Linux-libre 5.7.6-gnu
[librecmc/linux-libre.git] / drivers / net / ethernet / freescale / gianfar.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* drivers/net/ethernet/freescale/gianfar.c
3  *
4  * Gianfar Ethernet Driver
5  * This driver is designed for the non-CPM ethernet controllers
6  * on the 85xx and 83xx family of integrated processors
7  * Based on 8260_io/fcc_enet.c
8  *
9  * Author: Andy Fleming
10  * Maintainer: Kumar Gala
11  * Modifier: Sandeep Gopalpet <sandeep.kumar@freescale.com>
12  *
13  * Copyright 2002-2009, 2011-2013 Freescale Semiconductor, Inc.
14  * Copyright 2007 MontaVista Software, Inc.
15  *
16  *  Gianfar:  AKA Lambda Draconis, "Dragon"
17  *  RA 11 31 24.2
18  *  Dec +69 19 52
19  *  V 3.84
20  *  B-V +1.62
21  *
22  *  Theory of operation
23  *
24  *  The driver is initialized through of_device. Configuration information
25  *  is therefore conveyed through an OF-style device tree.
26  *
27  *  The Gianfar Ethernet Controller uses a ring of buffer
28  *  descriptors.  The beginning is indicated by a register
29  *  pointing to the physical address of the start of the ring.
30  *  The end is determined by a "wrap" bit being set in the
31  *  last descriptor of the ring.
32  *
33  *  When a packet is received, the RXF bit in the
34  *  IEVENT register is set, triggering an interrupt when the
35  *  corresponding bit in the IMASK register is also set (if
36  *  interrupt coalescing is active, then the interrupt may not
37  *  happen immediately, but will wait until either a set number
38  *  of frames or amount of time have passed).  In NAPI, the
39  *  interrupt handler will signal there is work to be done, and
40  *  exit. This method will start at the last known empty
41  *  descriptor, and process every subsequent descriptor until there
42  *  are none left with data (NAPI will stop after a set number of
43  *  packets to give time to other tasks, but will eventually
44  *  process all the packets).  The data arrives inside a
45  *  pre-allocated skb, and so after the skb is passed up to the
46  *  stack, a new skb must be allocated, and the address field in
47  *  the buffer descriptor must be updated to indicate this new
48  *  skb.
49  *
50  *  When the kernel requests that a packet be transmitted, the
51  *  driver starts where it left off last time, and points the
52  *  descriptor at the buffer which was passed in.  The driver
53  *  then informs the DMA engine that there are packets ready to
54  *  be transmitted.  Once the controller is finished transmitting
55  *  the packet, an interrupt may be triggered (under the same
56  *  conditions as for reception, but depending on the TXF bit).
57  *  The driver then cleans up the buffer.
58  */
59
60 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
61 #define DEBUG
62
63 #include <linux/kernel.h>
64 #include <linux/string.h>
65 #include <linux/errno.h>
66 #include <linux/unistd.h>
67 #include <linux/slab.h>
68 #include <linux/interrupt.h>
69 #include <linux/delay.h>
70 #include <linux/netdevice.h>
71 #include <linux/etherdevice.h>
72 #include <linux/skbuff.h>
73 #include <linux/if_vlan.h>
74 #include <linux/spinlock.h>
75 #include <linux/mm.h>
76 #include <linux/of_address.h>
77 #include <linux/of_irq.h>
78 #include <linux/of_mdio.h>
79 #include <linux/of_platform.h>
80 #include <linux/ip.h>
81 #include <linux/tcp.h>
82 #include <linux/udp.h>
83 #include <linux/in.h>
84 #include <linux/net_tstamp.h>
85
86 #include <asm/io.h>
87 #ifdef CONFIG_PPC
88 #include <asm/reg.h>
89 #include <asm/mpc85xx.h>
90 #endif
91 #include <asm/irq.h>
92 #include <linux/uaccess.h>
93 #include <linux/module.h>
94 #include <linux/dma-mapping.h>
95 #include <linux/crc32.h>
96 #include <linux/mii.h>
97 #include <linux/phy.h>
98 #include <linux/phy_fixed.h>
99 #include <linux/of.h>
100 #include <linux/of_net.h>
101
102 #include "gianfar.h"
103
104 #define TX_TIMEOUT      (5*HZ)
105
106 MODULE_AUTHOR("Freescale Semiconductor, Inc");
107 MODULE_DESCRIPTION("Gianfar Ethernet Driver");
108 MODULE_LICENSE("GPL");
109
110 static void gfar_init_rxbdp(struct gfar_priv_rx_q *rx_queue, struct rxbd8 *bdp,
111                             dma_addr_t buf)
112 {
113         u32 lstatus;
114
115         bdp->bufPtr = cpu_to_be32(buf);
116
117         lstatus = BD_LFLAG(RXBD_EMPTY | RXBD_INTERRUPT);
118         if (bdp == rx_queue->rx_bd_base + rx_queue->rx_ring_size - 1)
119                 lstatus |= BD_LFLAG(RXBD_WRAP);
120
121         gfar_wmb();
122
123         bdp->lstatus = cpu_to_be32(lstatus);
124 }
125
126 static void gfar_init_tx_rx_base(struct gfar_private *priv)
127 {
128         struct gfar __iomem *regs = priv->gfargrp[0].regs;
129         u32 __iomem *baddr;
130         int i;
131
132         baddr = &regs->tbase0;
133         for (i = 0; i < priv->num_tx_queues; i++) {
134                 gfar_write(baddr, priv->tx_queue[i]->tx_bd_dma_base);
135                 baddr += 2;
136         }
137
138         baddr = &regs->rbase0;
139         for (i = 0; i < priv->num_rx_queues; i++) {
140                 gfar_write(baddr, priv->rx_queue[i]->rx_bd_dma_base);
141                 baddr += 2;
142         }
143 }
144
145 static void gfar_init_rqprm(struct gfar_private *priv)
146 {
147         struct gfar __iomem *regs = priv->gfargrp[0].regs;
148         u32 __iomem *baddr;
149         int i;
150
151         baddr = &regs->rqprm0;
152         for (i = 0; i < priv->num_rx_queues; i++) {
153                 gfar_write(baddr, priv->rx_queue[i]->rx_ring_size |
154                            (DEFAULT_RX_LFC_THR << FBTHR_SHIFT));
155                 baddr++;
156         }
157 }
158
159 static void gfar_rx_offload_en(struct gfar_private *priv)
160 {
161         /* set this when rx hw offload (TOE) functions are being used */
162         priv->uses_rxfcb = 0;
163
164         if (priv->ndev->features & (NETIF_F_RXCSUM | NETIF_F_HW_VLAN_CTAG_RX))
165                 priv->uses_rxfcb = 1;
166
167         if (priv->hwts_rx_en || priv->rx_filer_enable)
168                 priv->uses_rxfcb = 1;
169 }
170
171 static void gfar_mac_rx_config(struct gfar_private *priv)
172 {
173         struct gfar __iomem *regs = priv->gfargrp[0].regs;
174         u32 rctrl = 0;
175
176         if (priv->rx_filer_enable) {
177                 rctrl |= RCTRL_FILREN | RCTRL_PRSDEP_INIT;
178                 /* Program the RIR0 reg with the required distribution */
179                 if (priv->poll_mode == GFAR_SQ_POLLING)
180                         gfar_write(&regs->rir0, DEFAULT_2RXQ_RIR0);
181                 else /* GFAR_MQ_POLLING */
182                         gfar_write(&regs->rir0, DEFAULT_8RXQ_RIR0);
183         }
184
185         /* Restore PROMISC mode */
186         if (priv->ndev->flags & IFF_PROMISC)
187                 rctrl |= RCTRL_PROM;
188
189         if (priv->ndev->features & NETIF_F_RXCSUM)
190                 rctrl |= RCTRL_CHECKSUMMING;
191
192         if (priv->extended_hash)
193                 rctrl |= RCTRL_EXTHASH | RCTRL_EMEN;
194
195         if (priv->padding) {
196                 rctrl &= ~RCTRL_PAL_MASK;
197                 rctrl |= RCTRL_PADDING(priv->padding);
198         }
199
200         /* Enable HW time stamping if requested from user space */
201         if (priv->hwts_rx_en)
202                 rctrl |= RCTRL_PRSDEP_INIT | RCTRL_TS_ENABLE;
203
204         if (priv->ndev->features & NETIF_F_HW_VLAN_CTAG_RX)
205                 rctrl |= RCTRL_VLEX | RCTRL_PRSDEP_INIT;
206
207         /* Clear the LFC bit */
208         gfar_write(&regs->rctrl, rctrl);
209         /* Init flow control threshold values */
210         gfar_init_rqprm(priv);
211         gfar_write(&regs->ptv, DEFAULT_LFC_PTVVAL);
212         rctrl |= RCTRL_LFC;
213
214         /* Init rctrl based on our settings */
215         gfar_write(&regs->rctrl, rctrl);
216 }
217
218 static void gfar_mac_tx_config(struct gfar_private *priv)
219 {
220         struct gfar __iomem *regs = priv->gfargrp[0].regs;
221         u32 tctrl = 0;
222
223         if (priv->ndev->features & NETIF_F_IP_CSUM)
224                 tctrl |= TCTRL_INIT_CSUM;
225
226         if (priv->prio_sched_en)
227                 tctrl |= TCTRL_TXSCHED_PRIO;
228         else {
229                 tctrl |= TCTRL_TXSCHED_WRRS;
230                 gfar_write(&regs->tr03wt, DEFAULT_WRRS_WEIGHT);
231                 gfar_write(&regs->tr47wt, DEFAULT_WRRS_WEIGHT);
232         }
233
234         if (priv->ndev->features & NETIF_F_HW_VLAN_CTAG_TX)
235                 tctrl |= TCTRL_VLINS;
236
237         gfar_write(&regs->tctrl, tctrl);
238 }
239
240 static void gfar_configure_coalescing(struct gfar_private *priv,
241                                unsigned long tx_mask, unsigned long rx_mask)
242 {
243         struct gfar __iomem *regs = priv->gfargrp[0].regs;
244         u32 __iomem *baddr;
245
246         if (priv->mode == MQ_MG_MODE) {
247                 int i = 0;
248
249                 baddr = &regs->txic0;
250                 for_each_set_bit(i, &tx_mask, priv->num_tx_queues) {
251                         gfar_write(baddr + i, 0);
252                         if (likely(priv->tx_queue[i]->txcoalescing))
253                                 gfar_write(baddr + i, priv->tx_queue[i]->txic);
254                 }
255
256                 baddr = &regs->rxic0;
257                 for_each_set_bit(i, &rx_mask, priv->num_rx_queues) {
258                         gfar_write(baddr + i, 0);
259                         if (likely(priv->rx_queue[i]->rxcoalescing))
260                                 gfar_write(baddr + i, priv->rx_queue[i]->rxic);
261                 }
262         } else {
263                 /* Backward compatible case -- even if we enable
264                  * multiple queues, there's only single reg to program
265                  */
266                 gfar_write(&regs->txic, 0);
267                 if (likely(priv->tx_queue[0]->txcoalescing))
268                         gfar_write(&regs->txic, priv->tx_queue[0]->txic);
269
270                 gfar_write(&regs->rxic, 0);
271                 if (unlikely(priv->rx_queue[0]->rxcoalescing))
272                         gfar_write(&regs->rxic, priv->rx_queue[0]->rxic);
273         }
274 }
275
276 static void gfar_configure_coalescing_all(struct gfar_private *priv)
277 {
278         gfar_configure_coalescing(priv, 0xFF, 0xFF);
279 }
280
281 static struct net_device_stats *gfar_get_stats(struct net_device *dev)
282 {
283         struct gfar_private *priv = netdev_priv(dev);
284         unsigned long rx_packets = 0, rx_bytes = 0, rx_dropped = 0;
285         unsigned long tx_packets = 0, tx_bytes = 0;
286         int i;
287
288         for (i = 0; i < priv->num_rx_queues; i++) {
289                 rx_packets += priv->rx_queue[i]->stats.rx_packets;
290                 rx_bytes   += priv->rx_queue[i]->stats.rx_bytes;
291                 rx_dropped += priv->rx_queue[i]->stats.rx_dropped;
292         }
293
294         dev->stats.rx_packets = rx_packets;
295         dev->stats.rx_bytes   = rx_bytes;
296         dev->stats.rx_dropped = rx_dropped;
297
298         for (i = 0; i < priv->num_tx_queues; i++) {
299                 tx_bytes += priv->tx_queue[i]->stats.tx_bytes;
300                 tx_packets += priv->tx_queue[i]->stats.tx_packets;
301         }
302
303         dev->stats.tx_bytes   = tx_bytes;
304         dev->stats.tx_packets = tx_packets;
305
306         return &dev->stats;
307 }
308
309 /* Set the appropriate hash bit for the given addr */
310 /* The algorithm works like so:
311  * 1) Take the Destination Address (ie the multicast address), and
312  * do a CRC on it (little endian), and reverse the bits of the
313  * result.
314  * 2) Use the 8 most significant bits as a hash into a 256-entry
315  * table.  The table is controlled through 8 32-bit registers:
316  * gaddr0-7.  gaddr0's MSB is entry 0, and gaddr7's LSB is
317  * gaddr7.  This means that the 3 most significant bits in the
318  * hash index which gaddr register to use, and the 5 other bits
319  * indicate which bit (assuming an IBM numbering scheme, which
320  * for PowerPC (tm) is usually the case) in the register holds
321  * the entry.
322  */
323 static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr)
324 {
325         u32 tempval;
326         struct gfar_private *priv = netdev_priv(dev);
327         u32 result = ether_crc(ETH_ALEN, addr);
328         int width = priv->hash_width;
329         u8 whichbit = (result >> (32 - width)) & 0x1f;
330         u8 whichreg = result >> (32 - width + 5);
331         u32 value = (1 << (31-whichbit));
332
333         tempval = gfar_read(priv->hash_regs[whichreg]);
334         tempval |= value;
335         gfar_write(priv->hash_regs[whichreg], tempval);
336 }
337
338 /* There are multiple MAC Address register pairs on some controllers
339  * This function sets the numth pair to a given address
340  */
341 static void gfar_set_mac_for_addr(struct net_device *dev, int num,
342                                   const u8 *addr)
343 {
344         struct gfar_private *priv = netdev_priv(dev);
345         struct gfar __iomem *regs = priv->gfargrp[0].regs;
346         u32 tempval;
347         u32 __iomem *macptr = &regs->macstnaddr1;
348
349         macptr += num*2;
350
351         /* For a station address of 0x12345678ABCD in transmission
352          * order (BE), MACnADDR1 is set to 0xCDAB7856 and
353          * MACnADDR2 is set to 0x34120000.
354          */
355         tempval = (addr[5] << 24) | (addr[4] << 16) |
356                   (addr[3] << 8)  |  addr[2];
357
358         gfar_write(macptr, tempval);
359
360         tempval = (addr[1] << 24) | (addr[0] << 16);
361
362         gfar_write(macptr+1, tempval);
363 }
364
365 static int gfar_set_mac_addr(struct net_device *dev, void *p)
366 {
367         eth_mac_addr(dev, p);
368
369         gfar_set_mac_for_addr(dev, 0, dev->dev_addr);
370
371         return 0;
372 }
373
374 static void gfar_ints_disable(struct gfar_private *priv)
375 {
376         int i;
377         for (i = 0; i < priv->num_grps; i++) {
378                 struct gfar __iomem *regs = priv->gfargrp[i].regs;
379                 /* Clear IEVENT */
380                 gfar_write(&regs->ievent, IEVENT_INIT_CLEAR);
381
382                 /* Initialize IMASK */
383                 gfar_write(&regs->imask, IMASK_INIT_CLEAR);
384         }
385 }
386
387 static void gfar_ints_enable(struct gfar_private *priv)
388 {
389         int i;
390         for (i = 0; i < priv->num_grps; i++) {
391                 struct gfar __iomem *regs = priv->gfargrp[i].regs;
392                 /* Unmask the interrupts we look for */
393                 gfar_write(&regs->imask, IMASK_DEFAULT);
394         }
395 }
396
397 static int gfar_alloc_tx_queues(struct gfar_private *priv)
398 {
399         int i;
400
401         for (i = 0; i < priv->num_tx_queues; i++) {
402                 priv->tx_queue[i] = kzalloc(sizeof(struct gfar_priv_tx_q),
403                                             GFP_KERNEL);
404                 if (!priv->tx_queue[i])
405                         return -ENOMEM;
406
407                 priv->tx_queue[i]->tx_skbuff = NULL;
408                 priv->tx_queue[i]->qindex = i;
409                 priv->tx_queue[i]->dev = priv->ndev;
410                 spin_lock_init(&(priv->tx_queue[i]->txlock));
411         }
412         return 0;
413 }
414
415 static int gfar_alloc_rx_queues(struct gfar_private *priv)
416 {
417         int i;
418
419         for (i = 0; i < priv->num_rx_queues; i++) {
420                 priv->rx_queue[i] = kzalloc(sizeof(struct gfar_priv_rx_q),
421                                             GFP_KERNEL);
422                 if (!priv->rx_queue[i])
423                         return -ENOMEM;
424
425                 priv->rx_queue[i]->qindex = i;
426                 priv->rx_queue[i]->ndev = priv->ndev;
427         }
428         return 0;
429 }
430
431 static void gfar_free_tx_queues(struct gfar_private *priv)
432 {
433         int i;
434
435         for (i = 0; i < priv->num_tx_queues; i++)
436                 kfree(priv->tx_queue[i]);
437 }
438
439 static void gfar_free_rx_queues(struct gfar_private *priv)
440 {
441         int i;
442
443         for (i = 0; i < priv->num_rx_queues; i++)
444                 kfree(priv->rx_queue[i]);
445 }
446
447 static void unmap_group_regs(struct gfar_private *priv)
448 {
449         int i;
450
451         for (i = 0; i < MAXGROUPS; i++)
452                 if (priv->gfargrp[i].regs)
453                         iounmap(priv->gfargrp[i].regs);
454 }
455
456 static void free_gfar_dev(struct gfar_private *priv)
457 {
458         int i, j;
459
460         for (i = 0; i < priv->num_grps; i++)
461                 for (j = 0; j < GFAR_NUM_IRQS; j++) {
462                         kfree(priv->gfargrp[i].irqinfo[j]);
463                         priv->gfargrp[i].irqinfo[j] = NULL;
464                 }
465
466         free_netdev(priv->ndev);
467 }
468
469 static void disable_napi(struct gfar_private *priv)
470 {
471         int i;
472
473         for (i = 0; i < priv->num_grps; i++) {
474                 napi_disable(&priv->gfargrp[i].napi_rx);
475                 napi_disable(&priv->gfargrp[i].napi_tx);
476         }
477 }
478
479 static void enable_napi(struct gfar_private *priv)
480 {
481         int i;
482
483         for (i = 0; i < priv->num_grps; i++) {
484                 napi_enable(&priv->gfargrp[i].napi_rx);
485                 napi_enable(&priv->gfargrp[i].napi_tx);
486         }
487 }
488
489 static int gfar_parse_group(struct device_node *np,
490                             struct gfar_private *priv, const char *model)
491 {
492         struct gfar_priv_grp *grp = &priv->gfargrp[priv->num_grps];
493         int i;
494
495         for (i = 0; i < GFAR_NUM_IRQS; i++) {
496                 grp->irqinfo[i] = kzalloc(sizeof(struct gfar_irqinfo),
497                                           GFP_KERNEL);
498                 if (!grp->irqinfo[i])
499                         return -ENOMEM;
500         }
501
502         grp->regs = of_iomap(np, 0);
503         if (!grp->regs)
504                 return -ENOMEM;
505
506         gfar_irq(grp, TX)->irq = irq_of_parse_and_map(np, 0);
507
508         /* If we aren't the FEC we have multiple interrupts */
509         if (model && strcasecmp(model, "FEC")) {
510                 gfar_irq(grp, RX)->irq = irq_of_parse_and_map(np, 1);
511                 gfar_irq(grp, ER)->irq = irq_of_parse_and_map(np, 2);
512                 if (!gfar_irq(grp, TX)->irq ||
513                     !gfar_irq(grp, RX)->irq ||
514                     !gfar_irq(grp, ER)->irq)
515                         return -EINVAL;
516         }
517
518         grp->priv = priv;
519         spin_lock_init(&grp->grplock);
520         if (priv->mode == MQ_MG_MODE) {
521                 u32 rxq_mask, txq_mask;
522                 int ret;
523
524                 grp->rx_bit_map = (DEFAULT_MAPPING >> priv->num_grps);
525                 grp->tx_bit_map = (DEFAULT_MAPPING >> priv->num_grps);
526
527                 ret = of_property_read_u32(np, "fsl,rx-bit-map", &rxq_mask);
528                 if (!ret) {
529                         grp->rx_bit_map = rxq_mask ?
530                         rxq_mask : (DEFAULT_MAPPING >> priv->num_grps);
531                 }
532
533                 ret = of_property_read_u32(np, "fsl,tx-bit-map", &txq_mask);
534                 if (!ret) {
535                         grp->tx_bit_map = txq_mask ?
536                         txq_mask : (DEFAULT_MAPPING >> priv->num_grps);
537                 }
538
539                 if (priv->poll_mode == GFAR_SQ_POLLING) {
540                         /* One Q per interrupt group: Q0 to G0, Q1 to G1 */
541                         grp->rx_bit_map = (DEFAULT_MAPPING >> priv->num_grps);
542                         grp->tx_bit_map = (DEFAULT_MAPPING >> priv->num_grps);
543                 }
544         } else {
545                 grp->rx_bit_map = 0xFF;
546                 grp->tx_bit_map = 0xFF;
547         }
548
549         /* bit_map's MSB is q0 (from q0 to q7) but, for_each_set_bit parses
550          * right to left, so we need to revert the 8 bits to get the q index
551          */
552         grp->rx_bit_map = bitrev8(grp->rx_bit_map);
553         grp->tx_bit_map = bitrev8(grp->tx_bit_map);
554
555         /* Calculate RSTAT, TSTAT, RQUEUE and TQUEUE values,
556          * also assign queues to groups
557          */
558         for_each_set_bit(i, &grp->rx_bit_map, priv->num_rx_queues) {
559                 if (!grp->rx_queue)
560                         grp->rx_queue = priv->rx_queue[i];
561                 grp->num_rx_queues++;
562                 grp->rstat |= (RSTAT_CLEAR_RHALT >> i);
563                 priv->rqueue |= ((RQUEUE_EN0 | RQUEUE_EX0) >> i);
564                 priv->rx_queue[i]->grp = grp;
565         }
566
567         for_each_set_bit(i, &grp->tx_bit_map, priv->num_tx_queues) {
568                 if (!grp->tx_queue)
569                         grp->tx_queue = priv->tx_queue[i];
570                 grp->num_tx_queues++;
571                 grp->tstat |= (TSTAT_CLEAR_THALT >> i);
572                 priv->tqueue |= (TQUEUE_EN0 >> i);
573                 priv->tx_queue[i]->grp = grp;
574         }
575
576         priv->num_grps++;
577
578         return 0;
579 }
580
581 static int gfar_of_group_count(struct device_node *np)
582 {
583         struct device_node *child;
584         int num = 0;
585
586         for_each_available_child_of_node(np, child)
587                 if (of_node_name_eq(child, "queue-group"))
588                         num++;
589
590         return num;
591 }
592
593 /* Reads the controller's registers to determine what interface
594  * connects it to the PHY.
595  */
596 static phy_interface_t gfar_get_interface(struct net_device *dev)
597 {
598         struct gfar_private *priv = netdev_priv(dev);
599         struct gfar __iomem *regs = priv->gfargrp[0].regs;
600         u32 ecntrl;
601
602         ecntrl = gfar_read(&regs->ecntrl);
603
604         if (ecntrl & ECNTRL_SGMII_MODE)
605                 return PHY_INTERFACE_MODE_SGMII;
606
607         if (ecntrl & ECNTRL_TBI_MODE) {
608                 if (ecntrl & ECNTRL_REDUCED_MODE)
609                         return PHY_INTERFACE_MODE_RTBI;
610                 else
611                         return PHY_INTERFACE_MODE_TBI;
612         }
613
614         if (ecntrl & ECNTRL_REDUCED_MODE) {
615                 if (ecntrl & ECNTRL_REDUCED_MII_MODE) {
616                         return PHY_INTERFACE_MODE_RMII;
617                 }
618                 else {
619                         phy_interface_t interface = priv->interface;
620
621                         /* This isn't autodetected right now, so it must
622                          * be set by the device tree or platform code.
623                          */
624                         if (interface == PHY_INTERFACE_MODE_RGMII_ID)
625                                 return PHY_INTERFACE_MODE_RGMII_ID;
626
627                         return PHY_INTERFACE_MODE_RGMII;
628                 }
629         }
630
631         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT)
632                 return PHY_INTERFACE_MODE_GMII;
633
634         return PHY_INTERFACE_MODE_MII;
635 }
636
637 static int gfar_of_init(struct platform_device *ofdev, struct net_device **pdev)
638 {
639         const char *model;
640         const void *mac_addr;
641         int err = 0, i;
642         phy_interface_t interface;
643         struct net_device *dev = NULL;
644         struct gfar_private *priv = NULL;
645         struct device_node *np = ofdev->dev.of_node;
646         struct device_node *child = NULL;
647         u32 stash_len = 0;
648         u32 stash_idx = 0;
649         unsigned int num_tx_qs, num_rx_qs;
650         unsigned short mode, poll_mode;
651
652         if (!np)
653                 return -ENODEV;
654
655         if (of_device_is_compatible(np, "fsl,etsec2")) {
656                 mode = MQ_MG_MODE;
657                 poll_mode = GFAR_SQ_POLLING;
658         } else {
659                 mode = SQ_SG_MODE;
660                 poll_mode = GFAR_SQ_POLLING;
661         }
662
663         if (mode == SQ_SG_MODE) {
664                 num_tx_qs = 1;
665                 num_rx_qs = 1;
666         } else { /* MQ_MG_MODE */
667                 /* get the actual number of supported groups */
668                 unsigned int num_grps = gfar_of_group_count(np);
669
670                 if (num_grps == 0 || num_grps > MAXGROUPS) {
671                         dev_err(&ofdev->dev, "Invalid # of int groups(%d)\n",
672                                 num_grps);
673                         pr_err("Cannot do alloc_etherdev, aborting\n");
674                         return -EINVAL;
675                 }
676
677                 if (poll_mode == GFAR_SQ_POLLING) {
678                         num_tx_qs = num_grps; /* one txq per int group */
679                         num_rx_qs = num_grps; /* one rxq per int group */
680                 } else { /* GFAR_MQ_POLLING */
681                         u32 tx_queues, rx_queues;
682                         int ret;
683
684                         /* parse the num of HW tx and rx queues */
685                         ret = of_property_read_u32(np, "fsl,num_tx_queues",
686                                                    &tx_queues);
687                         num_tx_qs = ret ? 1 : tx_queues;
688
689                         ret = of_property_read_u32(np, "fsl,num_rx_queues",
690                                                    &rx_queues);
691                         num_rx_qs = ret ? 1 : rx_queues;
692                 }
693         }
694
695         if (num_tx_qs > MAX_TX_QS) {
696                 pr_err("num_tx_qs(=%d) greater than MAX_TX_QS(=%d)\n",
697                        num_tx_qs, MAX_TX_QS);
698                 pr_err("Cannot do alloc_etherdev, aborting\n");
699                 return -EINVAL;
700         }
701
702         if (num_rx_qs > MAX_RX_QS) {
703                 pr_err("num_rx_qs(=%d) greater than MAX_RX_QS(=%d)\n",
704                        num_rx_qs, MAX_RX_QS);
705                 pr_err("Cannot do alloc_etherdev, aborting\n");
706                 return -EINVAL;
707         }
708
709         *pdev = alloc_etherdev_mq(sizeof(*priv), num_tx_qs);
710         dev = *pdev;
711         if (NULL == dev)
712                 return -ENOMEM;
713
714         priv = netdev_priv(dev);
715         priv->ndev = dev;
716
717         priv->mode = mode;
718         priv->poll_mode = poll_mode;
719
720         priv->num_tx_queues = num_tx_qs;
721         netif_set_real_num_rx_queues(dev, num_rx_qs);
722         priv->num_rx_queues = num_rx_qs;
723
724         err = gfar_alloc_tx_queues(priv);
725         if (err)
726                 goto tx_alloc_failed;
727
728         err = gfar_alloc_rx_queues(priv);
729         if (err)
730                 goto rx_alloc_failed;
731
732         err = of_property_read_string(np, "model", &model);
733         if (err) {
734                 pr_err("Device model property missing, aborting\n");
735                 goto rx_alloc_failed;
736         }
737
738         /* Init Rx queue filer rule set linked list */
739         INIT_LIST_HEAD(&priv->rx_list.list);
740         priv->rx_list.count = 0;
741         mutex_init(&priv->rx_queue_access);
742
743         for (i = 0; i < MAXGROUPS; i++)
744                 priv->gfargrp[i].regs = NULL;
745
746         /* Parse and initialize group specific information */
747         if (priv->mode == MQ_MG_MODE) {
748                 for_each_available_child_of_node(np, child) {
749                         if (!of_node_name_eq(child, "queue-group"))
750                                 continue;
751
752                         err = gfar_parse_group(child, priv, model);
753                         if (err)
754                                 goto err_grp_init;
755                 }
756         } else { /* SQ_SG_MODE */
757                 err = gfar_parse_group(np, priv, model);
758                 if (err)
759                         goto err_grp_init;
760         }
761
762         if (of_property_read_bool(np, "bd-stash")) {
763                 priv->device_flags |= FSL_GIANFAR_DEV_HAS_BD_STASHING;
764                 priv->bd_stash_en = 1;
765         }
766
767         err = of_property_read_u32(np, "rx-stash-len", &stash_len);
768
769         if (err == 0)
770                 priv->rx_stash_size = stash_len;
771
772         err = of_property_read_u32(np, "rx-stash-idx", &stash_idx);
773
774         if (err == 0)
775                 priv->rx_stash_index = stash_idx;
776
777         if (stash_len || stash_idx)
778                 priv->device_flags |= FSL_GIANFAR_DEV_HAS_BUF_STASHING;
779
780         mac_addr = of_get_mac_address(np);
781
782         if (!IS_ERR(mac_addr))
783                 ether_addr_copy(dev->dev_addr, mac_addr);
784
785         if (model && !strcasecmp(model, "TSEC"))
786                 priv->device_flags |= FSL_GIANFAR_DEV_HAS_GIGABIT |
787                                      FSL_GIANFAR_DEV_HAS_COALESCE |
788                                      FSL_GIANFAR_DEV_HAS_RMON |
789                                      FSL_GIANFAR_DEV_HAS_MULTI_INTR;
790
791         if (model && !strcasecmp(model, "eTSEC"))
792                 priv->device_flags |= FSL_GIANFAR_DEV_HAS_GIGABIT |
793                                      FSL_GIANFAR_DEV_HAS_COALESCE |
794                                      FSL_GIANFAR_DEV_HAS_RMON |
795                                      FSL_GIANFAR_DEV_HAS_MULTI_INTR |
796                                      FSL_GIANFAR_DEV_HAS_CSUM |
797                                      FSL_GIANFAR_DEV_HAS_VLAN |
798                                      FSL_GIANFAR_DEV_HAS_MAGIC_PACKET |
799                                      FSL_GIANFAR_DEV_HAS_EXTENDED_HASH |
800                                      FSL_GIANFAR_DEV_HAS_TIMER |
801                                      FSL_GIANFAR_DEV_HAS_RX_FILER;
802
803         /* Use PHY connection type from the DT node if one is specified there.
804          * rgmii-id really needs to be specified. Other types can be
805          * detected by hardware
806          */
807         err = of_get_phy_mode(np, &interface);
808         if (!err)
809                 priv->interface = interface;
810         else
811                 priv->interface = gfar_get_interface(dev);
812
813         if (of_find_property(np, "fsl,magic-packet", NULL))
814                 priv->device_flags |= FSL_GIANFAR_DEV_HAS_MAGIC_PACKET;
815
816         if (of_get_property(np, "fsl,wake-on-filer", NULL))
817                 priv->device_flags |= FSL_GIANFAR_DEV_HAS_WAKE_ON_FILER;
818
819         priv->phy_node = of_parse_phandle(np, "phy-handle", 0);
820
821         /* In the case of a fixed PHY, the DT node associated
822          * to the PHY is the Ethernet MAC DT node.
823          */
824         if (!priv->phy_node && of_phy_is_fixed_link(np)) {
825                 err = of_phy_register_fixed_link(np);
826                 if (err)
827                         goto err_grp_init;
828
829                 priv->phy_node = of_node_get(np);
830         }
831
832         /* Find the TBI PHY.  If it's not there, we don't support SGMII */
833         priv->tbi_node = of_parse_phandle(np, "tbi-handle", 0);
834
835         return 0;
836
837 err_grp_init:
838         unmap_group_regs(priv);
839 rx_alloc_failed:
840         gfar_free_rx_queues(priv);
841 tx_alloc_failed:
842         gfar_free_tx_queues(priv);
843         free_gfar_dev(priv);
844         return err;
845 }
846
847 static u32 cluster_entry_per_class(struct gfar_private *priv, u32 rqfar,
848                                    u32 class)
849 {
850         u32 rqfpr = FPR_FILER_MASK;
851         u32 rqfcr = 0x0;
852
853         rqfar--;
854         rqfcr = RQFCR_CLE | RQFCR_PID_MASK | RQFCR_CMP_EXACT;
855         priv->ftp_rqfpr[rqfar] = rqfpr;
856         priv->ftp_rqfcr[rqfar] = rqfcr;
857         gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
858
859         rqfar--;
860         rqfcr = RQFCR_CMP_NOMATCH;
861         priv->ftp_rqfpr[rqfar] = rqfpr;
862         priv->ftp_rqfcr[rqfar] = rqfcr;
863         gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
864
865         rqfar--;
866         rqfcr = RQFCR_CMP_EXACT | RQFCR_PID_PARSE | RQFCR_CLE | RQFCR_AND;
867         rqfpr = class;
868         priv->ftp_rqfcr[rqfar] = rqfcr;
869         priv->ftp_rqfpr[rqfar] = rqfpr;
870         gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
871
872         rqfar--;
873         rqfcr = RQFCR_CMP_EXACT | RQFCR_PID_MASK | RQFCR_AND;
874         rqfpr = class;
875         priv->ftp_rqfcr[rqfar] = rqfcr;
876         priv->ftp_rqfpr[rqfar] = rqfpr;
877         gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
878
879         return rqfar;
880 }
881
882 static void gfar_init_filer_table(struct gfar_private *priv)
883 {
884         int i = 0x0;
885         u32 rqfar = MAX_FILER_IDX;
886         u32 rqfcr = 0x0;
887         u32 rqfpr = FPR_FILER_MASK;
888
889         /* Default rule */
890         rqfcr = RQFCR_CMP_MATCH;
891         priv->ftp_rqfcr[rqfar] = rqfcr;
892         priv->ftp_rqfpr[rqfar] = rqfpr;
893         gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
894
895         rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6);
896         rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6 | RQFPR_UDP);
897         rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6 | RQFPR_TCP);
898         rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4);
899         rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4 | RQFPR_UDP);
900         rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4 | RQFPR_TCP);
901
902         /* cur_filer_idx indicated the first non-masked rule */
903         priv->cur_filer_idx = rqfar;
904
905         /* Rest are masked rules */
906         rqfcr = RQFCR_CMP_NOMATCH;
907         for (i = 0; i < rqfar; i++) {
908                 priv->ftp_rqfcr[i] = rqfcr;
909                 priv->ftp_rqfpr[i] = rqfpr;
910                 gfar_write_filer(priv, i, rqfcr, rqfpr);
911         }
912 }
913
914 #ifdef CONFIG_PPC
915 static void __gfar_detect_errata_83xx(struct gfar_private *priv)
916 {
917         unsigned int pvr = mfspr(SPRN_PVR);
918         unsigned int svr = mfspr(SPRN_SVR);
919         unsigned int mod = (svr >> 16) & 0xfff6; /* w/o E suffix */
920         unsigned int rev = svr & 0xffff;
921
922         /* MPC8313 Rev 2.0 and higher; All MPC837x */
923         if ((pvr == 0x80850010 && mod == 0x80b0 && rev >= 0x0020) ||
924             (pvr == 0x80861010 && (mod & 0xfff9) == 0x80c0))
925                 priv->errata |= GFAR_ERRATA_74;
926
927         /* MPC8313 and MPC837x all rev */
928         if ((pvr == 0x80850010 && mod == 0x80b0) ||
929             (pvr == 0x80861010 && (mod & 0xfff9) == 0x80c0))
930                 priv->errata |= GFAR_ERRATA_76;
931
932         /* MPC8313 Rev < 2.0 */
933         if (pvr == 0x80850010 && mod == 0x80b0 && rev < 0x0020)
934                 priv->errata |= GFAR_ERRATA_12;
935 }
936
937 static void __gfar_detect_errata_85xx(struct gfar_private *priv)
938 {
939         unsigned int svr = mfspr(SPRN_SVR);
940
941         if ((SVR_SOC_VER(svr) == SVR_8548) && (SVR_REV(svr) == 0x20))
942                 priv->errata |= GFAR_ERRATA_12;
943         /* P2020/P1010 Rev 1; MPC8548 Rev 2 */
944         if (((SVR_SOC_VER(svr) == SVR_P2020) && (SVR_REV(svr) < 0x20)) ||
945             ((SVR_SOC_VER(svr) == SVR_P2010) && (SVR_REV(svr) < 0x20)) ||
946             ((SVR_SOC_VER(svr) == SVR_8548) && (SVR_REV(svr) < 0x31)))
947                 priv->errata |= GFAR_ERRATA_76; /* aka eTSEC 20 */
948 }
949 #endif
950
951 static void gfar_detect_errata(struct gfar_private *priv)
952 {
953         struct device *dev = &priv->ofdev->dev;
954
955         /* no plans to fix */
956         priv->errata |= GFAR_ERRATA_A002;
957
958 #ifdef CONFIG_PPC
959         if (pvr_version_is(PVR_VER_E500V1) || pvr_version_is(PVR_VER_E500V2))
960                 __gfar_detect_errata_85xx(priv);
961         else /* non-mpc85xx parts, i.e. e300 core based */
962                 __gfar_detect_errata_83xx(priv);
963 #endif
964
965         if (priv->errata)
966                 dev_info(dev, "enabled errata workarounds, flags: 0x%x\n",
967                          priv->errata);
968 }
969
970 static void gfar_init_addr_hash_table(struct gfar_private *priv)
971 {
972         struct gfar __iomem *regs = priv->gfargrp[0].regs;
973
974         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_EXTENDED_HASH) {
975                 priv->extended_hash = 1;
976                 priv->hash_width = 9;
977
978                 priv->hash_regs[0] = &regs->igaddr0;
979                 priv->hash_regs[1] = &regs->igaddr1;
980                 priv->hash_regs[2] = &regs->igaddr2;
981                 priv->hash_regs[3] = &regs->igaddr3;
982                 priv->hash_regs[4] = &regs->igaddr4;
983                 priv->hash_regs[5] = &regs->igaddr5;
984                 priv->hash_regs[6] = &regs->igaddr6;
985                 priv->hash_regs[7] = &regs->igaddr7;
986                 priv->hash_regs[8] = &regs->gaddr0;
987                 priv->hash_regs[9] = &regs->gaddr1;
988                 priv->hash_regs[10] = &regs->gaddr2;
989                 priv->hash_regs[11] = &regs->gaddr3;
990                 priv->hash_regs[12] = &regs->gaddr4;
991                 priv->hash_regs[13] = &regs->gaddr5;
992                 priv->hash_regs[14] = &regs->gaddr6;
993                 priv->hash_regs[15] = &regs->gaddr7;
994
995         } else {
996                 priv->extended_hash = 0;
997                 priv->hash_width = 8;
998
999                 priv->hash_regs[0] = &regs->gaddr0;
1000                 priv->hash_regs[1] = &regs->gaddr1;
1001                 priv->hash_regs[2] = &regs->gaddr2;
1002                 priv->hash_regs[3] = &regs->gaddr3;
1003                 priv->hash_regs[4] = &regs->gaddr4;
1004                 priv->hash_regs[5] = &regs->gaddr5;
1005                 priv->hash_regs[6] = &regs->gaddr6;
1006                 priv->hash_regs[7] = &regs->gaddr7;
1007         }
1008 }
1009
1010 static int __gfar_is_rx_idle(struct gfar_private *priv)
1011 {
1012         u32 res;
1013
1014         /* Normaly TSEC should not hang on GRS commands, so we should
1015          * actually wait for IEVENT_GRSC flag.
1016          */
1017         if (!gfar_has_errata(priv, GFAR_ERRATA_A002))
1018                 return 0;
1019
1020         /* Read the eTSEC register at offset 0xD1C. If bits 7-14 are
1021          * the same as bits 23-30, the eTSEC Rx is assumed to be idle
1022          * and the Rx can be safely reset.
1023          */
1024         res = gfar_read((void __iomem *)priv->gfargrp[0].regs + 0xd1c);
1025         res &= 0x7f807f80;
1026         if ((res & 0xffff) == (res >> 16))
1027                 return 1;
1028
1029         return 0;
1030 }
1031
1032 /* Halt the receive and transmit queues */
1033 static void gfar_halt_nodisable(struct gfar_private *priv)
1034 {
1035         struct gfar __iomem *regs = priv->gfargrp[0].regs;
1036         u32 tempval;
1037         unsigned int timeout;
1038         int stopped;
1039
1040         gfar_ints_disable(priv);
1041
1042         if (gfar_is_dma_stopped(priv))
1043                 return;
1044
1045         /* Stop the DMA, and wait for it to stop */
1046         tempval = gfar_read(&regs->dmactrl);
1047         tempval |= (DMACTRL_GRS | DMACTRL_GTS);
1048         gfar_write(&regs->dmactrl, tempval);
1049
1050 retry:
1051         timeout = 1000;
1052         while (!(stopped = gfar_is_dma_stopped(priv)) && timeout) {
1053                 cpu_relax();
1054                 timeout--;
1055         }
1056
1057         if (!timeout)
1058                 stopped = gfar_is_dma_stopped(priv);
1059
1060         if (!stopped && !gfar_is_rx_dma_stopped(priv) &&
1061             !__gfar_is_rx_idle(priv))
1062                 goto retry;
1063 }
1064
1065 /* Halt the receive and transmit queues */
1066 static void gfar_halt(struct gfar_private *priv)
1067 {
1068         struct gfar __iomem *regs = priv->gfargrp[0].regs;
1069         u32 tempval;
1070
1071         /* Dissable the Rx/Tx hw queues */
1072         gfar_write(&regs->rqueue, 0);
1073         gfar_write(&regs->tqueue, 0);
1074
1075         mdelay(10);
1076
1077         gfar_halt_nodisable(priv);
1078
1079         /* Disable Rx/Tx DMA */
1080         tempval = gfar_read(&regs->maccfg1);
1081         tempval &= ~(MACCFG1_RX_EN | MACCFG1_TX_EN);
1082         gfar_write(&regs->maccfg1, tempval);
1083 }
1084
1085 static void free_skb_tx_queue(struct gfar_priv_tx_q *tx_queue)
1086 {
1087         struct txbd8 *txbdp;
1088         struct gfar_private *priv = netdev_priv(tx_queue->dev);
1089         int i, j;
1090
1091         txbdp = tx_queue->tx_bd_base;
1092
1093         for (i = 0; i < tx_queue->tx_ring_size; i++) {
1094                 if (!tx_queue->tx_skbuff[i])
1095                         continue;
1096
1097                 dma_unmap_single(priv->dev, be32_to_cpu(txbdp->bufPtr),
1098                                  be16_to_cpu(txbdp->length), DMA_TO_DEVICE);
1099                 txbdp->lstatus = 0;
1100                 for (j = 0; j < skb_shinfo(tx_queue->tx_skbuff[i])->nr_frags;
1101                      j++) {
1102                         txbdp++;
1103                         dma_unmap_page(priv->dev, be32_to_cpu(txbdp->bufPtr),
1104                                        be16_to_cpu(txbdp->length),
1105                                        DMA_TO_DEVICE);
1106                 }
1107                 txbdp++;
1108                 dev_kfree_skb_any(tx_queue->tx_skbuff[i]);
1109                 tx_queue->tx_skbuff[i] = NULL;
1110         }
1111         kfree(tx_queue->tx_skbuff);
1112         tx_queue->tx_skbuff = NULL;
1113 }
1114
1115 static void free_skb_rx_queue(struct gfar_priv_rx_q *rx_queue)
1116 {
1117         int i;
1118
1119         struct rxbd8 *rxbdp = rx_queue->rx_bd_base;
1120
1121         dev_kfree_skb(rx_queue->skb);
1122
1123         for (i = 0; i < rx_queue->rx_ring_size; i++) {
1124                 struct  gfar_rx_buff *rxb = &rx_queue->rx_buff[i];
1125
1126                 rxbdp->lstatus = 0;
1127                 rxbdp->bufPtr = 0;
1128                 rxbdp++;
1129
1130                 if (!rxb->page)
1131                         continue;
1132
1133                 dma_unmap_page(rx_queue->dev, rxb->dma,
1134                                PAGE_SIZE, DMA_FROM_DEVICE);
1135                 __free_page(rxb->page);
1136
1137                 rxb->page = NULL;
1138         }
1139
1140         kfree(rx_queue->rx_buff);
1141         rx_queue->rx_buff = NULL;
1142 }
1143
1144 /* If there are any tx skbs or rx skbs still around, free them.
1145  * Then free tx_skbuff and rx_skbuff
1146  */
1147 static void free_skb_resources(struct gfar_private *priv)
1148 {
1149         struct gfar_priv_tx_q *tx_queue = NULL;
1150         struct gfar_priv_rx_q *rx_queue = NULL;
1151         int i;
1152
1153         /* Go through all the buffer descriptors and free their data buffers */
1154         for (i = 0; i < priv->num_tx_queues; i++) {
1155                 struct netdev_queue *txq;
1156
1157                 tx_queue = priv->tx_queue[i];
1158                 txq = netdev_get_tx_queue(tx_queue->dev, tx_queue->qindex);
1159                 if (tx_queue->tx_skbuff)
1160                         free_skb_tx_queue(tx_queue);
1161                 netdev_tx_reset_queue(txq);
1162         }
1163
1164         for (i = 0; i < priv->num_rx_queues; i++) {
1165                 rx_queue = priv->rx_queue[i];
1166                 if (rx_queue->rx_buff)
1167                         free_skb_rx_queue(rx_queue);
1168         }
1169
1170         dma_free_coherent(priv->dev,
1171                           sizeof(struct txbd8) * priv->total_tx_ring_size +
1172                           sizeof(struct rxbd8) * priv->total_rx_ring_size,
1173                           priv->tx_queue[0]->tx_bd_base,
1174                           priv->tx_queue[0]->tx_bd_dma_base);
1175 }
1176
1177 void stop_gfar(struct net_device *dev)
1178 {
1179         struct gfar_private *priv = netdev_priv(dev);
1180
1181         netif_tx_stop_all_queues(dev);
1182
1183         smp_mb__before_atomic();
1184         set_bit(GFAR_DOWN, &priv->state);
1185         smp_mb__after_atomic();
1186
1187         disable_napi(priv);
1188
1189         /* disable ints and gracefully shut down Rx/Tx DMA */
1190         gfar_halt(priv);
1191
1192         phy_stop(dev->phydev);
1193
1194         free_skb_resources(priv);
1195 }
1196
1197 static void gfar_start(struct gfar_private *priv)
1198 {
1199         struct gfar __iomem *regs = priv->gfargrp[0].regs;
1200         u32 tempval;
1201         int i = 0;
1202
1203         /* Enable Rx/Tx hw queues */
1204         gfar_write(&regs->rqueue, priv->rqueue);
1205         gfar_write(&regs->tqueue, priv->tqueue);
1206
1207         /* Initialize DMACTRL to have WWR and WOP */
1208         tempval = gfar_read(&regs->dmactrl);
1209         tempval |= DMACTRL_INIT_SETTINGS;
1210         gfar_write(&regs->dmactrl, tempval);
1211
1212         /* Make sure we aren't stopped */
1213         tempval = gfar_read(&regs->dmactrl);
1214         tempval &= ~(DMACTRL_GRS | DMACTRL_GTS);
1215         gfar_write(&regs->dmactrl, tempval);
1216
1217         for (i = 0; i < priv->num_grps; i++) {
1218                 regs = priv->gfargrp[i].regs;
1219                 /* Clear THLT/RHLT, so that the DMA starts polling now */
1220                 gfar_write(&regs->tstat, priv->gfargrp[i].tstat);
1221                 gfar_write(&regs->rstat, priv->gfargrp[i].rstat);
1222         }
1223
1224         /* Enable Rx/Tx DMA */
1225         tempval = gfar_read(&regs->maccfg1);
1226         tempval |= (MACCFG1_RX_EN | MACCFG1_TX_EN);
1227         gfar_write(&regs->maccfg1, tempval);
1228
1229         gfar_ints_enable(priv);
1230
1231         netif_trans_update(priv->ndev); /* prevent tx timeout */
1232 }
1233
1234 static bool gfar_new_page(struct gfar_priv_rx_q *rxq, struct gfar_rx_buff *rxb)
1235 {
1236         struct page *page;
1237         dma_addr_t addr;
1238
1239         page = dev_alloc_page();
1240         if (unlikely(!page))
1241                 return false;
1242
1243         addr = dma_map_page(rxq->dev, page, 0, PAGE_SIZE, DMA_FROM_DEVICE);
1244         if (unlikely(dma_mapping_error(rxq->dev, addr))) {
1245                 __free_page(page);
1246
1247                 return false;
1248         }
1249
1250         rxb->dma = addr;
1251         rxb->page = page;
1252         rxb->page_offset = 0;
1253
1254         return true;
1255 }
1256
1257 static void gfar_rx_alloc_err(struct gfar_priv_rx_q *rx_queue)
1258 {
1259         struct gfar_private *priv = netdev_priv(rx_queue->ndev);
1260         struct gfar_extra_stats *estats = &priv->extra_stats;
1261
1262         netdev_err(rx_queue->ndev, "Can't alloc RX buffers\n");
1263         atomic64_inc(&estats->rx_alloc_err);
1264 }
1265
1266 static void gfar_alloc_rx_buffs(struct gfar_priv_rx_q *rx_queue,
1267                                 int alloc_cnt)
1268 {
1269         struct rxbd8 *bdp;
1270         struct gfar_rx_buff *rxb;
1271         int i;
1272
1273         i = rx_queue->next_to_use;
1274         bdp = &rx_queue->rx_bd_base[i];
1275         rxb = &rx_queue->rx_buff[i];
1276
1277         while (alloc_cnt--) {
1278                 /* try reuse page */
1279                 if (unlikely(!rxb->page)) {
1280                         if (unlikely(!gfar_new_page(rx_queue, rxb))) {
1281                                 gfar_rx_alloc_err(rx_queue);
1282                                 break;
1283                         }
1284                 }
1285
1286                 /* Setup the new RxBD */
1287                 gfar_init_rxbdp(rx_queue, bdp,
1288                                 rxb->dma + rxb->page_offset + RXBUF_ALIGNMENT);
1289
1290                 /* Update to the next pointer */
1291                 bdp++;
1292                 rxb++;
1293
1294                 if (unlikely(++i == rx_queue->rx_ring_size)) {
1295                         i = 0;
1296                         bdp = rx_queue->rx_bd_base;
1297                         rxb = rx_queue->rx_buff;
1298                 }
1299         }
1300
1301         rx_queue->next_to_use = i;
1302         rx_queue->next_to_alloc = i;
1303 }
1304
1305 static void gfar_init_bds(struct net_device *ndev)
1306 {
1307         struct gfar_private *priv = netdev_priv(ndev);
1308         struct gfar __iomem *regs = priv->gfargrp[0].regs;
1309         struct gfar_priv_tx_q *tx_queue = NULL;
1310         struct gfar_priv_rx_q *rx_queue = NULL;
1311         struct txbd8 *txbdp;
1312         u32 __iomem *rfbptr;
1313         int i, j;
1314
1315         for (i = 0; i < priv->num_tx_queues; i++) {
1316                 tx_queue = priv->tx_queue[i];
1317                 /* Initialize some variables in our dev structure */
1318                 tx_queue->num_txbdfree = tx_queue->tx_ring_size;
1319                 tx_queue->dirty_tx = tx_queue->tx_bd_base;
1320                 tx_queue->cur_tx = tx_queue->tx_bd_base;
1321                 tx_queue->skb_curtx = 0;
1322                 tx_queue->skb_dirtytx = 0;
1323
1324                 /* Initialize Transmit Descriptor Ring */
1325                 txbdp = tx_queue->tx_bd_base;
1326                 for (j = 0; j < tx_queue->tx_ring_size; j++) {
1327                         txbdp->lstatus = 0;
1328                         txbdp->bufPtr = 0;
1329                         txbdp++;
1330                 }
1331
1332                 /* Set the last descriptor in the ring to indicate wrap */
1333                 txbdp--;
1334                 txbdp->status = cpu_to_be16(be16_to_cpu(txbdp->status) |
1335                                             TXBD_WRAP);
1336         }
1337
1338         rfbptr = &regs->rfbptr0;
1339         for (i = 0; i < priv->num_rx_queues; i++) {
1340                 rx_queue = priv->rx_queue[i];
1341
1342                 rx_queue->next_to_clean = 0;
1343                 rx_queue->next_to_use = 0;
1344                 rx_queue->next_to_alloc = 0;
1345
1346                 /* make sure next_to_clean != next_to_use after this
1347                  * by leaving at least 1 unused descriptor
1348                  */
1349                 gfar_alloc_rx_buffs(rx_queue, gfar_rxbd_unused(rx_queue));
1350
1351                 rx_queue->rfbptr = rfbptr;
1352                 rfbptr += 2;
1353         }
1354 }
1355
1356 static int gfar_alloc_skb_resources(struct net_device *ndev)
1357 {
1358         void *vaddr;
1359         dma_addr_t addr;
1360         int i, j;
1361         struct gfar_private *priv = netdev_priv(ndev);
1362         struct device *dev = priv->dev;
1363         struct gfar_priv_tx_q *tx_queue = NULL;
1364         struct gfar_priv_rx_q *rx_queue = NULL;
1365
1366         priv->total_tx_ring_size = 0;
1367         for (i = 0; i < priv->num_tx_queues; i++)
1368                 priv->total_tx_ring_size += priv->tx_queue[i]->tx_ring_size;
1369
1370         priv->total_rx_ring_size = 0;
1371         for (i = 0; i < priv->num_rx_queues; i++)
1372                 priv->total_rx_ring_size += priv->rx_queue[i]->rx_ring_size;
1373
1374         /* Allocate memory for the buffer descriptors */
1375         vaddr = dma_alloc_coherent(dev,
1376                                    (priv->total_tx_ring_size *
1377                                     sizeof(struct txbd8)) +
1378                                    (priv->total_rx_ring_size *
1379                                     sizeof(struct rxbd8)),
1380                                    &addr, GFP_KERNEL);
1381         if (!vaddr)
1382                 return -ENOMEM;
1383
1384         for (i = 0; i < priv->num_tx_queues; i++) {
1385                 tx_queue = priv->tx_queue[i];
1386                 tx_queue->tx_bd_base = vaddr;
1387                 tx_queue->tx_bd_dma_base = addr;
1388                 tx_queue->dev = ndev;
1389                 /* enet DMA only understands physical addresses */
1390                 addr  += sizeof(struct txbd8) * tx_queue->tx_ring_size;
1391                 vaddr += sizeof(struct txbd8) * tx_queue->tx_ring_size;
1392         }
1393
1394         /* Start the rx descriptor ring where the tx ring leaves off */
1395         for (i = 0; i < priv->num_rx_queues; i++) {
1396                 rx_queue = priv->rx_queue[i];
1397                 rx_queue->rx_bd_base = vaddr;
1398                 rx_queue->rx_bd_dma_base = addr;
1399                 rx_queue->ndev = ndev;
1400                 rx_queue->dev = dev;
1401                 addr  += sizeof(struct rxbd8) * rx_queue->rx_ring_size;
1402                 vaddr += sizeof(struct rxbd8) * rx_queue->rx_ring_size;
1403         }
1404
1405         /* Setup the skbuff rings */
1406         for (i = 0; i < priv->num_tx_queues; i++) {
1407                 tx_queue = priv->tx_queue[i];
1408                 tx_queue->tx_skbuff =
1409                         kmalloc_array(tx_queue->tx_ring_size,
1410                                       sizeof(*tx_queue->tx_skbuff),
1411                                       GFP_KERNEL);
1412                 if (!tx_queue->tx_skbuff)
1413                         goto cleanup;
1414
1415                 for (j = 0; j < tx_queue->tx_ring_size; j++)
1416                         tx_queue->tx_skbuff[j] = NULL;
1417         }
1418
1419         for (i = 0; i < priv->num_rx_queues; i++) {
1420                 rx_queue = priv->rx_queue[i];
1421                 rx_queue->rx_buff = kcalloc(rx_queue->rx_ring_size,
1422                                             sizeof(*rx_queue->rx_buff),
1423                                             GFP_KERNEL);
1424                 if (!rx_queue->rx_buff)
1425                         goto cleanup;
1426         }
1427
1428         gfar_init_bds(ndev);
1429
1430         return 0;
1431
1432 cleanup:
1433         free_skb_resources(priv);
1434         return -ENOMEM;
1435 }
1436
1437 /* Bring the controller up and running */
1438 int startup_gfar(struct net_device *ndev)
1439 {
1440         struct gfar_private *priv = netdev_priv(ndev);
1441         int err;
1442
1443         gfar_mac_reset(priv);
1444
1445         err = gfar_alloc_skb_resources(ndev);
1446         if (err)
1447                 return err;
1448
1449         gfar_init_tx_rx_base(priv);
1450
1451         smp_mb__before_atomic();
1452         clear_bit(GFAR_DOWN, &priv->state);
1453         smp_mb__after_atomic();
1454
1455         /* Start Rx/Tx DMA and enable the interrupts */
1456         gfar_start(priv);
1457
1458         /* force link state update after mac reset */
1459         priv->oldlink = 0;
1460         priv->oldspeed = 0;
1461         priv->oldduplex = -1;
1462
1463         phy_start(ndev->phydev);
1464
1465         enable_napi(priv);
1466
1467         netif_tx_wake_all_queues(ndev);
1468
1469         return 0;
1470 }
1471
1472 static u32 gfar_get_flowctrl_cfg(struct gfar_private *priv)
1473 {
1474         struct net_device *ndev = priv->ndev;
1475         struct phy_device *phydev = ndev->phydev;
1476         u32 val = 0;
1477
1478         if (!phydev->duplex)
1479                 return val;
1480
1481         if (!priv->pause_aneg_en) {
1482                 if (priv->tx_pause_en)
1483                         val |= MACCFG1_TX_FLOW;
1484                 if (priv->rx_pause_en)
1485                         val |= MACCFG1_RX_FLOW;
1486         } else {
1487                 u16 lcl_adv, rmt_adv;
1488                 u8 flowctrl;
1489                 /* get link partner capabilities */
1490                 rmt_adv = 0;
1491                 if (phydev->pause)
1492                         rmt_adv = LPA_PAUSE_CAP;
1493                 if (phydev->asym_pause)
1494                         rmt_adv |= LPA_PAUSE_ASYM;
1495
1496                 lcl_adv = linkmode_adv_to_lcl_adv_t(phydev->advertising);
1497                 flowctrl = mii_resolve_flowctrl_fdx(lcl_adv, rmt_adv);
1498                 if (flowctrl & FLOW_CTRL_TX)
1499                         val |= MACCFG1_TX_FLOW;
1500                 if (flowctrl & FLOW_CTRL_RX)
1501                         val |= MACCFG1_RX_FLOW;
1502         }
1503
1504         return val;
1505 }
1506
1507 static noinline void gfar_update_link_state(struct gfar_private *priv)
1508 {
1509         struct gfar __iomem *regs = priv->gfargrp[0].regs;
1510         struct net_device *ndev = priv->ndev;
1511         struct phy_device *phydev = ndev->phydev;
1512         struct gfar_priv_rx_q *rx_queue = NULL;
1513         int i;
1514
1515         if (unlikely(test_bit(GFAR_RESETTING, &priv->state)))
1516                 return;
1517
1518         if (phydev->link) {
1519                 u32 tempval1 = gfar_read(&regs->maccfg1);
1520                 u32 tempval = gfar_read(&regs->maccfg2);
1521                 u32 ecntrl = gfar_read(&regs->ecntrl);
1522                 u32 tx_flow_oldval = (tempval1 & MACCFG1_TX_FLOW);
1523
1524                 if (phydev->duplex != priv->oldduplex) {
1525                         if (!(phydev->duplex))
1526                                 tempval &= ~(MACCFG2_FULL_DUPLEX);
1527                         else
1528                                 tempval |= MACCFG2_FULL_DUPLEX;
1529
1530                         priv->oldduplex = phydev->duplex;
1531                 }
1532
1533                 if (phydev->speed != priv->oldspeed) {
1534                         switch (phydev->speed) {
1535                         case 1000:
1536                                 tempval =
1537                                     ((tempval & ~(MACCFG2_IF)) | MACCFG2_GMII);
1538
1539                                 ecntrl &= ~(ECNTRL_R100);
1540                                 break;
1541                         case 100:
1542                         case 10:
1543                                 tempval =
1544                                     ((tempval & ~(MACCFG2_IF)) | MACCFG2_MII);
1545
1546                                 /* Reduced mode distinguishes
1547                                  * between 10 and 100
1548                                  */
1549                                 if (phydev->speed == SPEED_100)
1550                                         ecntrl |= ECNTRL_R100;
1551                                 else
1552                                         ecntrl &= ~(ECNTRL_R100);
1553                                 break;
1554                         default:
1555                                 netif_warn(priv, link, priv->ndev,
1556                                            "Ack!  Speed (%d) is not 10/100/1000!\n",
1557                                            phydev->speed);
1558                                 break;
1559                         }
1560
1561                         priv->oldspeed = phydev->speed;
1562                 }
1563
1564                 tempval1 &= ~(MACCFG1_TX_FLOW | MACCFG1_RX_FLOW);
1565                 tempval1 |= gfar_get_flowctrl_cfg(priv);
1566
1567                 /* Turn last free buffer recording on */
1568                 if ((tempval1 & MACCFG1_TX_FLOW) && !tx_flow_oldval) {
1569                         for (i = 0; i < priv->num_rx_queues; i++) {
1570                                 u32 bdp_dma;
1571
1572                                 rx_queue = priv->rx_queue[i];
1573                                 bdp_dma = gfar_rxbd_dma_lastfree(rx_queue);
1574                                 gfar_write(rx_queue->rfbptr, bdp_dma);
1575                         }
1576
1577                         priv->tx_actual_en = 1;
1578                 }
1579
1580                 if (unlikely(!(tempval1 & MACCFG1_TX_FLOW) && tx_flow_oldval))
1581                         priv->tx_actual_en = 0;
1582
1583                 gfar_write(&regs->maccfg1, tempval1);
1584                 gfar_write(&regs->maccfg2, tempval);
1585                 gfar_write(&regs->ecntrl, ecntrl);
1586
1587                 if (!priv->oldlink)
1588                         priv->oldlink = 1;
1589
1590         } else if (priv->oldlink) {
1591                 priv->oldlink = 0;
1592                 priv->oldspeed = 0;
1593                 priv->oldduplex = -1;
1594         }
1595
1596         if (netif_msg_link(priv))
1597                 phy_print_status(phydev);
1598 }
1599
1600 /* Called every time the controller might need to be made
1601  * aware of new link state.  The PHY code conveys this
1602  * information through variables in the phydev structure, and this
1603  * function converts those variables into the appropriate
1604  * register values, and can bring down the device if needed.
1605  */
1606 static void adjust_link(struct net_device *dev)
1607 {
1608         struct gfar_private *priv = netdev_priv(dev);
1609         struct phy_device *phydev = dev->phydev;
1610
1611         if (unlikely(phydev->link != priv->oldlink ||
1612                      (phydev->link && (phydev->duplex != priv->oldduplex ||
1613                                        phydev->speed != priv->oldspeed))))
1614                 gfar_update_link_state(priv);
1615 }
1616
1617 /* Initialize TBI PHY interface for communicating with the
1618  * SERDES lynx PHY on the chip.  We communicate with this PHY
1619  * through the MDIO bus on each controller, treating it as a
1620  * "normal" PHY at the address found in the TBIPA register.  We assume
1621  * that the TBIPA register is valid.  Either the MDIO bus code will set
1622  * it to a value that doesn't conflict with other PHYs on the bus, or the
1623  * value doesn't matter, as there are no other PHYs on the bus.
1624  */
1625 static void gfar_configure_serdes(struct net_device *dev)
1626 {
1627         struct gfar_private *priv = netdev_priv(dev);
1628         struct phy_device *tbiphy;
1629
1630         if (!priv->tbi_node) {
1631                 dev_warn(&dev->dev, "error: SGMII mode requires that the "
1632                                     "device tree specify a tbi-handle\n");
1633                 return;
1634         }
1635
1636         tbiphy = of_phy_find_device(priv->tbi_node);
1637         if (!tbiphy) {
1638                 dev_err(&dev->dev, "error: Could not get TBI device\n");
1639                 return;
1640         }
1641
1642         /* If the link is already up, we must already be ok, and don't need to
1643          * configure and reset the TBI<->SerDes link.  Maybe U-Boot configured
1644          * everything for us?  Resetting it takes the link down and requires
1645          * several seconds for it to come back.
1646          */
1647         if (phy_read(tbiphy, MII_BMSR) & BMSR_LSTATUS) {
1648                 put_device(&tbiphy->mdio.dev);
1649                 return;
1650         }
1651
1652         /* Single clk mode, mii mode off(for serdes communication) */
1653         phy_write(tbiphy, MII_TBICON, TBICON_CLK_SELECT);
1654
1655         phy_write(tbiphy, MII_ADVERTISE,
1656                   ADVERTISE_1000XFULL | ADVERTISE_1000XPAUSE |
1657                   ADVERTISE_1000XPSE_ASYM);
1658
1659         phy_write(tbiphy, MII_BMCR,
1660                   BMCR_ANENABLE | BMCR_ANRESTART | BMCR_FULLDPLX |
1661                   BMCR_SPEED1000);
1662
1663         put_device(&tbiphy->mdio.dev);
1664 }
1665
1666 /* Initializes driver's PHY state, and attaches to the PHY.
1667  * Returns 0 on success.
1668  */
1669 static int init_phy(struct net_device *dev)
1670 {
1671         __ETHTOOL_DECLARE_LINK_MODE_MASK(mask) = { 0, };
1672         struct gfar_private *priv = netdev_priv(dev);
1673         phy_interface_t interface = priv->interface;
1674         struct phy_device *phydev;
1675         struct ethtool_eee edata;
1676
1677         linkmode_set_bit_array(phy_10_100_features_array,
1678                                ARRAY_SIZE(phy_10_100_features_array),
1679                                mask);
1680         linkmode_set_bit(ETHTOOL_LINK_MODE_Autoneg_BIT, mask);
1681         linkmode_set_bit(ETHTOOL_LINK_MODE_MII_BIT, mask);
1682         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT)
1683                 linkmode_set_bit(ETHTOOL_LINK_MODE_1000baseT_Full_BIT, mask);
1684
1685         priv->oldlink = 0;
1686         priv->oldspeed = 0;
1687         priv->oldduplex = -1;
1688
1689         phydev = of_phy_connect(dev, priv->phy_node, &adjust_link, 0,
1690                                 interface);
1691         if (!phydev) {
1692                 dev_err(&dev->dev, "could not attach to PHY\n");
1693                 return -ENODEV;
1694         }
1695
1696         if (interface == PHY_INTERFACE_MODE_SGMII)
1697                 gfar_configure_serdes(dev);
1698
1699         /* Remove any features not supported by the controller */
1700         linkmode_and(phydev->supported, phydev->supported, mask);
1701         linkmode_copy(phydev->advertising, phydev->supported);
1702
1703         /* Add support for flow control */
1704         phy_support_asym_pause(phydev);
1705
1706         /* disable EEE autoneg, EEE not supported by eTSEC */
1707         memset(&edata, 0, sizeof(struct ethtool_eee));
1708         phy_ethtool_set_eee(phydev, &edata);
1709
1710         return 0;
1711 }
1712
1713 static inline struct txfcb *gfar_add_fcb(struct sk_buff *skb)
1714 {
1715         struct txfcb *fcb = skb_push(skb, GMAC_FCB_LEN);
1716
1717         memset(fcb, 0, GMAC_FCB_LEN);
1718
1719         return fcb;
1720 }
1721
1722 static inline void gfar_tx_checksum(struct sk_buff *skb, struct txfcb *fcb,
1723                                     int fcb_length)
1724 {
1725         /* If we're here, it's a IP packet with a TCP or UDP
1726          * payload.  We set it to checksum, using a pseudo-header
1727          * we provide
1728          */
1729         u8 flags = TXFCB_DEFAULT;
1730
1731         /* Tell the controller what the protocol is
1732          * And provide the already calculated phcs
1733          */
1734         if (ip_hdr(skb)->protocol == IPPROTO_UDP) {
1735                 flags |= TXFCB_UDP;
1736                 fcb->phcs = (__force __be16)(udp_hdr(skb)->check);
1737         } else
1738                 fcb->phcs = (__force __be16)(tcp_hdr(skb)->check);
1739
1740         /* l3os is the distance between the start of the
1741          * frame (skb->data) and the start of the IP hdr.
1742          * l4os is the distance between the start of the
1743          * l3 hdr and the l4 hdr
1744          */
1745         fcb->l3os = (u8)(skb_network_offset(skb) - fcb_length);
1746         fcb->l4os = skb_network_header_len(skb);
1747
1748         fcb->flags = flags;
1749 }
1750
1751 static inline void gfar_tx_vlan(struct sk_buff *skb, struct txfcb *fcb)
1752 {
1753         fcb->flags |= TXFCB_VLN;
1754         fcb->vlctl = cpu_to_be16(skb_vlan_tag_get(skb));
1755 }
1756
1757 static inline struct txbd8 *skip_txbd(struct txbd8 *bdp, int stride,
1758                                       struct txbd8 *base, int ring_size)
1759 {
1760         struct txbd8 *new_bd = bdp + stride;
1761
1762         return (new_bd >= (base + ring_size)) ? (new_bd - ring_size) : new_bd;
1763 }
1764
1765 static inline struct txbd8 *next_txbd(struct txbd8 *bdp, struct txbd8 *base,
1766                                       int ring_size)
1767 {
1768         return skip_txbd(bdp, 1, base, ring_size);
1769 }
1770
1771 /* eTSEC12: csum generation not supported for some fcb offsets */
1772 static inline bool gfar_csum_errata_12(struct gfar_private *priv,
1773                                        unsigned long fcb_addr)
1774 {
1775         return (gfar_has_errata(priv, GFAR_ERRATA_12) &&
1776                (fcb_addr % 0x20) > 0x18);
1777 }
1778
1779 /* eTSEC76: csum generation for frames larger than 2500 may
1780  * cause excess delays before start of transmission
1781  */
1782 static inline bool gfar_csum_errata_76(struct gfar_private *priv,
1783                                        unsigned int len)
1784 {
1785         return (gfar_has_errata(priv, GFAR_ERRATA_76) &&
1786                (len > 2500));
1787 }
1788
1789 /* This is called by the kernel when a frame is ready for transmission.
1790  * It is pointed to by the dev->hard_start_xmit function pointer
1791  */
1792 static netdev_tx_t gfar_start_xmit(struct sk_buff *skb, struct net_device *dev)
1793 {
1794         struct gfar_private *priv = netdev_priv(dev);
1795         struct gfar_priv_tx_q *tx_queue = NULL;
1796         struct netdev_queue *txq;
1797         struct gfar __iomem *regs = NULL;
1798         struct txfcb *fcb = NULL;
1799         struct txbd8 *txbdp, *txbdp_start, *base, *txbdp_tstamp = NULL;
1800         u32 lstatus;
1801         skb_frag_t *frag;
1802         int i, rq = 0;
1803         int do_tstamp, do_csum, do_vlan;
1804         u32 bufaddr;
1805         unsigned int nr_frags, nr_txbds, bytes_sent, fcb_len = 0;
1806
1807         rq = skb->queue_mapping;
1808         tx_queue = priv->tx_queue[rq];
1809         txq = netdev_get_tx_queue(dev, rq);
1810         base = tx_queue->tx_bd_base;
1811         regs = tx_queue->grp->regs;
1812
1813         do_csum = (CHECKSUM_PARTIAL == skb->ip_summed);
1814         do_vlan = skb_vlan_tag_present(skb);
1815         do_tstamp = (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
1816                     priv->hwts_tx_en;
1817
1818         if (do_csum || do_vlan)
1819                 fcb_len = GMAC_FCB_LEN;
1820
1821         /* check if time stamp should be generated */
1822         if (unlikely(do_tstamp))
1823                 fcb_len = GMAC_FCB_LEN + GMAC_TXPAL_LEN;
1824
1825         /* make space for additional header when fcb is needed */
1826         if (fcb_len && unlikely(skb_headroom(skb) < fcb_len)) {
1827                 struct sk_buff *skb_new;
1828
1829                 skb_new = skb_realloc_headroom(skb, fcb_len);
1830                 if (!skb_new) {
1831                         dev->stats.tx_errors++;
1832                         dev_kfree_skb_any(skb);
1833                         return NETDEV_TX_OK;
1834                 }
1835
1836                 if (skb->sk)
1837                         skb_set_owner_w(skb_new, skb->sk);
1838                 dev_consume_skb_any(skb);
1839                 skb = skb_new;
1840         }
1841
1842         /* total number of fragments in the SKB */
1843         nr_frags = skb_shinfo(skb)->nr_frags;
1844
1845         /* calculate the required number of TxBDs for this skb */
1846         if (unlikely(do_tstamp))
1847                 nr_txbds = nr_frags + 2;
1848         else
1849                 nr_txbds = nr_frags + 1;
1850
1851         /* check if there is space to queue this packet */
1852         if (nr_txbds > tx_queue->num_txbdfree) {
1853                 /* no space, stop the queue */
1854                 netif_tx_stop_queue(txq);
1855                 dev->stats.tx_fifo_errors++;
1856                 return NETDEV_TX_BUSY;
1857         }
1858
1859         /* Update transmit stats */
1860         bytes_sent = skb->len;
1861         tx_queue->stats.tx_bytes += bytes_sent;
1862         /* keep Tx bytes on wire for BQL accounting */
1863         GFAR_CB(skb)->bytes_sent = bytes_sent;
1864         tx_queue->stats.tx_packets++;
1865
1866         txbdp = txbdp_start = tx_queue->cur_tx;
1867         lstatus = be32_to_cpu(txbdp->lstatus);
1868
1869         /* Add TxPAL between FCB and frame if required */
1870         if (unlikely(do_tstamp)) {
1871                 skb_push(skb, GMAC_TXPAL_LEN);
1872                 memset(skb->data, 0, GMAC_TXPAL_LEN);
1873         }
1874
1875         /* Add TxFCB if required */
1876         if (fcb_len) {
1877                 fcb = gfar_add_fcb(skb);
1878                 lstatus |= BD_LFLAG(TXBD_TOE);
1879         }
1880
1881         /* Set up checksumming */
1882         if (do_csum) {
1883                 gfar_tx_checksum(skb, fcb, fcb_len);
1884
1885                 if (unlikely(gfar_csum_errata_12(priv, (unsigned long)fcb)) ||
1886                     unlikely(gfar_csum_errata_76(priv, skb->len))) {
1887                         __skb_pull(skb, GMAC_FCB_LEN);
1888                         skb_checksum_help(skb);
1889                         if (do_vlan || do_tstamp) {
1890                                 /* put back a new fcb for vlan/tstamp TOE */
1891                                 fcb = gfar_add_fcb(skb);
1892                         } else {
1893                                 /* Tx TOE not used */
1894                                 lstatus &= ~(BD_LFLAG(TXBD_TOE));
1895                                 fcb = NULL;
1896                         }
1897                 }
1898         }
1899
1900         if (do_vlan)
1901                 gfar_tx_vlan(skb, fcb);
1902
1903         bufaddr = dma_map_single(priv->dev, skb->data, skb_headlen(skb),
1904                                  DMA_TO_DEVICE);
1905         if (unlikely(dma_mapping_error(priv->dev, bufaddr)))
1906                 goto dma_map_err;
1907
1908         txbdp_start->bufPtr = cpu_to_be32(bufaddr);
1909
1910         /* Time stamp insertion requires one additional TxBD */
1911         if (unlikely(do_tstamp))
1912                 txbdp_tstamp = txbdp = next_txbd(txbdp, base,
1913                                                  tx_queue->tx_ring_size);
1914
1915         if (likely(!nr_frags)) {
1916                 if (likely(!do_tstamp))
1917                         lstatus |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
1918         } else {
1919                 u32 lstatus_start = lstatus;
1920
1921                 /* Place the fragment addresses and lengths into the TxBDs */
1922                 frag = &skb_shinfo(skb)->frags[0];
1923                 for (i = 0; i < nr_frags; i++, frag++) {
1924                         unsigned int size;
1925
1926                         /* Point at the next BD, wrapping as needed */
1927                         txbdp = next_txbd(txbdp, base, tx_queue->tx_ring_size);
1928
1929                         size = skb_frag_size(frag);
1930
1931                         lstatus = be32_to_cpu(txbdp->lstatus) | size |
1932                                   BD_LFLAG(TXBD_READY);
1933
1934                         /* Handle the last BD specially */
1935                         if (i == nr_frags - 1)
1936                                 lstatus |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
1937
1938                         bufaddr = skb_frag_dma_map(priv->dev, frag, 0,
1939                                                    size, DMA_TO_DEVICE);
1940                         if (unlikely(dma_mapping_error(priv->dev, bufaddr)))
1941                                 goto dma_map_err;
1942
1943                         /* set the TxBD length and buffer pointer */
1944                         txbdp->bufPtr = cpu_to_be32(bufaddr);
1945                         txbdp->lstatus = cpu_to_be32(lstatus);
1946                 }
1947
1948                 lstatus = lstatus_start;
1949         }
1950
1951         /* If time stamping is requested one additional TxBD must be set up. The
1952          * first TxBD points to the FCB and must have a data length of
1953          * GMAC_FCB_LEN. The second TxBD points to the actual frame data with
1954          * the full frame length.
1955          */
1956         if (unlikely(do_tstamp)) {
1957                 u32 lstatus_ts = be32_to_cpu(txbdp_tstamp->lstatus);
1958
1959                 bufaddr = be32_to_cpu(txbdp_start->bufPtr);
1960                 bufaddr += fcb_len;
1961
1962                 lstatus_ts |= BD_LFLAG(TXBD_READY) |
1963                               (skb_headlen(skb) - fcb_len);
1964                 if (!nr_frags)
1965                         lstatus_ts |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
1966
1967                 txbdp_tstamp->bufPtr = cpu_to_be32(bufaddr);
1968                 txbdp_tstamp->lstatus = cpu_to_be32(lstatus_ts);
1969                 lstatus |= BD_LFLAG(TXBD_CRC | TXBD_READY) | GMAC_FCB_LEN;
1970
1971                 /* Setup tx hardware time stamping */
1972                 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
1973                 fcb->ptp = 1;
1974         } else {
1975                 lstatus |= BD_LFLAG(TXBD_CRC | TXBD_READY) | skb_headlen(skb);
1976         }
1977
1978         netdev_tx_sent_queue(txq, bytes_sent);
1979
1980         gfar_wmb();
1981
1982         txbdp_start->lstatus = cpu_to_be32(lstatus);
1983
1984         gfar_wmb(); /* force lstatus write before tx_skbuff */
1985
1986         tx_queue->tx_skbuff[tx_queue->skb_curtx] = skb;
1987
1988         /* Update the current skb pointer to the next entry we will use
1989          * (wrapping if necessary)
1990          */
1991         tx_queue->skb_curtx = (tx_queue->skb_curtx + 1) &
1992                               TX_RING_MOD_MASK(tx_queue->tx_ring_size);
1993
1994         tx_queue->cur_tx = next_txbd(txbdp, base, tx_queue->tx_ring_size);
1995
1996         /* We can work in parallel with gfar_clean_tx_ring(), except
1997          * when modifying num_txbdfree. Note that we didn't grab the lock
1998          * when we were reading the num_txbdfree and checking for available
1999          * space, that's because outside of this function it can only grow.
2000          */
2001         spin_lock_bh(&tx_queue->txlock);
2002         /* reduce TxBD free count */
2003         tx_queue->num_txbdfree -= (nr_txbds);
2004         spin_unlock_bh(&tx_queue->txlock);
2005
2006         /* If the next BD still needs to be cleaned up, then the bds
2007          * are full.  We need to tell the kernel to stop sending us stuff.
2008          */
2009         if (!tx_queue->num_txbdfree) {
2010                 netif_tx_stop_queue(txq);
2011
2012                 dev->stats.tx_fifo_errors++;
2013         }
2014
2015         /* Tell the DMA to go go go */
2016         gfar_write(&regs->tstat, TSTAT_CLEAR_THALT >> tx_queue->qindex);
2017
2018         return NETDEV_TX_OK;
2019
2020 dma_map_err:
2021         txbdp = next_txbd(txbdp_start, base, tx_queue->tx_ring_size);
2022         if (do_tstamp)
2023                 txbdp = next_txbd(txbdp, base, tx_queue->tx_ring_size);
2024         for (i = 0; i < nr_frags; i++) {
2025                 lstatus = be32_to_cpu(txbdp->lstatus);
2026                 if (!(lstatus & BD_LFLAG(TXBD_READY)))
2027                         break;
2028
2029                 lstatus &= ~BD_LFLAG(TXBD_READY);
2030                 txbdp->lstatus = cpu_to_be32(lstatus);
2031                 bufaddr = be32_to_cpu(txbdp->bufPtr);
2032                 dma_unmap_page(priv->dev, bufaddr, be16_to_cpu(txbdp->length),
2033                                DMA_TO_DEVICE);
2034                 txbdp = next_txbd(txbdp, base, tx_queue->tx_ring_size);
2035         }
2036         gfar_wmb();
2037         dev_kfree_skb_any(skb);
2038         return NETDEV_TX_OK;
2039 }
2040
2041 /* Changes the mac address if the controller is not running. */
2042 static int gfar_set_mac_address(struct net_device *dev)
2043 {
2044         gfar_set_mac_for_addr(dev, 0, dev->dev_addr);
2045
2046         return 0;
2047 }
2048
2049 static int gfar_change_mtu(struct net_device *dev, int new_mtu)
2050 {
2051         struct gfar_private *priv = netdev_priv(dev);
2052
2053         while (test_and_set_bit_lock(GFAR_RESETTING, &priv->state))
2054                 cpu_relax();
2055
2056         if (dev->flags & IFF_UP)
2057                 stop_gfar(dev);
2058
2059         dev->mtu = new_mtu;
2060
2061         if (dev->flags & IFF_UP)
2062                 startup_gfar(dev);
2063
2064         clear_bit_unlock(GFAR_RESETTING, &priv->state);
2065
2066         return 0;
2067 }
2068
2069 static void reset_gfar(struct net_device *ndev)
2070 {
2071         struct gfar_private *priv = netdev_priv(ndev);
2072
2073         while (test_and_set_bit_lock(GFAR_RESETTING, &priv->state))
2074                 cpu_relax();
2075
2076         stop_gfar(ndev);
2077         startup_gfar(ndev);
2078
2079         clear_bit_unlock(GFAR_RESETTING, &priv->state);
2080 }
2081
2082 /* gfar_reset_task gets scheduled when a packet has not been
2083  * transmitted after a set amount of time.
2084  * For now, assume that clearing out all the structures, and
2085  * starting over will fix the problem.
2086  */
2087 static void gfar_reset_task(struct work_struct *work)
2088 {
2089         struct gfar_private *priv = container_of(work, struct gfar_private,
2090                                                  reset_task);
2091         reset_gfar(priv->ndev);
2092 }
2093
2094 static void gfar_timeout(struct net_device *dev, unsigned int txqueue)
2095 {
2096         struct gfar_private *priv = netdev_priv(dev);
2097
2098         dev->stats.tx_errors++;
2099         schedule_work(&priv->reset_task);
2100 }
2101
2102 static int gfar_hwtstamp_set(struct net_device *netdev, struct ifreq *ifr)
2103 {
2104         struct hwtstamp_config config;
2105         struct gfar_private *priv = netdev_priv(netdev);
2106
2107         if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
2108                 return -EFAULT;
2109
2110         /* reserved for future extensions */
2111         if (config.flags)
2112                 return -EINVAL;
2113
2114         switch (config.tx_type) {
2115         case HWTSTAMP_TX_OFF:
2116                 priv->hwts_tx_en = 0;
2117                 break;
2118         case HWTSTAMP_TX_ON:
2119                 if (!(priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER))
2120                         return -ERANGE;
2121                 priv->hwts_tx_en = 1;
2122                 break;
2123         default:
2124                 return -ERANGE;
2125         }
2126
2127         switch (config.rx_filter) {
2128         case HWTSTAMP_FILTER_NONE:
2129                 if (priv->hwts_rx_en) {
2130                         priv->hwts_rx_en = 0;
2131                         reset_gfar(netdev);
2132                 }
2133                 break;
2134         default:
2135                 if (!(priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER))
2136                         return -ERANGE;
2137                 if (!priv->hwts_rx_en) {
2138                         priv->hwts_rx_en = 1;
2139                         reset_gfar(netdev);
2140                 }
2141                 config.rx_filter = HWTSTAMP_FILTER_ALL;
2142                 break;
2143         }
2144
2145         return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
2146                 -EFAULT : 0;
2147 }
2148
2149 static int gfar_hwtstamp_get(struct net_device *netdev, struct ifreq *ifr)
2150 {
2151         struct hwtstamp_config config;
2152         struct gfar_private *priv = netdev_priv(netdev);
2153
2154         config.flags = 0;
2155         config.tx_type = priv->hwts_tx_en ? HWTSTAMP_TX_ON : HWTSTAMP_TX_OFF;
2156         config.rx_filter = (priv->hwts_rx_en ?
2157                             HWTSTAMP_FILTER_ALL : HWTSTAMP_FILTER_NONE);
2158
2159         return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
2160                 -EFAULT : 0;
2161 }
2162
2163 static int gfar_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
2164 {
2165         struct phy_device *phydev = dev->phydev;
2166
2167         if (!netif_running(dev))
2168                 return -EINVAL;
2169
2170         if (cmd == SIOCSHWTSTAMP)
2171                 return gfar_hwtstamp_set(dev, rq);
2172         if (cmd == SIOCGHWTSTAMP)
2173                 return gfar_hwtstamp_get(dev, rq);
2174
2175         if (!phydev)
2176                 return -ENODEV;
2177
2178         return phy_mii_ioctl(phydev, rq, cmd);
2179 }
2180
2181 /* Interrupt Handler for Transmit complete */
2182 static void gfar_clean_tx_ring(struct gfar_priv_tx_q *tx_queue)
2183 {
2184         struct net_device *dev = tx_queue->dev;
2185         struct netdev_queue *txq;
2186         struct gfar_private *priv = netdev_priv(dev);
2187         struct txbd8 *bdp, *next = NULL;
2188         struct txbd8 *lbdp = NULL;
2189         struct txbd8 *base = tx_queue->tx_bd_base;
2190         struct sk_buff *skb;
2191         int skb_dirtytx;
2192         int tx_ring_size = tx_queue->tx_ring_size;
2193         int frags = 0, nr_txbds = 0;
2194         int i;
2195         int howmany = 0;
2196         int tqi = tx_queue->qindex;
2197         unsigned int bytes_sent = 0;
2198         u32 lstatus;
2199         size_t buflen;
2200
2201         txq = netdev_get_tx_queue(dev, tqi);
2202         bdp = tx_queue->dirty_tx;
2203         skb_dirtytx = tx_queue->skb_dirtytx;
2204
2205         while ((skb = tx_queue->tx_skbuff[skb_dirtytx])) {
2206                 bool do_tstamp;
2207
2208                 do_tstamp = (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
2209                             priv->hwts_tx_en;
2210
2211                 frags = skb_shinfo(skb)->nr_frags;
2212
2213                 /* When time stamping, one additional TxBD must be freed.
2214                  * Also, we need to dma_unmap_single() the TxPAL.
2215                  */
2216                 if (unlikely(do_tstamp))
2217                         nr_txbds = frags + 2;
2218                 else
2219                         nr_txbds = frags + 1;
2220
2221                 lbdp = skip_txbd(bdp, nr_txbds - 1, base, tx_ring_size);
2222
2223                 lstatus = be32_to_cpu(lbdp->lstatus);
2224
2225                 /* Only clean completed frames */
2226                 if ((lstatus & BD_LFLAG(TXBD_READY)) &&
2227                     (lstatus & BD_LENGTH_MASK))
2228                         break;
2229
2230                 if (unlikely(do_tstamp)) {
2231                         next = next_txbd(bdp, base, tx_ring_size);
2232                         buflen = be16_to_cpu(next->length) +
2233                                  GMAC_FCB_LEN + GMAC_TXPAL_LEN;
2234                 } else
2235                         buflen = be16_to_cpu(bdp->length);
2236
2237                 dma_unmap_single(priv->dev, be32_to_cpu(bdp->bufPtr),
2238                                  buflen, DMA_TO_DEVICE);
2239
2240                 if (unlikely(do_tstamp)) {
2241                         struct skb_shared_hwtstamps shhwtstamps;
2242                         u64 *ns = (u64 *)(((uintptr_t)skb->data + 0x10) &
2243                                           ~0x7UL);
2244
2245                         memset(&shhwtstamps, 0, sizeof(shhwtstamps));
2246                         shhwtstamps.hwtstamp = ns_to_ktime(be64_to_cpu(*ns));
2247                         skb_pull(skb, GMAC_FCB_LEN + GMAC_TXPAL_LEN);
2248                         skb_tstamp_tx(skb, &shhwtstamps);
2249                         gfar_clear_txbd_status(bdp);
2250                         bdp = next;
2251                 }
2252
2253                 gfar_clear_txbd_status(bdp);
2254                 bdp = next_txbd(bdp, base, tx_ring_size);
2255
2256                 for (i = 0; i < frags; i++) {
2257                         dma_unmap_page(priv->dev, be32_to_cpu(bdp->bufPtr),
2258                                        be16_to_cpu(bdp->length),
2259                                        DMA_TO_DEVICE);
2260                         gfar_clear_txbd_status(bdp);
2261                         bdp = next_txbd(bdp, base, tx_ring_size);
2262                 }
2263
2264                 bytes_sent += GFAR_CB(skb)->bytes_sent;
2265
2266                 dev_kfree_skb_any(skb);
2267
2268                 tx_queue->tx_skbuff[skb_dirtytx] = NULL;
2269
2270                 skb_dirtytx = (skb_dirtytx + 1) &
2271                               TX_RING_MOD_MASK(tx_ring_size);
2272
2273                 howmany++;
2274                 spin_lock(&tx_queue->txlock);
2275                 tx_queue->num_txbdfree += nr_txbds;
2276                 spin_unlock(&tx_queue->txlock);
2277         }
2278
2279         /* If we freed a buffer, we can restart transmission, if necessary */
2280         if (tx_queue->num_txbdfree &&
2281             netif_tx_queue_stopped(txq) &&
2282             !(test_bit(GFAR_DOWN, &priv->state)))
2283                 netif_wake_subqueue(priv->ndev, tqi);
2284
2285         /* Update dirty indicators */
2286         tx_queue->skb_dirtytx = skb_dirtytx;
2287         tx_queue->dirty_tx = bdp;
2288
2289         netdev_tx_completed_queue(txq, howmany, bytes_sent);
2290 }
2291
2292 static void count_errors(u32 lstatus, struct net_device *ndev)
2293 {
2294         struct gfar_private *priv = netdev_priv(ndev);
2295         struct net_device_stats *stats = &ndev->stats;
2296         struct gfar_extra_stats *estats = &priv->extra_stats;
2297
2298         /* If the packet was truncated, none of the other errors matter */
2299         if (lstatus & BD_LFLAG(RXBD_TRUNCATED)) {
2300                 stats->rx_length_errors++;
2301
2302                 atomic64_inc(&estats->rx_trunc);
2303
2304                 return;
2305         }
2306         /* Count the errors, if there were any */
2307         if (lstatus & BD_LFLAG(RXBD_LARGE | RXBD_SHORT)) {
2308                 stats->rx_length_errors++;
2309
2310                 if (lstatus & BD_LFLAG(RXBD_LARGE))
2311                         atomic64_inc(&estats->rx_large);
2312                 else
2313                         atomic64_inc(&estats->rx_short);
2314         }
2315         if (lstatus & BD_LFLAG(RXBD_NONOCTET)) {
2316                 stats->rx_frame_errors++;
2317                 atomic64_inc(&estats->rx_nonoctet);
2318         }
2319         if (lstatus & BD_LFLAG(RXBD_CRCERR)) {
2320                 atomic64_inc(&estats->rx_crcerr);
2321                 stats->rx_crc_errors++;
2322         }
2323         if (lstatus & BD_LFLAG(RXBD_OVERRUN)) {
2324                 atomic64_inc(&estats->rx_overrun);
2325                 stats->rx_over_errors++;
2326         }
2327 }
2328
2329 static irqreturn_t gfar_receive(int irq, void *grp_id)
2330 {
2331         struct gfar_priv_grp *grp = (struct gfar_priv_grp *)grp_id;
2332         unsigned long flags;
2333         u32 imask, ievent;
2334
2335         ievent = gfar_read(&grp->regs->ievent);
2336
2337         if (unlikely(ievent & IEVENT_FGPI)) {
2338                 gfar_write(&grp->regs->ievent, IEVENT_FGPI);
2339                 return IRQ_HANDLED;
2340         }
2341
2342         if (likely(napi_schedule_prep(&grp->napi_rx))) {
2343                 spin_lock_irqsave(&grp->grplock, flags);
2344                 imask = gfar_read(&grp->regs->imask);
2345                 imask &= IMASK_RX_DISABLED;
2346                 gfar_write(&grp->regs->imask, imask);
2347                 spin_unlock_irqrestore(&grp->grplock, flags);
2348                 __napi_schedule(&grp->napi_rx);
2349         } else {
2350                 /* Clear IEVENT, so interrupts aren't called again
2351                  * because of the packets that have already arrived.
2352                  */
2353                 gfar_write(&grp->regs->ievent, IEVENT_RX_MASK);
2354         }
2355
2356         return IRQ_HANDLED;
2357 }
2358
2359 /* Interrupt Handler for Transmit complete */
2360 static irqreturn_t gfar_transmit(int irq, void *grp_id)
2361 {
2362         struct gfar_priv_grp *grp = (struct gfar_priv_grp *)grp_id;
2363         unsigned long flags;
2364         u32 imask;
2365
2366         if (likely(napi_schedule_prep(&grp->napi_tx))) {
2367                 spin_lock_irqsave(&grp->grplock, flags);
2368                 imask = gfar_read(&grp->regs->imask);
2369                 imask &= IMASK_TX_DISABLED;
2370                 gfar_write(&grp->regs->imask, imask);
2371                 spin_unlock_irqrestore(&grp->grplock, flags);
2372                 __napi_schedule(&grp->napi_tx);
2373         } else {
2374                 /* Clear IEVENT, so interrupts aren't called again
2375                  * because of the packets that have already arrived.
2376                  */
2377                 gfar_write(&grp->regs->ievent, IEVENT_TX_MASK);
2378         }
2379
2380         return IRQ_HANDLED;
2381 }
2382
2383 static bool gfar_add_rx_frag(struct gfar_rx_buff *rxb, u32 lstatus,
2384                              struct sk_buff *skb, bool first)
2385 {
2386         int size = lstatus & BD_LENGTH_MASK;
2387         struct page *page = rxb->page;
2388
2389         if (likely(first)) {
2390                 skb_put(skb, size);
2391         } else {
2392                 /* the last fragments' length contains the full frame length */
2393                 if (lstatus & BD_LFLAG(RXBD_LAST))
2394                         size -= skb->len;
2395
2396                 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page,
2397                                 rxb->page_offset + RXBUF_ALIGNMENT,
2398                                 size, GFAR_RXB_TRUESIZE);
2399         }
2400
2401         /* try reuse page */
2402         if (unlikely(page_count(page) != 1 || page_is_pfmemalloc(page)))
2403                 return false;
2404
2405         /* change offset to the other half */
2406         rxb->page_offset ^= GFAR_RXB_TRUESIZE;
2407
2408         page_ref_inc(page);
2409
2410         return true;
2411 }
2412
2413 static void gfar_reuse_rx_page(struct gfar_priv_rx_q *rxq,
2414                                struct gfar_rx_buff *old_rxb)
2415 {
2416         struct gfar_rx_buff *new_rxb;
2417         u16 nta = rxq->next_to_alloc;
2418
2419         new_rxb = &rxq->rx_buff[nta];
2420
2421         /* find next buf that can reuse a page */
2422         nta++;
2423         rxq->next_to_alloc = (nta < rxq->rx_ring_size) ? nta : 0;
2424
2425         /* copy page reference */
2426         *new_rxb = *old_rxb;
2427
2428         /* sync for use by the device */
2429         dma_sync_single_range_for_device(rxq->dev, old_rxb->dma,
2430                                          old_rxb->page_offset,
2431                                          GFAR_RXB_TRUESIZE, DMA_FROM_DEVICE);
2432 }
2433
2434 static struct sk_buff *gfar_get_next_rxbuff(struct gfar_priv_rx_q *rx_queue,
2435                                             u32 lstatus, struct sk_buff *skb)
2436 {
2437         struct gfar_rx_buff *rxb = &rx_queue->rx_buff[rx_queue->next_to_clean];
2438         struct page *page = rxb->page;
2439         bool first = false;
2440
2441         if (likely(!skb)) {
2442                 void *buff_addr = page_address(page) + rxb->page_offset;
2443
2444                 skb = build_skb(buff_addr, GFAR_SKBFRAG_SIZE);
2445                 if (unlikely(!skb)) {
2446                         gfar_rx_alloc_err(rx_queue);
2447                         return NULL;
2448                 }
2449                 skb_reserve(skb, RXBUF_ALIGNMENT);
2450                 first = true;
2451         }
2452
2453         dma_sync_single_range_for_cpu(rx_queue->dev, rxb->dma, rxb->page_offset,
2454                                       GFAR_RXB_TRUESIZE, DMA_FROM_DEVICE);
2455
2456         if (gfar_add_rx_frag(rxb, lstatus, skb, first)) {
2457                 /* reuse the free half of the page */
2458                 gfar_reuse_rx_page(rx_queue, rxb);
2459         } else {
2460                 /* page cannot be reused, unmap it */
2461                 dma_unmap_page(rx_queue->dev, rxb->dma,
2462                                PAGE_SIZE, DMA_FROM_DEVICE);
2463         }
2464
2465         /* clear rxb content */
2466         rxb->page = NULL;
2467
2468         return skb;
2469 }
2470
2471 static inline void gfar_rx_checksum(struct sk_buff *skb, struct rxfcb *fcb)
2472 {
2473         /* If valid headers were found, and valid sums
2474          * were verified, then we tell the kernel that no
2475          * checksumming is necessary.  Otherwise, it is [FIXME]
2476          */
2477         if ((be16_to_cpu(fcb->flags) & RXFCB_CSUM_MASK) ==
2478             (RXFCB_CIP | RXFCB_CTU))
2479                 skb->ip_summed = CHECKSUM_UNNECESSARY;
2480         else
2481                 skb_checksum_none_assert(skb);
2482 }
2483
2484 /* gfar_process_frame() -- handle one incoming packet if skb isn't NULL. */
2485 static void gfar_process_frame(struct net_device *ndev, struct sk_buff *skb)
2486 {
2487         struct gfar_private *priv = netdev_priv(ndev);
2488         struct rxfcb *fcb = NULL;
2489
2490         /* fcb is at the beginning if exists */
2491         fcb = (struct rxfcb *)skb->data;
2492
2493         /* Remove the FCB from the skb
2494          * Remove the padded bytes, if there are any
2495          */
2496         if (priv->uses_rxfcb)
2497                 skb_pull(skb, GMAC_FCB_LEN);
2498
2499         /* Get receive timestamp from the skb */
2500         if (priv->hwts_rx_en) {
2501                 struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb);
2502                 u64 *ns = (u64 *) skb->data;
2503
2504                 memset(shhwtstamps, 0, sizeof(*shhwtstamps));
2505                 shhwtstamps->hwtstamp = ns_to_ktime(be64_to_cpu(*ns));
2506         }
2507
2508         if (priv->padding)
2509                 skb_pull(skb, priv->padding);
2510
2511         /* Trim off the FCS */
2512         pskb_trim(skb, skb->len - ETH_FCS_LEN);
2513
2514         if (ndev->features & NETIF_F_RXCSUM)
2515                 gfar_rx_checksum(skb, fcb);
2516
2517         /* There's need to check for NETIF_F_HW_VLAN_CTAG_RX here.
2518          * Even if vlan rx accel is disabled, on some chips
2519          * RXFCB_VLN is pseudo randomly set.
2520          */
2521         if (ndev->features & NETIF_F_HW_VLAN_CTAG_RX &&
2522             be16_to_cpu(fcb->flags) & RXFCB_VLN)
2523                 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
2524                                        be16_to_cpu(fcb->vlctl));
2525 }
2526
2527 /* gfar_clean_rx_ring() -- Processes each frame in the rx ring
2528  * until the budget/quota has been reached. Returns the number
2529  * of frames handled
2530  */
2531 static int gfar_clean_rx_ring(struct gfar_priv_rx_q *rx_queue,
2532                               int rx_work_limit)
2533 {
2534         struct net_device *ndev = rx_queue->ndev;
2535         struct gfar_private *priv = netdev_priv(ndev);
2536         struct rxbd8 *bdp;
2537         int i, howmany = 0;
2538         struct sk_buff *skb = rx_queue->skb;
2539         int cleaned_cnt = gfar_rxbd_unused(rx_queue);
2540         unsigned int total_bytes = 0, total_pkts = 0;
2541
2542         /* Get the first full descriptor */
2543         i = rx_queue->next_to_clean;
2544
2545         while (rx_work_limit--) {
2546                 u32 lstatus;
2547
2548                 if (cleaned_cnt >= GFAR_RX_BUFF_ALLOC) {
2549                         gfar_alloc_rx_buffs(rx_queue, cleaned_cnt);
2550                         cleaned_cnt = 0;
2551                 }
2552
2553                 bdp = &rx_queue->rx_bd_base[i];
2554                 lstatus = be32_to_cpu(bdp->lstatus);
2555                 if (lstatus & BD_LFLAG(RXBD_EMPTY))
2556                         break;
2557
2558                 /* order rx buffer descriptor reads */
2559                 rmb();
2560
2561                 /* fetch next to clean buffer from the ring */
2562                 skb = gfar_get_next_rxbuff(rx_queue, lstatus, skb);
2563                 if (unlikely(!skb))
2564                         break;
2565
2566                 cleaned_cnt++;
2567                 howmany++;
2568
2569                 if (unlikely(++i == rx_queue->rx_ring_size))
2570                         i = 0;
2571
2572                 rx_queue->next_to_clean = i;
2573
2574                 /* fetch next buffer if not the last in frame */
2575                 if (!(lstatus & BD_LFLAG(RXBD_LAST)))
2576                         continue;
2577
2578                 if (unlikely(lstatus & BD_LFLAG(RXBD_ERR))) {
2579                         count_errors(lstatus, ndev);
2580
2581                         /* discard faulty buffer */
2582                         dev_kfree_skb(skb);
2583                         skb = NULL;
2584                         rx_queue->stats.rx_dropped++;
2585                         continue;
2586                 }
2587
2588                 gfar_process_frame(ndev, skb);
2589
2590                 /* Increment the number of packets */
2591                 total_pkts++;
2592                 total_bytes += skb->len;
2593
2594                 skb_record_rx_queue(skb, rx_queue->qindex);
2595
2596                 skb->protocol = eth_type_trans(skb, ndev);
2597
2598                 /* Send the packet up the stack */
2599                 napi_gro_receive(&rx_queue->grp->napi_rx, skb);
2600
2601                 skb = NULL;
2602         }
2603
2604         /* Store incomplete frames for completion */
2605         rx_queue->skb = skb;
2606
2607         rx_queue->stats.rx_packets += total_pkts;
2608         rx_queue->stats.rx_bytes += total_bytes;
2609
2610         if (cleaned_cnt)
2611                 gfar_alloc_rx_buffs(rx_queue, cleaned_cnt);
2612
2613         /* Update Last Free RxBD pointer for LFC */
2614         if (unlikely(priv->tx_actual_en)) {
2615                 u32 bdp_dma = gfar_rxbd_dma_lastfree(rx_queue);
2616
2617                 gfar_write(rx_queue->rfbptr, bdp_dma);
2618         }
2619
2620         return howmany;
2621 }
2622
2623 static int gfar_poll_rx_sq(struct napi_struct *napi, int budget)
2624 {
2625         struct gfar_priv_grp *gfargrp =
2626                 container_of(napi, struct gfar_priv_grp, napi_rx);
2627         struct gfar __iomem *regs = gfargrp->regs;
2628         struct gfar_priv_rx_q *rx_queue = gfargrp->rx_queue;
2629         int work_done = 0;
2630
2631         /* Clear IEVENT, so interrupts aren't called again
2632          * because of the packets that have already arrived
2633          */
2634         gfar_write(&regs->ievent, IEVENT_RX_MASK);
2635
2636         work_done = gfar_clean_rx_ring(rx_queue, budget);
2637
2638         if (work_done < budget) {
2639                 u32 imask;
2640                 napi_complete_done(napi, work_done);
2641                 /* Clear the halt bit in RSTAT */
2642                 gfar_write(&regs->rstat, gfargrp->rstat);
2643
2644                 spin_lock_irq(&gfargrp->grplock);
2645                 imask = gfar_read(&regs->imask);
2646                 imask |= IMASK_RX_DEFAULT;
2647                 gfar_write(&regs->imask, imask);
2648                 spin_unlock_irq(&gfargrp->grplock);
2649         }
2650
2651         return work_done;
2652 }
2653
2654 static int gfar_poll_tx_sq(struct napi_struct *napi, int budget)
2655 {
2656         struct gfar_priv_grp *gfargrp =
2657                 container_of(napi, struct gfar_priv_grp, napi_tx);
2658         struct gfar __iomem *regs = gfargrp->regs;
2659         struct gfar_priv_tx_q *tx_queue = gfargrp->tx_queue;
2660         u32 imask;
2661
2662         /* Clear IEVENT, so interrupts aren't called again
2663          * because of the packets that have already arrived
2664          */
2665         gfar_write(&regs->ievent, IEVENT_TX_MASK);
2666
2667         /* run Tx cleanup to completion */
2668         if (tx_queue->tx_skbuff[tx_queue->skb_dirtytx])
2669                 gfar_clean_tx_ring(tx_queue);
2670
2671         napi_complete(napi);
2672
2673         spin_lock_irq(&gfargrp->grplock);
2674         imask = gfar_read(&regs->imask);
2675         imask |= IMASK_TX_DEFAULT;
2676         gfar_write(&regs->imask, imask);
2677         spin_unlock_irq(&gfargrp->grplock);
2678
2679         return 0;
2680 }
2681
2682 static int gfar_poll_rx(struct napi_struct *napi, int budget)
2683 {
2684         struct gfar_priv_grp *gfargrp =
2685                 container_of(napi, struct gfar_priv_grp, napi_rx);
2686         struct gfar_private *priv = gfargrp->priv;
2687         struct gfar __iomem *regs = gfargrp->regs;
2688         struct gfar_priv_rx_q *rx_queue = NULL;
2689         int work_done = 0, work_done_per_q = 0;
2690         int i, budget_per_q = 0;
2691         unsigned long rstat_rxf;
2692         int num_act_queues;
2693
2694         /* Clear IEVENT, so interrupts aren't called again
2695          * because of the packets that have already arrived
2696          */
2697         gfar_write(&regs->ievent, IEVENT_RX_MASK);
2698
2699         rstat_rxf = gfar_read(&regs->rstat) & RSTAT_RXF_MASK;
2700
2701         num_act_queues = bitmap_weight(&rstat_rxf, MAX_RX_QS);
2702         if (num_act_queues)
2703                 budget_per_q = budget/num_act_queues;
2704
2705         for_each_set_bit(i, &gfargrp->rx_bit_map, priv->num_rx_queues) {
2706                 /* skip queue if not active */
2707                 if (!(rstat_rxf & (RSTAT_CLEAR_RXF0 >> i)))
2708                         continue;
2709
2710                 rx_queue = priv->rx_queue[i];
2711                 work_done_per_q =
2712                         gfar_clean_rx_ring(rx_queue, budget_per_q);
2713                 work_done += work_done_per_q;
2714
2715                 /* finished processing this queue */
2716                 if (work_done_per_q < budget_per_q) {
2717                         /* clear active queue hw indication */
2718                         gfar_write(&regs->rstat,
2719                                    RSTAT_CLEAR_RXF0 >> i);
2720                         num_act_queues--;
2721
2722                         if (!num_act_queues)
2723                                 break;
2724                 }
2725         }
2726
2727         if (!num_act_queues) {
2728                 u32 imask;
2729                 napi_complete_done(napi, work_done);
2730
2731                 /* Clear the halt bit in RSTAT */
2732                 gfar_write(&regs->rstat, gfargrp->rstat);
2733
2734                 spin_lock_irq(&gfargrp->grplock);
2735                 imask = gfar_read(&regs->imask);
2736                 imask |= IMASK_RX_DEFAULT;
2737                 gfar_write(&regs->imask, imask);
2738                 spin_unlock_irq(&gfargrp->grplock);
2739         }
2740
2741         return work_done;
2742 }
2743
2744 static int gfar_poll_tx(struct napi_struct *napi, int budget)
2745 {
2746         struct gfar_priv_grp *gfargrp =
2747                 container_of(napi, struct gfar_priv_grp, napi_tx);
2748         struct gfar_private *priv = gfargrp->priv;
2749         struct gfar __iomem *regs = gfargrp->regs;
2750         struct gfar_priv_tx_q *tx_queue = NULL;
2751         int has_tx_work = 0;
2752         int i;
2753
2754         /* Clear IEVENT, so interrupts aren't called again
2755          * because of the packets that have already arrived
2756          */
2757         gfar_write(&regs->ievent, IEVENT_TX_MASK);
2758
2759         for_each_set_bit(i, &gfargrp->tx_bit_map, priv->num_tx_queues) {
2760                 tx_queue = priv->tx_queue[i];
2761                 /* run Tx cleanup to completion */
2762                 if (tx_queue->tx_skbuff[tx_queue->skb_dirtytx]) {
2763                         gfar_clean_tx_ring(tx_queue);
2764                         has_tx_work = 1;
2765                 }
2766         }
2767
2768         if (!has_tx_work) {
2769                 u32 imask;
2770                 napi_complete(napi);
2771
2772                 spin_lock_irq(&gfargrp->grplock);
2773                 imask = gfar_read(&regs->imask);
2774                 imask |= IMASK_TX_DEFAULT;
2775                 gfar_write(&regs->imask, imask);
2776                 spin_unlock_irq(&gfargrp->grplock);
2777         }
2778
2779         return 0;
2780 }
2781
2782 /* GFAR error interrupt handler */
2783 static irqreturn_t gfar_error(int irq, void *grp_id)
2784 {
2785         struct gfar_priv_grp *gfargrp = grp_id;
2786         struct gfar __iomem *regs = gfargrp->regs;
2787         struct gfar_private *priv= gfargrp->priv;
2788         struct net_device *dev = priv->ndev;
2789
2790         /* Save ievent for future reference */
2791         u32 events = gfar_read(&regs->ievent);
2792
2793         /* Clear IEVENT */
2794         gfar_write(&regs->ievent, events & IEVENT_ERR_MASK);
2795
2796         /* Magic Packet is not an error. */
2797         if ((priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET) &&
2798             (events & IEVENT_MAG))
2799                 events &= ~IEVENT_MAG;
2800
2801         /* Hmm... */
2802         if (netif_msg_rx_err(priv) || netif_msg_tx_err(priv))
2803                 netdev_dbg(dev,
2804                            "error interrupt (ievent=0x%08x imask=0x%08x)\n",
2805                            events, gfar_read(&regs->imask));
2806
2807         /* Update the error counters */
2808         if (events & IEVENT_TXE) {
2809                 dev->stats.tx_errors++;
2810
2811                 if (events & IEVENT_LC)
2812                         dev->stats.tx_window_errors++;
2813                 if (events & IEVENT_CRL)
2814                         dev->stats.tx_aborted_errors++;
2815                 if (events & IEVENT_XFUN) {
2816                         netif_dbg(priv, tx_err, dev,
2817                                   "TX FIFO underrun, packet dropped\n");
2818                         dev->stats.tx_dropped++;
2819                         atomic64_inc(&priv->extra_stats.tx_underrun);
2820
2821                         schedule_work(&priv->reset_task);
2822                 }
2823                 netif_dbg(priv, tx_err, dev, "Transmit Error\n");
2824         }
2825         if (events & IEVENT_BSY) {
2826                 dev->stats.rx_over_errors++;
2827                 atomic64_inc(&priv->extra_stats.rx_bsy);
2828
2829                 netif_dbg(priv, rx_err, dev, "busy error (rstat: %x)\n",
2830                           gfar_read(&regs->rstat));
2831         }
2832         if (events & IEVENT_BABR) {
2833                 dev->stats.rx_errors++;
2834                 atomic64_inc(&priv->extra_stats.rx_babr);
2835
2836                 netif_dbg(priv, rx_err, dev, "babbling RX error\n");
2837         }
2838         if (events & IEVENT_EBERR) {
2839                 atomic64_inc(&priv->extra_stats.eberr);
2840                 netif_dbg(priv, rx_err, dev, "bus error\n");
2841         }
2842         if (events & IEVENT_RXC)
2843                 netif_dbg(priv, rx_status, dev, "control frame\n");
2844
2845         if (events & IEVENT_BABT) {
2846                 atomic64_inc(&priv->extra_stats.tx_babt);
2847                 netif_dbg(priv, tx_err, dev, "babbling TX error\n");
2848         }
2849         return IRQ_HANDLED;
2850 }
2851
2852 /* The interrupt handler for devices with one interrupt */
2853 static irqreturn_t gfar_interrupt(int irq, void *grp_id)
2854 {
2855         struct gfar_priv_grp *gfargrp = grp_id;
2856
2857         /* Save ievent for future reference */
2858         u32 events = gfar_read(&gfargrp->regs->ievent);
2859
2860         /* Check for reception */
2861         if (events & IEVENT_RX_MASK)
2862                 gfar_receive(irq, grp_id);
2863
2864         /* Check for transmit completion */
2865         if (events & IEVENT_TX_MASK)
2866                 gfar_transmit(irq, grp_id);
2867
2868         /* Check for errors */
2869         if (events & IEVENT_ERR_MASK)
2870                 gfar_error(irq, grp_id);
2871
2872         return IRQ_HANDLED;
2873 }
2874
2875 #ifdef CONFIG_NET_POLL_CONTROLLER
2876 /* Polling 'interrupt' - used by things like netconsole to send skbs
2877  * without having to re-enable interrupts. It's not called while
2878  * the interrupt routine is executing.
2879  */
2880 static void gfar_netpoll(struct net_device *dev)
2881 {
2882         struct gfar_private *priv = netdev_priv(dev);
2883         int i;
2884
2885         /* If the device has multiple interrupts, run tx/rx */
2886         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
2887                 for (i = 0; i < priv->num_grps; i++) {
2888                         struct gfar_priv_grp *grp = &priv->gfargrp[i];
2889
2890                         disable_irq(gfar_irq(grp, TX)->irq);
2891                         disable_irq(gfar_irq(grp, RX)->irq);
2892                         disable_irq(gfar_irq(grp, ER)->irq);
2893                         gfar_interrupt(gfar_irq(grp, TX)->irq, grp);
2894                         enable_irq(gfar_irq(grp, ER)->irq);
2895                         enable_irq(gfar_irq(grp, RX)->irq);
2896                         enable_irq(gfar_irq(grp, TX)->irq);
2897                 }
2898         } else {
2899                 for (i = 0; i < priv->num_grps; i++) {
2900                         struct gfar_priv_grp *grp = &priv->gfargrp[i];
2901
2902                         disable_irq(gfar_irq(grp, TX)->irq);
2903                         gfar_interrupt(gfar_irq(grp, TX)->irq, grp);
2904                         enable_irq(gfar_irq(grp, TX)->irq);
2905                 }
2906         }
2907 }
2908 #endif
2909
2910 static void free_grp_irqs(struct gfar_priv_grp *grp)
2911 {
2912         free_irq(gfar_irq(grp, TX)->irq, grp);
2913         free_irq(gfar_irq(grp, RX)->irq, grp);
2914         free_irq(gfar_irq(grp, ER)->irq, grp);
2915 }
2916
2917 static int register_grp_irqs(struct gfar_priv_grp *grp)
2918 {
2919         struct gfar_private *priv = grp->priv;
2920         struct net_device *dev = priv->ndev;
2921         int err;
2922
2923         /* If the device has multiple interrupts, register for
2924          * them.  Otherwise, only register for the one
2925          */
2926         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
2927                 /* Install our interrupt handlers for Error,
2928                  * Transmit, and Receive
2929                  */
2930                 err = request_irq(gfar_irq(grp, ER)->irq, gfar_error, 0,
2931                                   gfar_irq(grp, ER)->name, grp);
2932                 if (err < 0) {
2933                         netif_err(priv, intr, dev, "Can't get IRQ %d\n",
2934                                   gfar_irq(grp, ER)->irq);
2935
2936                         goto err_irq_fail;
2937                 }
2938                 enable_irq_wake(gfar_irq(grp, ER)->irq);
2939
2940                 err = request_irq(gfar_irq(grp, TX)->irq, gfar_transmit, 0,
2941                                   gfar_irq(grp, TX)->name, grp);
2942                 if (err < 0) {
2943                         netif_err(priv, intr, dev, "Can't get IRQ %d\n",
2944                                   gfar_irq(grp, TX)->irq);
2945                         goto tx_irq_fail;
2946                 }
2947                 err = request_irq(gfar_irq(grp, RX)->irq, gfar_receive, 0,
2948                                   gfar_irq(grp, RX)->name, grp);
2949                 if (err < 0) {
2950                         netif_err(priv, intr, dev, "Can't get IRQ %d\n",
2951                                   gfar_irq(grp, RX)->irq);
2952                         goto rx_irq_fail;
2953                 }
2954                 enable_irq_wake(gfar_irq(grp, RX)->irq);
2955
2956         } else {
2957                 err = request_irq(gfar_irq(grp, TX)->irq, gfar_interrupt, 0,
2958                                   gfar_irq(grp, TX)->name, grp);
2959                 if (err < 0) {
2960                         netif_err(priv, intr, dev, "Can't get IRQ %d\n",
2961                                   gfar_irq(grp, TX)->irq);
2962                         goto err_irq_fail;
2963                 }
2964                 enable_irq_wake(gfar_irq(grp, TX)->irq);
2965         }
2966
2967         return 0;
2968
2969 rx_irq_fail:
2970         free_irq(gfar_irq(grp, TX)->irq, grp);
2971 tx_irq_fail:
2972         free_irq(gfar_irq(grp, ER)->irq, grp);
2973 err_irq_fail:
2974         return err;
2975
2976 }
2977
2978 static void gfar_free_irq(struct gfar_private *priv)
2979 {
2980         int i;
2981
2982         /* Free the IRQs */
2983         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
2984                 for (i = 0; i < priv->num_grps; i++)
2985                         free_grp_irqs(&priv->gfargrp[i]);
2986         } else {
2987                 for (i = 0; i < priv->num_grps; i++)
2988                         free_irq(gfar_irq(&priv->gfargrp[i], TX)->irq,
2989                                  &priv->gfargrp[i]);
2990         }
2991 }
2992
2993 static int gfar_request_irq(struct gfar_private *priv)
2994 {
2995         int err, i, j;
2996
2997         for (i = 0; i < priv->num_grps; i++) {
2998                 err = register_grp_irqs(&priv->gfargrp[i]);
2999                 if (err) {
3000                         for (j = 0; j < i; j++)
3001                                 free_grp_irqs(&priv->gfargrp[j]);
3002                         return err;
3003                 }
3004         }
3005
3006         return 0;
3007 }
3008
3009 /* Called when something needs to use the ethernet device
3010  * Returns 0 for success.
3011  */
3012 static int gfar_enet_open(struct net_device *dev)
3013 {
3014         struct gfar_private *priv = netdev_priv(dev);
3015         int err;
3016
3017         err = init_phy(dev);
3018         if (err)
3019                 return err;
3020
3021         err = gfar_request_irq(priv);
3022         if (err)
3023                 return err;
3024
3025         err = startup_gfar(dev);
3026         if (err)
3027                 return err;
3028
3029         return err;
3030 }
3031
3032 /* Stops the kernel queue, and halts the controller */
3033 static int gfar_close(struct net_device *dev)
3034 {
3035         struct gfar_private *priv = netdev_priv(dev);
3036
3037         cancel_work_sync(&priv->reset_task);
3038         stop_gfar(dev);
3039
3040         /* Disconnect from the PHY */
3041         phy_disconnect(dev->phydev);
3042
3043         gfar_free_irq(priv);
3044
3045         return 0;
3046 }
3047
3048 /* Clears each of the exact match registers to zero, so they
3049  * don't interfere with normal reception
3050  */
3051 static void gfar_clear_exact_match(struct net_device *dev)
3052 {
3053         int idx;
3054         static const u8 zero_arr[ETH_ALEN] = {0, 0, 0, 0, 0, 0};
3055
3056         for (idx = 1; idx < GFAR_EM_NUM + 1; idx++)
3057                 gfar_set_mac_for_addr(dev, idx, zero_arr);
3058 }
3059
3060 /* Update the hash table based on the current list of multicast
3061  * addresses we subscribe to.  Also, change the promiscuity of
3062  * the device based on the flags (this function is called
3063  * whenever dev->flags is changed
3064  */
3065 static void gfar_set_multi(struct net_device *dev)
3066 {
3067         struct netdev_hw_addr *ha;
3068         struct gfar_private *priv = netdev_priv(dev);
3069         struct gfar __iomem *regs = priv->gfargrp[0].regs;
3070         u32 tempval;
3071
3072         if (dev->flags & IFF_PROMISC) {
3073                 /* Set RCTRL to PROM */
3074                 tempval = gfar_read(&regs->rctrl);
3075                 tempval |= RCTRL_PROM;
3076                 gfar_write(&regs->rctrl, tempval);
3077         } else {
3078                 /* Set RCTRL to not PROM */
3079                 tempval = gfar_read(&regs->rctrl);
3080                 tempval &= ~(RCTRL_PROM);
3081                 gfar_write(&regs->rctrl, tempval);
3082         }
3083
3084         if (dev->flags & IFF_ALLMULTI) {
3085                 /* Set the hash to rx all multicast frames */
3086                 gfar_write(&regs->igaddr0, 0xffffffff);
3087                 gfar_write(&regs->igaddr1, 0xffffffff);
3088                 gfar_write(&regs->igaddr2, 0xffffffff);
3089                 gfar_write(&regs->igaddr3, 0xffffffff);
3090                 gfar_write(&regs->igaddr4, 0xffffffff);
3091                 gfar_write(&regs->igaddr5, 0xffffffff);
3092                 gfar_write(&regs->igaddr6, 0xffffffff);
3093                 gfar_write(&regs->igaddr7, 0xffffffff);
3094                 gfar_write(&regs->gaddr0, 0xffffffff);
3095                 gfar_write(&regs->gaddr1, 0xffffffff);
3096                 gfar_write(&regs->gaddr2, 0xffffffff);
3097                 gfar_write(&regs->gaddr3, 0xffffffff);
3098                 gfar_write(&regs->gaddr4, 0xffffffff);
3099                 gfar_write(&regs->gaddr5, 0xffffffff);
3100                 gfar_write(&regs->gaddr6, 0xffffffff);
3101                 gfar_write(&regs->gaddr7, 0xffffffff);
3102         } else {
3103                 int em_num;
3104                 int idx;
3105
3106                 /* zero out the hash */
3107                 gfar_write(&regs->igaddr0, 0x0);
3108                 gfar_write(&regs->igaddr1, 0x0);
3109                 gfar_write(&regs->igaddr2, 0x0);
3110                 gfar_write(&regs->igaddr3, 0x0);
3111                 gfar_write(&regs->igaddr4, 0x0);
3112                 gfar_write(&regs->igaddr5, 0x0);
3113                 gfar_write(&regs->igaddr6, 0x0);
3114                 gfar_write(&regs->igaddr7, 0x0);
3115                 gfar_write(&regs->gaddr0, 0x0);
3116                 gfar_write(&regs->gaddr1, 0x0);
3117                 gfar_write(&regs->gaddr2, 0x0);
3118                 gfar_write(&regs->gaddr3, 0x0);
3119                 gfar_write(&regs->gaddr4, 0x0);
3120                 gfar_write(&regs->gaddr5, 0x0);
3121                 gfar_write(&regs->gaddr6, 0x0);
3122                 gfar_write(&regs->gaddr7, 0x0);
3123
3124                 /* If we have extended hash tables, we need to
3125                  * clear the exact match registers to prepare for
3126                  * setting them
3127                  */
3128                 if (priv->extended_hash) {
3129                         em_num = GFAR_EM_NUM + 1;
3130                         gfar_clear_exact_match(dev);
3131                         idx = 1;
3132                 } else {
3133                         idx = 0;
3134                         em_num = 0;
3135                 }
3136
3137                 if (netdev_mc_empty(dev))
3138                         return;
3139
3140                 /* Parse the list, and set the appropriate bits */
3141                 netdev_for_each_mc_addr(ha, dev) {
3142                         if (idx < em_num) {
3143                                 gfar_set_mac_for_addr(dev, idx, ha->addr);
3144                                 idx++;
3145                         } else
3146                                 gfar_set_hash_for_addr(dev, ha->addr);
3147                 }
3148         }
3149 }
3150
3151 void gfar_mac_reset(struct gfar_private *priv)
3152 {
3153         struct gfar __iomem *regs = priv->gfargrp[0].regs;
3154         u32 tempval;
3155
3156         /* Reset MAC layer */
3157         gfar_write(&regs->maccfg1, MACCFG1_SOFT_RESET);
3158
3159         /* We need to delay at least 3 TX clocks */
3160         udelay(3);
3161
3162         /* the soft reset bit is not self-resetting, so we need to
3163          * clear it before resuming normal operation
3164          */
3165         gfar_write(&regs->maccfg1, 0);
3166
3167         udelay(3);
3168
3169         gfar_rx_offload_en(priv);
3170
3171         /* Initialize the max receive frame/buffer lengths */
3172         gfar_write(&regs->maxfrm, GFAR_JUMBO_FRAME_SIZE);
3173         gfar_write(&regs->mrblr, GFAR_RXB_SIZE);
3174
3175         /* Initialize the Minimum Frame Length Register */
3176         gfar_write(&regs->minflr, MINFLR_INIT_SETTINGS);
3177
3178         /* Initialize MACCFG2. */
3179         tempval = MACCFG2_INIT_SETTINGS;
3180
3181         /* eTSEC74 erratum: Rx frames of length MAXFRM or MAXFRM-1
3182          * are marked as truncated.  Avoid this by MACCFG2[Huge Frame]=1,
3183          * and by checking RxBD[LG] and discarding larger than MAXFRM.
3184          */
3185         if (gfar_has_errata(priv, GFAR_ERRATA_74))
3186                 tempval |= MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK;
3187
3188         gfar_write(&regs->maccfg2, tempval);
3189
3190         /* Clear mac addr hash registers */
3191         gfar_write(&regs->igaddr0, 0);
3192         gfar_write(&regs->igaddr1, 0);
3193         gfar_write(&regs->igaddr2, 0);
3194         gfar_write(&regs->igaddr3, 0);
3195         gfar_write(&regs->igaddr4, 0);
3196         gfar_write(&regs->igaddr5, 0);
3197         gfar_write(&regs->igaddr6, 0);
3198         gfar_write(&regs->igaddr7, 0);
3199
3200         gfar_write(&regs->gaddr0, 0);
3201         gfar_write(&regs->gaddr1, 0);
3202         gfar_write(&regs->gaddr2, 0);
3203         gfar_write(&regs->gaddr3, 0);
3204         gfar_write(&regs->gaddr4, 0);
3205         gfar_write(&regs->gaddr5, 0);
3206         gfar_write(&regs->gaddr6, 0);
3207         gfar_write(&regs->gaddr7, 0);
3208
3209         if (priv->extended_hash)
3210                 gfar_clear_exact_match(priv->ndev);
3211
3212         gfar_mac_rx_config(priv);
3213
3214         gfar_mac_tx_config(priv);
3215
3216         gfar_set_mac_address(priv->ndev);
3217
3218         gfar_set_multi(priv->ndev);
3219
3220         /* clear ievent and imask before configuring coalescing */
3221         gfar_ints_disable(priv);
3222
3223         /* Configure the coalescing support */
3224         gfar_configure_coalescing_all(priv);
3225 }
3226
3227 static void gfar_hw_init(struct gfar_private *priv)
3228 {
3229         struct gfar __iomem *regs = priv->gfargrp[0].regs;
3230         u32 attrs;
3231
3232         /* Stop the DMA engine now, in case it was running before
3233          * (The firmware could have used it, and left it running).
3234          */
3235         gfar_halt(priv);
3236
3237         gfar_mac_reset(priv);
3238
3239         /* Zero out the rmon mib registers if it has them */
3240         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_RMON) {
3241                 memset_io(&(regs->rmon), 0, sizeof(struct rmon_mib));
3242
3243                 /* Mask off the CAM interrupts */
3244                 gfar_write(&regs->rmon.cam1, 0xffffffff);
3245                 gfar_write(&regs->rmon.cam2, 0xffffffff);
3246         }
3247
3248         /* Initialize ECNTRL */
3249         gfar_write(&regs->ecntrl, ECNTRL_INIT_SETTINGS);
3250
3251         /* Set the extraction length and index */
3252         attrs = ATTRELI_EL(priv->rx_stash_size) |
3253                 ATTRELI_EI(priv->rx_stash_index);
3254
3255         gfar_write(&regs->attreli, attrs);
3256
3257         /* Start with defaults, and add stashing
3258          * depending on driver parameters
3259          */
3260         attrs = ATTR_INIT_SETTINGS;
3261
3262         if (priv->bd_stash_en)
3263                 attrs |= ATTR_BDSTASH;
3264
3265         if (priv->rx_stash_size != 0)
3266                 attrs |= ATTR_BUFSTASH;
3267
3268         gfar_write(&regs->attr, attrs);
3269
3270         /* FIFO configs */
3271         gfar_write(&regs->fifo_tx_thr, DEFAULT_FIFO_TX_THR);
3272         gfar_write(&regs->fifo_tx_starve, DEFAULT_FIFO_TX_STARVE);
3273         gfar_write(&regs->fifo_tx_starve_shutoff, DEFAULT_FIFO_TX_STARVE_OFF);
3274
3275         /* Program the interrupt steering regs, only for MG devices */
3276         if (priv->num_grps > 1)
3277                 gfar_write_isrg(priv);
3278 }
3279
3280 static const struct net_device_ops gfar_netdev_ops = {
3281         .ndo_open = gfar_enet_open,
3282         .ndo_start_xmit = gfar_start_xmit,
3283         .ndo_stop = gfar_close,
3284         .ndo_change_mtu = gfar_change_mtu,
3285         .ndo_set_features = gfar_set_features,
3286         .ndo_set_rx_mode = gfar_set_multi,
3287         .ndo_tx_timeout = gfar_timeout,
3288         .ndo_do_ioctl = gfar_ioctl,
3289         .ndo_get_stats = gfar_get_stats,
3290         .ndo_change_carrier = fixed_phy_change_carrier,
3291         .ndo_set_mac_address = gfar_set_mac_addr,
3292         .ndo_validate_addr = eth_validate_addr,
3293 #ifdef CONFIG_NET_POLL_CONTROLLER
3294         .ndo_poll_controller = gfar_netpoll,
3295 #endif
3296 };
3297
3298 /* Set up the ethernet device structure, private data,
3299  * and anything else we need before we start
3300  */
3301 static int gfar_probe(struct platform_device *ofdev)
3302 {
3303         struct device_node *np = ofdev->dev.of_node;
3304         struct net_device *dev = NULL;
3305         struct gfar_private *priv = NULL;
3306         int err = 0, i;
3307
3308         err = gfar_of_init(ofdev, &dev);
3309
3310         if (err)
3311                 return err;
3312
3313         priv = netdev_priv(dev);
3314         priv->ndev = dev;
3315         priv->ofdev = ofdev;
3316         priv->dev = &ofdev->dev;
3317         SET_NETDEV_DEV(dev, &ofdev->dev);
3318
3319         INIT_WORK(&priv->reset_task, gfar_reset_task);
3320
3321         platform_set_drvdata(ofdev, priv);
3322
3323         gfar_detect_errata(priv);
3324
3325         /* Set the dev->base_addr to the gfar reg region */
3326         dev->base_addr = (unsigned long) priv->gfargrp[0].regs;
3327
3328         /* Fill in the dev structure */
3329         dev->watchdog_timeo = TX_TIMEOUT;
3330         /* MTU range: 50 - 9586 */
3331         dev->mtu = 1500;
3332         dev->min_mtu = 50;
3333         dev->max_mtu = GFAR_JUMBO_FRAME_SIZE - ETH_HLEN;
3334         dev->netdev_ops = &gfar_netdev_ops;
3335         dev->ethtool_ops = &gfar_ethtool_ops;
3336
3337         /* Register for napi ...We are registering NAPI for each grp */
3338         for (i = 0; i < priv->num_grps; i++) {
3339                 if (priv->poll_mode == GFAR_SQ_POLLING) {
3340                         netif_napi_add(dev, &priv->gfargrp[i].napi_rx,
3341                                        gfar_poll_rx_sq, GFAR_DEV_WEIGHT);
3342                         netif_tx_napi_add(dev, &priv->gfargrp[i].napi_tx,
3343                                        gfar_poll_tx_sq, 2);
3344                 } else {
3345                         netif_napi_add(dev, &priv->gfargrp[i].napi_rx,
3346                                        gfar_poll_rx, GFAR_DEV_WEIGHT);
3347                         netif_tx_napi_add(dev, &priv->gfargrp[i].napi_tx,
3348                                        gfar_poll_tx, 2);
3349                 }
3350         }
3351
3352         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_CSUM) {
3353                 dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_SG |
3354                                    NETIF_F_RXCSUM;
3355                 dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG |
3356                                  NETIF_F_RXCSUM | NETIF_F_HIGHDMA;
3357         }
3358
3359         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_VLAN) {
3360                 dev->hw_features |= NETIF_F_HW_VLAN_CTAG_TX |
3361                                     NETIF_F_HW_VLAN_CTAG_RX;
3362                 dev->features |= NETIF_F_HW_VLAN_CTAG_RX;
3363         }
3364
3365         dev->priv_flags |= IFF_LIVE_ADDR_CHANGE;
3366
3367         gfar_init_addr_hash_table(priv);
3368
3369         /* Insert receive time stamps into padding alignment bytes, and
3370          * plus 2 bytes padding to ensure the cpu alignment.
3371          */
3372         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER)
3373                 priv->padding = 8 + DEFAULT_PADDING;
3374
3375         if (dev->features & NETIF_F_IP_CSUM ||
3376             priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER)
3377                 dev->needed_headroom = GMAC_FCB_LEN;
3378
3379         /* Initializing some of the rx/tx queue level parameters */
3380         for (i = 0; i < priv->num_tx_queues; i++) {
3381                 priv->tx_queue[i]->tx_ring_size = DEFAULT_TX_RING_SIZE;
3382                 priv->tx_queue[i]->num_txbdfree = DEFAULT_TX_RING_SIZE;
3383                 priv->tx_queue[i]->txcoalescing = DEFAULT_TX_COALESCE;
3384                 priv->tx_queue[i]->txic = DEFAULT_TXIC;
3385         }
3386
3387         for (i = 0; i < priv->num_rx_queues; i++) {
3388                 priv->rx_queue[i]->rx_ring_size = DEFAULT_RX_RING_SIZE;
3389                 priv->rx_queue[i]->rxcoalescing = DEFAULT_RX_COALESCE;
3390                 priv->rx_queue[i]->rxic = DEFAULT_RXIC;
3391         }
3392
3393         /* Always enable rx filer if available */
3394         priv->rx_filer_enable =
3395             (priv->device_flags & FSL_GIANFAR_DEV_HAS_RX_FILER) ? 1 : 0;
3396         /* Enable most messages by default */
3397         priv->msg_enable = (NETIF_MSG_IFUP << 1 ) - 1;
3398         /* use pritority h/w tx queue scheduling for single queue devices */
3399         if (priv->num_tx_queues == 1)
3400                 priv->prio_sched_en = 1;
3401
3402         set_bit(GFAR_DOWN, &priv->state);
3403
3404         gfar_hw_init(priv);
3405
3406         /* Carrier starts down, phylib will bring it up */
3407         netif_carrier_off(dev);
3408
3409         err = register_netdev(dev);
3410
3411         if (err) {
3412                 pr_err("%s: Cannot register net device, aborting\n", dev->name);
3413                 goto register_fail;
3414         }
3415
3416         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET)
3417                 priv->wol_supported |= GFAR_WOL_MAGIC;
3418
3419         if ((priv->device_flags & FSL_GIANFAR_DEV_HAS_WAKE_ON_FILER) &&
3420             priv->rx_filer_enable)
3421                 priv->wol_supported |= GFAR_WOL_FILER_UCAST;
3422
3423         device_set_wakeup_capable(&ofdev->dev, priv->wol_supported);
3424
3425         /* fill out IRQ number and name fields */
3426         for (i = 0; i < priv->num_grps; i++) {
3427                 struct gfar_priv_grp *grp = &priv->gfargrp[i];
3428                 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
3429                         sprintf(gfar_irq(grp, TX)->name, "%s%s%c%s",
3430                                 dev->name, "_g", '0' + i, "_tx");
3431                         sprintf(gfar_irq(grp, RX)->name, "%s%s%c%s",
3432                                 dev->name, "_g", '0' + i, "_rx");
3433                         sprintf(gfar_irq(grp, ER)->name, "%s%s%c%s",
3434                                 dev->name, "_g", '0' + i, "_er");
3435                 } else
3436                         strcpy(gfar_irq(grp, TX)->name, dev->name);
3437         }
3438
3439         /* Initialize the filer table */
3440         gfar_init_filer_table(priv);
3441
3442         /* Print out the device info */
3443         netdev_info(dev, "mac: %pM\n", dev->dev_addr);
3444
3445         /* Even more device info helps when determining which kernel
3446          * provided which set of benchmarks.
3447          */
3448         netdev_info(dev, "Running with NAPI enabled\n");
3449         for (i = 0; i < priv->num_rx_queues; i++)
3450                 netdev_info(dev, "RX BD ring size for Q[%d]: %d\n",
3451                             i, priv->rx_queue[i]->rx_ring_size);
3452         for (i = 0; i < priv->num_tx_queues; i++)
3453                 netdev_info(dev, "TX BD ring size for Q[%d]: %d\n",
3454                             i, priv->tx_queue[i]->tx_ring_size);
3455
3456         return 0;
3457
3458 register_fail:
3459         if (of_phy_is_fixed_link(np))
3460                 of_phy_deregister_fixed_link(np);
3461         unmap_group_regs(priv);
3462         gfar_free_rx_queues(priv);
3463         gfar_free_tx_queues(priv);
3464         of_node_put(priv->phy_node);
3465         of_node_put(priv->tbi_node);
3466         free_gfar_dev(priv);
3467         return err;
3468 }
3469
3470 static int gfar_remove(struct platform_device *ofdev)
3471 {
3472         struct gfar_private *priv = platform_get_drvdata(ofdev);
3473         struct device_node *np = ofdev->dev.of_node;
3474
3475         of_node_put(priv->phy_node);
3476         of_node_put(priv->tbi_node);
3477
3478         unregister_netdev(priv->ndev);
3479
3480         if (of_phy_is_fixed_link(np))
3481                 of_phy_deregister_fixed_link(np);
3482
3483         unmap_group_regs(priv);
3484         gfar_free_rx_queues(priv);
3485         gfar_free_tx_queues(priv);
3486         free_gfar_dev(priv);
3487
3488         return 0;
3489 }
3490
3491 #ifdef CONFIG_PM
3492
3493 static void __gfar_filer_disable(struct gfar_private *priv)
3494 {
3495         struct gfar __iomem *regs = priv->gfargrp[0].regs;
3496         u32 temp;
3497
3498         temp = gfar_read(&regs->rctrl);
3499         temp &= ~(RCTRL_FILREN | RCTRL_PRSDEP_INIT);
3500         gfar_write(&regs->rctrl, temp);
3501 }
3502
3503 static void __gfar_filer_enable(struct gfar_private *priv)
3504 {
3505         struct gfar __iomem *regs = priv->gfargrp[0].regs;
3506         u32 temp;
3507
3508         temp = gfar_read(&regs->rctrl);
3509         temp |= RCTRL_FILREN | RCTRL_PRSDEP_INIT;
3510         gfar_write(&regs->rctrl, temp);
3511 }
3512
3513 /* Filer rules implementing wol capabilities */
3514 static void gfar_filer_config_wol(struct gfar_private *priv)
3515 {
3516         unsigned int i;
3517         u32 rqfcr;
3518
3519         __gfar_filer_disable(priv);
3520
3521         /* clear the filer table, reject any packet by default */
3522         rqfcr = RQFCR_RJE | RQFCR_CMP_MATCH;
3523         for (i = 0; i <= MAX_FILER_IDX; i++)
3524                 gfar_write_filer(priv, i, rqfcr, 0);
3525
3526         i = 0;
3527         if (priv->wol_opts & GFAR_WOL_FILER_UCAST) {
3528                 /* unicast packet, accept it */
3529                 struct net_device *ndev = priv->ndev;
3530                 /* get the default rx queue index */
3531                 u8 qindex = (u8)priv->gfargrp[0].rx_queue->qindex;
3532                 u32 dest_mac_addr = (ndev->dev_addr[0] << 16) |
3533                                     (ndev->dev_addr[1] << 8) |
3534                                      ndev->dev_addr[2];
3535
3536                 rqfcr = (qindex << 10) | RQFCR_AND |
3537                         RQFCR_CMP_EXACT | RQFCR_PID_DAH;
3538
3539                 gfar_write_filer(priv, i++, rqfcr, dest_mac_addr);
3540
3541                 dest_mac_addr = (ndev->dev_addr[3] << 16) |
3542                                 (ndev->dev_addr[4] << 8) |
3543                                  ndev->dev_addr[5];
3544                 rqfcr = (qindex << 10) | RQFCR_GPI |
3545                         RQFCR_CMP_EXACT | RQFCR_PID_DAL;
3546                 gfar_write_filer(priv, i++, rqfcr, dest_mac_addr);
3547         }
3548
3549         __gfar_filer_enable(priv);
3550 }
3551
3552 static void gfar_filer_restore_table(struct gfar_private *priv)
3553 {
3554         u32 rqfcr, rqfpr;
3555         unsigned int i;
3556
3557         __gfar_filer_disable(priv);
3558
3559         for (i = 0; i <= MAX_FILER_IDX; i++) {
3560                 rqfcr = priv->ftp_rqfcr[i];
3561                 rqfpr = priv->ftp_rqfpr[i];
3562                 gfar_write_filer(priv, i, rqfcr, rqfpr);
3563         }
3564
3565         __gfar_filer_enable(priv);
3566 }
3567
3568 /* gfar_start() for Rx only and with the FGPI filer interrupt enabled */
3569 static void gfar_start_wol_filer(struct gfar_private *priv)
3570 {
3571         struct gfar __iomem *regs = priv->gfargrp[0].regs;
3572         u32 tempval;
3573         int i = 0;
3574
3575         /* Enable Rx hw queues */
3576         gfar_write(&regs->rqueue, priv->rqueue);
3577
3578         /* Initialize DMACTRL to have WWR and WOP */
3579         tempval = gfar_read(&regs->dmactrl);
3580         tempval |= DMACTRL_INIT_SETTINGS;
3581         gfar_write(&regs->dmactrl, tempval);
3582
3583         /* Make sure we aren't stopped */
3584         tempval = gfar_read(&regs->dmactrl);
3585         tempval &= ~DMACTRL_GRS;
3586         gfar_write(&regs->dmactrl, tempval);
3587
3588         for (i = 0; i < priv->num_grps; i++) {
3589                 regs = priv->gfargrp[i].regs;
3590                 /* Clear RHLT, so that the DMA starts polling now */
3591                 gfar_write(&regs->rstat, priv->gfargrp[i].rstat);
3592                 /* enable the Filer General Purpose Interrupt */
3593                 gfar_write(&regs->imask, IMASK_FGPI);
3594         }
3595
3596         /* Enable Rx DMA */
3597         tempval = gfar_read(&regs->maccfg1);
3598         tempval |= MACCFG1_RX_EN;
3599         gfar_write(&regs->maccfg1, tempval);
3600 }
3601
3602 static int gfar_suspend(struct device *dev)
3603 {
3604         struct gfar_private *priv = dev_get_drvdata(dev);
3605         struct net_device *ndev = priv->ndev;
3606         struct gfar __iomem *regs = priv->gfargrp[0].regs;
3607         u32 tempval;
3608         u16 wol = priv->wol_opts;
3609
3610         if (!netif_running(ndev))
3611                 return 0;
3612
3613         disable_napi(priv);
3614         netif_tx_lock(ndev);
3615         netif_device_detach(ndev);
3616         netif_tx_unlock(ndev);
3617
3618         gfar_halt(priv);
3619
3620         if (wol & GFAR_WOL_MAGIC) {
3621                 /* Enable interrupt on Magic Packet */
3622                 gfar_write(&regs->imask, IMASK_MAG);
3623
3624                 /* Enable Magic Packet mode */
3625                 tempval = gfar_read(&regs->maccfg2);
3626                 tempval |= MACCFG2_MPEN;
3627                 gfar_write(&regs->maccfg2, tempval);
3628
3629                 /* re-enable the Rx block */
3630                 tempval = gfar_read(&regs->maccfg1);
3631                 tempval |= MACCFG1_RX_EN;
3632                 gfar_write(&regs->maccfg1, tempval);
3633
3634         } else if (wol & GFAR_WOL_FILER_UCAST) {
3635                 gfar_filer_config_wol(priv);
3636                 gfar_start_wol_filer(priv);
3637
3638         } else {
3639                 phy_stop(ndev->phydev);
3640         }
3641
3642         return 0;
3643 }
3644
3645 static int gfar_resume(struct device *dev)
3646 {
3647         struct gfar_private *priv = dev_get_drvdata(dev);
3648         struct net_device *ndev = priv->ndev;
3649         struct gfar __iomem *regs = priv->gfargrp[0].regs;
3650         u32 tempval;
3651         u16 wol = priv->wol_opts;
3652
3653         if (!netif_running(ndev))
3654                 return 0;
3655
3656         if (wol & GFAR_WOL_MAGIC) {
3657                 /* Disable Magic Packet mode */
3658                 tempval = gfar_read(&regs->maccfg2);
3659                 tempval &= ~MACCFG2_MPEN;
3660                 gfar_write(&regs->maccfg2, tempval);
3661
3662         } else if (wol & GFAR_WOL_FILER_UCAST) {
3663                 /* need to stop rx only, tx is already down */
3664                 gfar_halt(priv);
3665                 gfar_filer_restore_table(priv);
3666
3667         } else {
3668                 phy_start(ndev->phydev);
3669         }
3670
3671         gfar_start(priv);
3672
3673         netif_device_attach(ndev);
3674         enable_napi(priv);
3675
3676         return 0;
3677 }
3678
3679 static int gfar_restore(struct device *dev)
3680 {
3681         struct gfar_private *priv = dev_get_drvdata(dev);
3682         struct net_device *ndev = priv->ndev;
3683
3684         if (!netif_running(ndev)) {
3685                 netif_device_attach(ndev);
3686
3687                 return 0;
3688         }
3689
3690         gfar_init_bds(ndev);
3691
3692         gfar_mac_reset(priv);
3693
3694         gfar_init_tx_rx_base(priv);
3695
3696         gfar_start(priv);
3697
3698         priv->oldlink = 0;
3699         priv->oldspeed = 0;
3700         priv->oldduplex = -1;
3701
3702         if (ndev->phydev)
3703                 phy_start(ndev->phydev);
3704
3705         netif_device_attach(ndev);
3706         enable_napi(priv);
3707
3708         return 0;
3709 }
3710
3711 static const struct dev_pm_ops gfar_pm_ops = {
3712         .suspend = gfar_suspend,
3713         .resume = gfar_resume,
3714         .freeze = gfar_suspend,
3715         .thaw = gfar_resume,
3716         .restore = gfar_restore,
3717 };
3718
3719 #define GFAR_PM_OPS (&gfar_pm_ops)
3720
3721 #else
3722
3723 #define GFAR_PM_OPS NULL
3724
3725 #endif
3726
3727 static const struct of_device_id gfar_match[] =
3728 {
3729         {
3730                 .type = "network",
3731                 .compatible = "gianfar",
3732         },
3733         {
3734                 .compatible = "fsl,etsec2",
3735         },
3736         {},
3737 };
3738 MODULE_DEVICE_TABLE(of, gfar_match);
3739
3740 /* Structure for a device driver */
3741 static struct platform_driver gfar_driver = {
3742         .driver = {
3743                 .name = "fsl-gianfar",
3744                 .pm = GFAR_PM_OPS,
3745                 .of_match_table = gfar_match,
3746         },
3747         .probe = gfar_probe,
3748         .remove = gfar_remove,
3749 };
3750
3751 module_platform_driver(gfar_driver);