return budget and keep polling */
6926         if (!clean_complete)
6927                 return budget;
6928
6929         /* If not enough Rx work done, exit the polling mode */
6930         napi_complete_done(napi, work_done);
6931         igb_ring_irq_enable(q_vector);
6932
6933         return 0;
6934 }
6935
6936 /**
6937  *  igb_clean_tx_irq - Reclaim resources after transmit completes
6938  *  @q_vector: pointer to q_vector containing needed info
6939  *  @napi_budget: Used to determine if we are in netpoll
6940  *
6941  *  returns true if ring is completely cleaned
6942  **/
6943 static bool igb_clean_tx_irq(struct igb_q_vector *q_vector, int napi_budget)
6944 {
6945         struct igb_adapter *adapter = q_vector->adapter;
6946         struct igb_ring *tx_ring = q_vector->tx.ring;
6947         struct igb_tx_buffer *tx_buffer;
6948         union e1000_adv_tx_desc *tx_desc;
6949         unsigned int total_bytes = 0, total_packets = 0;
6950         unsigned int budget = q_vector->tx.work_limit;
6951         unsigned int i = tx_ring->next_to_clean;
6952
6953         if (test_bit(__IGB_DOWN, &adapter->state))
6954                 return true;
6955
6956         tx_buffer = &tx_ring->tx_buffer_info[i];
6957         tx_desc = IGB_TX_DESC(tx_ring, i);
6958         i -= tx_ring->count;
6959
6960         do {
6961                 union e1000_adv_tx_desc *eop_desc = tx_buffer->next_to_watch;
6962
6963                 /* if next_to_watch is not set then there is no work pending */
6964                 if (!eop_desc)
6965                         break;
6966
6967                 /* prevent any other reads prior to eop_desc */
6968                 read_barrier_depends();
6969
6970                 /* if DD is not set pending work has not been completed */
6971                 if (!(eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)))
6972                         break;
6973
6974                 /* clear next_to_watch to prevent false hangs */
6975                 tx_buffer->next_to_watch = NULL;
6976
6977                 /* update the statistics for this packet */
6978                 total_bytes += tx_buffer->bytecount;
6979                 total_packets += tx_buffer->gso_segs;
6980
6981                 /* free the skb */
6982                 napi_consume_skb(tx_buffer->skb, napi_budget);
6983
6984                 /* unmap skb header data */
6985                 dma_unmap_single(tx_ring->dev,
6986                                  dma_unmap_addr(tx_buffer, dma),
6987                                  dma_unmap_len(tx_buffer, len),
6988                                  DMA_TO_DEVICE);
6989
6990                 /* clear tx_buffer data */
6991                 dma_unmap_len_set(tx_buffer, len, 0);
6992
6993                 /* clear last DMA location and unmap remaining buffers */
6994                 while (tx_desc != eop_desc) {
6995                         tx_buffer++;
6996                         tx_desc++;
6997                         i++;
6998                         if (unlikely(!i)) {
6999                                 i -= tx_ring->count;
7000                                 tx_buffer = tx_ring->tx_buffer_info;
7001                                 tx_desc = IGB_TX_DESC(tx_ring, 0);
7002                         }
7003
7004                         /* unmap any remaining paged data */
7005                         if (dma_unmap_len(tx_buffer, len)) {
7006                                 dma_unmap_page(tx_ring->dev,
7007                                                dma_unmap_addr(tx_buffer, dma),
7008                                                dma_unmap_len(tx_buffer, len),
7009                                                DMA_TO_DEVICE);
7010                                 dma_unmap_len_set(tx_buffer, len, 0);
7011                         }
7012                 }
7013
7014                 /* move us one more past the eop_desc for start of next pkt */
7015                 tx_buffer++;
7016                 tx_desc++;
7017                 i++;
7018                 if (unlikely(!i)) {
7019                         i -= tx_ring->count;
7020                         tx_buffer = tx_ring->tx_buffer_info;
7021                         tx_desc = IGB_TX_DESC(tx_ring, 0);
7022                 }
7023
7024                 /* issue prefetch for next Tx descriptor */
7025                 prefetch(tx_desc);
7026
7027                 /* update budget accounting */
7028                 budget--;
7029         } while (likely(budget));
7030
7031         netdev_tx_completed_queue(txring_txq(tx_ring),
7032                                   total_packets, total_bytes);
7033         i += tx_ring->count;
7034         tx_ring->next_to_clean = i;
7035         u64_stats_update_begin(&tx_ring->tx_syncp);
7036         tx_ring->tx_stats.bytes += total_bytes;
7037         tx_ring->tx_stats.packets += total_packets;
7038         u64_stats_update_end(&tx_ring->tx_syncp);
7039         q_vector->tx.total_bytes += total_bytes;
7040         q_vector->tx.total_packets += total_packets;
7041
7042         if (test_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags)) {
7043                 struct e1000_hw *hw = &adapter->hw;
7044
7045                 /* Detect a transmit hang in hardware, this serializes the
7046                  * check with the clearing of time_stamp and movement of i
7047                  */
7048                 clear_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
7049                 if (tx_buffer->next_to_watch &&
7050                     time_after(jiffies, tx_buffer->time_stamp +
7051                                (adapter->tx_timeout_factor * HZ)) &&
7052                     !(rd32(E1000_STATUS) & E1000_STATUS_TXOFF)) {
7053
7054                         /* detected Tx unit hang */
7055                         dev_err(tx_ring->dev,
7056                                 "Detected Tx Unit Hang\n"
7057                                 "  Tx Queue             <%d>\n"
7058                                 "  TDH                  <%x>\n"
7059                                 "  TDT                  <%x>\n"
7060                                 "  next_to_use          <%x>\n"
7061                                 "  next_to_clean        <%x>\n"
7062                                 "buffer_info[next_to_clean]\n"
7063                                 "  time_stamp           <%lx>\n"
7064                                 "  next_to_watch        <%p>\n"
7065                                 "  jiffies              <%lx>\n"
7066                                 "  desc.status          <%x>\n",
7067                                 tx_ring->queue_index,
7068                                 rd32(E1000_TDH(tx_ring->reg_idx)),
7069                                 readl(tx_ring->tail),
7070                                 tx_ring->next_to_use,
7071                                 tx_ring->next_to_clean,
7072                                 tx_buffer->time_stamp,
7073                                 tx_buffer->next_to_watch,
7074                                 jiffies,
7075                                 tx_buffer->next_to_watch->wb.status);
7076                         netif_stop_subqueue(tx_ring->netdev,
7077                                             tx_ring->queue_index);
7078
7079                         /* we are about to reset, no point in enabling stuff */
7080                         return true;
7081                 }
7082         }
7083
7084 #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
7085         if (unlikely(total_packets &&
7086             netif_carrier_ok(tx_ring->netdev) &&
7087             igb_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD)) {
7088                 /* Make sure that anybody stopping the queue after this
7089                  * sees the new next_to_clean.
7090                  */
7091                 smp_mb();
7092                 if (__netif_subqueue_stopped(tx_ring->netdev,
7093                                              tx_ring->queue_index) &&
7094                     !(test_bit(__IGB_DOWN, &adapter->state))) {
7095                         netif_wake_subqueue(tx_ring->netdev,
7096                                             tx_ring->queue_index);
7097
7098                         u64_stats_update_begin(&tx_ring->tx_syncp);
7099                         tx_ring->tx_stats.restart_queue++;
7100                         u64_stats_update_end(&tx_ring->tx_syncp);
7101                 }
7102         }
7103
7104         return !!budget;
7105 }
7106
7107 /**
7108  *  igb_reuse_rx_page - page flip buffer and store it back on the ring
7109  *  @rx_ring: rx descriptor ring to store buffers on
7110  *  @old_buff: donor buffer to have page reused
7111  *
7112  *  Synchronizes page for reuse by the adapter
7113  **/
7114 static void igb_reuse_rx_page(struct igb_ring *rx_ring,
7115                               struct igb_rx_buffer *old_buff)
7116 {
7117         struct igb_rx_buffer *new_buff;
7118         u16 nta = rx_ring->next_to_alloc;
7119
7120         new_buff = &rx_ring->rx_buffer_info[nta];
7121
7122         /* update, and store next to alloc */
7123         nta++;
7124         rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
7125
7126         /* Transfer page from old buffer to new buffer.
7127          * Move each member individually to avoid possible store
7128          * forwarding stalls.
7129          */
7130         new_buff->dma           = old_buff->dma;
7131         new_buff->page          = old_buff->page;
7132         new_buff->page_offset   = old_buff->page_offset;
7133         new_buff->pagecnt_bias  = old_buff->pagecnt_bias;
7134 }
7135
7136 static inline bool igb_page_is_reserved(struct page *page)
7137 {
7138         return (page_to_nid(page) != numa_mem_id()) || page_is_pfmemalloc(page);
7139 }
7140
7141 static bool igb_can_reuse_rx_page(struct igb_rx_buffer *rx_buffer)
7142 {
7143         unsigned int pagecnt_bias = rx_buffer->pagecnt_bias;
7144         struct page *page = rx_buffer->page;
7145
7146         /* avoid re-using remote pages */
7147         if (unlikely(igb_page_is_reserved(page)))
7148                 return false;
7149
7150 #if (PAGE_SIZE < 8192)
7151         /* if we are only owner of page we can reuse it */
7152         if (unlikely((page_ref_count(page) - pagecnt_bias) > 1))
7153                 return false;
7154 #else
7155 #define IGB_LAST_OFFSET \
7156         (SKB_WITH_OVERHEAD(PAGE_SIZE) - IGB_RXBUFFER_2048)
7157
7158         if (rx_buffer->page_offset > IGB_LAST_OFFSET)
7159                 return false;
7160 #endif
7161
7162         /* If we have drained the page fragment pool we need to update
7163          * the pagecnt_bias and page count so that we fully restock the
7164          * number of references the driver holds.
7165          */
7166         if (unlikely(!pagecnt_bias)) {
7167                 page_ref_add(page, USHRT_MAX);
7168                 rx_buffer->pagecnt_bias = USHRT_MAX;
7169         }
7170
7171         return true;
7172 }
7173
7174 /**
7175  *  igb_add_rx_frag - Add contents of Rx buffer to sk_buff
7176  *  @rx_ring: rx descriptor ring to transact packets on
7177  *  @rx_buffer: buffer containing page to add
7178  *  @skb: sk_buff to place the data into
7179  *  @size: size of buffer to be added
7180  *
7181  *  This function will add the data contained in rx_buffer->page to the skb.
7182  **/
7183 static void igb_add_rx_frag(struct igb_ring *rx_ring,
7184                             struct igb_rx_buffer *rx_buffer,
7185                             struct sk_buff *skb,
7186                             unsigned int size)
7187 {
7188 #if (PAGE_SIZE < 8192)
7189         unsigned int truesize = igb_rx_pg_size(rx_ring) / 2;
7190 #else
7191         unsigned int truesize = ring_uses_build_skb(rx_ring) ?
7192                                 SKB_DATA_ALIGN(IGB_SKB_PAD + size) :
7193                                 SKB_DATA_ALIGN(size);
7194 #endif
7195         skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page,
7196                         rx_buffer->page_offset, size, truesize);
7197 #if (PAGE_SIZE < 8192)
7198         rx_buffer->page_offset ^= truesize;
7199 #else
7200         rx_buffer->page_offset += truesize;
7201 #endif
7202 }
7203
7204 static struct sk_buff *igb_construct_skb(struct igb_ring *rx_ring,
7205                                          struct igb_rx_buffer *rx_buffer,
7206                                          union e1000_adv_rx_desc *rx_desc,
7207                                          unsigned int size)
7208 {
7209         void *va = page_address(rx_buffer->page) + rx_buffer->page_offset;
7210 #if (PAGE_SIZE < 8192)
7211         unsigned int truesize = igb_rx_pg_size(rx_ring) / 2;
7212 #else
7213         unsigned int truesize = SKB_DATA_ALIGN(size);
7214 #endif
7215         unsigned int headlen;
7216         struct sk_buff *skb;
7217
7218         /* prefetch first cache line of first page */
7219         prefetch(va);
7220 #if L1_CACHE_BYTES < 128
7221         prefetch(va + L1_CACHE_BYTES);
7222 #endif
7223
7224         /* allocate a skb to store the frags */
7225         skb = napi_alloc_skb(&rx_ring->q_vector->napi, IGB_RX_HDR_LEN);
7226         if (unlikely(!skb))
7227                 return NULL;
7228
7229         if (unlikely(igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP))) {
7230                 igb_ptp_rx_pktstamp(rx_ring->q_vector, va, skb);
7231                 va += IGB_TS_HDR_LEN;
7232                 size -= IGB_TS_HDR_LEN;
7233         }
7234
7235         /* Determine available headroom for copy */
7236         headlen = size;
7237         if (headlen > IGB_RX_HDR_LEN)
7238                 headlen = eth_get_headlen(va, IGB_RX_HDR_LEN);
7239
7240         /* align pull length to size of long to optimize memcpy performance */
7241         memcpy(__skb_put(skb, headlen), va, ALIGN(headlen, sizeof(long)));
7242
7243         /* update all of the pointers */
7244         size -= headlen;
7245         if (size) {
7246                 skb_add_rx_frag(skb, 0, rx_buffer->page,
7247                                 (va + headlen) - page_address(rx_buffer->page),
7248                                 size, truesize);
7249 #if (PAGE_SIZE < 8192)
7250                 rx_buffer->page_offset ^= truesize;
7251 #else
7252                 rx_buffer->page_offset += truesize;
7253 #endif
7254         } else {
7255                 rx_buffer->pagecnt_bias++;
7256         }
7257
7258         return skb;
7259 }
7260
7261 static struct sk_buff *igb_build_skb(struct igb_ring *rx_ring,
7262                                      struct igb_rx_buffer *rx_buffer,
7263                                      union e1000_adv_rx_desc *rx_desc,
7264                                      unsigned int size)
7265 {
7266         void *va = page_address(rx_buffer->page) + rx_buffer->page_offset;
7267 #if (PAGE_SIZE < 8192)
7268         unsigned int truesize = igb_rx_pg_size(rx_ring) / 2;
7269 #else
7270         unsigned int truesize = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) +
7271                                 SKB_DATA_ALIGN(IGB_SKB_PAD + size);
7272 #endif
7273         struct sk_buff *skb;
7274
7275         /* prefetch first cache line of first page */
7276         prefetch(va);
7277 #if L1_CACHE_BYTES < 128
7278         prefetch(va + L1_CACHE_BYTES);
7279 #endif
7280
7281         /* build an skb around the page buffer */
7282         skb = build_skb(va - IGB_SKB_PAD, truesize);
7283         if (unlikely(!skb))
7284                 return NULL;
7285
7286         /* update pointers within the skb to store the data */
7287         skb_reserve(skb, IGB_SKB_PAD);
7288         __skb_put(skb, size);
7289
7290         /* pull timestamp out of packet data */
7291         if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP)) {
7292                 igb_ptp_rx_pktstamp(rx_ring->q_vector, skb->data, skb);
7293                 __skb_pull(skb, IGB_TS_HDR_LEN);
7294         }
7295
7296         /* update buffer offset */
7297 #if (PAGE_SIZE < 8192)
7298         rx_buffer->page_offset ^= truesize;
7299 #else
7300         rx_buffer->page_offset += truesize;
7301 #endif
7302
7303         return skb;
7304 }
7305
7306 static inline void igb_rx_checksum(struct igb_ring *ring,
7307                                    union e1000_adv_rx_desc *rx_desc,
7308                                    struct sk_buff *skb)
7309 {
7310         skb_checksum_none_assert(skb);
7311
7312         /* Ignore Checksum bit is set */
7313         if (igb_test_staterr(rx_desc, E1000_RXD_STAT_IXSM))
7314                 return;
7315
7316         /* Rx checksum disabled via ethtool */
7317         if (!(ring->netdev->features & NETIF_F_RXCSUM))
7318                 return;
7319
7320         /* TCP/UDP checksum error bit is set */
7321         if (igb_test_staterr(rx_desc,
7322                              E1000_RXDEXT_STATERR_TCPE |
7323                              E1000_RXDEXT_STATERR_IPE)) {
7324                 /* work around errata with sctp packets where the TCPE aka
7325                  * L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
7326                  * packets, (aka let the stack check the crc32c)
7327                  */
7328                 if (!((skb->len == 60) &&
7329                       test_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags))) {
7330                         u64_stats_update_begin(&ring->rx_syncp);
7331                         ring->rx_stats.csum_err++;
7332                         u64_stats_update_end(&ring->rx_syncp);
7333                 }
7334                 /* let the stack verify checksum errors */
7335                 return;
7336         }
7337         /* It must be a TCP or UDP packet with a valid checksum */
7338         if (igb_test_staterr(rx_desc, E1000_RXD_STAT_TCPCS |
7339                                       E1000_RXD_STAT_UDPCS))
7340                 skb->ip_summed = CHECKSUM_UNNECESSARY;
7341
7342         dev_dbg(ring->dev, "cksum success: bits %08X\n",
7343                 le32_to_cpu(rx_desc->wb.upper.status_error));
7344 }
7345
7346 static inline void igb_rx_hash(struct igb_ring *ring,
7347                                union e1000_adv_rx_desc *rx_desc,
7348                                struct sk_buff *skb)
7349 {
7350         if (ring->netdev->features & NETIF_F_RXHASH)
7351                 skb_set_hash(skb,
7352                              le32_to_cpu(rx_desc->wb.lower.hi_dword.rss),
7353                              PKT_HASH_TYPE_L3);
7354 }
7355
7356 /**
7357  *  igb_is_non_eop - process handling of non-EOP buffers
7358  *  @rx_ring: Rx ring being processed
7359  *  @rx_desc: Rx descriptor for current buffer
7360  *  @skb: current socket buffer containing buffer in progress
7361  *
7362  *  This function updates next to clean.  If the buffer is an EOP buffer
7363  *  this function exits returning false, otherwise it will place the
7364  *  sk_buff in the next buffer to be chained and return true indicating
7365  *  that this is in fact a non-EOP buffer.
7366  **/
7367 static bool igb_is_non_eop(struct igb_ring *rx_ring,
7368                            union e1000_adv_rx_desc *rx_desc)
7369 {
7370         u32 ntc = rx_ring->next_to_clean + 1;
7371
7372         /* fetch, update, and store next to clean */
7373         ntc = (ntc < rx_ring->count) ? ntc : 0;
7374         rx_ring->next_to_clean = ntc;
7375
7376         prefetch(IGB_RX_DESC(rx_ring, ntc));
7377
7378         if (likely(igb_test_staterr(rx_desc, E1000_RXD_STAT_EOP)))
7379                 return false;
7380
7381         return true;
7382 }
7383
7384 /**
7385  *  igb_cleanup_headers - Correct corrupted or empty headers
7386  *  @rx_ring: rx descriptor ring packet is being transacted on
7387  *  @rx_desc: pointer to the EOP Rx descriptor
7388  *  @skb: pointer to current skb being fixed
7389  *
7390  *  Address the case where we are pulling data in on pages only
7391  *  and as such no data is present in the skb header.
7392  *
7393  *  In addition if skb is not at least 60 bytes we need to pad it so that
7394  *  it is large enough to qualify as a valid Ethernet frame.
7395  *
7396  *  Returns true if an error was encountered and skb was freed.
7397  **/
7398 static bool igb_cleanup_headers(struct igb_ring *rx_ring,
7399                                 union e1000_adv_rx_desc *rx_desc,
7400                                 struct sk_buff *skb)
7401 {
7402         if (unlikely((igb_test_staterr(rx_desc,
7403                                        E1000_RXDEXT_ERR_FRAME_ERR_MASK)))) {
7404                 struct net_device *netdev = rx_ring->netdev;
7405                 if (!(netdev->features & NETIF_F_RXALL)) {
7406                         dev_kfree_skb_any(skb);
7407                         return true;
7408                 }
7409         }
7410
7411         /* if eth_skb_pad returns an error the skb was freed */
7412         if (eth_skb_pad(skb))
7413                 return true;
7414
7415         return false;
7416 }
7417
7418 /**
7419  *  igb_process_skb_fields - Populate skb header fields from Rx descriptor
7420  *  @rx_ring: rx descriptor ring packet is being transacted on
7421  *  @rx_desc: pointer to the EOP Rx descriptor
7422  *  @skb: pointer to current skb being populated
7423  *
7424  *  This function checks the ring, descriptor, and packet information in
7425  *  order to populate the hash, checksum, VLAN, timestamp, protocol, and
7426  *  other fields within the skb.
7427  **/
7428 static void igb_process_skb_fields(struct igb_ring *rx_ring,
7429                                    union e1000_adv_rx_desc *rx_desc,
7430                                    struct sk_buff *skb)
7431 {
7432         struct net_device *dev = rx_ring->netdev;
7433
7434         igb_rx_hash(rx_ring, rx_desc, skb);
7435
7436         igb_rx_checksum(rx_ring, rx_desc, skb);
7437
7438         if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TS) &&
7439             !igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP))
7440                 igb_ptp_rx_rgtstamp(rx_ring->q_vector, skb);
7441
7442         if ((dev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
7443             igb_test_staterr(rx_desc, E1000_RXD_STAT_VP)) {
7444                 u16 vid;
7445
7446                 if (igb_test_staterr(rx_desc, E1000_RXDEXT_STATERR_LB) &&
7447                     test_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &rx_ring->flags))
7448                         vid = be16_to_cpu(rx_desc->wb.upper.vlan);
7449                 else
7450                         vid = le16_to_cpu(rx_desc->wb.upper.vlan);
7451
7452                 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
7453         }
7454
7455         skb_record_rx_queue(skb, rx_ring->queue_index);
7456
7457         skb->protocol = eth_type_trans(skb, rx_ring->netdev);
7458 }
7459
7460 static struct igb_rx_buffer *igb_get_rx_buffer(struct igb_ring *rx_ring,
7461                                                const unsigned int size)
7462 {
7463         struct igb_rx_buffer *rx_buffer;
7464
7465         rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean];
7466         prefetchw(rx_buffer->page);
7467
7468         /* we are reusing so sync this buffer for CPU use */
7469         dma_sync_single_range_for_cpu(rx_ring->dev,
7470                                       rx_buffer->dma,
7471                                       rx_buffer->page_offset,
7472                                       size,
7473                                       DMA_FROM_DEVICE);
7474
7475         rx_buffer->pagecnt_bias--;
7476
7477         return rx_buffer;
7478 }
7479
7480 static void igb_put_rx_buffer(struct igb_ring *rx_ring,
7481                               struct igb_rx_buffer *rx_buffer)
7482 {
7483         if (igb_can_reuse_rx_page(rx_buffer)) {
7484                 /* hand second half of page back to the ring */
7485                 igb_reuse_rx_page(rx_ring, rx_buffer);
7486         } else {
7487                 /* We are not reusing the buffer so unmap it and free
7488                  * any references we are holding to it
7489                  */
7490                 dma_unmap_page_attrs(rx_ring->dev, rx_buffer->dma,
7491                                      igb_rx_pg_size(rx_ring), DMA_FROM_DEVICE,
7492                                      IGB_RX_DMA_ATTR);
7493                 __page_frag_cache_drain(rx_buffer->page,
7494                                         rx_buffer->pagecnt_bias);
7495         }
7496
7497         /* clear contents of rx_buffer */
7498         rx_buffer->page = NULL;
7499 }
7500
7501 static int igb_clean_rx_irq(struct igb_q_vector *q_vector, const int budget)
7502 {
7503         struct igb_ring *rx_ring = q_vector->rx.ring;
7504         struct sk_buff *skb = rx_ring->skb;
7505         unsigned int total_bytes = 0, total_packets = 0;
7506         u16 cleaned_count = igb_desc_unused(rx_ring);
7507
7508         while (likely(total_packets < budget)) {
7509                 union e1000_adv_rx_desc *rx_desc;
7510                 struct igb_rx_buffer *rx_buffer;
7511                 unsigned int size;
7512
7513                 /* return some buffers to hardware, one at a time is too slow */
7514                 if (cleaned_count >= IGB_RX_BUFFER_WRITE) {
7515                         igb_alloc_rx_buffers(rx_ring, cleaned_count);
7516                         cleaned_count = 0;
7517                 }
7518
7519                 rx_desc = IGB_RX_DESC(rx_ring, rx_ring->next_to_clean);
7520                 size = le16_to_cpu(rx_desc->wb.upper.length);
7521                 if (!size)
7522                         break;
7523
7524                 /* This memory barrier is needed to keep us from reading
7525                  * any other fields out of the rx_desc until we know the
7526                  * descriptor has been written back
7527                  */
7528                 dma_rmb();
7529
7530                 rx_buffer = igb_get_rx_buffer(rx_ring, size);
7531
7532                 /* retrieve a buffer from the ring */
7533                 if (skb)
7534                         igb_add_rx_frag(rx_ring, rx_buffer, skb, size);
7535                 else if (ring_uses_build_skb(rx_ring))
7536                         skb = igb_build_skb(rx_ring, rx_buffer, rx_desc, size);
7537                 else
7538                         skb = igb_construct_skb(rx_ring, rx_buffer,
7539                                                 rx_desc, size);
7540
7541                 /* exit if we failed to retrieve a buffer */
7542                 if (!skb) {
7543                         rx_ring->rx_stats.alloc_failed++;
7544                         rx_buffer->pagecnt_bias++;
7545                         break;
7546                 }
7547
7548                 igb_put_rx_buffer(rx_ring, rx_buffer);
7549                 cleaned_count++;
7550
7551                 /* fetch next buffer in frame if non-eop */
7552                 if (igb_is_non_eop(rx_ring, rx_desc))
7553                         continue;
7554
7555                 /* verify the packet layout is correct */
7556                 if (igb_cleanup_headers(rx_ring, rx_desc, skb)) {
7557                         skb = NULL;
7558                         continue;
7559                 }
7560
7561                 /* probably a little skewed due to removing CRC */
7562                 total_bytes += skb->len;
7563
7564                 /* populate checksum, timestamp, VLAN, and protocol */
7565                 igb_process_skb_fields(rx_ring, rx_desc, skb);
7566
7567                 napi_gro_receive(&q_vector->napi, skb);
7568
7569                 /* reset skb pointer */
7570                 skb = NULL;
7571
7572                 /* update budget accounting */
7573                 total_packets++;
7574         }
7575
7576         /* place incomplete frames back on ring for completion */
7577         rx_ring->skb = skb;
7578
7579         u64_stats_update_begin(&rx_ring->rx_syncp);
7580         rx_ring->rx_stats.packets += total_packets;
7581         rx_ring->rx_stats.bytes += total_bytes;
7582         u64_stats_update_end(&rx_ring->rx_syncp);
7583         q_vector->rx.total_packets += total_packets;
7584         q_vector->rx.total_bytes += total_bytes;
7585
7586         if (cleaned_count)
7587                 igb_alloc_rx_buffers(rx_ring, cleaned_count);
7588
7589         return total_packets;
7590 }
7591
7592 static inline unsigned int igb_rx_offset(struct igb_ring *rx_ring)
7593 {
7594         return ring_uses_build_skb(rx_ring) ? IGB_SKB_PAD : 0;
7595 }
7596
7597 static bool igb_alloc_mapped_page(struct igb_ring *rx_ring,
7598                                   struct igb_rx_buffer *bi)
7599 {
7600         struct page *page = bi->page;
7601         dma_addr_t dma;
7602
7603         /* since we are recycling buffers we should seldom need to alloc */
7604         if (likely(page))
7605                 return true;
7606
7607         /* alloc new page for storage */
7608         page = dev_alloc_pages(igb_rx_pg_order(rx_ring));
7609         if (unlikely(!page)) {
7610                 rx_ring->rx_stats.alloc_failed++;
7611                 return false;
7612         }
7613
7614         /* map page for use */
7615         dma = dma_map_page_attrs(rx_ring->dev, page, 0,
7616                                  igb_rx_pg_size(rx_ring),
7617                                  DMA_FROM_DEVICE,
7618                                  IGB_RX_DMA_ATTR);
7619
7620         /* if mapping failed free memory back to system since
7621          * there isn't much point in holding memory we can't use
7622          */
7623         if (dma_mapping_error(rx_ring->dev, dma)) {
7624                 __free_pages(page, igb_rx_pg_order(rx_ring));
7625
7626                 rx_ring->rx_stats.alloc_failed++;
7627                 return false;
7628         }
7629
7630         bi->dma = dma;
7631         bi->page = page;
7632         bi->page_offset = igb_rx_offset(rx_ring);
7633         bi->pagecnt_bias = 1;
7634
7635         return true;
7636 }
7637
7638 /**
7639  *  igb_alloc_rx_buffers - Replace used receive buffers; packet split
7640  *  @adapter: address of board private structure
7641  **/
7642 void igb_alloc_rx_buffers(struct igb_ring *rx_ring, u16 cleaned_count)
7643 {
7644         union e1000_adv_rx_desc *rx_desc;
7645         struct igb_rx_buffer *bi;
7646         u16 i = rx_ring->next_to_use;
7647         u16 bufsz;
7648
7649         /* nothing to do */
7650         if (!cleaned_count)
7651                 return;
7652
7653         rx_desc = IGB_RX_DESC(rx_ring, i);
7654         bi = &rx_ring->rx_buffer_info[i];
7655         i -= rx_ring->count;
7656
7657         bufsz = igb_rx_bufsz(rx_ring);
7658
7659         do {
7660                 if (!igb_alloc_mapped_page(rx_ring, bi))
7661                         break;
7662
7663                 /* sync the buffer for use by the device */
7664                 dma_sync_single_range_for_device(rx_ring->dev, bi->dma,
7665                                                  bi->page_offset, bufsz,
7666                                                  DMA_FROM_DEVICE);
7667
7668                 /* Refresh the desc even if buffer_addrs didn't change
7669                  * because each write-back erases this info.
7670                  */
7671                 rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
7672
7673                 rx_desc++;
7674                 bi++;
7675                 i++;
7676                 if (unlikely(!i)) {
7677                         rx_desc = IGB_RX_DESC(rx_ring, 0);
7678                         bi = rx_ring->rx_buffer_info;
7679                         i -= rx_ring->count;
7680                 }
7681
7682                 /* clear the length for the next_to_use descriptor */
7683                 rx_desc->wb.upper.length = 0;
7684
7685                 cleaned_count--;
7686         } while (cleaned_count);
7687
7688         i += rx_ring->count;
7689
7690         if (rx_ring->next_to_use != i) {
7691                 /* record the next descriptor to use */
7692                 rx_ring->next_to_use = i;
7693
7694                 /* update next to alloc since we have filled the ring */
7695                 rx_ring->next_to_alloc = i;
7696
7697                 /* Force memory writes to complete before letting h/w
7698                  * know there are new descriptors to fetch.  (Only
7699                  * applicable for weak-ordered memory model archs,
7700                  * such as IA-64).
7701                  */
7702                 wmb();
7703                 writel(i, rx_ring->tail);
7704         }
7705 }
7706
7707 /**
7708  * igb_mii_ioctl -
7709  * @netdev:
7710  * @ifreq:
7711  * @cmd:
7712  **/
7713 static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
7714 {
7715         struct igb_adapter *adapter = netdev_priv(netdev);
7716         struct mii_ioctl_data *data = if_mii(ifr);
7717
7718         if (adapter->hw.phy.media_type != e1000_media_type_copper)
7719                 return -EOPNOTSUPP;
7720
7721         switch (cmd) {
7722         case SIOCGMIIPHY:
7723                 data->phy_id = adapter->hw.phy.addr;
7724                 break;
7725         case SIOCGMIIREG:
7726                 if (igb_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
7727                                      &data->val_out))
7728                         return -EIO;
7729                 break;
7730         case SIOCSMIIREG:
7731         default:
7732                 return -EOPNOTSUPP;
7733         }
7734         return 0;
7735 }
7736
7737 /**
7738  * igb_ioctl -
7739  * @netdev:
7740  * @ifreq:
7741  * @cmd:
7742  **/
7743 static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
7744 {
7745         switch (cmd) {
7746         case SIOCGMIIPHY:
7747         case SIOCGMIIREG:
7748         case SIOCSMIIREG:
7749                 return igb_mii_ioctl(netdev, ifr, cmd);
7750         case SIOCGHWTSTAMP:
7751                 return igb_ptp_get_ts_config(netdev, ifr);
7752         case SIOCSHWTSTAMP:
7753                 return igb_ptp_set_ts_config(netdev, ifr);
7754         default:
7755                 return -EOPNOTSUPP;
7756         }
7757 }
7758
7759 void igb_read_pci_cfg(struct e1000_hw *hw, u32 reg, u16 *value)
7760 {
7761         struct igb_adapter *adapter = hw->back;
7762
7763         pci_read_config_word(adapter->pdev, reg, value);
7764 }
7765
7766 void igb_write_pci_cfg(struct e1000_hw *hw, u32 reg, u16 *value)
7767 {
7768         struct igb_adapter *adapter = hw->back;
7769
7770         pci_write_config_word(adapter->pdev, reg, *value);
7771 }
7772
7773 s32 igb_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
7774 {
7775         struct igb_adapter *adapter = hw->back;
7776
7777         if (pcie_capability_read_word(adapter->pdev, reg, value))
7778                 return -E1000_ERR_CONFIG;
7779
7780         return 0;
7781 }
7782
7783 s32 igb_write_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
7784 {
7785         struct igb_adapter *adapter = hw->back;
7786
7787         if (pcie_capability_write_word(adapter->pdev, reg, *value))
7788                 return -E1000_ERR_CONFIG;
7789
7790         return 0;
7791 }
7792
7793 static void igb_vlan_mode(struct net_device *netdev, netdev_features_t features)
7794 {
7795         struct igb_adapter *adapter = netdev_priv(netdev);
7796         struct e1000_hw *hw = &adapter->hw;
7797         u32 ctrl, rctl;
7798         bool enable = !!(features & NETIF_F_HW_VLAN_CTAG_RX);
7799
7800         if (enable) {
7801                 /* enable VLAN tag insert/strip */
7802                 ctrl = rd32(E1000_CTRL);
7803                 ctrl |= E1000_CTRL_VME;
7804                 wr32(E1000_CTRL, ctrl);
7805
7806                 /* Disable CFI check */
7807                 rctl = rd32(E1000_RCTL);
7808                 rctl &= ~E1000_RCTL_CFIEN;
7809                 wr32(E1000_RCTL, rctl);
7810         } else {
7811                 /* disable VLAN tag insert/strip */
7812                 ctrl = rd32(E1000_CTRL);
7813                 ctrl &= ~E1000_CTRL_VME;
7814                 wr32(E1000_CTRL, ctrl);
7815         }
7816
7817         igb_set_vf_vlan_strip(adapter, adapter->vfs_allocated_count, enable);
7818 }
7819
7820 static int igb_vlan_rx_add_vid(struct net_device *netdev,
7821                                __be16 proto, u16 vid)
7822 {
7823         struct igb_adapter *adapter = netdev_priv(netdev);
7824         struct e1000_hw *hw = &adapter->hw;
7825         int pf_id = adapter->vfs_allocated_count;
7826
7827         /* add the filter since PF can receive vlans w/o entry in vlvf */
7828         if (!vid || !(adapter->flags & IGB_FLAG_VLAN_PROMISC))
7829                 igb_vfta_set(hw, vid, pf_id, true, !!vid);
7830
7831         set_bit(vid, adapter->active_vlans);
7832
7833         return 0;
7834 }
7835
7836 static int igb_vlan_rx_kill_vid(struct net_device *netdev,
7837                                 __be16 proto, u16 vid)
7838 {
7839         struct igb_adapter *adapter = netdev_priv(netdev);
7840         int pf_id = adapter->vfs_allocated_count;
7841         struct e1000_hw *hw = &adapter->hw;
7842
7843         /* remove VID from filter table */
7844         if (vid && !(adapter->flags & IGB_FLAG_VLAN_PROMISC))
7845                 igb_vfta_set(hw, vid, pf_id, false, true);
7846
7847         clear_bit(vid, adapter->active_vlans);
7848
7849         return 0;
7850 }
7851
7852 static void igb_restore_vlan(struct igb_adapter *adapter)
7853 {
7854         u16 vid = 1;
7855
7856         igb_vlan_mode(adapter->netdev, adapter->netdev->features);
7857         igb_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), 0);
7858
7859         for_each_set_bit_from(vid, adapter->active_vlans, VLAN_N_VID)
7860                 igb_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
7861 }
7862
7863 int igb_set_spd_dplx(struct igb_adapter *adapter, u32 spd, u8 dplx)
7864 {
7865         struct pci_dev *pdev = adapter->pdev;
7866         struct e1000_mac_info *mac = &adapter->hw.mac;
7867
7868         mac->autoneg = 0;
7869
7870         /* Make sure dplx is at most 1 bit and lsb of speed is not set
7871          * for the switch() below to work
7872          */
7873         if ((spd & 1) || (dplx & ~1))
7874                 goto err_inval;
7875
7876         /* Fiber NIC's only allow 1000 gbps Full duplex
7877          * and 100Mbps Full duplex for 100baseFx sfp
7878          */
7879         if (adapter->hw.phy.media_type == e1000_media_type_internal_serdes) {
7880                 switch (spd + dplx) {
7881                 case SPEED_10 + DUPLEX_HALF:
7882                 case SPEED_10 + DUPLEX_FULL:
7883                 case SPEED_100 + DUPLEX_HALF:
7884                         goto err_inval;
7885                 default:
7886                         break;
7887                 }
7888         }
7889
7890         switch (spd + dplx) {
7891         case SPEED_10 + DUPLEX_HALF:
7892                 mac->forced_speed_duplex = ADVERTISE_10_HALF;
7893                 break;
7894         case SPEED_10 + DUPLEX_FULL:
7895                 mac->forced_speed_duplex = ADVERTISE_10_FULL;
7896                 break;
7897         case SPEED_100 + DUPLEX_HALF:
7898                 mac->forced_speed_duplex = ADVERTISE_100_HALF;
7899                 break;
7900         case SPEED_100 + DUPLEX_FULL:
7901                 mac->forced_speed_duplex = ADVERTISE_100_FULL;
7902                 break;
7903         case SPEED_1000 + DUPLEX_FULL:
7904                 mac->autoneg = 1;
7905                 adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
7906                 break;
7907         case SPEED_1000 + DUPLEX_HALF: /* not supported */
7908         default:
7909                 goto err_inval;
7910         }
7911
7912         /* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
7913         adapter->hw.phy.mdix = AUTO_ALL_MODES;
7914
7915         return 0;
7916
7917 err_inval:
7918         dev_err(&pdev->dev, "Unsupported Speed/Duplex configuration\n");
7919         return -EINVAL;
7920 }
7921
7922 static int __igb_shutdown(struct pci_dev *pdev, bool *enable_wake,
7923                           bool runtime)
7924 {
7925         struct net_device *netdev = pci_get_drvdata(pdev);
7926         struct igb_adapter *adapter = netdev_priv(netdev);
7927         struct e1000_hw *hw = &adapter->hw;
7928         u32 ctrl, rctl, status;
7929         u32 wufc = runtime ? E1000_WUFC_LNKC : adapter->wol;
7930 #ifdef CONFIG_PM
7931         int retval = 0;
7932 #endif
7933
7934         rtnl_lock();
7935         netif_device_detach(netdev);
7936
7937         if (netif_running(netdev))
7938                 __igb_close(netdev, true);
7939
7940         igb_ptp_suspend(adapter);
7941
7942         igb_clear_interrupt_scheme(adapter);
7943         rtnl_unlock();
7944
7945 #ifdef CONFIG_PM
7946         retval = pci_save_state(pdev);
7947         if (retval)
7948                 return retval;
7949 #endif
7950
7951         status = rd32(E1000_STATUS);
7952         if (status & E1000_STATUS_LU)
7953                 wufc &= ~E1000_WUFC_LNKC;
7954
7955         if (wufc) {
7956                 igb_setup_rctl(adapter);
7957                 igb_set_rx_mode(netdev);
7958
7959                 /* turn on all-multi mode if wake on multicast is enabled */
7960                 if (wufc & E1000_WUFC_MC) {
7961                         rctl = rd32(E1000_RCTL);
7962                         rctl |= E1000_RCTL_MPE;
7963                         wr32(E1000_RCTL, rctl);
7964                 }
7965
7966                 ctrl = rd32(E1000_CTRL);
7967                 /* advertise wake from D3Cold */
7968                 #define E1000_CTRL_ADVD3WUC 0x00100000
7969                 /* phy power management enable */
7970                 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
7971                 ctrl |= E1000_CTRL_ADVD3WUC;
7972                 wr32(E1000_CTRL, ctrl);
7973
7974                 /* Allow time for pending master requests to run */
7975                 igb_disable_pcie_master(hw);
7976
7977                 wr32(E1000_WUC, E1000_WUC_PME_EN);
7978                 wr32(E1000_WUFC, wufc);
7979         } else {
7980                 wr32(E1000_WUC, 0);
7981                 wr32(E1000_WUFC, 0);
7982         }
7983
7984         *enable_wake = wufc || adapter->en_mng_pt;
7985         if (!*enable_wake)
7986                 igb_power_down_link(adapter);
7987         else
7988                 igb_power_up_link(adapter);
7989
7990         /* Release control of h/w to f/w.  If f/w is AMT enabled, this
7991          * would have already happened in close and is redundant.
7992          */
7993         igb_release_hw_control(adapter);
7994
7995         pci_disable_device(pdev);
7996
7997         return 0;
7998 }
7999
8000 static void igb_deliver_wake_packet(struct net_device *netdev)
8001 {
8002         struct igb_adapter *adapter = netdev_priv(netdev);
8003         struct e1000_hw *hw = &adapter->hw;
8004         struct sk_buff *skb;
8005         u32 wupl;
8006
8007         wupl = rd32(E1000_WUPL) & E1000_WUPL_MASK;
8008
8009         /* WUPM stores only the first 128 bytes of the wake packet.
8010          * Read the packet only if we have the whole thing.
8011          */
8012         if ((wupl == 0) || (wupl > E1000_WUPM_BYTES))
8013                 return;
8014
8015         skb = netdev_alloc_skb_ip_align(netdev, E1000_WUPM_BYTES);
8016         if (!skb)
8017                 return;
8018
8019         skb_put(skb, wupl);
8020
8021         /* Ensure reads are 32-bit aligned */
8022         wupl = roundup(wupl, 4);
8023
8024         memcpy_fromio(skb->data, hw->hw_addr + E1000_WUPM_REG(0), wupl);
8025
8026         skb->protocol = eth_type_trans(skb, netdev);
8027         netif_rx(skb);
8028 }
8029
8030 static int __maybe_unused igb_suspend(struct device *dev)
8031 {
8032         int retval;
8033         bool wake;
8034         struct pci_dev *pdev = to_pci_dev(dev);
8035
8036         retval = __igb_shutdown(pdev, &wake, 0);
8037         if (retval)
8038                 return retval;
8039
8040         if (wake) {
8041                 pci_prepare_to_sleep(pdev);
8042         } else {
8043                 pci_wake_from_d3(pdev, false);
8044                 pci_set_power_state(pdev, PCI_D3hot);
8045         }
8046
8047         return 0;
8048 }
8049
8050 static int __maybe_unused igb_resume(struct device *dev)
8051 {
8052         struct pci_dev *pdev = to_pci_dev(dev);
8053         struct net_device *netdev = pci_get_drvdata(pdev);
8054         struct igb_adapter *adapter = netdev_priv(netdev);
8055         struct e1000_hw *hw = &adapter->hw;
8056         u32 err, val;
8057
8058         pci_set_power_state(pdev, PCI_D0);
8059         pci_restore_state(pdev);
8060         pci_save_state(pdev);
8061
8062         if (!pci_device_is_present(pdev))
8063                 return -ENODEV;
8064         err = pci_enable_device_mem(pdev);
8065         if (err) {
8066                 dev_err(&pdev->dev,
8067                         "igb: Cannot enable PCI device from suspend\n");
8068                 return err;
8069         }
8070         pci_set_master(pdev);
8071
8072         pci_enable_wake(pdev, PCI_D3hot, 0);
8073         pci_enable_wake(pdev, PCI_D3cold, 0);
8074
8075         if (igb_init_interrupt_scheme(adapter, true)) {
8076                 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
8077                 return -ENOMEM;
8078         }
8079
8080         igb_reset(adapter);
8081
8082         /* let the f/w know that the h/w is now under the control of the
8083          * driver.
8084          */
8085         igb_get_hw_control(adapter);
8086
8087         val = rd32(E1000_WUS);
8088         if (val & WAKE_PKT_WUS)
8089                 igb_deliver_wake_packet(netdev);
8090
8091         wr32(E1000_WUS, ~0);
8092
8093         rtnl_lock();
8094         if (!err && netif_running(netdev))
8095                 err = __igb_open(netdev, true);
8096
8097         if (!err)
8098                 netif_device_attach(netdev);
8099         rtnl_unlock();
8100
8101         return err;
8102 }
8103
8104 static int __maybe_unused igb_runtime_idle(struct device *dev)
8105 {
8106         struct pci_dev *pdev = to_pci_dev(dev);
8107         struct net_device *netdev = pci_get_drvdata(pdev);
8108         struct igb_adapter *adapter = netdev_priv(netdev);
8109
8110         if (!igb_has_link(adapter))
8111                 pm_schedule_suspend(dev, MSEC_PER_SEC * 5);
8112
8113         return -EBUSY;
8114 }
8115
8116 static int __maybe_unused igb_runtime_suspend(struct device *dev)
8117 {
8118         struct pci_dev *pdev = to_pci_dev(dev);
8119         int retval;
8120         bool wake;
8121
8122         retval = __igb_shutdown(pdev, &wake, 1);
8123         if (retval)
8124                 return retval;
8125
8126         if (wake) {
8127                 pci_prepare_to_sleep(pdev);
8128         } else {
8129                 pci_wake_from_d3(pdev, false);
8130                 pci_set_power_state(pdev, PCI_D3hot);
8131         }
8132
8133         return 0;
8134 }
8135
8136 static int __maybe_unused igb_runtime_resume(struct device *dev)
8137 {
8138         return igb_resume(dev);
8139 }
8140
8141 static void igb_shutdown(struct pci_dev *pdev)
8142 {
8143         bool wake;
8144
8145         __igb_shutdown(pdev, &wake, 0);
8146
8147         if (system_state == SYSTEM_POWER_OFF) {
8148                 pci_wake_from_d3(pdev, wake);
8149                 pci_set_power_state(pdev, PCI_D3hot);
8150         }
8151 }
8152
8153 #ifdef CONFIG_PCI_IOV
8154 static int igb_sriov_reinit(struct pci_dev *dev)
8155 {
8156         struct net_device *netdev = pci_get_drvdata(dev);
8157         struct igb_adapter *adapter = netdev_priv(netdev);
8158         struct pci_dev *pdev = adapter->pdev;
8159
8160         rtnl_lock();
8161
8162         if (netif_running(netdev))
8163                 igb_close(netdev);
8164         else
8165                 igb_reset(adapter);
8166
8167         igb_clear_interrupt_scheme(adapter);
8168
8169         igb_init_queue_configuration(adapter);
8170
8171         if (igb_init_interrupt_scheme(adapter, true)) {
8172                 rtnl_unlock();
8173                 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
8174                 return -ENOMEM;
8175         }
8176
8177         if (netif_running(netdev))
8178                 igb_open(netdev);
8179
8180         rtnl_unlock();
8181
8182         return 0;
8183 }
8184
8185 static int igb_pci_disable_sriov(struct pci_dev *dev)
8186 {
8187         int err = igb_disable_sriov(dev);
8188
8189         if (!err)
8190                 err = igb_sriov_reinit(dev);
8191
8192         return err;
8193 }
8194
8195 static int igb_pci_enable_sriov(struct pci_dev *dev, int num_vfs)
8196 {
8197         int err = igb_enable_sriov(dev, num_vfs);
8198
8199         if (err)
8200                 goto out;
8201
8202         err = igb_sriov_reinit(dev);
8203         if (!err)
8204                 return num_vfs;
8205
8206 out:
8207         return err;
8208 }
8209
8210 #endif
8211 static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs)
8212 {
8213 #ifdef CONFIG_PCI_IOV
8214         if (num_vfs == 0)
8215                 return igb_pci_disable_sriov(dev);
8216         else
8217                 return igb_pci_enable_sriov(dev, num_vfs);
8218 #endif
8219         return 0;
8220 }
8221
8222 #ifdef CONFIG_NET_POLL_CONTROLLER
8223 /* Polling 'interrupt' - used by things like netconsole to send skbs
8224  * without having to re-enable interrupts. It's not called while
8225  * the interrupt routine is executing.
8226  */
8227 static void igb_netpoll(struct net_device *netdev)
8228 {
8229         struct igb_adapter *adapter = netdev_priv(netdev);
8230         struct e1000_hw *hw = &adapter->hw;
8231         struct igb_q_vector *q_vector;
8232         int i;
8233
8234         for (i = 0; i < adapter->num_q_vectors; i++) {
8235                 q_vector = adapter->q_vector[i];
8236                 if (adapter->flags & IGB_FLAG_HAS_MSIX)
8237                         wr32(E1000_EIMC, q_vector->eims_value);
8238                 else
8239                         igb_irq_disable(adapter);
8240                 napi_schedule(&q_vector->napi);
8241         }
8242 }
8243 #endif /* CONFIG_NET_POLL_CONTROLLER */
8244
8245 /**
8246  *  igb_io_error_detected - called when PCI error is detected
8247  *  @pdev: Pointer to PCI device
8248  *  @state: The current pci connection state
8249  *
8250  *  This function is called after a PCI bus error affecting
8251  *  this device has been detected.
8252  **/
8253 static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev,
8254                                               pci_channel_state_t state)
8255 {
8256         struct net_device *netdev = pci_get_drvdata(pdev);
8257         struct igb_adapter *adapter = netdev_priv(netdev);
8258
8259         netif_device_detach(netdev);
8260
8261         if (state == pci_channel_io_perm_failure)
8262                 return PCI_ERS_RESULT_DISCONNECT;
8263
8264         if (netif_running(netdev))
8265                 igb_down(adapter);
8266         pci_disable_device(pdev);
8267
8268         /* Request a slot slot reset. */
8269         return PCI_ERS_RESULT_NEED_RESET;
8270 }
8271
8272 /**
8273  *  igb_io_slot_reset - called after the pci bus has been reset.
8274  *  @pdev: Pointer to PCI device
8275  *
8276  *  Restart the card from scratch, as if from a cold-boot. Implementation
8277  *  resembles the first-half of the igb_resume routine.
8278  **/
8279 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev)
8280 {
8281         struct net_device *netdev = pci_get_drvdata(pdev);
8282         struct igb_adapter *adapter = netdev_priv(netdev);
8283         struct e1000_hw *hw = &adapter->hw;
8284         pci_ers_result_t result;
8285         int err;
8286
8287         if (pci_enable_device_mem(pdev)) {
8288                 dev_err(&pdev->dev,
8289                         "Cannot re-enable PCI device after reset.\n");
8290                 result = PCI_ERS_RESULT_DISCONNECT;
8291         } else {
8292                 pci_set_master(pdev);
8293                 pci_restore_state(pdev);
8294                 pci_save_state(pdev);
8295
8296                 pci_enable_wake(pdev, PCI_D3hot, 0);
8297                 pci_enable_wake(pdev, PCI_D3cold, 0);
8298
8299                 /* In case of PCI error, adapter lose its HW address
8300                  * so we should re-assign it here.
8301                  */
8302                 hw->hw_addr = adapter->io_addr;
8303
8304                 igb_reset(adapter);
8305                 wr32(E1000_WUS, ~0);
8306                 result = PCI_ERS_RESULT_RECOVERED;
8307         }
8308
8309         err = pci_cleanup_aer_uncorrect_error_status(pdev);
8310         if (err) {
8311                 dev_err(&pdev->dev,
8312                         "pci_cleanup_aer_uncorrect_error_status failed 0x%0x\n",
8313                         err);
8314                 /* non-fatal, continue */
8315         }
8316
8317         return result;
8318 }
8319
8320 /**
8321  *  igb_io_resume - called when traffic can start flowing again.
8322  *  @pdev: Pointer to PCI device
8323  *
8324  *  This callback is called when the error recovery driver tells us that
8325  *  its OK to resume normal operation. Implementation resembles the
8326  *  second-half of the igb_resume routine.
8327  */
8328 static void igb_io_resume(struct pci_dev *pdev)
8329 {
8330         struct net_device *netdev = pci_get_drvdata(pdev);
8331         struct igb_adapter *adapter = netdev_priv(netdev);
8332
8333         if (netif_running(netdev)) {
8334                 if (igb_up(adapter)) {
8335                         dev_err(&pdev->dev, "igb_up failed after reset\n");
8336                         return;
8337                 }
8338         }
8339
8340         netif_device_attach(netdev);
8341
8342         /* let the f/w know that the h/w is now under the control of the
8343          * driver.
8344          */
8345         igb_get_hw_control(adapter);
8346 }
8347
8348 /**
8349  *  igb_rar_set_index - Sync RAL[index] and RAH[index] registers with MAC table
8350  *  @adapter: Pointer to adapter structure
8351  *  @index: Index of the RAR entry which need to be synced with MAC table
8352  **/
8353 static void igb_rar_set_index(struct igb_adapter *adapter, u32 index)
8354 {
8355         struct e1000_hw *hw = &adapter->hw;
8356         u32 rar_low, rar_high;
8357         u8 *addr = adapter->mac_table[index].addr;
8358
8359         /* HW expects these to be in network order when they are plugged
8360          * into the registers which are little endian.  In order to guarantee
8361          * that ordering we need to do an leXX_to_cpup here in order to be
8362          * ready for the byteswap that occurs with writel
8363          */
8364         rar_low = le32_to_cpup((__le32 *)(addr));
8365         rar_high = le16_to_cpup((__le16 *)(addr + 4));
8366
8367         /* Indicate to hardware the Address is Valid. */
8368         if (adapter->mac_table[index].state & IGB_MAC_STATE_IN_USE) {
8369                 rar_high |= E1000_RAH_AV;
8370
8371                 if (hw->mac.type == e1000_82575)
8372                         rar_high |= E1000_RAH_POOL_1 *
8373                                     adapter->mac_table[index].queue;
8374                 else
8375                         rar_high |= E1000_RAH_POOL_1 <<
8376                                     adapter->mac_table[index].queue;
8377         }
8378
8379         wr32(E1000_RAL(index), rar_low);
8380         wrfl();
8381         wr32(E1000_RAH(index), rar_high);
8382         wrfl();
8383 }
8384
8385 static int igb_set_vf_mac(struct igb_adapter *adapter,
8386                           int vf, unsigned char *mac_addr)
8387 {
8388         struct e1000_hw *hw = &adapter->hw;
8389         /* VF MAC addresses start at end of receive addresses and moves
8390          * towards the first, as a result a collision should not be possible
8391          */
8392         int rar_entry = hw->mac.rar_entry_count - (vf + 1);
8393         unsigned char *vf_mac_addr = adapter->vf_data[vf].vf_mac_addresses;
8394
8395         ether_addr_copy(vf_mac_addr, mac_addr);
8396         ether_addr_copy(adapter->mac_table[rar_entry].addr, mac_addr);
8397         adapter->mac_table[rar_entry].queue = vf;
8398         adapter->mac_table[rar_entry].state |= IGB_MAC_STATE_IN_USE;
8399         igb_rar_set_index(adapter, rar_entry);
8400
8401         return 0;
8402 }
8403
8404 static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac)
8405 {
8406         struct igb_adapter *adapter = netdev_priv(netdev);
8407         if (!is_valid_ether_addr(mac) || (vf >= adapter->vfs_allocated_count))
8408                 return -EINVAL;
8409         adapter->vf_data[vf].flags |= IGB_VF_FLAG_PF_SET_MAC;
8410         dev_info(&adapter->pdev->dev, "setting MAC %pM on VF %d\n", mac, vf);
8411         dev_info(&adapter->pdev->dev,
8412                  "Reload the VF driver to make this change effective.");
8413         if (test_bit(__IGB_DOWN, &adapter->state)) {
8414                 dev_warn(&adapter->pdev->dev,
8415                          "The VF MAC address has been set, but the PF device is not up.\n");
8416                 dev_warn(&adapter->pdev->dev,
8417                          "Bring the PF device up before attempting to use the VF device.\n");
8418         }
8419         return igb_set_vf_mac(adapter, vf, mac);
8420 }
8421
8422 static int igb_link_mbps(int internal_link_speed)
8423 {
8424         switch (internal_link_speed) {
8425         case SPEED_100:
8426                 return 100;
8427         case SPEED_1000:
8428                 return 1000;
8429         default:
8430                 return 0;
8431         }
8432 }
8433
8434 static void igb_set_vf_rate_limit(struct e1000_hw *hw, int vf, int tx_rate,
8435                                   int link_speed)
8436 {
8437         int rf_dec, rf_int;
8438         u32 bcnrc_val;
8439
8440         if (tx_rate != 0) {
8441                 /* Calculate the rate factor values to set */
8442                 rf_int = link_speed / tx_rate;
8443                 rf_dec = (link_speed - (rf_int * tx_rate));
8444                 rf_dec = (rf_dec * BIT(E1000_RTTBCNRC_RF_INT_SHIFT)) /
8445                          tx_rate;
8446
8447                 bcnrc_val = E1000_RTTBCNRC_RS_ENA;
8448                 bcnrc_val |= ((rf_int << E1000_RTTBCNRC_RF_INT_SHIFT) &
8449                               E1000_RTTBCNRC_RF_INT_MASK);
8450                 bcnrc_val |= (rf_dec & E1000_RTTBCNRC_RF_DEC_MASK);
8451         } else {
8452                 bcnrc_val = 0;
8453         }
8454
8455         wr32(E1000_RTTDQSEL, vf); /* vf X uses queue X */
8456         /* Set global transmit compensation time to the MMW_SIZE in RTTBCNRM
8457          * register. MMW_SIZE=0x014 if 9728-byte jumbo is supported.
8458          */
8459         wr32(E1000_RTTBCNRM, 0x14);
8460         wr32(E1000_RTTBCNRC, bcnrc_val);
8461 }
8462
8463 static void igb_check_vf_rate_limit(struct igb_adapter *adapter)
8464 {
8465         int actual_link_speed, i;
8466         bool reset_rate = false;
8467
8468         /* VF TX rate limit was not set or not supported */
8469         if ((adapter->vf_rate_link_speed == 0) ||
8470             (adapter->hw.mac.type != e1000_82576))
8471                 return;
8472
8473         actual_link_speed = igb_link_mbps(adapter->link_speed);
8474         if (actual_link_speed != adapter->vf_rate_link_speed) {
8475                 reset_rate = true;
8476                 adapter->vf_rate_link_speed = 0;
8477                 dev_info(&adapter->pdev->dev,
8478                          "Link speed has been changed. VF Transmit rate is disabled\n");
8479         }
8480
8481         for (i = 0; i < adapter->vfs_allocated_count; i++) {
8482                 if (reset_rate)
8483                         adapter->vf_data[i].tx_rate = 0;
8484
8485                 igb_set_vf_rate_limit(&adapter->hw, i,
8486                                       adapter->vf_data[i].tx_rate,
8487                                       actual_link_speed);
8488         }
8489 }
8490
8491 static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf,
8492                              int min_tx_rate, int max_tx_rate)
8493 {
8494         struct igb_adapter *adapter = netdev_priv(netdev);
8495         struct e1000_hw *hw = &adapter->hw;
8496         int actual_link_speed;
8497
8498         if (hw->mac.type != e1000_82576)
8499                 return -EOPNOTSUPP;
8500
8501         if (min_tx_rate)
8502                 return -EINVAL;
8503
8504         actual_link_speed = igb_link_mbps(adapter->link_speed);
8505         if ((vf >= adapter->vfs_allocated_count) ||
8506             (!(rd32(E1000_STATUS) & E1000_STATUS_LU)) ||
8507             (max_tx_rate < 0) ||
8508             (max_tx_rate > actual_link_speed))
8509                 return -EINVAL;
8510
8511         adapter->vf_rate_link_speed = actual_link_speed;
8512         adapter->vf_data[vf].tx_rate = (u16)max_tx_rate;
8513         igb_set_vf_rate_limit(hw, vf, max_tx_rate, actual_link_speed);
8514
8515         return 0;
8516 }
8517
8518 static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
8519                                    bool setting)
8520 {
8521         struct igb_adapter *adapter = netdev_priv(netdev);
8522         struct e1000_hw *hw = &adapter->hw;
8523         u32 reg_val, reg_offset;
8524
8525         if (!adapter->vfs_allocated_count)
8526                 return -EOPNOTSUPP;
8527
8528         if (vf >= adapter->vfs_allocated_count)
8529                 return -EINVAL;
8530
8531         reg_offset = (hw->mac.type == e1000_82576) ? E1000_DTXSWC : E1000_TXSWC;
8532         reg_val = rd32(reg_offset);
8533         if (setting)
8534                 reg_val |= (BIT(vf) |
8535                             BIT(vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT));
8536         else
8537                 reg_val &= ~(BIT(vf) |
8538                              BIT(vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT));
8539         wr32(reg_offset, reg_val);
8540
8541         adapter->vf_data[vf].spoofchk_enabled = setting;
8542         return 0;
8543 }
8544
8545 static int igb_ndo_get_vf_config(struct net_device *netdev,
8546                                  int vf, struct ifla_vf_info *ivi)
8547 {
8548         struct igb_adapter *adapter = netdev_priv(netdev);
8549         if (vf >= adapter->vfs_allocated_count)
8550                 return -EINVAL;
8551         ivi->vf = vf;
8552         memcpy(&ivi->mac, adapter->vf_data[vf].vf_mac_addresses, ETH_ALEN);
8553         ivi->max_tx_rate = adapter->vf_data[vf].tx_rate;
8554         ivi->min_tx_rate = 0;
8555         ivi->vlan = adapter->vf_data[vf].pf_vlan;
8556         ivi->qos = adapter->vf_data[vf].pf_qos;
8557         ivi->spoofchk = adapter->vf_data[vf].spoofchk_enabled;
8558         return 0;
8559 }
8560
8561 static void igb_vmm_control(struct igb_adapter *adapter)
8562 {
8563         struct e1000_hw *hw = &adapter->hw;
8564         u32 reg;
8565
8566         switch (hw->mac.type) {
8567         case e1000_82575:
8568         case e1000_i210:
8569         case e1000_i211:
8570         case e1000_i354:
8571         default:
8572                 /* replication is not supported for 82575 */
8573                 return;
8574         case e1000_82576:
8575                 /* notify HW that the MAC is adding vlan tags */
8576                 reg = rd32(E1000_DTXCTL);
8577                 reg |= E1000_DTXCTL_VLAN_ADDED;
8578                 wr32(E1000_DTXCTL, reg);
8579                 /* Fall through */
8580         case e1000_82580:
8581                 /* enable replication vlan tag stripping */
8582                 reg = rd32(E1000_RPLOLR);
8583                 reg |= E1000_RPLOLR_STRVLAN;
8584                 wr32(E1000_RPLOLR, reg);
8585                 /* Fall through */
8586         case e1000_i350:
8587                 /* none of the above registers are supported by i350 */
8588                 break;
8589         }
8590
8591         if (adapter->vfs_allocated_count) {
8592                 igb_vmdq_set_loopback_pf(hw, true);
8593                 igb_vmdq_set_replication_pf(hw, true);
8594                 igb_vmdq_set_anti_spoofing_pf(hw, true,
8595                                               adapter->vfs_allocated_count);
8596         } else {
8597                 igb_vmdq_set_loopback_pf(hw, false);
8598                 igb_vmdq_set_replication_pf(hw, false);
8599         }
8600 }
8601
8602 static void igb_init_dmac(struct igb_adapter *adapter, u32 pba)
8603 {
8604         struct e1000_hw *hw = &adapter->hw;
8605         u32 dmac_thr;
8606         u16 hwm;
8607
8608         if (hw->mac.type > e1000_82580) {
8609                 if (adapter->flags & IGB_FLAG_DMAC) {
8610                         u32 reg;
8611
8612                         /* force threshold to 0. */
8613                         wr32(E1000_DMCTXTH, 0);
8614
8615                         /* DMA Coalescing high water mark needs to be greater
8616                          * than the Rx threshold. Set hwm to PBA - max frame
8617                          * size in 16B units, capping it at PBA - 6KB.
8618                          */
8619                         hwm = 64 * (pba - 6);
8620                         reg = rd32(E1000_FCRTC);
8621                         reg &= ~E1000_FCRTC_RTH_COAL_MASK;
8622                         reg |= ((hwm << E1000_FCRTC_RTH_COAL_SHIFT)
8623                                 & E1000_FCRTC_RTH_COAL_MASK);
8624                         wr32(E1000_FCRTC, reg);
8625
8626                         /* Set the DMA Coalescing Rx threshold to PBA - 2 * max
8627                          * frame size, capping it at PBA - 10KB.
8628                          */
8629                         dmac_thr = pba - 10;
8630                         reg = rd32(E1000_DMACR);
8631                         reg &= ~E1000_DMACR_DMACTHR_MASK;
8632                         reg |= ((dmac_thr << E1000_DMACR_DMACTHR_SHIFT)
8633                                 & E1000_DMACR_DMACTHR_MASK);
8634
8635                         /* transition to L0x or L1 if available..*/
8636                         reg |= (E1000_DMACR_DMAC_EN | E1000_DMACR_DMAC_LX_MASK);
8637
8638                         /* watchdog timer= +-1000 usec in 32usec intervals */
8639                         reg |= (1000 >> 5);
8640
8641                         /* Disable BMC-to-OS Watchdog Enable */
8642                         if (hw->mac.type != e1000_i354)
8643                                 reg &= ~E1000_DMACR_DC_BMC2OSW_EN;
8644
8645                         wr32(E1000_DMACR, reg);
8646
8647                         /* no lower threshold to disable
8648                          * coalescing(smart fifb)-UTRESH=0
8649                          */
8650                         wr32(E1000_DMCRTRH, 0);
8651
8652                         reg = (IGB_DMCTLX_DCFLUSH_DIS | 0x4);
8653
8654                         wr32(E1000_DMCTLX, reg);
8655
8656                         /* free space in tx packet buffer to wake from
8657                          * DMA coal
8658                          */
8659                         wr32(E1000_DMCTXTH, (IGB_MIN_TXPBSIZE -
8660                              (IGB_TX_BUF_4096 + adapter->max_frame_size)) >> 6);
8661
8662                         /* make low power state decision controlled
8663                          * by DMA coal
8664                          */
8665                         reg = rd32(E1000_PCIEMISC);
8666                         reg &= ~E1000_PCIEMISC_LX_DECISION;
8667                         wr32(E1000_PCIEMISC, reg);
8668                 } /* endif adapter->dmac is not disabled */
8669         } else if (hw->mac.type == e1000_82580) {
8670                 u32 reg = rd32(E1000_PCIEMISC);
8671
8672                 wr32(E1000_PCIEMISC, reg & ~E1000_PCIEMISC_LX_DECISION);
8673                 wr32(E1000_DMACR, 0);
8674         }
8675 }
8676
8677 /**
8678  *  igb_read_i2c_byte - Reads 8 bit word over I2C
8679  *  @hw: pointer to hardware structure
8680  *  @byte_offset: byte offset to read
8681  *  @dev_addr: device address
8682  *  @data: value read
8683  *
8684  *  Performs byte read operation over I2C interface at
8685  *  a specified device address.
8686  **/
8687 s32 igb_read_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
8688                       u8 dev_addr, u8 *data)
8689 {
8690         struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
8691         struct i2c_client *this_client = adapter->i2c_client;
8692         s32 status;
8693         u16 swfw_mask = 0;
8694
8695         if (!this_client)
8696                 return E1000_ERR_I2C;
8697
8698         swfw_mask = E1000_SWFW_PHY0_SM;
8699
8700         if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask))
8701                 return E1000_ERR_SWFW_SYNC;
8702
8703         status = i2c_smbus_read_byte_data(this_client, byte_offset);
8704         hw->mac.ops.release_swfw_sync(hw, swfw_mask);
8705
8706         if (status < 0)
8707                 return E1000_ERR_I2C;
8708         else {
8709                 *data = status;
8710                 return 0;
8711         }
8712 }
8713
8714 /**
8715  *  igb_write_i2c_byte - Writes 8 bit word over I2C
8716  *  @hw: pointer to hardware structure
8717  *  @byte_offset: byte offset to write
8718  *  @dev_addr: device address
8719  *  @data: value to write
8720  *
8721  *  Performs byte write operation over I2C interface at
8722  *  a specified device address.
8723  **/
8724 s32 igb_write_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
8725                        u8 dev_addr, u8 data)
8726 {
8727         struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
8728         struct i2c_client *this_client = adapter->i2c_client;
8729         s32 status;
8730         u16 swfw_mask = E1000_SWFW_PHY0_SM;
8731
8732         if (!this_client)
8733                 return E1000_ERR_I2C;
8734
8735         if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask))
8736                 return E1000_ERR_SWFW_SYNC;
8737         status = i2c_smbus_write_byte_data(this_client, byte_offset, data);
8738         hw->mac.ops.release_swfw_sync(hw, swfw_mask);
8739
8740         if (status)
8741                 return E1000_ERR_I2C;
8742         else
8743                 return 0;
8744
8745 }
8746
8747 int igb_reinit_queues(struct igb_adapter *adapter)
8748 {
8749         struct net_device *netdev = adapter->netdev;
8750         struct pci_dev *pdev = adapter->pdev;
8751         int err = 0;
8752
8753         if (netif_running(netdev))
8754                 igb_close(netdev);
8755
8756         igb_reset_interrupt_capability(adapter);
8757
8758         if (igb_init_interrupt_scheme(adapter, true)) {
8759                 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
8760                 return -ENOMEM;
8761         }
8762
8763         if (netif_running(netdev))
8764                 err = igb_open(netdev);
8765
8766         return err;
8767 }
8768
8769 static void igb_nfc_filter_exit(struct igb_adapter *adapter)
8770 {
8771         struct igb_nfc_filter *rule;
8772
8773         spin_lock(&adapter->nfc_lock);
8774
8775         hlist_for_each_entry(rule, &adapter->nfc_filter_list, nfc_node)
8776                 igb_erase_filter(adapter, rule);
8777
8778         spin_unlock(&adapter->nfc_lock);
8779 }
8780
8781 static void igb_nfc_filter_restore(struct igb_adapter *adapter)
8782 {
8783         struct igb_nfc_filter *rule;
8784
8785         spin_lock(&adapter->nfc_lock);
8786
8787         hlist_for_each_entry(rule, &adapter->nfc_filter_list, nfc_node)
8788                 igb_add_filter(adapter, rule);
8789
8790         spin_unlock(&adapter->nfc_lock);
8791 }
8792 /* igb_main.c */