Linux-libre 5.4-rc7-gnu
[librecmc/linux-libre.git] / drivers / net / can / rx-offload.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (c) 2014 David Jander, Protonic Holland
4  * Copyright (C) 2014-2017 Pengutronix, Marc Kleine-Budde <kernel@pengutronix.de>
5  */
6
7 #include <linux/can/dev.h>
8 #include <linux/can/rx-offload.h>
9
10 struct can_rx_offload_cb {
11         u32 timestamp;
12 };
13
14 static inline struct can_rx_offload_cb *can_rx_offload_get_cb(struct sk_buff *skb)
15 {
16         BUILD_BUG_ON(sizeof(struct can_rx_offload_cb) > sizeof(skb->cb));
17
18         return (struct can_rx_offload_cb *)skb->cb;
19 }
20
21 static inline bool can_rx_offload_le(struct can_rx_offload *offload, unsigned int a, unsigned int b)
22 {
23         if (offload->inc)
24                 return a <= b;
25         else
26                 return a >= b;
27 }
28
29 static inline unsigned int can_rx_offload_inc(struct can_rx_offload *offload, unsigned int *val)
30 {
31         if (offload->inc)
32                 return (*val)++;
33         else
34                 return (*val)--;
35 }
36
37 static int can_rx_offload_napi_poll(struct napi_struct *napi, int quota)
38 {
39         struct can_rx_offload *offload = container_of(napi, struct can_rx_offload, napi);
40         struct net_device *dev = offload->dev;
41         struct net_device_stats *stats = &dev->stats;
42         struct sk_buff *skb;
43         int work_done = 0;
44
45         while ((work_done < quota) &&
46                (skb = skb_dequeue(&offload->skb_queue))) {
47                 struct can_frame *cf = (struct can_frame *)skb->data;
48
49                 work_done++;
50                 stats->rx_packets++;
51                 stats->rx_bytes += cf->can_dlc;
52                 netif_receive_skb(skb);
53         }
54
55         if (work_done < quota) {
56                 napi_complete_done(napi, work_done);
57
58                 /* Check if there was another interrupt */
59                 if (!skb_queue_empty(&offload->skb_queue))
60                         napi_reschedule(&offload->napi);
61         }
62
63         can_led_event(offload->dev, CAN_LED_EVENT_RX);
64
65         return work_done;
66 }
67
68 static inline void __skb_queue_add_sort(struct sk_buff_head *head, struct sk_buff *new,
69                                         int (*compare)(struct sk_buff *a, struct sk_buff *b))
70 {
71         struct sk_buff *pos, *insert = NULL;
72
73         skb_queue_reverse_walk(head, pos) {
74                 const struct can_rx_offload_cb *cb_pos, *cb_new;
75
76                 cb_pos = can_rx_offload_get_cb(pos);
77                 cb_new = can_rx_offload_get_cb(new);
78
79                 netdev_dbg(new->dev,
80                            "%s: pos=0x%08x, new=0x%08x, diff=%10d, queue_len=%d\n",
81                            __func__,
82                            cb_pos->timestamp, cb_new->timestamp,
83                            cb_new->timestamp - cb_pos->timestamp,
84                            skb_queue_len(head));
85
86                 if (compare(pos, new) < 0)
87                         continue;
88                 insert = pos;
89                 break;
90         }
91         if (!insert)
92                 __skb_queue_head(head, new);
93         else
94                 __skb_queue_after(head, insert, new);
95 }
96
97 static int can_rx_offload_compare(struct sk_buff *a, struct sk_buff *b)
98 {
99         const struct can_rx_offload_cb *cb_a, *cb_b;
100
101         cb_a = can_rx_offload_get_cb(a);
102         cb_b = can_rx_offload_get_cb(b);
103
104         /* Substract two u32 and return result as int, to keep
105          * difference steady around the u32 overflow.
106          */
107         return cb_b->timestamp - cb_a->timestamp;
108 }
109
110 /**
111  * can_rx_offload_offload_one() - Read one CAN frame from HW
112  * @offload: pointer to rx_offload context
113  * @n: number of mailbox to read
114  *
115  * The task of this function is to read a CAN frame from mailbox @n
116  * from the device and return the mailbox's content as a struct
117  * sk_buff.
118  *
119  * If the struct can_rx_offload::skb_queue exceeds the maximal queue
120  * length (struct can_rx_offload::skb_queue_len_max) or no skb can be
121  * allocated, the mailbox contents is discarded by reading it into an
122  * overflow buffer. This way the mailbox is marked as free by the
123  * driver.
124  *
125  * Return: A pointer to skb containing the CAN frame on success.
126  *
127  *         NULL if the mailbox @n is empty.
128  *
129  *         ERR_PTR() in case of an error
130  */
131 static struct sk_buff *
132 can_rx_offload_offload_one(struct can_rx_offload *offload, unsigned int n)
133 {
134         struct sk_buff *skb = NULL, *skb_error = NULL;
135         struct can_rx_offload_cb *cb;
136         struct can_frame *cf;
137         int ret;
138
139         if (likely(skb_queue_len(&offload->skb_queue) <
140                    offload->skb_queue_len_max)) {
141                 skb = alloc_can_skb(offload->dev, &cf);
142                 if (unlikely(!skb))
143                         skb_error = ERR_PTR(-ENOMEM);   /* skb alloc failed */
144         } else {
145                 skb_error = ERR_PTR(-ENOBUFS);          /* skb_queue is full */
146         }
147
148         /* If queue is full or skb not available, drop by reading into
149          * overflow buffer.
150          */
151         if (unlikely(skb_error)) {
152                 struct can_frame cf_overflow;
153                 u32 timestamp;
154
155                 ret = offload->mailbox_read(offload, &cf_overflow,
156                                             &timestamp, n);
157
158                 /* Mailbox was empty. */
159                 if (unlikely(!ret))
160                         return NULL;
161
162                 /* Mailbox has been read and we're dropping it or
163                  * there was a problem reading the mailbox.
164                  *
165                  * Increment error counters in any case.
166                  */
167                 offload->dev->stats.rx_dropped++;
168                 offload->dev->stats.rx_fifo_errors++;
169
170                 /* There was a problem reading the mailbox, propagate
171                  * error value.
172                  */
173                 if (unlikely(ret < 0))
174                         return ERR_PTR(ret);
175
176                 return skb_error;
177         }
178
179         cb = can_rx_offload_get_cb(skb);
180         ret = offload->mailbox_read(offload, cf, &cb->timestamp, n);
181
182         /* Mailbox was empty. */
183         if (unlikely(!ret)) {
184                 kfree_skb(skb);
185                 return NULL;
186         }
187
188         /* There was a problem reading the mailbox, propagate error value. */
189         if (unlikely(ret < 0)) {
190                 kfree_skb(skb);
191
192                 offload->dev->stats.rx_dropped++;
193                 offload->dev->stats.rx_fifo_errors++;
194
195                 return ERR_PTR(ret);
196         }
197
198         /* Mailbox was read. */
199         return skb;
200 }
201
202 int can_rx_offload_irq_offload_timestamp(struct can_rx_offload *offload, u64 pending)
203 {
204         struct sk_buff_head skb_queue;
205         unsigned int i;
206
207         __skb_queue_head_init(&skb_queue);
208
209         for (i = offload->mb_first;
210              can_rx_offload_le(offload, i, offload->mb_last);
211              can_rx_offload_inc(offload, &i)) {
212                 struct sk_buff *skb;
213
214                 if (!(pending & BIT_ULL(i)))
215                         continue;
216
217                 skb = can_rx_offload_offload_one(offload, i);
218                 if (IS_ERR_OR_NULL(skb))
219                         continue;
220
221                 __skb_queue_add_sort(&skb_queue, skb, can_rx_offload_compare);
222         }
223
224         if (!skb_queue_empty(&skb_queue)) {
225                 unsigned long flags;
226                 u32 queue_len;
227
228                 spin_lock_irqsave(&offload->skb_queue.lock, flags);
229                 skb_queue_splice_tail(&skb_queue, &offload->skb_queue);
230                 spin_unlock_irqrestore(&offload->skb_queue.lock, flags);
231
232                 if ((queue_len = skb_queue_len(&offload->skb_queue)) >
233                     (offload->skb_queue_len_max / 8))
234                         netdev_dbg(offload->dev, "%s: queue_len=%d\n",
235                                    __func__, queue_len);
236
237                 can_rx_offload_schedule(offload);
238         }
239
240         return skb_queue_len(&skb_queue);
241 }
242 EXPORT_SYMBOL_GPL(can_rx_offload_irq_offload_timestamp);
243
244 int can_rx_offload_irq_offload_fifo(struct can_rx_offload *offload)
245 {
246         struct sk_buff *skb;
247         int received = 0;
248
249         while (1) {
250                 skb = can_rx_offload_offload_one(offload, 0);
251                 if (IS_ERR(skb))
252                         continue;
253                 if (!skb)
254                         break;
255
256                 skb_queue_tail(&offload->skb_queue, skb);
257                 received++;
258         }
259
260         if (received)
261                 can_rx_offload_schedule(offload);
262
263         return received;
264 }
265 EXPORT_SYMBOL_GPL(can_rx_offload_irq_offload_fifo);
266
267 int can_rx_offload_queue_sorted(struct can_rx_offload *offload,
268                                 struct sk_buff *skb, u32 timestamp)
269 {
270         struct can_rx_offload_cb *cb;
271         unsigned long flags;
272
273         if (skb_queue_len(&offload->skb_queue) >
274             offload->skb_queue_len_max) {
275                 kfree_skb(skb);
276                 return -ENOBUFS;
277         }
278
279         cb = can_rx_offload_get_cb(skb);
280         cb->timestamp = timestamp;
281
282         spin_lock_irqsave(&offload->skb_queue.lock, flags);
283         __skb_queue_add_sort(&offload->skb_queue, skb, can_rx_offload_compare);
284         spin_unlock_irqrestore(&offload->skb_queue.lock, flags);
285
286         can_rx_offload_schedule(offload);
287
288         return 0;
289 }
290 EXPORT_SYMBOL_GPL(can_rx_offload_queue_sorted);
291
292 unsigned int can_rx_offload_get_echo_skb(struct can_rx_offload *offload,
293                                          unsigned int idx, u32 timestamp)
294 {
295         struct net_device *dev = offload->dev;
296         struct net_device_stats *stats = &dev->stats;
297         struct sk_buff *skb;
298         u8 len;
299         int err;
300
301         skb = __can_get_echo_skb(dev, idx, &len);
302         if (!skb)
303                 return 0;
304
305         err = can_rx_offload_queue_sorted(offload, skb, timestamp);
306         if (err) {
307                 stats->rx_errors++;
308                 stats->tx_fifo_errors++;
309         }
310
311         return len;
312 }
313 EXPORT_SYMBOL_GPL(can_rx_offload_get_echo_skb);
314
315 int can_rx_offload_queue_tail(struct can_rx_offload *offload,
316                               struct sk_buff *skb)
317 {
318         if (skb_queue_len(&offload->skb_queue) >
319             offload->skb_queue_len_max) {
320                 kfree_skb(skb);
321                 return -ENOBUFS;
322         }
323
324         skb_queue_tail(&offload->skb_queue, skb);
325         can_rx_offload_schedule(offload);
326
327         return 0;
328 }
329 EXPORT_SYMBOL_GPL(can_rx_offload_queue_tail);
330
331 static int can_rx_offload_init_queue(struct net_device *dev, struct can_rx_offload *offload, unsigned int weight)
332 {
333         offload->dev = dev;
334
335         /* Limit queue len to 4x the weight (rounted to next power of two) */
336         offload->skb_queue_len_max = 2 << fls(weight);
337         offload->skb_queue_len_max *= 4;
338         skb_queue_head_init(&offload->skb_queue);
339
340         can_rx_offload_reset(offload);
341         netif_napi_add(dev, &offload->napi, can_rx_offload_napi_poll, weight);
342
343         dev_dbg(dev->dev.parent, "%s: skb_queue_len_max=%d\n",
344                 __func__, offload->skb_queue_len_max);
345
346         return 0;
347 }
348
349 int can_rx_offload_add_timestamp(struct net_device *dev, struct can_rx_offload *offload)
350 {
351         unsigned int weight;
352
353         if (offload->mb_first > BITS_PER_LONG_LONG ||
354             offload->mb_last > BITS_PER_LONG_LONG || !offload->mailbox_read)
355                 return -EINVAL;
356
357         if (offload->mb_first < offload->mb_last) {
358                 offload->inc = true;
359                 weight = offload->mb_last - offload->mb_first;
360         } else {
361                 offload->inc = false;
362                 weight = offload->mb_first - offload->mb_last;
363         }
364
365         return can_rx_offload_init_queue(dev, offload, weight);
366 }
367 EXPORT_SYMBOL_GPL(can_rx_offload_add_timestamp);
368
369 int can_rx_offload_add_fifo(struct net_device *dev, struct can_rx_offload *offload, unsigned int weight)
370 {
371         if (!offload->mailbox_read)
372                 return -EINVAL;
373
374         return can_rx_offload_init_queue(dev, offload, weight);
375 }
376 EXPORT_SYMBOL_GPL(can_rx_offload_add_fifo);
377
378 void can_rx_offload_enable(struct can_rx_offload *offload)
379 {
380         can_rx_offload_reset(offload);
381         napi_enable(&offload->napi);
382 }
383 EXPORT_SYMBOL_GPL(can_rx_offload_enable);
384
385 void can_rx_offload_del(struct can_rx_offload *offload)
386 {
387         netif_napi_del(&offload->napi);
388         skb_queue_purge(&offload->skb_queue);
389 }
390 EXPORT_SYMBOL_GPL(can_rx_offload_del);
391
392 void can_rx_offload_reset(struct can_rx_offload *offload)
393 {
394 }
395 EXPORT_SYMBOL_GPL(can_rx_offload_reset);