Linux-libre 5.7.5-gnu
[librecmc/linux-libre.git] / drivers / net / dsa / microchip / ksz9477.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Microchip KSZ9477 switch driver main logic
4  *
5  * Copyright (C) 2017-2019 Microchip Technology Inc.
6  */
7
8 #include <linux/kernel.h>
9 #include <linux/module.h>
10 #include <linux/iopoll.h>
11 #include <linux/platform_data/microchip-ksz.h>
12 #include <linux/phy.h>
13 #include <linux/if_bridge.h>
14 #include <net/dsa.h>
15 #include <net/switchdev.h>
16
17 #include "ksz9477_reg.h"
18 #include "ksz_common.h"
19
20 /* Used with variable features to indicate capabilities. */
21 #define GBIT_SUPPORT                    BIT(0)
22 #define NEW_XMII                        BIT(1)
23 #define IS_9893                         BIT(2)
24
25 static const struct {
26         int index;
27         char string[ETH_GSTRING_LEN];
28 } ksz9477_mib_names[TOTAL_SWITCH_COUNTER_NUM] = {
29         { 0x00, "rx_hi" },
30         { 0x01, "rx_undersize" },
31         { 0x02, "rx_fragments" },
32         { 0x03, "rx_oversize" },
33         { 0x04, "rx_jabbers" },
34         { 0x05, "rx_symbol_err" },
35         { 0x06, "rx_crc_err" },
36         { 0x07, "rx_align_err" },
37         { 0x08, "rx_mac_ctrl" },
38         { 0x09, "rx_pause" },
39         { 0x0A, "rx_bcast" },
40         { 0x0B, "rx_mcast" },
41         { 0x0C, "rx_ucast" },
42         { 0x0D, "rx_64_or_less" },
43         { 0x0E, "rx_65_127" },
44         { 0x0F, "rx_128_255" },
45         { 0x10, "rx_256_511" },
46         { 0x11, "rx_512_1023" },
47         { 0x12, "rx_1024_1522" },
48         { 0x13, "rx_1523_2000" },
49         { 0x14, "rx_2001" },
50         { 0x15, "tx_hi" },
51         { 0x16, "tx_late_col" },
52         { 0x17, "tx_pause" },
53         { 0x18, "tx_bcast" },
54         { 0x19, "tx_mcast" },
55         { 0x1A, "tx_ucast" },
56         { 0x1B, "tx_deferred" },
57         { 0x1C, "tx_total_col" },
58         { 0x1D, "tx_exc_col" },
59         { 0x1E, "tx_single_col" },
60         { 0x1F, "tx_mult_col" },
61         { 0x80, "rx_total" },
62         { 0x81, "tx_total" },
63         { 0x82, "rx_discards" },
64         { 0x83, "tx_discards" },
65 };
66
67 static void ksz_cfg(struct ksz_device *dev, u32 addr, u8 bits, bool set)
68 {
69         regmap_update_bits(dev->regmap[0], addr, bits, set ? bits : 0);
70 }
71
72 static void ksz_port_cfg(struct ksz_device *dev, int port, int offset, u8 bits,
73                          bool set)
74 {
75         regmap_update_bits(dev->regmap[0], PORT_CTRL_ADDR(port, offset),
76                            bits, set ? bits : 0);
77 }
78
79 static void ksz9477_cfg32(struct ksz_device *dev, u32 addr, u32 bits, bool set)
80 {
81         regmap_update_bits(dev->regmap[2], addr, bits, set ? bits : 0);
82 }
83
84 static void ksz9477_port_cfg32(struct ksz_device *dev, int port, int offset,
85                                u32 bits, bool set)
86 {
87         regmap_update_bits(dev->regmap[2], PORT_CTRL_ADDR(port, offset),
88                            bits, set ? bits : 0);
89 }
90
91 static int ksz9477_wait_vlan_ctrl_ready(struct ksz_device *dev)
92 {
93         unsigned int val;
94
95         return regmap_read_poll_timeout(dev->regmap[0], REG_SW_VLAN_CTRL,
96                                         val, !(val & VLAN_START), 10, 1000);
97 }
98
99 static int ksz9477_get_vlan_table(struct ksz_device *dev, u16 vid,
100                                   u32 *vlan_table)
101 {
102         int ret;
103
104         mutex_lock(&dev->vlan_mutex);
105
106         ksz_write16(dev, REG_SW_VLAN_ENTRY_INDEX__2, vid & VLAN_INDEX_M);
107         ksz_write8(dev, REG_SW_VLAN_CTRL, VLAN_READ | VLAN_START);
108
109         /* wait to be cleared */
110         ret = ksz9477_wait_vlan_ctrl_ready(dev);
111         if (ret) {
112                 dev_dbg(dev->dev, "Failed to read vlan table\n");
113                 goto exit;
114         }
115
116         ksz_read32(dev, REG_SW_VLAN_ENTRY__4, &vlan_table[0]);
117         ksz_read32(dev, REG_SW_VLAN_ENTRY_UNTAG__4, &vlan_table[1]);
118         ksz_read32(dev, REG_SW_VLAN_ENTRY_PORTS__4, &vlan_table[2]);
119
120         ksz_write8(dev, REG_SW_VLAN_CTRL, 0);
121
122 exit:
123         mutex_unlock(&dev->vlan_mutex);
124
125         return ret;
126 }
127
128 static int ksz9477_set_vlan_table(struct ksz_device *dev, u16 vid,
129                                   u32 *vlan_table)
130 {
131         int ret;
132
133         mutex_lock(&dev->vlan_mutex);
134
135         ksz_write32(dev, REG_SW_VLAN_ENTRY__4, vlan_table[0]);
136         ksz_write32(dev, REG_SW_VLAN_ENTRY_UNTAG__4, vlan_table[1]);
137         ksz_write32(dev, REG_SW_VLAN_ENTRY_PORTS__4, vlan_table[2]);
138
139         ksz_write16(dev, REG_SW_VLAN_ENTRY_INDEX__2, vid & VLAN_INDEX_M);
140         ksz_write8(dev, REG_SW_VLAN_CTRL, VLAN_START | VLAN_WRITE);
141
142         /* wait to be cleared */
143         ret = ksz9477_wait_vlan_ctrl_ready(dev);
144         if (ret) {
145                 dev_dbg(dev->dev, "Failed to write vlan table\n");
146                 goto exit;
147         }
148
149         ksz_write8(dev, REG_SW_VLAN_CTRL, 0);
150
151         /* update vlan cache table */
152         dev->vlan_cache[vid].table[0] = vlan_table[0];
153         dev->vlan_cache[vid].table[1] = vlan_table[1];
154         dev->vlan_cache[vid].table[2] = vlan_table[2];
155
156 exit:
157         mutex_unlock(&dev->vlan_mutex);
158
159         return ret;
160 }
161
162 static void ksz9477_read_table(struct ksz_device *dev, u32 *table)
163 {
164         ksz_read32(dev, REG_SW_ALU_VAL_A, &table[0]);
165         ksz_read32(dev, REG_SW_ALU_VAL_B, &table[1]);
166         ksz_read32(dev, REG_SW_ALU_VAL_C, &table[2]);
167         ksz_read32(dev, REG_SW_ALU_VAL_D, &table[3]);
168 }
169
170 static void ksz9477_write_table(struct ksz_device *dev, u32 *table)
171 {
172         ksz_write32(dev, REG_SW_ALU_VAL_A, table[0]);
173         ksz_write32(dev, REG_SW_ALU_VAL_B, table[1]);
174         ksz_write32(dev, REG_SW_ALU_VAL_C, table[2]);
175         ksz_write32(dev, REG_SW_ALU_VAL_D, table[3]);
176 }
177
178 static int ksz9477_wait_alu_ready(struct ksz_device *dev)
179 {
180         unsigned int val;
181
182         return regmap_read_poll_timeout(dev->regmap[2], REG_SW_ALU_CTRL__4,
183                                         val, !(val & ALU_START), 10, 1000);
184 }
185
186 static int ksz9477_wait_alu_sta_ready(struct ksz_device *dev)
187 {
188         unsigned int val;
189
190         return regmap_read_poll_timeout(dev->regmap[2],
191                                         REG_SW_ALU_STAT_CTRL__4,
192                                         val, !(val & ALU_STAT_START),
193                                         10, 1000);
194 }
195
196 static int ksz9477_reset_switch(struct ksz_device *dev)
197 {
198         u8 data8;
199         u32 data32;
200
201         /* reset switch */
202         ksz_cfg(dev, REG_SW_OPERATION, SW_RESET, true);
203
204         /* turn off SPI DO Edge select */
205         regmap_update_bits(dev->regmap[0], REG_SW_GLOBAL_SERIAL_CTRL_0,
206                            SPI_AUTO_EDGE_DETECTION, 0);
207
208         /* default configuration */
209         ksz_read8(dev, REG_SW_LUE_CTRL_1, &data8);
210         data8 = SW_AGING_ENABLE | SW_LINK_AUTO_AGING |
211               SW_SRC_ADDR_FILTER | SW_FLUSH_STP_TABLE | SW_FLUSH_MSTP_TABLE;
212         ksz_write8(dev, REG_SW_LUE_CTRL_1, data8);
213
214         /* disable interrupts */
215         ksz_write32(dev, REG_SW_INT_MASK__4, SWITCH_INT_MASK);
216         ksz_write32(dev, REG_SW_PORT_INT_MASK__4, 0x7F);
217         ksz_read32(dev, REG_SW_PORT_INT_STATUS__4, &data32);
218
219         /* set broadcast storm protection 10% rate */
220         regmap_update_bits(dev->regmap[1], REG_SW_MAC_CTRL_2,
221                            BROADCAST_STORM_RATE,
222                            (BROADCAST_STORM_VALUE *
223                            BROADCAST_STORM_PROT_RATE) / 100);
224
225         if (dev->synclko_125)
226                 ksz_write8(dev, REG_SW_GLOBAL_OUTPUT_CTRL__1,
227                            SW_ENABLE_REFCLKO | SW_REFCLKO_IS_125MHZ);
228
229         return 0;
230 }
231
232 static void ksz9477_r_mib_cnt(struct ksz_device *dev, int port, u16 addr,
233                               u64 *cnt)
234 {
235         struct ksz_port *p = &dev->ports[port];
236         unsigned int val;
237         u32 data;
238         int ret;
239
240         /* retain the flush/freeze bit */
241         data = p->freeze ? MIB_COUNTER_FLUSH_FREEZE : 0;
242         data |= MIB_COUNTER_READ;
243         data |= (addr << MIB_COUNTER_INDEX_S);
244         ksz_pwrite32(dev, port, REG_PORT_MIB_CTRL_STAT__4, data);
245
246         ret = regmap_read_poll_timeout(dev->regmap[2],
247                         PORT_CTRL_ADDR(port, REG_PORT_MIB_CTRL_STAT__4),
248                         val, !(val & MIB_COUNTER_READ), 10, 1000);
249         /* failed to read MIB. get out of loop */
250         if (ret) {
251                 dev_dbg(dev->dev, "Failed to get MIB\n");
252                 return;
253         }
254
255         /* count resets upon read */
256         ksz_pread32(dev, port, REG_PORT_MIB_DATA, &data);
257         *cnt += data;
258 }
259
260 static void ksz9477_r_mib_pkt(struct ksz_device *dev, int port, u16 addr,
261                               u64 *dropped, u64 *cnt)
262 {
263         addr = ksz9477_mib_names[addr].index;
264         ksz9477_r_mib_cnt(dev, port, addr, cnt);
265 }
266
267 static void ksz9477_freeze_mib(struct ksz_device *dev, int port, bool freeze)
268 {
269         u32 val = freeze ? MIB_COUNTER_FLUSH_FREEZE : 0;
270         struct ksz_port *p = &dev->ports[port];
271
272         /* enable/disable the port for flush/freeze function */
273         mutex_lock(&p->mib.cnt_mutex);
274         ksz_pwrite32(dev, port, REG_PORT_MIB_CTRL_STAT__4, val);
275
276         /* used by MIB counter reading code to know freeze is enabled */
277         p->freeze = freeze;
278         mutex_unlock(&p->mib.cnt_mutex);
279 }
280
281 static void ksz9477_port_init_cnt(struct ksz_device *dev, int port)
282 {
283         struct ksz_port_mib *mib = &dev->ports[port].mib;
284
285         /* flush all enabled port MIB counters */
286         mutex_lock(&mib->cnt_mutex);
287         ksz_pwrite32(dev, port, REG_PORT_MIB_CTRL_STAT__4,
288                      MIB_COUNTER_FLUSH_FREEZE);
289         ksz_write8(dev, REG_SW_MAC_CTRL_6, SW_MIB_COUNTER_FLUSH);
290         ksz_pwrite32(dev, port, REG_PORT_MIB_CTRL_STAT__4, 0);
291         mutex_unlock(&mib->cnt_mutex);
292
293         mib->cnt_ptr = 0;
294         memset(mib->counters, 0, dev->mib_cnt * sizeof(u64));
295 }
296
297 static enum dsa_tag_protocol ksz9477_get_tag_protocol(struct dsa_switch *ds,
298                                                       int port,
299                                                       enum dsa_tag_protocol mp)
300 {
301         enum dsa_tag_protocol proto = DSA_TAG_PROTO_KSZ9477;
302         struct ksz_device *dev = ds->priv;
303
304         if (dev->features & IS_9893)
305                 proto = DSA_TAG_PROTO_KSZ9893;
306         return proto;
307 }
308
309 static int ksz9477_phy_read16(struct dsa_switch *ds, int addr, int reg)
310 {
311         struct ksz_device *dev = ds->priv;
312         u16 val = 0xffff;
313
314         /* No real PHY after this. Simulate the PHY.
315          * A fixed PHY can be setup in the device tree, but this function is
316          * still called for that port during initialization.
317          * For RGMII PHY there is no way to access it so the fixed PHY should
318          * be used.  For SGMII PHY the supporting code will be added later.
319          */
320         if (addr >= dev->phy_port_cnt) {
321                 struct ksz_port *p = &dev->ports[addr];
322
323                 switch (reg) {
324                 case MII_BMCR:
325                         val = 0x1140;
326                         break;
327                 case MII_BMSR:
328                         val = 0x796d;
329                         break;
330                 case MII_PHYSID1:
331                         val = 0x0022;
332                         break;
333                 case MII_PHYSID2:
334                         val = 0x1631;
335                         break;
336                 case MII_ADVERTISE:
337                         val = 0x05e1;
338                         break;
339                 case MII_LPA:
340                         val = 0xc5e1;
341                         break;
342                 case MII_CTRL1000:
343                         val = 0x0700;
344                         break;
345                 case MII_STAT1000:
346                         if (p->phydev.speed == SPEED_1000)
347                                 val = 0x3800;
348                         else
349                                 val = 0;
350                         break;
351                 }
352         } else {
353                 ksz_pread16(dev, addr, 0x100 + (reg << 1), &val);
354         }
355
356         return val;
357 }
358
359 static int ksz9477_phy_write16(struct dsa_switch *ds, int addr, int reg,
360                                u16 val)
361 {
362         struct ksz_device *dev = ds->priv;
363
364         /* No real PHY after this. */
365         if (addr >= dev->phy_port_cnt)
366                 return 0;
367
368         /* No gigabit support.  Do not write to this register. */
369         if (!(dev->features & GBIT_SUPPORT) && reg == MII_CTRL1000)
370                 return 0;
371         ksz_pwrite16(dev, addr, 0x100 + (reg << 1), val);
372
373         return 0;
374 }
375
376 static void ksz9477_get_strings(struct dsa_switch *ds, int port,
377                                 u32 stringset, uint8_t *buf)
378 {
379         int i;
380
381         if (stringset != ETH_SS_STATS)
382                 return;
383
384         for (i = 0; i < TOTAL_SWITCH_COUNTER_NUM; i++) {
385                 memcpy(buf + i * ETH_GSTRING_LEN, ksz9477_mib_names[i].string,
386                        ETH_GSTRING_LEN);
387         }
388 }
389
390 static void ksz9477_cfg_port_member(struct ksz_device *dev, int port,
391                                     u8 member)
392 {
393         ksz_pwrite32(dev, port, REG_PORT_VLAN_MEMBERSHIP__4, member);
394         dev->ports[port].member = member;
395 }
396
397 static void ksz9477_port_stp_state_set(struct dsa_switch *ds, int port,
398                                        u8 state)
399 {
400         struct ksz_device *dev = ds->priv;
401         struct ksz_port *p = &dev->ports[port];
402         u8 data;
403         int member = -1;
404         int forward = dev->member;
405
406         ksz_pread8(dev, port, P_STP_CTRL, &data);
407         data &= ~(PORT_TX_ENABLE | PORT_RX_ENABLE | PORT_LEARN_DISABLE);
408
409         switch (state) {
410         case BR_STATE_DISABLED:
411                 data |= PORT_LEARN_DISABLE;
412                 if (port != dev->cpu_port)
413                         member = 0;
414                 break;
415         case BR_STATE_LISTENING:
416                 data |= (PORT_RX_ENABLE | PORT_LEARN_DISABLE);
417                 if (port != dev->cpu_port &&
418                     p->stp_state == BR_STATE_DISABLED)
419                         member = dev->host_mask | p->vid_member;
420                 break;
421         case BR_STATE_LEARNING:
422                 data |= PORT_RX_ENABLE;
423                 break;
424         case BR_STATE_FORWARDING:
425                 data |= (PORT_TX_ENABLE | PORT_RX_ENABLE);
426
427                 /* This function is also used internally. */
428                 if (port == dev->cpu_port)
429                         break;
430
431                 member = dev->host_mask | p->vid_member;
432                 mutex_lock(&dev->dev_mutex);
433
434                 /* Port is a member of a bridge. */
435                 if (dev->br_member & (1 << port)) {
436                         dev->member |= (1 << port);
437                         member = dev->member;
438                 }
439                 mutex_unlock(&dev->dev_mutex);
440                 break;
441         case BR_STATE_BLOCKING:
442                 data |= PORT_LEARN_DISABLE;
443                 if (port != dev->cpu_port &&
444                     p->stp_state == BR_STATE_DISABLED)
445                         member = dev->host_mask | p->vid_member;
446                 break;
447         default:
448                 dev_err(ds->dev, "invalid STP state: %d\n", state);
449                 return;
450         }
451
452         ksz_pwrite8(dev, port, P_STP_CTRL, data);
453         p->stp_state = state;
454         mutex_lock(&dev->dev_mutex);
455         if (data & PORT_RX_ENABLE)
456                 dev->rx_ports |= (1 << port);
457         else
458                 dev->rx_ports &= ~(1 << port);
459         if (data & PORT_TX_ENABLE)
460                 dev->tx_ports |= (1 << port);
461         else
462                 dev->tx_ports &= ~(1 << port);
463
464         /* Port membership may share register with STP state. */
465         if (member >= 0 && member != p->member)
466                 ksz9477_cfg_port_member(dev, port, (u8)member);
467
468         /* Check if forwarding needs to be updated. */
469         if (state != BR_STATE_FORWARDING) {
470                 if (dev->br_member & (1 << port))
471                         dev->member &= ~(1 << port);
472         }
473
474         /* When topology has changed the function ksz_update_port_member
475          * should be called to modify port forwarding behavior.
476          */
477         if (forward != dev->member)
478                 ksz_update_port_member(dev, port);
479         mutex_unlock(&dev->dev_mutex);
480 }
481
482 static void ksz9477_flush_dyn_mac_table(struct ksz_device *dev, int port)
483 {
484         u8 data;
485
486         regmap_update_bits(dev->regmap[0], REG_SW_LUE_CTRL_2,
487                            SW_FLUSH_OPTION_M << SW_FLUSH_OPTION_S,
488                            SW_FLUSH_OPTION_DYN_MAC << SW_FLUSH_OPTION_S);
489
490         if (port < dev->mib_port_cnt) {
491                 /* flush individual port */
492                 ksz_pread8(dev, port, P_STP_CTRL, &data);
493                 if (!(data & PORT_LEARN_DISABLE))
494                         ksz_pwrite8(dev, port, P_STP_CTRL,
495                                     data | PORT_LEARN_DISABLE);
496                 ksz_cfg(dev, S_FLUSH_TABLE_CTRL, SW_FLUSH_DYN_MAC_TABLE, true);
497                 ksz_pwrite8(dev, port, P_STP_CTRL, data);
498         } else {
499                 /* flush all */
500                 ksz_cfg(dev, S_FLUSH_TABLE_CTRL, SW_FLUSH_STP_TABLE, true);
501         }
502 }
503
504 static int ksz9477_port_vlan_filtering(struct dsa_switch *ds, int port,
505                                        bool flag)
506 {
507         struct ksz_device *dev = ds->priv;
508
509         if (flag) {
510                 ksz_port_cfg(dev, port, REG_PORT_LUE_CTRL,
511                              PORT_VLAN_LOOKUP_VID_0, true);
512                 ksz_cfg(dev, REG_SW_LUE_CTRL_0, SW_VLAN_ENABLE, true);
513         } else {
514                 ksz_cfg(dev, REG_SW_LUE_CTRL_0, SW_VLAN_ENABLE, false);
515                 ksz_port_cfg(dev, port, REG_PORT_LUE_CTRL,
516                              PORT_VLAN_LOOKUP_VID_0, false);
517         }
518
519         return 0;
520 }
521
522 static void ksz9477_port_vlan_add(struct dsa_switch *ds, int port,
523                                   const struct switchdev_obj_port_vlan *vlan)
524 {
525         struct ksz_device *dev = ds->priv;
526         u32 vlan_table[3];
527         u16 vid;
528         bool untagged = vlan->flags & BRIDGE_VLAN_INFO_UNTAGGED;
529
530         for (vid = vlan->vid_begin; vid <= vlan->vid_end; vid++) {
531                 if (ksz9477_get_vlan_table(dev, vid, vlan_table)) {
532                         dev_dbg(dev->dev, "Failed to get vlan table\n");
533                         return;
534                 }
535
536                 vlan_table[0] = VLAN_VALID | (vid & VLAN_FID_M);
537                 if (untagged)
538                         vlan_table[1] |= BIT(port);
539                 else
540                         vlan_table[1] &= ~BIT(port);
541                 vlan_table[1] &= ~(BIT(dev->cpu_port));
542
543                 vlan_table[2] |= BIT(port) | BIT(dev->cpu_port);
544
545                 if (ksz9477_set_vlan_table(dev, vid, vlan_table)) {
546                         dev_dbg(dev->dev, "Failed to set vlan table\n");
547                         return;
548                 }
549
550                 /* change PVID */
551                 if (vlan->flags & BRIDGE_VLAN_INFO_PVID)
552                         ksz_pwrite16(dev, port, REG_PORT_DEFAULT_VID, vid);
553         }
554 }
555
556 static int ksz9477_port_vlan_del(struct dsa_switch *ds, int port,
557                                  const struct switchdev_obj_port_vlan *vlan)
558 {
559         struct ksz_device *dev = ds->priv;
560         bool untagged = vlan->flags & BRIDGE_VLAN_INFO_UNTAGGED;
561         u32 vlan_table[3];
562         u16 vid;
563         u16 pvid;
564
565         ksz_pread16(dev, port, REG_PORT_DEFAULT_VID, &pvid);
566         pvid = pvid & 0xFFF;
567
568         for (vid = vlan->vid_begin; vid <= vlan->vid_end; vid++) {
569                 if (ksz9477_get_vlan_table(dev, vid, vlan_table)) {
570                         dev_dbg(dev->dev, "Failed to get vlan table\n");
571                         return -ETIMEDOUT;
572                 }
573
574                 vlan_table[2] &= ~BIT(port);
575
576                 if (pvid == vid)
577                         pvid = 1;
578
579                 if (untagged)
580                         vlan_table[1] &= ~BIT(port);
581
582                 if (ksz9477_set_vlan_table(dev, vid, vlan_table)) {
583                         dev_dbg(dev->dev, "Failed to set vlan table\n");
584                         return -ETIMEDOUT;
585                 }
586         }
587
588         ksz_pwrite16(dev, port, REG_PORT_DEFAULT_VID, pvid);
589
590         return 0;
591 }
592
593 static int ksz9477_port_fdb_add(struct dsa_switch *ds, int port,
594                                 const unsigned char *addr, u16 vid)
595 {
596         struct ksz_device *dev = ds->priv;
597         u32 alu_table[4];
598         u32 data;
599         int ret = 0;
600
601         mutex_lock(&dev->alu_mutex);
602
603         /* find any entry with mac & vid */
604         data = vid << ALU_FID_INDEX_S;
605         data |= ((addr[0] << 8) | addr[1]);
606         ksz_write32(dev, REG_SW_ALU_INDEX_0, data);
607
608         data = ((addr[2] << 24) | (addr[3] << 16));
609         data |= ((addr[4] << 8) | addr[5]);
610         ksz_write32(dev, REG_SW_ALU_INDEX_1, data);
611
612         /* start read operation */
613         ksz_write32(dev, REG_SW_ALU_CTRL__4, ALU_READ | ALU_START);
614
615         /* wait to be finished */
616         ret = ksz9477_wait_alu_ready(dev);
617         if (ret) {
618                 dev_dbg(dev->dev, "Failed to read ALU\n");
619                 goto exit;
620         }
621
622         /* read ALU entry */
623         ksz9477_read_table(dev, alu_table);
624
625         /* update ALU entry */
626         alu_table[0] = ALU_V_STATIC_VALID;
627         alu_table[1] |= BIT(port);
628         if (vid)
629                 alu_table[1] |= ALU_V_USE_FID;
630         alu_table[2] = (vid << ALU_V_FID_S);
631         alu_table[2] |= ((addr[0] << 8) | addr[1]);
632         alu_table[3] = ((addr[2] << 24) | (addr[3] << 16));
633         alu_table[3] |= ((addr[4] << 8) | addr[5]);
634
635         ksz9477_write_table(dev, alu_table);
636
637         ksz_write32(dev, REG_SW_ALU_CTRL__4, ALU_WRITE | ALU_START);
638
639         /* wait to be finished */
640         ret = ksz9477_wait_alu_ready(dev);
641         if (ret)
642                 dev_dbg(dev->dev, "Failed to write ALU\n");
643
644 exit:
645         mutex_unlock(&dev->alu_mutex);
646
647         return ret;
648 }
649
650 static int ksz9477_port_fdb_del(struct dsa_switch *ds, int port,
651                                 const unsigned char *addr, u16 vid)
652 {
653         struct ksz_device *dev = ds->priv;
654         u32 alu_table[4];
655         u32 data;
656         int ret = 0;
657
658         mutex_lock(&dev->alu_mutex);
659
660         /* read any entry with mac & vid */
661         data = vid << ALU_FID_INDEX_S;
662         data |= ((addr[0] << 8) | addr[1]);
663         ksz_write32(dev, REG_SW_ALU_INDEX_0, data);
664
665         data = ((addr[2] << 24) | (addr[3] << 16));
666         data |= ((addr[4] << 8) | addr[5]);
667         ksz_write32(dev, REG_SW_ALU_INDEX_1, data);
668
669         /* start read operation */
670         ksz_write32(dev, REG_SW_ALU_CTRL__4, ALU_READ | ALU_START);
671
672         /* wait to be finished */
673         ret = ksz9477_wait_alu_ready(dev);
674         if (ret) {
675                 dev_dbg(dev->dev, "Failed to read ALU\n");
676                 goto exit;
677         }
678
679         ksz_read32(dev, REG_SW_ALU_VAL_A, &alu_table[0]);
680         if (alu_table[0] & ALU_V_STATIC_VALID) {
681                 ksz_read32(dev, REG_SW_ALU_VAL_B, &alu_table[1]);
682                 ksz_read32(dev, REG_SW_ALU_VAL_C, &alu_table[2]);
683                 ksz_read32(dev, REG_SW_ALU_VAL_D, &alu_table[3]);
684
685                 /* clear forwarding port */
686                 alu_table[2] &= ~BIT(port);
687
688                 /* if there is no port to forward, clear table */
689                 if ((alu_table[2] & ALU_V_PORT_MAP) == 0) {
690                         alu_table[0] = 0;
691                         alu_table[1] = 0;
692                         alu_table[2] = 0;
693                         alu_table[3] = 0;
694                 }
695         } else {
696                 alu_table[0] = 0;
697                 alu_table[1] = 0;
698                 alu_table[2] = 0;
699                 alu_table[3] = 0;
700         }
701
702         ksz9477_write_table(dev, alu_table);
703
704         ksz_write32(dev, REG_SW_ALU_CTRL__4, ALU_WRITE | ALU_START);
705
706         /* wait to be finished */
707         ret = ksz9477_wait_alu_ready(dev);
708         if (ret)
709                 dev_dbg(dev->dev, "Failed to write ALU\n");
710
711 exit:
712         mutex_unlock(&dev->alu_mutex);
713
714         return ret;
715 }
716
717 static void ksz9477_convert_alu(struct alu_struct *alu, u32 *alu_table)
718 {
719         alu->is_static = !!(alu_table[0] & ALU_V_STATIC_VALID);
720         alu->is_src_filter = !!(alu_table[0] & ALU_V_SRC_FILTER);
721         alu->is_dst_filter = !!(alu_table[0] & ALU_V_DST_FILTER);
722         alu->prio_age = (alu_table[0] >> ALU_V_PRIO_AGE_CNT_S) &
723                         ALU_V_PRIO_AGE_CNT_M;
724         alu->mstp = alu_table[0] & ALU_V_MSTP_M;
725
726         alu->is_override = !!(alu_table[1] & ALU_V_OVERRIDE);
727         alu->is_use_fid = !!(alu_table[1] & ALU_V_USE_FID);
728         alu->port_forward = alu_table[1] & ALU_V_PORT_MAP;
729
730         alu->fid = (alu_table[2] >> ALU_V_FID_S) & ALU_V_FID_M;
731
732         alu->mac[0] = (alu_table[2] >> 8) & 0xFF;
733         alu->mac[1] = alu_table[2] & 0xFF;
734         alu->mac[2] = (alu_table[3] >> 24) & 0xFF;
735         alu->mac[3] = (alu_table[3] >> 16) & 0xFF;
736         alu->mac[4] = (alu_table[3] >> 8) & 0xFF;
737         alu->mac[5] = alu_table[3] & 0xFF;
738 }
739
740 static int ksz9477_port_fdb_dump(struct dsa_switch *ds, int port,
741                                  dsa_fdb_dump_cb_t *cb, void *data)
742 {
743         struct ksz_device *dev = ds->priv;
744         int ret = 0;
745         u32 ksz_data;
746         u32 alu_table[4];
747         struct alu_struct alu;
748         int timeout;
749
750         mutex_lock(&dev->alu_mutex);
751
752         /* start ALU search */
753         ksz_write32(dev, REG_SW_ALU_CTRL__4, ALU_START | ALU_SEARCH);
754
755         do {
756                 timeout = 1000;
757                 do {
758                         ksz_read32(dev, REG_SW_ALU_CTRL__4, &ksz_data);
759                         if ((ksz_data & ALU_VALID) || !(ksz_data & ALU_START))
760                                 break;
761                         usleep_range(1, 10);
762                 } while (timeout-- > 0);
763
764                 if (!timeout) {
765                         dev_dbg(dev->dev, "Failed to search ALU\n");
766                         ret = -ETIMEDOUT;
767                         goto exit;
768                 }
769
770                 /* read ALU table */
771                 ksz9477_read_table(dev, alu_table);
772
773                 ksz9477_convert_alu(&alu, alu_table);
774
775                 if (alu.port_forward & BIT(port)) {
776                         ret = cb(alu.mac, alu.fid, alu.is_static, data);
777                         if (ret)
778                                 goto exit;
779                 }
780         } while (ksz_data & ALU_START);
781
782 exit:
783
784         /* stop ALU search */
785         ksz_write32(dev, REG_SW_ALU_CTRL__4, 0);
786
787         mutex_unlock(&dev->alu_mutex);
788
789         return ret;
790 }
791
792 static void ksz9477_port_mdb_add(struct dsa_switch *ds, int port,
793                                  const struct switchdev_obj_port_mdb *mdb)
794 {
795         struct ksz_device *dev = ds->priv;
796         u32 static_table[4];
797         u32 data;
798         int index;
799         u32 mac_hi, mac_lo;
800
801         mac_hi = ((mdb->addr[0] << 8) | mdb->addr[1]);
802         mac_lo = ((mdb->addr[2] << 24) | (mdb->addr[3] << 16));
803         mac_lo |= ((mdb->addr[4] << 8) | mdb->addr[5]);
804
805         mutex_lock(&dev->alu_mutex);
806
807         for (index = 0; index < dev->num_statics; index++) {
808                 /* find empty slot first */
809                 data = (index << ALU_STAT_INDEX_S) |
810                         ALU_STAT_READ | ALU_STAT_START;
811                 ksz_write32(dev, REG_SW_ALU_STAT_CTRL__4, data);
812
813                 /* wait to be finished */
814                 if (ksz9477_wait_alu_sta_ready(dev)) {
815                         dev_dbg(dev->dev, "Failed to read ALU STATIC\n");
816                         goto exit;
817                 }
818
819                 /* read ALU static table */
820                 ksz9477_read_table(dev, static_table);
821
822                 if (static_table[0] & ALU_V_STATIC_VALID) {
823                         /* check this has same vid & mac address */
824                         if (((static_table[2] >> ALU_V_FID_S) == mdb->vid) &&
825                             ((static_table[2] & ALU_V_MAC_ADDR_HI) == mac_hi) &&
826                             static_table[3] == mac_lo) {
827                                 /* found matching one */
828                                 break;
829                         }
830                 } else {
831                         /* found empty one */
832                         break;
833                 }
834         }
835
836         /* no available entry */
837         if (index == dev->num_statics)
838                 goto exit;
839
840         /* add entry */
841         static_table[0] = ALU_V_STATIC_VALID;
842         static_table[1] |= BIT(port);
843         if (mdb->vid)
844                 static_table[1] |= ALU_V_USE_FID;
845         static_table[2] = (mdb->vid << ALU_V_FID_S);
846         static_table[2] |= mac_hi;
847         static_table[3] = mac_lo;
848
849         ksz9477_write_table(dev, static_table);
850
851         data = (index << ALU_STAT_INDEX_S) | ALU_STAT_START;
852         ksz_write32(dev, REG_SW_ALU_STAT_CTRL__4, data);
853
854         /* wait to be finished */
855         if (ksz9477_wait_alu_sta_ready(dev))
856                 dev_dbg(dev->dev, "Failed to read ALU STATIC\n");
857
858 exit:
859         mutex_unlock(&dev->alu_mutex);
860 }
861
862 static int ksz9477_port_mdb_del(struct dsa_switch *ds, int port,
863                                 const struct switchdev_obj_port_mdb *mdb)
864 {
865         struct ksz_device *dev = ds->priv;
866         u32 static_table[4];
867         u32 data;
868         int index;
869         int ret = 0;
870         u32 mac_hi, mac_lo;
871
872         mac_hi = ((mdb->addr[0] << 8) | mdb->addr[1]);
873         mac_lo = ((mdb->addr[2] << 24) | (mdb->addr[3] << 16));
874         mac_lo |= ((mdb->addr[4] << 8) | mdb->addr[5]);
875
876         mutex_lock(&dev->alu_mutex);
877
878         for (index = 0; index < dev->num_statics; index++) {
879                 /* find empty slot first */
880                 data = (index << ALU_STAT_INDEX_S) |
881                         ALU_STAT_READ | ALU_STAT_START;
882                 ksz_write32(dev, REG_SW_ALU_STAT_CTRL__4, data);
883
884                 /* wait to be finished */
885                 ret = ksz9477_wait_alu_sta_ready(dev);
886                 if (ret) {
887                         dev_dbg(dev->dev, "Failed to read ALU STATIC\n");
888                         goto exit;
889                 }
890
891                 /* read ALU static table */
892                 ksz9477_read_table(dev, static_table);
893
894                 if (static_table[0] & ALU_V_STATIC_VALID) {
895                         /* check this has same vid & mac address */
896
897                         if (((static_table[2] >> ALU_V_FID_S) == mdb->vid) &&
898                             ((static_table[2] & ALU_V_MAC_ADDR_HI) == mac_hi) &&
899                             static_table[3] == mac_lo) {
900                                 /* found matching one */
901                                 break;
902                         }
903                 }
904         }
905
906         /* no available entry */
907         if (index == dev->num_statics)
908                 goto exit;
909
910         /* clear port */
911         static_table[1] &= ~BIT(port);
912
913         if ((static_table[1] & ALU_V_PORT_MAP) == 0) {
914                 /* delete entry */
915                 static_table[0] = 0;
916                 static_table[1] = 0;
917                 static_table[2] = 0;
918                 static_table[3] = 0;
919         }
920
921         ksz9477_write_table(dev, static_table);
922
923         data = (index << ALU_STAT_INDEX_S) | ALU_STAT_START;
924         ksz_write32(dev, REG_SW_ALU_STAT_CTRL__4, data);
925
926         /* wait to be finished */
927         ret = ksz9477_wait_alu_sta_ready(dev);
928         if (ret)
929                 dev_dbg(dev->dev, "Failed to read ALU STATIC\n");
930
931 exit:
932         mutex_unlock(&dev->alu_mutex);
933
934         return ret;
935 }
936
937 static int ksz9477_port_mirror_add(struct dsa_switch *ds, int port,
938                                    struct dsa_mall_mirror_tc_entry *mirror,
939                                    bool ingress)
940 {
941         struct ksz_device *dev = ds->priv;
942
943         if (ingress)
944                 ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_RX, true);
945         else
946                 ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_TX, true);
947
948         ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_SNIFFER, false);
949
950         /* configure mirror port */
951         ksz_port_cfg(dev, mirror->to_local_port, P_MIRROR_CTRL,
952                      PORT_MIRROR_SNIFFER, true);
953
954         ksz_cfg(dev, S_MIRROR_CTRL, SW_MIRROR_RX_TX, false);
955
956         return 0;
957 }
958
959 static void ksz9477_port_mirror_del(struct dsa_switch *ds, int port,
960                                     struct dsa_mall_mirror_tc_entry *mirror)
961 {
962         struct ksz_device *dev = ds->priv;
963         u8 data;
964
965         if (mirror->ingress)
966                 ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_RX, false);
967         else
968                 ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_TX, false);
969
970         ksz_pread8(dev, port, P_MIRROR_CTRL, &data);
971
972         if (!(data & (PORT_MIRROR_RX | PORT_MIRROR_TX)))
973                 ksz_port_cfg(dev, mirror->to_local_port, P_MIRROR_CTRL,
974                              PORT_MIRROR_SNIFFER, false);
975 }
976
977 static void ksz9477_phy_setup(struct ksz_device *dev, int port,
978                               struct phy_device *phy)
979 {
980         /* Only apply to port with PHY. */
981         if (port >= dev->phy_port_cnt)
982                 return;
983
984         /* The MAC actually cannot run in 1000 half-duplex mode. */
985         phy_remove_link_mode(phy,
986                              ETHTOOL_LINK_MODE_1000baseT_Half_BIT);
987
988         /* PHY does not support gigabit. */
989         if (!(dev->features & GBIT_SUPPORT))
990                 phy_remove_link_mode(phy,
991                                      ETHTOOL_LINK_MODE_1000baseT_Full_BIT);
992 }
993
994 static bool ksz9477_get_gbit(struct ksz_device *dev, u8 data)
995 {
996         bool gbit;
997
998         if (dev->features & NEW_XMII)
999                 gbit = !(data & PORT_MII_NOT_1GBIT);
1000         else
1001                 gbit = !!(data & PORT_MII_1000MBIT_S1);
1002         return gbit;
1003 }
1004
1005 static void ksz9477_set_gbit(struct ksz_device *dev, bool gbit, u8 *data)
1006 {
1007         if (dev->features & NEW_XMII) {
1008                 if (gbit)
1009                         *data &= ~PORT_MII_NOT_1GBIT;
1010                 else
1011                         *data |= PORT_MII_NOT_1GBIT;
1012         } else {
1013                 if (gbit)
1014                         *data |= PORT_MII_1000MBIT_S1;
1015                 else
1016                         *data &= ~PORT_MII_1000MBIT_S1;
1017         }
1018 }
1019
1020 static int ksz9477_get_xmii(struct ksz_device *dev, u8 data)
1021 {
1022         int mode;
1023
1024         if (dev->features & NEW_XMII) {
1025                 switch (data & PORT_MII_SEL_M) {
1026                 case PORT_MII_SEL:
1027                         mode = 0;
1028                         break;
1029                 case PORT_RMII_SEL:
1030                         mode = 1;
1031                         break;
1032                 case PORT_GMII_SEL:
1033                         mode = 2;
1034                         break;
1035                 default:
1036                         mode = 3;
1037                 }
1038         } else {
1039                 switch (data & PORT_MII_SEL_M) {
1040                 case PORT_MII_SEL_S1:
1041                         mode = 0;
1042                         break;
1043                 case PORT_RMII_SEL_S1:
1044                         mode = 1;
1045                         break;
1046                 case PORT_GMII_SEL_S1:
1047                         mode = 2;
1048                         break;
1049                 default:
1050                         mode = 3;
1051                 }
1052         }
1053         return mode;
1054 }
1055
1056 static void ksz9477_set_xmii(struct ksz_device *dev, int mode, u8 *data)
1057 {
1058         u8 xmii;
1059
1060         if (dev->features & NEW_XMII) {
1061                 switch (mode) {
1062                 case 0:
1063                         xmii = PORT_MII_SEL;
1064                         break;
1065                 case 1:
1066                         xmii = PORT_RMII_SEL;
1067                         break;
1068                 case 2:
1069                         xmii = PORT_GMII_SEL;
1070                         break;
1071                 default:
1072                         xmii = PORT_RGMII_SEL;
1073                         break;
1074                 }
1075         } else {
1076                 switch (mode) {
1077                 case 0:
1078                         xmii = PORT_MII_SEL_S1;
1079                         break;
1080                 case 1:
1081                         xmii = PORT_RMII_SEL_S1;
1082                         break;
1083                 case 2:
1084                         xmii = PORT_GMII_SEL_S1;
1085                         break;
1086                 default:
1087                         xmii = PORT_RGMII_SEL_S1;
1088                         break;
1089                 }
1090         }
1091         *data &= ~PORT_MII_SEL_M;
1092         *data |= xmii;
1093 }
1094
1095 static phy_interface_t ksz9477_get_interface(struct ksz_device *dev, int port)
1096 {
1097         phy_interface_t interface;
1098         bool gbit;
1099         int mode;
1100         u8 data8;
1101
1102         if (port < dev->phy_port_cnt)
1103                 return PHY_INTERFACE_MODE_NA;
1104         ksz_pread8(dev, port, REG_PORT_XMII_CTRL_1, &data8);
1105         gbit = ksz9477_get_gbit(dev, data8);
1106         mode = ksz9477_get_xmii(dev, data8);
1107         switch (mode) {
1108         case 2:
1109                 interface = PHY_INTERFACE_MODE_GMII;
1110                 if (gbit)
1111                         break;
1112                 /* fall through */
1113         case 0:
1114                 interface = PHY_INTERFACE_MODE_MII;
1115                 break;
1116         case 1:
1117                 interface = PHY_INTERFACE_MODE_RMII;
1118                 break;
1119         default:
1120                 interface = PHY_INTERFACE_MODE_RGMII;
1121                 if (data8 & PORT_RGMII_ID_EG_ENABLE)
1122                         interface = PHY_INTERFACE_MODE_RGMII_TXID;
1123                 if (data8 & PORT_RGMII_ID_IG_ENABLE) {
1124                         interface = PHY_INTERFACE_MODE_RGMII_RXID;
1125                         if (data8 & PORT_RGMII_ID_EG_ENABLE)
1126                                 interface = PHY_INTERFACE_MODE_RGMII_ID;
1127                 }
1128                 break;
1129         }
1130         return interface;
1131 }
1132
1133 static void ksz9477_port_mmd_write(struct ksz_device *dev, int port,
1134                                    u8 dev_addr, u16 reg_addr, u16 val)
1135 {
1136         ksz_pwrite16(dev, port, REG_PORT_PHY_MMD_SETUP,
1137                      MMD_SETUP(PORT_MMD_OP_INDEX, dev_addr));
1138         ksz_pwrite16(dev, port, REG_PORT_PHY_MMD_INDEX_DATA, reg_addr);
1139         ksz_pwrite16(dev, port, REG_PORT_PHY_MMD_SETUP,
1140                      MMD_SETUP(PORT_MMD_OP_DATA_NO_INCR, dev_addr));
1141         ksz_pwrite16(dev, port, REG_PORT_PHY_MMD_INDEX_DATA, val);
1142 }
1143
1144 static void ksz9477_phy_errata_setup(struct ksz_device *dev, int port)
1145 {
1146         /* Apply PHY settings to address errata listed in
1147          * KSZ9477, KSZ9897, KSZ9896, KSZ9567, KSZ8565
1148          * Silicon Errata and Data Sheet Clarification documents:
1149          *
1150          * Register settings are needed to improve PHY receive performance
1151          */
1152         ksz9477_port_mmd_write(dev, port, 0x01, 0x6f, 0xdd0b);
1153         ksz9477_port_mmd_write(dev, port, 0x01, 0x8f, 0x6032);
1154         ksz9477_port_mmd_write(dev, port, 0x01, 0x9d, 0x248c);
1155         ksz9477_port_mmd_write(dev, port, 0x01, 0x75, 0x0060);
1156         ksz9477_port_mmd_write(dev, port, 0x01, 0xd3, 0x7777);
1157         ksz9477_port_mmd_write(dev, port, 0x1c, 0x06, 0x3008);
1158         ksz9477_port_mmd_write(dev, port, 0x1c, 0x08, 0x2001);
1159
1160         /* Transmit waveform amplitude can be improved
1161          * (1000BASE-T, 100BASE-TX, 10BASE-Te)
1162          */
1163         ksz9477_port_mmd_write(dev, port, 0x1c, 0x04, 0x00d0);
1164
1165         /* Energy Efficient Ethernet (EEE) feature select must
1166          * be manually disabled (except on KSZ8565 which is 100Mbit)
1167          */
1168         if (dev->features & GBIT_SUPPORT)
1169                 ksz9477_port_mmd_write(dev, port, 0x07, 0x3c, 0x0000);
1170
1171         /* Register settings are required to meet data sheet
1172          * supply current specifications
1173          */
1174         ksz9477_port_mmd_write(dev, port, 0x1c, 0x13, 0x6eff);
1175         ksz9477_port_mmd_write(dev, port, 0x1c, 0x14, 0xe6ff);
1176         ksz9477_port_mmd_write(dev, port, 0x1c, 0x15, 0x6eff);
1177         ksz9477_port_mmd_write(dev, port, 0x1c, 0x16, 0xe6ff);
1178         ksz9477_port_mmd_write(dev, port, 0x1c, 0x17, 0x00ff);
1179         ksz9477_port_mmd_write(dev, port, 0x1c, 0x18, 0x43ff);
1180         ksz9477_port_mmd_write(dev, port, 0x1c, 0x19, 0xc3ff);
1181         ksz9477_port_mmd_write(dev, port, 0x1c, 0x1a, 0x6fff);
1182         ksz9477_port_mmd_write(dev, port, 0x1c, 0x1b, 0x07ff);
1183         ksz9477_port_mmd_write(dev, port, 0x1c, 0x1c, 0x0fff);
1184         ksz9477_port_mmd_write(dev, port, 0x1c, 0x1d, 0xe7ff);
1185         ksz9477_port_mmd_write(dev, port, 0x1c, 0x1e, 0xefff);
1186         ksz9477_port_mmd_write(dev, port, 0x1c, 0x20, 0xeeee);
1187 }
1188
1189 static void ksz9477_port_setup(struct ksz_device *dev, int port, bool cpu_port)
1190 {
1191         u8 data8;
1192         u8 member;
1193         u16 data16;
1194         struct ksz_port *p = &dev->ports[port];
1195
1196         /* enable tag tail for host port */
1197         if (cpu_port)
1198                 ksz_port_cfg(dev, port, REG_PORT_CTRL_0, PORT_TAIL_TAG_ENABLE,
1199                              true);
1200
1201         ksz_port_cfg(dev, port, REG_PORT_CTRL_0, PORT_MAC_LOOPBACK, false);
1202
1203         /* set back pressure */
1204         ksz_port_cfg(dev, port, REG_PORT_MAC_CTRL_1, PORT_BACK_PRESSURE, true);
1205
1206         /* enable broadcast storm limit */
1207         ksz_port_cfg(dev, port, P_BCAST_STORM_CTRL, PORT_BROADCAST_STORM, true);
1208
1209         /* disable DiffServ priority */
1210         ksz_port_cfg(dev, port, P_PRIO_CTRL, PORT_DIFFSERV_PRIO_ENABLE, false);
1211
1212         /* replace priority */
1213         ksz_port_cfg(dev, port, REG_PORT_MRI_MAC_CTRL, PORT_USER_PRIO_CEILING,
1214                      false);
1215         ksz9477_port_cfg32(dev, port, REG_PORT_MTI_QUEUE_CTRL_0__4,
1216                            MTI_PVID_REPLACE, false);
1217
1218         /* enable 802.1p priority */
1219         ksz_port_cfg(dev, port, P_PRIO_CTRL, PORT_802_1P_PRIO_ENABLE, true);
1220
1221         if (port < dev->phy_port_cnt) {
1222                 /* do not force flow control */
1223                 ksz_port_cfg(dev, port, REG_PORT_CTRL_0,
1224                              PORT_FORCE_TX_FLOW_CTRL | PORT_FORCE_RX_FLOW_CTRL,
1225                              false);
1226
1227                 if (dev->phy_errata_9477)
1228                         ksz9477_phy_errata_setup(dev, port);
1229         } else {
1230                 /* force flow control */
1231                 ksz_port_cfg(dev, port, REG_PORT_CTRL_0,
1232                              PORT_FORCE_TX_FLOW_CTRL | PORT_FORCE_RX_FLOW_CTRL,
1233                              true);
1234
1235                 /* configure MAC to 1G & RGMII mode */
1236                 ksz_pread8(dev, port, REG_PORT_XMII_CTRL_1, &data8);
1237                 switch (dev->interface) {
1238                 case PHY_INTERFACE_MODE_MII:
1239                         ksz9477_set_xmii(dev, 0, &data8);
1240                         ksz9477_set_gbit(dev, false, &data8);
1241                         p->phydev.speed = SPEED_100;
1242                         break;
1243                 case PHY_INTERFACE_MODE_RMII:
1244                         ksz9477_set_xmii(dev, 1, &data8);
1245                         ksz9477_set_gbit(dev, false, &data8);
1246                         p->phydev.speed = SPEED_100;
1247                         break;
1248                 case PHY_INTERFACE_MODE_GMII:
1249                         ksz9477_set_xmii(dev, 2, &data8);
1250                         ksz9477_set_gbit(dev, true, &data8);
1251                         p->phydev.speed = SPEED_1000;
1252                         break;
1253                 default:
1254                         ksz9477_set_xmii(dev, 3, &data8);
1255                         ksz9477_set_gbit(dev, true, &data8);
1256                         data8 &= ~PORT_RGMII_ID_IG_ENABLE;
1257                         data8 &= ~PORT_RGMII_ID_EG_ENABLE;
1258                         if (dev->interface == PHY_INTERFACE_MODE_RGMII_ID ||
1259                             dev->interface == PHY_INTERFACE_MODE_RGMII_RXID)
1260                                 data8 |= PORT_RGMII_ID_IG_ENABLE;
1261                         if (dev->interface == PHY_INTERFACE_MODE_RGMII_ID ||
1262                             dev->interface == PHY_INTERFACE_MODE_RGMII_TXID)
1263                                 data8 |= PORT_RGMII_ID_EG_ENABLE;
1264                         p->phydev.speed = SPEED_1000;
1265                         break;
1266                 }
1267                 ksz_pwrite8(dev, port, REG_PORT_XMII_CTRL_1, data8);
1268                 p->phydev.duplex = 1;
1269         }
1270         mutex_lock(&dev->dev_mutex);
1271         if (cpu_port) {
1272                 member = dev->port_mask;
1273                 dev->on_ports = dev->host_mask;
1274                 dev->live_ports = dev->host_mask;
1275         } else {
1276                 member = dev->host_mask | p->vid_member;
1277                 dev->on_ports |= (1 << port);
1278
1279                 /* Link was detected before port is enabled. */
1280                 if (p->phydev.link)
1281                         dev->live_ports |= (1 << port);
1282         }
1283         mutex_unlock(&dev->dev_mutex);
1284         ksz9477_cfg_port_member(dev, port, member);
1285
1286         /* clear pending interrupts */
1287         if (port < dev->phy_port_cnt)
1288                 ksz_pread16(dev, port, REG_PORT_PHY_INT_ENABLE, &data16);
1289 }
1290
1291 static void ksz9477_config_cpu_port(struct dsa_switch *ds)
1292 {
1293         struct ksz_device *dev = ds->priv;
1294         struct ksz_port *p;
1295         int i;
1296
1297         ds->num_ports = dev->port_cnt;
1298
1299         for (i = 0; i < dev->port_cnt; i++) {
1300                 if (dsa_is_cpu_port(ds, i) && (dev->cpu_ports & (1 << i))) {
1301                         phy_interface_t interface;
1302
1303                         dev->cpu_port = i;
1304                         dev->host_mask = (1 << dev->cpu_port);
1305                         dev->port_mask |= dev->host_mask;
1306
1307                         /* Read from XMII register to determine host port
1308                          * interface.  If set specifically in device tree
1309                          * note the difference to help debugging.
1310                          */
1311                         interface = ksz9477_get_interface(dev, i);
1312                         if (!dev->interface)
1313                                 dev->interface = interface;
1314                         if (interface && interface != dev->interface)
1315                                 dev_info(dev->dev,
1316                                          "use %s instead of %s\n",
1317                                           phy_modes(dev->interface),
1318                                           phy_modes(interface));
1319
1320                         /* enable cpu port */
1321                         ksz9477_port_setup(dev, i, true);
1322                         p = &dev->ports[dev->cpu_port];
1323                         p->vid_member = dev->port_mask;
1324                         p->on = 1;
1325                 }
1326         }
1327
1328         dev->member = dev->host_mask;
1329
1330         for (i = 0; i < dev->mib_port_cnt; i++) {
1331                 if (i == dev->cpu_port)
1332                         continue;
1333                 p = &dev->ports[i];
1334
1335                 /* Initialize to non-zero so that ksz_cfg_port_member() will
1336                  * be called.
1337                  */
1338                 p->vid_member = (1 << i);
1339                 p->member = dev->port_mask;
1340                 ksz9477_port_stp_state_set(ds, i, BR_STATE_DISABLED);
1341                 p->on = 1;
1342                 if (i < dev->phy_port_cnt)
1343                         p->phy = 1;
1344                 if (dev->chip_id == 0x00947700 && i == 6) {
1345                         p->sgmii = 1;
1346
1347                         /* SGMII PHY detection code is not implemented yet. */
1348                         p->phy = 0;
1349                 }
1350         }
1351 }
1352
1353 static int ksz9477_setup(struct dsa_switch *ds)
1354 {
1355         struct ksz_device *dev = ds->priv;
1356         int ret = 0;
1357
1358         dev->vlan_cache = devm_kcalloc(dev->dev, sizeof(struct vlan_table),
1359                                        dev->num_vlans, GFP_KERNEL);
1360         if (!dev->vlan_cache)
1361                 return -ENOMEM;
1362
1363         ret = ksz9477_reset_switch(dev);
1364         if (ret) {
1365                 dev_err(ds->dev, "failed to reset switch\n");
1366                 return ret;
1367         }
1368
1369         /* Required for port partitioning. */
1370         ksz9477_cfg32(dev, REG_SW_QM_CTRL__4, UNICAST_VLAN_BOUNDARY,
1371                       true);
1372
1373         /* Do not work correctly with tail tagging. */
1374         ksz_cfg(dev, REG_SW_MAC_CTRL_0, SW_CHECK_LENGTH, false);
1375
1376         /* accept packet up to 2000bytes */
1377         ksz_cfg(dev, REG_SW_MAC_CTRL_1, SW_LEGAL_PACKET_DISABLE, true);
1378
1379         ksz9477_config_cpu_port(ds);
1380
1381         ksz_cfg(dev, REG_SW_MAC_CTRL_1, MULTICAST_STORM_DISABLE, true);
1382
1383         /* queue based egress rate limit */
1384         ksz_cfg(dev, REG_SW_MAC_CTRL_5, SW_OUT_RATE_LIMIT_QUEUE_BASED, true);
1385
1386         /* enable global MIB counter freeze function */
1387         ksz_cfg(dev, REG_SW_MAC_CTRL_6, SW_MIB_COUNTER_FREEZE, true);
1388
1389         /* start switch */
1390         ksz_cfg(dev, REG_SW_OPERATION, SW_START, true);
1391
1392         ksz_init_mib_timer(dev);
1393
1394         return 0;
1395 }
1396
1397 static const struct dsa_switch_ops ksz9477_switch_ops = {
1398         .get_tag_protocol       = ksz9477_get_tag_protocol,
1399         .setup                  = ksz9477_setup,
1400         .phy_read               = ksz9477_phy_read16,
1401         .phy_write              = ksz9477_phy_write16,
1402         .adjust_link            = ksz_adjust_link,
1403         .port_enable            = ksz_enable_port,
1404         .port_disable           = ksz_disable_port,
1405         .get_strings            = ksz9477_get_strings,
1406         .get_ethtool_stats      = ksz_get_ethtool_stats,
1407         .get_sset_count         = ksz_sset_count,
1408         .port_bridge_join       = ksz_port_bridge_join,
1409         .port_bridge_leave      = ksz_port_bridge_leave,
1410         .port_stp_state_set     = ksz9477_port_stp_state_set,
1411         .port_fast_age          = ksz_port_fast_age,
1412         .port_vlan_filtering    = ksz9477_port_vlan_filtering,
1413         .port_vlan_prepare      = ksz_port_vlan_prepare,
1414         .port_vlan_add          = ksz9477_port_vlan_add,
1415         .port_vlan_del          = ksz9477_port_vlan_del,
1416         .port_fdb_dump          = ksz9477_port_fdb_dump,
1417         .port_fdb_add           = ksz9477_port_fdb_add,
1418         .port_fdb_del           = ksz9477_port_fdb_del,
1419         .port_mdb_prepare       = ksz_port_mdb_prepare,
1420         .port_mdb_add           = ksz9477_port_mdb_add,
1421         .port_mdb_del           = ksz9477_port_mdb_del,
1422         .port_mirror_add        = ksz9477_port_mirror_add,
1423         .port_mirror_del        = ksz9477_port_mirror_del,
1424 };
1425
1426 static u32 ksz9477_get_port_addr(int port, int offset)
1427 {
1428         return PORT_CTRL_ADDR(port, offset);
1429 }
1430
1431 static int ksz9477_switch_detect(struct ksz_device *dev)
1432 {
1433         u8 data8;
1434         u8 id_hi;
1435         u8 id_lo;
1436         u32 id32;
1437         int ret;
1438
1439         /* turn off SPI DO Edge select */
1440         ret = ksz_read8(dev, REG_SW_GLOBAL_SERIAL_CTRL_0, &data8);
1441         if (ret)
1442                 return ret;
1443
1444         data8 &= ~SPI_AUTO_EDGE_DETECTION;
1445         ret = ksz_write8(dev, REG_SW_GLOBAL_SERIAL_CTRL_0, data8);
1446         if (ret)
1447                 return ret;
1448
1449         /* read chip id */
1450         ret = ksz_read32(dev, REG_CHIP_ID0__1, &id32);
1451         if (ret)
1452                 return ret;
1453         ret = ksz_read8(dev, REG_GLOBAL_OPTIONS, &data8);
1454         if (ret)
1455                 return ret;
1456
1457         /* Number of ports can be reduced depending on chip. */
1458         dev->mib_port_cnt = TOTAL_PORT_NUM;
1459         dev->phy_port_cnt = 5;
1460
1461         /* Default capability is gigabit capable. */
1462         dev->features = GBIT_SUPPORT;
1463
1464         id_hi = (u8)(id32 >> 16);
1465         id_lo = (u8)(id32 >> 8);
1466         if ((id_lo & 0xf) == 3) {
1467                 /* Chip is from KSZ9893 design. */
1468                 dev->features |= IS_9893;
1469
1470                 /* Chip does not support gigabit. */
1471                 if (data8 & SW_QW_ABLE)
1472                         dev->features &= ~GBIT_SUPPORT;
1473                 dev->mib_port_cnt = 3;
1474                 dev->phy_port_cnt = 2;
1475         } else {
1476                 /* Chip uses new XMII register definitions. */
1477                 dev->features |= NEW_XMII;
1478
1479                 /* Chip does not support gigabit. */
1480                 if (!(data8 & SW_GIGABIT_ABLE))
1481                         dev->features &= ~GBIT_SUPPORT;
1482         }
1483
1484         /* Change chip id to known ones so it can be matched against them. */
1485         id32 = (id_hi << 16) | (id_lo << 8);
1486
1487         dev->chip_id = id32;
1488
1489         return 0;
1490 }
1491
1492 struct ksz_chip_data {
1493         u32 chip_id;
1494         const char *dev_name;
1495         int num_vlans;
1496         int num_alus;
1497         int num_statics;
1498         int cpu_ports;
1499         int port_cnt;
1500         bool phy_errata_9477;
1501 };
1502
1503 static const struct ksz_chip_data ksz9477_switch_chips[] = {
1504         {
1505                 .chip_id = 0x00947700,
1506                 .dev_name = "KSZ9477",
1507                 .num_vlans = 4096,
1508                 .num_alus = 4096,
1509                 .num_statics = 16,
1510                 .cpu_ports = 0x7F,      /* can be configured as cpu port */
1511                 .port_cnt = 7,          /* total physical port count */
1512                 .phy_errata_9477 = true,
1513         },
1514         {
1515                 .chip_id = 0x00989700,
1516                 .dev_name = "KSZ9897",
1517                 .num_vlans = 4096,
1518                 .num_alus = 4096,
1519                 .num_statics = 16,
1520                 .cpu_ports = 0x7F,      /* can be configured as cpu port */
1521                 .port_cnt = 7,          /* total physical port count */
1522                 .phy_errata_9477 = true,
1523         },
1524         {
1525                 .chip_id = 0x00989300,
1526                 .dev_name = "KSZ9893",
1527                 .num_vlans = 4096,
1528                 .num_alus = 4096,
1529                 .num_statics = 16,
1530                 .cpu_ports = 0x07,      /* can be configured as cpu port */
1531                 .port_cnt = 3,          /* total port count */
1532         },
1533         {
1534                 .chip_id = 0x00956700,
1535                 .dev_name = "KSZ9567",
1536                 .num_vlans = 4096,
1537                 .num_alus = 4096,
1538                 .num_statics = 16,
1539                 .cpu_ports = 0x7F,      /* can be configured as cpu port */
1540                 .port_cnt = 7,          /* total physical port count */
1541         },
1542 };
1543
1544 static int ksz9477_switch_init(struct ksz_device *dev)
1545 {
1546         int i;
1547
1548         dev->ds->ops = &ksz9477_switch_ops;
1549
1550         for (i = 0; i < ARRAY_SIZE(ksz9477_switch_chips); i++) {
1551                 const struct ksz_chip_data *chip = &ksz9477_switch_chips[i];
1552
1553                 if (dev->chip_id == chip->chip_id) {
1554                         dev->name = chip->dev_name;
1555                         dev->num_vlans = chip->num_vlans;
1556                         dev->num_alus = chip->num_alus;
1557                         dev->num_statics = chip->num_statics;
1558                         dev->port_cnt = chip->port_cnt;
1559                         dev->cpu_ports = chip->cpu_ports;
1560                         dev->phy_errata_9477 = chip->phy_errata_9477;
1561
1562                         break;
1563                 }
1564         }
1565
1566         /* no switch found */
1567         if (!dev->port_cnt)
1568                 return -ENODEV;
1569
1570         dev->port_mask = (1 << dev->port_cnt) - 1;
1571
1572         dev->reg_mib_cnt = SWITCH_COUNTER_NUM;
1573         dev->mib_cnt = TOTAL_SWITCH_COUNTER_NUM;
1574
1575         i = dev->mib_port_cnt;
1576         dev->ports = devm_kzalloc(dev->dev, sizeof(struct ksz_port) * i,
1577                                   GFP_KERNEL);
1578         if (!dev->ports)
1579                 return -ENOMEM;
1580         for (i = 0; i < dev->mib_port_cnt; i++) {
1581                 mutex_init(&dev->ports[i].mib.cnt_mutex);
1582                 dev->ports[i].mib.counters =
1583                         devm_kzalloc(dev->dev,
1584                                      sizeof(u64) *
1585                                      (TOTAL_SWITCH_COUNTER_NUM + 1),
1586                                      GFP_KERNEL);
1587                 if (!dev->ports[i].mib.counters)
1588                         return -ENOMEM;
1589         }
1590
1591         return 0;
1592 }
1593
1594 static void ksz9477_switch_exit(struct ksz_device *dev)
1595 {
1596         ksz9477_reset_switch(dev);
1597 }
1598
1599 static const struct ksz_dev_ops ksz9477_dev_ops = {
1600         .get_port_addr = ksz9477_get_port_addr,
1601         .cfg_port_member = ksz9477_cfg_port_member,
1602         .flush_dyn_mac_table = ksz9477_flush_dyn_mac_table,
1603         .phy_setup = ksz9477_phy_setup,
1604         .port_setup = ksz9477_port_setup,
1605         .r_mib_cnt = ksz9477_r_mib_cnt,
1606         .r_mib_pkt = ksz9477_r_mib_pkt,
1607         .freeze_mib = ksz9477_freeze_mib,
1608         .port_init_cnt = ksz9477_port_init_cnt,
1609         .shutdown = ksz9477_reset_switch,
1610         .detect = ksz9477_switch_detect,
1611         .init = ksz9477_switch_init,
1612         .exit = ksz9477_switch_exit,
1613 };
1614
1615 int ksz9477_switch_register(struct ksz_device *dev)
1616 {
1617         return ksz_switch_register(dev, &ksz9477_dev_ops);
1618 }
1619 EXPORT_SYMBOL(ksz9477_switch_register);
1620
1621 MODULE_AUTHOR("Woojung Huh <Woojung.Huh@microchip.com>");
1622 MODULE_DESCRIPTION("Microchip KSZ9477 Series Switch DSA Driver");
1623 MODULE_LICENSE("GPL");