Linux-libre 5.4.48-gnu
[librecmc/linux-libre.git] / drivers / net / ethernet / intel / e1000 / e1000_ethtool.c
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 1999 - 2006 Intel Corporation. */
3
4 /* ethtool support for e1000 */
5
6 #include "e1000.h"
7 #include <linux/jiffies.h>
8 #include <linux/uaccess.h>
9
10 enum {NETDEV_STATS, E1000_STATS};
11
12 struct e1000_stats {
13         char stat_string[ETH_GSTRING_LEN];
14         int type;
15         int sizeof_stat;
16         int stat_offset;
17 };
18
19 #define E1000_STAT(m)           E1000_STATS, \
20                                 sizeof(((struct e1000_adapter *)0)->m), \
21                                 offsetof(struct e1000_adapter, m)
22 #define E1000_NETDEV_STAT(m)    NETDEV_STATS, \
23                                 sizeof(((struct net_device *)0)->m), \
24                                 offsetof(struct net_device, m)
25
26 static const struct e1000_stats e1000_gstrings_stats[] = {
27         { "rx_packets", E1000_STAT(stats.gprc) },
28         { "tx_packets", E1000_STAT(stats.gptc) },
29         { "rx_bytes", E1000_STAT(stats.gorcl) },
30         { "tx_bytes", E1000_STAT(stats.gotcl) },
31         { "rx_broadcast", E1000_STAT(stats.bprc) },
32         { "tx_broadcast", E1000_STAT(stats.bptc) },
33         { "rx_multicast", E1000_STAT(stats.mprc) },
34         { "tx_multicast", E1000_STAT(stats.mptc) },
35         { "rx_errors", E1000_STAT(stats.rxerrc) },
36         { "tx_errors", E1000_STAT(stats.txerrc) },
37         { "tx_dropped", E1000_NETDEV_STAT(stats.tx_dropped) },
38         { "multicast", E1000_STAT(stats.mprc) },
39         { "collisions", E1000_STAT(stats.colc) },
40         { "rx_length_errors", E1000_STAT(stats.rlerrc) },
41         { "rx_over_errors", E1000_NETDEV_STAT(stats.rx_over_errors) },
42         { "rx_crc_errors", E1000_STAT(stats.crcerrs) },
43         { "rx_frame_errors", E1000_NETDEV_STAT(stats.rx_frame_errors) },
44         { "rx_no_buffer_count", E1000_STAT(stats.rnbc) },
45         { "rx_missed_errors", E1000_STAT(stats.mpc) },
46         { "tx_aborted_errors", E1000_STAT(stats.ecol) },
47         { "tx_carrier_errors", E1000_STAT(stats.tncrs) },
48         { "tx_fifo_errors", E1000_NETDEV_STAT(stats.tx_fifo_errors) },
49         { "tx_heartbeat_errors", E1000_NETDEV_STAT(stats.tx_heartbeat_errors) },
50         { "tx_window_errors", E1000_STAT(stats.latecol) },
51         { "tx_abort_late_coll", E1000_STAT(stats.latecol) },
52         { "tx_deferred_ok", E1000_STAT(stats.dc) },
53         { "tx_single_coll_ok", E1000_STAT(stats.scc) },
54         { "tx_multi_coll_ok", E1000_STAT(stats.mcc) },
55         { "tx_timeout_count", E1000_STAT(tx_timeout_count) },
56         { "tx_restart_queue", E1000_STAT(restart_queue) },
57         { "rx_long_length_errors", E1000_STAT(stats.roc) },
58         { "rx_short_length_errors", E1000_STAT(stats.ruc) },
59         { "rx_align_errors", E1000_STAT(stats.algnerrc) },
60         { "tx_tcp_seg_good", E1000_STAT(stats.tsctc) },
61         { "tx_tcp_seg_failed", E1000_STAT(stats.tsctfc) },
62         { "rx_flow_control_xon", E1000_STAT(stats.xonrxc) },
63         { "rx_flow_control_xoff", E1000_STAT(stats.xoffrxc) },
64         { "tx_flow_control_xon", E1000_STAT(stats.xontxc) },
65         { "tx_flow_control_xoff", E1000_STAT(stats.xofftxc) },
66         { "rx_long_byte_count", E1000_STAT(stats.gorcl) },
67         { "rx_csum_offload_good", E1000_STAT(hw_csum_good) },
68         { "rx_csum_offload_errors", E1000_STAT(hw_csum_err) },
69         { "alloc_rx_buff_failed", E1000_STAT(alloc_rx_buff_failed) },
70         { "tx_smbus", E1000_STAT(stats.mgptc) },
71         { "rx_smbus", E1000_STAT(stats.mgprc) },
72         { "dropped_smbus", E1000_STAT(stats.mgpdc) },
73 };
74
75 #define E1000_QUEUE_STATS_LEN 0
76 #define E1000_GLOBAL_STATS_LEN ARRAY_SIZE(e1000_gstrings_stats)
77 #define E1000_STATS_LEN (E1000_GLOBAL_STATS_LEN + E1000_QUEUE_STATS_LEN)
78 static const char e1000_gstrings_test[][ETH_GSTRING_LEN] = {
79         "Register test  (offline)", "Eeprom test    (offline)",
80         "Interrupt test (offline)", "Loopback test  (offline)",
81         "Link test   (on/offline)"
82 };
83
84 #define E1000_TEST_LEN  ARRAY_SIZE(e1000_gstrings_test)
85
86 static int e1000_get_link_ksettings(struct net_device *netdev,
87                                     struct ethtool_link_ksettings *cmd)
88 {
89         struct e1000_adapter *adapter = netdev_priv(netdev);
90         struct e1000_hw *hw = &adapter->hw;
91         u32 supported, advertising;
92
93         if (hw->media_type == e1000_media_type_copper) {
94                 supported = (SUPPORTED_10baseT_Half |
95                              SUPPORTED_10baseT_Full |
96                              SUPPORTED_100baseT_Half |
97                              SUPPORTED_100baseT_Full |
98                              SUPPORTED_1000baseT_Full|
99                              SUPPORTED_Autoneg |
100                              SUPPORTED_TP);
101                 advertising = ADVERTISED_TP;
102
103                 if (hw->autoneg == 1) {
104                         advertising |= ADVERTISED_Autoneg;
105                         /* the e1000 autoneg seems to match ethtool nicely */
106                         advertising |= hw->autoneg_advertised;
107                 }
108
109                 cmd->base.port = PORT_TP;
110                 cmd->base.phy_address = hw->phy_addr;
111         } else {
112                 supported   = (SUPPORTED_1000baseT_Full |
113                                SUPPORTED_FIBRE |
114                                SUPPORTED_Autoneg);
115
116                 advertising = (ADVERTISED_1000baseT_Full |
117                                ADVERTISED_FIBRE |
118                                ADVERTISED_Autoneg);
119
120                 cmd->base.port = PORT_FIBRE;
121         }
122
123         if (er32(STATUS) & E1000_STATUS_LU) {
124                 e1000_get_speed_and_duplex(hw, &adapter->link_speed,
125                                            &adapter->link_duplex);
126                 cmd->base.speed = adapter->link_speed;
127
128                 /* unfortunately FULL_DUPLEX != DUPLEX_FULL
129                  * and HALF_DUPLEX != DUPLEX_HALF
130                  */
131                 if (adapter->link_duplex == FULL_DUPLEX)
132                         cmd->base.duplex = DUPLEX_FULL;
133                 else
134                         cmd->base.duplex = DUPLEX_HALF;
135         } else {
136                 cmd->base.speed = SPEED_UNKNOWN;
137                 cmd->base.duplex = DUPLEX_UNKNOWN;
138         }
139
140         cmd->base.autoneg = ((hw->media_type == e1000_media_type_fiber) ||
141                          hw->autoneg) ? AUTONEG_ENABLE : AUTONEG_DISABLE;
142
143         /* MDI-X => 1; MDI => 0 */
144         if ((hw->media_type == e1000_media_type_copper) &&
145             netif_carrier_ok(netdev))
146                 cmd->base.eth_tp_mdix = (!!adapter->phy_info.mdix_mode ?
147                                      ETH_TP_MDI_X : ETH_TP_MDI);
148         else
149                 cmd->base.eth_tp_mdix = ETH_TP_MDI_INVALID;
150
151         if (hw->mdix == AUTO_ALL_MODES)
152                 cmd->base.eth_tp_mdix_ctrl = ETH_TP_MDI_AUTO;
153         else
154                 cmd->base.eth_tp_mdix_ctrl = hw->mdix;
155
156         ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.supported,
157                                                 supported);
158         ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.advertising,
159                                                 advertising);
160
161         return 0;
162 }
163
164 static int e1000_set_link_ksettings(struct net_device *netdev,
165                                     const struct ethtool_link_ksettings *cmd)
166 {
167         struct e1000_adapter *adapter = netdev_priv(netdev);
168         struct e1000_hw *hw = &adapter->hw;
169         u32 advertising;
170
171         ethtool_convert_link_mode_to_legacy_u32(&advertising,
172                                                 cmd->link_modes.advertising);
173
174         /* MDI setting is only allowed when autoneg enabled because
175          * some hardware doesn't allow MDI setting when speed or
176          * duplex is forced.
177          */
178         if (cmd->base.eth_tp_mdix_ctrl) {
179                 if (hw->media_type != e1000_media_type_copper)
180                         return -EOPNOTSUPP;
181
182                 if ((cmd->base.eth_tp_mdix_ctrl != ETH_TP_MDI_AUTO) &&
183                     (cmd->base.autoneg != AUTONEG_ENABLE)) {
184                         e_err(drv, "forcing MDI/MDI-X state is not supported when link speed and/or duplex are forced\n");
185                         return -EINVAL;
186                 }
187         }
188
189         while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
190                 msleep(1);
191
192         if (cmd->base.autoneg == AUTONEG_ENABLE) {
193                 hw->autoneg = 1;
194                 if (hw->media_type == e1000_media_type_fiber)
195                         hw->autoneg_advertised = ADVERTISED_1000baseT_Full |
196                                                  ADVERTISED_FIBRE |
197                                                  ADVERTISED_Autoneg;
198                 else
199                         hw->autoneg_advertised = advertising |
200                                                  ADVERTISED_TP |
201                                                  ADVERTISED_Autoneg;
202         } else {
203                 u32 speed = cmd->base.speed;
204                 /* calling this overrides forced MDI setting */
205                 if (e1000_set_spd_dplx(adapter, speed, cmd->base.duplex)) {
206                         clear_bit(__E1000_RESETTING, &adapter->flags);
207                         return -EINVAL;
208                 }
209         }
210
211         /* MDI-X => 2; MDI => 1; Auto => 3 */
212         if (cmd->base.eth_tp_mdix_ctrl) {
213                 if (cmd->base.eth_tp_mdix_ctrl == ETH_TP_MDI_AUTO)
214                         hw->mdix = AUTO_ALL_MODES;
215                 else
216                         hw->mdix = cmd->base.eth_tp_mdix_ctrl;
217         }
218
219         /* reset the link */
220
221         if (netif_running(adapter->netdev)) {
222                 e1000_down(adapter);
223                 e1000_up(adapter);
224         } else {
225                 e1000_reset(adapter);
226         }
227         clear_bit(__E1000_RESETTING, &adapter->flags);
228         return 0;
229 }
230
231 static u32 e1000_get_link(struct net_device *netdev)
232 {
233         struct e1000_adapter *adapter = netdev_priv(netdev);
234
235         /* If the link is not reported up to netdev, interrupts are disabled,
236          * and so the physical link state may have changed since we last
237          * looked. Set get_link_status to make sure that the true link
238          * state is interrogated, rather than pulling a cached and possibly
239          * stale link state from the driver.
240          */
241         if (!netif_carrier_ok(netdev))
242                 adapter->hw.get_link_status = 1;
243
244         return e1000_has_link(adapter);
245 }
246
247 static void e1000_get_pauseparam(struct net_device *netdev,
248                                  struct ethtool_pauseparam *pause)
249 {
250         struct e1000_adapter *adapter = netdev_priv(netdev);
251         struct e1000_hw *hw = &adapter->hw;
252
253         pause->autoneg =
254                 (adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
255
256         if (hw->fc == E1000_FC_RX_PAUSE) {
257                 pause->rx_pause = 1;
258         } else if (hw->fc == E1000_FC_TX_PAUSE) {
259                 pause->tx_pause = 1;
260         } else if (hw->fc == E1000_FC_FULL) {
261                 pause->rx_pause = 1;
262                 pause->tx_pause = 1;
263         }
264 }
265
266 static int e1000_set_pauseparam(struct net_device *netdev,
267                                 struct ethtool_pauseparam *pause)
268 {
269         struct e1000_adapter *adapter = netdev_priv(netdev);
270         struct e1000_hw *hw = &adapter->hw;
271         int retval = 0;
272
273         adapter->fc_autoneg = pause->autoneg;
274
275         while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
276                 msleep(1);
277
278         if (pause->rx_pause && pause->tx_pause)
279                 hw->fc = E1000_FC_FULL;
280         else if (pause->rx_pause && !pause->tx_pause)
281                 hw->fc = E1000_FC_RX_PAUSE;
282         else if (!pause->rx_pause && pause->tx_pause)
283                 hw->fc = E1000_FC_TX_PAUSE;
284         else if (!pause->rx_pause && !pause->tx_pause)
285                 hw->fc = E1000_FC_NONE;
286
287         hw->original_fc = hw->fc;
288
289         if (adapter->fc_autoneg == AUTONEG_ENABLE) {
290                 if (netif_running(adapter->netdev)) {
291                         e1000_down(adapter);
292                         e1000_up(adapter);
293                 } else {
294                         e1000_reset(adapter);
295                 }
296         } else
297                 retval = ((hw->media_type == e1000_media_type_fiber) ?
298                           e1000_setup_link(hw) : e1000_force_mac_fc(hw));
299
300         clear_bit(__E1000_RESETTING, &adapter->flags);
301         return retval;
302 }
303
304 static u32 e1000_get_msglevel(struct net_device *netdev)
305 {
306         struct e1000_adapter *adapter = netdev_priv(netdev);
307
308         return adapter->msg_enable;
309 }
310
311 static void e1000_set_msglevel(struct net_device *netdev, u32 data)
312 {
313         struct e1000_adapter *adapter = netdev_priv(netdev);
314
315         adapter->msg_enable = data;
316 }
317
318 static int e1000_get_regs_len(struct net_device *netdev)
319 {
320 #define E1000_REGS_LEN 32
321         return E1000_REGS_LEN * sizeof(u32);
322 }
323
324 static void e1000_get_regs(struct net_device *netdev, struct ethtool_regs *regs,
325                            void *p)
326 {
327         struct e1000_adapter *adapter = netdev_priv(netdev);
328         struct e1000_hw *hw = &adapter->hw;
329         u32 *regs_buff = p;
330         u16 phy_data;
331
332         memset(p, 0, E1000_REGS_LEN * sizeof(u32));
333
334         regs->version = (1 << 24) | (hw->revision_id << 16) | hw->device_id;
335
336         regs_buff[0]  = er32(CTRL);
337         regs_buff[1]  = er32(STATUS);
338
339         regs_buff[2]  = er32(RCTL);
340         regs_buff[3]  = er32(RDLEN);
341         regs_buff[4]  = er32(RDH);
342         regs_buff[5]  = er32(RDT);
343         regs_buff[6]  = er32(RDTR);
344
345         regs_buff[7]  = er32(TCTL);
346         regs_buff[8]  = er32(TDLEN);
347         regs_buff[9]  = er32(TDH);
348         regs_buff[10] = er32(TDT);
349         regs_buff[11] = er32(TIDV);
350
351         regs_buff[12] = hw->phy_type;  /* PHY type (IGP=1, M88=0) */
352         if (hw->phy_type == e1000_phy_igp) {
353                 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
354                                     IGP01E1000_PHY_AGC_A);
355                 e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_A &
356                                    IGP01E1000_PHY_PAGE_SELECT, &phy_data);
357                 regs_buff[13] = (u32)phy_data; /* cable length */
358                 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
359                                     IGP01E1000_PHY_AGC_B);
360                 e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_B &
361                                    IGP01E1000_PHY_PAGE_SELECT, &phy_data);
362                 regs_buff[14] = (u32)phy_data; /* cable length */
363                 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
364                                     IGP01E1000_PHY_AGC_C);
365                 e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_C &
366                                    IGP01E1000_PHY_PAGE_SELECT, &phy_data);
367                 regs_buff[15] = (u32)phy_data; /* cable length */
368                 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
369                                     IGP01E1000_PHY_AGC_D);
370                 e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_D &
371                                    IGP01E1000_PHY_PAGE_SELECT, &phy_data);
372                 regs_buff[16] = (u32)phy_data; /* cable length */
373                 regs_buff[17] = 0; /* extended 10bt distance (not needed) */
374                 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, 0x0);
375                 e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS &
376                                    IGP01E1000_PHY_PAGE_SELECT, &phy_data);
377                 regs_buff[18] = (u32)phy_data; /* cable polarity */
378                 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
379                                     IGP01E1000_PHY_PCS_INIT_REG);
380                 e1000_read_phy_reg(hw, IGP01E1000_PHY_PCS_INIT_REG &
381                                    IGP01E1000_PHY_PAGE_SELECT, &phy_data);
382                 regs_buff[19] = (u32)phy_data; /* cable polarity */
383                 regs_buff[20] = 0; /* polarity correction enabled (always) */
384                 regs_buff[22] = 0; /* phy receive errors (unavailable) */
385                 regs_buff[23] = regs_buff[18]; /* mdix mode */
386                 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, 0x0);
387         } else {
388                 e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
389                 regs_buff[13] = (u32)phy_data; /* cable length */
390                 regs_buff[14] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
391                 regs_buff[15] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
392                 regs_buff[16] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
393                 e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
394                 regs_buff[17] = (u32)phy_data; /* extended 10bt distance */
395                 regs_buff[18] = regs_buff[13]; /* cable polarity */
396                 regs_buff[19] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
397                 regs_buff[20] = regs_buff[17]; /* polarity correction */
398                 /* phy receive errors */
399                 regs_buff[22] = adapter->phy_stats.receive_errors;
400                 regs_buff[23] = regs_buff[13]; /* mdix mode */
401         }
402         regs_buff[21] = adapter->phy_stats.idle_errors;  /* phy idle errors */
403         e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data);
404         regs_buff[24] = (u32)phy_data;  /* phy local receiver status */
405         regs_buff[25] = regs_buff[24];  /* phy remote receiver status */
406         if (hw->mac_type >= e1000_82540 &&
407             hw->media_type == e1000_media_type_copper) {
408                 regs_buff[26] = er32(MANC);
409         }
410 }
411
412 static int e1000_get_eeprom_len(struct net_device *netdev)
413 {
414         struct e1000_adapter *adapter = netdev_priv(netdev);
415         struct e1000_hw *hw = &adapter->hw;
416
417         return hw->eeprom.word_size * 2;
418 }
419
420 static int e1000_get_eeprom(struct net_device *netdev,
421                             struct ethtool_eeprom *eeprom, u8 *bytes)
422 {
423         struct e1000_adapter *adapter = netdev_priv(netdev);
424         struct e1000_hw *hw = &adapter->hw;
425         u16 *eeprom_buff;
426         int first_word, last_word;
427         int ret_val = 0;
428         u16 i;
429
430         if (eeprom->len == 0)
431                 return -EINVAL;
432
433         eeprom->magic = hw->vendor_id | (hw->device_id << 16);
434
435         first_word = eeprom->offset >> 1;
436         last_word = (eeprom->offset + eeprom->len - 1) >> 1;
437
438         eeprom_buff = kmalloc_array(last_word - first_word + 1, sizeof(u16),
439                                     GFP_KERNEL);
440         if (!eeprom_buff)
441                 return -ENOMEM;
442
443         if (hw->eeprom.type == e1000_eeprom_spi)
444                 ret_val = e1000_read_eeprom(hw, first_word,
445                                             last_word - first_word + 1,
446                                             eeprom_buff);
447         else {
448                 for (i = 0; i < last_word - first_word + 1; i++) {
449                         ret_val = e1000_read_eeprom(hw, first_word + i, 1,
450                                                     &eeprom_buff[i]);
451                         if (ret_val)
452                                 break;
453                 }
454         }
455
456         /* Device's eeprom is always little-endian, word addressable */
457         for (i = 0; i < last_word - first_word + 1; i++)
458                 le16_to_cpus(&eeprom_buff[i]);
459
460         memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1),
461                eeprom->len);
462         kfree(eeprom_buff);
463
464         return ret_val;
465 }
466
467 static int e1000_set_eeprom(struct net_device *netdev,
468                             struct ethtool_eeprom *eeprom, u8 *bytes)
469 {
470         struct e1000_adapter *adapter = netdev_priv(netdev);
471         struct e1000_hw *hw = &adapter->hw;
472         u16 *eeprom_buff;
473         void *ptr;
474         int max_len, first_word, last_word, ret_val = 0;
475         u16 i;
476
477         if (eeprom->len == 0)
478                 return -EOPNOTSUPP;
479
480         if (eeprom->magic != (hw->vendor_id | (hw->device_id << 16)))
481                 return -EFAULT;
482
483         max_len = hw->eeprom.word_size * 2;
484
485         first_word = eeprom->offset >> 1;
486         last_word = (eeprom->offset + eeprom->len - 1) >> 1;
487         eeprom_buff = kmalloc(max_len, GFP_KERNEL);
488         if (!eeprom_buff)
489                 return -ENOMEM;
490
491         ptr = (void *)eeprom_buff;
492
493         if (eeprom->offset & 1) {
494                 /* need read/modify/write of first changed EEPROM word
495                  * only the second byte of the word is being modified
496                  */
497                 ret_val = e1000_read_eeprom(hw, first_word, 1,
498                                             &eeprom_buff[0]);
499                 ptr++;
500         }
501         if (((eeprom->offset + eeprom->len) & 1) && (ret_val == 0)) {
502                 /* need read/modify/write of last changed EEPROM word
503                  * only the first byte of the word is being modified
504                  */
505                 ret_val = e1000_read_eeprom(hw, last_word, 1,
506                                             &eeprom_buff[last_word - first_word]);
507         }
508
509         /* Device's eeprom is always little-endian, word addressable */
510         for (i = 0; i < last_word - first_word + 1; i++)
511                 le16_to_cpus(&eeprom_buff[i]);
512
513         memcpy(ptr, bytes, eeprom->len);
514
515         for (i = 0; i < last_word - first_word + 1; i++)
516                 eeprom_buff[i] = cpu_to_le16(eeprom_buff[i]);
517
518         ret_val = e1000_write_eeprom(hw, first_word,
519                                      last_word - first_word + 1, eeprom_buff);
520
521         /* Update the checksum over the first part of the EEPROM if needed */
522         if ((ret_val == 0) && (first_word <= EEPROM_CHECKSUM_REG))
523                 e1000_update_eeprom_checksum(hw);
524
525         kfree(eeprom_buff);
526         return ret_val;
527 }
528
529 static void e1000_get_drvinfo(struct net_device *netdev,
530                               struct ethtool_drvinfo *drvinfo)
531 {
532         struct e1000_adapter *adapter = netdev_priv(netdev);
533
534         strlcpy(drvinfo->driver,  e1000_driver_name,
535                 sizeof(drvinfo->driver));
536         strlcpy(drvinfo->version, e1000_driver_version,
537                 sizeof(drvinfo->version));
538
539         strlcpy(drvinfo->bus_info, pci_name(adapter->pdev),
540                 sizeof(drvinfo->bus_info));
541 }
542
543 static void e1000_get_ringparam(struct net_device *netdev,
544                                 struct ethtool_ringparam *ring)
545 {
546         struct e1000_adapter *adapter = netdev_priv(netdev);
547         struct e1000_hw *hw = &adapter->hw;
548         e1000_mac_type mac_type = hw->mac_type;
549         struct e1000_tx_ring *txdr = adapter->tx_ring;
550         struct e1000_rx_ring *rxdr = adapter->rx_ring;
551
552         ring->rx_max_pending = (mac_type < e1000_82544) ? E1000_MAX_RXD :
553                 E1000_MAX_82544_RXD;
554         ring->tx_max_pending = (mac_type < e1000_82544) ? E1000_MAX_TXD :
555                 E1000_MAX_82544_TXD;
556         ring->rx_pending = rxdr->count;
557         ring->tx_pending = txdr->count;
558 }
559
560 static int e1000_set_ringparam(struct net_device *netdev,
561                                struct ethtool_ringparam *ring)
562 {
563         struct e1000_adapter *adapter = netdev_priv(netdev);
564         struct e1000_hw *hw = &adapter->hw;
565         e1000_mac_type mac_type = hw->mac_type;
566         struct e1000_tx_ring *txdr, *tx_old;
567         struct e1000_rx_ring *rxdr, *rx_old;
568         int i, err;
569
570         if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
571                 return -EINVAL;
572
573         while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
574                 msleep(1);
575
576         if (netif_running(adapter->netdev))
577                 e1000_down(adapter);
578
579         tx_old = adapter->tx_ring;
580         rx_old = adapter->rx_ring;
581
582         err = -ENOMEM;
583         txdr = kcalloc(adapter->num_tx_queues, sizeof(struct e1000_tx_ring),
584                        GFP_KERNEL);
585         if (!txdr)
586                 goto err_alloc_tx;
587
588         rxdr = kcalloc(adapter->num_rx_queues, sizeof(struct e1000_rx_ring),
589                        GFP_KERNEL);
590         if (!rxdr)
591                 goto err_alloc_rx;
592
593         adapter->tx_ring = txdr;
594         adapter->rx_ring = rxdr;
595
596         rxdr->count = max(ring->rx_pending, (u32)E1000_MIN_RXD);
597         rxdr->count = min(rxdr->count, (u32)(mac_type < e1000_82544 ?
598                           E1000_MAX_RXD : E1000_MAX_82544_RXD));
599         rxdr->count = ALIGN(rxdr->count, REQ_RX_DESCRIPTOR_MULTIPLE);
600         txdr->count = max(ring->tx_pending, (u32)E1000_MIN_TXD);
601         txdr->count = min(txdr->count, (u32)(mac_type < e1000_82544 ?
602                           E1000_MAX_TXD : E1000_MAX_82544_TXD));
603         txdr->count = ALIGN(txdr->count, REQ_TX_DESCRIPTOR_MULTIPLE);
604
605         for (i = 0; i < adapter->num_tx_queues; i++)
606                 txdr[i].count = txdr->count;
607         for (i = 0; i < adapter->num_rx_queues; i++)
608                 rxdr[i].count = rxdr->count;
609
610         err = 0;
611         if (netif_running(adapter->netdev)) {
612                 /* Try to get new resources before deleting old */
613                 err = e1000_setup_all_rx_resources(adapter);
614                 if (err)
615                         goto err_setup_rx;
616                 err = e1000_setup_all_tx_resources(adapter);
617                 if (err)
618                         goto err_setup_tx;
619
620                 /* save the new, restore the old in order to free it,
621                  * then restore the new back again
622                  */
623
624                 adapter->rx_ring = rx_old;
625                 adapter->tx_ring = tx_old;
626                 e1000_free_all_rx_resources(adapter);
627                 e1000_free_all_tx_resources(adapter);
628                 adapter->rx_ring = rxdr;
629                 adapter->tx_ring = txdr;
630                 err = e1000_up(adapter);
631         }
632         kfree(tx_old);
633         kfree(rx_old);
634
635         clear_bit(__E1000_RESETTING, &adapter->flags);
636         return err;
637
638 err_setup_tx:
639         e1000_free_all_rx_resources(adapter);
640 err_setup_rx:
641         adapter->rx_ring = rx_old;
642         adapter->tx_ring = tx_old;
643         kfree(rxdr);
644 err_alloc_rx:
645         kfree(txdr);
646 err_alloc_tx:
647         if (netif_running(adapter->netdev))
648                 e1000_up(adapter);
649         clear_bit(__E1000_RESETTING, &adapter->flags);
650         return err;
651 }
652
653 static bool reg_pattern_test(struct e1000_adapter *adapter, u64 *data, int reg,
654                              u32 mask, u32 write)
655 {
656         struct e1000_hw *hw = &adapter->hw;
657         static const u32 test[] = {
658                 0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF
659         };
660         u8 __iomem *address = hw->hw_addr + reg;
661         u32 read;
662         int i;
663
664         for (i = 0; i < ARRAY_SIZE(test); i++) {
665                 writel(write & test[i], address);
666                 read = readl(address);
667                 if (read != (write & test[i] & mask)) {
668                         e_err(drv, "pattern test reg %04X failed: "
669                               "got 0x%08X expected 0x%08X\n",
670                               reg, read, (write & test[i] & mask));
671                         *data = reg;
672                         return true;
673                 }
674         }
675         return false;
676 }
677
678 static bool reg_set_and_check(struct e1000_adapter *adapter, u64 *data, int reg,
679                               u32 mask, u32 write)
680 {
681         struct e1000_hw *hw = &adapter->hw;
682         u8 __iomem *address = hw->hw_addr + reg;
683         u32 read;
684
685         writel(write & mask, address);
686         read = readl(address);
687         if ((read & mask) != (write & mask)) {
688                 e_err(drv, "set/check reg %04X test failed: "
689                       "got 0x%08X expected 0x%08X\n",
690                       reg, (read & mask), (write & mask));
691                 *data = reg;
692                 return true;
693         }
694         return false;
695 }
696
697 #define REG_PATTERN_TEST(reg, mask, write)                           \
698         do {                                                         \
699                 if (reg_pattern_test(adapter, data,                  \
700                              (hw->mac_type >= e1000_82543)   \
701                              ? E1000_##reg : E1000_82542_##reg,      \
702                              mask, write))                           \
703                         return 1;                                    \
704         } while (0)
705
706 #define REG_SET_AND_CHECK(reg, mask, write)                          \
707         do {                                                         \
708                 if (reg_set_and_check(adapter, data,                 \
709                               (hw->mac_type >= e1000_82543)  \
710                               ? E1000_##reg : E1000_82542_##reg,     \
711                               mask, write))                          \
712                         return 1;                                    \
713         } while (0)
714
715 static int e1000_reg_test(struct e1000_adapter *adapter, u64 *data)
716 {
717         u32 value, before, after;
718         u32 i, toggle;
719         struct e1000_hw *hw = &adapter->hw;
720
721         /* The status register is Read Only, so a write should fail.
722          * Some bits that get toggled are ignored.
723          */
724
725         /* there are several bits on newer hardware that are r/w */
726         toggle = 0xFFFFF833;
727
728         before = er32(STATUS);
729         value = (er32(STATUS) & toggle);
730         ew32(STATUS, toggle);
731         after = er32(STATUS) & toggle;
732         if (value != after) {
733                 e_err(drv, "failed STATUS register test got: "
734                       "0x%08X expected: 0x%08X\n", after, value);
735                 *data = 1;
736                 return 1;
737         }
738         /* restore previous status */
739         ew32(STATUS, before);
740
741         REG_PATTERN_TEST(FCAL, 0xFFFFFFFF, 0xFFFFFFFF);
742         REG_PATTERN_TEST(FCAH, 0x0000FFFF, 0xFFFFFFFF);
743         REG_PATTERN_TEST(FCT, 0x0000FFFF, 0xFFFFFFFF);
744         REG_PATTERN_TEST(VET, 0x0000FFFF, 0xFFFFFFFF);
745
746         REG_PATTERN_TEST(RDTR, 0x0000FFFF, 0xFFFFFFFF);
747         REG_PATTERN_TEST(RDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
748         REG_PATTERN_TEST(RDLEN, 0x000FFF80, 0x000FFFFF);
749         REG_PATTERN_TEST(RDH, 0x0000FFFF, 0x0000FFFF);
750         REG_PATTERN_TEST(RDT, 0x0000FFFF, 0x0000FFFF);
751         REG_PATTERN_TEST(FCRTH, 0x0000FFF8, 0x0000FFF8);
752         REG_PATTERN_TEST(FCTTV, 0x0000FFFF, 0x0000FFFF);
753         REG_PATTERN_TEST(TIPG, 0x3FFFFFFF, 0x3FFFFFFF);
754         REG_PATTERN_TEST(TDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
755         REG_PATTERN_TEST(TDLEN, 0x000FFF80, 0x000FFFFF);
756
757         REG_SET_AND_CHECK(RCTL, 0xFFFFFFFF, 0x00000000);
758
759         before = 0x06DFB3FE;
760         REG_SET_AND_CHECK(RCTL, before, 0x003FFFFB);
761         REG_SET_AND_CHECK(TCTL, 0xFFFFFFFF, 0x00000000);
762
763         if (hw->mac_type >= e1000_82543) {
764                 REG_SET_AND_CHECK(RCTL, before, 0xFFFFFFFF);
765                 REG_PATTERN_TEST(RDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
766                 REG_PATTERN_TEST(TXCW, 0xC000FFFF, 0x0000FFFF);
767                 REG_PATTERN_TEST(TDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
768                 REG_PATTERN_TEST(TIDV, 0x0000FFFF, 0x0000FFFF);
769                 value = E1000_RAR_ENTRIES;
770                 for (i = 0; i < value; i++) {
771                         REG_PATTERN_TEST(RA + (((i << 1) + 1) << 2),
772                                          0x8003FFFF, 0xFFFFFFFF);
773                 }
774         } else {
775                 REG_SET_AND_CHECK(RCTL, 0xFFFFFFFF, 0x01FFFFFF);
776                 REG_PATTERN_TEST(RDBAL, 0xFFFFF000, 0xFFFFFFFF);
777                 REG_PATTERN_TEST(TXCW, 0x0000FFFF, 0x0000FFFF);
778                 REG_PATTERN_TEST(TDBAL, 0xFFFFF000, 0xFFFFFFFF);
779         }
780
781         value = E1000_MC_TBL_SIZE;
782         for (i = 0; i < value; i++)
783                 REG_PATTERN_TEST(MTA + (i << 2), 0xFFFFFFFF, 0xFFFFFFFF);
784
785         *data = 0;
786         return 0;
787 }
788
789 static int e1000_eeprom_test(struct e1000_adapter *adapter, u64 *data)
790 {
791         struct e1000_hw *hw = &adapter->hw;
792         u16 temp;
793         u16 checksum = 0;
794         u16 i;
795
796         *data = 0;
797         /* Read and add up the contents of the EEPROM */
798         for (i = 0; i < (EEPROM_CHECKSUM_REG + 1); i++) {
799                 if ((e1000_read_eeprom(hw, i, 1, &temp)) < 0) {
800                         *data = 1;
801                         break;
802                 }
803                 checksum += temp;
804         }
805
806         /* If Checksum is not Correct return error else test passed */
807         if ((checksum != (u16)EEPROM_SUM) && !(*data))
808                 *data = 2;
809
810         return *data;
811 }
812
813 static irqreturn_t e1000_test_intr(int irq, void *data)
814 {
815         struct net_device *netdev = (struct net_device *)data;
816         struct e1000_adapter *adapter = netdev_priv(netdev);
817         struct e1000_hw *hw = &adapter->hw;
818
819         adapter->test_icr |= er32(ICR);
820
821         return IRQ_HANDLED;
822 }
823
824 static int e1000_intr_test(struct e1000_adapter *adapter, u64 *data)
825 {
826         struct net_device *netdev = adapter->netdev;
827         u32 mask, i = 0;
828         bool shared_int = true;
829         u32 irq = adapter->pdev->irq;
830         struct e1000_hw *hw = &adapter->hw;
831
832         *data = 0;
833
834         /* NOTE: we don't test MSI interrupts here, yet
835          * Hook up test interrupt handler just for this test
836          */
837         if (!request_irq(irq, e1000_test_intr, IRQF_PROBE_SHARED, netdev->name,
838                          netdev))
839                 shared_int = false;
840         else if (request_irq(irq, e1000_test_intr, IRQF_SHARED,
841                              netdev->name, netdev)) {
842                 *data = 1;
843                 return -1;
844         }
845         e_info(hw, "testing %s interrupt\n", (shared_int ?
846                "shared" : "unshared"));
847
848         /* Disable all the interrupts */
849         ew32(IMC, 0xFFFFFFFF);
850         E1000_WRITE_FLUSH();
851         msleep(10);
852
853         /* Test each interrupt */
854         for (; i < 10; i++) {
855                 /* Interrupt to test */
856                 mask = 1 << i;
857
858                 if (!shared_int) {
859                         /* Disable the interrupt to be reported in
860                          * the cause register and then force the same
861                          * interrupt and see if one gets posted.  If
862                          * an interrupt was posted to the bus, the
863                          * test failed.
864                          */
865                         adapter->test_icr = 0;
866                         ew32(IMC, mask);
867                         ew32(ICS, mask);
868                         E1000_WRITE_FLUSH();
869                         msleep(10);
870
871                         if (adapter->test_icr & mask) {
872                                 *data = 3;
873                                 break;
874                         }
875                 }
876
877                 /* Enable the interrupt to be reported in
878                  * the cause register and then force the same
879                  * interrupt and see if one gets posted.  If
880                  * an interrupt was not posted to the bus, the
881                  * test failed.
882                  */
883                 adapter->test_icr = 0;
884                 ew32(IMS, mask);
885                 ew32(ICS, mask);
886                 E1000_WRITE_FLUSH();
887                 msleep(10);
888
889                 if (!(adapter->test_icr & mask)) {
890                         *data = 4;
891                         break;
892                 }
893
894                 if (!shared_int) {
895                         /* Disable the other interrupts to be reported in
896                          * the cause register and then force the other
897                          * interrupts and see if any get posted.  If
898                          * an interrupt was posted to the bus, the
899                          * test failed.
900                          */
901                         adapter->test_icr = 0;
902                         ew32(IMC, ~mask & 0x00007FFF);
903                         ew32(ICS, ~mask & 0x00007FFF);
904                         E1000_WRITE_FLUSH();
905                         msleep(10);
906
907                         if (adapter->test_icr) {
908                                 *data = 5;
909                                 break;
910                         }
911                 }
912         }
913
914         /* Disable all the interrupts */
915         ew32(IMC, 0xFFFFFFFF);
916         E1000_WRITE_FLUSH();
917         msleep(10);
918
919         /* Unhook test interrupt handler */
920         free_irq(irq, netdev);
921
922         return *data;
923 }
924
925 static void e1000_free_desc_rings(struct e1000_adapter *adapter)
926 {
927         struct e1000_tx_ring *txdr = &adapter->test_tx_ring;
928         struct e1000_rx_ring *rxdr = &adapter->test_rx_ring;
929         struct pci_dev *pdev = adapter->pdev;
930         int i;
931
932         if (txdr->desc && txdr->buffer_info) {
933                 for (i = 0; i < txdr->count; i++) {
934                         if (txdr->buffer_info[i].dma)
935                                 dma_unmap_single(&pdev->dev,
936                                                  txdr->buffer_info[i].dma,
937                                                  txdr->buffer_info[i].length,
938                                                  DMA_TO_DEVICE);
939                         dev_kfree_skb(txdr->buffer_info[i].skb);
940                 }
941         }
942
943         if (rxdr->desc && rxdr->buffer_info) {
944                 for (i = 0; i < rxdr->count; i++) {
945                         if (rxdr->buffer_info[i].dma)
946                                 dma_unmap_single(&pdev->dev,
947                                                  rxdr->buffer_info[i].dma,
948                                                  E1000_RXBUFFER_2048,
949                                                  DMA_FROM_DEVICE);
950                         kfree(rxdr->buffer_info[i].rxbuf.data);
951                 }
952         }
953
954         if (txdr->desc) {
955                 dma_free_coherent(&pdev->dev, txdr->size, txdr->desc,
956                                   txdr->dma);
957                 txdr->desc = NULL;
958         }
959         if (rxdr->desc) {
960                 dma_free_coherent(&pdev->dev, rxdr->size, rxdr->desc,
961                                   rxdr->dma);
962                 rxdr->desc = NULL;
963         }
964
965         kfree(txdr->buffer_info);
966         txdr->buffer_info = NULL;
967         kfree(rxdr->buffer_info);
968         rxdr->buffer_info = NULL;
969 }
970
971 static int e1000_setup_desc_rings(struct e1000_adapter *adapter)
972 {
973         struct e1000_hw *hw = &adapter->hw;
974         struct e1000_tx_ring *txdr = &adapter->test_tx_ring;
975         struct e1000_rx_ring *rxdr = &adapter->test_rx_ring;
976         struct pci_dev *pdev = adapter->pdev;
977         u32 rctl;
978         int i, ret_val;
979
980         /* Setup Tx descriptor ring and Tx buffers */
981
982         if (!txdr->count)
983                 txdr->count = E1000_DEFAULT_TXD;
984
985         txdr->buffer_info = kcalloc(txdr->count, sizeof(struct e1000_tx_buffer),
986                                     GFP_KERNEL);
987         if (!txdr->buffer_info) {
988                 ret_val = 1;
989                 goto err_nomem;
990         }
991
992         txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
993         txdr->size = ALIGN(txdr->size, 4096);
994         txdr->desc = dma_alloc_coherent(&pdev->dev, txdr->size, &txdr->dma,
995                                         GFP_KERNEL);
996         if (!txdr->desc) {
997                 ret_val = 2;
998                 goto err_nomem;
999         }
1000         txdr->next_to_use = txdr->next_to_clean = 0;
1001
1002         ew32(TDBAL, ((u64)txdr->dma & 0x00000000FFFFFFFF));
1003         ew32(TDBAH, ((u64)txdr->dma >> 32));
1004         ew32(TDLEN, txdr->count * sizeof(struct e1000_tx_desc));
1005         ew32(TDH, 0);
1006         ew32(TDT, 0);
1007         ew32(TCTL, E1000_TCTL_PSP | E1000_TCTL_EN |
1008              E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT |
1009              E1000_FDX_COLLISION_DISTANCE << E1000_COLD_SHIFT);
1010
1011         for (i = 0; i < txdr->count; i++) {
1012                 struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*txdr, i);
1013                 struct sk_buff *skb;
1014                 unsigned int size = 1024;
1015
1016                 skb = alloc_skb(size, GFP_KERNEL);
1017                 if (!skb) {
1018                         ret_val = 3;
1019                         goto err_nomem;
1020                 }
1021                 skb_put(skb, size);
1022                 txdr->buffer_info[i].skb = skb;
1023                 txdr->buffer_info[i].length = skb->len;
1024                 txdr->buffer_info[i].dma =
1025                         dma_map_single(&pdev->dev, skb->data, skb->len,
1026                                        DMA_TO_DEVICE);
1027                 if (dma_mapping_error(&pdev->dev, txdr->buffer_info[i].dma)) {
1028                         ret_val = 4;
1029                         goto err_nomem;
1030                 }
1031                 tx_desc->buffer_addr = cpu_to_le64(txdr->buffer_info[i].dma);
1032                 tx_desc->lower.data = cpu_to_le32(skb->len);
1033                 tx_desc->lower.data |= cpu_to_le32(E1000_TXD_CMD_EOP |
1034                                                    E1000_TXD_CMD_IFCS |
1035                                                    E1000_TXD_CMD_RPS);
1036                 tx_desc->upper.data = 0;
1037         }
1038
1039         /* Setup Rx descriptor ring and Rx buffers */
1040
1041         if (!rxdr->count)
1042                 rxdr->count = E1000_DEFAULT_RXD;
1043
1044         rxdr->buffer_info = kcalloc(rxdr->count, sizeof(struct e1000_rx_buffer),
1045                                     GFP_KERNEL);
1046         if (!rxdr->buffer_info) {
1047                 ret_val = 5;
1048                 goto err_nomem;
1049         }
1050
1051         rxdr->size = rxdr->count * sizeof(struct e1000_rx_desc);
1052         rxdr->desc = dma_alloc_coherent(&pdev->dev, rxdr->size, &rxdr->dma,
1053                                         GFP_KERNEL);
1054         if (!rxdr->desc) {
1055                 ret_val = 6;
1056                 goto err_nomem;
1057         }
1058         rxdr->next_to_use = rxdr->next_to_clean = 0;
1059
1060         rctl = er32(RCTL);
1061         ew32(RCTL, rctl & ~E1000_RCTL_EN);
1062         ew32(RDBAL, ((u64)rxdr->dma & 0xFFFFFFFF));
1063         ew32(RDBAH, ((u64)rxdr->dma >> 32));
1064         ew32(RDLEN, rxdr->size);
1065         ew32(RDH, 0);
1066         ew32(RDT, 0);
1067         rctl = E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_SZ_2048 |
1068                 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1069                 (hw->mc_filter_type << E1000_RCTL_MO_SHIFT);
1070         ew32(RCTL, rctl);
1071
1072         for (i = 0; i < rxdr->count; i++) {
1073                 struct e1000_rx_desc *rx_desc = E1000_RX_DESC(*rxdr, i);
1074                 u8 *buf;
1075
1076                 buf = kzalloc(E1000_RXBUFFER_2048 + NET_SKB_PAD + NET_IP_ALIGN,
1077                               GFP_KERNEL);
1078                 if (!buf) {
1079                         ret_val = 7;
1080                         goto err_nomem;
1081                 }
1082                 rxdr->buffer_info[i].rxbuf.data = buf;
1083
1084                 rxdr->buffer_info[i].dma =
1085                         dma_map_single(&pdev->dev,
1086                                        buf + NET_SKB_PAD + NET_IP_ALIGN,
1087                                        E1000_RXBUFFER_2048, DMA_FROM_DEVICE);
1088                 if (dma_mapping_error(&pdev->dev, rxdr->buffer_info[i].dma)) {
1089                         ret_val = 8;
1090                         goto err_nomem;
1091                 }
1092                 rx_desc->buffer_addr = cpu_to_le64(rxdr->buffer_info[i].dma);
1093         }
1094
1095         return 0;
1096
1097 err_nomem:
1098         e1000_free_desc_rings(adapter);
1099         return ret_val;
1100 }
1101
1102 static void e1000_phy_disable_receiver(struct e1000_adapter *adapter)
1103 {
1104         struct e1000_hw *hw = &adapter->hw;
1105
1106         /* Write out to PHY registers 29 and 30 to disable the Receiver. */
1107         e1000_write_phy_reg(hw, 29, 0x001F);
1108         e1000_write_phy_reg(hw, 30, 0x8FFC);
1109         e1000_write_phy_reg(hw, 29, 0x001A);
1110         e1000_write_phy_reg(hw, 30, 0x8FF0);
1111 }
1112
1113 static void e1000_phy_reset_clk_and_crs(struct e1000_adapter *adapter)
1114 {
1115         struct e1000_hw *hw = &adapter->hw;
1116         u16 phy_reg;
1117
1118         /* Because we reset the PHY above, we need to re-force TX_CLK in the
1119          * Extended PHY Specific Control Register to 25MHz clock.  This
1120          * value defaults back to a 2.5MHz clock when the PHY is reset.
1121          */
1122         e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_reg);
1123         phy_reg |= M88E1000_EPSCR_TX_CLK_25;
1124         e1000_write_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_reg);
1125
1126         /* In addition, because of the s/w reset above, we need to enable
1127          * CRS on TX.  This must be set for both full and half duplex
1128          * operation.
1129          */
1130         e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_reg);
1131         phy_reg |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
1132         e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_reg);
1133 }
1134
1135 static int e1000_nonintegrated_phy_loopback(struct e1000_adapter *adapter)
1136 {
1137         struct e1000_hw *hw = &adapter->hw;
1138         u32 ctrl_reg;
1139         u16 phy_reg;
1140
1141         /* Setup the Device Control Register for PHY loopback test. */
1142
1143         ctrl_reg = er32(CTRL);
1144         ctrl_reg |= (E1000_CTRL_ILOS |          /* Invert Loss-Of-Signal */
1145                      E1000_CTRL_FRCSPD |        /* Set the Force Speed Bit */
1146                      E1000_CTRL_FRCDPX |        /* Set the Force Duplex Bit */
1147                      E1000_CTRL_SPD_1000 |      /* Force Speed to 1000 */
1148                      E1000_CTRL_FD);            /* Force Duplex to FULL */
1149
1150         ew32(CTRL, ctrl_reg);
1151
1152         /* Read the PHY Specific Control Register (0x10) */
1153         e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_reg);
1154
1155         /* Clear Auto-Crossover bits in PHY Specific Control Register
1156          * (bits 6:5).
1157          */
1158         phy_reg &= ~M88E1000_PSCR_AUTO_X_MODE;
1159         e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_reg);
1160
1161         /* Perform software reset on the PHY */
1162         e1000_phy_reset(hw);
1163
1164         /* Have to setup TX_CLK and TX_CRS after software reset */
1165         e1000_phy_reset_clk_and_crs(adapter);
1166
1167         e1000_write_phy_reg(hw, PHY_CTRL, 0x8100);
1168
1169         /* Wait for reset to complete. */
1170         udelay(500);
1171
1172         /* Have to setup TX_CLK and TX_CRS after software reset */
1173         e1000_phy_reset_clk_and_crs(adapter);
1174
1175         /* Write out to PHY registers 29 and 30 to disable the Receiver. */
1176         e1000_phy_disable_receiver(adapter);
1177
1178         /* Set the loopback bit in the PHY control register. */
1179         e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg);
1180         phy_reg |= MII_CR_LOOPBACK;
1181         e1000_write_phy_reg(hw, PHY_CTRL, phy_reg);
1182
1183         /* Setup TX_CLK and TX_CRS one more time. */
1184         e1000_phy_reset_clk_and_crs(adapter);
1185
1186         /* Check Phy Configuration */
1187         e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg);
1188         if (phy_reg != 0x4100)
1189                 return 9;
1190
1191         e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_reg);
1192         if (phy_reg != 0x0070)
1193                 return 10;
1194
1195         e1000_read_phy_reg(hw, 29, &phy_reg);
1196         if (phy_reg != 0x001A)
1197                 return 11;
1198
1199         return 0;
1200 }
1201
1202 static int e1000_integrated_phy_loopback(struct e1000_adapter *adapter)
1203 {
1204         struct e1000_hw *hw = &adapter->hw;
1205         u32 ctrl_reg = 0;
1206         u32 stat_reg = 0;
1207
1208         hw->autoneg = false;
1209
1210         if (hw->phy_type == e1000_phy_m88) {
1211                 /* Auto-MDI/MDIX Off */
1212                 e1000_write_phy_reg(hw,
1213                                     M88E1000_PHY_SPEC_CTRL, 0x0808);
1214                 /* reset to update Auto-MDI/MDIX */
1215                 e1000_write_phy_reg(hw, PHY_CTRL, 0x9140);
1216                 /* autoneg off */
1217                 e1000_write_phy_reg(hw, PHY_CTRL, 0x8140);
1218         }
1219
1220         ctrl_reg = er32(CTRL);
1221
1222         /* force 1000, set loopback */
1223         e1000_write_phy_reg(hw, PHY_CTRL, 0x4140);
1224
1225         /* Now set up the MAC to the same speed/duplex as the PHY. */
1226         ctrl_reg = er32(CTRL);
1227         ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1228         ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1229                         E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1230                         E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
1231                         E1000_CTRL_FD); /* Force Duplex to FULL */
1232
1233         if (hw->media_type == e1000_media_type_copper &&
1234             hw->phy_type == e1000_phy_m88)
1235                 ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */
1236         else {
1237                 /* Set the ILOS bit on the fiber Nic is half
1238                  * duplex link is detected.
1239                  */
1240                 stat_reg = er32(STATUS);
1241                 if ((stat_reg & E1000_STATUS_FD) == 0)
1242                         ctrl_reg |= (E1000_CTRL_ILOS | E1000_CTRL_SLU);
1243         }
1244
1245         ew32(CTRL, ctrl_reg);
1246
1247         /* Disable the receiver on the PHY so when a cable is plugged in, the
1248          * PHY does not begin to autoneg when a cable is reconnected to the NIC.
1249          */
1250         if (hw->phy_type == e1000_phy_m88)
1251                 e1000_phy_disable_receiver(adapter);
1252
1253         udelay(500);
1254
1255         return 0;
1256 }
1257
1258 static int e1000_set_phy_loopback(struct e1000_adapter *adapter)
1259 {
1260         struct e1000_hw *hw = &adapter->hw;
1261         u16 phy_reg = 0;
1262         u16 count = 0;
1263
1264         switch (hw->mac_type) {
1265         case e1000_82543:
1266                 if (hw->media_type == e1000_media_type_copper) {
1267                         /* Attempt to setup Loopback mode on Non-integrated PHY.
1268                          * Some PHY registers get corrupted at random, so
1269                          * attempt this 10 times.
1270                          */
1271                         while (e1000_nonintegrated_phy_loopback(adapter) &&
1272                                count++ < 10);
1273                         if (count < 11)
1274                                 return 0;
1275                 }
1276                 break;
1277
1278         case e1000_82544:
1279         case e1000_82540:
1280         case e1000_82545:
1281         case e1000_82545_rev_3:
1282         case e1000_82546:
1283         case e1000_82546_rev_3:
1284         case e1000_82541:
1285         case e1000_82541_rev_2:
1286         case e1000_82547:
1287         case e1000_82547_rev_2:
1288                 return e1000_integrated_phy_loopback(adapter);
1289         default:
1290                 /* Default PHY loopback work is to read the MII
1291                  * control register and assert bit 14 (loopback mode).
1292                  */
1293                 e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg);
1294                 phy_reg |= MII_CR_LOOPBACK;
1295                 e1000_write_phy_reg(hw, PHY_CTRL, phy_reg);
1296                 return 0;
1297         }
1298
1299         return 8;
1300 }
1301
1302 static int e1000_setup_loopback_test(struct e1000_adapter *adapter)
1303 {
1304         struct e1000_hw *hw = &adapter->hw;
1305         u32 rctl;
1306
1307         if (hw->media_type == e1000_media_type_fiber ||
1308             hw->media_type == e1000_media_type_internal_serdes) {
1309                 switch (hw->mac_type) {
1310                 case e1000_82545:
1311                 case e1000_82546:
1312                 case e1000_82545_rev_3:
1313                 case e1000_82546_rev_3:
1314                         return e1000_set_phy_loopback(adapter);
1315                 default:
1316                         rctl = er32(RCTL);
1317                         rctl |= E1000_RCTL_LBM_TCVR;
1318                         ew32(RCTL, rctl);
1319                         return 0;
1320                 }
1321         } else if (hw->media_type == e1000_media_type_copper) {
1322                 return e1000_set_phy_loopback(adapter);
1323         }
1324
1325         return 7;
1326 }
1327
1328 static void e1000_loopback_cleanup(struct e1000_adapter *adapter)
1329 {
1330         struct e1000_hw *hw = &adapter->hw;
1331         u32 rctl;
1332         u16 phy_reg;
1333
1334         rctl = er32(RCTL);
1335         rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
1336         ew32(RCTL, rctl);
1337
1338         switch (hw->mac_type) {
1339         case e1000_82545:
1340         case e1000_82546:
1341         case e1000_82545_rev_3:
1342         case e1000_82546_rev_3:
1343         default:
1344                 hw->autoneg = true;
1345                 e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg);
1346                 if (phy_reg & MII_CR_LOOPBACK) {
1347                         phy_reg &= ~MII_CR_LOOPBACK;
1348                         e1000_write_phy_reg(hw, PHY_CTRL, phy_reg);
1349                         e1000_phy_reset(hw);
1350                 }
1351                 break;
1352         }
1353 }
1354
1355 static void e1000_create_lbtest_frame(struct sk_buff *skb,
1356                                       unsigned int frame_size)
1357 {
1358         memset(skb->data, 0xFF, frame_size);
1359         frame_size &= ~1;
1360         memset(&skb->data[frame_size / 2], 0xAA, frame_size / 2 - 1);
1361         memset(&skb->data[frame_size / 2 + 10], 0xBE, 1);
1362         memset(&skb->data[frame_size / 2 + 12], 0xAF, 1);
1363 }
1364
1365 static int e1000_check_lbtest_frame(const unsigned char *data,
1366                                     unsigned int frame_size)
1367 {
1368         frame_size &= ~1;
1369         if (*(data + 3) == 0xFF) {
1370                 if ((*(data + frame_size / 2 + 10) == 0xBE) &&
1371                     (*(data + frame_size / 2 + 12) == 0xAF)) {
1372                         return 0;
1373                 }
1374         }
1375         return 13;
1376 }
1377
1378 static int e1000_run_loopback_test(struct e1000_adapter *adapter)
1379 {
1380         struct e1000_hw *hw = &adapter->hw;
1381         struct e1000_tx_ring *txdr = &adapter->test_tx_ring;
1382         struct e1000_rx_ring *rxdr = &adapter->test_rx_ring;
1383         struct pci_dev *pdev = adapter->pdev;
1384         int i, j, k, l, lc, good_cnt, ret_val = 0;
1385         unsigned long time;
1386
1387         ew32(RDT, rxdr->count - 1);
1388
1389         /* Calculate the loop count based on the largest descriptor ring
1390          * The idea is to wrap the largest ring a number of times using 64
1391          * send/receive pairs during each loop
1392          */
1393
1394         if (rxdr->count <= txdr->count)
1395                 lc = ((txdr->count / 64) * 2) + 1;
1396         else
1397                 lc = ((rxdr->count / 64) * 2) + 1;
1398
1399         k = l = 0;
1400         for (j = 0; j <= lc; j++) { /* loop count loop */
1401                 for (i = 0; i < 64; i++) { /* send the packets */
1402                         e1000_create_lbtest_frame(txdr->buffer_info[i].skb,
1403                                                   1024);
1404                         dma_sync_single_for_device(&pdev->dev,
1405                                                    txdr->buffer_info[k].dma,
1406                                                    txdr->buffer_info[k].length,
1407                                                    DMA_TO_DEVICE);
1408                         if (unlikely(++k == txdr->count))
1409                                 k = 0;
1410                 }
1411                 ew32(TDT, k);
1412                 E1000_WRITE_FLUSH();
1413                 msleep(200);
1414                 time = jiffies; /* set the start time for the receive */
1415                 good_cnt = 0;
1416                 do { /* receive the sent packets */
1417                         dma_sync_single_for_cpu(&pdev->dev,
1418                                                 rxdr->buffer_info[l].dma,
1419                                                 E1000_RXBUFFER_2048,
1420                                                 DMA_FROM_DEVICE);
1421
1422                         ret_val = e1000_check_lbtest_frame(
1423                                         rxdr->buffer_info[l].rxbuf.data +
1424                                         NET_SKB_PAD + NET_IP_ALIGN,
1425                                         1024);
1426                         if (!ret_val)
1427                                 good_cnt++;
1428                         if (unlikely(++l == rxdr->count))
1429                                 l = 0;
1430                         /* time + 20 msecs (200 msecs on 2.4) is more than
1431                          * enough time to complete the receives, if it's
1432                          * exceeded, break and error off
1433                          */
1434                 } while (good_cnt < 64 && time_after(time + 20, jiffies));
1435
1436                 if (good_cnt != 64) {
1437                         ret_val = 13; /* ret_val is the same as mis-compare */
1438                         break;
1439                 }
1440                 if (time_after_eq(jiffies, time + 2)) {
1441                         ret_val = 14; /* error code for time out error */
1442                         break;
1443                 }
1444         } /* end loop count loop */
1445         return ret_val;
1446 }
1447
1448 static int e1000_loopback_test(struct e1000_adapter *adapter, u64 *data)
1449 {
1450         *data = e1000_setup_desc_rings(adapter);
1451         if (*data)
1452                 goto out;
1453         *data = e1000_setup_loopback_test(adapter);
1454         if (*data)
1455                 goto err_loopback;
1456         *data = e1000_run_loopback_test(adapter);
1457         e1000_loopback_cleanup(adapter);
1458
1459 err_loopback:
1460         e1000_free_desc_rings(adapter);
1461 out:
1462         return *data;
1463 }
1464
1465 static int e1000_link_test(struct e1000_adapter *adapter, u64 *data)
1466 {
1467         struct e1000_hw *hw = &adapter->hw;
1468         *data = 0;
1469         if (hw->media_type == e1000_media_type_internal_serdes) {
1470                 int i = 0;
1471
1472                 hw->serdes_has_link = false;
1473
1474                 /* On some blade server designs, link establishment
1475                  * could take as long as 2-3 minutes
1476                  */
1477                 do {
1478                         e1000_check_for_link(hw);
1479                         if (hw->serdes_has_link)
1480                                 return *data;
1481                         msleep(20);
1482                 } while (i++ < 3750);
1483
1484                 *data = 1;
1485         } else {
1486                 e1000_check_for_link(hw);
1487                 if (hw->autoneg)  /* if auto_neg is set wait for it */
1488                         msleep(4000);
1489
1490                 if (!(er32(STATUS) & E1000_STATUS_LU))
1491                         *data = 1;
1492         }
1493         return *data;
1494 }
1495
1496 static int e1000_get_sset_count(struct net_device *netdev, int sset)
1497 {
1498         switch (sset) {
1499         case ETH_SS_TEST:
1500                 return E1000_TEST_LEN;
1501         case ETH_SS_STATS:
1502                 return E1000_STATS_LEN;
1503         default:
1504                 return -EOPNOTSUPP;
1505         }
1506 }
1507
1508 static void e1000_diag_test(struct net_device *netdev,
1509                             struct ethtool_test *eth_test, u64 *data)
1510 {
1511         struct e1000_adapter *adapter = netdev_priv(netdev);
1512         struct e1000_hw *hw = &adapter->hw;
1513         bool if_running = netif_running(netdev);
1514
1515         set_bit(__E1000_TESTING, &adapter->flags);
1516         if (eth_test->flags == ETH_TEST_FL_OFFLINE) {
1517                 /* Offline tests */
1518
1519                 /* save speed, duplex, autoneg settings */
1520                 u16 autoneg_advertised = hw->autoneg_advertised;
1521                 u8 forced_speed_duplex = hw->forced_speed_duplex;
1522                 u8 autoneg = hw->autoneg;
1523
1524                 e_info(hw, "offline testing starting\n");
1525
1526                 /* Link test performed before hardware reset so autoneg doesn't
1527                  * interfere with test result
1528                  */
1529                 if (e1000_link_test(adapter, &data[4]))
1530                         eth_test->flags |= ETH_TEST_FL_FAILED;
1531
1532                 if (if_running)
1533                         /* indicate we're in test mode */
1534                         e1000_close(netdev);
1535                 else
1536                         e1000_reset(adapter);
1537
1538                 if (e1000_reg_test(adapter, &data[0]))
1539                         eth_test->flags |= ETH_TEST_FL_FAILED;
1540
1541                 e1000_reset(adapter);
1542                 if (e1000_eeprom_test(adapter, &data[1]))
1543                         eth_test->flags |= ETH_TEST_FL_FAILED;
1544
1545                 e1000_reset(adapter);
1546                 if (e1000_intr_test(adapter, &data[2]))
1547                         eth_test->flags |= ETH_TEST_FL_FAILED;
1548
1549                 e1000_reset(adapter);
1550                 /* make sure the phy is powered up */
1551                 e1000_power_up_phy(adapter);
1552                 if (e1000_loopback_test(adapter, &data[3]))
1553                         eth_test->flags |= ETH_TEST_FL_FAILED;
1554
1555                 /* restore speed, duplex, autoneg settings */
1556                 hw->autoneg_advertised = autoneg_advertised;
1557                 hw->forced_speed_duplex = forced_speed_duplex;
1558                 hw->autoneg = autoneg;
1559
1560                 e1000_reset(adapter);
1561                 clear_bit(__E1000_TESTING, &adapter->flags);
1562                 if (if_running)
1563                         e1000_open(netdev);
1564         } else {
1565                 e_info(hw, "online testing starting\n");
1566                 /* Online tests */
1567                 if (e1000_link_test(adapter, &data[4]))
1568                         eth_test->flags |= ETH_TEST_FL_FAILED;
1569
1570                 /* Online tests aren't run; pass by default */
1571                 data[0] = 0;
1572                 data[1] = 0;
1573                 data[2] = 0;
1574                 data[3] = 0;
1575
1576                 clear_bit(__E1000_TESTING, &adapter->flags);
1577         }
1578         msleep_interruptible(4 * 1000);
1579 }
1580
1581 static int e1000_wol_exclusion(struct e1000_adapter *adapter,
1582                                struct ethtool_wolinfo *wol)
1583 {
1584         struct e1000_hw *hw = &adapter->hw;
1585         int retval = 1; /* fail by default */
1586
1587         switch (hw->device_id) {
1588         case E1000_DEV_ID_82542:
1589         case E1000_DEV_ID_82543GC_FIBER:
1590         case E1000_DEV_ID_82543GC_COPPER:
1591         case E1000_DEV_ID_82544EI_FIBER:
1592         case E1000_DEV_ID_82546EB_QUAD_COPPER:
1593         case E1000_DEV_ID_82545EM_FIBER:
1594         case E1000_DEV_ID_82545EM_COPPER:
1595         case E1000_DEV_ID_82546GB_QUAD_COPPER:
1596         case E1000_DEV_ID_82546GB_PCIE:
1597                 /* these don't support WoL at all */
1598                 wol->supported = 0;
1599                 break;
1600         case E1000_DEV_ID_82546EB_FIBER:
1601         case E1000_DEV_ID_82546GB_FIBER:
1602                 /* Wake events not supported on port B */
1603                 if (er32(STATUS) & E1000_STATUS_FUNC_1) {
1604                         wol->supported = 0;
1605                         break;
1606                 }
1607                 /* return success for non excluded adapter ports */
1608                 retval = 0;
1609                 break;
1610         case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1611                 /* quad port adapters only support WoL on port A */
1612                 if (!adapter->quad_port_a) {
1613                         wol->supported = 0;
1614                         break;
1615                 }
1616                 /* return success for non excluded adapter ports */
1617                 retval = 0;
1618                 break;
1619         default:
1620                 /* dual port cards only support WoL on port A from now on
1621                  * unless it was enabled in the eeprom for port B
1622                  * so exclude FUNC_1 ports from having WoL enabled
1623                  */
1624                 if (er32(STATUS) & E1000_STATUS_FUNC_1 &&
1625                     !adapter->eeprom_wol) {
1626                         wol->supported = 0;
1627                         break;
1628                 }
1629
1630                 retval = 0;
1631         }
1632
1633         return retval;
1634 }
1635
1636 static void e1000_get_wol(struct net_device *netdev,
1637                           struct ethtool_wolinfo *wol)
1638 {
1639         struct e1000_adapter *adapter = netdev_priv(netdev);
1640         struct e1000_hw *hw = &adapter->hw;
1641
1642         wol->supported = WAKE_UCAST | WAKE_MCAST | WAKE_BCAST | WAKE_MAGIC;
1643         wol->wolopts = 0;
1644
1645         /* this function will set ->supported = 0 and return 1 if wol is not
1646          * supported by this hardware
1647          */
1648         if (e1000_wol_exclusion(adapter, wol) ||
1649             !device_can_wakeup(&adapter->pdev->dev))
1650                 return;
1651
1652         /* apply any specific unsupported masks here */
1653         switch (hw->device_id) {
1654         case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1655                 /* KSP3 does not support UCAST wake-ups */
1656                 wol->supported &= ~WAKE_UCAST;
1657
1658                 if (adapter->wol & E1000_WUFC_EX)
1659                         e_err(drv, "Interface does not support directed "
1660                               "(unicast) frame wake-up packets\n");
1661                 break;
1662         default:
1663                 break;
1664         }
1665
1666         if (adapter->wol & E1000_WUFC_EX)
1667                 wol->wolopts |= WAKE_UCAST;
1668         if (adapter->wol & E1000_WUFC_MC)
1669                 wol->wolopts |= WAKE_MCAST;
1670         if (adapter->wol & E1000_WUFC_BC)
1671                 wol->wolopts |= WAKE_BCAST;
1672         if (adapter->wol & E1000_WUFC_MAG)
1673                 wol->wolopts |= WAKE_MAGIC;
1674 }
1675
1676 static int e1000_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
1677 {
1678         struct e1000_adapter *adapter = netdev_priv(netdev);
1679         struct e1000_hw *hw = &adapter->hw;
1680
1681         if (wol->wolopts & (WAKE_PHY | WAKE_ARP | WAKE_MAGICSECURE))
1682                 return -EOPNOTSUPP;
1683
1684         if (e1000_wol_exclusion(adapter, wol) ||
1685             !device_can_wakeup(&adapter->pdev->dev))
1686                 return wol->wolopts ? -EOPNOTSUPP : 0;
1687
1688         switch (hw->device_id) {
1689         case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1690                 if (wol->wolopts & WAKE_UCAST) {
1691                         e_err(drv, "Interface does not support directed "
1692                               "(unicast) frame wake-up packets\n");
1693                         return -EOPNOTSUPP;
1694                 }
1695                 break;
1696         default:
1697                 break;
1698         }
1699
1700         /* these settings will always override what we currently have */
1701         adapter->wol = 0;
1702
1703         if (wol->wolopts & WAKE_UCAST)
1704                 adapter->wol |= E1000_WUFC_EX;
1705         if (wol->wolopts & WAKE_MCAST)
1706                 adapter->wol |= E1000_WUFC_MC;
1707         if (wol->wolopts & WAKE_BCAST)
1708                 adapter->wol |= E1000_WUFC_BC;
1709         if (wol->wolopts & WAKE_MAGIC)
1710                 adapter->wol |= E1000_WUFC_MAG;
1711
1712         device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1713
1714         return 0;
1715 }
1716
1717 static int e1000_set_phys_id(struct net_device *netdev,
1718                              enum ethtool_phys_id_state state)
1719 {
1720         struct e1000_adapter *adapter = netdev_priv(netdev);
1721         struct e1000_hw *hw = &adapter->hw;
1722
1723         switch (state) {
1724         case ETHTOOL_ID_ACTIVE:
1725                 e1000_setup_led(hw);
1726                 return 2;
1727
1728         case ETHTOOL_ID_ON:
1729                 e1000_led_on(hw);
1730                 break;
1731
1732         case ETHTOOL_ID_OFF:
1733                 e1000_led_off(hw);
1734                 break;
1735
1736         case ETHTOOL_ID_INACTIVE:
1737                 e1000_cleanup_led(hw);
1738         }
1739
1740         return 0;
1741 }
1742
1743 static int e1000_get_coalesce(struct net_device *netdev,
1744                               struct ethtool_coalesce *ec)
1745 {
1746         struct e1000_adapter *adapter = netdev_priv(netdev);
1747
1748         if (adapter->hw.mac_type < e1000_82545)
1749                 return -EOPNOTSUPP;
1750
1751         if (adapter->itr_setting <= 4)
1752                 ec->rx_coalesce_usecs = adapter->itr_setting;
1753         else
1754                 ec->rx_coalesce_usecs = 1000000 / adapter->itr_setting;
1755
1756         return 0;
1757 }
1758
1759 static int e1000_set_coalesce(struct net_device *netdev,
1760                               struct ethtool_coalesce *ec)
1761 {
1762         struct e1000_adapter *adapter = netdev_priv(netdev);
1763         struct e1000_hw *hw = &adapter->hw;
1764
1765         if (hw->mac_type < e1000_82545)
1766                 return -EOPNOTSUPP;
1767
1768         if ((ec->rx_coalesce_usecs > E1000_MAX_ITR_USECS) ||
1769             ((ec->rx_coalesce_usecs > 4) &&
1770              (ec->rx_coalesce_usecs < E1000_MIN_ITR_USECS)) ||
1771             (ec->rx_coalesce_usecs == 2))
1772                 return -EINVAL;
1773
1774         if (ec->rx_coalesce_usecs == 4) {
1775                 adapter->itr = adapter->itr_setting = 4;
1776         } else if (ec->rx_coalesce_usecs <= 3) {
1777                 adapter->itr = 20000;
1778                 adapter->itr_setting = ec->rx_coalesce_usecs;
1779         } else {
1780                 adapter->itr = (1000000 / ec->rx_coalesce_usecs);
1781                 adapter->itr_setting = adapter->itr & ~3;
1782         }
1783
1784         if (adapter->itr_setting != 0)
1785                 ew32(ITR, 1000000000 / (adapter->itr * 256));
1786         else
1787                 ew32(ITR, 0);
1788
1789         return 0;
1790 }
1791
1792 static int e1000_nway_reset(struct net_device *netdev)
1793 {
1794         struct e1000_adapter *adapter = netdev_priv(netdev);
1795
1796         if (netif_running(netdev))
1797                 e1000_reinit_locked(adapter);
1798         return 0;
1799 }
1800
1801 static void e1000_get_ethtool_stats(struct net_device *netdev,
1802                                     struct ethtool_stats *stats, u64 *data)
1803 {
1804         struct e1000_adapter *adapter = netdev_priv(netdev);
1805         int i;
1806         const struct e1000_stats *stat = e1000_gstrings_stats;
1807
1808         e1000_update_stats(adapter);
1809         for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++, stat++) {
1810                 char *p;
1811
1812                 switch (stat->type) {
1813                 case NETDEV_STATS:
1814                         p = (char *)netdev + stat->stat_offset;
1815                         break;
1816                 case E1000_STATS:
1817                         p = (char *)adapter + stat->stat_offset;
1818                         break;
1819                 default:
1820                         netdev_WARN_ONCE(netdev, "Invalid E1000 stat type: %u index %d\n",
1821                                          stat->type, i);
1822                         continue;
1823                 }
1824
1825                 if (stat->sizeof_stat == sizeof(u64))
1826                         data[i] = *(u64 *)p;
1827                 else
1828                         data[i] = *(u32 *)p;
1829         }
1830 /* BUG_ON(i != E1000_STATS_LEN); */
1831 }
1832
1833 static void e1000_get_strings(struct net_device *netdev, u32 stringset,
1834                               u8 *data)
1835 {
1836         u8 *p = data;
1837         int i;
1838
1839         switch (stringset) {
1840         case ETH_SS_TEST:
1841                 memcpy(data, e1000_gstrings_test, sizeof(e1000_gstrings_test));
1842                 break;
1843         case ETH_SS_STATS:
1844                 for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
1845                         memcpy(p, e1000_gstrings_stats[i].stat_string,
1846                                ETH_GSTRING_LEN);
1847                         p += ETH_GSTRING_LEN;
1848                 }
1849                 /* BUG_ON(p - data != E1000_STATS_LEN * ETH_GSTRING_LEN); */
1850                 break;
1851         }
1852 }
1853
1854 static const struct ethtool_ops e1000_ethtool_ops = {
1855         .get_drvinfo            = e1000_get_drvinfo,
1856         .get_regs_len           = e1000_get_regs_len,
1857         .get_regs               = e1000_get_regs,
1858         .get_wol                = e1000_get_wol,
1859         .set_wol                = e1000_set_wol,
1860         .get_msglevel           = e1000_get_msglevel,
1861         .set_msglevel           = e1000_set_msglevel,
1862         .nway_reset             = e1000_nway_reset,
1863         .get_link               = e1000_get_link,
1864         .get_eeprom_len         = e1000_get_eeprom_len,
1865         .get_eeprom             = e1000_get_eeprom,
1866         .set_eeprom             = e1000_set_eeprom,
1867         .get_ringparam          = e1000_get_ringparam,
1868         .set_ringparam          = e1000_set_ringparam,
1869         .get_pauseparam         = e1000_get_pauseparam,
1870         .set_pauseparam         = e1000_set_pauseparam,
1871         .self_test              = e1000_diag_test,
1872         .get_strings            = e1000_get_strings,
1873         .set_phys_id            = e1000_set_phys_id,
1874         .get_ethtool_stats      = e1000_get_ethtool_stats,
1875         .get_sset_count         = e1000_get_sset_count,
1876         .get_coalesce           = e1000_get_coalesce,
1877         .set_coalesce           = e1000_set_coalesce,
1878         .get_ts_info            = ethtool_op_get_ts_info,
1879         .get_link_ksettings     = e1000_get_link_ksettings,
1880         .set_link_ksettings     = e1000_set_link_ksettings,
1881 };
1882
1883 void e1000_set_ethtool_ops(struct net_device *netdev)
1884 {
1885         netdev->ethtool_ops = &e1000_ethtool_ops;
1886 }