Linux-libre 5.4-rc7-gnu
[librecmc/linux-libre.git] / drivers / net / can / m_can / m_can.c
1 // SPDX-License-Identifier: GPL-2.0
2 // CAN bus driver for Bosch M_CAN controller
3 // Copyright (C) 2014 Freescale Semiconductor, Inc.
4 //      Dong Aisheng <b29396@freescale.com>
5 // Copyright (C) 2018-19 Texas Instruments Incorporated - http://www.ti.com/
6
7 /* Bosch M_CAN user manual can be obtained from:
8  * http://www.bosch-semiconductors.de/media/pdf_1/ipmodules_1/m_can/
9  * mcan_users_manual_v302.pdf
10  */
11
12 #include <linux/interrupt.h>
13 #include <linux/io.h>
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/netdevice.h>
17 #include <linux/of.h>
18 #include <linux/of_device.h>
19 #include <linux/platform_device.h>
20 #include <linux/pm_runtime.h>
21 #include <linux/iopoll.h>
22 #include <linux/can/dev.h>
23 #include <linux/pinctrl/consumer.h>
24
25 #include "m_can.h"
26
27 /* registers definition */
28 enum m_can_reg {
29         M_CAN_CREL      = 0x0,
30         M_CAN_ENDN      = 0x4,
31         M_CAN_CUST      = 0x8,
32         M_CAN_DBTP      = 0xc,
33         M_CAN_TEST      = 0x10,
34         M_CAN_RWD       = 0x14,
35         M_CAN_CCCR      = 0x18,
36         M_CAN_NBTP      = 0x1c,
37         M_CAN_TSCC      = 0x20,
38         M_CAN_TSCV      = 0x24,
39         M_CAN_TOCC      = 0x28,
40         M_CAN_TOCV      = 0x2c,
41         M_CAN_ECR       = 0x40,
42         M_CAN_PSR       = 0x44,
43 /* TDCR Register only available for version >=3.1.x */
44         M_CAN_TDCR      = 0x48,
45         M_CAN_IR        = 0x50,
46         M_CAN_IE        = 0x54,
47         M_CAN_ILS       = 0x58,
48         M_CAN_ILE       = 0x5c,
49         M_CAN_GFC       = 0x80,
50         M_CAN_SIDFC     = 0x84,
51         M_CAN_XIDFC     = 0x88,
52         M_CAN_XIDAM     = 0x90,
53         M_CAN_HPMS      = 0x94,
54         M_CAN_NDAT1     = 0x98,
55         M_CAN_NDAT2     = 0x9c,
56         M_CAN_RXF0C     = 0xa0,
57         M_CAN_RXF0S     = 0xa4,
58         M_CAN_RXF0A     = 0xa8,
59         M_CAN_RXBC      = 0xac,
60         M_CAN_RXF1C     = 0xb0,
61         M_CAN_RXF1S     = 0xb4,
62         M_CAN_RXF1A     = 0xb8,
63         M_CAN_RXESC     = 0xbc,
64         M_CAN_TXBC      = 0xc0,
65         M_CAN_TXFQS     = 0xc4,
66         M_CAN_TXESC     = 0xc8,
67         M_CAN_TXBRP     = 0xcc,
68         M_CAN_TXBAR     = 0xd0,
69         M_CAN_TXBCR     = 0xd4,
70         M_CAN_TXBTO     = 0xd8,
71         M_CAN_TXBCF     = 0xdc,
72         M_CAN_TXBTIE    = 0xe0,
73         M_CAN_TXBCIE    = 0xe4,
74         M_CAN_TXEFC     = 0xf0,
75         M_CAN_TXEFS     = 0xf4,
76         M_CAN_TXEFA     = 0xf8,
77 };
78
79 /* napi related */
80 #define M_CAN_NAPI_WEIGHT       64
81
82 /* message ram configuration data length */
83 #define MRAM_CFG_LEN    8
84
85 /* Core Release Register (CREL) */
86 #define CREL_REL_SHIFT          28
87 #define CREL_REL_MASK           (0xF << CREL_REL_SHIFT)
88 #define CREL_STEP_SHIFT         24
89 #define CREL_STEP_MASK          (0xF << CREL_STEP_SHIFT)
90 #define CREL_SUBSTEP_SHIFT      20
91 #define CREL_SUBSTEP_MASK       (0xF << CREL_SUBSTEP_SHIFT)
92
93 /* Data Bit Timing & Prescaler Register (DBTP) */
94 #define DBTP_TDC                BIT(23)
95 #define DBTP_DBRP_SHIFT         16
96 #define DBTP_DBRP_MASK          (0x1f << DBTP_DBRP_SHIFT)
97 #define DBTP_DTSEG1_SHIFT       8
98 #define DBTP_DTSEG1_MASK        (0x1f << DBTP_DTSEG1_SHIFT)
99 #define DBTP_DTSEG2_SHIFT       4
100 #define DBTP_DTSEG2_MASK        (0xf << DBTP_DTSEG2_SHIFT)
101 #define DBTP_DSJW_SHIFT         0
102 #define DBTP_DSJW_MASK          (0xf << DBTP_DSJW_SHIFT)
103
104 /* Transmitter Delay Compensation Register (TDCR) */
105 #define TDCR_TDCO_SHIFT         8
106 #define TDCR_TDCO_MASK          (0x7F << TDCR_TDCO_SHIFT)
107 #define TDCR_TDCF_SHIFT         0
108 #define TDCR_TDCF_MASK          (0x7F << TDCR_TDCF_SHIFT)
109
110 /* Test Register (TEST) */
111 #define TEST_LBCK               BIT(4)
112
113 /* CC Control Register(CCCR) */
114 #define CCCR_CMR_MASK           0x3
115 #define CCCR_CMR_SHIFT          10
116 #define CCCR_CMR_CANFD          0x1
117 #define CCCR_CMR_CANFD_BRS      0x2
118 #define CCCR_CMR_CAN            0x3
119 #define CCCR_CME_MASK           0x3
120 #define CCCR_CME_SHIFT          8
121 #define CCCR_CME_CAN            0
122 #define CCCR_CME_CANFD          0x1
123 #define CCCR_CME_CANFD_BRS      0x2
124 #define CCCR_TXP                BIT(14)
125 #define CCCR_TEST               BIT(7)
126 #define CCCR_MON                BIT(5)
127 #define CCCR_CSR                BIT(4)
128 #define CCCR_CSA                BIT(3)
129 #define CCCR_ASM                BIT(2)
130 #define CCCR_CCE                BIT(1)
131 #define CCCR_INIT               BIT(0)
132 #define CCCR_CANFD              0x10
133 /* for version >=3.1.x */
134 #define CCCR_EFBI               BIT(13)
135 #define CCCR_PXHD               BIT(12)
136 #define CCCR_BRSE               BIT(9)
137 #define CCCR_FDOE               BIT(8)
138 /* only for version >=3.2.x */
139 #define CCCR_NISO               BIT(15)
140
141 /* Nominal Bit Timing & Prescaler Register (NBTP) */
142 #define NBTP_NSJW_SHIFT         25
143 #define NBTP_NSJW_MASK          (0x7f << NBTP_NSJW_SHIFT)
144 #define NBTP_NBRP_SHIFT         16
145 #define NBTP_NBRP_MASK          (0x1ff << NBTP_NBRP_SHIFT)
146 #define NBTP_NTSEG1_SHIFT       8
147 #define NBTP_NTSEG1_MASK        (0xff << NBTP_NTSEG1_SHIFT)
148 #define NBTP_NTSEG2_SHIFT       0
149 #define NBTP_NTSEG2_MASK        (0x7f << NBTP_NTSEG2_SHIFT)
150
151 /* Error Counter Register(ECR) */
152 #define ECR_RP                  BIT(15)
153 #define ECR_REC_SHIFT           8
154 #define ECR_REC_MASK            (0x7f << ECR_REC_SHIFT)
155 #define ECR_TEC_SHIFT           0
156 #define ECR_TEC_MASK            0xff
157
158 /* Protocol Status Register(PSR) */
159 #define PSR_BO          BIT(7)
160 #define PSR_EW          BIT(6)
161 #define PSR_EP          BIT(5)
162 #define PSR_LEC_MASK    0x7
163
164 /* Interrupt Register(IR) */
165 #define IR_ALL_INT      0xffffffff
166
167 /* Renamed bits for versions > 3.1.x */
168 #define IR_ARA          BIT(29)
169 #define IR_PED          BIT(28)
170 #define IR_PEA          BIT(27)
171
172 /* Bits for version 3.0.x */
173 #define IR_STE          BIT(31)
174 #define IR_FOE          BIT(30)
175 #define IR_ACKE         BIT(29)
176 #define IR_BE           BIT(28)
177 #define IR_CRCE         BIT(27)
178 #define IR_WDI          BIT(26)
179 #define IR_BO           BIT(25)
180 #define IR_EW           BIT(24)
181 #define IR_EP           BIT(23)
182 #define IR_ELO          BIT(22)
183 #define IR_BEU          BIT(21)
184 #define IR_BEC          BIT(20)
185 #define IR_DRX          BIT(19)
186 #define IR_TOO          BIT(18)
187 #define IR_MRAF         BIT(17)
188 #define IR_TSW          BIT(16)
189 #define IR_TEFL         BIT(15)
190 #define IR_TEFF         BIT(14)
191 #define IR_TEFW         BIT(13)
192 #define IR_TEFN         BIT(12)
193 #define IR_TFE          BIT(11)
194 #define IR_TCF          BIT(10)
195 #define IR_TC           BIT(9)
196 #define IR_HPM          BIT(8)
197 #define IR_RF1L         BIT(7)
198 #define IR_RF1F         BIT(6)
199 #define IR_RF1W         BIT(5)
200 #define IR_RF1N         BIT(4)
201 #define IR_RF0L         BIT(3)
202 #define IR_RF0F         BIT(2)
203 #define IR_RF0W         BIT(1)
204 #define IR_RF0N         BIT(0)
205 #define IR_ERR_STATE    (IR_BO | IR_EW | IR_EP)
206
207 /* Interrupts for version 3.0.x */
208 #define IR_ERR_LEC_30X  (IR_STE | IR_FOE | IR_ACKE | IR_BE | IR_CRCE)
209 #define IR_ERR_BUS_30X  (IR_ERR_LEC_30X | IR_WDI | IR_ELO | IR_BEU | \
210                          IR_BEC | IR_TOO | IR_MRAF | IR_TSW | IR_TEFL | \
211                          IR_RF1L | IR_RF0L)
212 #define IR_ERR_ALL_30X  (IR_ERR_STATE | IR_ERR_BUS_30X)
213 /* Interrupts for version >= 3.1.x */
214 #define IR_ERR_LEC_31X  (IR_PED | IR_PEA)
215 #define IR_ERR_BUS_31X      (IR_ERR_LEC_31X | IR_WDI | IR_ELO | IR_BEU | \
216                          IR_BEC | IR_TOO | IR_MRAF | IR_TSW | IR_TEFL | \
217                          IR_RF1L | IR_RF0L)
218 #define IR_ERR_ALL_31X  (IR_ERR_STATE | IR_ERR_BUS_31X)
219
220 /* Interrupt Line Select (ILS) */
221 #define ILS_ALL_INT0    0x0
222 #define ILS_ALL_INT1    0xFFFFFFFF
223
224 /* Interrupt Line Enable (ILE) */
225 #define ILE_EINT1       BIT(1)
226 #define ILE_EINT0       BIT(0)
227
228 /* Rx FIFO 0/1 Configuration (RXF0C/RXF1C) */
229 #define RXFC_FWM_SHIFT  24
230 #define RXFC_FWM_MASK   (0x7f << RXFC_FWM_SHIFT)
231 #define RXFC_FS_SHIFT   16
232 #define RXFC_FS_MASK    (0x7f << RXFC_FS_SHIFT)
233
234 /* Rx FIFO 0/1 Status (RXF0S/RXF1S) */
235 #define RXFS_RFL        BIT(25)
236 #define RXFS_FF         BIT(24)
237 #define RXFS_FPI_SHIFT  16
238 #define RXFS_FPI_MASK   0x3f0000
239 #define RXFS_FGI_SHIFT  8
240 #define RXFS_FGI_MASK   0x3f00
241 #define RXFS_FFL_MASK   0x7f
242
243 /* Rx Buffer / FIFO Element Size Configuration (RXESC) */
244 #define M_CAN_RXESC_8BYTES      0x0
245 #define M_CAN_RXESC_64BYTES     0x777
246
247 /* Tx Buffer Configuration(TXBC) */
248 #define TXBC_NDTB_SHIFT         16
249 #define TXBC_NDTB_MASK          (0x3f << TXBC_NDTB_SHIFT)
250 #define TXBC_TFQS_SHIFT         24
251 #define TXBC_TFQS_MASK          (0x3f << TXBC_TFQS_SHIFT)
252
253 /* Tx FIFO/Queue Status (TXFQS) */
254 #define TXFQS_TFQF              BIT(21)
255 #define TXFQS_TFQPI_SHIFT       16
256 #define TXFQS_TFQPI_MASK        (0x1f << TXFQS_TFQPI_SHIFT)
257 #define TXFQS_TFGI_SHIFT        8
258 #define TXFQS_TFGI_MASK         (0x1f << TXFQS_TFGI_SHIFT)
259 #define TXFQS_TFFL_SHIFT        0
260 #define TXFQS_TFFL_MASK         (0x3f << TXFQS_TFFL_SHIFT)
261
262 /* Tx Buffer Element Size Configuration(TXESC) */
263 #define TXESC_TBDS_8BYTES       0x0
264 #define TXESC_TBDS_64BYTES      0x7
265
266 /* Tx Event FIFO Configuration (TXEFC) */
267 #define TXEFC_EFS_SHIFT         16
268 #define TXEFC_EFS_MASK          (0x3f << TXEFC_EFS_SHIFT)
269
270 /* Tx Event FIFO Status (TXEFS) */
271 #define TXEFS_TEFL              BIT(25)
272 #define TXEFS_EFF               BIT(24)
273 #define TXEFS_EFGI_SHIFT        8
274 #define TXEFS_EFGI_MASK         (0x1f << TXEFS_EFGI_SHIFT)
275 #define TXEFS_EFFL_SHIFT        0
276 #define TXEFS_EFFL_MASK         (0x3f << TXEFS_EFFL_SHIFT)
277
278 /* Tx Event FIFO Acknowledge (TXEFA) */
279 #define TXEFA_EFAI_SHIFT        0
280 #define TXEFA_EFAI_MASK         (0x1f << TXEFA_EFAI_SHIFT)
281
282 /* Message RAM Configuration (in bytes) */
283 #define SIDF_ELEMENT_SIZE       4
284 #define XIDF_ELEMENT_SIZE       8
285 #define RXF0_ELEMENT_SIZE       72
286 #define RXF1_ELEMENT_SIZE       72
287 #define RXB_ELEMENT_SIZE        72
288 #define TXE_ELEMENT_SIZE        8
289 #define TXB_ELEMENT_SIZE        72
290
291 /* Message RAM Elements */
292 #define M_CAN_FIFO_ID           0x0
293 #define M_CAN_FIFO_DLC          0x4
294 #define M_CAN_FIFO_DATA(n)      (0x8 + ((n) << 2))
295
296 /* Rx Buffer Element */
297 /* R0 */
298 #define RX_BUF_ESI              BIT(31)
299 #define RX_BUF_XTD              BIT(30)
300 #define RX_BUF_RTR              BIT(29)
301 /* R1 */
302 #define RX_BUF_ANMF             BIT(31)
303 #define RX_BUF_FDF              BIT(21)
304 #define RX_BUF_BRS              BIT(20)
305
306 /* Tx Buffer Element */
307 /* T0 */
308 #define TX_BUF_ESI              BIT(31)
309 #define TX_BUF_XTD              BIT(30)
310 #define TX_BUF_RTR              BIT(29)
311 /* T1 */
312 #define TX_BUF_EFC              BIT(23)
313 #define TX_BUF_FDF              BIT(21)
314 #define TX_BUF_BRS              BIT(20)
315 #define TX_BUF_MM_SHIFT         24
316 #define TX_BUF_MM_MASK          (0xff << TX_BUF_MM_SHIFT)
317
318 /* Tx event FIFO Element */
319 /* E1 */
320 #define TX_EVENT_MM_SHIFT       TX_BUF_MM_SHIFT
321 #define TX_EVENT_MM_MASK        (0xff << TX_EVENT_MM_SHIFT)
322
323 static inline u32 m_can_read(struct m_can_classdev *cdev, enum m_can_reg reg)
324 {
325         return cdev->ops->read_reg(cdev, reg);
326 }
327
328 static inline void m_can_write(struct m_can_classdev *cdev, enum m_can_reg reg,
329                                u32 val)
330 {
331         cdev->ops->write_reg(cdev, reg, val);
332 }
333
334 static u32 m_can_fifo_read(struct m_can_classdev *cdev,
335                            u32 fgi, unsigned int offset)
336 {
337         u32 addr_offset = cdev->mcfg[MRAM_RXF0].off + fgi * RXF0_ELEMENT_SIZE +
338                           offset;
339
340         return cdev->ops->read_fifo(cdev, addr_offset);
341 }
342
343 static void m_can_fifo_write(struct m_can_classdev *cdev,
344                              u32 fpi, unsigned int offset, u32 val)
345 {
346         u32 addr_offset = cdev->mcfg[MRAM_TXB].off + fpi * TXB_ELEMENT_SIZE +
347                           offset;
348
349         cdev->ops->write_fifo(cdev, addr_offset, val);
350 }
351
352 static inline void m_can_fifo_write_no_off(struct m_can_classdev *cdev,
353                                            u32 fpi, u32 val)
354 {
355         cdev->ops->write_fifo(cdev, fpi, val);
356 }
357
358 static u32 m_can_txe_fifo_read(struct m_can_classdev *cdev, u32 fgi, u32 offset)
359 {
360         u32 addr_offset = cdev->mcfg[MRAM_TXE].off + fgi * TXE_ELEMENT_SIZE +
361                           offset;
362
363         return cdev->ops->read_fifo(cdev, addr_offset);
364 }
365
366 static inline bool m_can_tx_fifo_full(struct m_can_classdev *cdev)
367 {
368                 return !!(m_can_read(cdev, M_CAN_TXFQS) & TXFQS_TFQF);
369 }
370
371 void m_can_config_endisable(struct m_can_classdev *cdev, bool enable)
372 {
373         u32 cccr = m_can_read(cdev, M_CAN_CCCR);
374         u32 timeout = 10;
375         u32 val = 0;
376
377         /* Clear the Clock stop request if it was set */
378         if (cccr & CCCR_CSR)
379                 cccr &= ~CCCR_CSR;
380
381         if (enable) {
382                 /* Clear the Clock stop request if it was set */
383                 if (cccr & CCCR_CSR)
384                         cccr &= ~CCCR_CSR;
385
386                 /* enable m_can configuration */
387                 m_can_write(cdev, M_CAN_CCCR, cccr | CCCR_INIT);
388                 udelay(5);
389                 /* CCCR.CCE can only be set/reset while CCCR.INIT = '1' */
390                 m_can_write(cdev, M_CAN_CCCR, cccr | CCCR_INIT | CCCR_CCE);
391         } else {
392                 m_can_write(cdev, M_CAN_CCCR, cccr & ~(CCCR_INIT | CCCR_CCE));
393         }
394
395         /* there's a delay for module initialization */
396         if (enable)
397                 val = CCCR_INIT | CCCR_CCE;
398
399         while ((m_can_read(cdev, M_CAN_CCCR) & (CCCR_INIT | CCCR_CCE)) != val) {
400                 if (timeout == 0) {
401                         netdev_warn(cdev->net, "Failed to init module\n");
402                         return;
403                 }
404                 timeout--;
405                 udelay(1);
406         }
407 }
408
409 static inline void m_can_enable_all_interrupts(struct m_can_classdev *cdev)
410 {
411         /* Only interrupt line 0 is used in this driver */
412         m_can_write(cdev, M_CAN_ILE, ILE_EINT0);
413 }
414
415 static inline void m_can_disable_all_interrupts(struct m_can_classdev *cdev)
416 {
417         m_can_write(cdev, M_CAN_ILE, 0x0);
418 }
419
420 static void m_can_clean(struct net_device *net)
421 {
422         struct m_can_classdev *cdev = netdev_priv(net);
423
424         if (cdev->tx_skb) {
425                 int putidx = 0;
426
427                 net->stats.tx_errors++;
428                 if (cdev->version > 30)
429                         putidx = ((m_can_read(cdev, M_CAN_TXFQS) &
430                                    TXFQS_TFQPI_MASK) >> TXFQS_TFQPI_SHIFT);
431
432                 can_free_echo_skb(cdev->net, putidx);
433                 cdev->tx_skb = NULL;
434         }
435 }
436
437 static void m_can_read_fifo(struct net_device *dev, u32 rxfs)
438 {
439         struct net_device_stats *stats = &dev->stats;
440         struct m_can_classdev *cdev = netdev_priv(dev);
441         struct canfd_frame *cf;
442         struct sk_buff *skb;
443         u32 id, fgi, dlc;
444         int i;
445
446         /* calculate the fifo get index for where to read data */
447         fgi = (rxfs & RXFS_FGI_MASK) >> RXFS_FGI_SHIFT;
448         dlc = m_can_fifo_read(cdev, fgi, M_CAN_FIFO_DLC);
449         if (dlc & RX_BUF_FDF)
450                 skb = alloc_canfd_skb(dev, &cf);
451         else
452                 skb = alloc_can_skb(dev, (struct can_frame **)&cf);
453         if (!skb) {
454                 stats->rx_dropped++;
455                 return;
456         }
457
458         if (dlc & RX_BUF_FDF)
459                 cf->len = can_dlc2len((dlc >> 16) & 0x0F);
460         else
461                 cf->len = get_can_dlc((dlc >> 16) & 0x0F);
462
463         id = m_can_fifo_read(cdev, fgi, M_CAN_FIFO_ID);
464         if (id & RX_BUF_XTD)
465                 cf->can_id = (id & CAN_EFF_MASK) | CAN_EFF_FLAG;
466         else
467                 cf->can_id = (id >> 18) & CAN_SFF_MASK;
468
469         if (id & RX_BUF_ESI) {
470                 cf->flags |= CANFD_ESI;
471                 netdev_dbg(dev, "ESI Error\n");
472         }
473
474         if (!(dlc & RX_BUF_FDF) && (id & RX_BUF_RTR)) {
475                 cf->can_id |= CAN_RTR_FLAG;
476         } else {
477                 if (dlc & RX_BUF_BRS)
478                         cf->flags |= CANFD_BRS;
479
480                 for (i = 0; i < cf->len; i += 4)
481                         *(u32 *)(cf->data + i) =
482                                 m_can_fifo_read(cdev, fgi,
483                                                 M_CAN_FIFO_DATA(i / 4));
484         }
485
486         /* acknowledge rx fifo 0 */
487         m_can_write(cdev, M_CAN_RXF0A, fgi);
488
489         stats->rx_packets++;
490         stats->rx_bytes += cf->len;
491
492         netif_receive_skb(skb);
493 }
494
495 static int m_can_do_rx_poll(struct net_device *dev, int quota)
496 {
497         struct m_can_classdev *cdev = netdev_priv(dev);
498         u32 pkts = 0;
499         u32 rxfs;
500
501         rxfs = m_can_read(cdev, M_CAN_RXF0S);
502         if (!(rxfs & RXFS_FFL_MASK)) {
503                 netdev_dbg(dev, "no messages in fifo0\n");
504                 return 0;
505         }
506
507         while ((rxfs & RXFS_FFL_MASK) && (quota > 0)) {
508                 if (rxfs & RXFS_RFL)
509                         netdev_warn(dev, "Rx FIFO 0 Message Lost\n");
510
511                 m_can_read_fifo(dev, rxfs);
512
513                 quota--;
514                 pkts++;
515                 rxfs = m_can_read(cdev, M_CAN_RXF0S);
516         }
517
518         if (pkts)
519                 can_led_event(dev, CAN_LED_EVENT_RX);
520
521         return pkts;
522 }
523
524 static int m_can_handle_lost_msg(struct net_device *dev)
525 {
526         struct net_device_stats *stats = &dev->stats;
527         struct sk_buff *skb;
528         struct can_frame *frame;
529
530         netdev_err(dev, "msg lost in rxf0\n");
531
532         stats->rx_errors++;
533         stats->rx_over_errors++;
534
535         skb = alloc_can_err_skb(dev, &frame);
536         if (unlikely(!skb))
537                 return 0;
538
539         frame->can_id |= CAN_ERR_CRTL;
540         frame->data[1] = CAN_ERR_CRTL_RX_OVERFLOW;
541
542         netif_receive_skb(skb);
543
544         return 1;
545 }
546
547 static int m_can_handle_lec_err(struct net_device *dev,
548                                 enum m_can_lec_type lec_type)
549 {
550         struct m_can_classdev *cdev = netdev_priv(dev);
551         struct net_device_stats *stats = &dev->stats;
552         struct can_frame *cf;
553         struct sk_buff *skb;
554
555         cdev->can.can_stats.bus_error++;
556         stats->rx_errors++;
557
558         /* propagate the error condition to the CAN stack */
559         skb = alloc_can_err_skb(dev, &cf);
560         if (unlikely(!skb))
561                 return 0;
562
563         /* check for 'last error code' which tells us the
564          * type of the last error to occur on the CAN bus
565          */
566         cf->can_id |= CAN_ERR_PROT | CAN_ERR_BUSERROR;
567
568         switch (lec_type) {
569         case LEC_STUFF_ERROR:
570                 netdev_dbg(dev, "stuff error\n");
571                 cf->data[2] |= CAN_ERR_PROT_STUFF;
572                 break;
573         case LEC_FORM_ERROR:
574                 netdev_dbg(dev, "form error\n");
575                 cf->data[2] |= CAN_ERR_PROT_FORM;
576                 break;
577         case LEC_ACK_ERROR:
578                 netdev_dbg(dev, "ack error\n");
579                 cf->data[3] = CAN_ERR_PROT_LOC_ACK;
580                 break;
581         case LEC_BIT1_ERROR:
582                 netdev_dbg(dev, "bit1 error\n");
583                 cf->data[2] |= CAN_ERR_PROT_BIT1;
584                 break;
585         case LEC_BIT0_ERROR:
586                 netdev_dbg(dev, "bit0 error\n");
587                 cf->data[2] |= CAN_ERR_PROT_BIT0;
588                 break;
589         case LEC_CRC_ERROR:
590                 netdev_dbg(dev, "CRC error\n");
591                 cf->data[3] = CAN_ERR_PROT_LOC_CRC_SEQ;
592                 break;
593         default:
594                 break;
595         }
596
597         stats->rx_packets++;
598         stats->rx_bytes += cf->can_dlc;
599         netif_receive_skb(skb);
600
601         return 1;
602 }
603
604 static int __m_can_get_berr_counter(const struct net_device *dev,
605                                     struct can_berr_counter *bec)
606 {
607         struct m_can_classdev *cdev = netdev_priv(dev);
608         unsigned int ecr;
609
610         ecr = m_can_read(cdev, M_CAN_ECR);
611         bec->rxerr = (ecr & ECR_REC_MASK) >> ECR_REC_SHIFT;
612         bec->txerr = (ecr & ECR_TEC_MASK) >> ECR_TEC_SHIFT;
613
614         return 0;
615 }
616
617 static int m_can_clk_start(struct m_can_classdev *cdev)
618 {
619         int err;
620
621         if (cdev->pm_clock_support == 0)
622                 return 0;
623
624         err = pm_runtime_get_sync(cdev->dev);
625         if (err < 0) {
626                 pm_runtime_put_noidle(cdev->dev);
627                 return err;
628         }
629
630         return 0;
631 }
632
633 static void m_can_clk_stop(struct m_can_classdev *cdev)
634 {
635         if (cdev->pm_clock_support)
636                 pm_runtime_put_sync(cdev->dev);
637 }
638
639 static int m_can_get_berr_counter(const struct net_device *dev,
640                                   struct can_berr_counter *bec)
641 {
642         struct m_can_classdev *cdev = netdev_priv(dev);
643         int err;
644
645         err = m_can_clk_start(cdev);
646         if (err)
647                 return err;
648
649         __m_can_get_berr_counter(dev, bec);
650
651         m_can_clk_stop(cdev);
652
653         return 0;
654 }
655
656 static int m_can_handle_state_change(struct net_device *dev,
657                                      enum can_state new_state)
658 {
659         struct m_can_classdev *cdev = netdev_priv(dev);
660         struct net_device_stats *stats = &dev->stats;
661         struct can_frame *cf;
662         struct sk_buff *skb;
663         struct can_berr_counter bec;
664         unsigned int ecr;
665
666         switch (new_state) {
667         case CAN_STATE_ERROR_ACTIVE:
668                 /* error warning state */
669                 cdev->can.can_stats.error_warning++;
670                 cdev->can.state = CAN_STATE_ERROR_WARNING;
671                 break;
672         case CAN_STATE_ERROR_PASSIVE:
673                 /* error passive state */
674                 cdev->can.can_stats.error_passive++;
675                 cdev->can.state = CAN_STATE_ERROR_PASSIVE;
676                 break;
677         case CAN_STATE_BUS_OFF:
678                 /* bus-off state */
679                 cdev->can.state = CAN_STATE_BUS_OFF;
680                 m_can_disable_all_interrupts(cdev);
681                 cdev->can.can_stats.bus_off++;
682                 can_bus_off(dev);
683                 break;
684         default:
685                 break;
686         }
687
688         /* propagate the error condition to the CAN stack */
689         skb = alloc_can_err_skb(dev, &cf);
690         if (unlikely(!skb))
691                 return 0;
692
693         __m_can_get_berr_counter(dev, &bec);
694
695         switch (new_state) {
696         case CAN_STATE_ERROR_ACTIVE:
697                 /* error warning state */
698                 cf->can_id |= CAN_ERR_CRTL;
699                 cf->data[1] = (bec.txerr > bec.rxerr) ?
700                         CAN_ERR_CRTL_TX_WARNING :
701                         CAN_ERR_CRTL_RX_WARNING;
702                 cf->data[6] = bec.txerr;
703                 cf->data[7] = bec.rxerr;
704                 break;
705         case CAN_STATE_ERROR_PASSIVE:
706                 /* error passive state */
707                 cf->can_id |= CAN_ERR_CRTL;
708                 ecr = m_can_read(cdev, M_CAN_ECR);
709                 if (ecr & ECR_RP)
710                         cf->data[1] |= CAN_ERR_CRTL_RX_PASSIVE;
711                 if (bec.txerr > 127)
712                         cf->data[1] |= CAN_ERR_CRTL_TX_PASSIVE;
713                 cf->data[6] = bec.txerr;
714                 cf->data[7] = bec.rxerr;
715                 break;
716         case CAN_STATE_BUS_OFF:
717                 /* bus-off state */
718                 cf->can_id |= CAN_ERR_BUSOFF;
719                 break;
720         default:
721                 break;
722         }
723
724         stats->rx_packets++;
725         stats->rx_bytes += cf->can_dlc;
726         netif_receive_skb(skb);
727
728         return 1;
729 }
730
731 static int m_can_handle_state_errors(struct net_device *dev, u32 psr)
732 {
733         struct m_can_classdev *cdev = netdev_priv(dev);
734         int work_done = 0;
735
736         if (psr & PSR_EW && cdev->can.state != CAN_STATE_ERROR_WARNING) {
737                 netdev_dbg(dev, "entered error warning state\n");
738                 work_done += m_can_handle_state_change(dev,
739                                                        CAN_STATE_ERROR_WARNING);
740         }
741
742         if (psr & PSR_EP && cdev->can.state != CAN_STATE_ERROR_PASSIVE) {
743                 netdev_dbg(dev, "entered error passive state\n");
744                 work_done += m_can_handle_state_change(dev,
745                                                        CAN_STATE_ERROR_PASSIVE);
746         }
747
748         if (psr & PSR_BO && cdev->can.state != CAN_STATE_BUS_OFF) {
749                 netdev_dbg(dev, "entered error bus off state\n");
750                 work_done += m_can_handle_state_change(dev,
751                                                        CAN_STATE_BUS_OFF);
752         }
753
754         return work_done;
755 }
756
757 static void m_can_handle_other_err(struct net_device *dev, u32 irqstatus)
758 {
759         if (irqstatus & IR_WDI)
760                 netdev_err(dev, "Message RAM Watchdog event due to missing READY\n");
761         if (irqstatus & IR_ELO)
762                 netdev_err(dev, "Error Logging Overflow\n");
763         if (irqstatus & IR_BEU)
764                 netdev_err(dev, "Bit Error Uncorrected\n");
765         if (irqstatus & IR_BEC)
766                 netdev_err(dev, "Bit Error Corrected\n");
767         if (irqstatus & IR_TOO)
768                 netdev_err(dev, "Timeout reached\n");
769         if (irqstatus & IR_MRAF)
770                 netdev_err(dev, "Message RAM access failure occurred\n");
771 }
772
773 static inline bool is_lec_err(u32 psr)
774 {
775         psr &= LEC_UNUSED;
776
777         return psr && (psr != LEC_UNUSED);
778 }
779
780 static int m_can_handle_bus_errors(struct net_device *dev, u32 irqstatus,
781                                    u32 psr)
782 {
783         struct m_can_classdev *cdev = netdev_priv(dev);
784         int work_done = 0;
785
786         if (irqstatus & IR_RF0L)
787                 work_done += m_can_handle_lost_msg(dev);
788
789         /* handle lec errors on the bus */
790         if ((cdev->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING) &&
791             is_lec_err(psr))
792                 work_done += m_can_handle_lec_err(dev, psr & LEC_UNUSED);
793
794         /* other unproccessed error interrupts */
795         m_can_handle_other_err(dev, irqstatus);
796
797         return work_done;
798 }
799
800 static int m_can_rx_handler(struct net_device *dev, int quota)
801 {
802         struct m_can_classdev *cdev = netdev_priv(dev);
803         int work_done = 0;
804         u32 irqstatus, psr;
805
806         irqstatus = cdev->irqstatus | m_can_read(cdev, M_CAN_IR);
807         if (!irqstatus)
808                 goto end;
809
810         /* Errata workaround for issue "Needless activation of MRAF irq"
811          * During frame reception while the MCAN is in Error Passive state
812          * and the Receive Error Counter has the value MCAN_ECR.REC = 127,
813          * it may happen that MCAN_IR.MRAF is set although there was no
814          * Message RAM access failure.
815          * If MCAN_IR.MRAF is enabled, an interrupt to the Host CPU is generated
816          * The Message RAM Access Failure interrupt routine needs to check
817          * whether MCAN_ECR.RP = â€™1’ and MCAN_ECR.REC = 127.
818          * In this case, reset MCAN_IR.MRAF. No further action is required.
819          */
820         if (cdev->version <= 31 && irqstatus & IR_MRAF &&
821             m_can_read(cdev, M_CAN_ECR) & ECR_RP) {
822                 struct can_berr_counter bec;
823
824                 __m_can_get_berr_counter(dev, &bec);
825                 if (bec.rxerr == 127) {
826                         m_can_write(cdev, M_CAN_IR, IR_MRAF);
827                         irqstatus &= ~IR_MRAF;
828                 }
829         }
830
831         psr = m_can_read(cdev, M_CAN_PSR);
832
833         if (irqstatus & IR_ERR_STATE)
834                 work_done += m_can_handle_state_errors(dev, psr);
835
836         if (irqstatus & IR_ERR_BUS_30X)
837                 work_done += m_can_handle_bus_errors(dev, irqstatus, psr);
838
839         if (irqstatus & IR_RF0N)
840                 work_done += m_can_do_rx_poll(dev, (quota - work_done));
841 end:
842         return work_done;
843 }
844
845 static int m_can_rx_peripheral(struct net_device *dev)
846 {
847         struct m_can_classdev *cdev = netdev_priv(dev);
848
849         m_can_rx_handler(dev, 1);
850
851         m_can_enable_all_interrupts(cdev);
852
853         return 0;
854 }
855
856 static int m_can_poll(struct napi_struct *napi, int quota)
857 {
858         struct net_device *dev = napi->dev;
859         struct m_can_classdev *cdev = netdev_priv(dev);
860         int work_done;
861
862         work_done = m_can_rx_handler(dev, quota);
863         if (work_done < quota) {
864                 napi_complete_done(napi, work_done);
865                 m_can_enable_all_interrupts(cdev);
866         }
867
868         return work_done;
869 }
870
871 static void m_can_echo_tx_event(struct net_device *dev)
872 {
873         u32 txe_count = 0;
874         u32 m_can_txefs;
875         u32 fgi = 0;
876         int i = 0;
877         unsigned int msg_mark;
878
879         struct m_can_classdev *cdev = netdev_priv(dev);
880         struct net_device_stats *stats = &dev->stats;
881
882         /* read tx event fifo status */
883         m_can_txefs = m_can_read(cdev, M_CAN_TXEFS);
884
885         /* Get Tx Event fifo element count */
886         txe_count = (m_can_txefs & TXEFS_EFFL_MASK)
887                         >> TXEFS_EFFL_SHIFT;
888
889         /* Get and process all sent elements */
890         for (i = 0; i < txe_count; i++) {
891                 /* retrieve get index */
892                 fgi = (m_can_read(cdev, M_CAN_TXEFS) & TXEFS_EFGI_MASK)
893                         >> TXEFS_EFGI_SHIFT;
894
895                 /* get message marker */
896                 msg_mark = (m_can_txe_fifo_read(cdev, fgi, 4) &
897                             TX_EVENT_MM_MASK) >> TX_EVENT_MM_SHIFT;
898
899                 /* ack txe element */
900                 m_can_write(cdev, M_CAN_TXEFA, (TXEFA_EFAI_MASK &
901                                                 (fgi << TXEFA_EFAI_SHIFT)));
902
903                 /* update stats */
904                 stats->tx_bytes += can_get_echo_skb(dev, msg_mark);
905                 stats->tx_packets++;
906         }
907 }
908
909 static irqreturn_t m_can_isr(int irq, void *dev_id)
910 {
911         struct net_device *dev = (struct net_device *)dev_id;
912         struct m_can_classdev *cdev = netdev_priv(dev);
913         struct net_device_stats *stats = &dev->stats;
914         u32 ir;
915
916         ir = m_can_read(cdev, M_CAN_IR);
917         if (!ir)
918                 return IRQ_NONE;
919
920         /* ACK all irqs */
921         if (ir & IR_ALL_INT)
922                 m_can_write(cdev, M_CAN_IR, ir);
923
924         if (cdev->ops->clear_interrupts)
925                 cdev->ops->clear_interrupts(cdev);
926
927         /* schedule NAPI in case of
928          * - rx IRQ
929          * - state change IRQ
930          * - bus error IRQ and bus error reporting
931          */
932         if ((ir & IR_RF0N) || (ir & IR_ERR_ALL_30X)) {
933                 cdev->irqstatus = ir;
934                 m_can_disable_all_interrupts(cdev);
935                 if (!cdev->is_peripheral)
936                         napi_schedule(&cdev->napi);
937                 else
938                         m_can_rx_peripheral(dev);
939         }
940
941         if (cdev->version == 30) {
942                 if (ir & IR_TC) {
943                         /* Transmission Complete Interrupt*/
944                         stats->tx_bytes += can_get_echo_skb(dev, 0);
945                         stats->tx_packets++;
946                         can_led_event(dev, CAN_LED_EVENT_TX);
947                         netif_wake_queue(dev);
948                 }
949         } else  {
950                 if (ir & IR_TEFN) {
951                         /* New TX FIFO Element arrived */
952                         m_can_echo_tx_event(dev);
953                         can_led_event(dev, CAN_LED_EVENT_TX);
954                         if (netif_queue_stopped(dev) &&
955                             !m_can_tx_fifo_full(cdev))
956                                 netif_wake_queue(dev);
957                 }
958         }
959
960         return IRQ_HANDLED;
961 }
962
963 static const struct can_bittiming_const m_can_bittiming_const_30X = {
964         .name = KBUILD_MODNAME,
965         .tseg1_min = 2,         /* Time segment 1 = prop_seg + phase_seg1 */
966         .tseg1_max = 64,
967         .tseg2_min = 1,         /* Time segment 2 = phase_seg2 */
968         .tseg2_max = 16,
969         .sjw_max = 16,
970         .brp_min = 1,
971         .brp_max = 1024,
972         .brp_inc = 1,
973 };
974
975 static const struct can_bittiming_const m_can_data_bittiming_const_30X = {
976         .name = KBUILD_MODNAME,
977         .tseg1_min = 2,         /* Time segment 1 = prop_seg + phase_seg1 */
978         .tseg1_max = 16,
979         .tseg2_min = 1,         /* Time segment 2 = phase_seg2 */
980         .tseg2_max = 8,
981         .sjw_max = 4,
982         .brp_min = 1,
983         .brp_max = 32,
984         .brp_inc = 1,
985 };
986
987 static const struct can_bittiming_const m_can_bittiming_const_31X = {
988         .name = KBUILD_MODNAME,
989         .tseg1_min = 2,         /* Time segment 1 = prop_seg + phase_seg1 */
990         .tseg1_max = 256,
991         .tseg2_min = 1,         /* Time segment 2 = phase_seg2 */
992         .tseg2_max = 128,
993         .sjw_max = 128,
994         .brp_min = 1,
995         .brp_max = 512,
996         .brp_inc = 1,
997 };
998
999 static const struct can_bittiming_const m_can_data_bittiming_const_31X = {
1000         .name = KBUILD_MODNAME,
1001         .tseg1_min = 1,         /* Time segment 1 = prop_seg + phase_seg1 */
1002         .tseg1_max = 32,
1003         .tseg2_min = 1,         /* Time segment 2 = phase_seg2 */
1004         .tseg2_max = 16,
1005         .sjw_max = 16,
1006         .brp_min = 1,
1007         .brp_max = 32,
1008         .brp_inc = 1,
1009 };
1010
1011 static int m_can_set_bittiming(struct net_device *dev)
1012 {
1013         struct m_can_classdev *cdev = netdev_priv(dev);
1014         const struct can_bittiming *bt = &cdev->can.bittiming;
1015         const struct can_bittiming *dbt = &cdev->can.data_bittiming;
1016         u16 brp, sjw, tseg1, tseg2;
1017         u32 reg_btp;
1018
1019         brp = bt->brp - 1;
1020         sjw = bt->sjw - 1;
1021         tseg1 = bt->prop_seg + bt->phase_seg1 - 1;
1022         tseg2 = bt->phase_seg2 - 1;
1023         reg_btp = (brp << NBTP_NBRP_SHIFT) | (sjw << NBTP_NSJW_SHIFT) |
1024                 (tseg1 << NBTP_NTSEG1_SHIFT) | (tseg2 << NBTP_NTSEG2_SHIFT);
1025         m_can_write(cdev, M_CAN_NBTP, reg_btp);
1026
1027         if (cdev->can.ctrlmode & CAN_CTRLMODE_FD) {
1028                 reg_btp = 0;
1029                 brp = dbt->brp - 1;
1030                 sjw = dbt->sjw - 1;
1031                 tseg1 = dbt->prop_seg + dbt->phase_seg1 - 1;
1032                 tseg2 = dbt->phase_seg2 - 1;
1033
1034                 /* TDC is only needed for bitrates beyond 2.5 MBit/s.
1035                  * This is mentioned in the "Bit Time Requirements for CAN FD"
1036                  * paper presented at the International CAN Conference 2013
1037                  */
1038                 if (dbt->bitrate > 2500000) {
1039                         u32 tdco, ssp;
1040
1041                         /* Use the same value of secondary sampling point
1042                          * as the data sampling point
1043                          */
1044                         ssp = dbt->sample_point;
1045
1046                         /* Equation based on Bosch's M_CAN User Manual's
1047                          * Transmitter Delay Compensation Section
1048                          */
1049                         tdco = (cdev->can.clock.freq / 1000) *
1050                                ssp / dbt->bitrate;
1051
1052                         /* Max valid TDCO value is 127 */
1053                         if (tdco > 127) {
1054                                 netdev_warn(dev, "TDCO value of %u is beyond maximum. Using maximum possible value\n",
1055                                             tdco);
1056                                 tdco = 127;
1057                         }
1058
1059                         reg_btp |= DBTP_TDC;
1060                         m_can_write(cdev, M_CAN_TDCR,
1061                                     tdco << TDCR_TDCO_SHIFT);
1062                 }
1063
1064                 reg_btp |= (brp << DBTP_DBRP_SHIFT) |
1065                            (sjw << DBTP_DSJW_SHIFT) |
1066                            (tseg1 << DBTP_DTSEG1_SHIFT) |
1067                            (tseg2 << DBTP_DTSEG2_SHIFT);
1068
1069                 m_can_write(cdev, M_CAN_DBTP, reg_btp);
1070         }
1071
1072         return 0;
1073 }
1074
1075 /* Configure M_CAN chip:
1076  * - set rx buffer/fifo element size
1077  * - configure rx fifo
1078  * - accept non-matching frame into fifo 0
1079  * - configure tx buffer
1080  *              - >= v3.1.x: TX FIFO is used
1081  * - configure mode
1082  * - setup bittiming
1083  */
1084 static void m_can_chip_config(struct net_device *dev)
1085 {
1086         struct m_can_classdev *cdev = netdev_priv(dev);
1087         u32 cccr, test;
1088
1089         m_can_config_endisable(cdev, true);
1090
1091         /* RX Buffer/FIFO Element Size 64 bytes data field */
1092         m_can_write(cdev, M_CAN_RXESC, M_CAN_RXESC_64BYTES);
1093
1094         /* Accept Non-matching Frames Into FIFO 0 */
1095         m_can_write(cdev, M_CAN_GFC, 0x0);
1096
1097         if (cdev->version == 30) {
1098                 /* only support one Tx Buffer currently */
1099                 m_can_write(cdev, M_CAN_TXBC, (1 << TXBC_NDTB_SHIFT) |
1100                                 cdev->mcfg[MRAM_TXB].off);
1101         } else {
1102                 /* TX FIFO is used for newer IP Core versions */
1103                 m_can_write(cdev, M_CAN_TXBC,
1104                             (cdev->mcfg[MRAM_TXB].num << TXBC_TFQS_SHIFT) |
1105                             (cdev->mcfg[MRAM_TXB].off));
1106         }
1107
1108         /* support 64 bytes payload */
1109         m_can_write(cdev, M_CAN_TXESC, TXESC_TBDS_64BYTES);
1110
1111         /* TX Event FIFO */
1112         if (cdev->version == 30) {
1113                 m_can_write(cdev, M_CAN_TXEFC, (1 << TXEFC_EFS_SHIFT) |
1114                                 cdev->mcfg[MRAM_TXE].off);
1115         } else {
1116                 /* Full TX Event FIFO is used */
1117                 m_can_write(cdev, M_CAN_TXEFC,
1118                             ((cdev->mcfg[MRAM_TXE].num << TXEFC_EFS_SHIFT)
1119                              & TXEFC_EFS_MASK) |
1120                             cdev->mcfg[MRAM_TXE].off);
1121         }
1122
1123         /* rx fifo configuration, blocking mode, fifo size 1 */
1124         m_can_write(cdev, M_CAN_RXF0C,
1125                     (cdev->mcfg[MRAM_RXF0].num << RXFC_FS_SHIFT) |
1126                      cdev->mcfg[MRAM_RXF0].off);
1127
1128         m_can_write(cdev, M_CAN_RXF1C,
1129                     (cdev->mcfg[MRAM_RXF1].num << RXFC_FS_SHIFT) |
1130                      cdev->mcfg[MRAM_RXF1].off);
1131
1132         cccr = m_can_read(cdev, M_CAN_CCCR);
1133         test = m_can_read(cdev, M_CAN_TEST);
1134         test &= ~TEST_LBCK;
1135         if (cdev->version == 30) {
1136         /* Version 3.0.x */
1137
1138                 cccr &= ~(CCCR_TEST | CCCR_MON |
1139                         (CCCR_CMR_MASK << CCCR_CMR_SHIFT) |
1140                         (CCCR_CME_MASK << CCCR_CME_SHIFT));
1141
1142                 if (cdev->can.ctrlmode & CAN_CTRLMODE_FD)
1143                         cccr |= CCCR_CME_CANFD_BRS << CCCR_CME_SHIFT;
1144
1145         } else {
1146         /* Version 3.1.x or 3.2.x */
1147                 cccr &= ~(CCCR_TEST | CCCR_MON | CCCR_BRSE | CCCR_FDOE |
1148                           CCCR_NISO);
1149
1150                 /* Only 3.2.x has NISO Bit implemented */
1151                 if (cdev->can.ctrlmode & CAN_CTRLMODE_FD_NON_ISO)
1152                         cccr |= CCCR_NISO;
1153
1154                 if (cdev->can.ctrlmode & CAN_CTRLMODE_FD)
1155                         cccr |= (CCCR_BRSE | CCCR_FDOE);
1156         }
1157
1158         /* Loopback Mode */
1159         if (cdev->can.ctrlmode & CAN_CTRLMODE_LOOPBACK) {
1160                 cccr |= CCCR_TEST | CCCR_MON;
1161                 test |= TEST_LBCK;
1162         }
1163
1164         /* Enable Monitoring (all versions) */
1165         if (cdev->can.ctrlmode & CAN_CTRLMODE_LISTENONLY)
1166                 cccr |= CCCR_MON;
1167
1168         /* Write config */
1169         m_can_write(cdev, M_CAN_CCCR, cccr);
1170         m_can_write(cdev, M_CAN_TEST, test);
1171
1172         /* Enable interrupts */
1173         m_can_write(cdev, M_CAN_IR, IR_ALL_INT);
1174         if (!(cdev->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING))
1175                 if (cdev->version == 30)
1176                         m_can_write(cdev, M_CAN_IE, IR_ALL_INT &
1177                                     ~(IR_ERR_LEC_30X));
1178                 else
1179                         m_can_write(cdev, M_CAN_IE, IR_ALL_INT &
1180                                     ~(IR_ERR_LEC_31X));
1181         else
1182                 m_can_write(cdev, M_CAN_IE, IR_ALL_INT);
1183
1184         /* route all interrupts to INT0 */
1185         m_can_write(cdev, M_CAN_ILS, ILS_ALL_INT0);
1186
1187         /* set bittiming params */
1188         m_can_set_bittiming(dev);
1189
1190         m_can_config_endisable(cdev, false);
1191
1192         if (cdev->ops->init)
1193                 cdev->ops->init(cdev);
1194 }
1195
1196 static void m_can_start(struct net_device *dev)
1197 {
1198         struct m_can_classdev *cdev = netdev_priv(dev);
1199
1200         /* basic m_can configuration */
1201         m_can_chip_config(dev);
1202
1203         cdev->can.state = CAN_STATE_ERROR_ACTIVE;
1204
1205         m_can_enable_all_interrupts(cdev);
1206 }
1207
1208 static int m_can_set_mode(struct net_device *dev, enum can_mode mode)
1209 {
1210         switch (mode) {
1211         case CAN_MODE_START:
1212                 m_can_clean(dev);
1213                 m_can_start(dev);
1214                 netif_wake_queue(dev);
1215                 break;
1216         default:
1217                 return -EOPNOTSUPP;
1218         }
1219
1220         return 0;
1221 }
1222
1223 /* Checks core release number of M_CAN
1224  * returns 0 if an unsupported device is detected
1225  * else it returns the release and step coded as:
1226  * return value = 10 * <release> + 1 * <step>
1227  */
1228 static int m_can_check_core_release(struct m_can_classdev *cdev)
1229 {
1230         u32 crel_reg;
1231         u8 rel;
1232         u8 step;
1233         int res;
1234
1235         /* Read Core Release Version and split into version number
1236          * Example: Version 3.2.1 => rel = 3; step = 2; substep = 1;
1237          */
1238         crel_reg = m_can_read(cdev, M_CAN_CREL);
1239         rel = (u8)((crel_reg & CREL_REL_MASK) >> CREL_REL_SHIFT);
1240         step = (u8)((crel_reg & CREL_STEP_MASK) >> CREL_STEP_SHIFT);
1241
1242         if (rel == 3) {
1243                 /* M_CAN v3.x.y: create return value */
1244                 res = 30 + step;
1245         } else {
1246                 /* Unsupported M_CAN version */
1247                 res = 0;
1248         }
1249
1250         return res;
1251 }
1252
1253 /* Selectable Non ISO support only in version 3.2.x
1254  * This function checks if the bit is writable.
1255  */
1256 static bool m_can_niso_supported(struct m_can_classdev *cdev)
1257 {
1258         u32 cccr_reg, cccr_poll = 0;
1259         int niso_timeout = -ETIMEDOUT;
1260         int i;
1261
1262         m_can_config_endisable(cdev, true);
1263         cccr_reg = m_can_read(cdev, M_CAN_CCCR);
1264         cccr_reg |= CCCR_NISO;
1265         m_can_write(cdev, M_CAN_CCCR, cccr_reg);
1266
1267         for (i = 0; i <= 10; i++) {
1268                 cccr_poll = m_can_read(cdev, M_CAN_CCCR);
1269                 if (cccr_poll == cccr_reg) {
1270                         niso_timeout = 0;
1271                         break;
1272                 }
1273
1274                 usleep_range(1, 5);
1275         }
1276
1277         /* Clear NISO */
1278         cccr_reg &= ~(CCCR_NISO);
1279         m_can_write(cdev, M_CAN_CCCR, cccr_reg);
1280
1281         m_can_config_endisable(cdev, false);
1282
1283         /* return false if time out (-ETIMEDOUT), else return true */
1284         return !niso_timeout;
1285 }
1286
1287 static int m_can_dev_setup(struct m_can_classdev *m_can_dev)
1288 {
1289         struct net_device *dev = m_can_dev->net;
1290         int m_can_version;
1291
1292         m_can_version = m_can_check_core_release(m_can_dev);
1293         /* return if unsupported version */
1294         if (!m_can_version) {
1295                 dev_err(m_can_dev->dev, "Unsupported version number: %2d",
1296                         m_can_version);
1297                 return -EINVAL;
1298         }
1299
1300         if (!m_can_dev->is_peripheral)
1301                 netif_napi_add(dev, &m_can_dev->napi,
1302                                m_can_poll, M_CAN_NAPI_WEIGHT);
1303
1304         /* Shared properties of all M_CAN versions */
1305         m_can_dev->version = m_can_version;
1306         m_can_dev->can.do_set_mode = m_can_set_mode;
1307         m_can_dev->can.do_get_berr_counter = m_can_get_berr_counter;
1308
1309         /* Set M_CAN supported operations */
1310         m_can_dev->can.ctrlmode_supported = CAN_CTRLMODE_LOOPBACK |
1311                                         CAN_CTRLMODE_LISTENONLY |
1312                                         CAN_CTRLMODE_BERR_REPORTING |
1313                                         CAN_CTRLMODE_FD;
1314
1315         /* Set properties depending on M_CAN version */
1316         switch (m_can_dev->version) {
1317         case 30:
1318                 /* CAN_CTRLMODE_FD_NON_ISO is fixed with M_CAN IP v3.0.x */
1319                 can_set_static_ctrlmode(dev, CAN_CTRLMODE_FD_NON_ISO);
1320                 m_can_dev->can.bittiming_const = m_can_dev->bit_timing ?
1321                         m_can_dev->bit_timing : &m_can_bittiming_const_30X;
1322
1323                 m_can_dev->can.data_bittiming_const = m_can_dev->data_timing ?
1324                                                 m_can_dev->data_timing :
1325                                                 &m_can_data_bittiming_const_30X;
1326                 break;
1327         case 31:
1328                 /* CAN_CTRLMODE_FD_NON_ISO is fixed with M_CAN IP v3.1.x */
1329                 can_set_static_ctrlmode(dev, CAN_CTRLMODE_FD_NON_ISO);
1330                 m_can_dev->can.bittiming_const = m_can_dev->bit_timing ?
1331                         m_can_dev->bit_timing : &m_can_bittiming_const_31X;
1332
1333                 m_can_dev->can.data_bittiming_const = m_can_dev->data_timing ?
1334                                                 m_can_dev->data_timing :
1335                                                 &m_can_data_bittiming_const_31X;
1336                 break;
1337         case 32:
1338                 m_can_dev->can.bittiming_const = m_can_dev->bit_timing ?
1339                         m_can_dev->bit_timing : &m_can_bittiming_const_31X;
1340
1341                 m_can_dev->can.data_bittiming_const = m_can_dev->data_timing ?
1342                                                 m_can_dev->data_timing :
1343                                                 &m_can_data_bittiming_const_31X;
1344
1345                 m_can_dev->can.ctrlmode_supported |=
1346                                                 (m_can_niso_supported(m_can_dev)
1347                                                 ? CAN_CTRLMODE_FD_NON_ISO
1348                                                 : 0);
1349                 break;
1350         default:
1351                 dev_err(m_can_dev->dev, "Unsupported version number: %2d",
1352                         m_can_dev->version);
1353                 return -EINVAL;
1354         }
1355
1356         if (m_can_dev->ops->init)
1357                 m_can_dev->ops->init(m_can_dev);
1358
1359         return 0;
1360 }
1361
1362 static void m_can_stop(struct net_device *dev)
1363 {
1364         struct m_can_classdev *cdev = netdev_priv(dev);
1365
1366         /* disable all interrupts */
1367         m_can_disable_all_interrupts(cdev);
1368
1369         /* set the state as STOPPED */
1370         cdev->can.state = CAN_STATE_STOPPED;
1371 }
1372
1373 static int m_can_close(struct net_device *dev)
1374 {
1375         struct m_can_classdev *cdev = netdev_priv(dev);
1376
1377         netif_stop_queue(dev);
1378
1379         if (!cdev->is_peripheral)
1380                 napi_disable(&cdev->napi);
1381
1382         m_can_stop(dev);
1383         m_can_clk_stop(cdev);
1384         free_irq(dev->irq, dev);
1385
1386         if (cdev->is_peripheral) {
1387                 cdev->tx_skb = NULL;
1388                 destroy_workqueue(cdev->tx_wq);
1389                 cdev->tx_wq = NULL;
1390         }
1391
1392         close_candev(dev);
1393         can_led_event(dev, CAN_LED_EVENT_STOP);
1394
1395         return 0;
1396 }
1397
1398 static int m_can_next_echo_skb_occupied(struct net_device *dev, int putidx)
1399 {
1400         struct m_can_classdev *cdev = netdev_priv(dev);
1401         /*get wrap around for loopback skb index */
1402         unsigned int wrap = cdev->can.echo_skb_max;
1403         int next_idx;
1404
1405         /* calculate next index */
1406         next_idx = (++putidx >= wrap ? 0 : putidx);
1407
1408         /* check if occupied */
1409         return !!cdev->can.echo_skb[next_idx];
1410 }
1411
1412 static netdev_tx_t m_can_tx_handler(struct m_can_classdev *cdev)
1413 {
1414         struct canfd_frame *cf = (struct canfd_frame *)cdev->tx_skb->data;
1415         struct net_device *dev = cdev->net;
1416         struct sk_buff *skb = cdev->tx_skb;
1417         u32 id, cccr, fdflags;
1418         int i;
1419         int putidx;
1420
1421         /* Generate ID field for TX buffer Element */
1422         /* Common to all supported M_CAN versions */
1423         if (cf->can_id & CAN_EFF_FLAG) {
1424                 id = cf->can_id & CAN_EFF_MASK;
1425                 id |= TX_BUF_XTD;
1426         } else {
1427                 id = ((cf->can_id & CAN_SFF_MASK) << 18);
1428         }
1429
1430         if (cf->can_id & CAN_RTR_FLAG)
1431                 id |= TX_BUF_RTR;
1432
1433         if (cdev->version == 30) {
1434                 netif_stop_queue(dev);
1435
1436                 /* message ram configuration */
1437                 m_can_fifo_write(cdev, 0, M_CAN_FIFO_ID, id);
1438                 m_can_fifo_write(cdev, 0, M_CAN_FIFO_DLC,
1439                                  can_len2dlc(cf->len) << 16);
1440
1441                 for (i = 0; i < cf->len; i += 4)
1442                         m_can_fifo_write(cdev, 0,
1443                                          M_CAN_FIFO_DATA(i / 4),
1444                                          *(u32 *)(cf->data + i));
1445
1446                 can_put_echo_skb(skb, dev, 0);
1447
1448                 if (cdev->can.ctrlmode & CAN_CTRLMODE_FD) {
1449                         cccr = m_can_read(cdev, M_CAN_CCCR);
1450                         cccr &= ~(CCCR_CMR_MASK << CCCR_CMR_SHIFT);
1451                         if (can_is_canfd_skb(skb)) {
1452                                 if (cf->flags & CANFD_BRS)
1453                                         cccr |= CCCR_CMR_CANFD_BRS <<
1454                                                 CCCR_CMR_SHIFT;
1455                                 else
1456                                         cccr |= CCCR_CMR_CANFD <<
1457                                                 CCCR_CMR_SHIFT;
1458                         } else {
1459                                 cccr |= CCCR_CMR_CAN << CCCR_CMR_SHIFT;
1460                         }
1461                         m_can_write(cdev, M_CAN_CCCR, cccr);
1462                 }
1463                 m_can_write(cdev, M_CAN_TXBTIE, 0x1);
1464                 m_can_write(cdev, M_CAN_TXBAR, 0x1);
1465                 /* End of xmit function for version 3.0.x */
1466         } else {
1467                 /* Transmit routine for version >= v3.1.x */
1468
1469                 /* Check if FIFO full */
1470                 if (m_can_tx_fifo_full(cdev)) {
1471                         /* This shouldn't happen */
1472                         netif_stop_queue(dev);
1473                         netdev_warn(dev,
1474                                     "TX queue active although FIFO is full.");
1475
1476                         if (cdev->is_peripheral) {
1477                                 kfree_skb(skb);
1478                                 dev->stats.tx_dropped++;
1479                                 return NETDEV_TX_OK;
1480                         } else {
1481                                 return NETDEV_TX_BUSY;
1482                         }
1483                 }
1484
1485                 /* get put index for frame */
1486                 putidx = ((m_can_read(cdev, M_CAN_TXFQS) & TXFQS_TFQPI_MASK)
1487                                   >> TXFQS_TFQPI_SHIFT);
1488                 /* Write ID Field to FIFO Element */
1489                 m_can_fifo_write(cdev, putidx, M_CAN_FIFO_ID, id);
1490
1491                 /* get CAN FD configuration of frame */
1492                 fdflags = 0;
1493                 if (can_is_canfd_skb(skb)) {
1494                         fdflags |= TX_BUF_FDF;
1495                         if (cf->flags & CANFD_BRS)
1496                                 fdflags |= TX_BUF_BRS;
1497                 }
1498
1499                 /* Construct DLC Field. Also contains CAN-FD configuration
1500                  * use put index of fifo as message marker
1501                  * it is used in TX interrupt for
1502                  * sending the correct echo frame
1503                  */
1504                 m_can_fifo_write(cdev, putidx, M_CAN_FIFO_DLC,
1505                                  ((putidx << TX_BUF_MM_SHIFT) &
1506                                   TX_BUF_MM_MASK) |
1507                                  (can_len2dlc(cf->len) << 16) |
1508                                  fdflags | TX_BUF_EFC);
1509
1510                 for (i = 0; i < cf->len; i += 4)
1511                         m_can_fifo_write(cdev, putidx, M_CAN_FIFO_DATA(i / 4),
1512                                          *(u32 *)(cf->data + i));
1513
1514                 /* Push loopback echo.
1515                  * Will be looped back on TX interrupt based on message marker
1516                  */
1517                 can_put_echo_skb(skb, dev, putidx);
1518
1519                 /* Enable TX FIFO element to start transfer  */
1520                 m_can_write(cdev, M_CAN_TXBAR, (1 << putidx));
1521
1522                 /* stop network queue if fifo full */
1523                 if (m_can_tx_fifo_full(cdev) ||
1524                     m_can_next_echo_skb_occupied(dev, putidx))
1525                         netif_stop_queue(dev);
1526         }
1527
1528         return NETDEV_TX_OK;
1529 }
1530
1531 static void m_can_tx_work_queue(struct work_struct *ws)
1532 {
1533         struct m_can_classdev *cdev = container_of(ws, struct m_can_classdev,
1534                                                 tx_work);
1535
1536         m_can_tx_handler(cdev);
1537         cdev->tx_skb = NULL;
1538 }
1539
1540 static netdev_tx_t m_can_start_xmit(struct sk_buff *skb,
1541                                     struct net_device *dev)
1542 {
1543         struct m_can_classdev *cdev = netdev_priv(dev);
1544
1545         if (can_dropped_invalid_skb(dev, skb))
1546                 return NETDEV_TX_OK;
1547
1548         if (cdev->is_peripheral) {
1549                 if (cdev->tx_skb) {
1550                         netdev_err(dev, "hard_xmit called while tx busy\n");
1551                         return NETDEV_TX_BUSY;
1552                 }
1553
1554                 if (cdev->can.state == CAN_STATE_BUS_OFF) {
1555                         m_can_clean(dev);
1556                 } else {
1557                         /* Need to stop the queue to avoid numerous requests
1558                          * from being sent.  Suggested improvement is to create
1559                          * a queueing mechanism that will queue the skbs and
1560                          * process them in order.
1561                          */
1562                         cdev->tx_skb = skb;
1563                         netif_stop_queue(cdev->net);
1564                         queue_work(cdev->tx_wq, &cdev->tx_work);
1565                 }
1566         } else {
1567                 cdev->tx_skb = skb;
1568                 return m_can_tx_handler(cdev);
1569         }
1570
1571         return NETDEV_TX_OK;
1572 }
1573
1574 static int m_can_open(struct net_device *dev)
1575 {
1576         struct m_can_classdev *cdev = netdev_priv(dev);
1577         int err;
1578
1579         err = m_can_clk_start(cdev);
1580         if (err)
1581                 return err;
1582
1583         /* open the can device */
1584         err = open_candev(dev);
1585         if (err) {
1586                 netdev_err(dev, "failed to open can device\n");
1587                 goto exit_disable_clks;
1588         }
1589
1590         /* register interrupt handler */
1591         if (cdev->is_peripheral) {
1592                 cdev->tx_skb = NULL;
1593                 cdev->tx_wq = alloc_workqueue("mcan_wq",
1594                                               WQ_FREEZABLE | WQ_MEM_RECLAIM, 0);
1595                 if (!cdev->tx_wq) {
1596                         err = -ENOMEM;
1597                         goto out_wq_fail;
1598                 }
1599
1600                 INIT_WORK(&cdev->tx_work, m_can_tx_work_queue);
1601
1602                 err = request_threaded_irq(dev->irq, NULL, m_can_isr,
1603                                            IRQF_ONESHOT | IRQF_TRIGGER_FALLING,
1604                                            dev->name, dev);
1605         } else {
1606                 err = request_irq(dev->irq, m_can_isr, IRQF_SHARED, dev->name,
1607                                   dev);
1608         }
1609
1610         if (err < 0) {
1611                 netdev_err(dev, "failed to request interrupt\n");
1612                 goto exit_irq_fail;
1613         }
1614
1615         /* start the m_can controller */
1616         m_can_start(dev);
1617
1618         can_led_event(dev, CAN_LED_EVENT_OPEN);
1619
1620         if (!cdev->is_peripheral)
1621                 napi_enable(&cdev->napi);
1622
1623         netif_start_queue(dev);
1624
1625         return 0;
1626
1627 exit_irq_fail:
1628         if (cdev->is_peripheral)
1629                 destroy_workqueue(cdev->tx_wq);
1630 out_wq_fail:
1631         close_candev(dev);
1632 exit_disable_clks:
1633         m_can_clk_stop(cdev);
1634         return err;
1635 }
1636
1637 static const struct net_device_ops m_can_netdev_ops = {
1638         .ndo_open = m_can_open,
1639         .ndo_stop = m_can_close,
1640         .ndo_start_xmit = m_can_start_xmit,
1641         .ndo_change_mtu = can_change_mtu,
1642 };
1643
1644 static int register_m_can_dev(struct net_device *dev)
1645 {
1646         dev->flags |= IFF_ECHO; /* we support local echo */
1647         dev->netdev_ops = &m_can_netdev_ops;
1648
1649         return register_candev(dev);
1650 }
1651
1652 static void m_can_of_parse_mram(struct m_can_classdev *cdev,
1653                                 const u32 *mram_config_vals)
1654 {
1655         cdev->mcfg[MRAM_SIDF].off = mram_config_vals[0];
1656         cdev->mcfg[MRAM_SIDF].num = mram_config_vals[1];
1657         cdev->mcfg[MRAM_XIDF].off = cdev->mcfg[MRAM_SIDF].off +
1658                         cdev->mcfg[MRAM_SIDF].num * SIDF_ELEMENT_SIZE;
1659         cdev->mcfg[MRAM_XIDF].num = mram_config_vals[2];
1660         cdev->mcfg[MRAM_RXF0].off = cdev->mcfg[MRAM_XIDF].off +
1661                         cdev->mcfg[MRAM_XIDF].num * XIDF_ELEMENT_SIZE;
1662         cdev->mcfg[MRAM_RXF0].num = mram_config_vals[3] &
1663                         (RXFC_FS_MASK >> RXFC_FS_SHIFT);
1664         cdev->mcfg[MRAM_RXF1].off = cdev->mcfg[MRAM_RXF0].off +
1665                         cdev->mcfg[MRAM_RXF0].num * RXF0_ELEMENT_SIZE;
1666         cdev->mcfg[MRAM_RXF1].num = mram_config_vals[4] &
1667                         (RXFC_FS_MASK >> RXFC_FS_SHIFT);
1668         cdev->mcfg[MRAM_RXB].off = cdev->mcfg[MRAM_RXF1].off +
1669                         cdev->mcfg[MRAM_RXF1].num * RXF1_ELEMENT_SIZE;
1670         cdev->mcfg[MRAM_RXB].num = mram_config_vals[5];
1671         cdev->mcfg[MRAM_TXE].off = cdev->mcfg[MRAM_RXB].off +
1672                         cdev->mcfg[MRAM_RXB].num * RXB_ELEMENT_SIZE;
1673         cdev->mcfg[MRAM_TXE].num = mram_config_vals[6];
1674         cdev->mcfg[MRAM_TXB].off = cdev->mcfg[MRAM_TXE].off +
1675                         cdev->mcfg[MRAM_TXE].num * TXE_ELEMENT_SIZE;
1676         cdev->mcfg[MRAM_TXB].num = mram_config_vals[7] &
1677                         (TXBC_NDTB_MASK >> TXBC_NDTB_SHIFT);
1678
1679         dev_dbg(cdev->dev,
1680                 "sidf 0x%x %d xidf 0x%x %d rxf0 0x%x %d rxf1 0x%x %d rxb 0x%x %d txe 0x%x %d txb 0x%x %d\n",
1681                 cdev->mcfg[MRAM_SIDF].off, cdev->mcfg[MRAM_SIDF].num,
1682                 cdev->mcfg[MRAM_XIDF].off, cdev->mcfg[MRAM_XIDF].num,
1683                 cdev->mcfg[MRAM_RXF0].off, cdev->mcfg[MRAM_RXF0].num,
1684                 cdev->mcfg[MRAM_RXF1].off, cdev->mcfg[MRAM_RXF1].num,
1685                 cdev->mcfg[MRAM_RXB].off, cdev->mcfg[MRAM_RXB].num,
1686                 cdev->mcfg[MRAM_TXE].off, cdev->mcfg[MRAM_TXE].num,
1687                 cdev->mcfg[MRAM_TXB].off, cdev->mcfg[MRAM_TXB].num);
1688 }
1689
1690 void m_can_init_ram(struct m_can_classdev *cdev)
1691 {
1692         int end, i, start;
1693
1694         /* initialize the entire Message RAM in use to avoid possible
1695          * ECC/parity checksum errors when reading an uninitialized buffer
1696          */
1697         start = cdev->mcfg[MRAM_SIDF].off;
1698         end = cdev->mcfg[MRAM_TXB].off +
1699                 cdev->mcfg[MRAM_TXB].num * TXB_ELEMENT_SIZE;
1700
1701         for (i = start; i < end; i += 4)
1702                 m_can_fifo_write_no_off(cdev, i, 0x0);
1703 }
1704 EXPORT_SYMBOL_GPL(m_can_init_ram);
1705
1706 int m_can_class_get_clocks(struct m_can_classdev *m_can_dev)
1707 {
1708         int ret = 0;
1709
1710         m_can_dev->hclk = devm_clk_get(m_can_dev->dev, "hclk");
1711         m_can_dev->cclk = devm_clk_get(m_can_dev->dev, "cclk");
1712
1713         if (IS_ERR(m_can_dev->cclk)) {
1714                 dev_err(m_can_dev->dev, "no clock found\n");
1715                 ret = -ENODEV;
1716         }
1717
1718         return ret;
1719 }
1720 EXPORT_SYMBOL_GPL(m_can_class_get_clocks);
1721
1722 struct m_can_classdev *m_can_class_allocate_dev(struct device *dev)
1723 {
1724         struct m_can_classdev *class_dev = NULL;
1725         u32 mram_config_vals[MRAM_CFG_LEN];
1726         struct net_device *net_dev;
1727         u32 tx_fifo_size;
1728         int ret;
1729
1730         ret = fwnode_property_read_u32_array(dev_fwnode(dev),
1731                                              "bosch,mram-cfg",
1732                                              mram_config_vals,
1733                                              sizeof(mram_config_vals) / 4);
1734         if (ret) {
1735                 dev_err(dev, "Could not get Message RAM configuration.");
1736                 goto out;
1737         }
1738
1739         /* Get TX FIFO size
1740          * Defines the total amount of echo buffers for loopback
1741          */
1742         tx_fifo_size = mram_config_vals[7];
1743
1744         /* allocate the m_can device */
1745         net_dev = alloc_candev(sizeof(*class_dev), tx_fifo_size);
1746         if (!net_dev) {
1747                 dev_err(dev, "Failed to allocate CAN device");
1748                 goto out;
1749         }
1750
1751         class_dev = netdev_priv(net_dev);
1752         if (!class_dev) {
1753                 dev_err(dev, "Failed to init netdev cdevate");
1754                 goto out;
1755         }
1756
1757         class_dev->net = net_dev;
1758         class_dev->dev = dev;
1759         SET_NETDEV_DEV(net_dev, dev);
1760
1761         m_can_of_parse_mram(class_dev, mram_config_vals);
1762 out:
1763         return class_dev;
1764 }
1765 EXPORT_SYMBOL_GPL(m_can_class_allocate_dev);
1766
1767 int m_can_class_register(struct m_can_classdev *m_can_dev)
1768 {
1769         int ret;
1770
1771         if (m_can_dev->pm_clock_support) {
1772                 pm_runtime_enable(m_can_dev->dev);
1773                 ret = m_can_clk_start(m_can_dev);
1774                 if (ret)
1775                         goto pm_runtime_fail;
1776         }
1777
1778         ret = m_can_dev_setup(m_can_dev);
1779         if (ret)
1780                 goto clk_disable;
1781
1782         ret = register_m_can_dev(m_can_dev->net);
1783         if (ret) {
1784                 dev_err(m_can_dev->dev, "registering %s failed (err=%d)\n",
1785                         m_can_dev->net->name, ret);
1786                 goto clk_disable;
1787         }
1788
1789         devm_can_led_init(m_can_dev->net);
1790
1791         of_can_transceiver(m_can_dev->net);
1792
1793         dev_info(m_can_dev->dev, "%s device registered (irq=%d, version=%d)\n",
1794                  KBUILD_MODNAME, m_can_dev->net->irq, m_can_dev->version);
1795
1796         /* Probe finished
1797          * Stop clocks. They will be reactivated once the M_CAN device is opened
1798          */
1799 clk_disable:
1800         m_can_clk_stop(m_can_dev);
1801 pm_runtime_fail:
1802         if (ret) {
1803                 if (m_can_dev->pm_clock_support)
1804                         pm_runtime_disable(m_can_dev->dev);
1805                 free_candev(m_can_dev->net);
1806         }
1807
1808         return ret;
1809 }
1810 EXPORT_SYMBOL_GPL(m_can_class_register);
1811
1812 int m_can_class_suspend(struct device *dev)
1813 {
1814         struct net_device *ndev = dev_get_drvdata(dev);
1815         struct m_can_classdev *cdev = netdev_priv(ndev);
1816
1817         if (netif_running(ndev)) {
1818                 netif_stop_queue(ndev);
1819                 netif_device_detach(ndev);
1820                 m_can_stop(ndev);
1821                 m_can_clk_stop(cdev);
1822         }
1823
1824         pinctrl_pm_select_sleep_state(dev);
1825
1826         cdev->can.state = CAN_STATE_SLEEPING;
1827
1828         return 0;
1829 }
1830 EXPORT_SYMBOL_GPL(m_can_class_suspend);
1831
1832 int m_can_class_resume(struct device *dev)
1833 {
1834         struct net_device *ndev = dev_get_drvdata(dev);
1835         struct m_can_classdev *cdev = netdev_priv(ndev);
1836
1837         pinctrl_pm_select_default_state(dev);
1838
1839         cdev->can.state = CAN_STATE_ERROR_ACTIVE;
1840
1841         if (netif_running(ndev)) {
1842                 int ret;
1843
1844                 ret = m_can_clk_start(cdev);
1845                 if (ret)
1846                         return ret;
1847
1848                 m_can_init_ram(cdev);
1849                 m_can_start(ndev);
1850                 netif_device_attach(ndev);
1851                 netif_start_queue(ndev);
1852         }
1853
1854         return 0;
1855 }
1856 EXPORT_SYMBOL_GPL(m_can_class_resume);
1857
1858 void m_can_class_unregister(struct m_can_classdev *m_can_dev)
1859 {
1860         unregister_candev(m_can_dev->net);
1861
1862         m_can_clk_stop(m_can_dev);
1863
1864         free_candev(m_can_dev->net);
1865 }
1866 EXPORT_SYMBOL_GPL(m_can_class_unregister);
1867
1868 MODULE_AUTHOR("Dong Aisheng <b29396@freescale.com>");
1869 MODULE_AUTHOR("Dan Murphy <dmurphy@ti.com>");
1870 MODULE_LICENSE("GPL v2");
1871 MODULE_DESCRIPTION("CAN bus driver for Bosch M_CAN controller");