Linux-libre 5.4.39-gnu
[librecmc/linux-libre.git] / drivers / net / ethernet / dec / tulip / winbond-840.c
1 /* winbond-840.c: A Linux PCI network adapter device driver. */
2 /*
3         Written 1998-2001 by Donald Becker.
4
5         This software may be used and distributed according to the terms of
6         the GNU General Public License (GPL), incorporated herein by reference.
7         Drivers based on or derived from this code fall under the GPL and must
8         retain the authorship, copyright and license notice.  This file is not
9         a complete program and may only be used when the entire operating
10         system is licensed under the GPL.
11
12         The author may be reached as becker@scyld.com, or C/O
13         Scyld Computing Corporation
14         410 Severn Ave., Suite 210
15         Annapolis MD 21403
16
17         Support and updates available at
18         http://www.scyld.com/network/drivers.html
19
20         Do not remove the copyright information.
21         Do not change the version information unless an improvement has been made.
22         Merely removing my name, as Compex has done in the past, does not count
23         as an improvement.
24
25         Changelog:
26         * ported to 2.4
27                 ???
28         * spin lock update, memory barriers, new style dma mappings
29                 limit each tx buffer to < 1024 bytes
30                 remove DescIntr from Rx descriptors (that's an Tx flag)
31                 remove next pointer from Tx descriptors
32                 synchronize tx_q_bytes
33                 software reset in tx_timeout
34                         Copyright (C) 2000 Manfred Spraul
35         * further cleanups
36                 power management.
37                 support for big endian descriptors
38                         Copyright (C) 2001 Manfred Spraul
39         * ethtool support (jgarzik)
40         * Replace some MII-related magic numbers with constants (jgarzik)
41
42         TODO:
43         * enable pci_power_off
44         * Wake-On-LAN
45 */
46
47 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
48
49 #define DRV_NAME        "winbond-840"
50 #define DRV_VERSION     "1.01-e"
51 #define DRV_RELDATE     "Sep-11-2006"
52
53
54 /* Automatically extracted configuration info:
55 probe-func: winbond840_probe
56 config-in: tristate 'Winbond W89c840 Ethernet support' CONFIG_WINBOND_840
57
58 c-help-name: Winbond W89c840 PCI Ethernet support
59 c-help-symbol: CONFIG_WINBOND_840
60 c-help: This driver is for the Winbond W89c840 chip.  It also works with
61 c-help: the TX9882 chip on the Compex RL100-ATX board.
62 c-help: More specific information and updates are available from
63 c-help: http://www.scyld.com/network/drivers.html
64 */
65
66 /* The user-configurable values.
67    These may be modified when a driver module is loaded.*/
68
69 static int debug = 1;                   /* 1 normal messages, 0 quiet .. 7 verbose. */
70 static int max_interrupt_work = 20;
71 /* Maximum number of multicast addresses to filter (vs. Rx-all-multicast).
72    The '840 uses a 64 element hash table based on the Ethernet CRC.  */
73 static int multicast_filter_limit = 32;
74
75 /* Set the copy breakpoint for the copy-only-tiny-frames scheme.
76    Setting to > 1518 effectively disables this feature. */
77 static int rx_copybreak;
78
79 /* Used to pass the media type, etc.
80    Both 'options[]' and 'full_duplex[]' should exist for driver
81    interoperability.
82    The media type is usually passed in 'options[]'.
83 */
84 #define MAX_UNITS 8             /* More are supported, limit only on options */
85 static int options[MAX_UNITS] = {-1, -1, -1, -1, -1, -1, -1, -1};
86 static int full_duplex[MAX_UNITS] = {-1, -1, -1, -1, -1, -1, -1, -1};
87
88 /* Operational parameters that are set at compile time. */
89
90 /* Keep the ring sizes a power of two for compile efficiency.
91    The compiler will convert <unsigned>'%'<2^N> into a bit mask.
92    Making the Tx ring too large decreases the effectiveness of channel
93    bonding and packet priority.
94    There are no ill effects from too-large receive rings. */
95 #define TX_QUEUE_LEN    10              /* Limit ring entries actually used.  */
96 #define TX_QUEUE_LEN_RESTART    5
97
98 #define TX_BUFLIMIT     (1024-128)
99
100 /* The presumed FIFO size for working around the Tx-FIFO-overflow bug.
101    To avoid overflowing we don't queue again until we have room for a
102    full-size packet.
103  */
104 #define TX_FIFO_SIZE (2048)
105 #define TX_BUG_FIFO_LIMIT (TX_FIFO_SIZE-1514-16)
106
107
108 /* Operational parameters that usually are not changed. */
109 /* Time in jiffies before concluding the transmitter is hung. */
110 #define TX_TIMEOUT  (2*HZ)
111
112 /* Include files, designed to support most kernel versions 2.0.0 and later. */
113 #include <linux/module.h>
114 #include <linux/kernel.h>
115 #include <linux/string.h>
116 #include <linux/timer.h>
117 #include <linux/errno.h>
118 #include <linux/ioport.h>
119 #include <linux/interrupt.h>
120 #include <linux/pci.h>
121 #include <linux/dma-mapping.h>
122 #include <linux/netdevice.h>
123 #include <linux/etherdevice.h>
124 #include <linux/skbuff.h>
125 #include <linux/init.h>
126 #include <linux/delay.h>
127 #include <linux/ethtool.h>
128 #include <linux/mii.h>
129 #include <linux/rtnetlink.h>
130 #include <linux/crc32.h>
131 #include <linux/bitops.h>
132 #include <linux/uaccess.h>
133 #include <asm/processor.h>              /* Processor type for cache alignment. */
134 #include <asm/io.h>
135 #include <asm/irq.h>
136
137 #include "tulip.h"
138
139 #undef PKT_BUF_SZ                       /* tulip.h also defines this */
140 #define PKT_BUF_SZ              1536    /* Size of each temporary Rx buffer.*/
141
142 /* These identify the driver base version and may not be removed. */
143 static const char version[] __initconst =
144         "v" DRV_VERSION " (2.4 port) "
145         DRV_RELDATE "  Donald Becker <becker@scyld.com>\n"
146         "  http://www.scyld.com/network/drivers.html\n";
147
148 MODULE_AUTHOR("Donald Becker <becker@scyld.com>");
149 MODULE_DESCRIPTION("Winbond W89c840 Ethernet driver");
150 MODULE_LICENSE("GPL");
151 MODULE_VERSION(DRV_VERSION);
152
153 module_param(max_interrupt_work, int, 0);
154 module_param(debug, int, 0);
155 module_param(rx_copybreak, int, 0);
156 module_param(multicast_filter_limit, int, 0);
157 module_param_array(options, int, NULL, 0);
158 module_param_array(full_duplex, int, NULL, 0);
159 MODULE_PARM_DESC(max_interrupt_work, "winbond-840 maximum events handled per interrupt");
160 MODULE_PARM_DESC(debug, "winbond-840 debug level (0-6)");
161 MODULE_PARM_DESC(rx_copybreak, "winbond-840 copy breakpoint for copy-only-tiny-frames");
162 MODULE_PARM_DESC(multicast_filter_limit, "winbond-840 maximum number of filtered multicast addresses");
163 MODULE_PARM_DESC(options, "winbond-840: Bits 0-3: media type, bit 17: full duplex");
164 MODULE_PARM_DESC(full_duplex, "winbond-840 full duplex setting(s) (1)");
165
166 /*
167                                 Theory of Operation
168
169 I. Board Compatibility
170
171 This driver is for the Winbond w89c840 chip.
172
173 II. Board-specific settings
174
175 None.
176
177 III. Driver operation
178
179 This chip is very similar to the Digital 21*4* "Tulip" family.  The first
180 twelve registers and the descriptor format are nearly identical.  Read a
181 Tulip manual for operational details.
182
183 A significant difference is that the multicast filter and station address are
184 stored in registers rather than loaded through a pseudo-transmit packet.
185
186 Unlike the Tulip, transmit buffers are limited to 1KB.  To transmit a
187 full-sized packet we must use both data buffers in a descriptor.  Thus the
188 driver uses ring mode where descriptors are implicitly sequential in memory,
189 rather than using the second descriptor address as a chain pointer to
190 subsequent descriptors.
191
192 IV. Notes
193
194 If you are going to almost clone a Tulip, why not go all the way and avoid
195 the need for a new driver?
196
197 IVb. References
198
199 http://www.scyld.com/expert/100mbps.html
200 http://www.scyld.com/expert/NWay.html
201 http://www.winbond.com.tw/
202
203 IVc. Errata
204
205 A horrible bug exists in the transmit FIFO.  Apparently the chip doesn't
206 correctly detect a full FIFO, and queuing more than 2048 bytes may result in
207 silent data corruption.
208
209 Test with 'ping -s 10000' on a fast computer.
210
211 */
212
213
214
215 /*
216   PCI probe table.
217 */
218 enum chip_capability_flags {
219         CanHaveMII=1, HasBrokenTx=2, AlwaysFDX=4, FDXOnNoMII=8,
220 };
221
222 static const struct pci_device_id w840_pci_tbl[] = {
223         { 0x1050, 0x0840, PCI_ANY_ID, 0x8153,     0, 0, 0 },
224         { 0x1050, 0x0840, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 1 },
225         { 0x11f6, 0x2011, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 2 },
226         { }
227 };
228 MODULE_DEVICE_TABLE(pci, w840_pci_tbl);
229
230 enum {
231         netdev_res_size         = 128,  /* size of PCI BAR resource */
232 };
233
234 struct pci_id_info {
235         const char *name;
236         int drv_flags;          /* Driver use, intended as capability flags. */
237 };
238
239 static const struct pci_id_info pci_id_tbl[] = {
240         {                               /* Sometime a Level-One switch card. */
241           "Winbond W89c840",    CanHaveMII | HasBrokenTx | FDXOnNoMII},
242         { "Winbond W89c840",    CanHaveMII | HasBrokenTx},
243         { "Compex RL100-ATX",   CanHaveMII | HasBrokenTx},
244         { }     /* terminate list. */
245 };
246
247 /* This driver was written to use PCI memory space, however some x86 systems
248    work only with I/O space accesses. See CONFIG_TULIP_MMIO in .config
249 */
250
251 /* Offsets to the Command and Status Registers, "CSRs".
252    While similar to the Tulip, these registers are longword aligned.
253    Note: It's not useful to define symbolic names for every register bit in
254    the device.  The name can only partially document the semantics and make
255    the driver longer and more difficult to read.
256 */
257 enum w840_offsets {
258         PCIBusCfg=0x00, TxStartDemand=0x04, RxStartDemand=0x08,
259         RxRingPtr=0x0C, TxRingPtr=0x10,
260         IntrStatus=0x14, NetworkConfig=0x18, IntrEnable=0x1C,
261         RxMissed=0x20, EECtrl=0x24, MIICtrl=0x24, BootRom=0x28, GPTimer=0x2C,
262         CurRxDescAddr=0x30, CurRxBufAddr=0x34,                  /* Debug use */
263         MulticastFilter0=0x38, MulticastFilter1=0x3C, StationAddr=0x40,
264         CurTxDescAddr=0x4C, CurTxBufAddr=0x50,
265 };
266
267 /* Bits in the NetworkConfig register. */
268 enum rx_mode_bits {
269         AcceptErr=0x80,
270         RxAcceptBroadcast=0x20, AcceptMulticast=0x10,
271         RxAcceptAllPhys=0x08, AcceptMyPhys=0x02,
272 };
273
274 enum mii_reg_bits {
275         MDIO_ShiftClk=0x10000, MDIO_DataIn=0x80000, MDIO_DataOut=0x20000,
276         MDIO_EnbOutput=0x40000, MDIO_EnbIn = 0x00000,
277 };
278
279 /* The Tulip Rx and Tx buffer descriptors. */
280 struct w840_rx_desc {
281         s32 status;
282         s32 length;
283         u32 buffer1;
284         u32 buffer2;
285 };
286
287 struct w840_tx_desc {
288         s32 status;
289         s32 length;
290         u32 buffer1, buffer2;
291 };
292
293 #define MII_CNT         1 /* winbond only supports one MII */
294 struct netdev_private {
295         struct w840_rx_desc *rx_ring;
296         dma_addr_t      rx_addr[RX_RING_SIZE];
297         struct w840_tx_desc *tx_ring;
298         dma_addr_t      tx_addr[TX_RING_SIZE];
299         dma_addr_t ring_dma_addr;
300         /* The addresses of receive-in-place skbuffs. */
301         struct sk_buff* rx_skbuff[RX_RING_SIZE];
302         /* The saved address of a sent-in-place packet/buffer, for later free(). */
303         struct sk_buff* tx_skbuff[TX_RING_SIZE];
304         struct net_device_stats stats;
305         struct timer_list timer;        /* Media monitoring timer. */
306         /* Frequently used values: keep some adjacent for cache effect. */
307         spinlock_t lock;
308         int chip_id, drv_flags;
309         struct pci_dev *pci_dev;
310         int csr6;
311         struct w840_rx_desc *rx_head_desc;
312         unsigned int cur_rx, dirty_rx;          /* Producer/consumer ring indices */
313         unsigned int rx_buf_sz;                         /* Based on MTU+slack. */
314         unsigned int cur_tx, dirty_tx;
315         unsigned int tx_q_bytes;
316         unsigned int tx_full;                           /* The Tx queue is full. */
317         /* MII transceiver section. */
318         int mii_cnt;                                            /* MII device addresses. */
319         unsigned char phys[MII_CNT];            /* MII device addresses, but only the first is used */
320         u32 mii;
321         struct mii_if_info mii_if;
322         void __iomem *base_addr;
323 };
324
325 static int  eeprom_read(void __iomem *ioaddr, int location);
326 static int  mdio_read(struct net_device *dev, int phy_id, int location);
327 static void mdio_write(struct net_device *dev, int phy_id, int location, int value);
328 static int  netdev_open(struct net_device *dev);
329 static int  update_link(struct net_device *dev);
330 static void netdev_timer(struct timer_list *t);
331 static void init_rxtx_rings(struct net_device *dev);
332 static void free_rxtx_rings(struct netdev_private *np);
333 static void init_registers(struct net_device *dev);
334 static void tx_timeout(struct net_device *dev);
335 static int alloc_ringdesc(struct net_device *dev);
336 static void free_ringdesc(struct netdev_private *np);
337 static netdev_tx_t start_tx(struct sk_buff *skb, struct net_device *dev);
338 static irqreturn_t intr_handler(int irq, void *dev_instance);
339 static void netdev_error(struct net_device *dev, int intr_status);
340 static int  netdev_rx(struct net_device *dev);
341 static u32 __set_rx_mode(struct net_device *dev);
342 static void set_rx_mode(struct net_device *dev);
343 static struct net_device_stats *get_stats(struct net_device *dev);
344 static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
345 static const struct ethtool_ops netdev_ethtool_ops;
346 static int  netdev_close(struct net_device *dev);
347
348 static const struct net_device_ops netdev_ops = {
349         .ndo_open               = netdev_open,
350         .ndo_stop               = netdev_close,
351         .ndo_start_xmit         = start_tx,
352         .ndo_get_stats          = get_stats,
353         .ndo_set_rx_mode        = set_rx_mode,
354         .ndo_do_ioctl           = netdev_ioctl,
355         .ndo_tx_timeout         = tx_timeout,
356         .ndo_set_mac_address    = eth_mac_addr,
357         .ndo_validate_addr      = eth_validate_addr,
358 };
359
360 static int w840_probe1(struct pci_dev *pdev, const struct pci_device_id *ent)
361 {
362         struct net_device *dev;
363         struct netdev_private *np;
364         static int find_cnt;
365         int chip_idx = ent->driver_data;
366         int irq;
367         int i, option = find_cnt < MAX_UNITS ? options[find_cnt] : 0;
368         void __iomem *ioaddr;
369
370         i = pci_enable_device(pdev);
371         if (i) return i;
372
373         pci_set_master(pdev);
374
375         irq = pdev->irq;
376
377         if (pci_set_dma_mask(pdev, DMA_BIT_MASK(32))) {
378                 pr_warn("Device %s disabled due to DMA limitations\n",
379                         pci_name(pdev));
380                 return -EIO;
381         }
382         dev = alloc_etherdev(sizeof(*np));
383         if (!dev)
384                 return -ENOMEM;
385         SET_NETDEV_DEV(dev, &pdev->dev);
386
387         if (pci_request_regions(pdev, DRV_NAME))
388                 goto err_out_netdev;
389
390         ioaddr = pci_iomap(pdev, TULIP_BAR, netdev_res_size);
391         if (!ioaddr)
392                 goto err_out_free_res;
393
394         for (i = 0; i < 3; i++)
395                 ((__le16 *)dev->dev_addr)[i] = cpu_to_le16(eeprom_read(ioaddr, i));
396
397         /* Reset the chip to erase previous misconfiguration.
398            No hold time required! */
399         iowrite32(0x00000001, ioaddr + PCIBusCfg);
400
401         np = netdev_priv(dev);
402         np->pci_dev = pdev;
403         np->chip_id = chip_idx;
404         np->drv_flags = pci_id_tbl[chip_idx].drv_flags;
405         spin_lock_init(&np->lock);
406         np->mii_if.dev = dev;
407         np->mii_if.mdio_read = mdio_read;
408         np->mii_if.mdio_write = mdio_write;
409         np->base_addr = ioaddr;
410
411         pci_set_drvdata(pdev, dev);
412
413         if (dev->mem_start)
414                 option = dev->mem_start;
415
416         /* The lower four bits are the media type. */
417         if (option > 0) {
418                 if (option & 0x200)
419                         np->mii_if.full_duplex = 1;
420                 if (option & 15)
421                         dev_info(&dev->dev,
422                                  "ignoring user supplied media type %d",
423                                  option & 15);
424         }
425         if (find_cnt < MAX_UNITS  &&  full_duplex[find_cnt] > 0)
426                 np->mii_if.full_duplex = 1;
427
428         if (np->mii_if.full_duplex)
429                 np->mii_if.force_media = 1;
430
431         /* The chip-specific entries in the device structure. */
432         dev->netdev_ops = &netdev_ops;
433         dev->ethtool_ops = &netdev_ethtool_ops;
434         dev->watchdog_timeo = TX_TIMEOUT;
435
436         i = register_netdev(dev);
437         if (i)
438                 goto err_out_cleardev;
439
440         dev_info(&dev->dev, "%s at %p, %pM, IRQ %d\n",
441                  pci_id_tbl[chip_idx].name, ioaddr, dev->dev_addr, irq);
442
443         if (np->drv_flags & CanHaveMII) {
444                 int phy, phy_idx = 0;
445                 for (phy = 1; phy < 32 && phy_idx < MII_CNT; phy++) {
446                         int mii_status = mdio_read(dev, phy, MII_BMSR);
447                         if (mii_status != 0xffff  &&  mii_status != 0x0000) {
448                                 np->phys[phy_idx++] = phy;
449                                 np->mii_if.advertising = mdio_read(dev, phy, MII_ADVERTISE);
450                                 np->mii = (mdio_read(dev, phy, MII_PHYSID1) << 16)+
451                                                 mdio_read(dev, phy, MII_PHYSID2);
452                                 dev_info(&dev->dev,
453                                          "MII PHY %08xh found at address %d, status 0x%04x advertising %04x\n",
454                                          np->mii, phy, mii_status,
455                                          np->mii_if.advertising);
456                         }
457                 }
458                 np->mii_cnt = phy_idx;
459                 np->mii_if.phy_id = np->phys[0];
460                 if (phy_idx == 0) {
461                         dev_warn(&dev->dev,
462                                  "MII PHY not found -- this device may not operate correctly\n");
463                 }
464         }
465
466         find_cnt++;
467         return 0;
468
469 err_out_cleardev:
470         pci_iounmap(pdev, ioaddr);
471 err_out_free_res:
472         pci_release_regions(pdev);
473 err_out_netdev:
474         free_netdev (dev);
475         return -ENODEV;
476 }
477
478
479 /* Read the EEPROM and MII Management Data I/O (MDIO) interfaces.  These are
480    often serial bit streams generated by the host processor.
481    The example below is for the common 93c46 EEPROM, 64 16 bit words. */
482
483 /* Delay between EEPROM clock transitions.
484    No extra delay is needed with 33Mhz PCI, but future 66Mhz access may need
485    a delay.  Note that pre-2.0.34 kernels had a cache-alignment bug that
486    made udelay() unreliable.
487    The old method of using an ISA access as a delay, __SLOW_DOWN_IO__, is
488    deprecated.
489 */
490 #define eeprom_delay(ee_addr)   ioread32(ee_addr)
491
492 enum EEPROM_Ctrl_Bits {
493         EE_ShiftClk=0x02, EE_Write0=0x801, EE_Write1=0x805,
494         EE_ChipSelect=0x801, EE_DataIn=0x08,
495 };
496
497 /* The EEPROM commands include the alway-set leading bit. */
498 enum EEPROM_Cmds {
499         EE_WriteCmd=(5 << 6), EE_ReadCmd=(6 << 6), EE_EraseCmd=(7 << 6),
500 };
501
502 static int eeprom_read(void __iomem *addr, int location)
503 {
504         int i;
505         int retval = 0;
506         void __iomem *ee_addr = addr + EECtrl;
507         int read_cmd = location | EE_ReadCmd;
508         iowrite32(EE_ChipSelect, ee_addr);
509
510         /* Shift the read command bits out. */
511         for (i = 10; i >= 0; i--) {
512                 short dataval = (read_cmd & (1 << i)) ? EE_Write1 : EE_Write0;
513                 iowrite32(dataval, ee_addr);
514                 eeprom_delay(ee_addr);
515                 iowrite32(dataval | EE_ShiftClk, ee_addr);
516                 eeprom_delay(ee_addr);
517         }
518         iowrite32(EE_ChipSelect, ee_addr);
519         eeprom_delay(ee_addr);
520
521         for (i = 16; i > 0; i--) {
522                 iowrite32(EE_ChipSelect | EE_ShiftClk, ee_addr);
523                 eeprom_delay(ee_addr);
524                 retval = (retval << 1) | ((ioread32(ee_addr) & EE_DataIn) ? 1 : 0);
525                 iowrite32(EE_ChipSelect, ee_addr);
526                 eeprom_delay(ee_addr);
527         }
528
529         /* Terminate the EEPROM access. */
530         iowrite32(0, ee_addr);
531         return retval;
532 }
533
534 /*  MII transceiver control section.
535         Read and write the MII registers using software-generated serial
536         MDIO protocol.  See the MII specifications or DP83840A data sheet
537         for details.
538
539         The maximum data clock rate is 2.5 Mhz.  The minimum timing is usually
540         met by back-to-back 33Mhz PCI cycles. */
541 #define mdio_delay(mdio_addr) ioread32(mdio_addr)
542
543 /* Set iff a MII transceiver on any interface requires mdio preamble.
544    This only set with older transceivers, so the extra
545    code size of a per-interface flag is not worthwhile. */
546 static char mii_preamble_required = 1;
547
548 #define MDIO_WRITE0 (MDIO_EnbOutput)
549 #define MDIO_WRITE1 (MDIO_DataOut | MDIO_EnbOutput)
550
551 /* Generate the preamble required for initial synchronization and
552    a few older transceivers. */
553 static void mdio_sync(void __iomem *mdio_addr)
554 {
555         int bits = 32;
556
557         /* Establish sync by sending at least 32 logic ones. */
558         while (--bits >= 0) {
559                 iowrite32(MDIO_WRITE1, mdio_addr);
560                 mdio_delay(mdio_addr);
561                 iowrite32(MDIO_WRITE1 | MDIO_ShiftClk, mdio_addr);
562                 mdio_delay(mdio_addr);
563         }
564 }
565
566 static int mdio_read(struct net_device *dev, int phy_id, int location)
567 {
568         struct netdev_private *np = netdev_priv(dev);
569         void __iomem *mdio_addr = np->base_addr + MIICtrl;
570         int mii_cmd = (0xf6 << 10) | (phy_id << 5) | location;
571         int i, retval = 0;
572
573         if (mii_preamble_required)
574                 mdio_sync(mdio_addr);
575
576         /* Shift the read command bits out. */
577         for (i = 15; i >= 0; i--) {
578                 int dataval = (mii_cmd & (1 << i)) ? MDIO_WRITE1 : MDIO_WRITE0;
579
580                 iowrite32(dataval, mdio_addr);
581                 mdio_delay(mdio_addr);
582                 iowrite32(dataval | MDIO_ShiftClk, mdio_addr);
583                 mdio_delay(mdio_addr);
584         }
585         /* Read the two transition, 16 data, and wire-idle bits. */
586         for (i = 20; i > 0; i--) {
587                 iowrite32(MDIO_EnbIn, mdio_addr);
588                 mdio_delay(mdio_addr);
589                 retval = (retval << 1) | ((ioread32(mdio_addr) & MDIO_DataIn) ? 1 : 0);
590                 iowrite32(MDIO_EnbIn | MDIO_ShiftClk, mdio_addr);
591                 mdio_delay(mdio_addr);
592         }
593         return (retval>>1) & 0xffff;
594 }
595
596 static void mdio_write(struct net_device *dev, int phy_id, int location, int value)
597 {
598         struct netdev_private *np = netdev_priv(dev);
599         void __iomem *mdio_addr = np->base_addr + MIICtrl;
600         int mii_cmd = (0x5002 << 16) | (phy_id << 23) | (location<<18) | value;
601         int i;
602
603         if (location == 4  &&  phy_id == np->phys[0])
604                 np->mii_if.advertising = value;
605
606         if (mii_preamble_required)
607                 mdio_sync(mdio_addr);
608
609         /* Shift the command bits out. */
610         for (i = 31; i >= 0; i--) {
611                 int dataval = (mii_cmd & (1 << i)) ? MDIO_WRITE1 : MDIO_WRITE0;
612
613                 iowrite32(dataval, mdio_addr);
614                 mdio_delay(mdio_addr);
615                 iowrite32(dataval | MDIO_ShiftClk, mdio_addr);
616                 mdio_delay(mdio_addr);
617         }
618         /* Clear out extra bits. */
619         for (i = 2; i > 0; i--) {
620                 iowrite32(MDIO_EnbIn, mdio_addr);
621                 mdio_delay(mdio_addr);
622                 iowrite32(MDIO_EnbIn | MDIO_ShiftClk, mdio_addr);
623                 mdio_delay(mdio_addr);
624         }
625 }
626
627
628 static int netdev_open(struct net_device *dev)
629 {
630         struct netdev_private *np = netdev_priv(dev);
631         void __iomem *ioaddr = np->base_addr;
632         const int irq = np->pci_dev->irq;
633         int i;
634
635         iowrite32(0x00000001, ioaddr + PCIBusCfg);              /* Reset */
636
637         netif_device_detach(dev);
638         i = request_irq(irq, intr_handler, IRQF_SHARED, dev->name, dev);
639         if (i)
640                 goto out_err;
641
642         if (debug > 1)
643                 netdev_dbg(dev, "w89c840_open() irq %d\n", irq);
644
645         if((i=alloc_ringdesc(dev)))
646                 goto out_err;
647
648         spin_lock_irq(&np->lock);
649         netif_device_attach(dev);
650         init_registers(dev);
651         spin_unlock_irq(&np->lock);
652
653         netif_start_queue(dev);
654         if (debug > 2)
655                 netdev_dbg(dev, "Done netdev_open()\n");
656
657         /* Set the timer to check for link beat. */
658         timer_setup(&np->timer, netdev_timer, 0);
659         np->timer.expires = jiffies + 1*HZ;
660         add_timer(&np->timer);
661         return 0;
662 out_err:
663         netif_device_attach(dev);
664         return i;
665 }
666
667 #define MII_DAVICOM_DM9101      0x0181b800
668
669 static int update_link(struct net_device *dev)
670 {
671         struct netdev_private *np = netdev_priv(dev);
672         int duplex, fasteth, result, mii_reg;
673
674         /* BSMR */
675         mii_reg = mdio_read(dev, np->phys[0], MII_BMSR);
676
677         if (mii_reg == 0xffff)
678                 return np->csr6;
679         /* reread: the link status bit is sticky */
680         mii_reg = mdio_read(dev, np->phys[0], MII_BMSR);
681         if (!(mii_reg & 0x4)) {
682                 if (netif_carrier_ok(dev)) {
683                         if (debug)
684                                 dev_info(&dev->dev,
685                                          "MII #%d reports no link. Disabling watchdog\n",
686                                          np->phys[0]);
687                         netif_carrier_off(dev);
688                 }
689                 return np->csr6;
690         }
691         if (!netif_carrier_ok(dev)) {
692                 if (debug)
693                         dev_info(&dev->dev,
694                                  "MII #%d link is back. Enabling watchdog\n",
695                                  np->phys[0]);
696                 netif_carrier_on(dev);
697         }
698
699         if ((np->mii & ~0xf) == MII_DAVICOM_DM9101) {
700                 /* If the link partner doesn't support autonegotiation
701                  * the MII detects it's abilities with the "parallel detection".
702                  * Some MIIs update the LPA register to the result of the parallel
703                  * detection, some don't.
704                  * The Davicom PHY [at least 0181b800] doesn't.
705                  * Instead bit 9 and 13 of the BMCR are updated to the result
706                  * of the negotiation..
707                  */
708                 mii_reg = mdio_read(dev, np->phys[0], MII_BMCR);
709                 duplex = mii_reg & BMCR_FULLDPLX;
710                 fasteth = mii_reg & BMCR_SPEED100;
711         } else {
712                 int negotiated;
713                 mii_reg = mdio_read(dev, np->phys[0], MII_LPA);
714                 negotiated = mii_reg & np->mii_if.advertising;
715
716                 duplex = (negotiated & LPA_100FULL) || ((negotiated & 0x02C0) == LPA_10FULL);
717                 fasteth = negotiated & 0x380;
718         }
719         duplex |= np->mii_if.force_media;
720         /* remove fastether and fullduplex */
721         result = np->csr6 & ~0x20000200;
722         if (duplex)
723                 result |= 0x200;
724         if (fasteth)
725                 result |= 0x20000000;
726         if (result != np->csr6 && debug)
727                 dev_info(&dev->dev,
728                          "Setting %dMBit-%s-duplex based on MII#%d\n",
729                          fasteth ? 100 : 10, duplex ? "full" : "half",
730                          np->phys[0]);
731         return result;
732 }
733
734 #define RXTX_TIMEOUT    2000
735 static inline void update_csr6(struct net_device *dev, int new)
736 {
737         struct netdev_private *np = netdev_priv(dev);
738         void __iomem *ioaddr = np->base_addr;
739         int limit = RXTX_TIMEOUT;
740
741         if (!netif_device_present(dev))
742                 new = 0;
743         if (new==np->csr6)
744                 return;
745         /* stop both Tx and Rx processes */
746         iowrite32(np->csr6 & ~0x2002, ioaddr + NetworkConfig);
747         /* wait until they have really stopped */
748         for (;;) {
749                 int csr5 = ioread32(ioaddr + IntrStatus);
750                 int t;
751
752                 t = (csr5 >> 17) & 0x07;
753                 if (t==0||t==1) {
754                         /* rx stopped */
755                         t = (csr5 >> 20) & 0x07;
756                         if (t==0||t==1)
757                                 break;
758                 }
759
760                 limit--;
761                 if(!limit) {
762                         dev_info(&dev->dev,
763                                  "couldn't stop rxtx, IntrStatus %xh\n", csr5);
764                         break;
765                 }
766                 udelay(1);
767         }
768         np->csr6 = new;
769         /* and restart them with the new configuration */
770         iowrite32(np->csr6, ioaddr + NetworkConfig);
771         if (new & 0x200)
772                 np->mii_if.full_duplex = 1;
773 }
774
775 static void netdev_timer(struct timer_list *t)
776 {
777         struct netdev_private *np = from_timer(np, t, timer);
778         struct net_device *dev = pci_get_drvdata(np->pci_dev);
779         void __iomem *ioaddr = np->base_addr;
780
781         if (debug > 2)
782                 netdev_dbg(dev, "Media selection timer tick, status %08x config %08x\n",
783                            ioread32(ioaddr + IntrStatus),
784                            ioread32(ioaddr + NetworkConfig));
785         spin_lock_irq(&np->lock);
786         update_csr6(dev, update_link(dev));
787         spin_unlock_irq(&np->lock);
788         np->timer.expires = jiffies + 10*HZ;
789         add_timer(&np->timer);
790 }
791
792 static void init_rxtx_rings(struct net_device *dev)
793 {
794         struct netdev_private *np = netdev_priv(dev);
795         int i;
796
797         np->rx_head_desc = &np->rx_ring[0];
798         np->tx_ring = (struct w840_tx_desc*)&np->rx_ring[RX_RING_SIZE];
799
800         /* Initial all Rx descriptors. */
801         for (i = 0; i < RX_RING_SIZE; i++) {
802                 np->rx_ring[i].length = np->rx_buf_sz;
803                 np->rx_ring[i].status = 0;
804                 np->rx_skbuff[i] = NULL;
805         }
806         /* Mark the last entry as wrapping the ring. */
807         np->rx_ring[i-1].length |= DescEndRing;
808
809         /* Fill in the Rx buffers.  Handle allocation failure gracefully. */
810         for (i = 0; i < RX_RING_SIZE; i++) {
811                 struct sk_buff *skb = netdev_alloc_skb(dev, np->rx_buf_sz);
812                 np->rx_skbuff[i] = skb;
813                 if (skb == NULL)
814                         break;
815                 np->rx_addr[i] = pci_map_single(np->pci_dev,skb->data,
816                                         np->rx_buf_sz,PCI_DMA_FROMDEVICE);
817
818                 np->rx_ring[i].buffer1 = np->rx_addr[i];
819                 np->rx_ring[i].status = DescOwned;
820         }
821
822         np->cur_rx = 0;
823         np->dirty_rx = (unsigned int)(i - RX_RING_SIZE);
824
825         /* Initialize the Tx descriptors */
826         for (i = 0; i < TX_RING_SIZE; i++) {
827                 np->tx_skbuff[i] = NULL;
828                 np->tx_ring[i].status = 0;
829         }
830         np->tx_full = 0;
831         np->tx_q_bytes = np->dirty_tx = np->cur_tx = 0;
832
833         iowrite32(np->ring_dma_addr, np->base_addr + RxRingPtr);
834         iowrite32(np->ring_dma_addr+sizeof(struct w840_rx_desc)*RX_RING_SIZE,
835                 np->base_addr + TxRingPtr);
836
837 }
838
839 static void free_rxtx_rings(struct netdev_private* np)
840 {
841         int i;
842         /* Free all the skbuffs in the Rx queue. */
843         for (i = 0; i < RX_RING_SIZE; i++) {
844                 np->rx_ring[i].status = 0;
845                 if (np->rx_skbuff[i]) {
846                         pci_unmap_single(np->pci_dev,
847                                                 np->rx_addr[i],
848                                                 np->rx_skbuff[i]->len,
849                                                 PCI_DMA_FROMDEVICE);
850                         dev_kfree_skb(np->rx_skbuff[i]);
851                 }
852                 np->rx_skbuff[i] = NULL;
853         }
854         for (i = 0; i < TX_RING_SIZE; i++) {
855                 if (np->tx_skbuff[i]) {
856                         pci_unmap_single(np->pci_dev,
857                                                 np->tx_addr[i],
858                                                 np->tx_skbuff[i]->len,
859                                                 PCI_DMA_TODEVICE);
860                         dev_kfree_skb(np->tx_skbuff[i]);
861                 }
862                 np->tx_skbuff[i] = NULL;
863         }
864 }
865
866 static void init_registers(struct net_device *dev)
867 {
868         struct netdev_private *np = netdev_priv(dev);
869         void __iomem *ioaddr = np->base_addr;
870         int i;
871
872         for (i = 0; i < 6; i++)
873                 iowrite8(dev->dev_addr[i], ioaddr + StationAddr + i);
874
875         /* Initialize other registers. */
876 #ifdef __BIG_ENDIAN
877         i = (1<<20);    /* Big-endian descriptors */
878 #else
879         i = 0;
880 #endif
881         i |= (0x04<<2);         /* skip length 4 u32 */
882         i |= 0x02;              /* give Rx priority */
883
884         /* Configure the PCI bus bursts and FIFO thresholds.
885            486: Set 8 longword cache alignment, 8 longword burst.
886            586: Set 16 longword cache alignment, no burst limit.
887            Cache alignment bits 15:14        Burst length 13:8
888                 0000    <not allowed>           0000 align to cache     0800 8 longwords
889                 4000    8  longwords            0100 1 longword         1000 16 longwords
890                 8000    16 longwords            0200 2 longwords        2000 32 longwords
891                 C000    32  longwords           0400 4 longwords */
892
893 #if defined (__i386__) && !defined(MODULE)
894         /* When not a module we can work around broken '486 PCI boards. */
895         if (boot_cpu_data.x86 <= 4) {
896                 i |= 0x4800;
897                 dev_info(&dev->dev,
898                          "This is a 386/486 PCI system, setting cache alignment to 8 longwords\n");
899         } else {
900                 i |= 0xE000;
901         }
902 #elif defined(__powerpc__) || defined(__i386__) || defined(__alpha__) || defined(__ia64__) || defined(__x86_64__)
903         i |= 0xE000;
904 #elif defined(CONFIG_SPARC) || defined (CONFIG_PARISC) || defined(CONFIG_ARM)
905         i |= 0x4800;
906 #else
907         dev_warn(&dev->dev, "unknown CPU architecture, using default csr0 setting\n");
908         i |= 0x4800;
909 #endif
910         iowrite32(i, ioaddr + PCIBusCfg);
911
912         np->csr6 = 0;
913         /* 128 byte Tx threshold;
914                 Transmit on; Receive on; */
915         update_csr6(dev, 0x00022002 | update_link(dev) | __set_rx_mode(dev));
916
917         /* Clear and Enable interrupts by setting the interrupt mask. */
918         iowrite32(0x1A0F5, ioaddr + IntrStatus);
919         iowrite32(0x1A0F5, ioaddr + IntrEnable);
920
921         iowrite32(0, ioaddr + RxStartDemand);
922 }
923
924 static void tx_timeout(struct net_device *dev)
925 {
926         struct netdev_private *np = netdev_priv(dev);
927         void __iomem *ioaddr = np->base_addr;
928         const int irq = np->pci_dev->irq;
929
930         dev_warn(&dev->dev, "Transmit timed out, status %08x, resetting...\n",
931                  ioread32(ioaddr + IntrStatus));
932
933         {
934                 int i;
935                 printk(KERN_DEBUG "  Rx ring %p: ", np->rx_ring);
936                 for (i = 0; i < RX_RING_SIZE; i++)
937                         printk(KERN_CONT " %08x", (unsigned int)np->rx_ring[i].status);
938                 printk(KERN_CONT "\n");
939                 printk(KERN_DEBUG "  Tx ring %p: ", np->tx_ring);
940                 for (i = 0; i < TX_RING_SIZE; i++)
941                         printk(KERN_CONT " %08x", np->tx_ring[i].status);
942                 printk(KERN_CONT "\n");
943         }
944         printk(KERN_DEBUG "Tx cur %d Tx dirty %d Tx Full %d, q bytes %d\n",
945                np->cur_tx, np->dirty_tx, np->tx_full, np->tx_q_bytes);
946         printk(KERN_DEBUG "Tx Descriptor addr %xh\n", ioread32(ioaddr+0x4C));
947
948         disable_irq(irq);
949         spin_lock_irq(&np->lock);
950         /*
951          * Under high load dirty_tx and the internal tx descriptor pointer
952          * come out of sync, thus perform a software reset and reinitialize
953          * everything.
954          */
955
956         iowrite32(1, np->base_addr+PCIBusCfg);
957         udelay(1);
958
959         free_rxtx_rings(np);
960         init_rxtx_rings(dev);
961         init_registers(dev);
962         spin_unlock_irq(&np->lock);
963         enable_irq(irq);
964
965         netif_wake_queue(dev);
966         netif_trans_update(dev); /* prevent tx timeout */
967         np->stats.tx_errors++;
968 }
969
970 /* Initialize the Rx and Tx rings, along with various 'dev' bits. */
971 static int alloc_ringdesc(struct net_device *dev)
972 {
973         struct netdev_private *np = netdev_priv(dev);
974
975         np->rx_buf_sz = (dev->mtu <= 1500 ? PKT_BUF_SZ : dev->mtu + 32);
976
977         np->rx_ring = pci_alloc_consistent(np->pci_dev,
978                         sizeof(struct w840_rx_desc)*RX_RING_SIZE +
979                         sizeof(struct w840_tx_desc)*TX_RING_SIZE,
980                         &np->ring_dma_addr);
981         if(!np->rx_ring)
982                 return -ENOMEM;
983         init_rxtx_rings(dev);
984         return 0;
985 }
986
987 static void free_ringdesc(struct netdev_private *np)
988 {
989         pci_free_consistent(np->pci_dev,
990                         sizeof(struct w840_rx_desc)*RX_RING_SIZE +
991                         sizeof(struct w840_tx_desc)*TX_RING_SIZE,
992                         np->rx_ring, np->ring_dma_addr);
993
994 }
995
996 static netdev_tx_t start_tx(struct sk_buff *skb, struct net_device *dev)
997 {
998         struct netdev_private *np = netdev_priv(dev);
999         unsigned entry;
1000
1001         /* Caution: the write order is important here, set the field
1002            with the "ownership" bits last. */
1003
1004         /* Calculate the next Tx descriptor entry. */
1005         entry = np->cur_tx % TX_RING_SIZE;
1006
1007         np->tx_addr[entry] = pci_map_single(np->pci_dev,
1008                                 skb->data,skb->len, PCI_DMA_TODEVICE);
1009         np->tx_skbuff[entry] = skb;
1010
1011         np->tx_ring[entry].buffer1 = np->tx_addr[entry];
1012         if (skb->len < TX_BUFLIMIT) {
1013                 np->tx_ring[entry].length = DescWholePkt | skb->len;
1014         } else {
1015                 int len = skb->len - TX_BUFLIMIT;
1016
1017                 np->tx_ring[entry].buffer2 = np->tx_addr[entry]+TX_BUFLIMIT;
1018                 np->tx_ring[entry].length = DescWholePkt | (len << 11) | TX_BUFLIMIT;
1019         }
1020         if(entry == TX_RING_SIZE-1)
1021                 np->tx_ring[entry].length |= DescEndRing;
1022
1023         /* Now acquire the irq spinlock.
1024          * The difficult race is the ordering between
1025          * increasing np->cur_tx and setting DescOwned:
1026          * - if np->cur_tx is increased first the interrupt
1027          *   handler could consider the packet as transmitted
1028          *   since DescOwned is cleared.
1029          * - If DescOwned is set first the NIC could report the
1030          *   packet as sent, but the interrupt handler would ignore it
1031          *   since the np->cur_tx was not yet increased.
1032          */
1033         spin_lock_irq(&np->lock);
1034         np->cur_tx++;
1035
1036         wmb(); /* flush length, buffer1, buffer2 */
1037         np->tx_ring[entry].status = DescOwned;
1038         wmb(); /* flush status and kick the hardware */
1039         iowrite32(0, np->base_addr + TxStartDemand);
1040         np->tx_q_bytes += skb->len;
1041         /* Work around horrible bug in the chip by marking the queue as full
1042            when we do not have FIFO room for a maximum sized packet. */
1043         if (np->cur_tx - np->dirty_tx > TX_QUEUE_LEN ||
1044                 ((np->drv_flags & HasBrokenTx) && np->tx_q_bytes > TX_BUG_FIFO_LIMIT)) {
1045                 netif_stop_queue(dev);
1046                 wmb();
1047                 np->tx_full = 1;
1048         }
1049         spin_unlock_irq(&np->lock);
1050
1051         if (debug > 4) {
1052                 netdev_dbg(dev, "Transmit frame #%d queued in slot %d\n",
1053                            np->cur_tx, entry);
1054         }
1055         return NETDEV_TX_OK;
1056 }
1057
1058 static void netdev_tx_done(struct net_device *dev)
1059 {
1060         struct netdev_private *np = netdev_priv(dev);
1061         for (; np->cur_tx - np->dirty_tx > 0; np->dirty_tx++) {
1062                 int entry = np->dirty_tx % TX_RING_SIZE;
1063                 int tx_status = np->tx_ring[entry].status;
1064
1065                 if (tx_status < 0)
1066                         break;
1067                 if (tx_status & 0x8000) {       /* There was an error, log it. */
1068 #ifndef final_version
1069                         if (debug > 1)
1070                                 netdev_dbg(dev, "Transmit error, Tx status %08x\n",
1071                                            tx_status);
1072 #endif
1073                         np->stats.tx_errors++;
1074                         if (tx_status & 0x0104) np->stats.tx_aborted_errors++;
1075                         if (tx_status & 0x0C80) np->stats.tx_carrier_errors++;
1076                         if (tx_status & 0x0200) np->stats.tx_window_errors++;
1077                         if (tx_status & 0x0002) np->stats.tx_fifo_errors++;
1078                         if ((tx_status & 0x0080) && np->mii_if.full_duplex == 0)
1079                                 np->stats.tx_heartbeat_errors++;
1080                 } else {
1081 #ifndef final_version
1082                         if (debug > 3)
1083                                 netdev_dbg(dev, "Transmit slot %d ok, Tx status %08x\n",
1084                                            entry, tx_status);
1085 #endif
1086                         np->stats.tx_bytes += np->tx_skbuff[entry]->len;
1087                         np->stats.collisions += (tx_status >> 3) & 15;
1088                         np->stats.tx_packets++;
1089                 }
1090                 /* Free the original skb. */
1091                 pci_unmap_single(np->pci_dev,np->tx_addr[entry],
1092                                         np->tx_skbuff[entry]->len,
1093                                         PCI_DMA_TODEVICE);
1094                 np->tx_q_bytes -= np->tx_skbuff[entry]->len;
1095                 dev_kfree_skb_irq(np->tx_skbuff[entry]);
1096                 np->tx_skbuff[entry] = NULL;
1097         }
1098         if (np->tx_full &&
1099                 np->cur_tx - np->dirty_tx < TX_QUEUE_LEN_RESTART &&
1100                 np->tx_q_bytes < TX_BUG_FIFO_LIMIT) {
1101                 /* The ring is no longer full, clear tbusy. */
1102                 np->tx_full = 0;
1103                 wmb();
1104                 netif_wake_queue(dev);
1105         }
1106 }
1107
1108 /* The interrupt handler does all of the Rx thread work and cleans up
1109    after the Tx thread. */
1110 static irqreturn_t intr_handler(int irq, void *dev_instance)
1111 {
1112         struct net_device *dev = (struct net_device *)dev_instance;
1113         struct netdev_private *np = netdev_priv(dev);
1114         void __iomem *ioaddr = np->base_addr;
1115         int work_limit = max_interrupt_work;
1116         int handled = 0;
1117
1118         if (!netif_device_present(dev))
1119                 return IRQ_NONE;
1120         do {
1121                 u32 intr_status = ioread32(ioaddr + IntrStatus);
1122
1123                 /* Acknowledge all of the current interrupt sources ASAP. */
1124                 iowrite32(intr_status & 0x001ffff, ioaddr + IntrStatus);
1125
1126                 if (debug > 4)
1127                         netdev_dbg(dev, "Interrupt, status %04x\n", intr_status);
1128
1129                 if ((intr_status & (NormalIntr|AbnormalIntr)) == 0)
1130                         break;
1131
1132                 handled = 1;
1133
1134                 if (intr_status & (RxIntr | RxNoBuf))
1135                         netdev_rx(dev);
1136                 if (intr_status & RxNoBuf)
1137                         iowrite32(0, ioaddr + RxStartDemand);
1138
1139                 if (intr_status & (TxNoBuf | TxIntr) &&
1140                         np->cur_tx != np->dirty_tx) {
1141                         spin_lock(&np->lock);
1142                         netdev_tx_done(dev);
1143                         spin_unlock(&np->lock);
1144                 }
1145
1146                 /* Abnormal error summary/uncommon events handlers. */
1147                 if (intr_status & (AbnormalIntr | TxFIFOUnderflow | SystemError |
1148                                                    TimerInt | TxDied))
1149                         netdev_error(dev, intr_status);
1150
1151                 if (--work_limit < 0) {
1152                         dev_warn(&dev->dev,
1153                                  "Too much work at interrupt, status=0x%04x\n",
1154                                  intr_status);
1155                         /* Set the timer to re-enable the other interrupts after
1156                            10*82usec ticks. */
1157                         spin_lock(&np->lock);
1158                         if (netif_device_present(dev)) {
1159                                 iowrite32(AbnormalIntr | TimerInt, ioaddr + IntrEnable);
1160                                 iowrite32(10, ioaddr + GPTimer);
1161                         }
1162                         spin_unlock(&np->lock);
1163                         break;
1164                 }
1165         } while (1);
1166
1167         if (debug > 3)
1168                 netdev_dbg(dev, "exiting interrupt, status=%#4.4x\n",
1169                            ioread32(ioaddr + IntrStatus));
1170         return IRQ_RETVAL(handled);
1171 }
1172
1173 /* This routine is logically part of the interrupt handler, but separated
1174    for clarity and better register allocation. */
1175 static int netdev_rx(struct net_device *dev)
1176 {
1177         struct netdev_private *np = netdev_priv(dev);
1178         int entry = np->cur_rx % RX_RING_SIZE;
1179         int work_limit = np->dirty_rx + RX_RING_SIZE - np->cur_rx;
1180
1181         if (debug > 4) {
1182                 netdev_dbg(dev, " In netdev_rx(), entry %d status %04x\n",
1183                            entry, np->rx_ring[entry].status);
1184         }
1185
1186         /* If EOP is set on the next entry, it's a new packet. Send it up. */
1187         while (--work_limit >= 0) {
1188                 struct w840_rx_desc *desc = np->rx_head_desc;
1189                 s32 status = desc->status;
1190
1191                 if (debug > 4)
1192                         netdev_dbg(dev, "  netdev_rx() status was %08x\n",
1193                                    status);
1194                 if (status < 0)
1195                         break;
1196                 if ((status & 0x38008300) != 0x0300) {
1197                         if ((status & 0x38000300) != 0x0300) {
1198                                 /* Ingore earlier buffers. */
1199                                 if ((status & 0xffff) != 0x7fff) {
1200                                         dev_warn(&dev->dev,
1201                                                  "Oversized Ethernet frame spanned multiple buffers, entry %#x status %04x!\n",
1202                                                  np->cur_rx, status);
1203                                         np->stats.rx_length_errors++;
1204                                 }
1205                         } else if (status & 0x8000) {
1206                                 /* There was a fatal error. */
1207                                 if (debug > 2)
1208                                         netdev_dbg(dev, "Receive error, Rx status %08x\n",
1209                                                    status);
1210                                 np->stats.rx_errors++; /* end of a packet.*/
1211                                 if (status & 0x0890) np->stats.rx_length_errors++;
1212                                 if (status & 0x004C) np->stats.rx_frame_errors++;
1213                                 if (status & 0x0002) np->stats.rx_crc_errors++;
1214                         }
1215                 } else {
1216                         struct sk_buff *skb;
1217                         /* Omit the four octet CRC from the length. */
1218                         int pkt_len = ((status >> 16) & 0x7ff) - 4;
1219
1220 #ifndef final_version
1221                         if (debug > 4)
1222                                 netdev_dbg(dev, "  netdev_rx() normal Rx pkt length %d status %x\n",
1223                                            pkt_len, status);
1224 #endif
1225                         /* Check if the packet is long enough to accept without copying
1226                            to a minimally-sized skbuff. */
1227                         if (pkt_len < rx_copybreak &&
1228                             (skb = netdev_alloc_skb(dev, pkt_len + 2)) != NULL) {
1229                                 skb_reserve(skb, 2);    /* 16 byte align the IP header */
1230                                 pci_dma_sync_single_for_cpu(np->pci_dev,np->rx_addr[entry],
1231                                                             np->rx_skbuff[entry]->len,
1232                                                             PCI_DMA_FROMDEVICE);
1233                                 skb_copy_to_linear_data(skb, np->rx_skbuff[entry]->data, pkt_len);
1234                                 skb_put(skb, pkt_len);
1235                                 pci_dma_sync_single_for_device(np->pci_dev,np->rx_addr[entry],
1236                                                                np->rx_skbuff[entry]->len,
1237                                                                PCI_DMA_FROMDEVICE);
1238                         } else {
1239                                 pci_unmap_single(np->pci_dev,np->rx_addr[entry],
1240                                                         np->rx_skbuff[entry]->len,
1241                                                         PCI_DMA_FROMDEVICE);
1242                                 skb_put(skb = np->rx_skbuff[entry], pkt_len);
1243                                 np->rx_skbuff[entry] = NULL;
1244                         }
1245 #ifndef final_version                           /* Remove after testing. */
1246                         /* You will want this info for the initial debug. */
1247                         if (debug > 5)
1248                                 netdev_dbg(dev, "  Rx data %pM %pM %02x%02x %pI4\n",
1249                                            &skb->data[0], &skb->data[6],
1250                                            skb->data[12], skb->data[13],
1251                                            &skb->data[14]);
1252 #endif
1253                         skb->protocol = eth_type_trans(skb, dev);
1254                         netif_rx(skb);
1255                         np->stats.rx_packets++;
1256                         np->stats.rx_bytes += pkt_len;
1257                 }
1258                 entry = (++np->cur_rx) % RX_RING_SIZE;
1259                 np->rx_head_desc = &np->rx_ring[entry];
1260         }
1261
1262         /* Refill the Rx ring buffers. */
1263         for (; np->cur_rx - np->dirty_rx > 0; np->dirty_rx++) {
1264                 struct sk_buff *skb;
1265                 entry = np->dirty_rx % RX_RING_SIZE;
1266                 if (np->rx_skbuff[entry] == NULL) {
1267                         skb = netdev_alloc_skb(dev, np->rx_buf_sz);
1268                         np->rx_skbuff[entry] = skb;
1269                         if (skb == NULL)
1270                                 break;                  /* Better luck next round. */
1271                         np->rx_addr[entry] = pci_map_single(np->pci_dev,
1272                                                         skb->data,
1273                                                         np->rx_buf_sz, PCI_DMA_FROMDEVICE);
1274                         np->rx_ring[entry].buffer1 = np->rx_addr[entry];
1275                 }
1276                 wmb();
1277                 np->rx_ring[entry].status = DescOwned;
1278         }
1279
1280         return 0;
1281 }
1282
1283 static void netdev_error(struct net_device *dev, int intr_status)
1284 {
1285         struct netdev_private *np = netdev_priv(dev);
1286         void __iomem *ioaddr = np->base_addr;
1287
1288         if (debug > 2)
1289                 netdev_dbg(dev, "Abnormal event, %08x\n", intr_status);
1290         if (intr_status == 0xffffffff)
1291                 return;
1292         spin_lock(&np->lock);
1293         if (intr_status & TxFIFOUnderflow) {
1294                 int new;
1295                 /* Bump up the Tx threshold */
1296 #if 0
1297                 /* This causes lots of dropped packets,
1298                  * and under high load even tx_timeouts
1299                  */
1300                 new = np->csr6 + 0x4000;
1301 #else
1302                 new = (np->csr6 >> 14)&0x7f;
1303                 if (new < 64)
1304                         new *= 2;
1305                  else
1306                         new = 127; /* load full packet before starting */
1307                 new = (np->csr6 & ~(0x7F << 14)) | (new<<14);
1308 #endif
1309                 netdev_dbg(dev, "Tx underflow, new csr6 %08x\n", new);
1310                 update_csr6(dev, new);
1311         }
1312         if (intr_status & RxDied) {             /* Missed a Rx frame. */
1313                 np->stats.rx_errors++;
1314         }
1315         if (intr_status & TimerInt) {
1316                 /* Re-enable other interrupts. */
1317                 if (netif_device_present(dev))
1318                         iowrite32(0x1A0F5, ioaddr + IntrEnable);
1319         }
1320         np->stats.rx_missed_errors += ioread32(ioaddr + RxMissed) & 0xffff;
1321         iowrite32(0, ioaddr + RxStartDemand);
1322         spin_unlock(&np->lock);
1323 }
1324
1325 static struct net_device_stats *get_stats(struct net_device *dev)
1326 {
1327         struct netdev_private *np = netdev_priv(dev);
1328         void __iomem *ioaddr = np->base_addr;
1329
1330         /* The chip only need report frame silently dropped. */
1331         spin_lock_irq(&np->lock);
1332         if (netif_running(dev) && netif_device_present(dev))
1333                 np->stats.rx_missed_errors += ioread32(ioaddr + RxMissed) & 0xffff;
1334         spin_unlock_irq(&np->lock);
1335
1336         return &np->stats;
1337 }
1338
1339
1340 static u32 __set_rx_mode(struct net_device *dev)
1341 {
1342         struct netdev_private *np = netdev_priv(dev);
1343         void __iomem *ioaddr = np->base_addr;
1344         u32 mc_filter[2];                       /* Multicast hash filter */
1345         u32 rx_mode;
1346
1347         if (dev->flags & IFF_PROMISC) {                 /* Set promiscuous. */
1348                 memset(mc_filter, 0xff, sizeof(mc_filter));
1349                 rx_mode = RxAcceptBroadcast | AcceptMulticast | RxAcceptAllPhys
1350                         | AcceptMyPhys;
1351         } else if ((netdev_mc_count(dev) > multicast_filter_limit) ||
1352                    (dev->flags & IFF_ALLMULTI)) {
1353                 /* Too many to match, or accept all multicasts. */
1354                 memset(mc_filter, 0xff, sizeof(mc_filter));
1355                 rx_mode = RxAcceptBroadcast | AcceptMulticast | AcceptMyPhys;
1356         } else {
1357                 struct netdev_hw_addr *ha;
1358
1359                 memset(mc_filter, 0, sizeof(mc_filter));
1360                 netdev_for_each_mc_addr(ha, dev) {
1361                         int filbit;
1362
1363                         filbit = (ether_crc(ETH_ALEN, ha->addr) >> 26) ^ 0x3F;
1364                         filbit &= 0x3f;
1365                         mc_filter[filbit >> 5] |= 1 << (filbit & 31);
1366                 }
1367                 rx_mode = RxAcceptBroadcast | AcceptMulticast | AcceptMyPhys;
1368         }
1369         iowrite32(mc_filter[0], ioaddr + MulticastFilter0);
1370         iowrite32(mc_filter[1], ioaddr + MulticastFilter1);
1371         return rx_mode;
1372 }
1373
1374 static void set_rx_mode(struct net_device *dev)
1375 {
1376         struct netdev_private *np = netdev_priv(dev);
1377         u32 rx_mode = __set_rx_mode(dev);
1378         spin_lock_irq(&np->lock);
1379         update_csr6(dev, (np->csr6 & ~0x00F8) | rx_mode);
1380         spin_unlock_irq(&np->lock);
1381 }
1382
1383 static void netdev_get_drvinfo (struct net_device *dev, struct ethtool_drvinfo *info)
1384 {
1385         struct netdev_private *np = netdev_priv(dev);
1386
1387         strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
1388         strlcpy(info->version, DRV_VERSION, sizeof(info->version));
1389         strlcpy(info->bus_info, pci_name(np->pci_dev), sizeof(info->bus_info));
1390 }
1391
1392 static int netdev_get_link_ksettings(struct net_device *dev,
1393                                      struct ethtool_link_ksettings *cmd)
1394 {
1395         struct netdev_private *np = netdev_priv(dev);
1396
1397         spin_lock_irq(&np->lock);
1398         mii_ethtool_get_link_ksettings(&np->mii_if, cmd);
1399         spin_unlock_irq(&np->lock);
1400
1401         return 0;
1402 }
1403
1404 static int netdev_set_link_ksettings(struct net_device *dev,
1405                                      const struct ethtool_link_ksettings *cmd)
1406 {
1407         struct netdev_private *np = netdev_priv(dev);
1408         int rc;
1409
1410         spin_lock_irq(&np->lock);
1411         rc = mii_ethtool_set_link_ksettings(&np->mii_if, cmd);
1412         spin_unlock_irq(&np->lock);
1413
1414         return rc;
1415 }
1416
1417 static int netdev_nway_reset(struct net_device *dev)
1418 {
1419         struct netdev_private *np = netdev_priv(dev);
1420         return mii_nway_restart(&np->mii_if);
1421 }
1422
1423 static u32 netdev_get_link(struct net_device *dev)
1424 {
1425         struct netdev_private *np = netdev_priv(dev);
1426         return mii_link_ok(&np->mii_if);
1427 }
1428
1429 static u32 netdev_get_msglevel(struct net_device *dev)
1430 {
1431         return debug;
1432 }
1433
1434 static void netdev_set_msglevel(struct net_device *dev, u32 value)
1435 {
1436         debug = value;
1437 }
1438
1439 static const struct ethtool_ops netdev_ethtool_ops = {
1440         .get_drvinfo            = netdev_get_drvinfo,
1441         .nway_reset             = netdev_nway_reset,
1442         .get_link               = netdev_get_link,
1443         .get_msglevel           = netdev_get_msglevel,
1444         .set_msglevel           = netdev_set_msglevel,
1445         .get_link_ksettings     = netdev_get_link_ksettings,
1446         .set_link_ksettings     = netdev_set_link_ksettings,
1447 };
1448
1449 static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1450 {
1451         struct mii_ioctl_data *data = if_mii(rq);
1452         struct netdev_private *np = netdev_priv(dev);
1453
1454         switch(cmd) {
1455         case SIOCGMIIPHY:               /* Get address of MII PHY in use. */
1456                 data->phy_id = ((struct netdev_private *)netdev_priv(dev))->phys[0] & 0x1f;
1457                 /* Fall Through */
1458
1459         case SIOCGMIIREG:               /* Read MII PHY register. */
1460                 spin_lock_irq(&np->lock);
1461                 data->val_out = mdio_read(dev, data->phy_id & 0x1f, data->reg_num & 0x1f);
1462                 spin_unlock_irq(&np->lock);
1463                 return 0;
1464
1465         case SIOCSMIIREG:               /* Write MII PHY register. */
1466                 spin_lock_irq(&np->lock);
1467                 mdio_write(dev, data->phy_id & 0x1f, data->reg_num & 0x1f, data->val_in);
1468                 spin_unlock_irq(&np->lock);
1469                 return 0;
1470         default:
1471                 return -EOPNOTSUPP;
1472         }
1473 }
1474
1475 static int netdev_close(struct net_device *dev)
1476 {
1477         struct netdev_private *np = netdev_priv(dev);
1478         void __iomem *ioaddr = np->base_addr;
1479
1480         netif_stop_queue(dev);
1481
1482         if (debug > 1) {
1483                 netdev_dbg(dev, "Shutting down ethercard, status was %08x Config %08x\n",
1484                            ioread32(ioaddr + IntrStatus),
1485                            ioread32(ioaddr + NetworkConfig));
1486                 netdev_dbg(dev, "Queue pointers were Tx %d / %d,  Rx %d / %d\n",
1487                            np->cur_tx, np->dirty_tx,
1488                            np->cur_rx, np->dirty_rx);
1489         }
1490
1491         /* Stop the chip's Tx and Rx processes. */
1492         spin_lock_irq(&np->lock);
1493         netif_device_detach(dev);
1494         update_csr6(dev, 0);
1495         iowrite32(0x0000, ioaddr + IntrEnable);
1496         spin_unlock_irq(&np->lock);
1497
1498         free_irq(np->pci_dev->irq, dev);
1499         wmb();
1500         netif_device_attach(dev);
1501
1502         if (ioread32(ioaddr + NetworkConfig) != 0xffffffff)
1503                 np->stats.rx_missed_errors += ioread32(ioaddr + RxMissed) & 0xffff;
1504
1505 #ifdef __i386__
1506         if (debug > 2) {
1507                 int i;
1508
1509                 printk(KERN_DEBUG"  Tx ring at %p:\n", np->tx_ring);
1510                 for (i = 0; i < TX_RING_SIZE; i++)
1511                         printk(KERN_DEBUG " #%d desc. %04x %04x %08x\n",
1512                                i, np->tx_ring[i].length,
1513                                np->tx_ring[i].status, np->tx_ring[i].buffer1);
1514                 printk(KERN_DEBUG "  Rx ring %p:\n", np->rx_ring);
1515                 for (i = 0; i < RX_RING_SIZE; i++) {
1516                         printk(KERN_DEBUG " #%d desc. %04x %04x %08x\n",
1517                                i, np->rx_ring[i].length,
1518                                np->rx_ring[i].status, np->rx_ring[i].buffer1);
1519                 }
1520         }
1521 #endif /* __i386__ debugging only */
1522
1523         del_timer_sync(&np->timer);
1524
1525         free_rxtx_rings(np);
1526         free_ringdesc(np);
1527
1528         return 0;
1529 }
1530
1531 static void w840_remove1(struct pci_dev *pdev)
1532 {
1533         struct net_device *dev = pci_get_drvdata(pdev);
1534
1535         if (dev) {
1536                 struct netdev_private *np = netdev_priv(dev);
1537                 unregister_netdev(dev);
1538                 pci_release_regions(pdev);
1539                 pci_iounmap(pdev, np->base_addr);
1540                 free_netdev(dev);
1541         }
1542 }
1543
1544 #ifdef CONFIG_PM
1545
1546 /*
1547  * suspend/resume synchronization:
1548  * - open, close, do_ioctl:
1549  *      rtnl_lock, & netif_device_detach after the rtnl_unlock.
1550  * - get_stats:
1551  *      spin_lock_irq(np->lock), doesn't touch hw if not present
1552  * - start_xmit:
1553  *      synchronize_irq + netif_tx_disable;
1554  * - tx_timeout:
1555  *      netif_device_detach + netif_tx_disable;
1556  * - set_multicast_list
1557  *      netif_device_detach + netif_tx_disable;
1558  * - interrupt handler
1559  *      doesn't touch hw if not present, synchronize_irq waits for
1560  *      running instances of the interrupt handler.
1561  *
1562  * Disabling hw requires clearing csr6 & IntrEnable.
1563  * update_csr6 & all function that write IntrEnable check netif_device_present
1564  * before settings any bits.
1565  *
1566  * Detach must occur under spin_unlock_irq(), interrupts from a detached
1567  * device would cause an irq storm.
1568  */
1569 static int w840_suspend (struct pci_dev *pdev, pm_message_t state)
1570 {
1571         struct net_device *dev = pci_get_drvdata (pdev);
1572         struct netdev_private *np = netdev_priv(dev);
1573         void __iomem *ioaddr = np->base_addr;
1574
1575         rtnl_lock();
1576         if (netif_running (dev)) {
1577                 del_timer_sync(&np->timer);
1578
1579                 spin_lock_irq(&np->lock);
1580                 netif_device_detach(dev);
1581                 update_csr6(dev, 0);
1582                 iowrite32(0, ioaddr + IntrEnable);
1583                 spin_unlock_irq(&np->lock);
1584
1585                 synchronize_irq(np->pci_dev->irq);
1586                 netif_tx_disable(dev);
1587
1588                 np->stats.rx_missed_errors += ioread32(ioaddr + RxMissed) & 0xffff;
1589
1590                 /* no more hardware accesses behind this line. */
1591
1592                 BUG_ON(np->csr6 || ioread32(ioaddr + IntrEnable));
1593
1594                 /* pci_power_off(pdev, -1); */
1595
1596                 free_rxtx_rings(np);
1597         } else {
1598                 netif_device_detach(dev);
1599         }
1600         rtnl_unlock();
1601         return 0;
1602 }
1603
1604 static int w840_resume (struct pci_dev *pdev)
1605 {
1606         struct net_device *dev = pci_get_drvdata (pdev);
1607         struct netdev_private *np = netdev_priv(dev);
1608         int retval = 0;
1609
1610         rtnl_lock();
1611         if (netif_device_present(dev))
1612                 goto out; /* device not suspended */
1613         if (netif_running(dev)) {
1614                 if ((retval = pci_enable_device(pdev))) {
1615                         dev_err(&dev->dev,
1616                                 "pci_enable_device failed in resume\n");
1617                         goto out;
1618                 }
1619                 spin_lock_irq(&np->lock);
1620                 iowrite32(1, np->base_addr+PCIBusCfg);
1621                 ioread32(np->base_addr+PCIBusCfg);
1622                 udelay(1);
1623                 netif_device_attach(dev);
1624                 init_rxtx_rings(dev);
1625                 init_registers(dev);
1626                 spin_unlock_irq(&np->lock);
1627
1628                 netif_wake_queue(dev);
1629
1630                 mod_timer(&np->timer, jiffies + 1*HZ);
1631         } else {
1632                 netif_device_attach(dev);
1633         }
1634 out:
1635         rtnl_unlock();
1636         return retval;
1637 }
1638 #endif
1639
1640 static struct pci_driver w840_driver = {
1641         .name           = DRV_NAME,
1642         .id_table       = w840_pci_tbl,
1643         .probe          = w840_probe1,
1644         .remove         = w840_remove1,
1645 #ifdef CONFIG_PM
1646         .suspend        = w840_suspend,
1647         .resume         = w840_resume,
1648 #endif
1649 };
1650
1651 static int __init w840_init(void)
1652 {
1653         printk(version);
1654         return pci_register_driver(&w840_driver);
1655 }
1656
1657 static void __exit w840_exit(void)
1658 {
1659         pci_unregister_driver(&w840_driver);
1660 }
1661
1662 module_init(w840_init);
1663 module_exit(w840_exit);