Linux-libre 4.19.20-gnu
[librecmc/linux-libre.git] / drivers / net / dsa / bcm_sf2_cfp.c
1 /*
2  * Broadcom Starfighter 2 DSA switch CFP support
3  *
4  * Copyright (C) 2016, Broadcom
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  */
11
12 #include <linux/list.h>
13 #include <linux/ethtool.h>
14 #include <linux/if_ether.h>
15 #include <linux/in.h>
16 #include <linux/netdevice.h>
17 #include <net/dsa.h>
18 #include <linux/bitmap.h>
19
20 #include "bcm_sf2.h"
21 #include "bcm_sf2_regs.h"
22
23 struct cfp_udf_slice_layout {
24         u8 slices[UDFS_PER_SLICE];
25         u32 mask_value;
26         u32 base_offset;
27 };
28
29 struct cfp_udf_layout {
30         struct cfp_udf_slice_layout udfs[UDF_NUM_SLICES];
31 };
32
33 static const u8 zero_slice[UDFS_PER_SLICE] = { };
34
35 /* UDF slices layout for a TCPv4/UDPv4 specification */
36 static const struct cfp_udf_layout udf_tcpip4_layout = {
37         .udfs = {
38                 [1] = {
39                         .slices = {
40                                 /* End of L2, byte offset 12, src IP[0:15] */
41                                 CFG_UDF_EOL2 | 6,
42                                 /* End of L2, byte offset 14, src IP[16:31] */
43                                 CFG_UDF_EOL2 | 7,
44                                 /* End of L2, byte offset 16, dst IP[0:15] */
45                                 CFG_UDF_EOL2 | 8,
46                                 /* End of L2, byte offset 18, dst IP[16:31] */
47                                 CFG_UDF_EOL2 | 9,
48                                 /* End of L3, byte offset 0, src port */
49                                 CFG_UDF_EOL3 | 0,
50                                 /* End of L3, byte offset 2, dst port */
51                                 CFG_UDF_EOL3 | 1,
52                                 0, 0, 0
53                         },
54                         .mask_value = L3_FRAMING_MASK | IPPROTO_MASK | IP_FRAG,
55                         .base_offset = CORE_UDF_0_A_0_8_PORT_0 + UDF_SLICE_OFFSET,
56                 },
57         },
58 };
59
60 /* UDF slices layout for a TCPv6/UDPv6 specification */
61 static const struct cfp_udf_layout udf_tcpip6_layout = {
62         .udfs = {
63                 [0] = {
64                         .slices = {
65                                 /* End of L2, byte offset 8, src IP[0:15] */
66                                 CFG_UDF_EOL2 | 4,
67                                 /* End of L2, byte offset 10, src IP[16:31] */
68                                 CFG_UDF_EOL2 | 5,
69                                 /* End of L2, byte offset 12, src IP[32:47] */
70                                 CFG_UDF_EOL2 | 6,
71                                 /* End of L2, byte offset 14, src IP[48:63] */
72                                 CFG_UDF_EOL2 | 7,
73                                 /* End of L2, byte offset 16, src IP[64:79] */
74                                 CFG_UDF_EOL2 | 8,
75                                 /* End of L2, byte offset 18, src IP[80:95] */
76                                 CFG_UDF_EOL2 | 9,
77                                 /* End of L2, byte offset 20, src IP[96:111] */
78                                 CFG_UDF_EOL2 | 10,
79                                 /* End of L2, byte offset 22, src IP[112:127] */
80                                 CFG_UDF_EOL2 | 11,
81                                 /* End of L3, byte offset 0, src port */
82                                 CFG_UDF_EOL3 | 0,
83                         },
84                         .mask_value = L3_FRAMING_MASK | IPPROTO_MASK | IP_FRAG,
85                         .base_offset = CORE_UDF_0_B_0_8_PORT_0,
86                 },
87                 [3] = {
88                         .slices = {
89                                 /* End of L2, byte offset 24, dst IP[0:15] */
90                                 CFG_UDF_EOL2 | 12,
91                                 /* End of L2, byte offset 26, dst IP[16:31] */
92                                 CFG_UDF_EOL2 | 13,
93                                 /* End of L2, byte offset 28, dst IP[32:47] */
94                                 CFG_UDF_EOL2 | 14,
95                                 /* End of L2, byte offset 30, dst IP[48:63] */
96                                 CFG_UDF_EOL2 | 15,
97                                 /* End of L2, byte offset 32, dst IP[64:79] */
98                                 CFG_UDF_EOL2 | 16,
99                                 /* End of L2, byte offset 34, dst IP[80:95] */
100                                 CFG_UDF_EOL2 | 17,
101                                 /* End of L2, byte offset 36, dst IP[96:111] */
102                                 CFG_UDF_EOL2 | 18,
103                                 /* End of L2, byte offset 38, dst IP[112:127] */
104                                 CFG_UDF_EOL2 | 19,
105                                 /* End of L3, byte offset 2, dst port */
106                                 CFG_UDF_EOL3 | 1,
107                         },
108                         .mask_value = L3_FRAMING_MASK | IPPROTO_MASK | IP_FRAG,
109                         .base_offset = CORE_UDF_0_D_0_11_PORT_0,
110                 },
111         },
112 };
113
114 static inline unsigned int bcm_sf2_get_num_udf_slices(const u8 *layout)
115 {
116         unsigned int i, count = 0;
117
118         for (i = 0; i < UDFS_PER_SLICE; i++) {
119                 if (layout[i] != 0)
120                         count++;
121         }
122
123         return count;
124 }
125
126 static inline u32 udf_upper_bits(unsigned int num_udf)
127 {
128         return GENMASK(num_udf - 1, 0) >> (UDFS_PER_SLICE - 1);
129 }
130
131 static inline u32 udf_lower_bits(unsigned int num_udf)
132 {
133         return (u8)GENMASK(num_udf - 1, 0);
134 }
135
136 static unsigned int bcm_sf2_get_slice_number(const struct cfp_udf_layout *l,
137                                              unsigned int start)
138 {
139         const struct cfp_udf_slice_layout *slice_layout;
140         unsigned int slice_idx;
141
142         for (slice_idx = start; slice_idx < UDF_NUM_SLICES; slice_idx++) {
143                 slice_layout = &l->udfs[slice_idx];
144                 if (memcmp(slice_layout->slices, zero_slice,
145                            sizeof(zero_slice)))
146                         break;
147         }
148
149         return slice_idx;
150 }
151
152 static void bcm_sf2_cfp_udf_set(struct bcm_sf2_priv *priv,
153                                 const struct cfp_udf_layout *layout,
154                                 unsigned int slice_num)
155 {
156         u32 offset = layout->udfs[slice_num].base_offset;
157         unsigned int i;
158
159         for (i = 0; i < UDFS_PER_SLICE; i++)
160                 core_writel(priv, layout->udfs[slice_num].slices[i],
161                             offset + i * 4);
162 }
163
164 static int bcm_sf2_cfp_op(struct bcm_sf2_priv *priv, unsigned int op)
165 {
166         unsigned int timeout = 1000;
167         u32 reg;
168
169         reg = core_readl(priv, CORE_CFP_ACC);
170         reg &= ~(OP_SEL_MASK | RAM_SEL_MASK);
171         reg |= OP_STR_DONE | op;
172         core_writel(priv, reg, CORE_CFP_ACC);
173
174         do {
175                 reg = core_readl(priv, CORE_CFP_ACC);
176                 if (!(reg & OP_STR_DONE))
177                         break;
178
179                 cpu_relax();
180         } while (timeout--);
181
182         if (!timeout)
183                 return -ETIMEDOUT;
184
185         return 0;
186 }
187
188 static inline void bcm_sf2_cfp_rule_addr_set(struct bcm_sf2_priv *priv,
189                                              unsigned int addr)
190 {
191         u32 reg;
192
193         WARN_ON(addr >= priv->num_cfp_rules);
194
195         reg = core_readl(priv, CORE_CFP_ACC);
196         reg &= ~(XCESS_ADDR_MASK << XCESS_ADDR_SHIFT);
197         reg |= addr << XCESS_ADDR_SHIFT;
198         core_writel(priv, reg, CORE_CFP_ACC);
199 }
200
201 static inline unsigned int bcm_sf2_cfp_rule_size(struct bcm_sf2_priv *priv)
202 {
203         /* Entry #0 is reserved */
204         return priv->num_cfp_rules - 1;
205 }
206
207 static int bcm_sf2_cfp_act_pol_set(struct bcm_sf2_priv *priv,
208                                    unsigned int rule_index,
209                                    unsigned int port_num,
210                                    unsigned int queue_num,
211                                    bool fwd_map_change)
212 {
213         int ret;
214         u32 reg;
215
216         /* Replace ARL derived destination with DST_MAP derived, define
217          * which port and queue this should be forwarded to.
218          */
219         if (fwd_map_change)
220                 reg = CHANGE_FWRD_MAP_IB_REP_ARL |
221                       BIT(port_num + DST_MAP_IB_SHIFT) |
222                       CHANGE_TC | queue_num << NEW_TC_SHIFT;
223         else
224                 reg = 0;
225
226         core_writel(priv, reg, CORE_ACT_POL_DATA0);
227
228         /* Set classification ID that needs to be put in Broadcom tag */
229         core_writel(priv, rule_index << CHAIN_ID_SHIFT, CORE_ACT_POL_DATA1);
230
231         core_writel(priv, 0, CORE_ACT_POL_DATA2);
232
233         /* Configure policer RAM now */
234         ret = bcm_sf2_cfp_op(priv, OP_SEL_WRITE | ACT_POL_RAM);
235         if (ret) {
236                 pr_err("Policer entry at %d failed\n", rule_index);
237                 return ret;
238         }
239
240         /* Disable the policer */
241         core_writel(priv, POLICER_MODE_DISABLE, CORE_RATE_METER0);
242
243         /* Now the rate meter */
244         ret = bcm_sf2_cfp_op(priv, OP_SEL_WRITE | RATE_METER_RAM);
245         if (ret) {
246                 pr_err("Meter entry at %d failed\n", rule_index);
247                 return ret;
248         }
249
250         return 0;
251 }
252
253 static void bcm_sf2_cfp_slice_ipv4(struct bcm_sf2_priv *priv,
254                                    struct ethtool_tcpip4_spec *v4_spec,
255                                    unsigned int slice_num,
256                                    bool mask)
257 {
258         u32 reg, offset;
259
260         /* C-Tag                [31:24]
261          * UDF_n_A8             [23:8]
262          * UDF_n_A7             [7:0]
263          */
264         reg = 0;
265         if (mask)
266                 offset = CORE_CFP_MASK_PORT(4);
267         else
268                 offset = CORE_CFP_DATA_PORT(4);
269         core_writel(priv, reg, offset);
270
271         /* UDF_n_A7             [31:24]
272          * UDF_n_A6             [23:8]
273          * UDF_n_A5             [7:0]
274          */
275         reg = be16_to_cpu(v4_spec->pdst) >> 8;
276         if (mask)
277                 offset = CORE_CFP_MASK_PORT(3);
278         else
279                 offset = CORE_CFP_DATA_PORT(3);
280         core_writel(priv, reg, offset);
281
282         /* UDF_n_A5             [31:24]
283          * UDF_n_A4             [23:8]
284          * UDF_n_A3             [7:0]
285          */
286         reg = (be16_to_cpu(v4_spec->pdst) & 0xff) << 24 |
287               (u32)be16_to_cpu(v4_spec->psrc) << 8 |
288               (be32_to_cpu(v4_spec->ip4dst) & 0x0000ff00) >> 8;
289         if (mask)
290                 offset = CORE_CFP_MASK_PORT(2);
291         else
292                 offset = CORE_CFP_DATA_PORT(2);
293         core_writel(priv, reg, offset);
294
295         /* UDF_n_A3             [31:24]
296          * UDF_n_A2             [23:8]
297          * UDF_n_A1             [7:0]
298          */
299         reg = (u32)(be32_to_cpu(v4_spec->ip4dst) & 0xff) << 24 |
300               (u32)(be32_to_cpu(v4_spec->ip4dst) >> 16) << 8 |
301               (be32_to_cpu(v4_spec->ip4src) & 0x0000ff00) >> 8;
302         if (mask)
303                 offset = CORE_CFP_MASK_PORT(1);
304         else
305                 offset = CORE_CFP_DATA_PORT(1);
306         core_writel(priv, reg, offset);
307
308         /* UDF_n_A1             [31:24]
309          * UDF_n_A0             [23:8]
310          * Reserved             [7:4]
311          * Slice ID             [3:2]
312          * Slice valid          [1:0]
313          */
314         reg = (u32)(be32_to_cpu(v4_spec->ip4src) & 0xff) << 24 |
315               (u32)(be32_to_cpu(v4_spec->ip4src) >> 16) << 8 |
316               SLICE_NUM(slice_num) | SLICE_VALID;
317         if (mask)
318                 offset = CORE_CFP_MASK_PORT(0);
319         else
320                 offset = CORE_CFP_DATA_PORT(0);
321         core_writel(priv, reg, offset);
322 }
323
324 static int bcm_sf2_cfp_ipv4_rule_set(struct bcm_sf2_priv *priv, int port,
325                                      unsigned int port_num,
326                                      unsigned int queue_num,
327                                      struct ethtool_rx_flow_spec *fs)
328 {
329         struct ethtool_tcpip4_spec *v4_spec, *v4_m_spec;
330         const struct cfp_udf_layout *layout;
331         unsigned int slice_num, rule_index;
332         u8 ip_proto, ip_frag;
333         u8 num_udf;
334         u32 reg;
335         int ret;
336
337         switch (fs->flow_type & ~FLOW_EXT) {
338         case TCP_V4_FLOW:
339                 ip_proto = IPPROTO_TCP;
340                 v4_spec = &fs->h_u.tcp_ip4_spec;
341                 v4_m_spec = &fs->m_u.tcp_ip4_spec;
342                 break;
343         case UDP_V4_FLOW:
344                 ip_proto = IPPROTO_UDP;
345                 v4_spec = &fs->h_u.udp_ip4_spec;
346                 v4_m_spec = &fs->m_u.udp_ip4_spec;
347                 break;
348         default:
349                 return -EINVAL;
350         }
351
352         ip_frag = be32_to_cpu(fs->m_ext.data[0]);
353
354         /* Locate the first rule available */
355         if (fs->location == RX_CLS_LOC_ANY)
356                 rule_index = find_first_zero_bit(priv->cfp.used,
357                                                  priv->num_cfp_rules);
358         else
359                 rule_index = fs->location;
360
361         if (rule_index > bcm_sf2_cfp_rule_size(priv))
362                 return -ENOSPC;
363
364         layout = &udf_tcpip4_layout;
365         /* We only use one UDF slice for now */
366         slice_num = bcm_sf2_get_slice_number(layout, 0);
367         if (slice_num == UDF_NUM_SLICES)
368                 return -EINVAL;
369
370         num_udf = bcm_sf2_get_num_udf_slices(layout->udfs[slice_num].slices);
371
372         /* Apply the UDF layout for this filter */
373         bcm_sf2_cfp_udf_set(priv, layout, slice_num);
374
375         /* Apply to all packets received through this port */
376         core_writel(priv, BIT(port), CORE_CFP_DATA_PORT(7));
377
378         /* Source port map match */
379         core_writel(priv, 0xff, CORE_CFP_MASK_PORT(7));
380
381         /* S-Tag status         [31:30]
382          * C-Tag status         [29:28]
383          * L2 framing           [27:26]
384          * L3 framing           [25:24]
385          * IP ToS               [23:16]
386          * IP proto             [15:08]
387          * IP Fragm             [7]
388          * Non 1st frag         [6]
389          * IP Authen            [5]
390          * TTL range            [4:3]
391          * PPPoE session        [2]
392          * Reserved             [1]
393          * UDF_Valid[8]         [0]
394          */
395         core_writel(priv, v4_spec->tos << IPTOS_SHIFT |
396                     ip_proto << IPPROTO_SHIFT | ip_frag << IP_FRAG_SHIFT |
397                     udf_upper_bits(num_udf),
398                     CORE_CFP_DATA_PORT(6));
399
400         /* Mask with the specific layout for IPv4 packets */
401         core_writel(priv, layout->udfs[slice_num].mask_value |
402                     udf_upper_bits(num_udf), CORE_CFP_MASK_PORT(6));
403
404         /* UDF_Valid[7:0]       [31:24]
405          * S-Tag                [23:8]
406          * C-Tag                [7:0]
407          */
408         core_writel(priv, udf_lower_bits(num_udf) << 24, CORE_CFP_DATA_PORT(5));
409
410         /* Mask all but valid UDFs */
411         core_writel(priv, udf_lower_bits(num_udf) << 24, CORE_CFP_MASK_PORT(5));
412
413         /* Program the match and the mask */
414         bcm_sf2_cfp_slice_ipv4(priv, v4_spec, slice_num, false);
415         bcm_sf2_cfp_slice_ipv4(priv, v4_m_spec, SLICE_NUM_MASK, true);
416
417         /* Insert into TCAM now */
418         bcm_sf2_cfp_rule_addr_set(priv, rule_index);
419
420         ret = bcm_sf2_cfp_op(priv, OP_SEL_WRITE | TCAM_SEL);
421         if (ret) {
422                 pr_err("TCAM entry at addr %d failed\n", rule_index);
423                 return ret;
424         }
425
426         /* Insert into Action and policer RAMs now */
427         ret = bcm_sf2_cfp_act_pol_set(priv, rule_index, port_num,
428                                       queue_num, true);
429         if (ret)
430                 return ret;
431
432         /* Turn on CFP for this rule now */
433         reg = core_readl(priv, CORE_CFP_CTL_REG);
434         reg |= BIT(port);
435         core_writel(priv, reg, CORE_CFP_CTL_REG);
436
437         /* Flag the rule as being used and return it */
438         set_bit(rule_index, priv->cfp.used);
439         set_bit(rule_index, priv->cfp.unique);
440         fs->location = rule_index;
441
442         return 0;
443 }
444
445 static void bcm_sf2_cfp_slice_ipv6(struct bcm_sf2_priv *priv,
446                                    const __be32 *ip6_addr, const __be16 port,
447                                    unsigned int slice_num,
448                                    bool mask)
449 {
450         u32 reg, tmp, val, offset;
451
452         /* C-Tag                [31:24]
453          * UDF_n_B8             [23:8]  (port)
454          * UDF_n_B7 (upper)     [7:0]   (addr[15:8])
455          */
456         reg = be32_to_cpu(ip6_addr[3]);
457         val = (u32)be16_to_cpu(port) << 8 | ((reg >> 8) & 0xff);
458         if (mask)
459                 offset = CORE_CFP_MASK_PORT(4);
460         else
461                 offset = CORE_CFP_DATA_PORT(4);
462         core_writel(priv, val, offset);
463
464         /* UDF_n_B7 (lower)     [31:24] (addr[7:0])
465          * UDF_n_B6             [23:8] (addr[31:16])
466          * UDF_n_B5 (upper)     [7:0] (addr[47:40])
467          */
468         tmp = be32_to_cpu(ip6_addr[2]);
469         val = (u32)(reg & 0xff) << 24 | (u32)(reg >> 16) << 8 |
470               ((tmp >> 8) & 0xff);
471         if (mask)
472                 offset = CORE_CFP_MASK_PORT(3);
473         else
474                 offset = CORE_CFP_DATA_PORT(3);
475         core_writel(priv, val, offset);
476
477         /* UDF_n_B5 (lower)     [31:24] (addr[39:32])
478          * UDF_n_B4             [23:8] (addr[63:48])
479          * UDF_n_B3 (upper)     [7:0] (addr[79:72])
480          */
481         reg = be32_to_cpu(ip6_addr[1]);
482         val = (u32)(tmp & 0xff) << 24 | (u32)(tmp >> 16) << 8 |
483               ((reg >> 8) & 0xff);
484         if (mask)
485                 offset = CORE_CFP_MASK_PORT(2);
486         else
487                 offset = CORE_CFP_DATA_PORT(2);
488         core_writel(priv, val, offset);
489
490         /* UDF_n_B3 (lower)     [31:24] (addr[71:64])
491          * UDF_n_B2             [23:8] (addr[95:80])
492          * UDF_n_B1 (upper)     [7:0] (addr[111:104])
493          */
494         tmp = be32_to_cpu(ip6_addr[0]);
495         val = (u32)(reg & 0xff) << 24 | (u32)(reg >> 16) << 8 |
496               ((tmp >> 8) & 0xff);
497         if (mask)
498                 offset = CORE_CFP_MASK_PORT(1);
499         else
500                 offset = CORE_CFP_DATA_PORT(1);
501         core_writel(priv, val, offset);
502
503         /* UDF_n_B1 (lower)     [31:24] (addr[103:96])
504          * UDF_n_B0             [23:8] (addr[127:112])
505          * Reserved             [7:4]
506          * Slice ID             [3:2]
507          * Slice valid          [1:0]
508          */
509         reg = (u32)(tmp & 0xff) << 24 | (u32)(tmp >> 16) << 8 |
510                SLICE_NUM(slice_num) | SLICE_VALID;
511         if (mask)
512                 offset = CORE_CFP_MASK_PORT(0);
513         else
514                 offset = CORE_CFP_DATA_PORT(0);
515         core_writel(priv, reg, offset);
516 }
517
518 static int bcm_sf2_cfp_ipv6_rule_set(struct bcm_sf2_priv *priv, int port,
519                                      unsigned int port_num,
520                                      unsigned int queue_num,
521                                      struct ethtool_rx_flow_spec *fs)
522 {
523         struct ethtool_tcpip6_spec *v6_spec, *v6_m_spec;
524         unsigned int slice_num, rule_index[2];
525         const struct cfp_udf_layout *layout;
526         u8 ip_proto, ip_frag;
527         int ret = 0;
528         u8 num_udf;
529         u32 reg;
530
531         switch (fs->flow_type & ~FLOW_EXT) {
532         case TCP_V6_FLOW:
533                 ip_proto = IPPROTO_TCP;
534                 v6_spec = &fs->h_u.tcp_ip6_spec;
535                 v6_m_spec = &fs->m_u.tcp_ip6_spec;
536                 break;
537         case UDP_V6_FLOW:
538                 ip_proto = IPPROTO_UDP;
539                 v6_spec = &fs->h_u.udp_ip6_spec;
540                 v6_m_spec = &fs->m_u.udp_ip6_spec;
541                 break;
542         default:
543                 return -EINVAL;
544         }
545
546         ip_frag = be32_to_cpu(fs->m_ext.data[0]);
547
548         layout = &udf_tcpip6_layout;
549         slice_num = bcm_sf2_get_slice_number(layout, 0);
550         if (slice_num == UDF_NUM_SLICES)
551                 return -EINVAL;
552
553         num_udf = bcm_sf2_get_num_udf_slices(layout->udfs[slice_num].slices);
554
555         /* Negotiate two indexes, one for the second half which we are chained
556          * from, which is what we will return to user-space, and a second one
557          * which is used to store its first half. That first half does not
558          * allow any choice of placement, so it just needs to find the next
559          * available bit. We return the second half as fs->location because
560          * that helps with the rule lookup later on since the second half is
561          * chained from its first half, we can easily identify IPv6 CFP rules
562          * by looking whether they carry a CHAIN_ID.
563          *
564          * We also want the second half to have a lower rule_index than its
565          * first half because the HW search is by incrementing addresses.
566          */
567         if (fs->location == RX_CLS_LOC_ANY)
568                 rule_index[1] = find_first_zero_bit(priv->cfp.used,
569                                                     priv->num_cfp_rules);
570         else
571                 rule_index[1] = fs->location;
572         if (rule_index[1] > bcm_sf2_cfp_rule_size(priv))
573                 return -ENOSPC;
574
575         /* Flag it as used (cleared on error path) such that we can immediately
576          * obtain a second one to chain from.
577          */
578         set_bit(rule_index[1], priv->cfp.used);
579
580         rule_index[0] = find_first_zero_bit(priv->cfp.used,
581                                             priv->num_cfp_rules);
582         if (rule_index[0] > bcm_sf2_cfp_rule_size(priv)) {
583                 ret = -ENOSPC;
584                 goto out_err;
585         }
586
587         /* Apply the UDF layout for this filter */
588         bcm_sf2_cfp_udf_set(priv, layout, slice_num);
589
590         /* Apply to all packets received through this port */
591         core_writel(priv, BIT(port), CORE_CFP_DATA_PORT(7));
592
593         /* Source port map match */
594         core_writel(priv, 0xff, CORE_CFP_MASK_PORT(7));
595
596         /* S-Tag status         [31:30]
597          * C-Tag status         [29:28]
598          * L2 framing           [27:26]
599          * L3 framing           [25:24]
600          * IP ToS               [23:16]
601          * IP proto             [15:08]
602          * IP Fragm             [7]
603          * Non 1st frag         [6]
604          * IP Authen            [5]
605          * TTL range            [4:3]
606          * PPPoE session        [2]
607          * Reserved             [1]
608          * UDF_Valid[8]         [0]
609          */
610         reg = 1 << L3_FRAMING_SHIFT | ip_proto << IPPROTO_SHIFT |
611                 ip_frag << IP_FRAG_SHIFT | udf_upper_bits(num_udf);
612         core_writel(priv, reg, CORE_CFP_DATA_PORT(6));
613
614         /* Mask with the specific layout for IPv6 packets including
615          * UDF_Valid[8]
616          */
617         reg = layout->udfs[slice_num].mask_value | udf_upper_bits(num_udf);
618         core_writel(priv, reg, CORE_CFP_MASK_PORT(6));
619
620         /* UDF_Valid[7:0]       [31:24]
621          * S-Tag                [23:8]
622          * C-Tag                [7:0]
623          */
624         core_writel(priv, udf_lower_bits(num_udf) << 24, CORE_CFP_DATA_PORT(5));
625
626         /* Mask all but valid UDFs */
627         core_writel(priv, udf_lower_bits(num_udf) << 24, CORE_CFP_MASK_PORT(5));
628
629         /* Slice the IPv6 source address and port */
630         bcm_sf2_cfp_slice_ipv6(priv, v6_spec->ip6src, v6_spec->psrc,
631                                 slice_num, false);
632         bcm_sf2_cfp_slice_ipv6(priv, v6_m_spec->ip6src, v6_m_spec->psrc,
633                                 SLICE_NUM_MASK, true);
634
635         /* Insert into TCAM now because we need to insert a second rule */
636         bcm_sf2_cfp_rule_addr_set(priv, rule_index[0]);
637
638         ret = bcm_sf2_cfp_op(priv, OP_SEL_WRITE | TCAM_SEL);
639         if (ret) {
640                 pr_err("TCAM entry at addr %d failed\n", rule_index[0]);
641                 goto out_err;
642         }
643
644         /* Insert into Action and policer RAMs now */
645         ret = bcm_sf2_cfp_act_pol_set(priv, rule_index[0], port_num,
646                                       queue_num, false);
647         if (ret)
648                 goto out_err;
649
650         /* Now deal with the second slice to chain this rule */
651         slice_num = bcm_sf2_get_slice_number(layout, slice_num + 1);
652         if (slice_num == UDF_NUM_SLICES) {
653                 ret = -EINVAL;
654                 goto out_err;
655         }
656
657         num_udf = bcm_sf2_get_num_udf_slices(layout->udfs[slice_num].slices);
658
659         /* Apply the UDF layout for this filter */
660         bcm_sf2_cfp_udf_set(priv, layout, slice_num);
661
662         /* Chained rule, source port match is coming from the rule we are
663          * chained from.
664          */
665         core_writel(priv, 0, CORE_CFP_DATA_PORT(7));
666         core_writel(priv, 0, CORE_CFP_MASK_PORT(7));
667
668         /*
669          * CHAIN ID             [31:24] chain to previous slice
670          * Reserved             [23:20]
671          * UDF_Valid[11:8]      [19:16]
672          * UDF_Valid[7:0]       [15:8]
673          * UDF_n_D11            [7:0]
674          */
675         reg = rule_index[0] << 24 | udf_upper_bits(num_udf) << 16 |
676                 udf_lower_bits(num_udf) << 8;
677         core_writel(priv, reg, CORE_CFP_DATA_PORT(6));
678
679         /* Mask all except chain ID, UDF Valid[8] and UDF Valid[7:0] */
680         reg = XCESS_ADDR_MASK << 24 | udf_upper_bits(num_udf) << 16 |
681                 udf_lower_bits(num_udf) << 8;
682         core_writel(priv, reg, CORE_CFP_MASK_PORT(6));
683
684         /* Don't care */
685         core_writel(priv, 0, CORE_CFP_DATA_PORT(5));
686
687         /* Mask all */
688         core_writel(priv, 0, CORE_CFP_MASK_PORT(5));
689
690         bcm_sf2_cfp_slice_ipv6(priv, v6_spec->ip6dst, v6_spec->pdst, slice_num,
691                                false);
692         bcm_sf2_cfp_slice_ipv6(priv, v6_m_spec->ip6dst, v6_m_spec->pdst,
693                                SLICE_NUM_MASK, true);
694
695         /* Insert into TCAM now */
696         bcm_sf2_cfp_rule_addr_set(priv, rule_index[1]);
697
698         ret = bcm_sf2_cfp_op(priv, OP_SEL_WRITE | TCAM_SEL);
699         if (ret) {
700                 pr_err("TCAM entry at addr %d failed\n", rule_index[1]);
701                 goto out_err;
702         }
703
704         /* Insert into Action and policer RAMs now, set chain ID to
705          * the one we are chained to
706          */
707         ret = bcm_sf2_cfp_act_pol_set(priv, rule_index[1], port_num,
708                                       queue_num, true);
709         if (ret)
710                 goto out_err;
711
712         /* Turn on CFP for this rule now */
713         reg = core_readl(priv, CORE_CFP_CTL_REG);
714         reg |= BIT(port);
715         core_writel(priv, reg, CORE_CFP_CTL_REG);
716
717         /* Flag the second half rule as being used now, return it as the
718          * location, and flag it as unique while dumping rules
719          */
720         set_bit(rule_index[0], priv->cfp.used);
721         set_bit(rule_index[1], priv->cfp.unique);
722         fs->location = rule_index[1];
723
724         return ret;
725
726 out_err:
727         clear_bit(rule_index[1], priv->cfp.used);
728         return ret;
729 }
730
731 static int bcm_sf2_cfp_rule_set(struct dsa_switch *ds, int port,
732                                 struct ethtool_rx_flow_spec *fs)
733 {
734         struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds);
735         s8 cpu_port = ds->ports[port].cpu_dp->index;
736         __u64 ring_cookie = fs->ring_cookie;
737         unsigned int queue_num, port_num;
738         int ret = -EINVAL;
739
740         /* Check for unsupported extensions */
741         if ((fs->flow_type & FLOW_EXT) && (fs->m_ext.vlan_etype ||
742              fs->m_ext.data[1]))
743                 return -EINVAL;
744
745         if (fs->location != RX_CLS_LOC_ANY &&
746             test_bit(fs->location, priv->cfp.used))
747                 return -EBUSY;
748
749         if (fs->location != RX_CLS_LOC_ANY &&
750             fs->location > bcm_sf2_cfp_rule_size(priv))
751                 return -EINVAL;
752
753         /* This rule is a Wake-on-LAN filter and we must specifically
754          * target the CPU port in order for it to be working.
755          */
756         if (ring_cookie == RX_CLS_FLOW_WAKE)
757                 ring_cookie = cpu_port * SF2_NUM_EGRESS_QUEUES;
758
759         /* We do not support discarding packets, check that the
760          * destination port is enabled and that we are within the
761          * number of ports supported by the switch
762          */
763         port_num = ring_cookie / SF2_NUM_EGRESS_QUEUES;
764
765         if (ring_cookie == RX_CLS_FLOW_DISC ||
766             !(dsa_is_user_port(ds, port_num) ||
767               dsa_is_cpu_port(ds, port_num)) ||
768             port_num >= priv->hw_params.num_ports)
769                 return -EINVAL;
770         /*
771          * We have a small oddity where Port 6 just does not have a
772          * valid bit here (so we substract by one).
773          */
774         queue_num = ring_cookie % SF2_NUM_EGRESS_QUEUES;
775         if (port_num >= 7)
776                 port_num -= 1;
777
778         switch (fs->flow_type & ~FLOW_EXT) {
779         case TCP_V4_FLOW:
780         case UDP_V4_FLOW:
781                 ret = bcm_sf2_cfp_ipv4_rule_set(priv, port, port_num,
782                                                 queue_num, fs);
783                 break;
784         case TCP_V6_FLOW:
785         case UDP_V6_FLOW:
786                 ret = bcm_sf2_cfp_ipv6_rule_set(priv, port, port_num,
787                                                 queue_num, fs);
788                 break;
789         default:
790                 break;
791         }
792
793         return ret;
794 }
795
796 static int bcm_sf2_cfp_rule_del_one(struct bcm_sf2_priv *priv, int port,
797                                     u32 loc, u32 *next_loc)
798 {
799         int ret;
800         u32 reg;
801
802         /* Indicate which rule we want to read */
803         bcm_sf2_cfp_rule_addr_set(priv, loc);
804
805         ret =  bcm_sf2_cfp_op(priv, OP_SEL_READ | TCAM_SEL);
806         if (ret)
807                 return ret;
808
809         /* Check if this is possibly an IPv6 rule that would
810          * indicate we need to delete its companion rule
811          * as well
812          */
813         reg = core_readl(priv, CORE_CFP_DATA_PORT(6));
814         if (next_loc)
815                 *next_loc = (reg >> 24) & CHAIN_ID_MASK;
816
817         /* Clear its valid bits */
818         reg = core_readl(priv, CORE_CFP_DATA_PORT(0));
819         reg &= ~SLICE_VALID;
820         core_writel(priv, reg, CORE_CFP_DATA_PORT(0));
821
822         /* Write back this entry into the TCAM now */
823         ret = bcm_sf2_cfp_op(priv, OP_SEL_WRITE | TCAM_SEL);
824         if (ret)
825                 return ret;
826
827         clear_bit(loc, priv->cfp.used);
828         clear_bit(loc, priv->cfp.unique);
829
830         return 0;
831 }
832
833 static int bcm_sf2_cfp_rule_del(struct bcm_sf2_priv *priv, int port,
834                                 u32 loc)
835 {
836         u32 next_loc = 0;
837         int ret;
838
839         /* Refuse deleting unused rules, and those that are not unique since
840          * that could leave IPv6 rules with one of the chained rule in the
841          * table.
842          */
843         if (!test_bit(loc, priv->cfp.unique) || loc == 0)
844                 return -EINVAL;
845
846         ret = bcm_sf2_cfp_rule_del_one(priv, port, loc, &next_loc);
847         if (ret)
848                 return ret;
849
850         /* If this was an IPv6 rule, delete is companion rule too */
851         if (next_loc)
852                 ret = bcm_sf2_cfp_rule_del_one(priv, port, next_loc, NULL);
853
854         return ret;
855 }
856
857 static void bcm_sf2_invert_masks(struct ethtool_rx_flow_spec *flow)
858 {
859         unsigned int i;
860
861         for (i = 0; i < sizeof(flow->m_u); i++)
862                 flow->m_u.hdata[i] ^= 0xff;
863
864         flow->m_ext.vlan_etype ^= cpu_to_be16(~0);
865         flow->m_ext.vlan_tci ^= cpu_to_be16(~0);
866         flow->m_ext.data[0] ^= cpu_to_be32(~0);
867         flow->m_ext.data[1] ^= cpu_to_be32(~0);
868 }
869
870 static int bcm_sf2_cfp_unslice_ipv4(struct bcm_sf2_priv *priv,
871                                     struct ethtool_tcpip4_spec *v4_spec,
872                                     bool mask)
873 {
874         u32 reg, offset, ipv4;
875         u16 src_dst_port;
876
877         if (mask)
878                 offset = CORE_CFP_MASK_PORT(3);
879         else
880                 offset = CORE_CFP_DATA_PORT(3);
881
882         reg = core_readl(priv, offset);
883         /* src port [15:8] */
884         src_dst_port = reg << 8;
885
886         if (mask)
887                 offset = CORE_CFP_MASK_PORT(2);
888         else
889                 offset = CORE_CFP_DATA_PORT(2);
890
891         reg = core_readl(priv, offset);
892         /* src port [7:0] */
893         src_dst_port |= (reg >> 24);
894
895         v4_spec->pdst = cpu_to_be16(src_dst_port);
896         v4_spec->psrc = cpu_to_be16((u16)(reg >> 8));
897
898         /* IPv4 dst [15:8] */
899         ipv4 = (reg & 0xff) << 8;
900
901         if (mask)
902                 offset = CORE_CFP_MASK_PORT(1);
903         else
904                 offset = CORE_CFP_DATA_PORT(1);
905
906         reg = core_readl(priv, offset);
907         /* IPv4 dst [31:16] */
908         ipv4 |= ((reg >> 8) & 0xffff) << 16;
909         /* IPv4 dst [7:0] */
910         ipv4 |= (reg >> 24) & 0xff;
911         v4_spec->ip4dst = cpu_to_be32(ipv4);
912
913         /* IPv4 src [15:8] */
914         ipv4 = (reg & 0xff) << 8;
915
916         if (mask)
917                 offset = CORE_CFP_MASK_PORT(0);
918         else
919                 offset = CORE_CFP_DATA_PORT(0);
920         reg = core_readl(priv, offset);
921
922         /* Once the TCAM is programmed, the mask reflects the slice number
923          * being matched, don't bother checking it when reading back the
924          * mask spec
925          */
926         if (!mask && !(reg & SLICE_VALID))
927                 return -EINVAL;
928
929         /* IPv4 src [7:0] */
930         ipv4 |= (reg >> 24) & 0xff;
931         /* IPv4 src [31:16] */
932         ipv4 |= ((reg >> 8) & 0xffff) << 16;
933         v4_spec->ip4src = cpu_to_be32(ipv4);
934
935         return 0;
936 }
937
938 static int bcm_sf2_cfp_ipv4_rule_get(struct bcm_sf2_priv *priv, int port,
939                                      struct ethtool_rx_flow_spec *fs)
940 {
941         struct ethtool_tcpip4_spec *v4_spec = NULL, *v4_m_spec = NULL;
942         u32 reg;
943         int ret;
944
945         reg = core_readl(priv, CORE_CFP_DATA_PORT(6));
946
947         switch ((reg & IPPROTO_MASK) >> IPPROTO_SHIFT) {
948         case IPPROTO_TCP:
949                 fs->flow_type = TCP_V4_FLOW;
950                 v4_spec = &fs->h_u.tcp_ip4_spec;
951                 v4_m_spec = &fs->m_u.tcp_ip4_spec;
952                 break;
953         case IPPROTO_UDP:
954                 fs->flow_type = UDP_V4_FLOW;
955                 v4_spec = &fs->h_u.udp_ip4_spec;
956                 v4_m_spec = &fs->m_u.udp_ip4_spec;
957                 break;
958         default:
959                 return -EINVAL;
960         }
961
962         fs->m_ext.data[0] = cpu_to_be32((reg >> IP_FRAG_SHIFT) & 1);
963         v4_spec->tos = (reg >> IPTOS_SHIFT) & IPTOS_MASK;
964
965         ret = bcm_sf2_cfp_unslice_ipv4(priv, v4_spec, false);
966         if (ret)
967                 return ret;
968
969         return bcm_sf2_cfp_unslice_ipv4(priv, v4_m_spec, true);
970 }
971
972 static int bcm_sf2_cfp_unslice_ipv6(struct bcm_sf2_priv *priv,
973                                      __be32 *ip6_addr, __be16 *port,
974                                      bool mask)
975 {
976         u32 reg, tmp, offset;
977
978         /* C-Tag                [31:24]
979          * UDF_n_B8             [23:8] (port)
980          * UDF_n_B7 (upper)     [7:0] (addr[15:8])
981          */
982         if (mask)
983                 offset = CORE_CFP_MASK_PORT(4);
984         else
985                 offset = CORE_CFP_DATA_PORT(4);
986         reg = core_readl(priv, offset);
987         *port = cpu_to_be32(reg) >> 8;
988         tmp = (u32)(reg & 0xff) << 8;
989
990         /* UDF_n_B7 (lower)     [31:24] (addr[7:0])
991          * UDF_n_B6             [23:8] (addr[31:16])
992          * UDF_n_B5 (upper)     [7:0] (addr[47:40])
993          */
994         if (mask)
995                 offset = CORE_CFP_MASK_PORT(3);
996         else
997                 offset = CORE_CFP_DATA_PORT(3);
998         reg = core_readl(priv, offset);
999         tmp |= (reg >> 24) & 0xff;
1000         tmp |= (u32)((reg >> 8) << 16);
1001         ip6_addr[3] = cpu_to_be32(tmp);
1002         tmp = (u32)(reg & 0xff) << 8;
1003
1004         /* UDF_n_B5 (lower)     [31:24] (addr[39:32])
1005          * UDF_n_B4             [23:8] (addr[63:48])
1006          * UDF_n_B3 (upper)     [7:0] (addr[79:72])
1007          */
1008         if (mask)
1009                 offset = CORE_CFP_MASK_PORT(2);
1010         else
1011                 offset = CORE_CFP_DATA_PORT(2);
1012         reg = core_readl(priv, offset);
1013         tmp |= (reg >> 24) & 0xff;
1014         tmp |= (u32)((reg >> 8) << 16);
1015         ip6_addr[2] = cpu_to_be32(tmp);
1016         tmp = (u32)(reg & 0xff) << 8;
1017
1018         /* UDF_n_B3 (lower)     [31:24] (addr[71:64])
1019          * UDF_n_B2             [23:8] (addr[95:80])
1020          * UDF_n_B1 (upper)     [7:0] (addr[111:104])
1021          */
1022         if (mask)
1023                 offset = CORE_CFP_MASK_PORT(1);
1024         else
1025                 offset = CORE_CFP_DATA_PORT(1);
1026         reg = core_readl(priv, offset);
1027         tmp |= (reg >> 24) & 0xff;
1028         tmp |= (u32)((reg >> 8) << 16);
1029         ip6_addr[1] = cpu_to_be32(tmp);
1030         tmp = (u32)(reg & 0xff) << 8;
1031
1032         /* UDF_n_B1 (lower)     [31:24] (addr[103:96])
1033          * UDF_n_B0             [23:8] (addr[127:112])
1034          * Reserved             [7:4]
1035          * Slice ID             [3:2]
1036          * Slice valid          [1:0]
1037          */
1038         if (mask)
1039                 offset = CORE_CFP_MASK_PORT(0);
1040         else
1041                 offset = CORE_CFP_DATA_PORT(0);
1042         reg = core_readl(priv, offset);
1043         tmp |= (reg >> 24) & 0xff;
1044         tmp |= (u32)((reg >> 8) << 16);
1045         ip6_addr[0] = cpu_to_be32(tmp);
1046
1047         if (!mask && !(reg & SLICE_VALID))
1048                 return -EINVAL;
1049
1050         return 0;
1051 }
1052
1053 static int bcm_sf2_cfp_ipv6_rule_get(struct bcm_sf2_priv *priv, int port,
1054                                      struct ethtool_rx_flow_spec *fs,
1055                                      u32 next_loc)
1056 {
1057         struct ethtool_tcpip6_spec *v6_spec = NULL, *v6_m_spec = NULL;
1058         u32 reg;
1059         int ret;
1060
1061         /* UDPv6 and TCPv6 both use ethtool_tcpip6_spec so we are fine
1062          * assuming tcp_ip6_spec here being an union.
1063          */
1064         v6_spec = &fs->h_u.tcp_ip6_spec;
1065         v6_m_spec = &fs->m_u.tcp_ip6_spec;
1066
1067         /* Read the second half first */
1068         ret = bcm_sf2_cfp_unslice_ipv6(priv, v6_spec->ip6dst, &v6_spec->pdst,
1069                                        false);
1070         if (ret)
1071                 return ret;
1072
1073         ret = bcm_sf2_cfp_unslice_ipv6(priv, v6_m_spec->ip6dst,
1074                                        &v6_m_spec->pdst, true);
1075         if (ret)
1076                 return ret;
1077
1078         /* Read last to avoid next entry clobbering the results during search
1079          * operations. We would not have the port enabled for this rule, so
1080          * don't bother checking it.
1081          */
1082         (void)core_readl(priv, CORE_CFP_DATA_PORT(7));
1083
1084         /* The slice number is valid, so read the rule we are chained from now
1085          * which is our first half.
1086          */
1087         bcm_sf2_cfp_rule_addr_set(priv, next_loc);
1088         ret = bcm_sf2_cfp_op(priv, OP_SEL_READ | TCAM_SEL);
1089         if (ret)
1090                 return ret;
1091
1092         reg = core_readl(priv, CORE_CFP_DATA_PORT(6));
1093
1094         switch ((reg & IPPROTO_MASK) >> IPPROTO_SHIFT) {
1095         case IPPROTO_TCP:
1096                 fs->flow_type = TCP_V6_FLOW;
1097                 break;
1098         case IPPROTO_UDP:
1099                 fs->flow_type = UDP_V6_FLOW;
1100                 break;
1101         default:
1102                 return -EINVAL;
1103         }
1104
1105         ret = bcm_sf2_cfp_unslice_ipv6(priv, v6_spec->ip6src, &v6_spec->psrc,
1106                                        false);
1107         if (ret)
1108                 return ret;
1109
1110         return bcm_sf2_cfp_unslice_ipv6(priv, v6_m_spec->ip6src,
1111                                         &v6_m_spec->psrc, true);
1112 }
1113
1114 static int bcm_sf2_cfp_rule_get(struct bcm_sf2_priv *priv, int port,
1115                                 struct ethtool_rxnfc *nfc)
1116 {
1117         u32 reg, ipv4_or_chain_id;
1118         unsigned int queue_num;
1119         int ret;
1120
1121         bcm_sf2_cfp_rule_addr_set(priv, nfc->fs.location);
1122
1123         ret = bcm_sf2_cfp_op(priv, OP_SEL_READ | ACT_POL_RAM);
1124         if (ret)
1125                 return ret;
1126
1127         reg = core_readl(priv, CORE_ACT_POL_DATA0);
1128
1129         ret = bcm_sf2_cfp_op(priv, OP_SEL_READ | TCAM_SEL);
1130         if (ret)
1131                 return ret;
1132
1133         /* Extract the destination port */
1134         nfc->fs.ring_cookie = fls((reg >> DST_MAP_IB_SHIFT) &
1135                                   DST_MAP_IB_MASK) - 1;
1136
1137         /* There is no Port 6, so we compensate for that here */
1138         if (nfc->fs.ring_cookie >= 6)
1139                 nfc->fs.ring_cookie++;
1140         nfc->fs.ring_cookie *= SF2_NUM_EGRESS_QUEUES;
1141
1142         /* Extract the destination queue */
1143         queue_num = (reg >> NEW_TC_SHIFT) & NEW_TC_MASK;
1144         nfc->fs.ring_cookie += queue_num;
1145
1146         /* Extract the L3_FRAMING or CHAIN_ID */
1147         reg = core_readl(priv, CORE_CFP_DATA_PORT(6));
1148
1149         /* With IPv6 rules this would contain a non-zero chain ID since
1150          * we reserve entry 0 and it cannot be used. So if we read 0 here
1151          * this means an IPv4 rule.
1152          */
1153         ipv4_or_chain_id = (reg >> L3_FRAMING_SHIFT) & 0xff;
1154         if (ipv4_or_chain_id == 0)
1155                 ret = bcm_sf2_cfp_ipv4_rule_get(priv, port, &nfc->fs);
1156         else
1157                 ret = bcm_sf2_cfp_ipv6_rule_get(priv, port, &nfc->fs,
1158                                                 ipv4_or_chain_id);
1159         if (ret)
1160                 return ret;
1161
1162         /* Read last to avoid next entry clobbering the results during search
1163          * operations
1164          */
1165         reg = core_readl(priv, CORE_CFP_DATA_PORT(7));
1166         if (!(reg & 1 << port))
1167                 return -EINVAL;
1168
1169         bcm_sf2_invert_masks(&nfc->fs);
1170
1171         /* Put the TCAM size here */
1172         nfc->data = bcm_sf2_cfp_rule_size(priv);
1173
1174         return 0;
1175 }
1176
1177 /* We implement the search doing a TCAM search operation */
1178 static int bcm_sf2_cfp_rule_get_all(struct bcm_sf2_priv *priv,
1179                                     int port, struct ethtool_rxnfc *nfc,
1180                                     u32 *rule_locs)
1181 {
1182         unsigned int index = 1, rules_cnt = 0;
1183
1184         for_each_set_bit_from(index, priv->cfp.unique, priv->num_cfp_rules) {
1185                 rule_locs[rules_cnt] = index;
1186                 rules_cnt++;
1187         }
1188
1189         /* Put the TCAM size here */
1190         nfc->data = bcm_sf2_cfp_rule_size(priv);
1191         nfc->rule_cnt = rules_cnt;
1192
1193         return 0;
1194 }
1195
1196 int bcm_sf2_get_rxnfc(struct dsa_switch *ds, int port,
1197                       struct ethtool_rxnfc *nfc, u32 *rule_locs)
1198 {
1199         struct net_device *p = ds->ports[port].cpu_dp->master;
1200         struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds);
1201         int ret = 0;
1202
1203         mutex_lock(&priv->cfp.lock);
1204
1205         switch (nfc->cmd) {
1206         case ETHTOOL_GRXCLSRLCNT:
1207                 /* Subtract the default, unusable rule */
1208                 nfc->rule_cnt = bitmap_weight(priv->cfp.unique,
1209                                               priv->num_cfp_rules) - 1;
1210                 /* We support specifying rule locations */
1211                 nfc->data |= RX_CLS_LOC_SPECIAL;
1212                 break;
1213         case ETHTOOL_GRXCLSRULE:
1214                 ret = bcm_sf2_cfp_rule_get(priv, port, nfc);
1215                 break;
1216         case ETHTOOL_GRXCLSRLALL:
1217                 ret = bcm_sf2_cfp_rule_get_all(priv, port, nfc, rule_locs);
1218                 break;
1219         default:
1220                 ret = -EOPNOTSUPP;
1221                 break;
1222         }
1223
1224         mutex_unlock(&priv->cfp.lock);
1225
1226         if (ret)
1227                 return ret;
1228
1229         /* Pass up the commands to the attached master network device */
1230         if (p->ethtool_ops->get_rxnfc) {
1231                 ret = p->ethtool_ops->get_rxnfc(p, nfc, rule_locs);
1232                 if (ret == -EOPNOTSUPP)
1233                         ret = 0;
1234         }
1235
1236         return ret;
1237 }
1238
1239 int bcm_sf2_set_rxnfc(struct dsa_switch *ds, int port,
1240                       struct ethtool_rxnfc *nfc)
1241 {
1242         struct net_device *p = ds->ports[port].cpu_dp->master;
1243         struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds);
1244         int ret = 0;
1245
1246         mutex_lock(&priv->cfp.lock);
1247
1248         switch (nfc->cmd) {
1249         case ETHTOOL_SRXCLSRLINS:
1250                 ret = bcm_sf2_cfp_rule_set(ds, port, &nfc->fs);
1251                 break;
1252
1253         case ETHTOOL_SRXCLSRLDEL:
1254                 ret = bcm_sf2_cfp_rule_del(priv, port, nfc->fs.location);
1255                 break;
1256         default:
1257                 ret = -EOPNOTSUPP;
1258                 break;
1259         }
1260
1261         mutex_unlock(&priv->cfp.lock);
1262
1263         if (ret)
1264                 return ret;
1265
1266         /* Pass up the commands to the attached master network device.
1267          * This can fail, so rollback the operation if we need to.
1268          */
1269         if (p->ethtool_ops->set_rxnfc) {
1270                 ret = p->ethtool_ops->set_rxnfc(p, nfc);
1271                 if (ret && ret != -EOPNOTSUPP) {
1272                         mutex_lock(&priv->cfp.lock);
1273                         bcm_sf2_cfp_rule_del(priv, port, nfc->fs.location);
1274                         mutex_unlock(&priv->cfp.lock);
1275                 } else {
1276                         ret = 0;
1277                 }
1278         }
1279
1280         return ret;
1281 }
1282
1283 int bcm_sf2_cfp_rst(struct bcm_sf2_priv *priv)
1284 {
1285         unsigned int timeout = 1000;
1286         u32 reg;
1287
1288         reg = core_readl(priv, CORE_CFP_ACC);
1289         reg |= TCAM_RESET;
1290         core_writel(priv, reg, CORE_CFP_ACC);
1291
1292         do {
1293                 reg = core_readl(priv, CORE_CFP_ACC);
1294                 if (!(reg & TCAM_RESET))
1295                         break;
1296
1297                 cpu_relax();
1298         } while (timeout--);
1299
1300         if (!timeout)
1301                 return -ETIMEDOUT;
1302
1303         return 0;
1304 }