Linux-libre 3.6.3-gnu1
[librecmc/linux-libre.git] / drivers / net / ethernet / intel / e1000e / ich8lan.c
1 /*******************************************************************************
2
3   Intel PRO/1000 Linux driver
4   Copyright(c) 1999 - 2012 Intel Corporation.
5
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21
22   Contact Information:
23   Linux NICS <linux.nics@intel.com>
24   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27 *******************************************************************************/
28
29 /*
30  * 82562G 10/100 Network Connection
31  * 82562G-2 10/100 Network Connection
32  * 82562GT 10/100 Network Connection
33  * 82562GT-2 10/100 Network Connection
34  * 82562V 10/100 Network Connection
35  * 82562V-2 10/100 Network Connection
36  * 82566DC-2 Gigabit Network Connection
37  * 82566DC Gigabit Network Connection
38  * 82566DM-2 Gigabit Network Connection
39  * 82566DM Gigabit Network Connection
40  * 82566MC Gigabit Network Connection
41  * 82566MM Gigabit Network Connection
42  * 82567LM Gigabit Network Connection
43  * 82567LF Gigabit Network Connection
44  * 82567V Gigabit Network Connection
45  * 82567LM-2 Gigabit Network Connection
46  * 82567LF-2 Gigabit Network Connection
47  * 82567V-2 Gigabit Network Connection
48  * 82567LF-3 Gigabit Network Connection
49  * 82567LM-3 Gigabit Network Connection
50  * 82567LM-4 Gigabit Network Connection
51  * 82577LM Gigabit Network Connection
52  * 82577LC Gigabit Network Connection
53  * 82578DM Gigabit Network Connection
54  * 82578DC Gigabit Network Connection
55  * 82579LM Gigabit Network Connection
56  * 82579V Gigabit Network Connection
57  */
58
59 #include "e1000.h"
60
61 #define ICH_FLASH_GFPREG                0x0000
62 #define ICH_FLASH_HSFSTS                0x0004
63 #define ICH_FLASH_HSFCTL                0x0006
64 #define ICH_FLASH_FADDR                 0x0008
65 #define ICH_FLASH_FDATA0                0x0010
66 #define ICH_FLASH_PR0                   0x0074
67
68 #define ICH_FLASH_READ_COMMAND_TIMEOUT  500
69 #define ICH_FLASH_WRITE_COMMAND_TIMEOUT 500
70 #define ICH_FLASH_ERASE_COMMAND_TIMEOUT 3000000
71 #define ICH_FLASH_LINEAR_ADDR_MASK      0x00FFFFFF
72 #define ICH_FLASH_CYCLE_REPEAT_COUNT    10
73
74 #define ICH_CYCLE_READ                  0
75 #define ICH_CYCLE_WRITE                 2
76 #define ICH_CYCLE_ERASE                 3
77
78 #define FLASH_GFPREG_BASE_MASK          0x1FFF
79 #define FLASH_SECTOR_ADDR_SHIFT         12
80
81 #define ICH_FLASH_SEG_SIZE_256          256
82 #define ICH_FLASH_SEG_SIZE_4K           4096
83 #define ICH_FLASH_SEG_SIZE_8K           8192
84 #define ICH_FLASH_SEG_SIZE_64K          65536
85
86
87 #define E1000_ICH_FWSM_RSPCIPHY 0x00000040 /* Reset PHY on PCI Reset */
88 /* FW established a valid mode */
89 #define E1000_ICH_FWSM_FW_VALID         0x00008000
90
91 #define E1000_ICH_MNG_IAMT_MODE         0x2
92
93 #define ID_LED_DEFAULT_ICH8LAN  ((ID_LED_DEF1_DEF2 << 12) | \
94                                  (ID_LED_DEF1_OFF2 <<  8) | \
95                                  (ID_LED_DEF1_ON2  <<  4) | \
96                                  (ID_LED_DEF1_DEF2))
97
98 #define E1000_ICH_NVM_SIG_WORD          0x13
99 #define E1000_ICH_NVM_SIG_MASK          0xC000
100 #define E1000_ICH_NVM_VALID_SIG_MASK    0xC0
101 #define E1000_ICH_NVM_SIG_VALUE         0x80
102
103 #define E1000_ICH8_LAN_INIT_TIMEOUT     1500
104
105 #define E1000_FEXTNVM_SW_CONFIG         1
106 #define E1000_FEXTNVM_SW_CONFIG_ICH8M (1 << 27) /* Bit redefined for ICH8M :/ */
107
108 #define E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK    0x0C000000
109 #define E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC  0x08000000
110
111 #define E1000_FEXTNVM4_BEACON_DURATION_MASK    0x7
112 #define E1000_FEXTNVM4_BEACON_DURATION_8USEC   0x7
113 #define E1000_FEXTNVM4_BEACON_DURATION_16USEC  0x3
114
115 #define PCIE_ICH8_SNOOP_ALL             PCIE_NO_SNOOP_ALL
116
117 #define E1000_ICH_RAR_ENTRIES           7
118 #define E1000_PCH2_RAR_ENTRIES          5 /* RAR[0], SHRA[0-3] */
119 #define E1000_PCH_LPT_RAR_ENTRIES       12 /* RAR[0], SHRA[0-10] */
120
121 #define PHY_PAGE_SHIFT 5
122 #define PHY_REG(page, reg) (((page) << PHY_PAGE_SHIFT) | \
123                            ((reg) & MAX_PHY_REG_ADDRESS))
124 #define IGP3_KMRN_DIAG  PHY_REG(770, 19) /* KMRN Diagnostic */
125 #define IGP3_VR_CTRL    PHY_REG(776, 18) /* Voltage Regulator Control */
126
127 #define IGP3_KMRN_DIAG_PCS_LOCK_LOSS    0x0002
128 #define IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK 0x0300
129 #define IGP3_VR_CTRL_MODE_SHUTDOWN      0x0200
130
131 #define HV_LED_CONFIG           PHY_REG(768, 30) /* LED Configuration */
132
133 #define SW_FLAG_TIMEOUT    1000 /* SW Semaphore flag timeout in milliseconds */
134
135 /* SMBus Control Phy Register */
136 #define CV_SMB_CTRL             PHY_REG(769, 23)
137 #define CV_SMB_CTRL_FORCE_SMBUS 0x0001
138
139 /* SMBus Address Phy Register */
140 #define HV_SMB_ADDR            PHY_REG(768, 26)
141 #define HV_SMB_ADDR_MASK       0x007F
142 #define HV_SMB_ADDR_PEC_EN     0x0200
143 #define HV_SMB_ADDR_VALID      0x0080
144 #define HV_SMB_ADDR_FREQ_MASK           0x1100
145 #define HV_SMB_ADDR_FREQ_LOW_SHIFT      8
146 #define HV_SMB_ADDR_FREQ_HIGH_SHIFT     12
147
148 /* PHY Power Management Control */
149 #define HV_PM_CTRL              PHY_REG(770, 17)
150 #define HV_PM_CTRL_PLL_STOP_IN_K1_GIGA  0x100
151
152 /* PHY Low Power Idle Control */
153 #define I82579_LPI_CTRL                         PHY_REG(772, 20)
154 #define I82579_LPI_CTRL_ENABLE_MASK             0x6000
155 #define I82579_LPI_CTRL_FORCE_PLL_LOCK_COUNT    0x80
156
157 /* EMI Registers */
158 #define I82579_EMI_ADDR         0x10
159 #define I82579_EMI_DATA         0x11
160 #define I82579_LPI_UPDATE_TIMER 0x4805  /* in 40ns units + 40 ns base value */
161 #define I82579_MSE_THRESHOLD    0x084F  /* Mean Square Error Threshold */
162 #define I82579_MSE_LINK_DOWN    0x2411  /* MSE count before dropping link */
163 #define I217_EEE_ADVERTISEMENT  0x8001  /* IEEE MMD Register 7.60 */
164 #define I217_EEE_LP_ABILITY     0x8002  /* IEEE MMD Register 7.61 */
165 #define I217_EEE_100_SUPPORTED  (1 << 1)        /* 100BaseTx EEE supported */
166
167 /* Intel Rapid Start Technology Support */
168 #define I217_PROXY_CTRL                 BM_PHY_REG(BM_WUC_PAGE, 70)
169 #define I217_PROXY_CTRL_AUTO_DISABLE    0x0080
170 #define I217_SxCTRL                     PHY_REG(BM_PORT_CTRL_PAGE, 28)
171 #define I217_SxCTRL_ENABLE_LPI_RESET    0x1000
172 #define I217_CGFREG                     PHY_REG(772, 29)
173 #define I217_CGFREG_ENABLE_MTA_RESET    0x0002
174 #define I217_MEMPWR                     PHY_REG(772, 26)
175 #define I217_MEMPWR_DISABLE_SMB_RELEASE 0x0010
176
177 /* Strapping Option Register - RO */
178 #define E1000_STRAP                     0x0000C
179 #define E1000_STRAP_SMBUS_ADDRESS_MASK  0x00FE0000
180 #define E1000_STRAP_SMBUS_ADDRESS_SHIFT 17
181 #define E1000_STRAP_SMT_FREQ_MASK       0x00003000
182 #define E1000_STRAP_SMT_FREQ_SHIFT      12
183
184 /* OEM Bits Phy Register */
185 #define HV_OEM_BITS            PHY_REG(768, 25)
186 #define HV_OEM_BITS_LPLU       0x0004 /* Low Power Link Up */
187 #define HV_OEM_BITS_GBE_DIS    0x0040 /* Gigabit Disable */
188 #define HV_OEM_BITS_RESTART_AN 0x0400 /* Restart Auto-negotiation */
189
190 #define E1000_NVM_K1_CONFIG 0x1B /* NVM K1 Config Word */
191 #define E1000_NVM_K1_ENABLE 0x1  /* NVM Enable K1 bit */
192
193 /* KMRN Mode Control */
194 #define HV_KMRN_MODE_CTRL      PHY_REG(769, 16)
195 #define HV_KMRN_MDIO_SLOW      0x0400
196
197 /* KMRN FIFO Control and Status */
198 #define HV_KMRN_FIFO_CTRLSTA                  PHY_REG(770, 16)
199 #define HV_KMRN_FIFO_CTRLSTA_PREAMBLE_MASK    0x7000
200 #define HV_KMRN_FIFO_CTRLSTA_PREAMBLE_SHIFT   12
201
202 /* ICH GbE Flash Hardware Sequencing Flash Status Register bit breakdown */
203 /* Offset 04h HSFSTS */
204 union ich8_hws_flash_status {
205         struct ich8_hsfsts {
206                 u16 flcdone    :1; /* bit 0 Flash Cycle Done */
207                 u16 flcerr     :1; /* bit 1 Flash Cycle Error */
208                 u16 dael       :1; /* bit 2 Direct Access error Log */
209                 u16 berasesz   :2; /* bit 4:3 Sector Erase Size */
210                 u16 flcinprog  :1; /* bit 5 flash cycle in Progress */
211                 u16 reserved1  :2; /* bit 13:6 Reserved */
212                 u16 reserved2  :6; /* bit 13:6 Reserved */
213                 u16 fldesvalid :1; /* bit 14 Flash Descriptor Valid */
214                 u16 flockdn    :1; /* bit 15 Flash Config Lock-Down */
215         } hsf_status;
216         u16 regval;
217 };
218
219 /* ICH GbE Flash Hardware Sequencing Flash control Register bit breakdown */
220 /* Offset 06h FLCTL */
221 union ich8_hws_flash_ctrl {
222         struct ich8_hsflctl {
223                 u16 flcgo      :1;   /* 0 Flash Cycle Go */
224                 u16 flcycle    :2;   /* 2:1 Flash Cycle */
225                 u16 reserved   :5;   /* 7:3 Reserved  */
226                 u16 fldbcount  :2;   /* 9:8 Flash Data Byte Count */
227                 u16 flockdn    :6;   /* 15:10 Reserved */
228         } hsf_ctrl;
229         u16 regval;
230 };
231
232 /* ICH Flash Region Access Permissions */
233 union ich8_hws_flash_regacc {
234         struct ich8_flracc {
235                 u32 grra      :8; /* 0:7 GbE region Read Access */
236                 u32 grwa      :8; /* 8:15 GbE region Write Access */
237                 u32 gmrag     :8; /* 23:16 GbE Master Read Access Grant */
238                 u32 gmwag     :8; /* 31:24 GbE Master Write Access Grant */
239         } hsf_flregacc;
240         u16 regval;
241 };
242
243 /* ICH Flash Protected Region */
244 union ich8_flash_protected_range {
245         struct ich8_pr {
246                 u32 base:13;     /* 0:12 Protected Range Base */
247                 u32 reserved1:2; /* 13:14 Reserved */
248                 u32 rpe:1;       /* 15 Read Protection Enable */
249                 u32 limit:13;    /* 16:28 Protected Range Limit */
250                 u32 reserved2:2; /* 29:30 Reserved */
251                 u32 wpe:1;       /* 31 Write Protection Enable */
252         } range;
253         u32 regval;
254 };
255
256 static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw);
257 static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw);
258 static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw);
259 static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank);
260 static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
261                                                 u32 offset, u8 byte);
262 static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
263                                          u8 *data);
264 static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
265                                          u16 *data);
266 static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
267                                          u8 size, u16 *data);
268 static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw);
269 static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw);
270 static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw);
271 static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw);
272 static s32 e1000_led_on_ich8lan(struct e1000_hw *hw);
273 static s32 e1000_led_off_ich8lan(struct e1000_hw *hw);
274 static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw);
275 static s32 e1000_setup_led_pchlan(struct e1000_hw *hw);
276 static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw);
277 static s32 e1000_led_on_pchlan(struct e1000_hw *hw);
278 static s32 e1000_led_off_pchlan(struct e1000_hw *hw);
279 static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active);
280 static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw);
281 static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw);
282 static s32  e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link);
283 static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw);
284 static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw);
285 static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw);
286 static void e1000_rar_set_pch2lan(struct e1000_hw *hw, u8 *addr, u32 index);
287 static void e1000_rar_set_pch_lpt(struct e1000_hw *hw, u8 *addr, u32 index);
288 static s32 e1000_k1_workaround_lv(struct e1000_hw *hw);
289 static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate);
290
291 static inline u16 __er16flash(struct e1000_hw *hw, unsigned long reg)
292 {
293         return readw(hw->flash_address + reg);
294 }
295
296 static inline u32 __er32flash(struct e1000_hw *hw, unsigned long reg)
297 {
298         return readl(hw->flash_address + reg);
299 }
300
301 static inline void __ew16flash(struct e1000_hw *hw, unsigned long reg, u16 val)
302 {
303         writew(val, hw->flash_address + reg);
304 }
305
306 static inline void __ew32flash(struct e1000_hw *hw, unsigned long reg, u32 val)
307 {
308         writel(val, hw->flash_address + reg);
309 }
310
311 #define er16flash(reg)          __er16flash(hw, (reg))
312 #define er32flash(reg)          __er32flash(hw, (reg))
313 #define ew16flash(reg, val)     __ew16flash(hw, (reg), (val))
314 #define ew32flash(reg, val)     __ew32flash(hw, (reg), (val))
315
316 /**
317  *  e1000_phy_is_accessible_pchlan - Check if able to access PHY registers
318  *  @hw: pointer to the HW structure
319  *
320  *  Test access to the PHY registers by reading the PHY ID registers.  If
321  *  the PHY ID is already known (e.g. resume path) compare it with known ID,
322  *  otherwise assume the read PHY ID is correct if it is valid.
323  *
324  *  Assumes the sw/fw/hw semaphore is already acquired.
325  **/
326 static bool e1000_phy_is_accessible_pchlan(struct e1000_hw *hw)
327 {
328         u16 phy_reg = 0;
329         u32 phy_id = 0;
330         s32 ret_val;
331         u16 retry_count;
332
333         for (retry_count = 0; retry_count < 2; retry_count++) {
334                 ret_val = e1e_rphy_locked(hw, PHY_ID1, &phy_reg);
335                 if (ret_val || (phy_reg == 0xFFFF))
336                         continue;
337                 phy_id = (u32)(phy_reg << 16);
338
339                 ret_val = e1e_rphy_locked(hw, PHY_ID2, &phy_reg);
340                 if (ret_val || (phy_reg == 0xFFFF)) {
341                         phy_id = 0;
342                         continue;
343                 }
344                 phy_id |= (u32)(phy_reg & PHY_REVISION_MASK);
345                 break;
346         }
347
348         if (hw->phy.id) {
349                 if (hw->phy.id == phy_id)
350                         return true;
351         } else if (phy_id) {
352                 hw->phy.id = phy_id;
353                 hw->phy.revision = (u32)(phy_reg & ~PHY_REVISION_MASK);
354                 return true;
355         }
356
357         /*
358          * In case the PHY needs to be in mdio slow mode,
359          * set slow mode and try to get the PHY id again.
360          */
361         hw->phy.ops.release(hw);
362         ret_val = e1000_set_mdio_slow_mode_hv(hw);
363         if (!ret_val)
364                 ret_val = e1000e_get_phy_id(hw);
365         hw->phy.ops.acquire(hw);
366
367         return !ret_val;
368 }
369
370 /**
371  *  e1000_init_phy_workarounds_pchlan - PHY initialization workarounds
372  *  @hw: pointer to the HW structure
373  *
374  *  Workarounds/flow necessary for PHY initialization during driver load
375  *  and resume paths.
376  **/
377 static s32 e1000_init_phy_workarounds_pchlan(struct e1000_hw *hw)
378 {
379         u32 mac_reg, fwsm = er32(FWSM);
380         s32 ret_val;
381         u16 phy_reg;
382
383         ret_val = hw->phy.ops.acquire(hw);
384         if (ret_val) {
385                 e_dbg("Failed to initialize PHY flow\n");
386                 return ret_val;
387         }
388
389         /*
390          * The MAC-PHY interconnect may be in SMBus mode.  If the PHY is
391          * inaccessible and resetting the PHY is not blocked, toggle the
392          * LANPHYPC Value bit to force the interconnect to PCIe mode.
393          */
394         switch (hw->mac.type) {
395         case e1000_pch_lpt:
396                 if (e1000_phy_is_accessible_pchlan(hw))
397                         break;
398
399                 /*
400                  * Before toggling LANPHYPC, see if PHY is accessible by
401                  * forcing MAC to SMBus mode first.
402                  */
403                 mac_reg = er32(CTRL_EXT);
404                 mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
405                 ew32(CTRL_EXT, mac_reg);
406
407                 /* fall-through */
408         case e1000_pch2lan:
409                 /*
410                  * Gate automatic PHY configuration by hardware on
411                  * non-managed 82579
412                  */
413                 if ((hw->mac.type == e1000_pch2lan) &&
414                     !(fwsm & E1000_ICH_FWSM_FW_VALID))
415                         e1000_gate_hw_phy_config_ich8lan(hw, true);
416
417                 if (e1000_phy_is_accessible_pchlan(hw)) {
418                         if (hw->mac.type == e1000_pch_lpt) {
419                                 /* Unforce SMBus mode in PHY */
420                                 e1e_rphy_locked(hw, CV_SMB_CTRL, &phy_reg);
421                                 phy_reg &= ~CV_SMB_CTRL_FORCE_SMBUS;
422                                 e1e_wphy_locked(hw, CV_SMB_CTRL, phy_reg);
423
424                                 /* Unforce SMBus mode in MAC */
425                                 mac_reg = er32(CTRL_EXT);
426                                 mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
427                                 ew32(CTRL_EXT, mac_reg);
428                         }
429                         break;
430                 }
431
432                 /* fall-through */
433         case e1000_pchlan:
434                 if ((hw->mac.type == e1000_pchlan) &&
435                     (fwsm & E1000_ICH_FWSM_FW_VALID))
436                         break;
437
438                 if (hw->phy.ops.check_reset_block(hw)) {
439                         e_dbg("Required LANPHYPC toggle blocked by ME\n");
440                         break;
441                 }
442
443                 e_dbg("Toggling LANPHYPC\n");
444
445                 /* Set Phy Config Counter to 50msec */
446                 mac_reg = er32(FEXTNVM3);
447                 mac_reg &= ~E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK;
448                 mac_reg |= E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC;
449                 ew32(FEXTNVM3, mac_reg);
450
451                 /* Toggle LANPHYPC Value bit */
452                 mac_reg = er32(CTRL);
453                 mac_reg |= E1000_CTRL_LANPHYPC_OVERRIDE;
454                 mac_reg &= ~E1000_CTRL_LANPHYPC_VALUE;
455                 ew32(CTRL, mac_reg);
456                 e1e_flush();
457                 udelay(10);
458                 mac_reg &= ~E1000_CTRL_LANPHYPC_OVERRIDE;
459                 ew32(CTRL, mac_reg);
460                 e1e_flush();
461                 if (hw->mac.type < e1000_pch_lpt) {
462                         msleep(50);
463                 } else {
464                         u16 count = 20;
465                         do {
466                                 usleep_range(5000, 10000);
467                         } while (!(er32(CTRL_EXT) &
468                                    E1000_CTRL_EXT_LPCD) && count--);
469                 }
470                 break;
471         default:
472                 break;
473         }
474
475         hw->phy.ops.release(hw);
476
477         /*
478          * Reset the PHY before any access to it.  Doing so, ensures
479          * that the PHY is in a known good state before we read/write
480          * PHY registers.  The generic reset is sufficient here,
481          * because we haven't determined the PHY type yet.
482          */
483         ret_val = e1000e_phy_hw_reset_generic(hw);
484
485         /* Ungate automatic PHY configuration on non-managed 82579 */
486         if ((hw->mac.type == e1000_pch2lan) &&
487             !(fwsm & E1000_ICH_FWSM_FW_VALID)) {
488                 usleep_range(10000, 20000);
489                 e1000_gate_hw_phy_config_ich8lan(hw, false);
490         }
491
492         return ret_val;
493 }
494
495 /**
496  *  e1000_init_phy_params_pchlan - Initialize PHY function pointers
497  *  @hw: pointer to the HW structure
498  *
499  *  Initialize family-specific PHY parameters and function pointers.
500  **/
501 static s32 e1000_init_phy_params_pchlan(struct e1000_hw *hw)
502 {
503         struct e1000_phy_info *phy = &hw->phy;
504         s32 ret_val = 0;
505
506         phy->addr                     = 1;
507         phy->reset_delay_us           = 100;
508
509         phy->ops.set_page             = e1000_set_page_igp;
510         phy->ops.read_reg             = e1000_read_phy_reg_hv;
511         phy->ops.read_reg_locked      = e1000_read_phy_reg_hv_locked;
512         phy->ops.read_reg_page        = e1000_read_phy_reg_page_hv;
513         phy->ops.set_d0_lplu_state    = e1000_set_lplu_state_pchlan;
514         phy->ops.set_d3_lplu_state    = e1000_set_lplu_state_pchlan;
515         phy->ops.write_reg            = e1000_write_phy_reg_hv;
516         phy->ops.write_reg_locked     = e1000_write_phy_reg_hv_locked;
517         phy->ops.write_reg_page       = e1000_write_phy_reg_page_hv;
518         phy->ops.power_up             = e1000_power_up_phy_copper;
519         phy->ops.power_down           = e1000_power_down_phy_copper_ich8lan;
520         phy->autoneg_mask             = AUTONEG_ADVERTISE_SPEED_DEFAULT;
521
522         phy->id = e1000_phy_unknown;
523
524         ret_val = e1000_init_phy_workarounds_pchlan(hw);
525         if (ret_val)
526                 return ret_val;
527
528         if (phy->id == e1000_phy_unknown)
529                 switch (hw->mac.type) {
530                 default:
531                         ret_val = e1000e_get_phy_id(hw);
532                         if (ret_val)
533                                 return ret_val;
534                         if ((phy->id != 0) && (phy->id != PHY_REVISION_MASK))
535                                 break;
536                         /* fall-through */
537                 case e1000_pch2lan:
538                 case e1000_pch_lpt:
539                         /*
540                          * In case the PHY needs to be in mdio slow mode,
541                          * set slow mode and try to get the PHY id again.
542                          */
543                         ret_val = e1000_set_mdio_slow_mode_hv(hw);
544                         if (ret_val)
545                                 return ret_val;
546                         ret_val = e1000e_get_phy_id(hw);
547                         if (ret_val)
548                                 return ret_val;
549                         break;
550                 }
551         phy->type = e1000e_get_phy_type_from_id(phy->id);
552
553         switch (phy->type) {
554         case e1000_phy_82577:
555         case e1000_phy_82579:
556         case e1000_phy_i217:
557                 phy->ops.check_polarity = e1000_check_polarity_82577;
558                 phy->ops.force_speed_duplex =
559                     e1000_phy_force_speed_duplex_82577;
560                 phy->ops.get_cable_length = e1000_get_cable_length_82577;
561                 phy->ops.get_info = e1000_get_phy_info_82577;
562                 phy->ops.commit = e1000e_phy_sw_reset;
563                 break;
564         case e1000_phy_82578:
565                 phy->ops.check_polarity = e1000_check_polarity_m88;
566                 phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88;
567                 phy->ops.get_cable_length = e1000e_get_cable_length_m88;
568                 phy->ops.get_info = e1000e_get_phy_info_m88;
569                 break;
570         default:
571                 ret_val = -E1000_ERR_PHY;
572                 break;
573         }
574
575         return ret_val;
576 }
577
578 /**
579  *  e1000_init_phy_params_ich8lan - Initialize PHY function pointers
580  *  @hw: pointer to the HW structure
581  *
582  *  Initialize family-specific PHY parameters and function pointers.
583  **/
584 static s32 e1000_init_phy_params_ich8lan(struct e1000_hw *hw)
585 {
586         struct e1000_phy_info *phy = &hw->phy;
587         s32 ret_val;
588         u16 i = 0;
589
590         phy->addr                       = 1;
591         phy->reset_delay_us             = 100;
592
593         phy->ops.power_up               = e1000_power_up_phy_copper;
594         phy->ops.power_down             = e1000_power_down_phy_copper_ich8lan;
595
596         /*
597          * We may need to do this twice - once for IGP and if that fails,
598          * we'll set BM func pointers and try again
599          */
600         ret_val = e1000e_determine_phy_address(hw);
601         if (ret_val) {
602                 phy->ops.write_reg = e1000e_write_phy_reg_bm;
603                 phy->ops.read_reg  = e1000e_read_phy_reg_bm;
604                 ret_val = e1000e_determine_phy_address(hw);
605                 if (ret_val) {
606                         e_dbg("Cannot determine PHY addr. Erroring out\n");
607                         return ret_val;
608                 }
609         }
610
611         phy->id = 0;
612         while ((e1000_phy_unknown == e1000e_get_phy_type_from_id(phy->id)) &&
613                (i++ < 100)) {
614                 usleep_range(1000, 2000);
615                 ret_val = e1000e_get_phy_id(hw);
616                 if (ret_val)
617                         return ret_val;
618         }
619
620         /* Verify phy id */
621         switch (phy->id) {
622         case IGP03E1000_E_PHY_ID:
623                 phy->type = e1000_phy_igp_3;
624                 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
625                 phy->ops.read_reg_locked = e1000e_read_phy_reg_igp_locked;
626                 phy->ops.write_reg_locked = e1000e_write_phy_reg_igp_locked;
627                 phy->ops.get_info = e1000e_get_phy_info_igp;
628                 phy->ops.check_polarity = e1000_check_polarity_igp;
629                 phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_igp;
630                 break;
631         case IFE_E_PHY_ID:
632         case IFE_PLUS_E_PHY_ID:
633         case IFE_C_E_PHY_ID:
634                 phy->type = e1000_phy_ife;
635                 phy->autoneg_mask = E1000_ALL_NOT_GIG;
636                 phy->ops.get_info = e1000_get_phy_info_ife;
637                 phy->ops.check_polarity = e1000_check_polarity_ife;
638                 phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_ife;
639                 break;
640         case BME1000_E_PHY_ID:
641                 phy->type = e1000_phy_bm;
642                 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
643                 phy->ops.read_reg = e1000e_read_phy_reg_bm;
644                 phy->ops.write_reg = e1000e_write_phy_reg_bm;
645                 phy->ops.commit = e1000e_phy_sw_reset;
646                 phy->ops.get_info = e1000e_get_phy_info_m88;
647                 phy->ops.check_polarity = e1000_check_polarity_m88;
648                 phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88;
649                 break;
650         default:
651                 return -E1000_ERR_PHY;
652                 break;
653         }
654
655         return 0;
656 }
657
658 /**
659  *  e1000_init_nvm_params_ich8lan - Initialize NVM function pointers
660  *  @hw: pointer to the HW structure
661  *
662  *  Initialize family-specific NVM parameters and function
663  *  pointers.
664  **/
665 static s32 e1000_init_nvm_params_ich8lan(struct e1000_hw *hw)
666 {
667         struct e1000_nvm_info *nvm = &hw->nvm;
668         struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
669         u32 gfpreg, sector_base_addr, sector_end_addr;
670         u16 i;
671
672         /* Can't read flash registers if the register set isn't mapped. */
673         if (!hw->flash_address) {
674                 e_dbg("ERROR: Flash registers not mapped\n");
675                 return -E1000_ERR_CONFIG;
676         }
677
678         nvm->type = e1000_nvm_flash_sw;
679
680         gfpreg = er32flash(ICH_FLASH_GFPREG);
681
682         /*
683          * sector_X_addr is a "sector"-aligned address (4096 bytes)
684          * Add 1 to sector_end_addr since this sector is included in
685          * the overall size.
686          */
687         sector_base_addr = gfpreg & FLASH_GFPREG_BASE_MASK;
688         sector_end_addr = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK) + 1;
689
690         /* flash_base_addr is byte-aligned */
691         nvm->flash_base_addr = sector_base_addr << FLASH_SECTOR_ADDR_SHIFT;
692
693         /*
694          * find total size of the NVM, then cut in half since the total
695          * size represents two separate NVM banks.
696          */
697         nvm->flash_bank_size = (sector_end_addr - sector_base_addr)
698                                 << FLASH_SECTOR_ADDR_SHIFT;
699         nvm->flash_bank_size /= 2;
700         /* Adjust to word count */
701         nvm->flash_bank_size /= sizeof(u16);
702
703         nvm->word_size = E1000_ICH8_SHADOW_RAM_WORDS;
704
705         /* Clear shadow ram */
706         for (i = 0; i < nvm->word_size; i++) {
707                 dev_spec->shadow_ram[i].modified = false;
708                 dev_spec->shadow_ram[i].value    = 0xFFFF;
709         }
710
711         return 0;
712 }
713
714 /**
715  *  e1000_init_mac_params_ich8lan - Initialize MAC function pointers
716  *  @hw: pointer to the HW structure
717  *
718  *  Initialize family-specific MAC parameters and function
719  *  pointers.
720  **/
721 static s32 e1000_init_mac_params_ich8lan(struct e1000_hw *hw)
722 {
723         struct e1000_mac_info *mac = &hw->mac;
724
725         /* Set media type function pointer */
726         hw->phy.media_type = e1000_media_type_copper;
727
728         /* Set mta register count */
729         mac->mta_reg_count = 32;
730         /* Set rar entry count */
731         mac->rar_entry_count = E1000_ICH_RAR_ENTRIES;
732         if (mac->type == e1000_ich8lan)
733                 mac->rar_entry_count--;
734         /* FWSM register */
735         mac->has_fwsm = true;
736         /* ARC subsystem not supported */
737         mac->arc_subsystem_valid = false;
738         /* Adaptive IFS supported */
739         mac->adaptive_ifs = true;
740
741         /* LED and other operations */
742         switch (mac->type) {
743         case e1000_ich8lan:
744         case e1000_ich9lan:
745         case e1000_ich10lan:
746                 /* check management mode */
747                 mac->ops.check_mng_mode = e1000_check_mng_mode_ich8lan;
748                 /* ID LED init */
749                 mac->ops.id_led_init = e1000e_id_led_init_generic;
750                 /* blink LED */
751                 mac->ops.blink_led = e1000e_blink_led_generic;
752                 /* setup LED */
753                 mac->ops.setup_led = e1000e_setup_led_generic;
754                 /* cleanup LED */
755                 mac->ops.cleanup_led = e1000_cleanup_led_ich8lan;
756                 /* turn on/off LED */
757                 mac->ops.led_on = e1000_led_on_ich8lan;
758                 mac->ops.led_off = e1000_led_off_ich8lan;
759                 break;
760         case e1000_pch2lan:
761                 mac->rar_entry_count = E1000_PCH2_RAR_ENTRIES;
762                 mac->ops.rar_set = e1000_rar_set_pch2lan;
763                 /* fall-through */
764         case e1000_pch_lpt:
765         case e1000_pchlan:
766                 /* check management mode */
767                 mac->ops.check_mng_mode = e1000_check_mng_mode_pchlan;
768                 /* ID LED init */
769                 mac->ops.id_led_init = e1000_id_led_init_pchlan;
770                 /* setup LED */
771                 mac->ops.setup_led = e1000_setup_led_pchlan;
772                 /* cleanup LED */
773                 mac->ops.cleanup_led = e1000_cleanup_led_pchlan;
774                 /* turn on/off LED */
775                 mac->ops.led_on = e1000_led_on_pchlan;
776                 mac->ops.led_off = e1000_led_off_pchlan;
777                 break;
778         default:
779                 break;
780         }
781
782         if (mac->type == e1000_pch_lpt) {
783                 mac->rar_entry_count = E1000_PCH_LPT_RAR_ENTRIES;
784                 mac->ops.rar_set = e1000_rar_set_pch_lpt;
785         }
786
787         /* Enable PCS Lock-loss workaround for ICH8 */
788         if (mac->type == e1000_ich8lan)
789                 e1000e_set_kmrn_lock_loss_workaround_ich8lan(hw, true);
790
791         /*
792          * Gate automatic PHY configuration by hardware on managed
793          * 82579 and i217
794          */
795         if ((mac->type == e1000_pch2lan || mac->type == e1000_pch_lpt) &&
796             (er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
797                 e1000_gate_hw_phy_config_ich8lan(hw, true);
798
799         return 0;
800 }
801
802 /**
803  *  e1000_set_eee_pchlan - Enable/disable EEE support
804  *  @hw: pointer to the HW structure
805  *
806  *  Enable/disable EEE based on setting in dev_spec structure.  The bits in
807  *  the LPI Control register will remain set only if/when link is up.
808  **/
809 static s32 e1000_set_eee_pchlan(struct e1000_hw *hw)
810 {
811         struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
812         s32 ret_val = 0;
813         u16 phy_reg;
814
815         if ((hw->phy.type != e1000_phy_82579) &&
816             (hw->phy.type != e1000_phy_i217))
817                 return 0;
818
819         ret_val = e1e_rphy(hw, I82579_LPI_CTRL, &phy_reg);
820         if (ret_val)
821                 return ret_val;
822
823         if (dev_spec->eee_disable)
824                 phy_reg &= ~I82579_LPI_CTRL_ENABLE_MASK;
825         else
826                 phy_reg |= I82579_LPI_CTRL_ENABLE_MASK;
827
828         ret_val = e1e_wphy(hw, I82579_LPI_CTRL, phy_reg);
829         if (ret_val)
830                 return ret_val;
831
832         if ((hw->phy.type == e1000_phy_i217) && !dev_spec->eee_disable) {
833                 /* Save off link partner's EEE ability */
834                 ret_val = hw->phy.ops.acquire(hw);
835                 if (ret_val)
836                         return ret_val;
837                 ret_val = e1e_wphy_locked(hw, I82579_EMI_ADDR,
838                                           I217_EEE_LP_ABILITY);
839                 if (ret_val)
840                         goto release;
841                 e1e_rphy_locked(hw, I82579_EMI_DATA, &dev_spec->eee_lp_ability);
842
843                 /*
844                  * EEE is not supported in 100Half, so ignore partner's EEE
845                  * in 100 ability if full-duplex is not advertised.
846                  */
847                 e1e_rphy_locked(hw, PHY_LP_ABILITY, &phy_reg);
848                 if (!(phy_reg & NWAY_LPAR_100TX_FD_CAPS))
849                         dev_spec->eee_lp_ability &= ~I217_EEE_100_SUPPORTED;
850 release:
851                 hw->phy.ops.release(hw);
852         }
853
854         return 0;
855 }
856
857 /**
858  *  e1000_check_for_copper_link_ich8lan - Check for link (Copper)
859  *  @hw: pointer to the HW structure
860  *
861  *  Checks to see of the link status of the hardware has changed.  If a
862  *  change in link status has been detected, then we read the PHY registers
863  *  to get the current speed/duplex if link exists.
864  **/
865 static s32 e1000_check_for_copper_link_ich8lan(struct e1000_hw *hw)
866 {
867         struct e1000_mac_info *mac = &hw->mac;
868         s32 ret_val;
869         bool link;
870         u16 phy_reg;
871
872         /*
873          * We only want to go out to the PHY registers to see if Auto-Neg
874          * has completed and/or if our link status has changed.  The
875          * get_link_status flag is set upon receiving a Link Status
876          * Change or Rx Sequence Error interrupt.
877          */
878         if (!mac->get_link_status)
879                 return 0;
880
881         /*
882          * First we want to see if the MII Status Register reports
883          * link.  If so, then we want to get the current speed/duplex
884          * of the PHY.
885          */
886         ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
887         if (ret_val)
888                 return ret_val;
889
890         if (hw->mac.type == e1000_pchlan) {
891                 ret_val = e1000_k1_gig_workaround_hv(hw, link);
892                 if (ret_val)
893                         return ret_val;
894         }
895
896         /* Clear link partner's EEE ability */
897         hw->dev_spec.ich8lan.eee_lp_ability = 0;
898
899         if (!link)
900                 return 0; /* No link detected */
901
902         mac->get_link_status = false;
903
904         switch (hw->mac.type) {
905         case e1000_pch2lan:
906                 ret_val = e1000_k1_workaround_lv(hw);
907                 if (ret_val)
908                         return ret_val;
909                 /* fall-thru */
910         case e1000_pchlan:
911                 if (hw->phy.type == e1000_phy_82578) {
912                         ret_val = e1000_link_stall_workaround_hv(hw);
913                         if (ret_val)
914                                 return ret_val;
915                 }
916
917                 /*
918                  * Workaround for PCHx parts in half-duplex:
919                  * Set the number of preambles removed from the packet
920                  * when it is passed from the PHY to the MAC to prevent
921                  * the MAC from misinterpreting the packet type.
922                  */
923                 e1e_rphy(hw, HV_KMRN_FIFO_CTRLSTA, &phy_reg);
924                 phy_reg &= ~HV_KMRN_FIFO_CTRLSTA_PREAMBLE_MASK;
925
926                 if ((er32(STATUS) & E1000_STATUS_FD) != E1000_STATUS_FD)
927                         phy_reg |= (1 << HV_KMRN_FIFO_CTRLSTA_PREAMBLE_SHIFT);
928
929                 e1e_wphy(hw, HV_KMRN_FIFO_CTRLSTA, phy_reg);
930                 break;
931         default:
932                 break;
933         }
934
935         /*
936          * Check if there was DownShift, must be checked
937          * immediately after link-up
938          */
939         e1000e_check_downshift(hw);
940
941         /* Enable/Disable EEE after link up */
942         ret_val = e1000_set_eee_pchlan(hw);
943         if (ret_val)
944                 return ret_val;
945
946         /*
947          * If we are forcing speed/duplex, then we simply return since
948          * we have already determined whether we have link or not.
949          */
950         if (!mac->autoneg)
951                 return -E1000_ERR_CONFIG;
952
953         /*
954          * Auto-Neg is enabled.  Auto Speed Detection takes care
955          * of MAC speed/duplex configuration.  So we only need to
956          * configure Collision Distance in the MAC.
957          */
958         mac->ops.config_collision_dist(hw);
959
960         /*
961          * Configure Flow Control now that Auto-Neg has completed.
962          * First, we need to restore the desired flow control
963          * settings because we may have had to re-autoneg with a
964          * different link partner.
965          */
966         ret_val = e1000e_config_fc_after_link_up(hw);
967         if (ret_val)
968                 e_dbg("Error configuring flow control\n");
969
970         return ret_val;
971 }
972
973 static s32 e1000_get_variants_ich8lan(struct e1000_adapter *adapter)
974 {
975         struct e1000_hw *hw = &adapter->hw;
976         s32 rc;
977
978         rc = e1000_init_mac_params_ich8lan(hw);
979         if (rc)
980                 return rc;
981
982         rc = e1000_init_nvm_params_ich8lan(hw);
983         if (rc)
984                 return rc;
985
986         switch (hw->mac.type) {
987         case e1000_ich8lan:
988         case e1000_ich9lan:
989         case e1000_ich10lan:
990                 rc = e1000_init_phy_params_ich8lan(hw);
991                 break;
992         case e1000_pchlan:
993         case e1000_pch2lan:
994         case e1000_pch_lpt:
995                 rc = e1000_init_phy_params_pchlan(hw);
996                 break;
997         default:
998                 break;
999         }
1000         if (rc)
1001                 return rc;
1002
1003         /*
1004          * Disable Jumbo Frame support on parts with Intel 10/100 PHY or
1005          * on parts with MACsec enabled in NVM (reflected in CTRL_EXT).
1006          */
1007         if ((adapter->hw.phy.type == e1000_phy_ife) ||
1008             ((adapter->hw.mac.type >= e1000_pch2lan) &&
1009              (!(er32(CTRL_EXT) & E1000_CTRL_EXT_LSECCK)))) {
1010                 adapter->flags &= ~FLAG_HAS_JUMBO_FRAMES;
1011                 adapter->max_hw_frame_size = ETH_FRAME_LEN + ETH_FCS_LEN;
1012
1013                 hw->mac.ops.blink_led = NULL;
1014         }
1015
1016         if ((adapter->hw.mac.type == e1000_ich8lan) &&
1017             (adapter->hw.phy.type != e1000_phy_ife))
1018                 adapter->flags |= FLAG_LSC_GIG_SPEED_DROP;
1019
1020         /* Enable workaround for 82579 w/ ME enabled */
1021         if ((adapter->hw.mac.type == e1000_pch2lan) &&
1022             (er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
1023                 adapter->flags2 |= FLAG2_PCIM2PCI_ARBITER_WA;
1024
1025         /* Disable EEE by default until IEEE802.3az spec is finalized */
1026         if (adapter->flags2 & FLAG2_HAS_EEE)
1027                 adapter->hw.dev_spec.ich8lan.eee_disable = true;
1028
1029         return 0;
1030 }
1031
1032 static DEFINE_MUTEX(nvm_mutex);
1033
1034 /**
1035  *  e1000_acquire_nvm_ich8lan - Acquire NVM mutex
1036  *  @hw: pointer to the HW structure
1037  *
1038  *  Acquires the mutex for performing NVM operations.
1039  **/
1040 static s32 e1000_acquire_nvm_ich8lan(struct e1000_hw *hw)
1041 {
1042         mutex_lock(&nvm_mutex);
1043
1044         return 0;
1045 }
1046
1047 /**
1048  *  e1000_release_nvm_ich8lan - Release NVM mutex
1049  *  @hw: pointer to the HW structure
1050  *
1051  *  Releases the mutex used while performing NVM operations.
1052  **/
1053 static void e1000_release_nvm_ich8lan(struct e1000_hw *hw)
1054 {
1055         mutex_unlock(&nvm_mutex);
1056 }
1057
1058 /**
1059  *  e1000_acquire_swflag_ich8lan - Acquire software control flag
1060  *  @hw: pointer to the HW structure
1061  *
1062  *  Acquires the software control flag for performing PHY and select
1063  *  MAC CSR accesses.
1064  **/
1065 static s32 e1000_acquire_swflag_ich8lan(struct e1000_hw *hw)
1066 {
1067         u32 extcnf_ctrl, timeout = PHY_CFG_TIMEOUT;
1068         s32 ret_val = 0;
1069
1070         if (test_and_set_bit(__E1000_ACCESS_SHARED_RESOURCE,
1071                              &hw->adapter->state)) {
1072                 e_dbg("contention for Phy access\n");
1073                 return -E1000_ERR_PHY;
1074         }
1075
1076         while (timeout) {
1077                 extcnf_ctrl = er32(EXTCNF_CTRL);
1078                 if (!(extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG))
1079                         break;
1080
1081                 mdelay(1);
1082                 timeout--;
1083         }
1084
1085         if (!timeout) {
1086                 e_dbg("SW has already locked the resource.\n");
1087                 ret_val = -E1000_ERR_CONFIG;
1088                 goto out;
1089         }
1090
1091         timeout = SW_FLAG_TIMEOUT;
1092
1093         extcnf_ctrl |= E1000_EXTCNF_CTRL_SWFLAG;
1094         ew32(EXTCNF_CTRL, extcnf_ctrl);
1095
1096         while (timeout) {
1097                 extcnf_ctrl = er32(EXTCNF_CTRL);
1098                 if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG)
1099                         break;
1100
1101                 mdelay(1);
1102                 timeout--;
1103         }
1104
1105         if (!timeout) {
1106                 e_dbg("Failed to acquire the semaphore, FW or HW has it: FWSM=0x%8.8x EXTCNF_CTRL=0x%8.8x)\n",
1107                       er32(FWSM), extcnf_ctrl);
1108                 extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
1109                 ew32(EXTCNF_CTRL, extcnf_ctrl);
1110                 ret_val = -E1000_ERR_CONFIG;
1111                 goto out;
1112         }
1113
1114 out:
1115         if (ret_val)
1116                 clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
1117
1118         return ret_val;
1119 }
1120
1121 /**
1122  *  e1000_release_swflag_ich8lan - Release software control flag
1123  *  @hw: pointer to the HW structure
1124  *
1125  *  Releases the software control flag for performing PHY and select
1126  *  MAC CSR accesses.
1127  **/
1128 static void e1000_release_swflag_ich8lan(struct e1000_hw *hw)
1129 {
1130         u32 extcnf_ctrl;
1131
1132         extcnf_ctrl = er32(EXTCNF_CTRL);
1133
1134         if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG) {
1135                 extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
1136                 ew32(EXTCNF_CTRL, extcnf_ctrl);
1137         } else {
1138                 e_dbg("Semaphore unexpectedly released by sw/fw/hw\n");
1139         }
1140
1141         clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
1142 }
1143
1144 /**
1145  *  e1000_check_mng_mode_ich8lan - Checks management mode
1146  *  @hw: pointer to the HW structure
1147  *
1148  *  This checks if the adapter has any manageability enabled.
1149  *  This is a function pointer entry point only called by read/write
1150  *  routines for the PHY and NVM parts.
1151  **/
1152 static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw)
1153 {
1154         u32 fwsm;
1155
1156         fwsm = er32(FWSM);
1157         return (fwsm & E1000_ICH_FWSM_FW_VALID) &&
1158                ((fwsm & E1000_FWSM_MODE_MASK) ==
1159                 (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT));
1160 }
1161
1162 /**
1163  *  e1000_check_mng_mode_pchlan - Checks management mode
1164  *  @hw: pointer to the HW structure
1165  *
1166  *  This checks if the adapter has iAMT enabled.
1167  *  This is a function pointer entry point only called by read/write
1168  *  routines for the PHY and NVM parts.
1169  **/
1170 static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw)
1171 {
1172         u32 fwsm;
1173
1174         fwsm = er32(FWSM);
1175         return (fwsm & E1000_ICH_FWSM_FW_VALID) &&
1176                (fwsm & (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT));
1177 }
1178
1179 /**
1180  *  e1000_rar_set_pch2lan - Set receive address register
1181  *  @hw: pointer to the HW structure
1182  *  @addr: pointer to the receive address
1183  *  @index: receive address array register
1184  *
1185  *  Sets the receive address array register at index to the address passed
1186  *  in by addr.  For 82579, RAR[0] is the base address register that is to
1187  *  contain the MAC address but RAR[1-6] are reserved for manageability (ME).
1188  *  Use SHRA[0-3] in place of those reserved for ME.
1189  **/
1190 static void e1000_rar_set_pch2lan(struct e1000_hw *hw, u8 *addr, u32 index)
1191 {
1192         u32 rar_low, rar_high;
1193
1194         /*
1195          * HW expects these in little endian so we reverse the byte order
1196          * from network order (big endian) to little endian
1197          */
1198         rar_low = ((u32)addr[0] |
1199                    ((u32)addr[1] << 8) |
1200                    ((u32)addr[2] << 16) | ((u32)addr[3] << 24));
1201
1202         rar_high = ((u32)addr[4] | ((u32)addr[5] << 8));
1203
1204         /* If MAC address zero, no need to set the AV bit */
1205         if (rar_low || rar_high)
1206                 rar_high |= E1000_RAH_AV;
1207
1208         if (index == 0) {
1209                 ew32(RAL(index), rar_low);
1210                 e1e_flush();
1211                 ew32(RAH(index), rar_high);
1212                 e1e_flush();
1213                 return;
1214         }
1215
1216         if (index < hw->mac.rar_entry_count) {
1217                 s32 ret_val;
1218
1219                 ret_val = e1000_acquire_swflag_ich8lan(hw);
1220                 if (ret_val)
1221                         goto out;
1222
1223                 ew32(SHRAL(index - 1), rar_low);
1224                 e1e_flush();
1225                 ew32(SHRAH(index - 1), rar_high);
1226                 e1e_flush();
1227
1228                 e1000_release_swflag_ich8lan(hw);
1229
1230                 /* verify the register updates */
1231                 if ((er32(SHRAL(index - 1)) == rar_low) &&
1232                     (er32(SHRAH(index - 1)) == rar_high))
1233                         return;
1234
1235                 e_dbg("SHRA[%d] might be locked by ME - FWSM=0x%8.8x\n",
1236                       (index - 1), er32(FWSM));
1237         }
1238
1239 out:
1240         e_dbg("Failed to write receive address at index %d\n", index);
1241 }
1242
1243 /**
1244  *  e1000_rar_set_pch_lpt - Set receive address registers
1245  *  @hw: pointer to the HW structure
1246  *  @addr: pointer to the receive address
1247  *  @index: receive address array register
1248  *
1249  *  Sets the receive address register array at index to the address passed
1250  *  in by addr. For LPT, RAR[0] is the base address register that is to
1251  *  contain the MAC address. SHRA[0-10] are the shared receive address
1252  *  registers that are shared between the Host and manageability engine (ME).
1253  **/
1254 static void e1000_rar_set_pch_lpt(struct e1000_hw *hw, u8 *addr, u32 index)
1255 {
1256         u32 rar_low, rar_high;
1257         u32 wlock_mac;
1258
1259         /*
1260          * HW expects these in little endian so we reverse the byte order
1261          * from network order (big endian) to little endian
1262          */
1263         rar_low = ((u32)addr[0] | ((u32)addr[1] << 8) |
1264                    ((u32)addr[2] << 16) | ((u32)addr[3] << 24));
1265
1266         rar_high = ((u32)addr[4] | ((u32)addr[5] << 8));
1267
1268         /* If MAC address zero, no need to set the AV bit */
1269         if (rar_low || rar_high)
1270                 rar_high |= E1000_RAH_AV;
1271
1272         if (index == 0) {
1273                 ew32(RAL(index), rar_low);
1274                 e1e_flush();
1275                 ew32(RAH(index), rar_high);
1276                 e1e_flush();
1277                 return;
1278         }
1279
1280         /*
1281          * The manageability engine (ME) can lock certain SHRAR registers that
1282          * it is using - those registers are unavailable for use.
1283          */
1284         if (index < hw->mac.rar_entry_count) {
1285                 wlock_mac = er32(FWSM) & E1000_FWSM_WLOCK_MAC_MASK;
1286                 wlock_mac >>= E1000_FWSM_WLOCK_MAC_SHIFT;
1287
1288                 /* Check if all SHRAR registers are locked */
1289                 if (wlock_mac == 1)
1290                         goto out;
1291
1292                 if ((wlock_mac == 0) || (index <= wlock_mac)) {
1293                         s32 ret_val;
1294
1295                         ret_val = e1000_acquire_swflag_ich8lan(hw);
1296
1297                         if (ret_val)
1298                                 goto out;
1299
1300                         ew32(SHRAL_PCH_LPT(index - 1), rar_low);
1301                         e1e_flush();
1302                         ew32(SHRAH_PCH_LPT(index - 1), rar_high);
1303                         e1e_flush();
1304
1305                         e1000_release_swflag_ich8lan(hw);
1306
1307                         /* verify the register updates */
1308                         if ((er32(SHRAL_PCH_LPT(index - 1)) == rar_low) &&
1309                             (er32(SHRAH_PCH_LPT(index - 1)) == rar_high))
1310                                 return;
1311                 }
1312         }
1313
1314 out:
1315         e_dbg("Failed to write receive address at index %d\n", index);
1316 }
1317
1318 /**
1319  *  e1000_check_reset_block_ich8lan - Check if PHY reset is blocked
1320  *  @hw: pointer to the HW structure
1321  *
1322  *  Checks if firmware is blocking the reset of the PHY.
1323  *  This is a function pointer entry point only called by
1324  *  reset routines.
1325  **/
1326 static s32 e1000_check_reset_block_ich8lan(struct e1000_hw *hw)
1327 {
1328         u32 fwsm;
1329
1330         fwsm = er32(FWSM);
1331
1332         return (fwsm & E1000_ICH_FWSM_RSPCIPHY) ? 0 : E1000_BLK_PHY_RESET;
1333 }
1334
1335 /**
1336  *  e1000_write_smbus_addr - Write SMBus address to PHY needed during Sx states
1337  *  @hw: pointer to the HW structure
1338  *
1339  *  Assumes semaphore already acquired.
1340  *
1341  **/
1342 static s32 e1000_write_smbus_addr(struct e1000_hw *hw)
1343 {
1344         u16 phy_data;
1345         u32 strap = er32(STRAP);
1346         u32 freq = (strap & E1000_STRAP_SMT_FREQ_MASK) >>
1347             E1000_STRAP_SMT_FREQ_SHIFT;
1348         s32 ret_val = 0;
1349
1350         strap &= E1000_STRAP_SMBUS_ADDRESS_MASK;
1351
1352         ret_val = e1000_read_phy_reg_hv_locked(hw, HV_SMB_ADDR, &phy_data);
1353         if (ret_val)
1354                 return ret_val;
1355
1356         phy_data &= ~HV_SMB_ADDR_MASK;
1357         phy_data |= (strap >> E1000_STRAP_SMBUS_ADDRESS_SHIFT);
1358         phy_data |= HV_SMB_ADDR_PEC_EN | HV_SMB_ADDR_VALID;
1359
1360         if (hw->phy.type == e1000_phy_i217) {
1361                 /* Restore SMBus frequency */
1362                 if (freq--) {
1363                         phy_data &= ~HV_SMB_ADDR_FREQ_MASK;
1364                         phy_data |= (freq & (1 << 0)) <<
1365                             HV_SMB_ADDR_FREQ_LOW_SHIFT;
1366                         phy_data |= (freq & (1 << 1)) <<
1367                             (HV_SMB_ADDR_FREQ_HIGH_SHIFT - 1);
1368                 } else {
1369                         e_dbg("Unsupported SMB frequency in PHY\n");
1370                 }
1371         }
1372
1373         return e1000_write_phy_reg_hv_locked(hw, HV_SMB_ADDR, phy_data);
1374 }
1375
1376 /**
1377  *  e1000_sw_lcd_config_ich8lan - SW-based LCD Configuration
1378  *  @hw:   pointer to the HW structure
1379  *
1380  *  SW should configure the LCD from the NVM extended configuration region
1381  *  as a workaround for certain parts.
1382  **/
1383 static s32 e1000_sw_lcd_config_ich8lan(struct e1000_hw *hw)
1384 {
1385         struct e1000_phy_info *phy = &hw->phy;
1386         u32 i, data, cnf_size, cnf_base_addr, sw_cfg_mask;
1387         s32 ret_val = 0;
1388         u16 word_addr, reg_data, reg_addr, phy_page = 0;
1389
1390         /*
1391          * Initialize the PHY from the NVM on ICH platforms.  This
1392          * is needed due to an issue where the NVM configuration is
1393          * not properly autoloaded after power transitions.
1394          * Therefore, after each PHY reset, we will load the
1395          * configuration data out of the NVM manually.
1396          */
1397         switch (hw->mac.type) {
1398         case e1000_ich8lan:
1399                 if (phy->type != e1000_phy_igp_3)
1400                         return ret_val;
1401
1402                 if ((hw->adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_AMT) ||
1403                     (hw->adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_C)) {
1404                         sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG;
1405                         break;
1406                 }
1407                 /* Fall-thru */
1408         case e1000_pchlan:
1409         case e1000_pch2lan:
1410         case e1000_pch_lpt:
1411                 sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG_ICH8M;
1412                 break;
1413         default:
1414                 return ret_val;
1415         }
1416
1417         ret_val = hw->phy.ops.acquire(hw);
1418         if (ret_val)
1419                 return ret_val;
1420
1421         data = er32(FEXTNVM);
1422         if (!(data & sw_cfg_mask))
1423                 goto release;
1424
1425         /*
1426          * Make sure HW does not configure LCD from PHY
1427          * extended configuration before SW configuration
1428          */
1429         data = er32(EXTCNF_CTRL);
1430         if ((hw->mac.type < e1000_pch2lan) &&
1431             (data & E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE))
1432                 goto release;
1433
1434         cnf_size = er32(EXTCNF_SIZE);
1435         cnf_size &= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_MASK;
1436         cnf_size >>= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_SHIFT;
1437         if (!cnf_size)
1438                 goto release;
1439
1440         cnf_base_addr = data & E1000_EXTCNF_CTRL_EXT_CNF_POINTER_MASK;
1441         cnf_base_addr >>= E1000_EXTCNF_CTRL_EXT_CNF_POINTER_SHIFT;
1442
1443         if (((hw->mac.type == e1000_pchlan) &&
1444              !(data & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)) ||
1445             (hw->mac.type > e1000_pchlan)) {
1446                 /*
1447                  * HW configures the SMBus address and LEDs when the
1448                  * OEM and LCD Write Enable bits are set in the NVM.
1449                  * When both NVM bits are cleared, SW will configure
1450                  * them instead.
1451                  */
1452                 ret_val = e1000_write_smbus_addr(hw);
1453                 if (ret_val)
1454                         goto release;
1455
1456                 data = er32(LEDCTL);
1457                 ret_val = e1000_write_phy_reg_hv_locked(hw, HV_LED_CONFIG,
1458                                                         (u16)data);
1459                 if (ret_val)
1460                         goto release;
1461         }
1462
1463         /* Configure LCD from extended configuration region. */
1464
1465         /* cnf_base_addr is in DWORD */
1466         word_addr = (u16)(cnf_base_addr << 1);
1467
1468         for (i = 0; i < cnf_size; i++) {
1469                 ret_val = e1000_read_nvm(hw, (word_addr + i * 2), 1,
1470                                          &reg_data);
1471                 if (ret_val)
1472                         goto release;
1473
1474                 ret_val = e1000_read_nvm(hw, (word_addr + i * 2 + 1),
1475                                          1, &reg_addr);
1476                 if (ret_val)
1477                         goto release;
1478
1479                 /* Save off the PHY page for future writes. */
1480                 if (reg_addr == IGP01E1000_PHY_PAGE_SELECT) {
1481                         phy_page = reg_data;
1482                         continue;
1483                 }
1484
1485                 reg_addr &= PHY_REG_MASK;
1486                 reg_addr |= phy_page;
1487
1488                 ret_val = e1e_wphy_locked(hw, (u32)reg_addr, reg_data);
1489                 if (ret_val)
1490                         goto release;
1491         }
1492
1493 release:
1494         hw->phy.ops.release(hw);
1495         return ret_val;
1496 }
1497
1498 /**
1499  *  e1000_k1_gig_workaround_hv - K1 Si workaround
1500  *  @hw:   pointer to the HW structure
1501  *  @link: link up bool flag
1502  *
1503  *  If K1 is enabled for 1Gbps, the MAC might stall when transitioning
1504  *  from a lower speed.  This workaround disables K1 whenever link is at 1Gig
1505  *  If link is down, the function will restore the default K1 setting located
1506  *  in the NVM.
1507  **/
1508 static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link)
1509 {
1510         s32 ret_val = 0;
1511         u16 status_reg = 0;
1512         bool k1_enable = hw->dev_spec.ich8lan.nvm_k1_enabled;
1513
1514         if (hw->mac.type != e1000_pchlan)
1515                 return 0;
1516
1517         /* Wrap the whole flow with the sw flag */
1518         ret_val = hw->phy.ops.acquire(hw);
1519         if (ret_val)
1520                 return ret_val;
1521
1522         /* Disable K1 when link is 1Gbps, otherwise use the NVM setting */
1523         if (link) {
1524                 if (hw->phy.type == e1000_phy_82578) {
1525                         ret_val = e1e_rphy_locked(hw, BM_CS_STATUS,
1526                                                   &status_reg);
1527                         if (ret_val)
1528                                 goto release;
1529
1530                         status_reg &= BM_CS_STATUS_LINK_UP |
1531                                       BM_CS_STATUS_RESOLVED |
1532                                       BM_CS_STATUS_SPEED_MASK;
1533
1534                         if (status_reg == (BM_CS_STATUS_LINK_UP |
1535                                            BM_CS_STATUS_RESOLVED |
1536                                            BM_CS_STATUS_SPEED_1000))
1537                                 k1_enable = false;
1538                 }
1539
1540                 if (hw->phy.type == e1000_phy_82577) {
1541                         ret_val = e1e_rphy_locked(hw, HV_M_STATUS, &status_reg);
1542                         if (ret_val)
1543                                 goto release;
1544
1545                         status_reg &= HV_M_STATUS_LINK_UP |
1546                                       HV_M_STATUS_AUTONEG_COMPLETE |
1547                                       HV_M_STATUS_SPEED_MASK;
1548
1549                         if (status_reg == (HV_M_STATUS_LINK_UP |
1550                                            HV_M_STATUS_AUTONEG_COMPLETE |
1551                                            HV_M_STATUS_SPEED_1000))
1552                                 k1_enable = false;
1553                 }
1554
1555                 /* Link stall fix for link up */
1556                 ret_val = e1e_wphy_locked(hw, PHY_REG(770, 19), 0x0100);
1557                 if (ret_val)
1558                         goto release;
1559
1560         } else {
1561                 /* Link stall fix for link down */
1562                 ret_val = e1e_wphy_locked(hw, PHY_REG(770, 19), 0x4100);
1563                 if (ret_val)
1564                         goto release;
1565         }
1566
1567         ret_val = e1000_configure_k1_ich8lan(hw, k1_enable);
1568
1569 release:
1570         hw->phy.ops.release(hw);
1571
1572         return ret_val;
1573 }
1574
1575 /**
1576  *  e1000_configure_k1_ich8lan - Configure K1 power state
1577  *  @hw: pointer to the HW structure
1578  *  @enable: K1 state to configure
1579  *
1580  *  Configure the K1 power state based on the provided parameter.
1581  *  Assumes semaphore already acquired.
1582  *
1583  *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
1584  **/
1585 s32 e1000_configure_k1_ich8lan(struct e1000_hw *hw, bool k1_enable)
1586 {
1587         s32 ret_val = 0;
1588         u32 ctrl_reg = 0;
1589         u32 ctrl_ext = 0;
1590         u32 reg = 0;
1591         u16 kmrn_reg = 0;
1592
1593         ret_val = e1000e_read_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
1594                                               &kmrn_reg);
1595         if (ret_val)
1596                 return ret_val;
1597
1598         if (k1_enable)
1599                 kmrn_reg |= E1000_KMRNCTRLSTA_K1_ENABLE;
1600         else
1601                 kmrn_reg &= ~E1000_KMRNCTRLSTA_K1_ENABLE;
1602
1603         ret_val = e1000e_write_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
1604                                                kmrn_reg);
1605         if (ret_val)
1606                 return ret_val;
1607
1608         udelay(20);
1609         ctrl_ext = er32(CTRL_EXT);
1610         ctrl_reg = er32(CTRL);
1611
1612         reg = ctrl_reg & ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
1613         reg |= E1000_CTRL_FRCSPD;
1614         ew32(CTRL, reg);
1615
1616         ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_SPD_BYPS);
1617         e1e_flush();
1618         udelay(20);
1619         ew32(CTRL, ctrl_reg);
1620         ew32(CTRL_EXT, ctrl_ext);
1621         e1e_flush();
1622         udelay(20);
1623
1624         return 0;
1625 }
1626
1627 /**
1628  *  e1000_oem_bits_config_ich8lan - SW-based LCD Configuration
1629  *  @hw:       pointer to the HW structure
1630  *  @d0_state: boolean if entering d0 or d3 device state
1631  *
1632  *  SW will configure Gbe Disable and LPLU based on the NVM. The four bits are
1633  *  collectively called OEM bits.  The OEM Write Enable bit and SW Config bit
1634  *  in NVM determines whether HW should configure LPLU and Gbe Disable.
1635  **/
1636 static s32 e1000_oem_bits_config_ich8lan(struct e1000_hw *hw, bool d0_state)
1637 {
1638         s32 ret_val = 0;
1639         u32 mac_reg;
1640         u16 oem_reg;
1641
1642         if (hw->mac.type < e1000_pchlan)
1643                 return ret_val;
1644
1645         ret_val = hw->phy.ops.acquire(hw);
1646         if (ret_val)
1647                 return ret_val;
1648
1649         if (hw->mac.type == e1000_pchlan) {
1650                 mac_reg = er32(EXTCNF_CTRL);
1651                 if (mac_reg & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)
1652                         goto release;
1653         }
1654
1655         mac_reg = er32(FEXTNVM);
1656         if (!(mac_reg & E1000_FEXTNVM_SW_CONFIG_ICH8M))
1657                 goto release;
1658
1659         mac_reg = er32(PHY_CTRL);
1660
1661         ret_val = e1e_rphy_locked(hw, HV_OEM_BITS, &oem_reg);
1662         if (ret_val)
1663                 goto release;
1664
1665         oem_reg &= ~(HV_OEM_BITS_GBE_DIS | HV_OEM_BITS_LPLU);
1666
1667         if (d0_state) {
1668                 if (mac_reg & E1000_PHY_CTRL_GBE_DISABLE)
1669                         oem_reg |= HV_OEM_BITS_GBE_DIS;
1670
1671                 if (mac_reg & E1000_PHY_CTRL_D0A_LPLU)
1672                         oem_reg |= HV_OEM_BITS_LPLU;
1673         } else {
1674                 if (mac_reg & (E1000_PHY_CTRL_GBE_DISABLE |
1675                                E1000_PHY_CTRL_NOND0A_GBE_DISABLE))
1676                         oem_reg |= HV_OEM_BITS_GBE_DIS;
1677
1678                 if (mac_reg & (E1000_PHY_CTRL_D0A_LPLU |
1679                                E1000_PHY_CTRL_NOND0A_LPLU))
1680                         oem_reg |= HV_OEM_BITS_LPLU;
1681         }
1682
1683         /* Set Restart auto-neg to activate the bits */
1684         if ((d0_state || (hw->mac.type != e1000_pchlan)) &&
1685             !hw->phy.ops.check_reset_block(hw))
1686                 oem_reg |= HV_OEM_BITS_RESTART_AN;
1687
1688         ret_val = e1e_wphy_locked(hw, HV_OEM_BITS, oem_reg);
1689
1690 release:
1691         hw->phy.ops.release(hw);
1692
1693         return ret_val;
1694 }
1695
1696
1697 /**
1698  *  e1000_set_mdio_slow_mode_hv - Set slow MDIO access mode
1699  *  @hw:   pointer to the HW structure
1700  **/
1701 static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw)
1702 {
1703         s32 ret_val;
1704         u16 data;
1705
1706         ret_val = e1e_rphy(hw, HV_KMRN_MODE_CTRL, &data);
1707         if (ret_val)
1708                 return ret_val;
1709
1710         data |= HV_KMRN_MDIO_SLOW;
1711
1712         ret_val = e1e_wphy(hw, HV_KMRN_MODE_CTRL, data);
1713
1714         return ret_val;
1715 }
1716
1717 /**
1718  *  e1000_hv_phy_workarounds_ich8lan - A series of Phy workarounds to be
1719  *  done after every PHY reset.
1720  **/
1721 static s32 e1000_hv_phy_workarounds_ich8lan(struct e1000_hw *hw)
1722 {
1723         s32 ret_val = 0;
1724         u16 phy_data;
1725
1726         if (hw->mac.type != e1000_pchlan)
1727                 return 0;
1728
1729         /* Set MDIO slow mode before any other MDIO access */
1730         if (hw->phy.type == e1000_phy_82577) {
1731                 ret_val = e1000_set_mdio_slow_mode_hv(hw);
1732                 if (ret_val)
1733                         return ret_val;
1734         }
1735
1736         if (((hw->phy.type == e1000_phy_82577) &&
1737              ((hw->phy.revision == 1) || (hw->phy.revision == 2))) ||
1738             ((hw->phy.type == e1000_phy_82578) && (hw->phy.revision == 1))) {
1739                 /* Disable generation of early preamble */
1740                 ret_val = e1e_wphy(hw, PHY_REG(769, 25), 0x4431);
1741                 if (ret_val)
1742                         return ret_val;
1743
1744                 /* Preamble tuning for SSC */
1745                 ret_val = e1e_wphy(hw, HV_KMRN_FIFO_CTRLSTA, 0xA204);
1746                 if (ret_val)
1747                         return ret_val;
1748         }
1749
1750         if (hw->phy.type == e1000_phy_82578) {
1751                 /*
1752                  * Return registers to default by doing a soft reset then
1753                  * writing 0x3140 to the control register.
1754                  */
1755                 if (hw->phy.revision < 2) {
1756                         e1000e_phy_sw_reset(hw);
1757                         ret_val = e1e_wphy(hw, PHY_CONTROL, 0x3140);
1758                 }
1759         }
1760
1761         /* Select page 0 */
1762         ret_val = hw->phy.ops.acquire(hw);
1763         if (ret_val)
1764                 return ret_val;
1765
1766         hw->phy.addr = 1;
1767         ret_val = e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, 0);
1768         hw->phy.ops.release(hw);
1769         if (ret_val)
1770                 return ret_val;
1771
1772         /*
1773          * Configure the K1 Si workaround during phy reset assuming there is
1774          * link so that it disables K1 if link is in 1Gbps.
1775          */
1776         ret_val = e1000_k1_gig_workaround_hv(hw, true);
1777         if (ret_val)
1778                 return ret_val;
1779
1780         /* Workaround for link disconnects on a busy hub in half duplex */
1781         ret_val = hw->phy.ops.acquire(hw);
1782         if (ret_val)
1783                 return ret_val;
1784         ret_val = e1e_rphy_locked(hw, BM_PORT_GEN_CFG, &phy_data);
1785         if (ret_val)
1786                 goto release;
1787         ret_val = e1e_wphy_locked(hw, BM_PORT_GEN_CFG, phy_data & 0x00FF);
1788 release:
1789         hw->phy.ops.release(hw);
1790
1791         return ret_val;
1792 }
1793
1794 /**
1795  *  e1000_copy_rx_addrs_to_phy_ich8lan - Copy Rx addresses from MAC to PHY
1796  *  @hw:   pointer to the HW structure
1797  **/
1798 void e1000_copy_rx_addrs_to_phy_ich8lan(struct e1000_hw *hw)
1799 {
1800         u32 mac_reg;
1801         u16 i, phy_reg = 0;
1802         s32 ret_val;
1803
1804         ret_val = hw->phy.ops.acquire(hw);
1805         if (ret_val)
1806                 return;
1807         ret_val = e1000_enable_phy_wakeup_reg_access_bm(hw, &phy_reg);
1808         if (ret_val)
1809                 goto release;
1810
1811         /* Copy both RAL/H (rar_entry_count) and SHRAL/H (+4) to PHY */
1812         for (i = 0; i < (hw->mac.rar_entry_count + 4); i++) {
1813                 mac_reg = er32(RAL(i));
1814                 hw->phy.ops.write_reg_page(hw, BM_RAR_L(i),
1815                                            (u16)(mac_reg & 0xFFFF));
1816                 hw->phy.ops.write_reg_page(hw, BM_RAR_M(i),
1817                                            (u16)((mac_reg >> 16) & 0xFFFF));
1818
1819                 mac_reg = er32(RAH(i));
1820                 hw->phy.ops.write_reg_page(hw, BM_RAR_H(i),
1821                                            (u16)(mac_reg & 0xFFFF));
1822                 hw->phy.ops.write_reg_page(hw, BM_RAR_CTRL(i),
1823                                            (u16)((mac_reg & E1000_RAH_AV)
1824                                                  >> 16));
1825         }
1826
1827         e1000_disable_phy_wakeup_reg_access_bm(hw, &phy_reg);
1828
1829 release:
1830         hw->phy.ops.release(hw);
1831 }
1832
1833 /**
1834  *  e1000_lv_jumbo_workaround_ich8lan - required for jumbo frame operation
1835  *  with 82579 PHY
1836  *  @hw: pointer to the HW structure
1837  *  @enable: flag to enable/disable workaround when enabling/disabling jumbos
1838  **/
1839 s32 e1000_lv_jumbo_workaround_ich8lan(struct e1000_hw *hw, bool enable)
1840 {
1841         s32 ret_val = 0;
1842         u16 phy_reg, data;
1843         u32 mac_reg;
1844         u16 i;
1845
1846         if (hw->mac.type < e1000_pch2lan)
1847                 return 0;
1848
1849         /* disable Rx path while enabling/disabling workaround */
1850         e1e_rphy(hw, PHY_REG(769, 20), &phy_reg);
1851         ret_val = e1e_wphy(hw, PHY_REG(769, 20), phy_reg | (1 << 14));
1852         if (ret_val)
1853                 return ret_val;
1854
1855         if (enable) {
1856                 /*
1857                  * Write Rx addresses (rar_entry_count for RAL/H, +4 for
1858                  * SHRAL/H) and initial CRC values to the MAC
1859                  */
1860                 for (i = 0; i < (hw->mac.rar_entry_count + 4); i++) {
1861                         u8 mac_addr[ETH_ALEN] = {0};
1862                         u32 addr_high, addr_low;
1863
1864                         addr_high = er32(RAH(i));
1865                         if (!(addr_high & E1000_RAH_AV))
1866                                 continue;
1867                         addr_low = er32(RAL(i));
1868                         mac_addr[0] = (addr_low & 0xFF);
1869                         mac_addr[1] = ((addr_low >> 8) & 0xFF);
1870                         mac_addr[2] = ((addr_low >> 16) & 0xFF);
1871                         mac_addr[3] = ((addr_low >> 24) & 0xFF);
1872                         mac_addr[4] = (addr_high & 0xFF);
1873                         mac_addr[5] = ((addr_high >> 8) & 0xFF);
1874
1875                         ew32(PCH_RAICC(i), ~ether_crc_le(ETH_ALEN, mac_addr));
1876                 }
1877
1878                 /* Write Rx addresses to the PHY */
1879                 e1000_copy_rx_addrs_to_phy_ich8lan(hw);
1880
1881                 /* Enable jumbo frame workaround in the MAC */
1882                 mac_reg = er32(FFLT_DBG);
1883                 mac_reg &= ~(1 << 14);
1884                 mac_reg |= (7 << 15);
1885                 ew32(FFLT_DBG, mac_reg);
1886
1887                 mac_reg = er32(RCTL);
1888                 mac_reg |= E1000_RCTL_SECRC;
1889                 ew32(RCTL, mac_reg);
1890
1891                 ret_val = e1000e_read_kmrn_reg(hw,
1892                                                 E1000_KMRNCTRLSTA_CTRL_OFFSET,
1893                                                 &data);
1894                 if (ret_val)
1895                         return ret_val;
1896                 ret_val = e1000e_write_kmrn_reg(hw,
1897                                                 E1000_KMRNCTRLSTA_CTRL_OFFSET,
1898                                                 data | (1 << 0));
1899                 if (ret_val)
1900                         return ret_val;
1901                 ret_val = e1000e_read_kmrn_reg(hw,
1902                                                 E1000_KMRNCTRLSTA_HD_CTRL,
1903                                                 &data);
1904                 if (ret_val)
1905                         return ret_val;
1906                 data &= ~(0xF << 8);
1907                 data |= (0xB << 8);
1908                 ret_val = e1000e_write_kmrn_reg(hw,
1909                                                 E1000_KMRNCTRLSTA_HD_CTRL,
1910                                                 data);
1911                 if (ret_val)
1912                         return ret_val;
1913
1914                 /* Enable jumbo frame workaround in the PHY */
1915                 e1e_rphy(hw, PHY_REG(769, 23), &data);
1916                 data &= ~(0x7F << 5);
1917                 data |= (0x37 << 5);
1918                 ret_val = e1e_wphy(hw, PHY_REG(769, 23), data);
1919                 if (ret_val)
1920                         return ret_val;
1921                 e1e_rphy(hw, PHY_REG(769, 16), &data);
1922                 data &= ~(1 << 13);
1923                 ret_val = e1e_wphy(hw, PHY_REG(769, 16), data);
1924                 if (ret_val)
1925                         return ret_val;
1926                 e1e_rphy(hw, PHY_REG(776, 20), &data);
1927                 data &= ~(0x3FF << 2);
1928                 data |= (0x1A << 2);
1929                 ret_val = e1e_wphy(hw, PHY_REG(776, 20), data);
1930                 if (ret_val)
1931                         return ret_val;
1932                 ret_val = e1e_wphy(hw, PHY_REG(776, 23), 0xF100);
1933                 if (ret_val)
1934                         return ret_val;
1935                 e1e_rphy(hw, HV_PM_CTRL, &data);
1936                 ret_val = e1e_wphy(hw, HV_PM_CTRL, data | (1 << 10));
1937                 if (ret_val)
1938                         return ret_val;
1939         } else {
1940                 /* Write MAC register values back to h/w defaults */
1941                 mac_reg = er32(FFLT_DBG);
1942                 mac_reg &= ~(0xF << 14);
1943                 ew32(FFLT_DBG, mac_reg);
1944
1945                 mac_reg = er32(RCTL);
1946                 mac_reg &= ~E1000_RCTL_SECRC;
1947                 ew32(RCTL, mac_reg);
1948
1949                 ret_val = e1000e_read_kmrn_reg(hw,
1950                                                 E1000_KMRNCTRLSTA_CTRL_OFFSET,
1951                                                 &data);
1952                 if (ret_val)
1953                         return ret_val;
1954                 ret_val = e1000e_write_kmrn_reg(hw,
1955                                                 E1000_KMRNCTRLSTA_CTRL_OFFSET,
1956                                                 data & ~(1 << 0));
1957                 if (ret_val)
1958                         return ret_val;
1959                 ret_val = e1000e_read_kmrn_reg(hw,
1960                                                 E1000_KMRNCTRLSTA_HD_CTRL,
1961                                                 &data);
1962                 if (ret_val)
1963                         return ret_val;
1964                 data &= ~(0xF << 8);
1965                 data |= (0xB << 8);
1966                 ret_val = e1000e_write_kmrn_reg(hw,
1967                                                 E1000_KMRNCTRLSTA_HD_CTRL,
1968                                                 data);
1969                 if (ret_val)
1970                         return ret_val;
1971
1972                 /* Write PHY register values back to h/w defaults */
1973                 e1e_rphy(hw, PHY_REG(769, 23), &data);
1974                 data &= ~(0x7F << 5);
1975                 ret_val = e1e_wphy(hw, PHY_REG(769, 23), data);
1976                 if (ret_val)
1977                         return ret_val;
1978                 e1e_rphy(hw, PHY_REG(769, 16), &data);
1979                 data |= (1 << 13);
1980                 ret_val = e1e_wphy(hw, PHY_REG(769, 16), data);
1981                 if (ret_val)
1982                         return ret_val;
1983                 e1e_rphy(hw, PHY_REG(776, 20), &data);
1984                 data &= ~(0x3FF << 2);
1985                 data |= (0x8 << 2);
1986                 ret_val = e1e_wphy(hw, PHY_REG(776, 20), data);
1987                 if (ret_val)
1988                         return ret_val;
1989                 ret_val = e1e_wphy(hw, PHY_REG(776, 23), 0x7E00);
1990                 if (ret_val)
1991                         return ret_val;
1992                 e1e_rphy(hw, HV_PM_CTRL, &data);
1993                 ret_val = e1e_wphy(hw, HV_PM_CTRL, data & ~(1 << 10));
1994                 if (ret_val)
1995                         return ret_val;
1996         }
1997
1998         /* re-enable Rx path after enabling/disabling workaround */
1999         return e1e_wphy(hw, PHY_REG(769, 20), phy_reg & ~(1 << 14));
2000 }
2001
2002 /**
2003  *  e1000_lv_phy_workarounds_ich8lan - A series of Phy workarounds to be
2004  *  done after every PHY reset.
2005  **/
2006 static s32 e1000_lv_phy_workarounds_ich8lan(struct e1000_hw *hw)
2007 {
2008         s32 ret_val = 0;
2009
2010         if (hw->mac.type != e1000_pch2lan)
2011                 return 0;
2012
2013         /* Set MDIO slow mode before any other MDIO access */
2014         ret_val = e1000_set_mdio_slow_mode_hv(hw);
2015
2016         ret_val = hw->phy.ops.acquire(hw);
2017         if (ret_val)
2018                 return ret_val;
2019         ret_val = e1e_wphy_locked(hw, I82579_EMI_ADDR, I82579_MSE_THRESHOLD);
2020         if (ret_val)
2021                 goto release;
2022         /* set MSE higher to enable link to stay up when noise is high */
2023         ret_val = e1e_wphy_locked(hw, I82579_EMI_DATA, 0x0034);
2024         if (ret_val)
2025                 goto release;
2026         ret_val = e1e_wphy_locked(hw, I82579_EMI_ADDR, I82579_MSE_LINK_DOWN);
2027         if (ret_val)
2028                 goto release;
2029         /* drop link after 5 times MSE threshold was reached */
2030         ret_val = e1e_wphy_locked(hw, I82579_EMI_DATA, 0x0005);
2031 release:
2032         hw->phy.ops.release(hw);
2033
2034         return ret_val;
2035 }
2036
2037 /**
2038  *  e1000_k1_gig_workaround_lv - K1 Si workaround
2039  *  @hw:   pointer to the HW structure
2040  *
2041  *  Workaround to set the K1 beacon duration for 82579 parts
2042  **/
2043 static s32 e1000_k1_workaround_lv(struct e1000_hw *hw)
2044 {
2045         s32 ret_val = 0;
2046         u16 status_reg = 0;
2047         u32 mac_reg;
2048         u16 phy_reg;
2049
2050         if (hw->mac.type != e1000_pch2lan)
2051                 return 0;
2052
2053         /* Set K1 beacon duration based on 1Gbps speed or otherwise */
2054         ret_val = e1e_rphy(hw, HV_M_STATUS, &status_reg);
2055         if (ret_val)
2056                 return ret_val;
2057
2058         if ((status_reg & (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE))
2059             == (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE)) {
2060                 mac_reg = er32(FEXTNVM4);
2061                 mac_reg &= ~E1000_FEXTNVM4_BEACON_DURATION_MASK;
2062
2063                 ret_val = e1e_rphy(hw, I82579_LPI_CTRL, &phy_reg);
2064                 if (ret_val)
2065                         return ret_val;
2066
2067                 if (status_reg & HV_M_STATUS_SPEED_1000) {
2068                         u16 pm_phy_reg;
2069
2070                         mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_8USEC;
2071                         phy_reg &= ~I82579_LPI_CTRL_FORCE_PLL_LOCK_COUNT;
2072                         /* LV 1G Packet drop issue wa  */
2073                         ret_val = e1e_rphy(hw, HV_PM_CTRL, &pm_phy_reg);
2074                         if (ret_val)
2075                                 return ret_val;
2076                         pm_phy_reg &= ~HV_PM_CTRL_PLL_STOP_IN_K1_GIGA;
2077                         ret_val = e1e_wphy(hw, HV_PM_CTRL, pm_phy_reg);
2078                         if (ret_val)
2079                                 return ret_val;
2080                 } else {
2081                         mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_16USEC;
2082                         phy_reg |= I82579_LPI_CTRL_FORCE_PLL_LOCK_COUNT;
2083                 }
2084                 ew32(FEXTNVM4, mac_reg);
2085                 ret_val = e1e_wphy(hw, I82579_LPI_CTRL, phy_reg);
2086         }
2087
2088         return ret_val;
2089 }
2090
2091 /**
2092  *  e1000_gate_hw_phy_config_ich8lan - disable PHY config via hardware
2093  *  @hw:   pointer to the HW structure
2094  *  @gate: boolean set to true to gate, false to ungate
2095  *
2096  *  Gate/ungate the automatic PHY configuration via hardware; perform
2097  *  the configuration via software instead.
2098  **/
2099 static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate)
2100 {
2101         u32 extcnf_ctrl;
2102
2103         if (hw->mac.type < e1000_pch2lan)
2104                 return;
2105
2106         extcnf_ctrl = er32(EXTCNF_CTRL);
2107
2108         if (gate)
2109                 extcnf_ctrl |= E1000_EXTCNF_CTRL_GATE_PHY_CFG;
2110         else
2111                 extcnf_ctrl &= ~E1000_EXTCNF_CTRL_GATE_PHY_CFG;
2112
2113         ew32(EXTCNF_CTRL, extcnf_ctrl);
2114 }
2115
2116 /**
2117  *  e1000_lan_init_done_ich8lan - Check for PHY config completion
2118  *  @hw: pointer to the HW structure
2119  *
2120  *  Check the appropriate indication the MAC has finished configuring the
2121  *  PHY after a software reset.
2122  **/
2123 static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw)
2124 {
2125         u32 data, loop = E1000_ICH8_LAN_INIT_TIMEOUT;
2126
2127         /* Wait for basic configuration completes before proceeding */
2128         do {
2129                 data = er32(STATUS);
2130                 data &= E1000_STATUS_LAN_INIT_DONE;
2131                 udelay(100);
2132         } while ((!data) && --loop);
2133
2134         /*
2135          * If basic configuration is incomplete before the above loop
2136          * count reaches 0, loading the configuration from NVM will
2137          * leave the PHY in a bad state possibly resulting in no link.
2138          */
2139         if (loop == 0)
2140                 e_dbg("LAN_INIT_DONE not set, increase timeout\n");
2141
2142         /* Clear the Init Done bit for the next init event */
2143         data = er32(STATUS);
2144         data &= ~E1000_STATUS_LAN_INIT_DONE;
2145         ew32(STATUS, data);
2146 }
2147
2148 /**
2149  *  e1000_post_phy_reset_ich8lan - Perform steps required after a PHY reset
2150  *  @hw: pointer to the HW structure
2151  **/
2152 static s32 e1000_post_phy_reset_ich8lan(struct e1000_hw *hw)
2153 {
2154         s32 ret_val = 0;
2155         u16 reg;
2156
2157         if (hw->phy.ops.check_reset_block(hw))
2158                 return 0;
2159
2160         /* Allow time for h/w to get to quiescent state after reset */
2161         usleep_range(10000, 20000);
2162
2163         /* Perform any necessary post-reset workarounds */
2164         switch (hw->mac.type) {
2165         case e1000_pchlan:
2166                 ret_val = e1000_hv_phy_workarounds_ich8lan(hw);
2167                 if (ret_val)
2168                         return ret_val;
2169                 break;
2170         case e1000_pch2lan:
2171                 ret_val = e1000_lv_phy_workarounds_ich8lan(hw);
2172                 if (ret_val)
2173                         return ret_val;
2174                 break;
2175         default:
2176                 break;
2177         }
2178
2179         /* Clear the host wakeup bit after lcd reset */
2180         if (hw->mac.type >= e1000_pchlan) {
2181                 e1e_rphy(hw, BM_PORT_GEN_CFG, &reg);
2182                 reg &= ~BM_WUC_HOST_WU_BIT;
2183                 e1e_wphy(hw, BM_PORT_GEN_CFG, reg);
2184         }
2185
2186         /* Configure the LCD with the extended configuration region in NVM */
2187         ret_val = e1000_sw_lcd_config_ich8lan(hw);
2188         if (ret_val)
2189                 return ret_val;
2190
2191         /* Configure the LCD with the OEM bits in NVM */
2192         ret_val = e1000_oem_bits_config_ich8lan(hw, true);
2193
2194         if (hw->mac.type == e1000_pch2lan) {
2195                 /* Ungate automatic PHY configuration on non-managed 82579 */
2196                 if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
2197                         usleep_range(10000, 20000);
2198                         e1000_gate_hw_phy_config_ich8lan(hw, false);
2199                 }
2200
2201                 /* Set EEE LPI Update Timer to 200usec */
2202                 ret_val = hw->phy.ops.acquire(hw);
2203                 if (ret_val)
2204                         return ret_val;
2205                 ret_val = e1e_wphy_locked(hw, I82579_EMI_ADDR,
2206                                           I82579_LPI_UPDATE_TIMER);
2207                 if (!ret_val)
2208                         ret_val = e1e_wphy_locked(hw, I82579_EMI_DATA, 0x1387);
2209                 hw->phy.ops.release(hw);
2210         }
2211
2212         return ret_val;
2213 }
2214
2215 /**
2216  *  e1000_phy_hw_reset_ich8lan - Performs a PHY reset
2217  *  @hw: pointer to the HW structure
2218  *
2219  *  Resets the PHY
2220  *  This is a function pointer entry point called by drivers
2221  *  or other shared routines.
2222  **/
2223 static s32 e1000_phy_hw_reset_ich8lan(struct e1000_hw *hw)
2224 {
2225         s32 ret_val = 0;
2226
2227         /* Gate automatic PHY configuration by hardware on non-managed 82579 */
2228         if ((hw->mac.type == e1000_pch2lan) &&
2229             !(er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
2230                 e1000_gate_hw_phy_config_ich8lan(hw, true);
2231
2232         ret_val = e1000e_phy_hw_reset_generic(hw);
2233         if (ret_val)
2234                 return ret_val;
2235
2236         return e1000_post_phy_reset_ich8lan(hw);
2237 }
2238
2239 /**
2240  *  e1000_set_lplu_state_pchlan - Set Low Power Link Up state
2241  *  @hw: pointer to the HW structure
2242  *  @active: true to enable LPLU, false to disable
2243  *
2244  *  Sets the LPLU state according to the active flag.  For PCH, if OEM write
2245  *  bit are disabled in the NVM, writing the LPLU bits in the MAC will not set
2246  *  the phy speed. This function will manually set the LPLU bit and restart
2247  *  auto-neg as hw would do. D3 and D0 LPLU will call the same function
2248  *  since it configures the same bit.
2249  **/
2250 static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active)
2251 {
2252         s32 ret_val = 0;
2253         u16 oem_reg;
2254
2255         ret_val = e1e_rphy(hw, HV_OEM_BITS, &oem_reg);
2256         if (ret_val)
2257                 return ret_val;
2258
2259         if (active)
2260                 oem_reg |= HV_OEM_BITS_LPLU;
2261         else
2262                 oem_reg &= ~HV_OEM_BITS_LPLU;
2263
2264         if (!hw->phy.ops.check_reset_block(hw))
2265                 oem_reg |= HV_OEM_BITS_RESTART_AN;
2266
2267         return e1e_wphy(hw, HV_OEM_BITS, oem_reg);
2268 }
2269
2270 /**
2271  *  e1000_set_d0_lplu_state_ich8lan - Set Low Power Linkup D0 state
2272  *  @hw: pointer to the HW structure
2273  *  @active: true to enable LPLU, false to disable
2274  *
2275  *  Sets the LPLU D0 state according to the active flag.  When
2276  *  activating LPLU this function also disables smart speed
2277  *  and vice versa.  LPLU will not be activated unless the
2278  *  device autonegotiation advertisement meets standards of
2279  *  either 10 or 10/100 or 10/100/1000 at all duplexes.
2280  *  This is a function pointer entry point only called by
2281  *  PHY setup routines.
2282  **/
2283 static s32 e1000_set_d0_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
2284 {
2285         struct e1000_phy_info *phy = &hw->phy;
2286         u32 phy_ctrl;
2287         s32 ret_val = 0;
2288         u16 data;
2289
2290         if (phy->type == e1000_phy_ife)
2291                 return 0;
2292
2293         phy_ctrl = er32(PHY_CTRL);
2294
2295         if (active) {
2296                 phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU;
2297                 ew32(PHY_CTRL, phy_ctrl);
2298
2299                 if (phy->type != e1000_phy_igp_3)
2300                         return 0;
2301
2302                 /*
2303                  * Call gig speed drop workaround on LPLU before accessing
2304                  * any PHY registers
2305                  */
2306                 if (hw->mac.type == e1000_ich8lan)
2307                         e1000e_gig_downshift_workaround_ich8lan(hw);
2308
2309                 /* When LPLU is enabled, we should disable SmartSpeed */
2310                 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
2311                 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2312                 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
2313                 if (ret_val)
2314                         return ret_val;
2315         } else {
2316                 phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU;
2317                 ew32(PHY_CTRL, phy_ctrl);
2318
2319                 if (phy->type != e1000_phy_igp_3)
2320                         return 0;
2321
2322                 /*
2323                  * LPLU and SmartSpeed are mutually exclusive.  LPLU is used
2324                  * during Dx states where the power conservation is most
2325                  * important.  During driver activity we should enable
2326                  * SmartSpeed, so performance is maintained.
2327                  */
2328                 if (phy->smart_speed == e1000_smart_speed_on) {
2329                         ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2330                                            &data);
2331                         if (ret_val)
2332                                 return ret_val;
2333
2334                         data |= IGP01E1000_PSCFR_SMART_SPEED;
2335                         ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2336                                            data);
2337                         if (ret_val)
2338                                 return ret_val;
2339                 } else if (phy->smart_speed == e1000_smart_speed_off) {
2340                         ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2341                                            &data);
2342                         if (ret_val)
2343                                 return ret_val;
2344
2345                         data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2346                         ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2347                                            data);
2348                         if (ret_val)
2349                                 return ret_val;
2350                 }
2351         }
2352
2353         return 0;
2354 }
2355
2356 /**
2357  *  e1000_set_d3_lplu_state_ich8lan - Set Low Power Linkup D3 state
2358  *  @hw: pointer to the HW structure
2359  *  @active: true to enable LPLU, false to disable
2360  *
2361  *  Sets the LPLU D3 state according to the active flag.  When
2362  *  activating LPLU this function also disables smart speed
2363  *  and vice versa.  LPLU will not be activated unless the
2364  *  device autonegotiation advertisement meets standards of
2365  *  either 10 or 10/100 or 10/100/1000 at all duplexes.
2366  *  This is a function pointer entry point only called by
2367  *  PHY setup routines.
2368  **/
2369 static s32 e1000_set_d3_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
2370 {
2371         struct e1000_phy_info *phy = &hw->phy;
2372         u32 phy_ctrl;
2373         s32 ret_val = 0;
2374         u16 data;
2375
2376         phy_ctrl = er32(PHY_CTRL);
2377
2378         if (!active) {
2379                 phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU;
2380                 ew32(PHY_CTRL, phy_ctrl);
2381
2382                 if (phy->type != e1000_phy_igp_3)
2383                         return 0;
2384
2385                 /*
2386                  * LPLU and SmartSpeed are mutually exclusive.  LPLU is used
2387                  * during Dx states where the power conservation is most
2388                  * important.  During driver activity we should enable
2389                  * SmartSpeed, so performance is maintained.
2390                  */
2391                 if (phy->smart_speed == e1000_smart_speed_on) {
2392                         ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2393                                            &data);
2394                         if (ret_val)
2395                                 return ret_val;
2396
2397                         data |= IGP01E1000_PSCFR_SMART_SPEED;
2398                         ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2399                                            data);
2400                         if (ret_val)
2401                                 return ret_val;
2402                 } else if (phy->smart_speed == e1000_smart_speed_off) {
2403                         ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2404                                            &data);
2405                         if (ret_val)
2406                                 return ret_val;
2407
2408                         data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2409                         ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2410                                            data);
2411                         if (ret_val)
2412                                 return ret_val;
2413                 }
2414         } else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
2415                    (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
2416                    (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
2417                 phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU;
2418                 ew32(PHY_CTRL, phy_ctrl);
2419
2420                 if (phy->type != e1000_phy_igp_3)
2421                         return 0;
2422
2423                 /*
2424                  * Call gig speed drop workaround on LPLU before accessing
2425                  * any PHY registers
2426                  */
2427                 if (hw->mac.type == e1000_ich8lan)
2428                         e1000e_gig_downshift_workaround_ich8lan(hw);
2429
2430                 /* When LPLU is enabled, we should disable SmartSpeed */
2431                 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
2432                 if (ret_val)
2433                         return ret_val;
2434
2435                 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2436                 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
2437         }
2438
2439         return ret_val;
2440 }
2441
2442 /**
2443  *  e1000_valid_nvm_bank_detect_ich8lan - finds out the valid bank 0 or 1
2444  *  @hw: pointer to the HW structure
2445  *  @bank:  pointer to the variable that returns the active bank
2446  *
2447  *  Reads signature byte from the NVM using the flash access registers.
2448  *  Word 0x13 bits 15:14 = 10b indicate a valid signature for that bank.
2449  **/
2450 static s32 e1000_valid_nvm_bank_detect_ich8lan(struct e1000_hw *hw, u32 *bank)
2451 {
2452         u32 eecd;
2453         struct e1000_nvm_info *nvm = &hw->nvm;
2454         u32 bank1_offset = nvm->flash_bank_size * sizeof(u16);
2455         u32 act_offset = E1000_ICH_NVM_SIG_WORD * 2 + 1;
2456         u8 sig_byte = 0;
2457         s32 ret_val;
2458
2459         switch (hw->mac.type) {
2460         case e1000_ich8lan:
2461         case e1000_ich9lan:
2462                 eecd = er32(EECD);
2463                 if ((eecd & E1000_EECD_SEC1VAL_VALID_MASK) ==
2464                     E1000_EECD_SEC1VAL_VALID_MASK) {
2465                         if (eecd & E1000_EECD_SEC1VAL)
2466                                 *bank = 1;
2467                         else
2468                                 *bank = 0;
2469
2470                         return 0;
2471                 }
2472                 e_dbg("Unable to determine valid NVM bank via EEC - reading flash signature\n");
2473                 /* fall-thru */
2474         default:
2475                 /* set bank to 0 in case flash read fails */
2476                 *bank = 0;
2477
2478                 /* Check bank 0 */
2479                 ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset,
2480                                                         &sig_byte);
2481                 if (ret_val)
2482                         return ret_val;
2483                 if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
2484                     E1000_ICH_NVM_SIG_VALUE) {
2485                         *bank = 0;
2486                         return 0;
2487                 }
2488
2489                 /* Check bank 1 */
2490                 ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset +
2491                                                         bank1_offset,
2492                                                         &sig_byte);
2493                 if (ret_val)
2494                         return ret_val;
2495                 if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
2496                     E1000_ICH_NVM_SIG_VALUE) {
2497                         *bank = 1;
2498                         return 0;
2499                 }
2500
2501                 e_dbg("ERROR: No valid NVM bank present\n");
2502                 return -E1000_ERR_NVM;
2503         }
2504 }
2505
2506 /**
2507  *  e1000_read_nvm_ich8lan - Read word(s) from the NVM
2508  *  @hw: pointer to the HW structure
2509  *  @offset: The offset (in bytes) of the word(s) to read.
2510  *  @words: Size of data to read in words
2511  *  @data: Pointer to the word(s) to read at offset.
2512  *
2513  *  Reads a word(s) from the NVM using the flash access registers.
2514  **/
2515 static s32 e1000_read_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
2516                                   u16 *data)
2517 {
2518         struct e1000_nvm_info *nvm = &hw->nvm;
2519         struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
2520         u32 act_offset;
2521         s32 ret_val = 0;
2522         u32 bank = 0;
2523         u16 i, word;
2524
2525         if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
2526             (words == 0)) {
2527                 e_dbg("nvm parameter(s) out of bounds\n");
2528                 ret_val = -E1000_ERR_NVM;
2529                 goto out;
2530         }
2531
2532         nvm->ops.acquire(hw);
2533
2534         ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
2535         if (ret_val) {
2536                 e_dbg("Could not detect valid bank, assuming bank 0\n");
2537                 bank = 0;
2538         }
2539
2540         act_offset = (bank) ? nvm->flash_bank_size : 0;
2541         act_offset += offset;
2542
2543         ret_val = 0;
2544         for (i = 0; i < words; i++) {
2545                 if (dev_spec->shadow_ram[offset+i].modified) {
2546                         data[i] = dev_spec->shadow_ram[offset+i].value;
2547                 } else {
2548                         ret_val = e1000_read_flash_word_ich8lan(hw,
2549                                                                 act_offset + i,
2550                                                                 &word);
2551                         if (ret_val)
2552                                 break;
2553                         data[i] = word;
2554                 }
2555         }
2556
2557         nvm->ops.release(hw);
2558
2559 out:
2560         if (ret_val)
2561                 e_dbg("NVM read error: %d\n", ret_val);
2562
2563         return ret_val;
2564 }
2565
2566 /**
2567  *  e1000_flash_cycle_init_ich8lan - Initialize flash
2568  *  @hw: pointer to the HW structure
2569  *
2570  *  This function does initial flash setup so that a new read/write/erase cycle
2571  *  can be started.
2572  **/
2573 static s32 e1000_flash_cycle_init_ich8lan(struct e1000_hw *hw)
2574 {
2575         union ich8_hws_flash_status hsfsts;
2576         s32 ret_val = -E1000_ERR_NVM;
2577
2578         hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
2579
2580         /* Check if the flash descriptor is valid */
2581         if (!hsfsts.hsf_status.fldesvalid) {
2582                 e_dbg("Flash descriptor invalid.  SW Sequencing must be used.\n");
2583                 return -E1000_ERR_NVM;
2584         }
2585
2586         /* Clear FCERR and DAEL in hw status by writing 1 */
2587         hsfsts.hsf_status.flcerr = 1;
2588         hsfsts.hsf_status.dael = 1;
2589
2590         ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
2591
2592         /*
2593          * Either we should have a hardware SPI cycle in progress
2594          * bit to check against, in order to start a new cycle or
2595          * FDONE bit should be changed in the hardware so that it
2596          * is 1 after hardware reset, which can then be used as an
2597          * indication whether a cycle is in progress or has been
2598          * completed.
2599          */
2600
2601         if (!hsfsts.hsf_status.flcinprog) {
2602                 /*
2603                  * There is no cycle running at present,
2604                  * so we can start a cycle.
2605                  * Begin by setting Flash Cycle Done.
2606                  */
2607                 hsfsts.hsf_status.flcdone = 1;
2608                 ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
2609                 ret_val = 0;
2610         } else {
2611                 s32 i;
2612
2613                 /*
2614                  * Otherwise poll for sometime so the current
2615                  * cycle has a chance to end before giving up.
2616                  */
2617                 for (i = 0; i < ICH_FLASH_READ_COMMAND_TIMEOUT; i++) {
2618                         hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
2619                         if (!hsfsts.hsf_status.flcinprog) {
2620                                 ret_val = 0;
2621                                 break;
2622                         }
2623                         udelay(1);
2624                 }
2625                 if (!ret_val) {
2626                         /*
2627                          * Successful in waiting for previous cycle to timeout,
2628                          * now set the Flash Cycle Done.
2629                          */
2630                         hsfsts.hsf_status.flcdone = 1;
2631                         ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
2632                 } else {
2633                         e_dbg("Flash controller busy, cannot get access\n");
2634                 }
2635         }
2636
2637         return ret_val;
2638 }
2639
2640 /**
2641  *  e1000_flash_cycle_ich8lan - Starts flash cycle (read/write/erase)
2642  *  @hw: pointer to the HW structure
2643  *  @timeout: maximum time to wait for completion
2644  *
2645  *  This function starts a flash cycle and waits for its completion.
2646  **/
2647 static s32 e1000_flash_cycle_ich8lan(struct e1000_hw *hw, u32 timeout)
2648 {
2649         union ich8_hws_flash_ctrl hsflctl;
2650         union ich8_hws_flash_status hsfsts;
2651         u32 i = 0;
2652
2653         /* Start a cycle by writing 1 in Flash Cycle Go in Hw Flash Control */
2654         hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
2655         hsflctl.hsf_ctrl.flcgo = 1;
2656         ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
2657
2658         /* wait till FDONE bit is set to 1 */
2659         do {
2660                 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
2661                 if (hsfsts.hsf_status.flcdone)
2662                         break;
2663                 udelay(1);
2664         } while (i++ < timeout);
2665
2666         if (hsfsts.hsf_status.flcdone && !hsfsts.hsf_status.flcerr)
2667                 return 0;
2668
2669         return -E1000_ERR_NVM;
2670 }
2671
2672 /**
2673  *  e1000_read_flash_word_ich8lan - Read word from flash
2674  *  @hw: pointer to the HW structure
2675  *  @offset: offset to data location
2676  *  @data: pointer to the location for storing the data
2677  *
2678  *  Reads the flash word at offset into data.  Offset is converted
2679  *  to bytes before read.
2680  **/
2681 static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
2682                                          u16 *data)
2683 {
2684         /* Must convert offset into bytes. */
2685         offset <<= 1;
2686
2687         return e1000_read_flash_data_ich8lan(hw, offset, 2, data);
2688 }
2689
2690 /**
2691  *  e1000_read_flash_byte_ich8lan - Read byte from flash
2692  *  @hw: pointer to the HW structure
2693  *  @offset: The offset of the byte to read.
2694  *  @data: Pointer to a byte to store the value read.
2695  *
2696  *  Reads a single byte from the NVM using the flash access registers.
2697  **/
2698 static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
2699                                          u8 *data)
2700 {
2701         s32 ret_val;
2702         u16 word = 0;
2703
2704         ret_val = e1000_read_flash_data_ich8lan(hw, offset, 1, &word);
2705         if (ret_val)
2706                 return ret_val;
2707
2708         *data = (u8)word;
2709
2710         return 0;
2711 }
2712
2713 /**
2714  *  e1000_read_flash_data_ich8lan - Read byte or word from NVM
2715  *  @hw: pointer to the HW structure
2716  *  @offset: The offset (in bytes) of the byte or word to read.
2717  *  @size: Size of data to read, 1=byte 2=word
2718  *  @data: Pointer to the word to store the value read.
2719  *
2720  *  Reads a byte or word from the NVM using the flash access registers.
2721  **/
2722 static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
2723                                          u8 size, u16 *data)
2724 {
2725         union ich8_hws_flash_status hsfsts;
2726         union ich8_hws_flash_ctrl hsflctl;
2727         u32 flash_linear_addr;
2728         u32 flash_data = 0;
2729         s32 ret_val = -E1000_ERR_NVM;
2730         u8 count = 0;
2731
2732         if (size < 1  || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
2733                 return -E1000_ERR_NVM;
2734
2735         flash_linear_addr = (ICH_FLASH_LINEAR_ADDR_MASK & offset) +
2736                             hw->nvm.flash_base_addr;
2737
2738         do {
2739                 udelay(1);
2740                 /* Steps */
2741                 ret_val = e1000_flash_cycle_init_ich8lan(hw);
2742                 if (ret_val)
2743                         break;
2744
2745                 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
2746                 /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
2747                 hsflctl.hsf_ctrl.fldbcount = size - 1;
2748                 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ;
2749                 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
2750
2751                 ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
2752
2753                 ret_val = e1000_flash_cycle_ich8lan(hw,
2754                                                 ICH_FLASH_READ_COMMAND_TIMEOUT);
2755
2756                 /*
2757                  * Check if FCERR is set to 1, if set to 1, clear it
2758                  * and try the whole sequence a few more times, else
2759                  * read in (shift in) the Flash Data0, the order is
2760                  * least significant byte first msb to lsb
2761                  */
2762                 if (!ret_val) {
2763                         flash_data = er32flash(ICH_FLASH_FDATA0);
2764                         if (size == 1)
2765                                 *data = (u8)(flash_data & 0x000000FF);
2766                         else if (size == 2)
2767                                 *data = (u16)(flash_data & 0x0000FFFF);
2768                         break;
2769                 } else {
2770                         /*
2771                          * If we've gotten here, then things are probably
2772                          * completely hosed, but if the error condition is
2773                          * detected, it won't hurt to give it another try...
2774                          * ICH_FLASH_CYCLE_REPEAT_COUNT times.
2775                          */
2776                         hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
2777                         if (hsfsts.hsf_status.flcerr) {
2778                                 /* Repeat for some time before giving up. */
2779                                 continue;
2780                         } else if (!hsfsts.hsf_status.flcdone) {
2781                                 e_dbg("Timeout error - flash cycle did not complete.\n");
2782                                 break;
2783                         }
2784                 }
2785         } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
2786
2787         return ret_val;
2788 }
2789
2790 /**
2791  *  e1000_write_nvm_ich8lan - Write word(s) to the NVM
2792  *  @hw: pointer to the HW structure
2793  *  @offset: The offset (in bytes) of the word(s) to write.
2794  *  @words: Size of data to write in words
2795  *  @data: Pointer to the word(s) to write at offset.
2796  *
2797  *  Writes a byte or word to the NVM using the flash access registers.
2798  **/
2799 static s32 e1000_write_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
2800                                    u16 *data)
2801 {
2802         struct e1000_nvm_info *nvm = &hw->nvm;
2803         struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
2804         u16 i;
2805
2806         if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
2807             (words == 0)) {
2808                 e_dbg("nvm parameter(s) out of bounds\n");
2809                 return -E1000_ERR_NVM;
2810         }
2811
2812         nvm->ops.acquire(hw);
2813
2814         for (i = 0; i < words; i++) {
2815                 dev_spec->shadow_ram[offset+i].modified = true;
2816                 dev_spec->shadow_ram[offset+i].value = data[i];
2817         }
2818
2819         nvm->ops.release(hw);
2820
2821         return 0;
2822 }
2823
2824 /**
2825  *  e1000_update_nvm_checksum_ich8lan - Update the checksum for NVM
2826  *  @hw: pointer to the HW structure
2827  *
2828  *  The NVM checksum is updated by calling the generic update_nvm_checksum,
2829  *  which writes the checksum to the shadow ram.  The changes in the shadow
2830  *  ram are then committed to the EEPROM by processing each bank at a time
2831  *  checking for the modified bit and writing only the pending changes.
2832  *  After a successful commit, the shadow ram is cleared and is ready for
2833  *  future writes.
2834  **/
2835 static s32 e1000_update_nvm_checksum_ich8lan(struct e1000_hw *hw)
2836 {
2837         struct e1000_nvm_info *nvm = &hw->nvm;
2838         struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
2839         u32 i, act_offset, new_bank_offset, old_bank_offset, bank;
2840         s32 ret_val;
2841         u16 data;
2842
2843         ret_val = e1000e_update_nvm_checksum_generic(hw);
2844         if (ret_val)
2845                 goto out;
2846
2847         if (nvm->type != e1000_nvm_flash_sw)
2848                 goto out;
2849
2850         nvm->ops.acquire(hw);
2851
2852         /*
2853          * We're writing to the opposite bank so if we're on bank 1,
2854          * write to bank 0 etc.  We also need to erase the segment that
2855          * is going to be written
2856          */
2857         ret_val =  e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
2858         if (ret_val) {
2859                 e_dbg("Could not detect valid bank, assuming bank 0\n");
2860                 bank = 0;
2861         }
2862
2863         if (bank == 0) {
2864                 new_bank_offset = nvm->flash_bank_size;
2865                 old_bank_offset = 0;
2866                 ret_val = e1000_erase_flash_bank_ich8lan(hw, 1);
2867                 if (ret_val)
2868                         goto release;
2869         } else {
2870                 old_bank_offset = nvm->flash_bank_size;
2871                 new_bank_offset = 0;
2872                 ret_val = e1000_erase_flash_bank_ich8lan(hw, 0);
2873                 if (ret_val)
2874                         goto release;
2875         }
2876
2877         for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
2878                 /*
2879                  * Determine whether to write the value stored
2880                  * in the other NVM bank or a modified value stored
2881                  * in the shadow RAM
2882                  */
2883                 if (dev_spec->shadow_ram[i].modified) {
2884                         data = dev_spec->shadow_ram[i].value;
2885                 } else {
2886                         ret_val = e1000_read_flash_word_ich8lan(hw, i +
2887                                                                 old_bank_offset,
2888                                                                 &data);
2889                         if (ret_val)
2890                                 break;
2891                 }
2892
2893                 /*
2894                  * If the word is 0x13, then make sure the signature bits
2895                  * (15:14) are 11b until the commit has completed.
2896                  * This will allow us to write 10b which indicates the
2897                  * signature is valid.  We want to do this after the write
2898                  * has completed so that we don't mark the segment valid
2899                  * while the write is still in progress
2900                  */
2901                 if (i == E1000_ICH_NVM_SIG_WORD)
2902                         data |= E1000_ICH_NVM_SIG_MASK;
2903
2904                 /* Convert offset to bytes. */
2905                 act_offset = (i + new_bank_offset) << 1;
2906
2907                 udelay(100);
2908                 /* Write the bytes to the new bank. */
2909                 ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
2910                                                                act_offset,
2911                                                                (u8)data);
2912                 if (ret_val)
2913                         break;
2914
2915                 udelay(100);
2916                 ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
2917                                                           act_offset + 1,
2918                                                           (u8)(data >> 8));
2919                 if (ret_val)
2920                         break;
2921         }
2922
2923         /*
2924          * Don't bother writing the segment valid bits if sector
2925          * programming failed.
2926          */
2927         if (ret_val) {
2928                 /* Possibly read-only, see e1000e_write_protect_nvm_ich8lan() */
2929                 e_dbg("Flash commit failed.\n");
2930                 goto release;
2931         }
2932
2933         /*
2934          * Finally validate the new segment by setting bit 15:14
2935          * to 10b in word 0x13 , this can be done without an
2936          * erase as well since these bits are 11 to start with
2937          * and we need to change bit 14 to 0b
2938          */
2939         act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD;
2940         ret_val = e1000_read_flash_word_ich8lan(hw, act_offset, &data);
2941         if (ret_val)
2942                 goto release;
2943
2944         data &= 0xBFFF;
2945         ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
2946                                                        act_offset * 2 + 1,
2947                                                        (u8)(data >> 8));
2948         if (ret_val)
2949                 goto release;
2950
2951         /*
2952          * And invalidate the previously valid segment by setting
2953          * its signature word (0x13) high_byte to 0b. This can be
2954          * done without an erase because flash erase sets all bits
2955          * to 1's. We can write 1's to 0's without an erase
2956          */
2957         act_offset = (old_bank_offset + E1000_ICH_NVM_SIG_WORD) * 2 + 1;
2958         ret_val = e1000_retry_write_flash_byte_ich8lan(hw, act_offset, 0);
2959         if (ret_val)
2960                 goto release;
2961
2962         /* Great!  Everything worked, we can now clear the cached entries. */
2963         for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
2964                 dev_spec->shadow_ram[i].modified = false;
2965                 dev_spec->shadow_ram[i].value = 0xFFFF;
2966         }
2967
2968 release:
2969         nvm->ops.release(hw);
2970
2971         /*
2972          * Reload the EEPROM, or else modifications will not appear
2973          * until after the next adapter reset.
2974          */
2975         if (!ret_val) {
2976                 nvm->ops.reload(hw);
2977                 usleep_range(10000, 20000);
2978         }
2979
2980 out:
2981         if (ret_val)
2982                 e_dbg("NVM update error: %d\n", ret_val);
2983
2984         return ret_val;
2985 }
2986
2987 /**
2988  *  e1000_validate_nvm_checksum_ich8lan - Validate EEPROM checksum
2989  *  @hw: pointer to the HW structure
2990  *
2991  *  Check to see if checksum needs to be fixed by reading bit 6 in word 0x19.
2992  *  If the bit is 0, that the EEPROM had been modified, but the checksum was not
2993  *  calculated, in which case we need to calculate the checksum and set bit 6.
2994  **/
2995 static s32 e1000_validate_nvm_checksum_ich8lan(struct e1000_hw *hw)
2996 {
2997         s32 ret_val;
2998         u16 data;
2999
3000         /*
3001          * Read 0x19 and check bit 6.  If this bit is 0, the checksum
3002          * needs to be fixed.  This bit is an indication that the NVM
3003          * was prepared by OEM software and did not calculate the
3004          * checksum...a likely scenario.
3005          */
3006         ret_val = e1000_read_nvm(hw, 0x19, 1, &data);
3007         if (ret_val)
3008                 return ret_val;
3009
3010         if (!(data & 0x40)) {
3011                 data |= 0x40;
3012                 ret_val = e1000_write_nvm(hw, 0x19, 1, &data);
3013                 if (ret_val)
3014                         return ret_val;
3015                 ret_val = e1000e_update_nvm_checksum(hw);
3016                 if (ret_val)
3017                         return ret_val;
3018         }
3019
3020         return e1000e_validate_nvm_checksum_generic(hw);
3021 }
3022
3023 /**
3024  *  e1000e_write_protect_nvm_ich8lan - Make the NVM read-only
3025  *  @hw: pointer to the HW structure
3026  *
3027  *  To prevent malicious write/erase of the NVM, set it to be read-only
3028  *  so that the hardware ignores all write/erase cycles of the NVM via
3029  *  the flash control registers.  The shadow-ram copy of the NVM will
3030  *  still be updated, however any updates to this copy will not stick
3031  *  across driver reloads.
3032  **/
3033 void e1000e_write_protect_nvm_ich8lan(struct e1000_hw *hw)
3034 {
3035         struct e1000_nvm_info *nvm = &hw->nvm;
3036         union ich8_flash_protected_range pr0;
3037         union ich8_hws_flash_status hsfsts;
3038         u32 gfpreg;
3039
3040         nvm->ops.acquire(hw);
3041
3042         gfpreg = er32flash(ICH_FLASH_GFPREG);
3043
3044         /* Write-protect GbE Sector of NVM */
3045         pr0.regval = er32flash(ICH_FLASH_PR0);
3046         pr0.range.base = gfpreg & FLASH_GFPREG_BASE_MASK;
3047         pr0.range.limit = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK);
3048         pr0.range.wpe = true;
3049         ew32flash(ICH_FLASH_PR0, pr0.regval);
3050
3051         /*
3052          * Lock down a subset of GbE Flash Control Registers, e.g.
3053          * PR0 to prevent the write-protection from being lifted.
3054          * Once FLOCKDN is set, the registers protected by it cannot
3055          * be written until FLOCKDN is cleared by a hardware reset.
3056          */
3057         hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3058         hsfsts.hsf_status.flockdn = true;
3059         ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval);
3060
3061         nvm->ops.release(hw);
3062 }
3063
3064 /**
3065  *  e1000_write_flash_data_ich8lan - Writes bytes to the NVM
3066  *  @hw: pointer to the HW structure
3067  *  @offset: The offset (in bytes) of the byte/word to read.
3068  *  @size: Size of data to read, 1=byte 2=word
3069  *  @data: The byte(s) to write to the NVM.
3070  *
3071  *  Writes one/two bytes to the NVM using the flash access registers.
3072  **/
3073 static s32 e1000_write_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
3074                                           u8 size, u16 data)
3075 {
3076         union ich8_hws_flash_status hsfsts;
3077         union ich8_hws_flash_ctrl hsflctl;
3078         u32 flash_linear_addr;
3079         u32 flash_data = 0;
3080         s32 ret_val;
3081         u8 count = 0;
3082
3083         if (size < 1 || size > 2 || data > size * 0xff ||
3084             offset > ICH_FLASH_LINEAR_ADDR_MASK)
3085                 return -E1000_ERR_NVM;
3086
3087         flash_linear_addr = (ICH_FLASH_LINEAR_ADDR_MASK & offset) +
3088                             hw->nvm.flash_base_addr;
3089
3090         do {
3091                 udelay(1);
3092                 /* Steps */
3093                 ret_val = e1000_flash_cycle_init_ich8lan(hw);
3094                 if (ret_val)
3095                         break;
3096
3097                 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
3098                 /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
3099                 hsflctl.hsf_ctrl.fldbcount = size -1;
3100                 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE;
3101                 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
3102
3103                 ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
3104
3105                 if (size == 1)
3106                         flash_data = (u32)data & 0x00FF;
3107                 else
3108                         flash_data = (u32)data;
3109
3110                 ew32flash(ICH_FLASH_FDATA0, flash_data);
3111
3112                 /*
3113                  * check if FCERR is set to 1 , if set to 1, clear it
3114                  * and try the whole sequence a few more times else done
3115                  */
3116                 ret_val = e1000_flash_cycle_ich8lan(hw,
3117                                                ICH_FLASH_WRITE_COMMAND_TIMEOUT);
3118                 if (!ret_val)
3119                         break;
3120
3121                 /*
3122                  * If we're here, then things are most likely
3123                  * completely hosed, but if the error condition
3124                  * is detected, it won't hurt to give it another
3125                  * try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
3126                  */
3127                 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3128                 if (hsfsts.hsf_status.flcerr)
3129                         /* Repeat for some time before giving up. */
3130                         continue;
3131                 if (!hsfsts.hsf_status.flcdone) {
3132                         e_dbg("Timeout error - flash cycle did not complete.\n");
3133                         break;
3134                 }
3135         } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
3136
3137         return ret_val;
3138 }
3139
3140 /**
3141  *  e1000_write_flash_byte_ich8lan - Write a single byte to NVM
3142  *  @hw: pointer to the HW structure
3143  *  @offset: The index of the byte to read.
3144  *  @data: The byte to write to the NVM.
3145  *
3146  *  Writes a single byte to the NVM using the flash access registers.
3147  **/
3148 static s32 e1000_write_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
3149                                           u8 data)
3150 {
3151         u16 word = (u16)data;
3152
3153         return e1000_write_flash_data_ich8lan(hw, offset, 1, word);
3154 }
3155
3156 /**
3157  *  e1000_retry_write_flash_byte_ich8lan - Writes a single byte to NVM
3158  *  @hw: pointer to the HW structure
3159  *  @offset: The offset of the byte to write.
3160  *  @byte: The byte to write to the NVM.
3161  *
3162  *  Writes a single byte to the NVM using the flash access registers.
3163  *  Goes through a retry algorithm before giving up.
3164  **/
3165 static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
3166                                                 u32 offset, u8 byte)
3167 {
3168         s32 ret_val;
3169         u16 program_retries;
3170
3171         ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
3172         if (!ret_val)
3173                 return ret_val;
3174
3175         for (program_retries = 0; program_retries < 100; program_retries++) {
3176                 e_dbg("Retrying Byte %2.2X at offset %u\n", byte, offset);
3177                 udelay(100);
3178                 ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
3179                 if (!ret_val)
3180                         break;
3181         }
3182         if (program_retries == 100)
3183                 return -E1000_ERR_NVM;
3184
3185         return 0;
3186 }
3187
3188 /**
3189  *  e1000_erase_flash_bank_ich8lan - Erase a bank (4k) from NVM
3190  *  @hw: pointer to the HW structure
3191  *  @bank: 0 for first bank, 1 for second bank, etc.
3192  *
3193  *  Erases the bank specified. Each bank is a 4k block. Banks are 0 based.
3194  *  bank N is 4096 * N + flash_reg_addr.
3195  **/
3196 static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank)
3197 {
3198         struct e1000_nvm_info *nvm = &hw->nvm;
3199         union ich8_hws_flash_status hsfsts;
3200         union ich8_hws_flash_ctrl hsflctl;
3201         u32 flash_linear_addr;
3202         /* bank size is in 16bit words - adjust to bytes */
3203         u32 flash_bank_size = nvm->flash_bank_size * 2;
3204         s32 ret_val;
3205         s32 count = 0;
3206         s32 j, iteration, sector_size;
3207
3208         hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3209
3210         /*
3211          * Determine HW Sector size: Read BERASE bits of hw flash status
3212          * register
3213          * 00: The Hw sector is 256 bytes, hence we need to erase 16
3214          *     consecutive sectors.  The start index for the nth Hw sector
3215          *     can be calculated as = bank * 4096 + n * 256
3216          * 01: The Hw sector is 4K bytes, hence we need to erase 1 sector.
3217          *     The start index for the nth Hw sector can be calculated
3218          *     as = bank * 4096
3219          * 10: The Hw sector is 8K bytes, nth sector = bank * 8192
3220          *     (ich9 only, otherwise error condition)
3221          * 11: The Hw sector is 64K bytes, nth sector = bank * 65536
3222          */
3223         switch (hsfsts.hsf_status.berasesz) {
3224         case 0:
3225                 /* Hw sector size 256 */
3226                 sector_size = ICH_FLASH_SEG_SIZE_256;
3227                 iteration = flash_bank_size / ICH_FLASH_SEG_SIZE_256;
3228                 break;
3229         case 1:
3230                 sector_size = ICH_FLASH_SEG_SIZE_4K;
3231                 iteration = 1;
3232                 break;
3233         case 2:
3234                 sector_size = ICH_FLASH_SEG_SIZE_8K;
3235                 iteration = 1;
3236                 break;
3237         case 3:
3238                 sector_size = ICH_FLASH_SEG_SIZE_64K;
3239                 iteration = 1;
3240                 break;
3241         default:
3242                 return -E1000_ERR_NVM;
3243         }
3244
3245         /* Start with the base address, then add the sector offset. */
3246         flash_linear_addr = hw->nvm.flash_base_addr;
3247         flash_linear_addr += (bank) ? flash_bank_size : 0;
3248
3249         for (j = 0; j < iteration ; j++) {
3250                 do {
3251                         /* Steps */
3252                         ret_val = e1000_flash_cycle_init_ich8lan(hw);
3253                         if (ret_val)
3254                                 return ret_val;
3255
3256                         /*
3257                          * Write a value 11 (block Erase) in Flash
3258                          * Cycle field in hw flash control
3259                          */
3260                         hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
3261                         hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_ERASE;
3262                         ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
3263
3264                         /*
3265                          * Write the last 24 bits of an index within the
3266                          * block into Flash Linear address field in Flash
3267                          * Address.
3268                          */
3269                         flash_linear_addr += (j * sector_size);
3270                         ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
3271
3272                         ret_val = e1000_flash_cycle_ich8lan(hw,
3273                                                ICH_FLASH_ERASE_COMMAND_TIMEOUT);
3274                         if (!ret_val)
3275                                 break;
3276
3277                         /*
3278                          * Check if FCERR is set to 1.  If 1,
3279                          * clear it and try the whole sequence
3280                          * a few more times else Done
3281                          */
3282                         hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3283                         if (hsfsts.hsf_status.flcerr)
3284                                 /* repeat for some time before giving up */
3285                                 continue;
3286                         else if (!hsfsts.hsf_status.flcdone)
3287                                 return ret_val;
3288                 } while (++count < ICH_FLASH_CYCLE_REPEAT_COUNT);
3289         }
3290
3291         return 0;
3292 }
3293
3294 /**
3295  *  e1000_valid_led_default_ich8lan - Set the default LED settings
3296  *  @hw: pointer to the HW structure
3297  *  @data: Pointer to the LED settings
3298  *
3299  *  Reads the LED default settings from the NVM to data.  If the NVM LED
3300  *  settings is all 0's or F's, set the LED default to a valid LED default
3301  *  setting.
3302  **/
3303 static s32 e1000_valid_led_default_ich8lan(struct e1000_hw *hw, u16 *data)
3304 {
3305         s32 ret_val;
3306
3307         ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
3308         if (ret_val) {
3309                 e_dbg("NVM Read Error\n");
3310                 return ret_val;
3311         }
3312
3313         if (*data == ID_LED_RESERVED_0000 ||
3314             *data == ID_LED_RESERVED_FFFF)
3315                 *data = ID_LED_DEFAULT_ICH8LAN;
3316
3317         return 0;
3318 }
3319
3320 /**
3321  *  e1000_id_led_init_pchlan - store LED configurations
3322  *  @hw: pointer to the HW structure
3323  *
3324  *  PCH does not control LEDs via the LEDCTL register, rather it uses
3325  *  the PHY LED configuration register.
3326  *
3327  *  PCH also does not have an "always on" or "always off" mode which
3328  *  complicates the ID feature.  Instead of using the "on" mode to indicate
3329  *  in ledctl_mode2 the LEDs to use for ID (see e1000e_id_led_init_generic()),
3330  *  use "link_up" mode.  The LEDs will still ID on request if there is no
3331  *  link based on logic in e1000_led_[on|off]_pchlan().
3332  **/
3333 static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw)
3334 {
3335         struct e1000_mac_info *mac = &hw->mac;
3336         s32 ret_val;
3337         const u32 ledctl_on = E1000_LEDCTL_MODE_LINK_UP;
3338         const u32 ledctl_off = E1000_LEDCTL_MODE_LINK_UP | E1000_PHY_LED0_IVRT;
3339         u16 data, i, temp, shift;
3340
3341         /* Get default ID LED modes */
3342         ret_val = hw->nvm.ops.valid_led_default(hw, &data);
3343         if (ret_val)
3344                 return ret_val;
3345
3346         mac->ledctl_default = er32(LEDCTL);
3347         mac->ledctl_mode1 = mac->ledctl_default;
3348         mac->ledctl_mode2 = mac->ledctl_default;
3349
3350         for (i = 0; i < 4; i++) {
3351                 temp = (data >> (i << 2)) & E1000_LEDCTL_LED0_MODE_MASK;
3352                 shift = (i * 5);
3353                 switch (temp) {
3354                 case ID_LED_ON1_DEF2:
3355                 case ID_LED_ON1_ON2:
3356                 case ID_LED_ON1_OFF2:
3357                         mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
3358                         mac->ledctl_mode1 |= (ledctl_on << shift);
3359                         break;
3360                 case ID_LED_OFF1_DEF2:
3361                 case ID_LED_OFF1_ON2:
3362                 case ID_LED_OFF1_OFF2:
3363                         mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
3364                         mac->ledctl_mode1 |= (ledctl_off << shift);
3365                         break;
3366                 default:
3367                         /* Do nothing */
3368                         break;
3369                 }
3370                 switch (temp) {
3371                 case ID_LED_DEF1_ON2:
3372                 case ID_LED_ON1_ON2:
3373                 case ID_LED_OFF1_ON2:
3374                         mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
3375                         mac->ledctl_mode2 |= (ledctl_on << shift);
3376                         break;
3377                 case ID_LED_DEF1_OFF2:
3378                 case ID_LED_ON1_OFF2:
3379                 case ID_LED_OFF1_OFF2:
3380                         mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
3381                         mac->ledctl_mode2 |= (ledctl_off << shift);
3382                         break;
3383                 default:
3384                         /* Do nothing */
3385                         break;
3386                 }
3387         }
3388
3389         return 0;
3390 }
3391
3392 /**
3393  *  e1000_get_bus_info_ich8lan - Get/Set the bus type and width
3394  *  @hw: pointer to the HW structure
3395  *
3396  *  ICH8 use the PCI Express bus, but does not contain a PCI Express Capability
3397  *  register, so the the bus width is hard coded.
3398  **/
3399 static s32 e1000_get_bus_info_ich8lan(struct e1000_hw *hw)
3400 {
3401         struct e1000_bus_info *bus = &hw->bus;
3402         s32 ret_val;
3403
3404         ret_val = e1000e_get_bus_info_pcie(hw);
3405
3406         /*
3407          * ICH devices are "PCI Express"-ish.  They have
3408          * a configuration space, but do not contain
3409          * PCI Express Capability registers, so bus width
3410          * must be hardcoded.
3411          */
3412         if (bus->width == e1000_bus_width_unknown)
3413                 bus->width = e1000_bus_width_pcie_x1;
3414
3415         return ret_val;
3416 }
3417
3418 /**
3419  *  e1000_reset_hw_ich8lan - Reset the hardware
3420  *  @hw: pointer to the HW structure
3421  *
3422  *  Does a full reset of the hardware which includes a reset of the PHY and
3423  *  MAC.
3424  **/
3425 static s32 e1000_reset_hw_ich8lan(struct e1000_hw *hw)
3426 {
3427         struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3428         u16 kum_cfg;
3429         u32 ctrl, reg;
3430         s32 ret_val;
3431
3432         /*
3433          * Prevent the PCI-E bus from sticking if there is no TLP connection
3434          * on the last TLP read/write transaction when MAC is reset.
3435          */
3436         ret_val = e1000e_disable_pcie_master(hw);
3437         if (ret_val)
3438                 e_dbg("PCI-E Master disable polling has failed.\n");
3439
3440         e_dbg("Masking off all interrupts\n");
3441         ew32(IMC, 0xffffffff);
3442
3443         /*
3444          * Disable the Transmit and Receive units.  Then delay to allow
3445          * any pending transactions to complete before we hit the MAC
3446          * with the global reset.
3447          */
3448         ew32(RCTL, 0);
3449         ew32(TCTL, E1000_TCTL_PSP);
3450         e1e_flush();
3451
3452         usleep_range(10000, 20000);
3453
3454         /* Workaround for ICH8 bit corruption issue in FIFO memory */
3455         if (hw->mac.type == e1000_ich8lan) {
3456                 /* Set Tx and Rx buffer allocation to 8k apiece. */
3457                 ew32(PBA, E1000_PBA_8K);
3458                 /* Set Packet Buffer Size to 16k. */
3459                 ew32(PBS, E1000_PBS_16K);
3460         }
3461
3462         if (hw->mac.type == e1000_pchlan) {
3463                 /* Save the NVM K1 bit setting */
3464                 ret_val = e1000_read_nvm(hw, E1000_NVM_K1_CONFIG, 1, &kum_cfg);
3465                 if (ret_val)
3466                         return ret_val;
3467
3468                 if (kum_cfg & E1000_NVM_K1_ENABLE)
3469                         dev_spec->nvm_k1_enabled = true;
3470                 else
3471                         dev_spec->nvm_k1_enabled = false;
3472         }
3473
3474         ctrl = er32(CTRL);
3475
3476         if (!hw->phy.ops.check_reset_block(hw)) {
3477                 /*
3478                  * Full-chip reset requires MAC and PHY reset at the same
3479                  * time to make sure the interface between MAC and the
3480                  * external PHY is reset.
3481                  */
3482                 ctrl |= E1000_CTRL_PHY_RST;
3483
3484                 /*
3485                  * Gate automatic PHY configuration by hardware on
3486                  * non-managed 82579
3487                  */
3488                 if ((hw->mac.type == e1000_pch2lan) &&
3489                     !(er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
3490                         e1000_gate_hw_phy_config_ich8lan(hw, true);
3491         }
3492         ret_val = e1000_acquire_swflag_ich8lan(hw);
3493         e_dbg("Issuing a global reset to ich8lan\n");
3494         ew32(CTRL, (ctrl | E1000_CTRL_RST));
3495         /* cannot issue a flush here because it hangs the hardware */
3496         msleep(20);
3497
3498         /* Set Phy Config Counter to 50msec */
3499         if (hw->mac.type == e1000_pch2lan) {
3500                 reg = er32(FEXTNVM3);
3501                 reg &= ~E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK;
3502                 reg |= E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC;
3503                 ew32(FEXTNVM3, reg);
3504         }
3505
3506         if (!ret_val)
3507                 clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
3508
3509         if (ctrl & E1000_CTRL_PHY_RST) {
3510                 ret_val = hw->phy.ops.get_cfg_done(hw);
3511                 if (ret_val)
3512                         return ret_val;
3513
3514                 ret_val = e1000_post_phy_reset_ich8lan(hw);
3515                 if (ret_val)
3516                         return ret_val;
3517         }
3518
3519         /*
3520          * For PCH, this write will make sure that any noise
3521          * will be detected as a CRC error and be dropped rather than show up
3522          * as a bad packet to the DMA engine.
3523          */
3524         if (hw->mac.type == e1000_pchlan)
3525                 ew32(CRC_OFFSET, 0x65656565);
3526
3527         ew32(IMC, 0xffffffff);
3528         er32(ICR);
3529
3530         reg = er32(KABGTXD);
3531         reg |= E1000_KABGTXD_BGSQLBIAS;
3532         ew32(KABGTXD, reg);
3533
3534         return 0;
3535 }
3536
3537 /**
3538  *  e1000_init_hw_ich8lan - Initialize the hardware
3539  *  @hw: pointer to the HW structure
3540  *
3541  *  Prepares the hardware for transmit and receive by doing the following:
3542  *   - initialize hardware bits
3543  *   - initialize LED identification
3544  *   - setup receive address registers
3545  *   - setup flow control
3546  *   - setup transmit descriptors
3547  *   - clear statistics
3548  **/
3549 static s32 e1000_init_hw_ich8lan(struct e1000_hw *hw)
3550 {
3551         struct e1000_mac_info *mac = &hw->mac;
3552         u32 ctrl_ext, txdctl, snoop;
3553         s32 ret_val;
3554         u16 i;
3555
3556         e1000_initialize_hw_bits_ich8lan(hw);
3557
3558         /* Initialize identification LED */
3559         ret_val = mac->ops.id_led_init(hw);
3560         if (ret_val)
3561                 e_dbg("Error initializing identification LED\n");
3562                 /* This is not fatal and we should not stop init due to this */
3563
3564         /* Setup the receive address. */
3565         e1000e_init_rx_addrs(hw, mac->rar_entry_count);
3566
3567         /* Zero out the Multicast HASH table */
3568         e_dbg("Zeroing the MTA\n");
3569         for (i = 0; i < mac->mta_reg_count; i++)
3570                 E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
3571
3572         /*
3573          * The 82578 Rx buffer will stall if wakeup is enabled in host and
3574          * the ME.  Disable wakeup by clearing the host wakeup bit.
3575          * Reset the phy after disabling host wakeup to reset the Rx buffer.
3576          */
3577         if (hw->phy.type == e1000_phy_82578) {
3578                 e1e_rphy(hw, BM_PORT_GEN_CFG, &i);
3579                 i &= ~BM_WUC_HOST_WU_BIT;
3580                 e1e_wphy(hw, BM_PORT_GEN_CFG, i);
3581                 ret_val = e1000_phy_hw_reset_ich8lan(hw);
3582                 if (ret_val)
3583                         return ret_val;
3584         }
3585
3586         /* Setup link and flow control */
3587         ret_val = mac->ops.setup_link(hw);
3588
3589         /* Set the transmit descriptor write-back policy for both queues */
3590         txdctl = er32(TXDCTL(0));
3591         txdctl = (txdctl & ~E1000_TXDCTL_WTHRESH) |
3592                  E1000_TXDCTL_FULL_TX_DESC_WB;
3593         txdctl = (txdctl & ~E1000_TXDCTL_PTHRESH) |
3594                  E1000_TXDCTL_MAX_TX_DESC_PREFETCH;
3595         ew32(TXDCTL(0), txdctl);
3596         txdctl = er32(TXDCTL(1));
3597         txdctl = (txdctl & ~E1000_TXDCTL_WTHRESH) |
3598                  E1000_TXDCTL_FULL_TX_DESC_WB;
3599         txdctl = (txdctl & ~E1000_TXDCTL_PTHRESH) |
3600                  E1000_TXDCTL_MAX_TX_DESC_PREFETCH;
3601         ew32(TXDCTL(1), txdctl);
3602
3603         /*
3604          * ICH8 has opposite polarity of no_snoop bits.
3605          * By default, we should use snoop behavior.
3606          */
3607         if (mac->type == e1000_ich8lan)
3608                 snoop = PCIE_ICH8_SNOOP_ALL;
3609         else
3610                 snoop = (u32) ~(PCIE_NO_SNOOP_ALL);
3611         e1000e_set_pcie_no_snoop(hw, snoop);
3612
3613         ctrl_ext = er32(CTRL_EXT);
3614         ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
3615         ew32(CTRL_EXT, ctrl_ext);
3616
3617         /*
3618          * Clear all of the statistics registers (clear on read).  It is
3619          * important that we do this after we have tried to establish link
3620          * because the symbol error count will increment wildly if there
3621          * is no link.
3622          */
3623         e1000_clear_hw_cntrs_ich8lan(hw);
3624
3625         return ret_val;
3626 }
3627 /**
3628  *  e1000_initialize_hw_bits_ich8lan - Initialize required hardware bits
3629  *  @hw: pointer to the HW structure
3630  *
3631  *  Sets/Clears required hardware bits necessary for correctly setting up the
3632  *  hardware for transmit and receive.
3633  **/
3634 static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw)
3635 {
3636         u32 reg;
3637
3638         /* Extended Device Control */
3639         reg = er32(CTRL_EXT);
3640         reg |= (1 << 22);
3641         /* Enable PHY low-power state when MAC is at D3 w/o WoL */
3642         if (hw->mac.type >= e1000_pchlan)
3643                 reg |= E1000_CTRL_EXT_PHYPDEN;
3644         ew32(CTRL_EXT, reg);
3645
3646         /* Transmit Descriptor Control 0 */
3647         reg = er32(TXDCTL(0));
3648         reg |= (1 << 22);
3649         ew32(TXDCTL(0), reg);
3650
3651         /* Transmit Descriptor Control 1 */
3652         reg = er32(TXDCTL(1));
3653         reg |= (1 << 22);
3654         ew32(TXDCTL(1), reg);
3655
3656         /* Transmit Arbitration Control 0 */
3657         reg = er32(TARC(0));
3658         if (hw->mac.type == e1000_ich8lan)
3659                 reg |= (1 << 28) | (1 << 29);
3660         reg |= (1 << 23) | (1 << 24) | (1 << 26) | (1 << 27);
3661         ew32(TARC(0), reg);
3662
3663         /* Transmit Arbitration Control 1 */
3664         reg = er32(TARC(1));
3665         if (er32(TCTL) & E1000_TCTL_MULR)
3666                 reg &= ~(1 << 28);
3667         else
3668                 reg |= (1 << 28);
3669         reg |= (1 << 24) | (1 << 26) | (1 << 30);
3670         ew32(TARC(1), reg);
3671
3672         /* Device Status */
3673         if (hw->mac.type == e1000_ich8lan) {
3674                 reg = er32(STATUS);
3675                 reg &= ~(1 << 31);
3676                 ew32(STATUS, reg);
3677         }
3678
3679         /*
3680          * work-around descriptor data corruption issue during nfs v2 udp
3681          * traffic, just disable the nfs filtering capability
3682          */
3683         reg = er32(RFCTL);
3684         reg |= (E1000_RFCTL_NFSW_DIS | E1000_RFCTL_NFSR_DIS);
3685
3686         /*
3687          * Disable IPv6 extension header parsing because some malformed
3688          * IPv6 headers can hang the Rx.
3689          */
3690         if (hw->mac.type == e1000_ich8lan)
3691                 reg |= (E1000_RFCTL_IPV6_EX_DIS | E1000_RFCTL_NEW_IPV6_EXT_DIS);
3692         ew32(RFCTL, reg);
3693 }
3694
3695 /**
3696  *  e1000_setup_link_ich8lan - Setup flow control and link settings
3697  *  @hw: pointer to the HW structure
3698  *
3699  *  Determines which flow control settings to use, then configures flow
3700  *  control.  Calls the appropriate media-specific link configuration
3701  *  function.  Assuming the adapter has a valid link partner, a valid link
3702  *  should be established.  Assumes the hardware has previously been reset
3703  *  and the transmitter and receiver are not enabled.
3704  **/
3705 static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw)
3706 {
3707         s32 ret_val;
3708
3709         if (hw->phy.ops.check_reset_block(hw))
3710                 return 0;
3711
3712         /*
3713          * ICH parts do not have a word in the NVM to determine
3714          * the default flow control setting, so we explicitly
3715          * set it to full.
3716          */
3717         if (hw->fc.requested_mode == e1000_fc_default) {
3718                 /* Workaround h/w hang when Tx flow control enabled */
3719                 if (hw->mac.type == e1000_pchlan)
3720                         hw->fc.requested_mode = e1000_fc_rx_pause;
3721                 else
3722                         hw->fc.requested_mode = e1000_fc_full;
3723         }
3724
3725         /*
3726          * Save off the requested flow control mode for use later.  Depending
3727          * on the link partner's capabilities, we may or may not use this mode.
3728          */
3729         hw->fc.current_mode = hw->fc.requested_mode;
3730
3731         e_dbg("After fix-ups FlowControl is now = %x\n",
3732                 hw->fc.current_mode);
3733
3734         /* Continue to configure the copper link. */
3735         ret_val = hw->mac.ops.setup_physical_interface(hw);
3736         if (ret_val)
3737                 return ret_val;
3738
3739         ew32(FCTTV, hw->fc.pause_time);
3740         if ((hw->phy.type == e1000_phy_82578) ||
3741             (hw->phy.type == e1000_phy_82579) ||
3742             (hw->phy.type == e1000_phy_i217) ||
3743             (hw->phy.type == e1000_phy_82577)) {
3744                 ew32(FCRTV_PCH, hw->fc.refresh_time);
3745
3746                 ret_val = e1e_wphy(hw, PHY_REG(BM_PORT_CTRL_PAGE, 27),
3747                                    hw->fc.pause_time);
3748                 if (ret_val)
3749                         return ret_val;
3750         }
3751
3752         return e1000e_set_fc_watermarks(hw);
3753 }
3754
3755 /**
3756  *  e1000_setup_copper_link_ich8lan - Configure MAC/PHY interface
3757  *  @hw: pointer to the HW structure
3758  *
3759  *  Configures the kumeran interface to the PHY to wait the appropriate time
3760  *  when polling the PHY, then call the generic setup_copper_link to finish
3761  *  configuring the copper link.
3762  **/
3763 static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw)
3764 {
3765         u32 ctrl;
3766         s32 ret_val;
3767         u16 reg_data;
3768
3769         ctrl = er32(CTRL);
3770         ctrl |= E1000_CTRL_SLU;
3771         ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
3772         ew32(CTRL, ctrl);
3773
3774         /*
3775          * Set the mac to wait the maximum time between each iteration
3776          * and increase the max iterations when polling the phy;
3777          * this fixes erroneous timeouts at 10Mbps.
3778          */
3779         ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_TIMEOUTS, 0xFFFF);
3780         if (ret_val)
3781                 return ret_val;
3782         ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
3783                                        &reg_data);
3784         if (ret_val)
3785                 return ret_val;
3786         reg_data |= 0x3F;
3787         ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
3788                                         reg_data);
3789         if (ret_val)
3790                 return ret_val;
3791
3792         switch (hw->phy.type) {
3793         case e1000_phy_igp_3:
3794                 ret_val = e1000e_copper_link_setup_igp(hw);
3795                 if (ret_val)
3796                         return ret_val;
3797                 break;
3798         case e1000_phy_bm:
3799         case e1000_phy_82578:
3800                 ret_val = e1000e_copper_link_setup_m88(hw);
3801                 if (ret_val)
3802                         return ret_val;
3803                 break;
3804         case e1000_phy_82577:
3805         case e1000_phy_82579:
3806         case e1000_phy_i217:
3807                 ret_val = e1000_copper_link_setup_82577(hw);
3808                 if (ret_val)
3809                         return ret_val;
3810                 break;
3811         case e1000_phy_ife:
3812                 ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &reg_data);
3813                 if (ret_val)
3814                         return ret_val;
3815
3816                 reg_data &= ~IFE_PMC_AUTO_MDIX;
3817
3818                 switch (hw->phy.mdix) {
3819                 case 1:
3820                         reg_data &= ~IFE_PMC_FORCE_MDIX;
3821                         break;
3822                 case 2:
3823                         reg_data |= IFE_PMC_FORCE_MDIX;
3824                         break;
3825                 case 0:
3826                 default:
3827                         reg_data |= IFE_PMC_AUTO_MDIX;
3828                         break;
3829                 }
3830                 ret_val = e1e_wphy(hw, IFE_PHY_MDIX_CONTROL, reg_data);
3831                 if (ret_val)
3832                         return ret_val;
3833                 break;
3834         default:
3835                 break;
3836         }
3837
3838         return e1000e_setup_copper_link(hw);
3839 }
3840
3841 /**
3842  *  e1000_get_link_up_info_ich8lan - Get current link speed and duplex
3843  *  @hw: pointer to the HW structure
3844  *  @speed: pointer to store current link speed
3845  *  @duplex: pointer to store the current link duplex
3846  *
3847  *  Calls the generic get_speed_and_duplex to retrieve the current link
3848  *  information and then calls the Kumeran lock loss workaround for links at
3849  *  gigabit speeds.
3850  **/
3851 static s32 e1000_get_link_up_info_ich8lan(struct e1000_hw *hw, u16 *speed,
3852                                           u16 *duplex)
3853 {
3854         s32 ret_val;
3855
3856         ret_val = e1000e_get_speed_and_duplex_copper(hw, speed, duplex);
3857         if (ret_val)
3858                 return ret_val;
3859
3860         if ((hw->mac.type == e1000_ich8lan) &&
3861             (hw->phy.type == e1000_phy_igp_3) &&
3862             (*speed == SPEED_1000)) {
3863                 ret_val = e1000_kmrn_lock_loss_workaround_ich8lan(hw);
3864         }
3865
3866         return ret_val;
3867 }
3868
3869 /**
3870  *  e1000_kmrn_lock_loss_workaround_ich8lan - Kumeran workaround
3871  *  @hw: pointer to the HW structure
3872  *
3873  *  Work-around for 82566 Kumeran PCS lock loss:
3874  *  On link status change (i.e. PCI reset, speed change) and link is up and
3875  *  speed is gigabit-
3876  *    0) if workaround is optionally disabled do nothing
3877  *    1) wait 1ms for Kumeran link to come up
3878  *    2) check Kumeran Diagnostic register PCS lock loss bit
3879  *    3) if not set the link is locked (all is good), otherwise...
3880  *    4) reset the PHY
3881  *    5) repeat up to 10 times
3882  *  Note: this is only called for IGP3 copper when speed is 1gb.
3883  **/
3884 static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw)
3885 {
3886         struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3887         u32 phy_ctrl;
3888         s32 ret_val;
3889         u16 i, data;
3890         bool link;
3891
3892         if (!dev_spec->kmrn_lock_loss_workaround_enabled)
3893                 return 0;
3894
3895         /*
3896          * Make sure link is up before proceeding.  If not just return.
3897          * Attempting this while link is negotiating fouled up link
3898          * stability
3899          */
3900         ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
3901         if (!link)
3902                 return 0;
3903
3904         for (i = 0; i < 10; i++) {
3905                 /* read once to clear */
3906                 ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
3907                 if (ret_val)
3908                         return ret_val;
3909                 /* and again to get new status */
3910                 ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
3911                 if (ret_val)
3912                         return ret_val;
3913
3914                 /* check for PCS lock */
3915                 if (!(data & IGP3_KMRN_DIAG_PCS_LOCK_LOSS))
3916                         return 0;
3917
3918                 /* Issue PHY reset */
3919                 e1000_phy_hw_reset(hw);
3920                 mdelay(5);
3921         }
3922         /* Disable GigE link negotiation */
3923         phy_ctrl = er32(PHY_CTRL);
3924         phy_ctrl |= (E1000_PHY_CTRL_GBE_DISABLE |
3925                      E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
3926         ew32(PHY_CTRL, phy_ctrl);
3927
3928         /*
3929          * Call gig speed drop workaround on Gig disable before accessing
3930          * any PHY registers
3931          */
3932         e1000e_gig_downshift_workaround_ich8lan(hw);
3933
3934         /* unable to acquire PCS lock */
3935         return -E1000_ERR_PHY;
3936 }
3937
3938 /**
3939  *  e1000e_set_kmrn_lock_loss_workaround_ich8lan - Set Kumeran workaround state
3940  *  @hw: pointer to the HW structure
3941  *  @state: boolean value used to set the current Kumeran workaround state
3942  *
3943  *  If ICH8, set the current Kumeran workaround state (enabled - true
3944  *  /disabled - false).
3945  **/
3946 void e1000e_set_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw,
3947                                                  bool state)
3948 {
3949         struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3950
3951         if (hw->mac.type != e1000_ich8lan) {
3952                 e_dbg("Workaround applies to ICH8 only.\n");
3953                 return;
3954         }
3955
3956         dev_spec->kmrn_lock_loss_workaround_enabled = state;
3957 }
3958
3959 /**
3960  *  e1000_ipg3_phy_powerdown_workaround_ich8lan - Power down workaround on D3
3961  *  @hw: pointer to the HW structure
3962  *
3963  *  Workaround for 82566 power-down on D3 entry:
3964  *    1) disable gigabit link
3965  *    2) write VR power-down enable
3966  *    3) read it back
3967  *  Continue if successful, else issue LCD reset and repeat
3968  **/
3969 void e1000e_igp3_phy_powerdown_workaround_ich8lan(struct e1000_hw *hw)
3970 {
3971         u32 reg;
3972         u16 data;
3973         u8  retry = 0;
3974
3975         if (hw->phy.type != e1000_phy_igp_3)
3976                 return;
3977
3978         /* Try the workaround twice (if needed) */
3979         do {
3980                 /* Disable link */
3981                 reg = er32(PHY_CTRL);
3982                 reg |= (E1000_PHY_CTRL_GBE_DISABLE |
3983                         E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
3984                 ew32(PHY_CTRL, reg);
3985
3986                 /*
3987                  * Call gig speed drop workaround on Gig disable before
3988                  * accessing any PHY registers
3989                  */
3990                 if (hw->mac.type == e1000_ich8lan)
3991                         e1000e_gig_downshift_workaround_ich8lan(hw);
3992
3993                 /* Write VR power-down enable */
3994                 e1e_rphy(hw, IGP3_VR_CTRL, &data);
3995                 data &= ~IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
3996                 e1e_wphy(hw, IGP3_VR_CTRL, data | IGP3_VR_CTRL_MODE_SHUTDOWN);
3997
3998                 /* Read it back and test */
3999                 e1e_rphy(hw, IGP3_VR_CTRL, &data);
4000                 data &= IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
4001                 if ((data == IGP3_VR_CTRL_MODE_SHUTDOWN) || retry)
4002                         break;
4003
4004                 /* Issue PHY reset and repeat at most one more time */
4005                 reg = er32(CTRL);
4006                 ew32(CTRL, reg | E1000_CTRL_PHY_RST);
4007                 retry++;
4008         } while (retry);
4009 }
4010
4011 /**
4012  *  e1000e_gig_downshift_workaround_ich8lan - WoL from S5 stops working
4013  *  @hw: pointer to the HW structure
4014  *
4015  *  Steps to take when dropping from 1Gb/s (eg. link cable removal (LSC),
4016  *  LPLU, Gig disable, MDIC PHY reset):
4017  *    1) Set Kumeran Near-end loopback
4018  *    2) Clear Kumeran Near-end loopback
4019  *  Should only be called for ICH8[m] devices with any 1G Phy.
4020  **/
4021 void e1000e_gig_downshift_workaround_ich8lan(struct e1000_hw *hw)
4022 {
4023         s32 ret_val;
4024         u16 reg_data;
4025
4026         if ((hw->mac.type != e1000_ich8lan) || (hw->phy.type == e1000_phy_ife))
4027                 return;
4028
4029         ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
4030                                       &reg_data);
4031         if (ret_val)
4032                 return;
4033         reg_data |= E1000_KMRNCTRLSTA_DIAG_NELPBK;
4034         ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
4035                                        reg_data);
4036         if (ret_val)
4037                 return;
4038         reg_data &= ~E1000_KMRNCTRLSTA_DIAG_NELPBK;
4039         ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
4040                                        reg_data);
4041 }
4042
4043 /**
4044  *  e1000_suspend_workarounds_ich8lan - workarounds needed during S0->Sx
4045  *  @hw: pointer to the HW structure
4046  *
4047  *  During S0 to Sx transition, it is possible the link remains at gig
4048  *  instead of negotiating to a lower speed.  Before going to Sx, set
4049  *  'Gig Disable' to force link speed negotiation to a lower speed based on
4050  *  the LPLU setting in the NVM or custom setting.  For PCH and newer parts,
4051  *  the OEM bits PHY register (LED, GbE disable and LPLU configurations) also
4052  *  needs to be written.
4053  *  Parts that support (and are linked to a partner which support) EEE in
4054  *  100Mbps should disable LPLU since 100Mbps w/ EEE requires less power
4055  *  than 10Mbps w/o EEE.
4056  **/
4057 void e1000_suspend_workarounds_ich8lan(struct e1000_hw *hw)
4058 {
4059         struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
4060         u32 phy_ctrl;
4061         s32 ret_val;
4062
4063         phy_ctrl = er32(PHY_CTRL);
4064         phy_ctrl |= E1000_PHY_CTRL_GBE_DISABLE;
4065         if (hw->phy.type == e1000_phy_i217) {
4066                 u16 phy_reg;
4067
4068                 ret_val = hw->phy.ops.acquire(hw);
4069                 if (ret_val)
4070                         goto out;
4071
4072                 if (!dev_spec->eee_disable) {
4073                         u16 eee_advert;
4074
4075                         ret_val = e1e_wphy_locked(hw, I82579_EMI_ADDR,
4076                                                   I217_EEE_ADVERTISEMENT);
4077                         if (ret_val)
4078                                 goto release;
4079                         e1e_rphy_locked(hw, I82579_EMI_DATA, &eee_advert);
4080
4081                         /*
4082                          * Disable LPLU if both link partners support 100BaseT
4083                          * EEE and 100Full is advertised on both ends of the
4084                          * link.
4085                          */
4086                         if ((eee_advert & I217_EEE_100_SUPPORTED) &&
4087                             (dev_spec->eee_lp_ability &
4088                              I217_EEE_100_SUPPORTED) &&
4089                             (hw->phy.autoneg_advertised & ADVERTISE_100_FULL))
4090                                 phy_ctrl &= ~(E1000_PHY_CTRL_D0A_LPLU |
4091                                               E1000_PHY_CTRL_NOND0A_LPLU);
4092                 }
4093
4094                 /*
4095                  * For i217 Intel Rapid Start Technology support,
4096                  * when the system is going into Sx and no manageability engine
4097                  * is present, the driver must configure proxy to reset only on
4098                  * power good.  LPI (Low Power Idle) state must also reset only
4099                  * on power good, as well as the MTA (Multicast table array).
4100                  * The SMBus release must also be disabled on LCD reset.
4101                  */
4102                 if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
4103
4104                         /* Enable proxy to reset only on power good. */
4105                         e1e_rphy_locked(hw, I217_PROXY_CTRL, &phy_reg);
4106                         phy_reg |= I217_PROXY_CTRL_AUTO_DISABLE;
4107                         e1e_wphy_locked(hw, I217_PROXY_CTRL, phy_reg);
4108
4109                         /*
4110                          * Set bit enable LPI (EEE) to reset only on
4111                          * power good.
4112                          */
4113                         e1e_rphy_locked(hw, I217_SxCTRL, &phy_reg);
4114                         phy_reg |= I217_SxCTRL_ENABLE_LPI_RESET;
4115                         e1e_wphy_locked(hw, I217_SxCTRL, phy_reg);
4116
4117                         /* Disable the SMB release on LCD reset. */
4118                         e1e_rphy_locked(hw, I217_MEMPWR, &phy_reg);
4119                         phy_reg &= ~I217_MEMPWR_DISABLE_SMB_RELEASE;
4120                         e1e_wphy_locked(hw, I217_MEMPWR, phy_reg);
4121                 }
4122
4123                 /*
4124                  * Enable MTA to reset for Intel Rapid Start Technology
4125                  * Support
4126                  */
4127                 e1e_rphy_locked(hw, I217_CGFREG, &phy_reg);
4128                 phy_reg |= I217_CGFREG_ENABLE_MTA_RESET;
4129                 e1e_wphy_locked(hw, I217_CGFREG, phy_reg);
4130
4131 release:
4132                 hw->phy.ops.release(hw);
4133         }
4134 out:
4135         ew32(PHY_CTRL, phy_ctrl);
4136
4137         if (hw->mac.type == e1000_ich8lan)
4138                 e1000e_gig_downshift_workaround_ich8lan(hw);
4139
4140         if (hw->mac.type >= e1000_pchlan) {
4141                 e1000_oem_bits_config_ich8lan(hw, false);
4142
4143                 /* Reset PHY to activate OEM bits on 82577/8 */
4144                 if (hw->mac.type == e1000_pchlan)
4145                         e1000e_phy_hw_reset_generic(hw);
4146
4147                 ret_val = hw->phy.ops.acquire(hw);
4148                 if (ret_val)
4149                         return;
4150                 e1000_write_smbus_addr(hw);
4151                 hw->phy.ops.release(hw);
4152         }
4153 }
4154
4155 /**
4156  *  e1000_resume_workarounds_pchlan - workarounds needed during Sx->S0
4157  *  @hw: pointer to the HW structure
4158  *
4159  *  During Sx to S0 transitions on non-managed devices or managed devices
4160  *  on which PHY resets are not blocked, if the PHY registers cannot be
4161  *  accessed properly by the s/w toggle the LANPHYPC value to power cycle
4162  *  the PHY.
4163  *  On i217, setup Intel Rapid Start Technology.
4164  **/
4165 void e1000_resume_workarounds_pchlan(struct e1000_hw *hw)
4166 {
4167         s32 ret_val;
4168
4169         if (hw->mac.type < e1000_pch2lan)
4170                 return;
4171
4172         ret_val = e1000_init_phy_workarounds_pchlan(hw);
4173         if (ret_val) {
4174                 e_dbg("Failed to init PHY flow ret_val=%d\n", ret_val);
4175                 return;
4176         }
4177
4178         /*
4179          * For i217 Intel Rapid Start Technology support when the system
4180          * is transitioning from Sx and no manageability engine is present
4181          * configure SMBus to restore on reset, disable proxy, and enable
4182          * the reset on MTA (Multicast table array).
4183          */
4184         if (hw->phy.type == e1000_phy_i217) {
4185                 u16 phy_reg;
4186
4187                 ret_val = hw->phy.ops.acquire(hw);
4188                 if (ret_val) {
4189                         e_dbg("Failed to setup iRST\n");
4190                         return;
4191                 }
4192
4193                 if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
4194                         /*
4195                          * Restore clear on SMB if no manageability engine
4196                          * is present
4197                          */
4198                         ret_val = e1e_rphy_locked(hw, I217_MEMPWR, &phy_reg);
4199                         if (ret_val)
4200                                 goto release;
4201                         phy_reg |= I217_MEMPWR_DISABLE_SMB_RELEASE;
4202                         e1e_wphy_locked(hw, I217_MEMPWR, phy_reg);
4203
4204                         /* Disable Proxy */
4205                         e1e_wphy_locked(hw, I217_PROXY_CTRL, 0);
4206                 }
4207                 /* Enable reset on MTA */
4208                 ret_val = e1e_rphy_locked(hw, I217_CGFREG, &phy_reg);
4209                 if (ret_val)
4210                         goto release;
4211                 phy_reg &= ~I217_CGFREG_ENABLE_MTA_RESET;
4212                 e1e_wphy_locked(hw, I217_CGFREG, phy_reg);
4213 release:
4214                 if (ret_val)
4215                         e_dbg("Error %d in resume workarounds\n", ret_val);
4216                 hw->phy.ops.release(hw);
4217         }
4218 }
4219
4220 /**
4221  *  e1000_cleanup_led_ich8lan - Restore the default LED operation
4222  *  @hw: pointer to the HW structure
4223  *
4224  *  Return the LED back to the default configuration.
4225  **/
4226 static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw)
4227 {
4228         if (hw->phy.type == e1000_phy_ife)
4229                 return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0);
4230
4231         ew32(LEDCTL, hw->mac.ledctl_default);
4232         return 0;
4233 }
4234
4235 /**
4236  *  e1000_led_on_ich8lan - Turn LEDs on
4237  *  @hw: pointer to the HW structure
4238  *
4239  *  Turn on the LEDs.
4240  **/
4241 static s32 e1000_led_on_ich8lan(struct e1000_hw *hw)
4242 {
4243         if (hw->phy.type == e1000_phy_ife)
4244                 return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
4245                                 (IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_ON));
4246
4247         ew32(LEDCTL, hw->mac.ledctl_mode2);
4248         return 0;
4249 }
4250
4251 /**
4252  *  e1000_led_off_ich8lan - Turn LEDs off
4253  *  @hw: pointer to the HW structure
4254  *
4255  *  Turn off the LEDs.
4256  **/
4257 static s32 e1000_led_off_ich8lan(struct e1000_hw *hw)
4258 {
4259         if (hw->phy.type == e1000_phy_ife)
4260                 return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
4261                                 (IFE_PSCL_PROBE_MODE |
4262                                  IFE_PSCL_PROBE_LEDS_OFF));
4263
4264         ew32(LEDCTL, hw->mac.ledctl_mode1);
4265         return 0;
4266 }
4267
4268 /**
4269  *  e1000_setup_led_pchlan - Configures SW controllable LED
4270  *  @hw: pointer to the HW structure
4271  *
4272  *  This prepares the SW controllable LED for use.
4273  **/
4274 static s32 e1000_setup_led_pchlan(struct e1000_hw *hw)
4275 {
4276         return e1e_wphy(hw, HV_LED_CONFIG, (u16)hw->mac.ledctl_mode1);
4277 }
4278
4279 /**
4280  *  e1000_cleanup_led_pchlan - Restore the default LED operation
4281  *  @hw: pointer to the HW structure
4282  *
4283  *  Return the LED back to the default configuration.
4284  **/
4285 static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw)
4286 {
4287         return e1e_wphy(hw, HV_LED_CONFIG, (u16)hw->mac.ledctl_default);
4288 }
4289
4290 /**
4291  *  e1000_led_on_pchlan - Turn LEDs on
4292  *  @hw: pointer to the HW structure
4293  *
4294  *  Turn on the LEDs.
4295  **/
4296 static s32 e1000_led_on_pchlan(struct e1000_hw *hw)
4297 {
4298         u16 data = (u16)hw->mac.ledctl_mode2;
4299         u32 i, led;
4300
4301         /*
4302          * If no link, then turn LED on by setting the invert bit
4303          * for each LED that's mode is "link_up" in ledctl_mode2.
4304          */
4305         if (!(er32(STATUS) & E1000_STATUS_LU)) {
4306                 for (i = 0; i < 3; i++) {
4307                         led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
4308                         if ((led & E1000_PHY_LED0_MODE_MASK) !=
4309                             E1000_LEDCTL_MODE_LINK_UP)
4310                                 continue;
4311                         if (led & E1000_PHY_LED0_IVRT)
4312                                 data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
4313                         else
4314                                 data |= (E1000_PHY_LED0_IVRT << (i * 5));
4315                 }
4316         }
4317
4318         return e1e_wphy(hw, HV_LED_CONFIG, data);
4319 }
4320
4321 /**
4322  *  e1000_led_off_pchlan - Turn LEDs off
4323  *  @hw: pointer to the HW structure
4324  *
4325  *  Turn off the LEDs.
4326  **/
4327 static s32 e1000_led_off_pchlan(struct e1000_hw *hw)
4328 {
4329         u16 data = (u16)hw->mac.ledctl_mode1;
4330         u32 i, led;
4331
4332         /*
4333          * If no link, then turn LED off by clearing the invert bit
4334          * for each LED that's mode is "link_up" in ledctl_mode1.
4335          */
4336         if (!(er32(STATUS) & E1000_STATUS_LU)) {
4337                 for (i = 0; i < 3; i++) {
4338                         led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
4339                         if ((led & E1000_PHY_LED0_MODE_MASK) !=
4340                             E1000_LEDCTL_MODE_LINK_UP)
4341                                 continue;
4342                         if (led & E1000_PHY_LED0_IVRT)
4343                                 data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
4344                         else
4345                                 data |= (E1000_PHY_LED0_IVRT << (i * 5));
4346                 }
4347         }
4348
4349         return e1e_wphy(hw, HV_LED_CONFIG, data);
4350 }
4351
4352 /**
4353  *  e1000_get_cfg_done_ich8lan - Read config done bit after Full or PHY reset
4354  *  @hw: pointer to the HW structure
4355  *
4356  *  Read appropriate register for the config done bit for completion status
4357  *  and configure the PHY through s/w for EEPROM-less parts.
4358  *
4359  *  NOTE: some silicon which is EEPROM-less will fail trying to read the
4360  *  config done bit, so only an error is logged and continues.  If we were
4361  *  to return with error, EEPROM-less silicon would not be able to be reset
4362  *  or change link.
4363  **/
4364 static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw)
4365 {
4366         s32 ret_val = 0;
4367         u32 bank = 0;
4368         u32 status;
4369
4370         e1000e_get_cfg_done(hw);
4371
4372         /* Wait for indication from h/w that it has completed basic config */
4373         if (hw->mac.type >= e1000_ich10lan) {
4374                 e1000_lan_init_done_ich8lan(hw);
4375         } else {
4376                 ret_val = e1000e_get_auto_rd_done(hw);
4377                 if (ret_val) {
4378                         /*
4379                          * When auto config read does not complete, do not
4380                          * return with an error. This can happen in situations
4381                          * where there is no eeprom and prevents getting link.
4382                          */
4383                         e_dbg("Auto Read Done did not complete\n");
4384                         ret_val = 0;
4385                 }
4386         }
4387
4388         /* Clear PHY Reset Asserted bit */
4389         status = er32(STATUS);
4390         if (status & E1000_STATUS_PHYRA)
4391                 ew32(STATUS, status & ~E1000_STATUS_PHYRA);
4392         else
4393                 e_dbg("PHY Reset Asserted not set - needs delay\n");
4394
4395         /* If EEPROM is not marked present, init the IGP 3 PHY manually */
4396         if (hw->mac.type <= e1000_ich9lan) {
4397                 if (!(er32(EECD) & E1000_EECD_PRES) &&
4398                     (hw->phy.type == e1000_phy_igp_3)) {
4399                         e1000e_phy_init_script_igp3(hw);
4400                 }
4401         } else {
4402                 if (e1000_valid_nvm_bank_detect_ich8lan(hw, &bank)) {
4403                         /* Maybe we should do a basic PHY config */
4404                         e_dbg("EEPROM not present\n");
4405                         ret_val = -E1000_ERR_CONFIG;
4406                 }
4407         }
4408
4409         return ret_val;
4410 }
4411
4412 /**
4413  * e1000_power_down_phy_copper_ich8lan - Remove link during PHY power down
4414  * @hw: pointer to the HW structure
4415  *
4416  * In the case of a PHY power down to save power, or to turn off link during a
4417  * driver unload, or wake on lan is not enabled, remove the link.
4418  **/
4419 static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw)
4420 {
4421         /* If the management interface is not enabled, then power down */
4422         if (!(hw->mac.ops.check_mng_mode(hw) ||
4423               hw->phy.ops.check_reset_block(hw)))
4424                 e1000_power_down_phy_copper(hw);
4425 }
4426
4427 /**
4428  *  e1000_clear_hw_cntrs_ich8lan - Clear statistical counters
4429  *  @hw: pointer to the HW structure
4430  *
4431  *  Clears hardware counters specific to the silicon family and calls
4432  *  clear_hw_cntrs_generic to clear all general purpose counters.
4433  **/
4434 static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw)
4435 {
4436         u16 phy_data;
4437         s32 ret_val;
4438
4439         e1000e_clear_hw_cntrs_base(hw);
4440
4441         er32(ALGNERRC);
4442         er32(RXERRC);
4443         er32(TNCRS);
4444         er32(CEXTERR);
4445         er32(TSCTC);
4446         er32(TSCTFC);
4447
4448         er32(MGTPRC);
4449         er32(MGTPDC);
4450         er32(MGTPTC);
4451
4452         er32(IAC);
4453         er32(ICRXOC);
4454
4455         /* Clear PHY statistics registers */
4456         if ((hw->phy.type == e1000_phy_82578) ||
4457             (hw->phy.type == e1000_phy_82579) ||
4458             (hw->phy.type == e1000_phy_i217) ||
4459             (hw->phy.type == e1000_phy_82577)) {
4460                 ret_val = hw->phy.ops.acquire(hw);
4461                 if (ret_val)
4462                         return;
4463                 ret_val = hw->phy.ops.set_page(hw,
4464                                                HV_STATS_PAGE << IGP_PAGE_SHIFT);
4465                 if (ret_val)
4466                         goto release;
4467                 hw->phy.ops.read_reg_page(hw, HV_SCC_UPPER, &phy_data);
4468                 hw->phy.ops.read_reg_page(hw, HV_SCC_LOWER, &phy_data);
4469                 hw->phy.ops.read_reg_page(hw, HV_ECOL_UPPER, &phy_data);
4470                 hw->phy.ops.read_reg_page(hw, HV_ECOL_LOWER, &phy_data);
4471                 hw->phy.ops.read_reg_page(hw, HV_MCC_UPPER, &phy_data);
4472                 hw->phy.ops.read_reg_page(hw, HV_MCC_LOWER, &phy_data);
4473                 hw->phy.ops.read_reg_page(hw, HV_LATECOL_UPPER, &phy_data);
4474                 hw->phy.ops.read_reg_page(hw, HV_LATECOL_LOWER, &phy_data);
4475                 hw->phy.ops.read_reg_page(hw, HV_COLC_UPPER, &phy_data);
4476                 hw->phy.ops.read_reg_page(hw, HV_COLC_LOWER, &phy_data);
4477                 hw->phy.ops.read_reg_page(hw, HV_DC_UPPER, &phy_data);
4478                 hw->phy.ops.read_reg_page(hw, HV_DC_LOWER, &phy_data);
4479                 hw->phy.ops.read_reg_page(hw, HV_TNCRS_UPPER, &phy_data);
4480                 hw->phy.ops.read_reg_page(hw, HV_TNCRS_LOWER, &phy_data);
4481 release:
4482                 hw->phy.ops.release(hw);
4483         }
4484 }
4485
4486 static const struct e1000_mac_operations ich8_mac_ops = {
4487         /* check_mng_mode dependent on mac type */
4488         .check_for_link         = e1000_check_for_copper_link_ich8lan,
4489         /* cleanup_led dependent on mac type */
4490         .clear_hw_cntrs         = e1000_clear_hw_cntrs_ich8lan,
4491         .get_bus_info           = e1000_get_bus_info_ich8lan,
4492         .set_lan_id             = e1000_set_lan_id_single_port,
4493         .get_link_up_info       = e1000_get_link_up_info_ich8lan,
4494         /* led_on dependent on mac type */
4495         /* led_off dependent on mac type */
4496         .update_mc_addr_list    = e1000e_update_mc_addr_list_generic,
4497         .reset_hw               = e1000_reset_hw_ich8lan,
4498         .init_hw                = e1000_init_hw_ich8lan,
4499         .setup_link             = e1000_setup_link_ich8lan,
4500         .setup_physical_interface= e1000_setup_copper_link_ich8lan,
4501         /* id_led_init dependent on mac type */
4502         .config_collision_dist  = e1000e_config_collision_dist_generic,
4503         .rar_set                = e1000e_rar_set_generic,
4504 };
4505
4506 static const struct e1000_phy_operations ich8_phy_ops = {
4507         .acquire                = e1000_acquire_swflag_ich8lan,
4508         .check_reset_block      = e1000_check_reset_block_ich8lan,
4509         .commit                 = NULL,
4510         .get_cfg_done           = e1000_get_cfg_done_ich8lan,
4511         .get_cable_length       = e1000e_get_cable_length_igp_2,
4512         .read_reg               = e1000e_read_phy_reg_igp,
4513         .release                = e1000_release_swflag_ich8lan,
4514         .reset                  = e1000_phy_hw_reset_ich8lan,
4515         .set_d0_lplu_state      = e1000_set_d0_lplu_state_ich8lan,
4516         .set_d3_lplu_state      = e1000_set_d3_lplu_state_ich8lan,
4517         .write_reg              = e1000e_write_phy_reg_igp,
4518 };
4519
4520 static const struct e1000_nvm_operations ich8_nvm_ops = {
4521         .acquire                = e1000_acquire_nvm_ich8lan,
4522         .read                   = e1000_read_nvm_ich8lan,
4523         .release                = e1000_release_nvm_ich8lan,
4524         .reload                 = e1000e_reload_nvm_generic,
4525         .update                 = e1000_update_nvm_checksum_ich8lan,
4526         .valid_led_default      = e1000_valid_led_default_ich8lan,
4527         .validate               = e1000_validate_nvm_checksum_ich8lan,
4528         .write                  = e1000_write_nvm_ich8lan,
4529 };
4530
4531 const struct e1000_info e1000_ich8_info = {
4532         .mac                    = e1000_ich8lan,
4533         .flags                  = FLAG_HAS_WOL
4534                                   | FLAG_IS_ICH
4535                                   | FLAG_HAS_CTRLEXT_ON_LOAD
4536                                   | FLAG_HAS_AMT
4537                                   | FLAG_HAS_FLASH
4538                                   | FLAG_APME_IN_WUC,
4539         .pba                    = 8,
4540         .max_hw_frame_size      = ETH_FRAME_LEN + ETH_FCS_LEN,
4541         .get_variants           = e1000_get_variants_ich8lan,
4542         .mac_ops                = &ich8_mac_ops,
4543         .phy_ops                = &ich8_phy_ops,
4544         .nvm_ops                = &ich8_nvm_ops,
4545 };
4546
4547 const struct e1000_info e1000_ich9_info = {
4548         .mac                    = e1000_ich9lan,
4549         .flags                  = FLAG_HAS_JUMBO_FRAMES
4550                                   | FLAG_IS_ICH
4551                                   | FLAG_HAS_WOL
4552                                   | FLAG_HAS_CTRLEXT_ON_LOAD
4553                                   | FLAG_HAS_AMT
4554                                   | FLAG_HAS_FLASH
4555                                   | FLAG_APME_IN_WUC,
4556         .pba                    = 18,
4557         .max_hw_frame_size      = DEFAULT_JUMBO,
4558         .get_variants           = e1000_get_variants_ich8lan,
4559         .mac_ops                = &ich8_mac_ops,
4560         .phy_ops                = &ich8_phy_ops,
4561         .nvm_ops                = &ich8_nvm_ops,
4562 };
4563
4564 const struct e1000_info e1000_ich10_info = {
4565         .mac                    = e1000_ich10lan,
4566         .flags                  = FLAG_HAS_JUMBO_FRAMES
4567                                   | FLAG_IS_ICH
4568                                   | FLAG_HAS_WOL
4569                                   | FLAG_HAS_CTRLEXT_ON_LOAD
4570                                   | FLAG_HAS_AMT
4571                                   | FLAG_HAS_FLASH
4572                                   | FLAG_APME_IN_WUC,
4573         .pba                    = 18,
4574         .max_hw_frame_size      = DEFAULT_JUMBO,
4575         .get_variants           = e1000_get_variants_ich8lan,
4576         .mac_ops                = &ich8_mac_ops,
4577         .phy_ops                = &ich8_phy_ops,
4578         .nvm_ops                = &ich8_nvm_ops,
4579 };
4580
4581 const struct e1000_info e1000_pch_info = {
4582         .mac                    = e1000_pchlan,
4583         .flags                  = FLAG_IS_ICH
4584                                   | FLAG_HAS_WOL
4585                                   | FLAG_HAS_CTRLEXT_ON_LOAD
4586                                   | FLAG_HAS_AMT
4587                                   | FLAG_HAS_FLASH
4588                                   | FLAG_HAS_JUMBO_FRAMES
4589                                   | FLAG_DISABLE_FC_PAUSE_TIME /* errata */
4590                                   | FLAG_APME_IN_WUC,
4591         .flags2                 = FLAG2_HAS_PHY_STATS,
4592         .pba                    = 26,
4593         .max_hw_frame_size      = 4096,
4594         .get_variants           = e1000_get_variants_ich8lan,
4595         .mac_ops                = &ich8_mac_ops,
4596         .phy_ops                = &ich8_phy_ops,
4597         .nvm_ops                = &ich8_nvm_ops,
4598 };
4599
4600 const struct e1000_info e1000_pch2_info = {
4601         .mac                    = e1000_pch2lan,
4602         .flags                  = FLAG_IS_ICH
4603                                   | FLAG_HAS_WOL
4604                                   | FLAG_HAS_CTRLEXT_ON_LOAD
4605                                   | FLAG_HAS_AMT
4606                                   | FLAG_HAS_FLASH
4607                                   | FLAG_HAS_JUMBO_FRAMES
4608                                   | FLAG_APME_IN_WUC,
4609         .flags2                 = FLAG2_HAS_PHY_STATS
4610                                   | FLAG2_HAS_EEE,
4611         .pba                    = 26,
4612         .max_hw_frame_size      = DEFAULT_JUMBO,
4613         .get_variants           = e1000_get_variants_ich8lan,
4614         .mac_ops                = &ich8_mac_ops,
4615         .phy_ops                = &ich8_phy_ops,
4616         .nvm_ops                = &ich8_nvm_ops,
4617 };
4618
4619 const struct e1000_info e1000_pch_lpt_info = {
4620         .mac                    = e1000_pch_lpt,
4621         .flags                  = FLAG_IS_ICH
4622                                   | FLAG_HAS_WOL
4623                                   | FLAG_HAS_CTRLEXT_ON_LOAD
4624                                   | FLAG_HAS_AMT
4625                                   | FLAG_HAS_FLASH
4626                                   | FLAG_HAS_JUMBO_FRAMES
4627                                   | FLAG_APME_IN_WUC,
4628         .flags2                 = FLAG2_HAS_PHY_STATS
4629                                   | FLAG2_HAS_EEE,
4630         .pba                    = 26,
4631         .max_hw_frame_size      = DEFAULT_JUMBO,
4632         .get_variants           = e1000_get_variants_ich8lan,
4633         .mac_ops                = &ich8_mac_ops,
4634         .phy_ops                = &ich8_phy_ops,
4635         .nvm_ops                = &ich8_nvm_ops,
4636 };