Linux-libre 5.4.48-gnu
[librecmc/linux-libre.git] / drivers / net / can / xilinx_can.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* Xilinx CAN device driver
3  *
4  * Copyright (C) 2012 - 2014 Xilinx, Inc.
5  * Copyright (C) 2009 PetaLogix. All rights reserved.
6  * Copyright (C) 2017 - 2018 Sandvik Mining and Construction Oy
7  *
8  * Description:
9  * This driver is developed for Axi CAN IP and for Zynq CANPS Controller.
10  */
11
12 #include <linux/clk.h>
13 #include <linux/errno.h>
14 #include <linux/init.h>
15 #include <linux/interrupt.h>
16 #include <linux/io.h>
17 #include <linux/kernel.h>
18 #include <linux/module.h>
19 #include <linux/netdevice.h>
20 #include <linux/of.h>
21 #include <linux/of_device.h>
22 #include <linux/platform_device.h>
23 #include <linux/skbuff.h>
24 #include <linux/spinlock.h>
25 #include <linux/string.h>
26 #include <linux/types.h>
27 #include <linux/can/dev.h>
28 #include <linux/can/error.h>
29 #include <linux/can/led.h>
30 #include <linux/pm_runtime.h>
31
32 #define DRIVER_NAME     "xilinx_can"
33
34 /* CAN registers set */
35 enum xcan_reg {
36         XCAN_SRR_OFFSET         = 0x00, /* Software reset */
37         XCAN_MSR_OFFSET         = 0x04, /* Mode select */
38         XCAN_BRPR_OFFSET        = 0x08, /* Baud rate prescaler */
39         XCAN_BTR_OFFSET         = 0x0C, /* Bit timing */
40         XCAN_ECR_OFFSET         = 0x10, /* Error counter */
41         XCAN_ESR_OFFSET         = 0x14, /* Error status */
42         XCAN_SR_OFFSET          = 0x18, /* Status */
43         XCAN_ISR_OFFSET         = 0x1C, /* Interrupt status */
44         XCAN_IER_OFFSET         = 0x20, /* Interrupt enable */
45         XCAN_ICR_OFFSET         = 0x24, /* Interrupt clear */
46
47         /* not on CAN FD cores */
48         XCAN_TXFIFO_OFFSET      = 0x30, /* TX FIFO base */
49         XCAN_RXFIFO_OFFSET      = 0x50, /* RX FIFO base */
50         XCAN_AFR_OFFSET         = 0x60, /* Acceptance Filter */
51
52         /* only on CAN FD cores */
53         XCAN_F_BRPR_OFFSET      = 0x088, /* Data Phase Baud Rate
54                                           * Prescalar
55                                           */
56         XCAN_F_BTR_OFFSET       = 0x08C, /* Data Phase Bit Timing */
57         XCAN_TRR_OFFSET         = 0x0090, /* TX Buffer Ready Request */
58         XCAN_AFR_EXT_OFFSET     = 0x00E0, /* Acceptance Filter */
59         XCAN_FSR_OFFSET         = 0x00E8, /* RX FIFO Status */
60         XCAN_TXMSG_BASE_OFFSET  = 0x0100, /* TX Message Space */
61         XCAN_RXMSG_BASE_OFFSET  = 0x1100, /* RX Message Space */
62         XCAN_RXMSG_2_BASE_OFFSET        = 0x2100, /* RX Message Space */
63         XCAN_AFR_2_MASK_OFFSET  = 0x0A00, /* Acceptance Filter MASK */
64         XCAN_AFR_2_ID_OFFSET    = 0x0A04, /* Acceptance Filter ID */
65 };
66
67 #define XCAN_FRAME_ID_OFFSET(frame_base)        ((frame_base) + 0x00)
68 #define XCAN_FRAME_DLC_OFFSET(frame_base)       ((frame_base) + 0x04)
69 #define XCAN_FRAME_DW1_OFFSET(frame_base)       ((frame_base) + 0x08)
70 #define XCAN_FRAME_DW2_OFFSET(frame_base)       ((frame_base) + 0x0C)
71 #define XCANFD_FRAME_DW_OFFSET(frame_base)      ((frame_base) + 0x08)
72
73 #define XCAN_CANFD_FRAME_SIZE           0x48
74 #define XCAN_TXMSG_FRAME_OFFSET(n)      (XCAN_TXMSG_BASE_OFFSET + \
75                                          XCAN_CANFD_FRAME_SIZE * (n))
76 #define XCAN_RXMSG_FRAME_OFFSET(n)      (XCAN_RXMSG_BASE_OFFSET + \
77                                          XCAN_CANFD_FRAME_SIZE * (n))
78 #define XCAN_RXMSG_2_FRAME_OFFSET(n)    (XCAN_RXMSG_2_BASE_OFFSET + \
79                                          XCAN_CANFD_FRAME_SIZE * (n))
80
81 /* the single TX mailbox used by this driver on CAN FD HW */
82 #define XCAN_TX_MAILBOX_IDX             0
83
84 /* CAN register bit masks - XCAN_<REG>_<BIT>_MASK */
85 #define XCAN_SRR_CEN_MASK               0x00000002 /* CAN enable */
86 #define XCAN_SRR_RESET_MASK             0x00000001 /* Soft Reset the CAN core */
87 #define XCAN_MSR_LBACK_MASK             0x00000002 /* Loop back mode select */
88 #define XCAN_MSR_SLEEP_MASK             0x00000001 /* Sleep mode select */
89 #define XCAN_BRPR_BRP_MASK              0x000000FF /* Baud rate prescaler */
90 #define XCAN_BTR_SJW_MASK               0x00000180 /* Synchronous jump width */
91 #define XCAN_BTR_TS2_MASK               0x00000070 /* Time segment 2 */
92 #define XCAN_BTR_TS1_MASK               0x0000000F /* Time segment 1 */
93 #define XCAN_BTR_SJW_MASK_CANFD         0x000F0000 /* Synchronous jump width */
94 #define XCAN_BTR_TS2_MASK_CANFD         0x00000F00 /* Time segment 2 */
95 #define XCAN_BTR_TS1_MASK_CANFD         0x0000003F /* Time segment 1 */
96 #define XCAN_ECR_REC_MASK               0x0000FF00 /* Receive error counter */
97 #define XCAN_ECR_TEC_MASK               0x000000FF /* Transmit error counter */
98 #define XCAN_ESR_ACKER_MASK             0x00000010 /* ACK error */
99 #define XCAN_ESR_BERR_MASK              0x00000008 /* Bit error */
100 #define XCAN_ESR_STER_MASK              0x00000004 /* Stuff error */
101 #define XCAN_ESR_FMER_MASK              0x00000002 /* Form error */
102 #define XCAN_ESR_CRCER_MASK             0x00000001 /* CRC error */
103 #define XCAN_SR_TXFLL_MASK              0x00000400 /* TX FIFO is full */
104 #define XCAN_SR_ESTAT_MASK              0x00000180 /* Error status */
105 #define XCAN_SR_ERRWRN_MASK             0x00000040 /* Error warning */
106 #define XCAN_SR_NORMAL_MASK             0x00000008 /* Normal mode */
107 #define XCAN_SR_LBACK_MASK              0x00000002 /* Loop back mode */
108 #define XCAN_SR_CONFIG_MASK             0x00000001 /* Configuration mode */
109 #define XCAN_IXR_RXMNF_MASK             0x00020000 /* RX match not finished */
110 #define XCAN_IXR_TXFEMP_MASK            0x00004000 /* TX FIFO Empty */
111 #define XCAN_IXR_WKUP_MASK              0x00000800 /* Wake up interrupt */
112 #define XCAN_IXR_SLP_MASK               0x00000400 /* Sleep interrupt */
113 #define XCAN_IXR_BSOFF_MASK             0x00000200 /* Bus off interrupt */
114 #define XCAN_IXR_ERROR_MASK             0x00000100 /* Error interrupt */
115 #define XCAN_IXR_RXNEMP_MASK            0x00000080 /* RX FIFO NotEmpty intr */
116 #define XCAN_IXR_RXOFLW_MASK            0x00000040 /* RX FIFO Overflow intr */
117 #define XCAN_IXR_RXOK_MASK              0x00000010 /* Message received intr */
118 #define XCAN_IXR_TXFLL_MASK             0x00000004 /* Tx FIFO Full intr */
119 #define XCAN_IXR_TXOK_MASK              0x00000002 /* TX successful intr */
120 #define XCAN_IXR_ARBLST_MASK            0x00000001 /* Arbitration lost intr */
121 #define XCAN_IDR_ID1_MASK               0xFFE00000 /* Standard msg identifier */
122 #define XCAN_IDR_SRR_MASK               0x00100000 /* Substitute remote TXreq */
123 #define XCAN_IDR_IDE_MASK               0x00080000 /* Identifier extension */
124 #define XCAN_IDR_ID2_MASK               0x0007FFFE /* Extended message ident */
125 #define XCAN_IDR_RTR_MASK               0x00000001 /* Remote TX request */
126 #define XCAN_DLCR_DLC_MASK              0xF0000000 /* Data length code */
127 #define XCAN_FSR_FL_MASK                0x00003F00 /* RX Fill Level */
128 #define XCAN_2_FSR_FL_MASK              0x00007F00 /* RX Fill Level */
129 #define XCAN_FSR_IRI_MASK               0x00000080 /* RX Increment Read Index */
130 #define XCAN_FSR_RI_MASK                0x0000001F /* RX Read Index */
131 #define XCAN_2_FSR_RI_MASK              0x0000003F /* RX Read Index */
132 #define XCAN_DLCR_EDL_MASK              0x08000000 /* EDL Mask in DLC */
133 #define XCAN_DLCR_BRS_MASK              0x04000000 /* BRS Mask in DLC */
134
135 /* CAN register bit shift - XCAN_<REG>_<BIT>_SHIFT */
136 #define XCAN_BTR_SJW_SHIFT              7  /* Synchronous jump width */
137 #define XCAN_BTR_TS2_SHIFT              4  /* Time segment 2 */
138 #define XCAN_BTR_SJW_SHIFT_CANFD        16 /* Synchronous jump width */
139 #define XCAN_BTR_TS2_SHIFT_CANFD        8  /* Time segment 2 */
140 #define XCAN_IDR_ID1_SHIFT              21 /* Standard Messg Identifier */
141 #define XCAN_IDR_ID2_SHIFT              1  /* Extended Message Identifier */
142 #define XCAN_DLCR_DLC_SHIFT             28 /* Data length code */
143 #define XCAN_ESR_REC_SHIFT              8  /* Rx Error Count */
144
145 /* CAN frame length constants */
146 #define XCAN_FRAME_MAX_DATA_LEN         8
147 #define XCANFD_DW_BYTES                 4
148 #define XCAN_TIMEOUT                    (1 * HZ)
149
150 /* TX-FIFO-empty interrupt available */
151 #define XCAN_FLAG_TXFEMP        0x0001
152 /* RX Match Not Finished interrupt available */
153 #define XCAN_FLAG_RXMNF         0x0002
154 /* Extended acceptance filters with control at 0xE0 */
155 #define XCAN_FLAG_EXT_FILTERS   0x0004
156 /* TX mailboxes instead of TX FIFO */
157 #define XCAN_FLAG_TX_MAILBOXES  0x0008
158 /* RX FIFO with each buffer in separate registers at 0x1100
159  * instead of the regular FIFO at 0x50
160  */
161 #define XCAN_FLAG_RX_FIFO_MULTI 0x0010
162 #define XCAN_FLAG_CANFD_2       0x0020
163
164 enum xcan_ip_type {
165         XAXI_CAN = 0,
166         XZYNQ_CANPS,
167         XAXI_CANFD,
168         XAXI_CANFD_2_0,
169 };
170
171 struct xcan_devtype_data {
172         enum xcan_ip_type cantype;
173         unsigned int flags;
174         const struct can_bittiming_const *bittiming_const;
175         const char *bus_clk_name;
176         unsigned int btr_ts2_shift;
177         unsigned int btr_sjw_shift;
178 };
179
180 /**
181  * struct xcan_priv - This definition define CAN driver instance
182  * @can:                        CAN private data structure.
183  * @tx_lock:                    Lock for synchronizing TX interrupt handling
184  * @tx_head:                    Tx CAN packets ready to send on the queue
185  * @tx_tail:                    Tx CAN packets successfully sended on the queue
186  * @tx_max:                     Maximum number packets the driver can send
187  * @napi:                       NAPI structure
188  * @read_reg:                   For reading data from CAN registers
189  * @write_reg:                  For writing data to CAN registers
190  * @dev:                        Network device data structure
191  * @reg_base:                   Ioremapped address to registers
192  * @irq_flags:                  For request_irq()
193  * @bus_clk:                    Pointer to struct clk
194  * @can_clk:                    Pointer to struct clk
195  * @devtype:                    Device type specific constants
196  */
197 struct xcan_priv {
198         struct can_priv can;
199         spinlock_t tx_lock;
200         unsigned int tx_head;
201         unsigned int tx_tail;
202         unsigned int tx_max;
203         struct napi_struct napi;
204         u32 (*read_reg)(const struct xcan_priv *priv, enum xcan_reg reg);
205         void (*write_reg)(const struct xcan_priv *priv, enum xcan_reg reg,
206                           u32 val);
207         struct device *dev;
208         void __iomem *reg_base;
209         unsigned long irq_flags;
210         struct clk *bus_clk;
211         struct clk *can_clk;
212         struct xcan_devtype_data devtype;
213 };
214
215 /* CAN Bittiming constants as per Xilinx CAN specs */
216 static const struct can_bittiming_const xcan_bittiming_const = {
217         .name = DRIVER_NAME,
218         .tseg1_min = 1,
219         .tseg1_max = 16,
220         .tseg2_min = 1,
221         .tseg2_max = 8,
222         .sjw_max = 4,
223         .brp_min = 1,
224         .brp_max = 256,
225         .brp_inc = 1,
226 };
227
228 /* AXI CANFD Arbitration Bittiming constants as per AXI CANFD 1.0 spec */
229 static const struct can_bittiming_const xcan_bittiming_const_canfd = {
230         .name = DRIVER_NAME,
231         .tseg1_min = 1,
232         .tseg1_max = 64,
233         .tseg2_min = 1,
234         .tseg2_max = 16,
235         .sjw_max = 16,
236         .brp_min = 1,
237         .brp_max = 256,
238         .brp_inc = 1,
239 };
240
241 /* AXI CANFD Data Bittiming constants as per AXI CANFD 1.0 specs */
242 static struct can_bittiming_const xcan_data_bittiming_const_canfd = {
243         .name = DRIVER_NAME,
244         .tseg1_min = 1,
245         .tseg1_max = 16,
246         .tseg2_min = 1,
247         .tseg2_max = 8,
248         .sjw_max = 8,
249         .brp_min = 1,
250         .brp_max = 256,
251         .brp_inc = 1,
252 };
253
254 /* AXI CANFD 2.0 Arbitration Bittiming constants as per AXI CANFD 2.0 spec */
255 static const struct can_bittiming_const xcan_bittiming_const_canfd2 = {
256         .name = DRIVER_NAME,
257         .tseg1_min = 1,
258         .tseg1_max = 256,
259         .tseg2_min = 1,
260         .tseg2_max = 128,
261         .sjw_max = 128,
262         .brp_min = 1,
263         .brp_max = 256,
264         .brp_inc = 1,
265 };
266
267 /* AXI CANFD 2.0 Data Bittiming constants as per AXI CANFD 2.0 spec */
268 static struct can_bittiming_const xcan_data_bittiming_const_canfd2 = {
269         .name = DRIVER_NAME,
270         .tseg1_min = 1,
271         .tseg1_max = 32,
272         .tseg2_min = 1,
273         .tseg2_max = 16,
274         .sjw_max = 16,
275         .brp_min = 1,
276         .brp_max = 256,
277         .brp_inc = 1,
278 };
279
280 /**
281  * xcan_write_reg_le - Write a value to the device register little endian
282  * @priv:       Driver private data structure
283  * @reg:        Register offset
284  * @val:        Value to write at the Register offset
285  *
286  * Write data to the paricular CAN register
287  */
288 static void xcan_write_reg_le(const struct xcan_priv *priv, enum xcan_reg reg,
289                               u32 val)
290 {
291         iowrite32(val, priv->reg_base + reg);
292 }
293
294 /**
295  * xcan_read_reg_le - Read a value from the device register little endian
296  * @priv:       Driver private data structure
297  * @reg:        Register offset
298  *
299  * Read data from the particular CAN register
300  * Return: value read from the CAN register
301  */
302 static u32 xcan_read_reg_le(const struct xcan_priv *priv, enum xcan_reg reg)
303 {
304         return ioread32(priv->reg_base + reg);
305 }
306
307 /**
308  * xcan_write_reg_be - Write a value to the device register big endian
309  * @priv:       Driver private data structure
310  * @reg:        Register offset
311  * @val:        Value to write at the Register offset
312  *
313  * Write data to the paricular CAN register
314  */
315 static void xcan_write_reg_be(const struct xcan_priv *priv, enum xcan_reg reg,
316                               u32 val)
317 {
318         iowrite32be(val, priv->reg_base + reg);
319 }
320
321 /**
322  * xcan_read_reg_be - Read a value from the device register big endian
323  * @priv:       Driver private data structure
324  * @reg:        Register offset
325  *
326  * Read data from the particular CAN register
327  * Return: value read from the CAN register
328  */
329 static u32 xcan_read_reg_be(const struct xcan_priv *priv, enum xcan_reg reg)
330 {
331         return ioread32be(priv->reg_base + reg);
332 }
333
334 /**
335  * xcan_rx_int_mask - Get the mask for the receive interrupt
336  * @priv:       Driver private data structure
337  *
338  * Return: The receive interrupt mask used by the driver on this HW
339  */
340 static u32 xcan_rx_int_mask(const struct xcan_priv *priv)
341 {
342         /* RXNEMP is better suited for our use case as it cannot be cleared
343          * while the FIFO is non-empty, but CAN FD HW does not have it
344          */
345         if (priv->devtype.flags & XCAN_FLAG_RX_FIFO_MULTI)
346                 return XCAN_IXR_RXOK_MASK;
347         else
348                 return XCAN_IXR_RXNEMP_MASK;
349 }
350
351 /**
352  * set_reset_mode - Resets the CAN device mode
353  * @ndev:       Pointer to net_device structure
354  *
355  * This is the driver reset mode routine.The driver
356  * enters into configuration mode.
357  *
358  * Return: 0 on success and failure value on error
359  */
360 static int set_reset_mode(struct net_device *ndev)
361 {
362         struct xcan_priv *priv = netdev_priv(ndev);
363         unsigned long timeout;
364
365         priv->write_reg(priv, XCAN_SRR_OFFSET, XCAN_SRR_RESET_MASK);
366
367         timeout = jiffies + XCAN_TIMEOUT;
368         while (!(priv->read_reg(priv, XCAN_SR_OFFSET) & XCAN_SR_CONFIG_MASK)) {
369                 if (time_after(jiffies, timeout)) {
370                         netdev_warn(ndev, "timed out for config mode\n");
371                         return -ETIMEDOUT;
372                 }
373                 usleep_range(500, 10000);
374         }
375
376         /* reset clears FIFOs */
377         priv->tx_head = 0;
378         priv->tx_tail = 0;
379
380         return 0;
381 }
382
383 /**
384  * xcan_set_bittiming - CAN set bit timing routine
385  * @ndev:       Pointer to net_device structure
386  *
387  * This is the driver set bittiming  routine.
388  * Return: 0 on success and failure value on error
389  */
390 static int xcan_set_bittiming(struct net_device *ndev)
391 {
392         struct xcan_priv *priv = netdev_priv(ndev);
393         struct can_bittiming *bt = &priv->can.bittiming;
394         struct can_bittiming *dbt = &priv->can.data_bittiming;
395         u32 btr0, btr1;
396         u32 is_config_mode;
397
398         /* Check whether Xilinx CAN is in configuration mode.
399          * It cannot set bit timing if Xilinx CAN is not in configuration mode.
400          */
401         is_config_mode = priv->read_reg(priv, XCAN_SR_OFFSET) &
402                                 XCAN_SR_CONFIG_MASK;
403         if (!is_config_mode) {
404                 netdev_alert(ndev,
405                      "BUG! Cannot set bittiming - CAN is not in config mode\n");
406                 return -EPERM;
407         }
408
409         /* Setting Baud Rate prescalar value in BRPR Register */
410         btr0 = (bt->brp - 1);
411
412         /* Setting Time Segment 1 in BTR Register */
413         btr1 = (bt->prop_seg + bt->phase_seg1 - 1);
414
415         /* Setting Time Segment 2 in BTR Register */
416         btr1 |= (bt->phase_seg2 - 1) << priv->devtype.btr_ts2_shift;
417
418         /* Setting Synchronous jump width in BTR Register */
419         btr1 |= (bt->sjw - 1) << priv->devtype.btr_sjw_shift;
420
421         priv->write_reg(priv, XCAN_BRPR_OFFSET, btr0);
422         priv->write_reg(priv, XCAN_BTR_OFFSET, btr1);
423
424         if (priv->devtype.cantype == XAXI_CANFD ||
425             priv->devtype.cantype == XAXI_CANFD_2_0) {
426                 /* Setting Baud Rate prescalar value in F_BRPR Register */
427                 btr0 = dbt->brp - 1;
428
429                 /* Setting Time Segment 1 in BTR Register */
430                 btr1 = dbt->prop_seg + dbt->phase_seg1 - 1;
431
432                 /* Setting Time Segment 2 in BTR Register */
433                 btr1 |= (dbt->phase_seg2 - 1) << priv->devtype.btr_ts2_shift;
434
435                 /* Setting Synchronous jump width in BTR Register */
436                 btr1 |= (dbt->sjw - 1) << priv->devtype.btr_sjw_shift;
437
438                 priv->write_reg(priv, XCAN_F_BRPR_OFFSET, btr0);
439                 priv->write_reg(priv, XCAN_F_BTR_OFFSET, btr1);
440         }
441
442         netdev_dbg(ndev, "BRPR=0x%08x, BTR=0x%08x\n",
443                    priv->read_reg(priv, XCAN_BRPR_OFFSET),
444                    priv->read_reg(priv, XCAN_BTR_OFFSET));
445
446         return 0;
447 }
448
449 /**
450  * xcan_chip_start - This the drivers start routine
451  * @ndev:       Pointer to net_device structure
452  *
453  * This is the drivers start routine.
454  * Based on the State of the CAN device it puts
455  * the CAN device into a proper mode.
456  *
457  * Return: 0 on success and failure value on error
458  */
459 static int xcan_chip_start(struct net_device *ndev)
460 {
461         struct xcan_priv *priv = netdev_priv(ndev);
462         u32 reg_msr;
463         int err;
464         u32 ier;
465
466         /* Check if it is in reset mode */
467         err = set_reset_mode(ndev);
468         if (err < 0)
469                 return err;
470
471         err = xcan_set_bittiming(ndev);
472         if (err < 0)
473                 return err;
474
475         /* Enable interrupts */
476         ier = XCAN_IXR_TXOK_MASK | XCAN_IXR_BSOFF_MASK |
477                 XCAN_IXR_WKUP_MASK | XCAN_IXR_SLP_MASK |
478                 XCAN_IXR_ERROR_MASK | XCAN_IXR_RXOFLW_MASK |
479                 XCAN_IXR_ARBLST_MASK | xcan_rx_int_mask(priv);
480
481         if (priv->devtype.flags & XCAN_FLAG_RXMNF)
482                 ier |= XCAN_IXR_RXMNF_MASK;
483
484         priv->write_reg(priv, XCAN_IER_OFFSET, ier);
485
486         /* Check whether it is loopback mode or normal mode  */
487         if (priv->can.ctrlmode & CAN_CTRLMODE_LOOPBACK) {
488                 reg_msr = XCAN_MSR_LBACK_MASK;
489         } else {
490                 reg_msr = 0x0;
491         }
492
493         /* enable the first extended filter, if any, as cores with extended
494          * filtering default to non-receipt if all filters are disabled
495          */
496         if (priv->devtype.flags & XCAN_FLAG_EXT_FILTERS)
497                 priv->write_reg(priv, XCAN_AFR_EXT_OFFSET, 0x00000001);
498
499         priv->write_reg(priv, XCAN_MSR_OFFSET, reg_msr);
500         priv->write_reg(priv, XCAN_SRR_OFFSET, XCAN_SRR_CEN_MASK);
501
502         netdev_dbg(ndev, "status:#x%08x\n",
503                    priv->read_reg(priv, XCAN_SR_OFFSET));
504
505         priv->can.state = CAN_STATE_ERROR_ACTIVE;
506         return 0;
507 }
508
509 /**
510  * xcan_do_set_mode - This sets the mode of the driver
511  * @ndev:       Pointer to net_device structure
512  * @mode:       Tells the mode of the driver
513  *
514  * This check the drivers state and calls the
515  * the corresponding modes to set.
516  *
517  * Return: 0 on success and failure value on error
518  */
519 static int xcan_do_set_mode(struct net_device *ndev, enum can_mode mode)
520 {
521         int ret;
522
523         switch (mode) {
524         case CAN_MODE_START:
525                 ret = xcan_chip_start(ndev);
526                 if (ret < 0) {
527                         netdev_err(ndev, "xcan_chip_start failed!\n");
528                         return ret;
529                 }
530                 netif_wake_queue(ndev);
531                 break;
532         default:
533                 ret = -EOPNOTSUPP;
534                 break;
535         }
536
537         return ret;
538 }
539
540 /**
541  * xcan_write_frame - Write a frame to HW
542  * @priv:               Driver private data structure
543  * @skb:                sk_buff pointer that contains data to be Txed
544  * @frame_offset:       Register offset to write the frame to
545  */
546 static void xcan_write_frame(struct xcan_priv *priv, struct sk_buff *skb,
547                              int frame_offset)
548 {
549         u32 id, dlc, data[2] = {0, 0};
550         struct canfd_frame *cf = (struct canfd_frame *)skb->data;
551         u32 ramoff, dwindex = 0, i;
552
553         /* Watch carefully on the bit sequence */
554         if (cf->can_id & CAN_EFF_FLAG) {
555                 /* Extended CAN ID format */
556                 id = ((cf->can_id & CAN_EFF_MASK) << XCAN_IDR_ID2_SHIFT) &
557                         XCAN_IDR_ID2_MASK;
558                 id |= (((cf->can_id & CAN_EFF_MASK) >>
559                         (CAN_EFF_ID_BITS - CAN_SFF_ID_BITS)) <<
560                         XCAN_IDR_ID1_SHIFT) & XCAN_IDR_ID1_MASK;
561
562                 /* The substibute remote TX request bit should be "1"
563                  * for extended frames as in the Xilinx CAN datasheet
564                  */
565                 id |= XCAN_IDR_IDE_MASK | XCAN_IDR_SRR_MASK;
566
567                 if (cf->can_id & CAN_RTR_FLAG)
568                         /* Extended frames remote TX request */
569                         id |= XCAN_IDR_RTR_MASK;
570         } else {
571                 /* Standard CAN ID format */
572                 id = ((cf->can_id & CAN_SFF_MASK) << XCAN_IDR_ID1_SHIFT) &
573                         XCAN_IDR_ID1_MASK;
574
575                 if (cf->can_id & CAN_RTR_FLAG)
576                         /* Standard frames remote TX request */
577                         id |= XCAN_IDR_SRR_MASK;
578         }
579
580         dlc = can_len2dlc(cf->len) << XCAN_DLCR_DLC_SHIFT;
581         if (can_is_canfd_skb(skb)) {
582                 if (cf->flags & CANFD_BRS)
583                         dlc |= XCAN_DLCR_BRS_MASK;
584                 dlc |= XCAN_DLCR_EDL_MASK;
585         }
586
587         priv->write_reg(priv, XCAN_FRAME_ID_OFFSET(frame_offset), id);
588         /* If the CAN frame is RTR frame this write triggers transmission
589          * (not on CAN FD)
590          */
591         priv->write_reg(priv, XCAN_FRAME_DLC_OFFSET(frame_offset), dlc);
592         if (priv->devtype.cantype == XAXI_CANFD ||
593             priv->devtype.cantype == XAXI_CANFD_2_0) {
594                 for (i = 0; i < cf->len; i += 4) {
595                         ramoff = XCANFD_FRAME_DW_OFFSET(frame_offset) +
596                                         (dwindex * XCANFD_DW_BYTES);
597                         priv->write_reg(priv, ramoff,
598                                         be32_to_cpup((__be32 *)(cf->data + i)));
599                         dwindex++;
600                 }
601         } else {
602                 if (cf->len > 0)
603                         data[0] = be32_to_cpup((__be32 *)(cf->data + 0));
604                 if (cf->len > 4)
605                         data[1] = be32_to_cpup((__be32 *)(cf->data + 4));
606
607                 if (!(cf->can_id & CAN_RTR_FLAG)) {
608                         priv->write_reg(priv,
609                                         XCAN_FRAME_DW1_OFFSET(frame_offset),
610                                         data[0]);
611                         /* If the CAN frame is Standard/Extended frame this
612                          * write triggers transmission (not on CAN FD)
613                          */
614                         priv->write_reg(priv,
615                                         XCAN_FRAME_DW2_OFFSET(frame_offset),
616                                         data[1]);
617                 }
618         }
619 }
620
621 /**
622  * xcan_start_xmit_fifo - Starts the transmission (FIFO mode)
623  * @skb:        sk_buff pointer that contains data to be Txed
624  * @ndev:       Pointer to net_device structure
625  *
626  * Return: 0 on success, -ENOSPC if FIFO is full.
627  */
628 static int xcan_start_xmit_fifo(struct sk_buff *skb, struct net_device *ndev)
629 {
630         struct xcan_priv *priv = netdev_priv(ndev);
631         unsigned long flags;
632
633         /* Check if the TX buffer is full */
634         if (unlikely(priv->read_reg(priv, XCAN_SR_OFFSET) &
635                         XCAN_SR_TXFLL_MASK))
636                 return -ENOSPC;
637
638         can_put_echo_skb(skb, ndev, priv->tx_head % priv->tx_max);
639
640         spin_lock_irqsave(&priv->tx_lock, flags);
641
642         priv->tx_head++;
643
644         xcan_write_frame(priv, skb, XCAN_TXFIFO_OFFSET);
645
646         /* Clear TX-FIFO-empty interrupt for xcan_tx_interrupt() */
647         if (priv->tx_max > 1)
648                 priv->write_reg(priv, XCAN_ICR_OFFSET, XCAN_IXR_TXFEMP_MASK);
649
650         /* Check if the TX buffer is full */
651         if ((priv->tx_head - priv->tx_tail) == priv->tx_max)
652                 netif_stop_queue(ndev);
653
654         spin_unlock_irqrestore(&priv->tx_lock, flags);
655
656         return 0;
657 }
658
659 /**
660  * xcan_start_xmit_mailbox - Starts the transmission (mailbox mode)
661  * @skb:        sk_buff pointer that contains data to be Txed
662  * @ndev:       Pointer to net_device structure
663  *
664  * Return: 0 on success, -ENOSPC if there is no space
665  */
666 static int xcan_start_xmit_mailbox(struct sk_buff *skb, struct net_device *ndev)
667 {
668         struct xcan_priv *priv = netdev_priv(ndev);
669         unsigned long flags;
670
671         if (unlikely(priv->read_reg(priv, XCAN_TRR_OFFSET) &
672                      BIT(XCAN_TX_MAILBOX_IDX)))
673                 return -ENOSPC;
674
675         can_put_echo_skb(skb, ndev, 0);
676
677         spin_lock_irqsave(&priv->tx_lock, flags);
678
679         priv->tx_head++;
680
681         xcan_write_frame(priv, skb,
682                          XCAN_TXMSG_FRAME_OFFSET(XCAN_TX_MAILBOX_IDX));
683
684         /* Mark buffer as ready for transmit */
685         priv->write_reg(priv, XCAN_TRR_OFFSET, BIT(XCAN_TX_MAILBOX_IDX));
686
687         netif_stop_queue(ndev);
688
689         spin_unlock_irqrestore(&priv->tx_lock, flags);
690
691         return 0;
692 }
693
694 /**
695  * xcan_start_xmit - Starts the transmission
696  * @skb:        sk_buff pointer that contains data to be Txed
697  * @ndev:       Pointer to net_device structure
698  *
699  * This function is invoked from upper layers to initiate transmission.
700  *
701  * Return: NETDEV_TX_OK on success and NETDEV_TX_BUSY when the tx queue is full
702  */
703 static netdev_tx_t xcan_start_xmit(struct sk_buff *skb, struct net_device *ndev)
704 {
705         struct xcan_priv *priv = netdev_priv(ndev);
706         int ret;
707
708         if (can_dropped_invalid_skb(ndev, skb))
709                 return NETDEV_TX_OK;
710
711         if (priv->devtype.flags & XCAN_FLAG_TX_MAILBOXES)
712                 ret = xcan_start_xmit_mailbox(skb, ndev);
713         else
714                 ret = xcan_start_xmit_fifo(skb, ndev);
715
716         if (ret < 0) {
717                 netdev_err(ndev, "BUG!, TX full when queue awake!\n");
718                 netif_stop_queue(ndev);
719                 return NETDEV_TX_BUSY;
720         }
721
722         return NETDEV_TX_OK;
723 }
724
725 /**
726  * xcan_rx -  Is called from CAN isr to complete the received
727  *              frame  processing
728  * @ndev:       Pointer to net_device structure
729  * @frame_base: Register offset to the frame to be read
730  *
731  * This function is invoked from the CAN isr(poll) to process the Rx frames. It
732  * does minimal processing and invokes "netif_receive_skb" to complete further
733  * processing.
734  * Return: 1 on success and 0 on failure.
735  */
736 static int xcan_rx(struct net_device *ndev, int frame_base)
737 {
738         struct xcan_priv *priv = netdev_priv(ndev);
739         struct net_device_stats *stats = &ndev->stats;
740         struct can_frame *cf;
741         struct sk_buff *skb;
742         u32 id_xcan, dlc, data[2] = {0, 0};
743
744         skb = alloc_can_skb(ndev, &cf);
745         if (unlikely(!skb)) {
746                 stats->rx_dropped++;
747                 return 0;
748         }
749
750         /* Read a frame from Xilinx zynq CANPS */
751         id_xcan = priv->read_reg(priv, XCAN_FRAME_ID_OFFSET(frame_base));
752         dlc = priv->read_reg(priv, XCAN_FRAME_DLC_OFFSET(frame_base)) >>
753                                    XCAN_DLCR_DLC_SHIFT;
754
755         /* Change Xilinx CAN data length format to socketCAN data format */
756         cf->can_dlc = get_can_dlc(dlc);
757
758         /* Change Xilinx CAN ID format to socketCAN ID format */
759         if (id_xcan & XCAN_IDR_IDE_MASK) {
760                 /* The received frame is an Extended format frame */
761                 cf->can_id = (id_xcan & XCAN_IDR_ID1_MASK) >> 3;
762                 cf->can_id |= (id_xcan & XCAN_IDR_ID2_MASK) >>
763                                 XCAN_IDR_ID2_SHIFT;
764                 cf->can_id |= CAN_EFF_FLAG;
765                 if (id_xcan & XCAN_IDR_RTR_MASK)
766                         cf->can_id |= CAN_RTR_FLAG;
767         } else {
768                 /* The received frame is a standard format frame */
769                 cf->can_id = (id_xcan & XCAN_IDR_ID1_MASK) >>
770                                 XCAN_IDR_ID1_SHIFT;
771                 if (id_xcan & XCAN_IDR_SRR_MASK)
772                         cf->can_id |= CAN_RTR_FLAG;
773         }
774
775         /* DW1/DW2 must always be read to remove message from RXFIFO */
776         data[0] = priv->read_reg(priv, XCAN_FRAME_DW1_OFFSET(frame_base));
777         data[1] = priv->read_reg(priv, XCAN_FRAME_DW2_OFFSET(frame_base));
778
779         if (!(cf->can_id & CAN_RTR_FLAG)) {
780                 /* Change Xilinx CAN data format to socketCAN data format */
781                 if (cf->can_dlc > 0)
782                         *(__be32 *)(cf->data) = cpu_to_be32(data[0]);
783                 if (cf->can_dlc > 4)
784                         *(__be32 *)(cf->data + 4) = cpu_to_be32(data[1]);
785         }
786
787         stats->rx_bytes += cf->can_dlc;
788         stats->rx_packets++;
789         netif_receive_skb(skb);
790
791         return 1;
792 }
793
794 /**
795  * xcanfd_rx -  Is called from CAN isr to complete the received
796  *              frame  processing
797  * @ndev:       Pointer to net_device structure
798  * @frame_base: Register offset to the frame to be read
799  *
800  * This function is invoked from the CAN isr(poll) to process the Rx frames. It
801  * does minimal processing and invokes "netif_receive_skb" to complete further
802  * processing.
803  * Return: 1 on success and 0 on failure.
804  */
805 static int xcanfd_rx(struct net_device *ndev, int frame_base)
806 {
807         struct xcan_priv *priv = netdev_priv(ndev);
808         struct net_device_stats *stats = &ndev->stats;
809         struct canfd_frame *cf;
810         struct sk_buff *skb;
811         u32 id_xcan, dlc, data[2] = {0, 0}, dwindex = 0, i, dw_offset;
812
813         id_xcan = priv->read_reg(priv, XCAN_FRAME_ID_OFFSET(frame_base));
814         dlc = priv->read_reg(priv, XCAN_FRAME_DLC_OFFSET(frame_base));
815         if (dlc & XCAN_DLCR_EDL_MASK)
816                 skb = alloc_canfd_skb(ndev, &cf);
817         else
818                 skb = alloc_can_skb(ndev, (struct can_frame **)&cf);
819
820         if (unlikely(!skb)) {
821                 stats->rx_dropped++;
822                 return 0;
823         }
824
825         /* Change Xilinx CANFD data length format to socketCAN data
826          * format
827          */
828         if (dlc & XCAN_DLCR_EDL_MASK)
829                 cf->len = can_dlc2len((dlc & XCAN_DLCR_DLC_MASK) >>
830                                   XCAN_DLCR_DLC_SHIFT);
831         else
832                 cf->len = get_can_dlc((dlc & XCAN_DLCR_DLC_MASK) >>
833                                           XCAN_DLCR_DLC_SHIFT);
834
835         /* Change Xilinx CAN ID format to socketCAN ID format */
836         if (id_xcan & XCAN_IDR_IDE_MASK) {
837                 /* The received frame is an Extended format frame */
838                 cf->can_id = (id_xcan & XCAN_IDR_ID1_MASK) >> 3;
839                 cf->can_id |= (id_xcan & XCAN_IDR_ID2_MASK) >>
840                                 XCAN_IDR_ID2_SHIFT;
841                 cf->can_id |= CAN_EFF_FLAG;
842                 if (id_xcan & XCAN_IDR_RTR_MASK)
843                         cf->can_id |= CAN_RTR_FLAG;
844         } else {
845                 /* The received frame is a standard format frame */
846                 cf->can_id = (id_xcan & XCAN_IDR_ID1_MASK) >>
847                                 XCAN_IDR_ID1_SHIFT;
848                 if (!(dlc & XCAN_DLCR_EDL_MASK) && (id_xcan &
849                                         XCAN_IDR_SRR_MASK))
850                         cf->can_id |= CAN_RTR_FLAG;
851         }
852
853         /* Check the frame received is FD or not*/
854         if (dlc & XCAN_DLCR_EDL_MASK) {
855                 for (i = 0; i < cf->len; i += 4) {
856                         dw_offset = XCANFD_FRAME_DW_OFFSET(frame_base) +
857                                         (dwindex * XCANFD_DW_BYTES);
858                         data[0] = priv->read_reg(priv, dw_offset);
859                         *(__be32 *)(cf->data + i) = cpu_to_be32(data[0]);
860                         dwindex++;
861                 }
862         } else {
863                 for (i = 0; i < cf->len; i += 4) {
864                         dw_offset = XCANFD_FRAME_DW_OFFSET(frame_base);
865                         data[0] = priv->read_reg(priv, dw_offset + i);
866                         *(__be32 *)(cf->data + i) = cpu_to_be32(data[0]);
867                 }
868         }
869         stats->rx_bytes += cf->len;
870         stats->rx_packets++;
871         netif_receive_skb(skb);
872
873         return 1;
874 }
875
876 /**
877  * xcan_current_error_state - Get current error state from HW
878  * @ndev:       Pointer to net_device structure
879  *
880  * Checks the current CAN error state from the HW. Note that this
881  * only checks for ERROR_PASSIVE and ERROR_WARNING.
882  *
883  * Return:
884  * ERROR_PASSIVE or ERROR_WARNING if either is active, ERROR_ACTIVE
885  * otherwise.
886  */
887 static enum can_state xcan_current_error_state(struct net_device *ndev)
888 {
889         struct xcan_priv *priv = netdev_priv(ndev);
890         u32 status = priv->read_reg(priv, XCAN_SR_OFFSET);
891
892         if ((status & XCAN_SR_ESTAT_MASK) == XCAN_SR_ESTAT_MASK)
893                 return CAN_STATE_ERROR_PASSIVE;
894         else if (status & XCAN_SR_ERRWRN_MASK)
895                 return CAN_STATE_ERROR_WARNING;
896         else
897                 return CAN_STATE_ERROR_ACTIVE;
898 }
899
900 /**
901  * xcan_set_error_state - Set new CAN error state
902  * @ndev:       Pointer to net_device structure
903  * @new_state:  The new CAN state to be set
904  * @cf:         Error frame to be populated or NULL
905  *
906  * Set new CAN error state for the device, updating statistics and
907  * populating the error frame if given.
908  */
909 static void xcan_set_error_state(struct net_device *ndev,
910                                  enum can_state new_state,
911                                  struct can_frame *cf)
912 {
913         struct xcan_priv *priv = netdev_priv(ndev);
914         u32 ecr = priv->read_reg(priv, XCAN_ECR_OFFSET);
915         u32 txerr = ecr & XCAN_ECR_TEC_MASK;
916         u32 rxerr = (ecr & XCAN_ECR_REC_MASK) >> XCAN_ESR_REC_SHIFT;
917         enum can_state tx_state = txerr >= rxerr ? new_state : 0;
918         enum can_state rx_state = txerr <= rxerr ? new_state : 0;
919
920         /* non-ERROR states are handled elsewhere */
921         if (WARN_ON(new_state > CAN_STATE_ERROR_PASSIVE))
922                 return;
923
924         can_change_state(ndev, cf, tx_state, rx_state);
925
926         if (cf) {
927                 cf->data[6] = txerr;
928                 cf->data[7] = rxerr;
929         }
930 }
931
932 /**
933  * xcan_update_error_state_after_rxtx - Update CAN error state after RX/TX
934  * @ndev:       Pointer to net_device structure
935  *
936  * If the device is in a ERROR-WARNING or ERROR-PASSIVE state, check if
937  * the performed RX/TX has caused it to drop to a lesser state and set
938  * the interface state accordingly.
939  */
940 static void xcan_update_error_state_after_rxtx(struct net_device *ndev)
941 {
942         struct xcan_priv *priv = netdev_priv(ndev);
943         enum can_state old_state = priv->can.state;
944         enum can_state new_state;
945
946         /* changing error state due to successful frame RX/TX can only
947          * occur from these states
948          */
949         if (old_state != CAN_STATE_ERROR_WARNING &&
950             old_state != CAN_STATE_ERROR_PASSIVE)
951                 return;
952
953         new_state = xcan_current_error_state(ndev);
954
955         if (new_state != old_state) {
956                 struct sk_buff *skb;
957                 struct can_frame *cf;
958
959                 skb = alloc_can_err_skb(ndev, &cf);
960
961                 xcan_set_error_state(ndev, new_state, skb ? cf : NULL);
962
963                 if (skb) {
964                         struct net_device_stats *stats = &ndev->stats;
965
966                         stats->rx_packets++;
967                         stats->rx_bytes += cf->can_dlc;
968                         netif_rx(skb);
969                 }
970         }
971 }
972
973 /**
974  * xcan_err_interrupt - error frame Isr
975  * @ndev:       net_device pointer
976  * @isr:        interrupt status register value
977  *
978  * This is the CAN error interrupt and it will
979  * check the the type of error and forward the error
980  * frame to upper layers.
981  */
982 static void xcan_err_interrupt(struct net_device *ndev, u32 isr)
983 {
984         struct xcan_priv *priv = netdev_priv(ndev);
985         struct net_device_stats *stats = &ndev->stats;
986         struct can_frame *cf;
987         struct sk_buff *skb;
988         u32 err_status;
989
990         skb = alloc_can_err_skb(ndev, &cf);
991
992         err_status = priv->read_reg(priv, XCAN_ESR_OFFSET);
993         priv->write_reg(priv, XCAN_ESR_OFFSET, err_status);
994
995         if (isr & XCAN_IXR_BSOFF_MASK) {
996                 priv->can.state = CAN_STATE_BUS_OFF;
997                 priv->can.can_stats.bus_off++;
998                 /* Leave device in Config Mode in bus-off state */
999                 priv->write_reg(priv, XCAN_SRR_OFFSET, XCAN_SRR_RESET_MASK);
1000                 can_bus_off(ndev);
1001                 if (skb)
1002                         cf->can_id |= CAN_ERR_BUSOFF;
1003         } else {
1004                 enum can_state new_state = xcan_current_error_state(ndev);
1005
1006                 if (new_state != priv->can.state)
1007                         xcan_set_error_state(ndev, new_state, skb ? cf : NULL);
1008         }
1009
1010         /* Check for Arbitration lost interrupt */
1011         if (isr & XCAN_IXR_ARBLST_MASK) {
1012                 priv->can.can_stats.arbitration_lost++;
1013                 if (skb) {
1014                         cf->can_id |= CAN_ERR_LOSTARB;
1015                         cf->data[0] = CAN_ERR_LOSTARB_UNSPEC;
1016                 }
1017         }
1018
1019         /* Check for RX FIFO Overflow interrupt */
1020         if (isr & XCAN_IXR_RXOFLW_MASK) {
1021                 stats->rx_over_errors++;
1022                 stats->rx_errors++;
1023                 if (skb) {
1024                         cf->can_id |= CAN_ERR_CRTL;
1025                         cf->data[1] |= CAN_ERR_CRTL_RX_OVERFLOW;
1026                 }
1027         }
1028
1029         /* Check for RX Match Not Finished interrupt */
1030         if (isr & XCAN_IXR_RXMNF_MASK) {
1031                 stats->rx_dropped++;
1032                 stats->rx_errors++;
1033                 netdev_err(ndev, "RX match not finished, frame discarded\n");
1034                 if (skb) {
1035                         cf->can_id |= CAN_ERR_CRTL;
1036                         cf->data[1] |= CAN_ERR_CRTL_UNSPEC;
1037                 }
1038         }
1039
1040         /* Check for error interrupt */
1041         if (isr & XCAN_IXR_ERROR_MASK) {
1042                 if (skb)
1043                         cf->can_id |= CAN_ERR_PROT | CAN_ERR_BUSERROR;
1044
1045                 /* Check for Ack error interrupt */
1046                 if (err_status & XCAN_ESR_ACKER_MASK) {
1047                         stats->tx_errors++;
1048                         if (skb) {
1049                                 cf->can_id |= CAN_ERR_ACK;
1050                                 cf->data[3] = CAN_ERR_PROT_LOC_ACK;
1051                         }
1052                 }
1053
1054                 /* Check for Bit error interrupt */
1055                 if (err_status & XCAN_ESR_BERR_MASK) {
1056                         stats->tx_errors++;
1057                         if (skb) {
1058                                 cf->can_id |= CAN_ERR_PROT;
1059                                 cf->data[2] = CAN_ERR_PROT_BIT;
1060                         }
1061                 }
1062
1063                 /* Check for Stuff error interrupt */
1064                 if (err_status & XCAN_ESR_STER_MASK) {
1065                         stats->rx_errors++;
1066                         if (skb) {
1067                                 cf->can_id |= CAN_ERR_PROT;
1068                                 cf->data[2] = CAN_ERR_PROT_STUFF;
1069                         }
1070                 }
1071
1072                 /* Check for Form error interrupt */
1073                 if (err_status & XCAN_ESR_FMER_MASK) {
1074                         stats->rx_errors++;
1075                         if (skb) {
1076                                 cf->can_id |= CAN_ERR_PROT;
1077                                 cf->data[2] = CAN_ERR_PROT_FORM;
1078                         }
1079                 }
1080
1081                 /* Check for CRC error interrupt */
1082                 if (err_status & XCAN_ESR_CRCER_MASK) {
1083                         stats->rx_errors++;
1084                         if (skb) {
1085                                 cf->can_id |= CAN_ERR_PROT;
1086                                 cf->data[3] = CAN_ERR_PROT_LOC_CRC_SEQ;
1087                         }
1088                 }
1089                 priv->can.can_stats.bus_error++;
1090         }
1091
1092         if (skb) {
1093                 stats->rx_packets++;
1094                 stats->rx_bytes += cf->can_dlc;
1095                 netif_rx(skb);
1096         }
1097
1098         netdev_dbg(ndev, "%s: error status register:0x%x\n",
1099                    __func__, priv->read_reg(priv, XCAN_ESR_OFFSET));
1100 }
1101
1102 /**
1103  * xcan_state_interrupt - It will check the state of the CAN device
1104  * @ndev:       net_device pointer
1105  * @isr:        interrupt status register value
1106  *
1107  * This will checks the state of the CAN device
1108  * and puts the device into appropriate state.
1109  */
1110 static void xcan_state_interrupt(struct net_device *ndev, u32 isr)
1111 {
1112         struct xcan_priv *priv = netdev_priv(ndev);
1113
1114         /* Check for Sleep interrupt if set put CAN device in sleep state */
1115         if (isr & XCAN_IXR_SLP_MASK)
1116                 priv->can.state = CAN_STATE_SLEEPING;
1117
1118         /* Check for Wake up interrupt if set put CAN device in Active state */
1119         if (isr & XCAN_IXR_WKUP_MASK)
1120                 priv->can.state = CAN_STATE_ERROR_ACTIVE;
1121 }
1122
1123 /**
1124  * xcan_rx_fifo_get_next_frame - Get register offset of next RX frame
1125  * @priv:       Driver private data structure
1126  *
1127  * Return: Register offset of the next frame in RX FIFO.
1128  */
1129 static int xcan_rx_fifo_get_next_frame(struct xcan_priv *priv)
1130 {
1131         int offset;
1132
1133         if (priv->devtype.flags & XCAN_FLAG_RX_FIFO_MULTI) {
1134                 u32 fsr, mask;
1135
1136                 /* clear RXOK before the is-empty check so that any newly
1137                  * received frame will reassert it without a race
1138                  */
1139                 priv->write_reg(priv, XCAN_ICR_OFFSET, XCAN_IXR_RXOK_MASK);
1140
1141                 fsr = priv->read_reg(priv, XCAN_FSR_OFFSET);
1142
1143                 /* check if RX FIFO is empty */
1144                 if (priv->devtype.flags & XCAN_FLAG_CANFD_2)
1145                         mask = XCAN_2_FSR_FL_MASK;
1146                 else
1147                         mask = XCAN_FSR_FL_MASK;
1148
1149                 if (!(fsr & mask))
1150                         return -ENOENT;
1151
1152                 if (priv->devtype.flags & XCAN_FLAG_CANFD_2)
1153                         offset =
1154                           XCAN_RXMSG_2_FRAME_OFFSET(fsr & XCAN_2_FSR_RI_MASK);
1155                 else
1156                         offset =
1157                           XCAN_RXMSG_FRAME_OFFSET(fsr & XCAN_FSR_RI_MASK);
1158
1159         } else {
1160                 /* check if RX FIFO is empty */
1161                 if (!(priv->read_reg(priv, XCAN_ISR_OFFSET) &
1162                       XCAN_IXR_RXNEMP_MASK))
1163                         return -ENOENT;
1164
1165                 /* frames are read from a static offset */
1166                 offset = XCAN_RXFIFO_OFFSET;
1167         }
1168
1169         return offset;
1170 }
1171
1172 /**
1173  * xcan_rx_poll - Poll routine for rx packets (NAPI)
1174  * @napi:       napi structure pointer
1175  * @quota:      Max number of rx packets to be processed.
1176  *
1177  * This is the poll routine for rx part.
1178  * It will process the packets maximux quota value.
1179  *
1180  * Return: number of packets received
1181  */
1182 static int xcan_rx_poll(struct napi_struct *napi, int quota)
1183 {
1184         struct net_device *ndev = napi->dev;
1185         struct xcan_priv *priv = netdev_priv(ndev);
1186         u32 ier;
1187         int work_done = 0;
1188         int frame_offset;
1189
1190         while ((frame_offset = xcan_rx_fifo_get_next_frame(priv)) >= 0 &&
1191                (work_done < quota)) {
1192                 if (xcan_rx_int_mask(priv) & XCAN_IXR_RXOK_MASK)
1193                         work_done += xcanfd_rx(ndev, frame_offset);
1194                 else
1195                         work_done += xcan_rx(ndev, frame_offset);
1196
1197                 if (priv->devtype.flags & XCAN_FLAG_RX_FIFO_MULTI)
1198                         /* increment read index */
1199                         priv->write_reg(priv, XCAN_FSR_OFFSET,
1200                                         XCAN_FSR_IRI_MASK);
1201                 else
1202                         /* clear rx-not-empty (will actually clear only if
1203                          * empty)
1204                          */
1205                         priv->write_reg(priv, XCAN_ICR_OFFSET,
1206                                         XCAN_IXR_RXNEMP_MASK);
1207         }
1208
1209         if (work_done) {
1210                 can_led_event(ndev, CAN_LED_EVENT_RX);
1211                 xcan_update_error_state_after_rxtx(ndev);
1212         }
1213
1214         if (work_done < quota) {
1215                 napi_complete_done(napi, work_done);
1216                 ier = priv->read_reg(priv, XCAN_IER_OFFSET);
1217                 ier |= xcan_rx_int_mask(priv);
1218                 priv->write_reg(priv, XCAN_IER_OFFSET, ier);
1219         }
1220         return work_done;
1221 }
1222
1223 /**
1224  * xcan_tx_interrupt - Tx Done Isr
1225  * @ndev:       net_device pointer
1226  * @isr:        Interrupt status register value
1227  */
1228 static void xcan_tx_interrupt(struct net_device *ndev, u32 isr)
1229 {
1230         struct xcan_priv *priv = netdev_priv(ndev);
1231         struct net_device_stats *stats = &ndev->stats;
1232         unsigned int frames_in_fifo;
1233         int frames_sent = 1; /* TXOK => at least 1 frame was sent */
1234         unsigned long flags;
1235         int retries = 0;
1236
1237         /* Synchronize with xmit as we need to know the exact number
1238          * of frames in the FIFO to stay in sync due to the TXFEMP
1239          * handling.
1240          * This also prevents a race between netif_wake_queue() and
1241          * netif_stop_queue().
1242          */
1243         spin_lock_irqsave(&priv->tx_lock, flags);
1244
1245         frames_in_fifo = priv->tx_head - priv->tx_tail;
1246
1247         if (WARN_ON_ONCE(frames_in_fifo == 0)) {
1248                 /* clear TXOK anyway to avoid getting back here */
1249                 priv->write_reg(priv, XCAN_ICR_OFFSET, XCAN_IXR_TXOK_MASK);
1250                 spin_unlock_irqrestore(&priv->tx_lock, flags);
1251                 return;
1252         }
1253
1254         /* Check if 2 frames were sent (TXOK only means that at least 1
1255          * frame was sent).
1256          */
1257         if (frames_in_fifo > 1) {
1258                 WARN_ON(frames_in_fifo > priv->tx_max);
1259
1260                 /* Synchronize TXOK and isr so that after the loop:
1261                  * (1) isr variable is up-to-date at least up to TXOK clear
1262                  *     time. This avoids us clearing a TXOK of a second frame
1263                  *     but not noticing that the FIFO is now empty and thus
1264                  *     marking only a single frame as sent.
1265                  * (2) No TXOK is left. Having one could mean leaving a
1266                  *     stray TXOK as we might process the associated frame
1267                  *     via TXFEMP handling as we read TXFEMP *after* TXOK
1268                  *     clear to satisfy (1).
1269                  */
1270                 while ((isr & XCAN_IXR_TXOK_MASK) &&
1271                        !WARN_ON(++retries == 100)) {
1272                         priv->write_reg(priv, XCAN_ICR_OFFSET,
1273                                         XCAN_IXR_TXOK_MASK);
1274                         isr = priv->read_reg(priv, XCAN_ISR_OFFSET);
1275                 }
1276
1277                 if (isr & XCAN_IXR_TXFEMP_MASK) {
1278                         /* nothing in FIFO anymore */
1279                         frames_sent = frames_in_fifo;
1280                 }
1281         } else {
1282                 /* single frame in fifo, just clear TXOK */
1283                 priv->write_reg(priv, XCAN_ICR_OFFSET, XCAN_IXR_TXOK_MASK);
1284         }
1285
1286         while (frames_sent--) {
1287                 stats->tx_bytes += can_get_echo_skb(ndev, priv->tx_tail %
1288                                                     priv->tx_max);
1289                 priv->tx_tail++;
1290                 stats->tx_packets++;
1291         }
1292
1293         netif_wake_queue(ndev);
1294
1295         spin_unlock_irqrestore(&priv->tx_lock, flags);
1296
1297         can_led_event(ndev, CAN_LED_EVENT_TX);
1298         xcan_update_error_state_after_rxtx(ndev);
1299 }
1300
1301 /**
1302  * xcan_interrupt - CAN Isr
1303  * @irq:        irq number
1304  * @dev_id:     device id poniter
1305  *
1306  * This is the xilinx CAN Isr. It checks for the type of interrupt
1307  * and invokes the corresponding ISR.
1308  *
1309  * Return:
1310  * IRQ_NONE - If CAN device is in sleep mode, IRQ_HANDLED otherwise
1311  */
1312 static irqreturn_t xcan_interrupt(int irq, void *dev_id)
1313 {
1314         struct net_device *ndev = (struct net_device *)dev_id;
1315         struct xcan_priv *priv = netdev_priv(ndev);
1316         u32 isr, ier;
1317         u32 isr_errors;
1318         u32 rx_int_mask = xcan_rx_int_mask(priv);
1319
1320         /* Get the interrupt status from Xilinx CAN */
1321         isr = priv->read_reg(priv, XCAN_ISR_OFFSET);
1322         if (!isr)
1323                 return IRQ_NONE;
1324
1325         /* Check for the type of interrupt and Processing it */
1326         if (isr & (XCAN_IXR_SLP_MASK | XCAN_IXR_WKUP_MASK)) {
1327                 priv->write_reg(priv, XCAN_ICR_OFFSET, (XCAN_IXR_SLP_MASK |
1328                                 XCAN_IXR_WKUP_MASK));
1329                 xcan_state_interrupt(ndev, isr);
1330         }
1331
1332         /* Check for Tx interrupt and Processing it */
1333         if (isr & XCAN_IXR_TXOK_MASK)
1334                 xcan_tx_interrupt(ndev, isr);
1335
1336         /* Check for the type of error interrupt and Processing it */
1337         isr_errors = isr & (XCAN_IXR_ERROR_MASK | XCAN_IXR_RXOFLW_MASK |
1338                             XCAN_IXR_BSOFF_MASK | XCAN_IXR_ARBLST_MASK |
1339                             XCAN_IXR_RXMNF_MASK);
1340         if (isr_errors) {
1341                 priv->write_reg(priv, XCAN_ICR_OFFSET, isr_errors);
1342                 xcan_err_interrupt(ndev, isr);
1343         }
1344
1345         /* Check for the type of receive interrupt and Processing it */
1346         if (isr & rx_int_mask) {
1347                 ier = priv->read_reg(priv, XCAN_IER_OFFSET);
1348                 ier &= ~rx_int_mask;
1349                 priv->write_reg(priv, XCAN_IER_OFFSET, ier);
1350                 napi_schedule(&priv->napi);
1351         }
1352         return IRQ_HANDLED;
1353 }
1354
1355 /**
1356  * xcan_chip_stop - Driver stop routine
1357  * @ndev:       Pointer to net_device structure
1358  *
1359  * This is the drivers stop routine. It will disable the
1360  * interrupts and put the device into configuration mode.
1361  */
1362 static void xcan_chip_stop(struct net_device *ndev)
1363 {
1364         struct xcan_priv *priv = netdev_priv(ndev);
1365
1366         /* Disable interrupts and leave the can in configuration mode */
1367         set_reset_mode(ndev);
1368         priv->can.state = CAN_STATE_STOPPED;
1369 }
1370
1371 /**
1372  * xcan_open - Driver open routine
1373  * @ndev:       Pointer to net_device structure
1374  *
1375  * This is the driver open routine.
1376  * Return: 0 on success and failure value on error
1377  */
1378 static int xcan_open(struct net_device *ndev)
1379 {
1380         struct xcan_priv *priv = netdev_priv(ndev);
1381         int ret;
1382
1383         ret = pm_runtime_get_sync(priv->dev);
1384         if (ret < 0) {
1385                 netdev_err(ndev, "%s: pm_runtime_get failed(%d)\n",
1386                            __func__, ret);
1387                 return ret;
1388         }
1389
1390         ret = request_irq(ndev->irq, xcan_interrupt, priv->irq_flags,
1391                           ndev->name, ndev);
1392         if (ret < 0) {
1393                 netdev_err(ndev, "irq allocation for CAN failed\n");
1394                 goto err;
1395         }
1396
1397         /* Set chip into reset mode */
1398         ret = set_reset_mode(ndev);
1399         if (ret < 0) {
1400                 netdev_err(ndev, "mode resetting failed!\n");
1401                 goto err_irq;
1402         }
1403
1404         /* Common open */
1405         ret = open_candev(ndev);
1406         if (ret)
1407                 goto err_irq;
1408
1409         ret = xcan_chip_start(ndev);
1410         if (ret < 0) {
1411                 netdev_err(ndev, "xcan_chip_start failed!\n");
1412                 goto err_candev;
1413         }
1414
1415         can_led_event(ndev, CAN_LED_EVENT_OPEN);
1416         napi_enable(&priv->napi);
1417         netif_start_queue(ndev);
1418
1419         return 0;
1420
1421 err_candev:
1422         close_candev(ndev);
1423 err_irq:
1424         free_irq(ndev->irq, ndev);
1425 err:
1426         pm_runtime_put(priv->dev);
1427
1428         return ret;
1429 }
1430
1431 /**
1432  * xcan_close - Driver close routine
1433  * @ndev:       Pointer to net_device structure
1434  *
1435  * Return: 0 always
1436  */
1437 static int xcan_close(struct net_device *ndev)
1438 {
1439         struct xcan_priv *priv = netdev_priv(ndev);
1440
1441         netif_stop_queue(ndev);
1442         napi_disable(&priv->napi);
1443         xcan_chip_stop(ndev);
1444         free_irq(ndev->irq, ndev);
1445         close_candev(ndev);
1446
1447         can_led_event(ndev, CAN_LED_EVENT_STOP);
1448         pm_runtime_put(priv->dev);
1449
1450         return 0;
1451 }
1452
1453 /**
1454  * xcan_get_berr_counter - error counter routine
1455  * @ndev:       Pointer to net_device structure
1456  * @bec:        Pointer to can_berr_counter structure
1457  *
1458  * This is the driver error counter routine.
1459  * Return: 0 on success and failure value on error
1460  */
1461 static int xcan_get_berr_counter(const struct net_device *ndev,
1462                                  struct can_berr_counter *bec)
1463 {
1464         struct xcan_priv *priv = netdev_priv(ndev);
1465         int ret;
1466
1467         ret = pm_runtime_get_sync(priv->dev);
1468         if (ret < 0) {
1469                 netdev_err(ndev, "%s: pm_runtime_get failed(%d)\n",
1470                            __func__, ret);
1471                 return ret;
1472         }
1473
1474         bec->txerr = priv->read_reg(priv, XCAN_ECR_OFFSET) & XCAN_ECR_TEC_MASK;
1475         bec->rxerr = ((priv->read_reg(priv, XCAN_ECR_OFFSET) &
1476                         XCAN_ECR_REC_MASK) >> XCAN_ESR_REC_SHIFT);
1477
1478         pm_runtime_put(priv->dev);
1479
1480         return 0;
1481 }
1482
1483 static const struct net_device_ops xcan_netdev_ops = {
1484         .ndo_open       = xcan_open,
1485         .ndo_stop       = xcan_close,
1486         .ndo_start_xmit = xcan_start_xmit,
1487         .ndo_change_mtu = can_change_mtu,
1488 };
1489
1490 /**
1491  * xcan_suspend - Suspend method for the driver
1492  * @dev:        Address of the device structure
1493  *
1494  * Put the driver into low power mode.
1495  * Return: 0 on success and failure value on error
1496  */
1497 static int __maybe_unused xcan_suspend(struct device *dev)
1498 {
1499         struct net_device *ndev = dev_get_drvdata(dev);
1500
1501         if (netif_running(ndev)) {
1502                 netif_stop_queue(ndev);
1503                 netif_device_detach(ndev);
1504                 xcan_chip_stop(ndev);
1505         }
1506
1507         return pm_runtime_force_suspend(dev);
1508 }
1509
1510 /**
1511  * xcan_resume - Resume from suspend
1512  * @dev:        Address of the device structure
1513  *
1514  * Resume operation after suspend.
1515  * Return: 0 on success and failure value on error
1516  */
1517 static int __maybe_unused xcan_resume(struct device *dev)
1518 {
1519         struct net_device *ndev = dev_get_drvdata(dev);
1520         int ret;
1521
1522         ret = pm_runtime_force_resume(dev);
1523         if (ret) {
1524                 dev_err(dev, "pm_runtime_force_resume failed on resume\n");
1525                 return ret;
1526         }
1527
1528         if (netif_running(ndev)) {
1529                 ret = xcan_chip_start(ndev);
1530                 if (ret) {
1531                         dev_err(dev, "xcan_chip_start failed on resume\n");
1532                         return ret;
1533                 }
1534
1535                 netif_device_attach(ndev);
1536                 netif_start_queue(ndev);
1537         }
1538
1539         return 0;
1540 }
1541
1542 /**
1543  * xcan_runtime_suspend - Runtime suspend method for the driver
1544  * @dev:        Address of the device structure
1545  *
1546  * Put the driver into low power mode.
1547  * Return: 0 always
1548  */
1549 static int __maybe_unused xcan_runtime_suspend(struct device *dev)
1550 {
1551         struct net_device *ndev = dev_get_drvdata(dev);
1552         struct xcan_priv *priv = netdev_priv(ndev);
1553
1554         clk_disable_unprepare(priv->bus_clk);
1555         clk_disable_unprepare(priv->can_clk);
1556
1557         return 0;
1558 }
1559
1560 /**
1561  * xcan_runtime_resume - Runtime resume from suspend
1562  * @dev:        Address of the device structure
1563  *
1564  * Resume operation after suspend.
1565  * Return: 0 on success and failure value on error
1566  */
1567 static int __maybe_unused xcan_runtime_resume(struct device *dev)
1568 {
1569         struct net_device *ndev = dev_get_drvdata(dev);
1570         struct xcan_priv *priv = netdev_priv(ndev);
1571         int ret;
1572
1573         ret = clk_prepare_enable(priv->bus_clk);
1574         if (ret) {
1575                 dev_err(dev, "Cannot enable clock.\n");
1576                 return ret;
1577         }
1578         ret = clk_prepare_enable(priv->can_clk);
1579         if (ret) {
1580                 dev_err(dev, "Cannot enable clock.\n");
1581                 clk_disable_unprepare(priv->bus_clk);
1582                 return ret;
1583         }
1584
1585         return 0;
1586 }
1587
1588 static const struct dev_pm_ops xcan_dev_pm_ops = {
1589         SET_SYSTEM_SLEEP_PM_OPS(xcan_suspend, xcan_resume)
1590         SET_RUNTIME_PM_OPS(xcan_runtime_suspend, xcan_runtime_resume, NULL)
1591 };
1592
1593 static const struct xcan_devtype_data xcan_zynq_data = {
1594         .cantype = XZYNQ_CANPS,
1595         .flags = XCAN_FLAG_TXFEMP,
1596         .bittiming_const = &xcan_bittiming_const,
1597         .btr_ts2_shift = XCAN_BTR_TS2_SHIFT,
1598         .btr_sjw_shift = XCAN_BTR_SJW_SHIFT,
1599         .bus_clk_name = "pclk",
1600 };
1601
1602 static const struct xcan_devtype_data xcan_axi_data = {
1603         .cantype = XAXI_CAN,
1604         .bittiming_const = &xcan_bittiming_const,
1605         .btr_ts2_shift = XCAN_BTR_TS2_SHIFT,
1606         .btr_sjw_shift = XCAN_BTR_SJW_SHIFT,
1607         .bus_clk_name = "s_axi_aclk",
1608 };
1609
1610 static const struct xcan_devtype_data xcan_canfd_data = {
1611         .cantype = XAXI_CANFD,
1612         .flags = XCAN_FLAG_EXT_FILTERS |
1613                  XCAN_FLAG_RXMNF |
1614                  XCAN_FLAG_TX_MAILBOXES |
1615                  XCAN_FLAG_RX_FIFO_MULTI,
1616         .bittiming_const = &xcan_bittiming_const_canfd,
1617         .btr_ts2_shift = XCAN_BTR_TS2_SHIFT_CANFD,
1618         .btr_sjw_shift = XCAN_BTR_SJW_SHIFT_CANFD,
1619         .bus_clk_name = "s_axi_aclk",
1620 };
1621
1622 static const struct xcan_devtype_data xcan_canfd2_data = {
1623         .cantype = XAXI_CANFD_2_0,
1624         .flags = XCAN_FLAG_EXT_FILTERS |
1625                  XCAN_FLAG_RXMNF |
1626                  XCAN_FLAG_TX_MAILBOXES |
1627                  XCAN_FLAG_CANFD_2 |
1628                  XCAN_FLAG_RX_FIFO_MULTI,
1629         .bittiming_const = &xcan_bittiming_const_canfd2,
1630         .btr_ts2_shift = XCAN_BTR_TS2_SHIFT_CANFD,
1631         .btr_sjw_shift = XCAN_BTR_SJW_SHIFT_CANFD,
1632         .bus_clk_name = "s_axi_aclk",
1633 };
1634
1635 /* Match table for OF platform binding */
1636 static const struct of_device_id xcan_of_match[] = {
1637         { .compatible = "xlnx,zynq-can-1.0", .data = &xcan_zynq_data },
1638         { .compatible = "xlnx,axi-can-1.00.a", .data = &xcan_axi_data },
1639         { .compatible = "xlnx,canfd-1.0", .data = &xcan_canfd_data },
1640         { .compatible = "xlnx,canfd-2.0", .data = &xcan_canfd2_data },
1641         { /* end of list */ },
1642 };
1643 MODULE_DEVICE_TABLE(of, xcan_of_match);
1644
1645 /**
1646  * xcan_probe - Platform registration call
1647  * @pdev:       Handle to the platform device structure
1648  *
1649  * This function does all the memory allocation and registration for the CAN
1650  * device.
1651  *
1652  * Return: 0 on success and failure value on error
1653  */
1654 static int xcan_probe(struct platform_device *pdev)
1655 {
1656         struct resource *res; /* IO mem resources */
1657         struct net_device *ndev;
1658         struct xcan_priv *priv;
1659         const struct of_device_id *of_id;
1660         const struct xcan_devtype_data *devtype = &xcan_axi_data;
1661         void __iomem *addr;
1662         int ret;
1663         int rx_max, tx_max;
1664         int hw_tx_max, hw_rx_max;
1665         const char *hw_tx_max_property;
1666
1667         /* Get the virtual base address for the device */
1668         res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1669         addr = devm_ioremap_resource(&pdev->dev, res);
1670         if (IS_ERR(addr)) {
1671                 ret = PTR_ERR(addr);
1672                 goto err;
1673         }
1674
1675         of_id = of_match_device(xcan_of_match, &pdev->dev);
1676         if (of_id && of_id->data)
1677                 devtype = of_id->data;
1678
1679         hw_tx_max_property = devtype->flags & XCAN_FLAG_TX_MAILBOXES ?
1680                              "tx-mailbox-count" : "tx-fifo-depth";
1681
1682         ret = of_property_read_u32(pdev->dev.of_node, hw_tx_max_property,
1683                                    &hw_tx_max);
1684         if (ret < 0) {
1685                 dev_err(&pdev->dev, "missing %s property\n",
1686                         hw_tx_max_property);
1687                 goto err;
1688         }
1689
1690         ret = of_property_read_u32(pdev->dev.of_node, "rx-fifo-depth",
1691                                    &hw_rx_max);
1692         if (ret < 0) {
1693                 dev_err(&pdev->dev,
1694                         "missing rx-fifo-depth property (mailbox mode is not supported)\n");
1695                 goto err;
1696         }
1697
1698         /* With TX FIFO:
1699          *
1700          * There is no way to directly figure out how many frames have been
1701          * sent when the TXOK interrupt is processed. If TXFEMP
1702          * is supported, we can have 2 frames in the FIFO and use TXFEMP
1703          * to determine if 1 or 2 frames have been sent.
1704          * Theoretically we should be able to use TXFWMEMP to determine up
1705          * to 3 frames, but it seems that after putting a second frame in the
1706          * FIFO, with watermark at 2 frames, it can happen that TXFWMEMP (less
1707          * than 2 frames in FIFO) is set anyway with no TXOK (a frame was
1708          * sent), which is not a sensible state - possibly TXFWMEMP is not
1709          * completely synchronized with the rest of the bits?
1710          *
1711          * With TX mailboxes:
1712          *
1713          * HW sends frames in CAN ID priority order. To preserve FIFO ordering
1714          * we submit frames one at a time.
1715          */
1716         if (!(devtype->flags & XCAN_FLAG_TX_MAILBOXES) &&
1717             (devtype->flags & XCAN_FLAG_TXFEMP))
1718                 tx_max = min(hw_tx_max, 2);
1719         else
1720                 tx_max = 1;
1721
1722         rx_max = hw_rx_max;
1723
1724         /* Create a CAN device instance */
1725         ndev = alloc_candev(sizeof(struct xcan_priv), tx_max);
1726         if (!ndev)
1727                 return -ENOMEM;
1728
1729         priv = netdev_priv(ndev);
1730         priv->dev = &pdev->dev;
1731         priv->can.bittiming_const = devtype->bittiming_const;
1732         priv->can.do_set_mode = xcan_do_set_mode;
1733         priv->can.do_get_berr_counter = xcan_get_berr_counter;
1734         priv->can.ctrlmode_supported = CAN_CTRLMODE_LOOPBACK |
1735                                         CAN_CTRLMODE_BERR_REPORTING;
1736
1737         if (devtype->cantype == XAXI_CANFD)
1738                 priv->can.data_bittiming_const =
1739                         &xcan_data_bittiming_const_canfd;
1740
1741         if (devtype->cantype == XAXI_CANFD_2_0)
1742                 priv->can.data_bittiming_const =
1743                         &xcan_data_bittiming_const_canfd2;
1744
1745         if (devtype->cantype == XAXI_CANFD ||
1746             devtype->cantype == XAXI_CANFD_2_0)
1747                 priv->can.ctrlmode_supported |= CAN_CTRLMODE_FD;
1748
1749         priv->reg_base = addr;
1750         priv->tx_max = tx_max;
1751         priv->devtype = *devtype;
1752         spin_lock_init(&priv->tx_lock);
1753
1754         /* Get IRQ for the device */
1755         ndev->irq = platform_get_irq(pdev, 0);
1756         ndev->flags |= IFF_ECHO;        /* We support local echo */
1757
1758         platform_set_drvdata(pdev, ndev);
1759         SET_NETDEV_DEV(ndev, &pdev->dev);
1760         ndev->netdev_ops = &xcan_netdev_ops;
1761
1762         /* Getting the CAN can_clk info */
1763         priv->can_clk = devm_clk_get(&pdev->dev, "can_clk");
1764         if (IS_ERR(priv->can_clk)) {
1765                 if (PTR_ERR(priv->can_clk) != -EPROBE_DEFER)
1766                         dev_err(&pdev->dev, "Device clock not found.\n");
1767                 ret = PTR_ERR(priv->can_clk);
1768                 goto err_free;
1769         }
1770
1771         priv->bus_clk = devm_clk_get(&pdev->dev, devtype->bus_clk_name);
1772         if (IS_ERR(priv->bus_clk)) {
1773                 dev_err(&pdev->dev, "bus clock not found\n");
1774                 ret = PTR_ERR(priv->bus_clk);
1775                 goto err_free;
1776         }
1777
1778         priv->write_reg = xcan_write_reg_le;
1779         priv->read_reg = xcan_read_reg_le;
1780
1781         pm_runtime_enable(&pdev->dev);
1782         ret = pm_runtime_get_sync(&pdev->dev);
1783         if (ret < 0) {
1784                 netdev_err(ndev, "%s: pm_runtime_get failed(%d)\n",
1785                            __func__, ret);
1786                 goto err_pmdisable;
1787         }
1788
1789         if (priv->read_reg(priv, XCAN_SR_OFFSET) != XCAN_SR_CONFIG_MASK) {
1790                 priv->write_reg = xcan_write_reg_be;
1791                 priv->read_reg = xcan_read_reg_be;
1792         }
1793
1794         priv->can.clock.freq = clk_get_rate(priv->can_clk);
1795
1796         netif_napi_add(ndev, &priv->napi, xcan_rx_poll, rx_max);
1797
1798         ret = register_candev(ndev);
1799         if (ret) {
1800                 dev_err(&pdev->dev, "fail to register failed (err=%d)\n", ret);
1801                 goto err_disableclks;
1802         }
1803
1804         devm_can_led_init(ndev);
1805
1806         pm_runtime_put(&pdev->dev);
1807
1808         if (priv->devtype.flags & XCAN_FLAG_CANFD_2) {
1809                 priv->write_reg(priv, XCAN_AFR_2_ID_OFFSET, 0x00000000);
1810                 priv->write_reg(priv, XCAN_AFR_2_MASK_OFFSET, 0x00000000);
1811         }
1812
1813         netdev_dbg(ndev, "reg_base=0x%p irq=%d clock=%d, tx buffers: actual %d, using %d\n",
1814                    priv->reg_base, ndev->irq, priv->can.clock.freq,
1815                    hw_tx_max, priv->tx_max);
1816
1817         return 0;
1818
1819 err_disableclks:
1820         pm_runtime_put(priv->dev);
1821 err_pmdisable:
1822         pm_runtime_disable(&pdev->dev);
1823 err_free:
1824         free_candev(ndev);
1825 err:
1826         return ret;
1827 }
1828
1829 /**
1830  * xcan_remove - Unregister the device after releasing the resources
1831  * @pdev:       Handle to the platform device structure
1832  *
1833  * This function frees all the resources allocated to the device.
1834  * Return: 0 always
1835  */
1836 static int xcan_remove(struct platform_device *pdev)
1837 {
1838         struct net_device *ndev = platform_get_drvdata(pdev);
1839         struct xcan_priv *priv = netdev_priv(ndev);
1840
1841         unregister_candev(ndev);
1842         pm_runtime_disable(&pdev->dev);
1843         netif_napi_del(&priv->napi);
1844         free_candev(ndev);
1845
1846         return 0;
1847 }
1848
1849 static struct platform_driver xcan_driver = {
1850         .probe = xcan_probe,
1851         .remove = xcan_remove,
1852         .driver = {
1853                 .name = DRIVER_NAME,
1854                 .pm = &xcan_dev_pm_ops,
1855                 .of_match_table = xcan_of_match,
1856         },
1857 };
1858
1859 module_platform_driver(xcan_driver);
1860
1861 MODULE_LICENSE("GPL");
1862 MODULE_AUTHOR("Xilinx Inc");
1863 MODULE_DESCRIPTION("Xilinx CAN interface");