Linux-libre 3.16.78-gnu
[librecmc/linux-libre.git] / drivers / mtd / ubi / wl.c
1 /*
2  * Copyright (c) International Business Machines Corp., 2006
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
12  * the GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
17  *
18  * Authors: Artem Bityutskiy (Битюцкий Артём), Thomas Gleixner
19  */
20
21 /*
22  * UBI wear-leveling sub-system.
23  *
24  * This sub-system is responsible for wear-leveling. It works in terms of
25  * physical eraseblocks and erase counters and knows nothing about logical
26  * eraseblocks, volumes, etc. From this sub-system's perspective all physical
27  * eraseblocks are of two types - used and free. Used physical eraseblocks are
28  * those that were "get" by the 'ubi_wl_get_peb()' function, and free physical
29  * eraseblocks are those that were put by the 'ubi_wl_put_peb()' function.
30  *
31  * Physical eraseblocks returned by 'ubi_wl_get_peb()' have only erase counter
32  * header. The rest of the physical eraseblock contains only %0xFF bytes.
33  *
34  * When physical eraseblocks are returned to the WL sub-system by means of the
35  * 'ubi_wl_put_peb()' function, they are scheduled for erasure. The erasure is
36  * done asynchronously in context of the per-UBI device background thread,
37  * which is also managed by the WL sub-system.
38  *
39  * The wear-leveling is ensured by means of moving the contents of used
40  * physical eraseblocks with low erase counter to free physical eraseblocks
41  * with high erase counter.
42  *
43  * If the WL sub-system fails to erase a physical eraseblock, it marks it as
44  * bad.
45  *
46  * This sub-system is also responsible for scrubbing. If a bit-flip is detected
47  * in a physical eraseblock, it has to be moved. Technically this is the same
48  * as moving it for wear-leveling reasons.
49  *
50  * As it was said, for the UBI sub-system all physical eraseblocks are either
51  * "free" or "used". Free eraseblock are kept in the @wl->free RB-tree, while
52  * used eraseblocks are kept in @wl->used, @wl->erroneous, or @wl->scrub
53  * RB-trees, as well as (temporarily) in the @wl->pq queue.
54  *
55  * When the WL sub-system returns a physical eraseblock, the physical
56  * eraseblock is protected from being moved for some "time". For this reason,
57  * the physical eraseblock is not directly moved from the @wl->free tree to the
58  * @wl->used tree. There is a protection queue in between where this
59  * physical eraseblock is temporarily stored (@wl->pq).
60  *
61  * All this protection stuff is needed because:
62  *  o we don't want to move physical eraseblocks just after we have given them
63  *    to the user; instead, we first want to let users fill them up with data;
64  *
65  *  o there is a chance that the user will put the physical eraseblock very
66  *    soon, so it makes sense not to move it for some time, but wait.
67  *
68  * Physical eraseblocks stay protected only for limited time. But the "time" is
69  * measured in erase cycles in this case. This is implemented with help of the
70  * protection queue. Eraseblocks are put to the tail of this queue when they
71  * are returned by the 'ubi_wl_get_peb()', and eraseblocks are removed from the
72  * head of the queue on each erase operation (for any eraseblock). So the
73  * length of the queue defines how may (global) erase cycles PEBs are protected.
74  *
75  * To put it differently, each physical eraseblock has 2 main states: free and
76  * used. The former state corresponds to the @wl->free tree. The latter state
77  * is split up on several sub-states:
78  * o the WL movement is allowed (@wl->used tree);
79  * o the WL movement is disallowed (@wl->erroneous) because the PEB is
80  *   erroneous - e.g., there was a read error;
81  * o the WL movement is temporarily prohibited (@wl->pq queue);
82  * o scrubbing is needed (@wl->scrub tree).
83  *
84  * Depending on the sub-state, wear-leveling entries of the used physical
85  * eraseblocks may be kept in one of those structures.
86  *
87  * Note, in this implementation, we keep a small in-RAM object for each physical
88  * eraseblock. This is surely not a scalable solution. But it appears to be good
89  * enough for moderately large flashes and it is simple. In future, one may
90  * re-work this sub-system and make it more scalable.
91  *
92  * At the moment this sub-system does not utilize the sequence number, which
93  * was introduced relatively recently. But it would be wise to do this because
94  * the sequence number of a logical eraseblock characterizes how old is it. For
95  * example, when we move a PEB with low erase counter, and we need to pick the
96  * target PEB, we pick a PEB with the highest EC if our PEB is "old" and we
97  * pick target PEB with an average EC if our PEB is not very "old". This is a
98  * room for future re-works of the WL sub-system.
99  */
100
101 #include <linux/slab.h>
102 #include <linux/crc32.h>
103 #include <linux/freezer.h>
104 #include <linux/kthread.h>
105 #include "ubi.h"
106
107 /* Number of physical eraseblocks reserved for wear-leveling purposes */
108 #define WL_RESERVED_PEBS 1
109
110 /*
111  * Maximum difference between two erase counters. If this threshold is
112  * exceeded, the WL sub-system starts moving data from used physical
113  * eraseblocks with low erase counter to free physical eraseblocks with high
114  * erase counter.
115  */
116 #define UBI_WL_THRESHOLD CONFIG_MTD_UBI_WL_THRESHOLD
117
118 /*
119  * When a physical eraseblock is moved, the WL sub-system has to pick the target
120  * physical eraseblock to move to. The simplest way would be just to pick the
121  * one with the highest erase counter. But in certain workloads this could lead
122  * to an unlimited wear of one or few physical eraseblock. Indeed, imagine a
123  * situation when the picked physical eraseblock is constantly erased after the
124  * data is written to it. So, we have a constant which limits the highest erase
125  * counter of the free physical eraseblock to pick. Namely, the WL sub-system
126  * does not pick eraseblocks with erase counter greater than the lowest erase
127  * counter plus %WL_FREE_MAX_DIFF.
128  */
129 #define WL_FREE_MAX_DIFF (2*UBI_WL_THRESHOLD)
130
131 /*
132  * Maximum number of consecutive background thread failures which is enough to
133  * switch to read-only mode.
134  */
135 #define WL_MAX_FAILURES 32
136
137 static int self_check_ec(struct ubi_device *ubi, int pnum, int ec);
138 static int self_check_in_wl_tree(const struct ubi_device *ubi,
139                                  struct ubi_wl_entry *e, struct rb_root *root);
140 static int self_check_in_pq(const struct ubi_device *ubi,
141                             struct ubi_wl_entry *e);
142
143 #ifdef CONFIG_MTD_UBI_FASTMAP
144 /**
145  * update_fastmap_work_fn - calls ubi_update_fastmap from a work queue
146  * @wrk: the work description object
147  */
148 static void update_fastmap_work_fn(struct work_struct *wrk)
149 {
150         struct ubi_device *ubi = container_of(wrk, struct ubi_device, fm_work);
151         ubi_update_fastmap(ubi);
152 }
153
154 /**
155  *  ubi_ubi_is_fm_block - returns 1 if a PEB is currently used in a fastmap.
156  *  @ubi: UBI device description object
157  *  @pnum: the to be checked PEB
158  */
159 static int ubi_is_fm_block(struct ubi_device *ubi, int pnum)
160 {
161         int i;
162
163         if (!ubi->fm)
164                 return 0;
165
166         for (i = 0; i < ubi->fm->used_blocks; i++)
167                 if (ubi->fm->e[i]->pnum == pnum)
168                         return 1;
169
170         return 0;
171 }
172 #else
173 static int ubi_is_fm_block(struct ubi_device *ubi, int pnum)
174 {
175         return 0;
176 }
177 #endif
178
179 /**
180  * wl_tree_add - add a wear-leveling entry to a WL RB-tree.
181  * @e: the wear-leveling entry to add
182  * @root: the root of the tree
183  *
184  * Note, we use (erase counter, physical eraseblock number) pairs as keys in
185  * the @ubi->used and @ubi->free RB-trees.
186  */
187 static void wl_tree_add(struct ubi_wl_entry *e, struct rb_root *root)
188 {
189         struct rb_node **p, *parent = NULL;
190
191         p = &root->rb_node;
192         while (*p) {
193                 struct ubi_wl_entry *e1;
194
195                 parent = *p;
196                 e1 = rb_entry(parent, struct ubi_wl_entry, u.rb);
197
198                 if (e->ec < e1->ec)
199                         p = &(*p)->rb_left;
200                 else if (e->ec > e1->ec)
201                         p = &(*p)->rb_right;
202                 else {
203                         ubi_assert(e->pnum != e1->pnum);
204                         if (e->pnum < e1->pnum)
205                                 p = &(*p)->rb_left;
206                         else
207                                 p = &(*p)->rb_right;
208                 }
209         }
210
211         rb_link_node(&e->u.rb, parent, p);
212         rb_insert_color(&e->u.rb, root);
213 }
214
215 /**
216  * do_work - do one pending work.
217  * @ubi: UBI device description object
218  *
219  * This function returns zero in case of success and a negative error code in
220  * case of failure.
221  */
222 static int do_work(struct ubi_device *ubi)
223 {
224         int err;
225         struct ubi_work *wrk;
226
227         cond_resched();
228
229         /*
230          * @ubi->work_sem is used to synchronize with the workers. Workers take
231          * it in read mode, so many of them may be doing works at a time. But
232          * the queue flush code has to be sure the whole queue of works is
233          * done, and it takes the mutex in write mode.
234          */
235         down_read(&ubi->work_sem);
236         spin_lock(&ubi->wl_lock);
237         if (list_empty(&ubi->works)) {
238                 spin_unlock(&ubi->wl_lock);
239                 up_read(&ubi->work_sem);
240                 return 0;
241         }
242
243         wrk = list_entry(ubi->works.next, struct ubi_work, list);
244         list_del(&wrk->list);
245         ubi->works_count -= 1;
246         ubi_assert(ubi->works_count >= 0);
247         spin_unlock(&ubi->wl_lock);
248
249         /*
250          * Call the worker function. Do not touch the work structure
251          * after this call as it will have been freed or reused by that
252          * time by the worker function.
253          */
254         err = wrk->func(ubi, wrk, 0);
255         if (err)
256                 ubi_err("work failed with error code %d", err);
257         up_read(&ubi->work_sem);
258
259         return err;
260 }
261
262 /**
263  * produce_free_peb - produce a free physical eraseblock.
264  * @ubi: UBI device description object
265  *
266  * This function tries to make a free PEB by means of synchronous execution of
267  * pending works. This may be needed if, for example the background thread is
268  * disabled. Returns zero in case of success and a negative error code in case
269  * of failure.
270  */
271 static int produce_free_peb(struct ubi_device *ubi)
272 {
273         int err;
274
275         while (!ubi->free.rb_node) {
276                 spin_unlock(&ubi->wl_lock);
277
278                 dbg_wl("do one work synchronously");
279                 err = do_work(ubi);
280
281                 spin_lock(&ubi->wl_lock);
282                 if (err)
283                         return err;
284         }
285
286         return 0;
287 }
288
289 /**
290  * in_wl_tree - check if wear-leveling entry is present in a WL RB-tree.
291  * @e: the wear-leveling entry to check
292  * @root: the root of the tree
293  *
294  * This function returns non-zero if @e is in the @root RB-tree and zero if it
295  * is not.
296  */
297 static int in_wl_tree(struct ubi_wl_entry *e, struct rb_root *root)
298 {
299         struct rb_node *p;
300
301         p = root->rb_node;
302         while (p) {
303                 struct ubi_wl_entry *e1;
304
305                 e1 = rb_entry(p, struct ubi_wl_entry, u.rb);
306
307                 if (e->pnum == e1->pnum) {
308                         ubi_assert(e == e1);
309                         return 1;
310                 }
311
312                 if (e->ec < e1->ec)
313                         p = p->rb_left;
314                 else if (e->ec > e1->ec)
315                         p = p->rb_right;
316                 else {
317                         ubi_assert(e->pnum != e1->pnum);
318                         if (e->pnum < e1->pnum)
319                                 p = p->rb_left;
320                         else
321                                 p = p->rb_right;
322                 }
323         }
324
325         return 0;
326 }
327
328 /**
329  * prot_queue_add - add physical eraseblock to the protection queue.
330  * @ubi: UBI device description object
331  * @e: the physical eraseblock to add
332  *
333  * This function adds @e to the tail of the protection queue @ubi->pq, where
334  * @e will stay for %UBI_PROT_QUEUE_LEN erase operations and will be
335  * temporarily protected from the wear-leveling worker. Note, @wl->lock has to
336  * be locked.
337  */
338 static void prot_queue_add(struct ubi_device *ubi, struct ubi_wl_entry *e)
339 {
340         int pq_tail = ubi->pq_head - 1;
341
342         if (pq_tail < 0)
343                 pq_tail = UBI_PROT_QUEUE_LEN - 1;
344         ubi_assert(pq_tail >= 0 && pq_tail < UBI_PROT_QUEUE_LEN);
345         list_add_tail(&e->u.list, &ubi->pq[pq_tail]);
346         dbg_wl("added PEB %d EC %d to the protection queue", e->pnum, e->ec);
347 }
348
349 /**
350  * find_wl_entry - find wear-leveling entry closest to certain erase counter.
351  * @ubi: UBI device description object
352  * @root: the RB-tree where to look for
353  * @diff: maximum possible difference from the smallest erase counter
354  *
355  * This function looks for a wear leveling entry with erase counter closest to
356  * min + @diff, where min is the smallest erase counter.
357  */
358 static struct ubi_wl_entry *find_wl_entry(struct ubi_device *ubi,
359                                           struct rb_root *root, int diff)
360 {
361         struct rb_node *p;
362         struct ubi_wl_entry *e, *prev_e = NULL;
363         int max;
364
365         e = rb_entry(rb_first(root), struct ubi_wl_entry, u.rb);
366         max = e->ec + diff;
367
368         p = root->rb_node;
369         while (p) {
370                 struct ubi_wl_entry *e1;
371
372                 e1 = rb_entry(p, struct ubi_wl_entry, u.rb);
373                 if (e1->ec >= max)
374                         p = p->rb_left;
375                 else {
376                         p = p->rb_right;
377                         prev_e = e;
378                         e = e1;
379                 }
380         }
381
382         /* If no fastmap has been written and this WL entry can be used
383          * as anchor PEB, hold it back and return the second best WL entry
384          * such that fastmap can use the anchor PEB later. */
385         if (prev_e && !ubi->fm_disabled &&
386             !ubi->fm && e->pnum < UBI_FM_MAX_START)
387                 return prev_e;
388
389         return e;
390 }
391
392 /**
393  * find_mean_wl_entry - find wear-leveling entry with medium erase counter.
394  * @ubi: UBI device description object
395  * @root: the RB-tree where to look for
396  *
397  * This function looks for a wear leveling entry with medium erase counter,
398  * but not greater or equivalent than the lowest erase counter plus
399  * %WL_FREE_MAX_DIFF/2.
400  */
401 static struct ubi_wl_entry *find_mean_wl_entry(struct ubi_device *ubi,
402                                                struct rb_root *root)
403 {
404         struct ubi_wl_entry *e, *first, *last;
405
406         first = rb_entry(rb_first(root), struct ubi_wl_entry, u.rb);
407         last = rb_entry(rb_last(root), struct ubi_wl_entry, u.rb);
408
409         if (last->ec - first->ec < WL_FREE_MAX_DIFF) {
410                 e = rb_entry(root->rb_node, struct ubi_wl_entry, u.rb);
411
412 #ifdef CONFIG_MTD_UBI_FASTMAP
413                 /* If no fastmap has been written and this WL entry can be used
414                  * as anchor PEB, hold it back and return the second best
415                  * WL entry such that fastmap can use the anchor PEB later. */
416                 if (e && !ubi->fm_disabled && !ubi->fm &&
417                     e->pnum < UBI_FM_MAX_START)
418                         e = rb_entry(rb_next(root->rb_node),
419                                      struct ubi_wl_entry, u.rb);
420 #endif
421         } else
422                 e = find_wl_entry(ubi, root, WL_FREE_MAX_DIFF/2);
423
424         return e;
425 }
426
427 #ifdef CONFIG_MTD_UBI_FASTMAP
428 /**
429  * find_anchor_wl_entry - find wear-leveling entry to used as anchor PEB.
430  * @root: the RB-tree where to look for
431  */
432 static struct ubi_wl_entry *find_anchor_wl_entry(struct rb_root *root)
433 {
434         struct rb_node *p;
435         struct ubi_wl_entry *e, *victim = NULL;
436         int max_ec = UBI_MAX_ERASECOUNTER;
437
438         ubi_rb_for_each_entry(p, e, root, u.rb) {
439                 if (e->pnum < UBI_FM_MAX_START && e->ec < max_ec) {
440                         victim = e;
441                         max_ec = e->ec;
442                 }
443         }
444
445         return victim;
446 }
447
448 static int anchor_pebs_avalible(struct rb_root *root)
449 {
450         struct rb_node *p;
451         struct ubi_wl_entry *e;
452
453         ubi_rb_for_each_entry(p, e, root, u.rb)
454                 if (e->pnum < UBI_FM_MAX_START)
455                         return 1;
456
457         return 0;
458 }
459
460 /**
461  * ubi_wl_get_fm_peb - find a physical erase block with a given maximal number.
462  * @ubi: UBI device description object
463  * @anchor: This PEB will be used as anchor PEB by fastmap
464  *
465  * The function returns a physical erase block with a given maximal number
466  * and removes it from the wl subsystem.
467  * Must be called with wl_lock held!
468  */
469 struct ubi_wl_entry *ubi_wl_get_fm_peb(struct ubi_device *ubi, int anchor)
470 {
471         struct ubi_wl_entry *e = NULL;
472
473         if (!ubi->free.rb_node || (ubi->free_count - ubi->beb_rsvd_pebs < 1))
474                 goto out;
475
476         if (anchor)
477                 e = find_anchor_wl_entry(&ubi->free);
478         else
479                 e = find_mean_wl_entry(ubi, &ubi->free);
480
481         if (!e)
482                 goto out;
483
484         self_check_in_wl_tree(ubi, e, &ubi->free);
485
486         /* remove it from the free list,
487          * the wl subsystem does no longer know this erase block */
488         rb_erase(&e->u.rb, &ubi->free);
489         ubi->free_count--;
490 out:
491         return e;
492 }
493 #endif
494
495 /**
496  * __wl_get_peb - get a physical eraseblock.
497  * @ubi: UBI device description object
498  *
499  * This function returns a physical eraseblock in case of success and a
500  * negative error code in case of failure.
501  */
502 static int __wl_get_peb(struct ubi_device *ubi)
503 {
504         int err;
505         struct ubi_wl_entry *e;
506
507 retry:
508         if (!ubi->free.rb_node) {
509                 if (ubi->works_count == 0) {
510                         ubi_err("no free eraseblocks");
511                         ubi_assert(list_empty(&ubi->works));
512                         return -ENOSPC;
513                 }
514
515                 err = produce_free_peb(ubi);
516                 if (err < 0)
517                         return err;
518                 goto retry;
519         }
520
521         e = find_mean_wl_entry(ubi, &ubi->free);
522         if (!e) {
523                 ubi_err("no free eraseblocks");
524                 return -ENOSPC;
525         }
526
527         self_check_in_wl_tree(ubi, e, &ubi->free);
528
529         /*
530          * Move the physical eraseblock to the protection queue where it will
531          * be protected from being moved for some time.
532          */
533         rb_erase(&e->u.rb, &ubi->free);
534         ubi->free_count--;
535         dbg_wl("PEB %d EC %d", e->pnum, e->ec);
536 #ifndef CONFIG_MTD_UBI_FASTMAP
537         /* We have to enqueue e only if fastmap is disabled,
538          * is fastmap enabled prot_queue_add() will be called by
539          * ubi_wl_get_peb() after removing e from the pool. */
540         prot_queue_add(ubi, e);
541 #endif
542         return e->pnum;
543 }
544
545 #ifdef CONFIG_MTD_UBI_FASTMAP
546 /**
547  * return_unused_pool_pebs - returns unused PEB to the free tree.
548  * @ubi: UBI device description object
549  * @pool: fastmap pool description object
550  */
551 static void return_unused_pool_pebs(struct ubi_device *ubi,
552                                     struct ubi_fm_pool *pool)
553 {
554         int i;
555         struct ubi_wl_entry *e;
556
557         for (i = pool->used; i < pool->size; i++) {
558                 e = ubi->lookuptbl[pool->pebs[i]];
559                 wl_tree_add(e, &ubi->free);
560                 ubi->free_count++;
561         }
562 }
563
564 /**
565  * refill_wl_pool - refills all the fastmap pool used by the
566  * WL sub-system.
567  * @ubi: UBI device description object
568  */
569 static void refill_wl_pool(struct ubi_device *ubi)
570 {
571         struct ubi_wl_entry *e;
572         struct ubi_fm_pool *pool = &ubi->fm_wl_pool;
573
574         return_unused_pool_pebs(ubi, pool);
575
576         for (pool->size = 0; pool->size < pool->max_size; pool->size++) {
577                 if (!ubi->free.rb_node ||
578                    (ubi->free_count - ubi->beb_rsvd_pebs < 5))
579                         break;
580
581                 e = find_wl_entry(ubi, &ubi->free, WL_FREE_MAX_DIFF);
582                 self_check_in_wl_tree(ubi, e, &ubi->free);
583                 rb_erase(&e->u.rb, &ubi->free);
584                 ubi->free_count--;
585
586                 pool->pebs[pool->size] = e->pnum;
587         }
588         pool->used = 0;
589 }
590
591 /**
592  * refill_wl_user_pool - refills all the fastmap pool used by ubi_wl_get_peb.
593  * @ubi: UBI device description object
594  */
595 static void refill_wl_user_pool(struct ubi_device *ubi)
596 {
597         struct ubi_fm_pool *pool = &ubi->fm_pool;
598
599         return_unused_pool_pebs(ubi, pool);
600
601         for (pool->size = 0; pool->size < pool->max_size; pool->size++) {
602                 pool->pebs[pool->size] = __wl_get_peb(ubi);
603                 if (pool->pebs[pool->size] < 0)
604                         break;
605         }
606         pool->used = 0;
607 }
608
609 /**
610  * ubi_refill_pools - refills all fastmap PEB pools.
611  * @ubi: UBI device description object
612  */
613 void ubi_refill_pools(struct ubi_device *ubi)
614 {
615         spin_lock(&ubi->wl_lock);
616         refill_wl_pool(ubi);
617         refill_wl_user_pool(ubi);
618         spin_unlock(&ubi->wl_lock);
619 }
620
621 /* ubi_wl_get_peb - works exaclty like __wl_get_peb but keeps track of
622  * the fastmap pool.
623  */
624 int ubi_wl_get_peb(struct ubi_device *ubi)
625 {
626         int ret;
627         struct ubi_fm_pool *pool = &ubi->fm_pool;
628         struct ubi_fm_pool *wl_pool = &ubi->fm_wl_pool;
629
630         if (!pool->size || !wl_pool->size || pool->used == pool->size ||
631             wl_pool->used == wl_pool->size)
632                 ubi_update_fastmap(ubi);
633
634         /* we got not a single free PEB */
635         if (!pool->size)
636                 ret = -ENOSPC;
637         else {
638                 spin_lock(&ubi->wl_lock);
639                 ret = pool->pebs[pool->used++];
640                 prot_queue_add(ubi, ubi->lookuptbl[ret]);
641                 spin_unlock(&ubi->wl_lock);
642         }
643
644         return ret;
645 }
646
647 /* get_peb_for_wl - returns a PEB to be used internally by the WL sub-system.
648  *
649  * @ubi: UBI device description object
650  */
651 static struct ubi_wl_entry *get_peb_for_wl(struct ubi_device *ubi)
652 {
653         struct ubi_fm_pool *pool = &ubi->fm_wl_pool;
654         int pnum;
655
656         ubi_assert(rwsem_is_locked(&ubi->fm_sem));
657
658         if (pool->used == pool->size || !pool->size) {
659                 /* We cannot update the fastmap here because this
660                  * function is called in atomic context.
661                  * Let's fail here and refill/update it as soon as possible. */
662                 schedule_work(&ubi->fm_work);
663                 return NULL;
664         } else {
665                 pnum = pool->pebs[pool->used++];
666                 return ubi->lookuptbl[pnum];
667         }
668 }
669 #else
670 static struct ubi_wl_entry *get_peb_for_wl(struct ubi_device *ubi)
671 {
672         struct ubi_wl_entry *e;
673
674         e = find_wl_entry(ubi, &ubi->free, WL_FREE_MAX_DIFF);
675         self_check_in_wl_tree(ubi, e, &ubi->free);
676         ubi->free_count--;
677         ubi_assert(ubi->free_count >= 0);
678         rb_erase(&e->u.rb, &ubi->free);
679
680         return e;
681 }
682
683 int ubi_wl_get_peb(struct ubi_device *ubi)
684 {
685         int peb, err;
686
687         spin_lock(&ubi->wl_lock);
688         peb = __wl_get_peb(ubi);
689         spin_unlock(&ubi->wl_lock);
690
691         if (peb < 0)
692                 return peb;
693
694         err = ubi_self_check_all_ff(ubi, peb, ubi->vid_hdr_aloffset,
695                                     ubi->peb_size - ubi->vid_hdr_aloffset);
696         if (err) {
697                 ubi_err("new PEB %d does not contain all 0xFF bytes", peb);
698                 return err;
699         }
700
701         return peb;
702 }
703 #endif
704
705 /**
706  * prot_queue_del - remove a physical eraseblock from the protection queue.
707  * @ubi: UBI device description object
708  * @pnum: the physical eraseblock to remove
709  *
710  * This function deletes PEB @pnum from the protection queue and returns zero
711  * in case of success and %-ENODEV if the PEB was not found.
712  */
713 static int prot_queue_del(struct ubi_device *ubi, int pnum)
714 {
715         struct ubi_wl_entry *e;
716
717         e = ubi->lookuptbl[pnum];
718         if (!e)
719                 return -ENODEV;
720
721         if (self_check_in_pq(ubi, e))
722                 return -ENODEV;
723
724         list_del(&e->u.list);
725         dbg_wl("deleted PEB %d from the protection queue", e->pnum);
726         return 0;
727 }
728
729 /**
730  * sync_erase - synchronously erase a physical eraseblock.
731  * @ubi: UBI device description object
732  * @e: the the physical eraseblock to erase
733  * @torture: if the physical eraseblock has to be tortured
734  *
735  * This function returns zero in case of success and a negative error code in
736  * case of failure.
737  */
738 static int sync_erase(struct ubi_device *ubi, struct ubi_wl_entry *e,
739                       int torture)
740 {
741         int err;
742         struct ubi_ec_hdr *ec_hdr;
743         unsigned long long ec = e->ec;
744
745         dbg_wl("erase PEB %d, old EC %llu", e->pnum, ec);
746
747         err = self_check_ec(ubi, e->pnum, e->ec);
748         if (err)
749                 return -EINVAL;
750
751         ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS);
752         if (!ec_hdr)
753                 return -ENOMEM;
754
755         err = ubi_io_sync_erase(ubi, e->pnum, torture);
756         if (err < 0)
757                 goto out_free;
758
759         ec += err;
760         if (ec > UBI_MAX_ERASECOUNTER) {
761                 /*
762                  * Erase counter overflow. Upgrade UBI and use 64-bit
763                  * erase counters internally.
764                  */
765                 ubi_err("erase counter overflow at PEB %d, EC %llu",
766                         e->pnum, ec);
767                 err = -EINVAL;
768                 goto out_free;
769         }
770
771         dbg_wl("erased PEB %d, new EC %llu", e->pnum, ec);
772
773         ec_hdr->ec = cpu_to_be64(ec);
774
775         err = ubi_io_write_ec_hdr(ubi, e->pnum, ec_hdr);
776         if (err)
777                 goto out_free;
778
779         e->ec = ec;
780         spin_lock(&ubi->wl_lock);
781         if (e->ec > ubi->max_ec)
782                 ubi->max_ec = e->ec;
783         spin_unlock(&ubi->wl_lock);
784
785 out_free:
786         kfree(ec_hdr);
787         return err;
788 }
789
790 /**
791  * serve_prot_queue - check if it is time to stop protecting PEBs.
792  * @ubi: UBI device description object
793  *
794  * This function is called after each erase operation and removes PEBs from the
795  * tail of the protection queue. These PEBs have been protected for long enough
796  * and should be moved to the used tree.
797  */
798 static void serve_prot_queue(struct ubi_device *ubi)
799 {
800         struct ubi_wl_entry *e, *tmp;
801         int count;
802
803         /*
804          * There may be several protected physical eraseblock to remove,
805          * process them all.
806          */
807 repeat:
808         count = 0;
809         spin_lock(&ubi->wl_lock);
810         list_for_each_entry_safe(e, tmp, &ubi->pq[ubi->pq_head], u.list) {
811                 dbg_wl("PEB %d EC %d protection over, move to used tree",
812                         e->pnum, e->ec);
813
814                 list_del(&e->u.list);
815                 wl_tree_add(e, &ubi->used);
816                 if (count++ > 32) {
817                         /*
818                          * Let's be nice and avoid holding the spinlock for
819                          * too long.
820                          */
821                         spin_unlock(&ubi->wl_lock);
822                         cond_resched();
823                         goto repeat;
824                 }
825         }
826
827         ubi->pq_head += 1;
828         if (ubi->pq_head == UBI_PROT_QUEUE_LEN)
829                 ubi->pq_head = 0;
830         ubi_assert(ubi->pq_head >= 0 && ubi->pq_head < UBI_PROT_QUEUE_LEN);
831         spin_unlock(&ubi->wl_lock);
832 }
833
834 /**
835  * __schedule_ubi_work - schedule a work.
836  * @ubi: UBI device description object
837  * @wrk: the work to schedule
838  *
839  * This function adds a work defined by @wrk to the tail of the pending works
840  * list. Can only be used of ubi->work_sem is already held in read mode!
841  */
842 static void __schedule_ubi_work(struct ubi_device *ubi, struct ubi_work *wrk)
843 {
844         spin_lock(&ubi->wl_lock);
845         list_add_tail(&wrk->list, &ubi->works);
846         ubi_assert(ubi->works_count >= 0);
847         ubi->works_count += 1;
848         if (ubi->thread_enabled && !ubi_dbg_is_bgt_disabled(ubi))
849                 wake_up_process(ubi->bgt_thread);
850         spin_unlock(&ubi->wl_lock);
851 }
852
853 /**
854  * schedule_ubi_work - schedule a work.
855  * @ubi: UBI device description object
856  * @wrk: the work to schedule
857  *
858  * This function adds a work defined by @wrk to the tail of the pending works
859  * list.
860  */
861 static void schedule_ubi_work(struct ubi_device *ubi, struct ubi_work *wrk)
862 {
863         down_read(&ubi->work_sem);
864         __schedule_ubi_work(ubi, wrk);
865         up_read(&ubi->work_sem);
866 }
867
868 static int erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk,
869                         int cancel);
870
871 #ifdef CONFIG_MTD_UBI_FASTMAP
872 /**
873  * ubi_is_erase_work - checks whether a work is erase work.
874  * @wrk: The work object to be checked
875  */
876 int ubi_is_erase_work(struct ubi_work *wrk)
877 {
878         return wrk->func == erase_worker;
879 }
880 #endif
881
882 /**
883  * schedule_erase - schedule an erase work.
884  * @ubi: UBI device description object
885  * @e: the WL entry of the physical eraseblock to erase
886  * @vol_id: the volume ID that last used this PEB
887  * @lnum: the last used logical eraseblock number for the PEB
888  * @torture: if the physical eraseblock has to be tortured
889  *
890  * This function returns zero in case of success and a %-ENOMEM in case of
891  * failure.
892  */
893 static int schedule_erase(struct ubi_device *ubi, struct ubi_wl_entry *e,
894                           int vol_id, int lnum, int torture, bool nested)
895 {
896         struct ubi_work *wl_wrk;
897
898         ubi_assert(e);
899         ubi_assert(!ubi_is_fm_block(ubi, e->pnum));
900
901         dbg_wl("schedule erasure of PEB %d, EC %d, torture %d",
902                e->pnum, e->ec, torture);
903
904         wl_wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS);
905         if (!wl_wrk)
906                 return -ENOMEM;
907
908         wl_wrk->func = &erase_worker;
909         wl_wrk->e = e;
910         wl_wrk->vol_id = vol_id;
911         wl_wrk->lnum = lnum;
912         wl_wrk->torture = torture;
913
914         if (nested)
915                 __schedule_ubi_work(ubi, wl_wrk);
916         else
917                 schedule_ubi_work(ubi, wl_wrk);
918         return 0;
919 }
920
921 /**
922  * do_sync_erase - run the erase worker synchronously.
923  * @ubi: UBI device description object
924  * @e: the WL entry of the physical eraseblock to erase
925  * @vol_id: the volume ID that last used this PEB
926  * @lnum: the last used logical eraseblock number for the PEB
927  * @torture: if the physical eraseblock has to be tortured
928  *
929  */
930 static int do_sync_erase(struct ubi_device *ubi, struct ubi_wl_entry *e,
931                          int vol_id, int lnum, int torture)
932 {
933         struct ubi_work *wl_wrk;
934
935         dbg_wl("sync erase of PEB %i", e->pnum);
936
937         wl_wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS);
938         if (!wl_wrk)
939                 return -ENOMEM;
940
941         wl_wrk->e = e;
942         wl_wrk->vol_id = vol_id;
943         wl_wrk->lnum = lnum;
944         wl_wrk->torture = torture;
945
946         return erase_worker(ubi, wl_wrk, 0);
947 }
948
949 #ifdef CONFIG_MTD_UBI_FASTMAP
950 /**
951  * ubi_wl_put_fm_peb - returns a PEB used in a fastmap to the wear-leveling
952  * sub-system.
953  * see: ubi_wl_put_peb()
954  *
955  * @ubi: UBI device description object
956  * @fm_e: physical eraseblock to return
957  * @lnum: the last used logical eraseblock number for the PEB
958  * @torture: if this physical eraseblock has to be tortured
959  */
960 int ubi_wl_put_fm_peb(struct ubi_device *ubi, struct ubi_wl_entry *fm_e,
961                       int lnum, int torture)
962 {
963         struct ubi_wl_entry *e;
964         int vol_id, pnum = fm_e->pnum;
965
966         dbg_wl("PEB %d", pnum);
967
968         ubi_assert(pnum >= 0);
969         ubi_assert(pnum < ubi->peb_count);
970
971         spin_lock(&ubi->wl_lock);
972         e = ubi->lookuptbl[pnum];
973
974         /* This can happen if we recovered from a fastmap the very
975          * first time and writing now a new one. In this case the wl system
976          * has never seen any PEB used by the original fastmap.
977          */
978         if (!e) {
979                 e = fm_e;
980                 ubi_assert(e->ec >= 0);
981                 ubi->lookuptbl[pnum] = e;
982         } else {
983                 e->ec = fm_e->ec;
984                 kfree(fm_e);
985         }
986
987         spin_unlock(&ubi->wl_lock);
988
989         vol_id = lnum ? UBI_FM_DATA_VOLUME_ID : UBI_FM_SB_VOLUME_ID;
990         return schedule_erase(ubi, e, vol_id, lnum, torture, true);
991 }
992 #endif
993
994 /**
995  * wear_leveling_worker - wear-leveling worker function.
996  * @ubi: UBI device description object
997  * @wrk: the work object
998  * @cancel: non-zero if the worker has to free memory and exit
999  *
1000  * This function copies a more worn out physical eraseblock to a less worn out
1001  * one. Returns zero in case of success and a negative error code in case of
1002  * failure.
1003  */
1004 static int wear_leveling_worker(struct ubi_device *ubi, struct ubi_work *wrk,
1005                                 int cancel)
1006 {
1007         int err, scrubbing = 0, torture = 0, protect = 0, erroneous = 0;
1008         int erase = 0, keep = 0, vol_id = -1, lnum = -1;
1009 #ifdef CONFIG_MTD_UBI_FASTMAP
1010         int anchor = wrk->anchor;
1011 #endif
1012         struct ubi_wl_entry *e1, *e2;
1013         struct ubi_vid_hdr *vid_hdr;
1014
1015         kfree(wrk);
1016         if (cancel)
1017                 return 0;
1018
1019         vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS);
1020         if (!vid_hdr)
1021                 return -ENOMEM;
1022
1023         down_read(&ubi->fm_sem);
1024         mutex_lock(&ubi->move_mutex);
1025         spin_lock(&ubi->wl_lock);
1026         ubi_assert(!ubi->move_from && !ubi->move_to);
1027         ubi_assert(!ubi->move_to_put);
1028
1029         if (!ubi->free.rb_node ||
1030             (!ubi->used.rb_node && !ubi->scrub.rb_node)) {
1031                 /*
1032                  * No free physical eraseblocks? Well, they must be waiting in
1033                  * the queue to be erased. Cancel movement - it will be
1034                  * triggered again when a free physical eraseblock appears.
1035                  *
1036                  * No used physical eraseblocks? They must be temporarily
1037                  * protected from being moved. They will be moved to the
1038                  * @ubi->used tree later and the wear-leveling will be
1039                  * triggered again.
1040                  */
1041                 dbg_wl("cancel WL, a list is empty: free %d, used %d",
1042                        !ubi->free.rb_node, !ubi->used.rb_node);
1043                 goto out_cancel;
1044         }
1045
1046 #ifdef CONFIG_MTD_UBI_FASTMAP
1047         /* Check whether we need to produce an anchor PEB */
1048         if (!anchor)
1049                 anchor = !anchor_pebs_avalible(&ubi->free);
1050
1051         if (anchor) {
1052                 e1 = find_anchor_wl_entry(&ubi->used);
1053                 if (!e1)
1054                         goto out_cancel;
1055                 e2 = get_peb_for_wl(ubi);
1056                 if (!e2)
1057                         goto out_cancel;
1058
1059                 self_check_in_wl_tree(ubi, e1, &ubi->used);
1060                 rb_erase(&e1->u.rb, &ubi->used);
1061                 dbg_wl("anchor-move PEB %d to PEB %d", e1->pnum, e2->pnum);
1062         } else if (!ubi->scrub.rb_node) {
1063 #else
1064         if (!ubi->scrub.rb_node) {
1065 #endif
1066                 /*
1067                  * Now pick the least worn-out used physical eraseblock and a
1068                  * highly worn-out free physical eraseblock. If the erase
1069                  * counters differ much enough, start wear-leveling.
1070                  */
1071                 e1 = rb_entry(rb_first(&ubi->used), struct ubi_wl_entry, u.rb);
1072                 e2 = get_peb_for_wl(ubi);
1073                 if (!e2)
1074                         goto out_cancel;
1075
1076                 if (!(e2->ec - e1->ec >= UBI_WL_THRESHOLD)) {
1077                         dbg_wl("no WL needed: min used EC %d, max free EC %d",
1078                                e1->ec, e2->ec);
1079
1080                         /* Give the unused PEB back */
1081                         wl_tree_add(e2, &ubi->free);
1082                         ubi->free_count++;
1083                         goto out_cancel;
1084                 }
1085                 self_check_in_wl_tree(ubi, e1, &ubi->used);
1086                 rb_erase(&e1->u.rb, &ubi->used);
1087                 dbg_wl("move PEB %d EC %d to PEB %d EC %d",
1088                        e1->pnum, e1->ec, e2->pnum, e2->ec);
1089         } else {
1090                 /* Perform scrubbing */
1091                 scrubbing = 1;
1092                 e1 = rb_entry(rb_first(&ubi->scrub), struct ubi_wl_entry, u.rb);
1093                 e2 = get_peb_for_wl(ubi);
1094                 if (!e2)
1095                         goto out_cancel;
1096
1097                 self_check_in_wl_tree(ubi, e1, &ubi->scrub);
1098                 rb_erase(&e1->u.rb, &ubi->scrub);
1099                 dbg_wl("scrub PEB %d to PEB %d", e1->pnum, e2->pnum);
1100         }
1101
1102         ubi->move_from = e1;
1103         ubi->move_to = e2;
1104         spin_unlock(&ubi->wl_lock);
1105
1106         /*
1107          * Now we are going to copy physical eraseblock @e1->pnum to @e2->pnum.
1108          * We so far do not know which logical eraseblock our physical
1109          * eraseblock (@e1) belongs to. We have to read the volume identifier
1110          * header first.
1111          *
1112          * Note, we are protected from this PEB being unmapped and erased. The
1113          * 'ubi_wl_put_peb()' would wait for moving to be finished if the PEB
1114          * which is being moved was unmapped.
1115          */
1116
1117         err = ubi_io_read_vid_hdr(ubi, e1->pnum, vid_hdr, 0);
1118         if (err && err != UBI_IO_BITFLIPS) {
1119                 if (err == UBI_IO_FF) {
1120                         /*
1121                          * We are trying to move PEB without a VID header. UBI
1122                          * always write VID headers shortly after the PEB was
1123                          * given, so we have a situation when it has not yet
1124                          * had a chance to write it, because it was preempted.
1125                          * So add this PEB to the protection queue so far,
1126                          * because presumably more data will be written there
1127                          * (including the missing VID header), and then we'll
1128                          * move it.
1129                          */
1130                         dbg_wl("PEB %d has no VID header", e1->pnum);
1131                         protect = 1;
1132                         goto out_not_moved;
1133                 } else if (err == UBI_IO_FF_BITFLIPS) {
1134                         /*
1135                          * The same situation as %UBI_IO_FF, but bit-flips were
1136                          * detected. It is better to schedule this PEB for
1137                          * scrubbing.
1138                          */
1139                         dbg_wl("PEB %d has no VID header but has bit-flips",
1140                                e1->pnum);
1141                         scrubbing = 1;
1142                         goto out_not_moved;
1143                 } else if (ubi->fast_attach && err == UBI_IO_BAD_HDR_EBADMSG) {
1144                         /*
1145                          * While a full scan would detect interrupted erasures
1146                          * at attach time we can face them here when attached from
1147                          * Fastmap.
1148                          */
1149                         dbg_wl("PEB %d has ECC errors, maybe from an interrupted erasure",
1150                                e1->pnum);
1151                         erase = 1;
1152                         goto out_not_moved;
1153                 }
1154
1155                 ubi_err("error %d while reading VID header from PEB %d",
1156                         err, e1->pnum);
1157                 goto out_error;
1158         }
1159
1160         vol_id = be32_to_cpu(vid_hdr->vol_id);
1161         lnum = be32_to_cpu(vid_hdr->lnum);
1162
1163         err = ubi_eba_copy_leb(ubi, e1->pnum, e2->pnum, vid_hdr);
1164         if (err) {
1165                 if (err == MOVE_CANCEL_RACE) {
1166                         /*
1167                          * The LEB has not been moved because the volume is
1168                          * being deleted or the PEB has been put meanwhile. We
1169                          * should prevent this PEB from being selected for
1170                          * wear-leveling movement again, so put it to the
1171                          * protection queue.
1172                          */
1173                         protect = 1;
1174                         goto out_not_moved;
1175                 }
1176                 if (err == MOVE_RETRY) {
1177                         scrubbing = 1;
1178                         goto out_not_moved;
1179                 }
1180                 if (err == MOVE_TARGET_BITFLIPS || err == MOVE_TARGET_WR_ERR ||
1181                     err == MOVE_TARGET_RD_ERR) {
1182                         /*
1183                          * Target PEB had bit-flips or write error - torture it.
1184                          */
1185                         torture = 1;
1186                         keep = 1;
1187                         goto out_not_moved;
1188                 }
1189
1190                 if (err == MOVE_SOURCE_RD_ERR) {
1191                         /*
1192                          * An error happened while reading the source PEB. Do
1193                          * not switch to R/O mode in this case, and give the
1194                          * upper layers a possibility to recover from this,
1195                          * e.g. by unmapping corresponding LEB. Instead, just
1196                          * put this PEB to the @ubi->erroneous list to prevent
1197                          * UBI from trying to move it over and over again.
1198                          */
1199                         if (ubi->erroneous_peb_count > ubi->max_erroneous) {
1200                                 ubi_err("too many erroneous eraseblocks (%d)",
1201                                         ubi->erroneous_peb_count);
1202                                 goto out_error;
1203                         }
1204                         erroneous = 1;
1205                         goto out_not_moved;
1206                 }
1207
1208                 if (err < 0)
1209                         goto out_error;
1210
1211                 ubi_assert(0);
1212         }
1213
1214         /* The PEB has been successfully moved */
1215         if (scrubbing)
1216                 ubi_msg("scrubbed PEB %d (LEB %d:%d), data moved to PEB %d",
1217                         e1->pnum, vol_id, lnum, e2->pnum);
1218         ubi_free_vid_hdr(ubi, vid_hdr);
1219
1220         spin_lock(&ubi->wl_lock);
1221         if (!ubi->move_to_put) {
1222                 wl_tree_add(e2, &ubi->used);
1223                 e2 = NULL;
1224         }
1225         ubi->move_from = ubi->move_to = NULL;
1226         ubi->move_to_put = ubi->wl_scheduled = 0;
1227         spin_unlock(&ubi->wl_lock);
1228
1229         err = do_sync_erase(ubi, e1, vol_id, lnum, 0);
1230         if (err) {
1231                 if (e2)
1232                         kmem_cache_free(ubi_wl_entry_slab, e2);
1233                 goto out_ro;
1234         }
1235
1236         if (e2) {
1237                 /*
1238                  * Well, the target PEB was put meanwhile, schedule it for
1239                  * erasure.
1240                  */
1241                 dbg_wl("PEB %d (LEB %d:%d) was put meanwhile, erase",
1242                        e2->pnum, vol_id, lnum);
1243                 err = do_sync_erase(ubi, e2, vol_id, lnum, 0);
1244                 if (err)
1245                         goto out_ro;
1246         }
1247
1248         dbg_wl("done");
1249         mutex_unlock(&ubi->move_mutex);
1250         up_read(&ubi->fm_sem);
1251         return 0;
1252
1253         /*
1254          * For some reasons the LEB was not moved, might be an error, might be
1255          * something else. @e1 was not changed, so return it back. @e2 might
1256          * have been changed, schedule it for erasure.
1257          */
1258 out_not_moved:
1259         if (vol_id != -1)
1260                 dbg_wl("cancel moving PEB %d (LEB %d:%d) to PEB %d (%d)",
1261                        e1->pnum, vol_id, lnum, e2->pnum, err);
1262         else
1263                 dbg_wl("cancel moving PEB %d to PEB %d (%d)",
1264                        e1->pnum, e2->pnum, err);
1265         spin_lock(&ubi->wl_lock);
1266         if (protect)
1267                 prot_queue_add(ubi, e1);
1268         else if (erroneous) {
1269                 wl_tree_add(e1, &ubi->erroneous);
1270                 ubi->erroneous_peb_count += 1;
1271         } else if (scrubbing)
1272                 wl_tree_add(e1, &ubi->scrub);
1273         else if (keep)
1274                 wl_tree_add(e1, &ubi->used);
1275         ubi_assert(!ubi->move_to_put);
1276         ubi->move_from = ubi->move_to = NULL;
1277         ubi->wl_scheduled = 0;
1278         spin_unlock(&ubi->wl_lock);
1279
1280         ubi_free_vid_hdr(ubi, vid_hdr);
1281         err = do_sync_erase(ubi, e2, vol_id, lnum, torture);
1282         if (err)
1283                 goto out_ro;
1284
1285         if (erase) {
1286                 err = do_sync_erase(ubi, e1, vol_id, lnum, 1);
1287                 if (err)
1288                         goto out_ro;
1289         }
1290
1291         mutex_unlock(&ubi->move_mutex);
1292         up_read(&ubi->fm_sem);
1293         return 0;
1294
1295 out_error:
1296         if (vol_id != -1)
1297                 ubi_err("error %d while moving PEB %d to PEB %d",
1298                         err, e1->pnum, e2->pnum);
1299         else
1300                 ubi_err("error %d while moving PEB %d (LEB %d:%d) to PEB %d",
1301                         err, e1->pnum, vol_id, lnum, e2->pnum);
1302         spin_lock(&ubi->wl_lock);
1303         ubi->move_from = ubi->move_to = NULL;
1304         ubi->move_to_put = ubi->wl_scheduled = 0;
1305         spin_unlock(&ubi->wl_lock);
1306
1307         ubi_free_vid_hdr(ubi, vid_hdr);
1308         kmem_cache_free(ubi_wl_entry_slab, e1);
1309         kmem_cache_free(ubi_wl_entry_slab, e2);
1310
1311 out_ro:
1312         ubi_ro_mode(ubi);
1313         mutex_unlock(&ubi->move_mutex);
1314         up_read(&ubi->fm_sem);
1315         ubi_assert(err != 0);
1316         return err < 0 ? err : -EIO;
1317
1318 out_cancel:
1319         ubi->wl_scheduled = 0;
1320         spin_unlock(&ubi->wl_lock);
1321         mutex_unlock(&ubi->move_mutex);
1322         up_read(&ubi->fm_sem);
1323         ubi_free_vid_hdr(ubi, vid_hdr);
1324         return 0;
1325 }
1326
1327 /**
1328  * ensure_wear_leveling - schedule wear-leveling if it is needed.
1329  * @ubi: UBI device description object
1330  * @nested: set to non-zero if this function is called from UBI worker
1331  *
1332  * This function checks if it is time to start wear-leveling and schedules it
1333  * if yes. This function returns zero in case of success and a negative error
1334  * code in case of failure.
1335  */
1336 static int ensure_wear_leveling(struct ubi_device *ubi, int nested)
1337 {
1338         int err = 0;
1339         struct ubi_wl_entry *e1;
1340         struct ubi_wl_entry *e2;
1341         struct ubi_work *wrk;
1342
1343         spin_lock(&ubi->wl_lock);
1344         if (ubi->wl_scheduled)
1345                 /* Wear-leveling is already in the work queue */
1346                 goto out_unlock;
1347
1348         /*
1349          * If the ubi->scrub tree is not empty, scrubbing is needed, and the
1350          * the WL worker has to be scheduled anyway.
1351          */
1352         if (!ubi->scrub.rb_node) {
1353                 if (!ubi->used.rb_node || !ubi->free.rb_node)
1354                         /* No physical eraseblocks - no deal */
1355                         goto out_unlock;
1356
1357                 /*
1358                  * We schedule wear-leveling only if the difference between the
1359                  * lowest erase counter of used physical eraseblocks and a high
1360                  * erase counter of free physical eraseblocks is greater than
1361                  * %UBI_WL_THRESHOLD.
1362                  */
1363                 e1 = rb_entry(rb_first(&ubi->used), struct ubi_wl_entry, u.rb);
1364                 e2 = find_wl_entry(ubi, &ubi->free, WL_FREE_MAX_DIFF);
1365
1366                 if (!(e2->ec - e1->ec >= UBI_WL_THRESHOLD))
1367                         goto out_unlock;
1368                 dbg_wl("schedule wear-leveling");
1369         } else
1370                 dbg_wl("schedule scrubbing");
1371
1372         ubi->wl_scheduled = 1;
1373         spin_unlock(&ubi->wl_lock);
1374
1375         wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS);
1376         if (!wrk) {
1377                 err = -ENOMEM;
1378                 goto out_cancel;
1379         }
1380
1381         wrk->anchor = 0;
1382         wrk->func = &wear_leveling_worker;
1383         if (nested)
1384                 __schedule_ubi_work(ubi, wrk);
1385         else
1386                 schedule_ubi_work(ubi, wrk);
1387         return err;
1388
1389 out_cancel:
1390         spin_lock(&ubi->wl_lock);
1391         ubi->wl_scheduled = 0;
1392 out_unlock:
1393         spin_unlock(&ubi->wl_lock);
1394         return err;
1395 }
1396
1397 #ifdef CONFIG_MTD_UBI_FASTMAP
1398 /**
1399  * ubi_ensure_anchor_pebs - schedule wear-leveling to produce an anchor PEB.
1400  * @ubi: UBI device description object
1401  */
1402 int ubi_ensure_anchor_pebs(struct ubi_device *ubi)
1403 {
1404         struct ubi_work *wrk;
1405
1406         spin_lock(&ubi->wl_lock);
1407         if (ubi->wl_scheduled) {
1408                 spin_unlock(&ubi->wl_lock);
1409                 return 0;
1410         }
1411         ubi->wl_scheduled = 1;
1412         spin_unlock(&ubi->wl_lock);
1413
1414         wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS);
1415         if (!wrk) {
1416                 spin_lock(&ubi->wl_lock);
1417                 ubi->wl_scheduled = 0;
1418                 spin_unlock(&ubi->wl_lock);
1419                 return -ENOMEM;
1420         }
1421
1422         wrk->anchor = 1;
1423         wrk->func = &wear_leveling_worker;
1424         __schedule_ubi_work(ubi, wrk);
1425         return 0;
1426 }
1427 #endif
1428
1429 /**
1430  * erase_worker - physical eraseblock erase worker function.
1431  * @ubi: UBI device description object
1432  * @wl_wrk: the work object
1433  * @cancel: non-zero if the worker has to free memory and exit
1434  *
1435  * This function erases a physical eraseblock and perform torture testing if
1436  * needed. It also takes care about marking the physical eraseblock bad if
1437  * needed. Returns zero in case of success and a negative error code in case of
1438  * failure.
1439  */
1440 static int erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk,
1441                         int cancel)
1442 {
1443         struct ubi_wl_entry *e = wl_wrk->e;
1444         int pnum = e->pnum;
1445         int vol_id = wl_wrk->vol_id;
1446         int lnum = wl_wrk->lnum;
1447         int err, available_consumed = 0;
1448
1449         if (cancel) {
1450                 dbg_wl("cancel erasure of PEB %d EC %d", pnum, e->ec);
1451                 kfree(wl_wrk);
1452                 kmem_cache_free(ubi_wl_entry_slab, e);
1453                 return 0;
1454         }
1455
1456         dbg_wl("erase PEB %d EC %d LEB %d:%d",
1457                pnum, e->ec, wl_wrk->vol_id, wl_wrk->lnum);
1458
1459         ubi_assert(!ubi_is_fm_block(ubi, e->pnum));
1460
1461         err = sync_erase(ubi, e, wl_wrk->torture);
1462         if (!err) {
1463                 /* Fine, we've erased it successfully */
1464                 kfree(wl_wrk);
1465
1466                 spin_lock(&ubi->wl_lock);
1467                 wl_tree_add(e, &ubi->free);
1468                 ubi->free_count++;
1469                 spin_unlock(&ubi->wl_lock);
1470
1471                 /*
1472                  * One more erase operation has happened, take care about
1473                  * protected physical eraseblocks.
1474                  */
1475                 serve_prot_queue(ubi);
1476
1477                 /* And take care about wear-leveling */
1478                 err = ensure_wear_leveling(ubi, 1);
1479                 return err;
1480         }
1481
1482         ubi_err("failed to erase PEB %d, error %d", pnum, err);
1483         kfree(wl_wrk);
1484
1485         if (err == -EINTR || err == -ENOMEM || err == -EAGAIN ||
1486             err == -EBUSY) {
1487                 int err1;
1488
1489                 /* Re-schedule the LEB for erasure */
1490                 err1 = schedule_erase(ubi, e, vol_id, lnum, 0, false);
1491                 if (err1) {
1492                         err = err1;
1493                         goto out_ro;
1494                 }
1495                 return err;
1496         }
1497
1498         kmem_cache_free(ubi_wl_entry_slab, e);
1499         if (err != -EIO)
1500                 /*
1501                  * If this is not %-EIO, we have no idea what to do. Scheduling
1502                  * this physical eraseblock for erasure again would cause
1503                  * errors again and again. Well, lets switch to R/O mode.
1504                  */
1505                 goto out_ro;
1506
1507         /* It is %-EIO, the PEB went bad */
1508
1509         if (!ubi->bad_allowed) {
1510                 ubi_err("bad physical eraseblock %d detected", pnum);
1511                 goto out_ro;
1512         }
1513
1514         spin_lock(&ubi->volumes_lock);
1515         if (ubi->beb_rsvd_pebs == 0) {
1516                 if (ubi->avail_pebs == 0) {
1517                         spin_unlock(&ubi->volumes_lock);
1518                         ubi_err("no reserved/available physical eraseblocks");
1519                         goto out_ro;
1520                 }
1521                 ubi->avail_pebs -= 1;
1522                 available_consumed = 1;
1523         }
1524         spin_unlock(&ubi->volumes_lock);
1525
1526         ubi_msg("mark PEB %d as bad", pnum);
1527         err = ubi_io_mark_bad(ubi, pnum);
1528         if (err)
1529                 goto out_ro;
1530
1531         spin_lock(&ubi->volumes_lock);
1532         if (ubi->beb_rsvd_pebs > 0) {
1533                 if (available_consumed) {
1534                         /*
1535                          * The amount of reserved PEBs increased since we last
1536                          * checked.
1537                          */
1538                         ubi->avail_pebs += 1;
1539                         available_consumed = 0;
1540                 }
1541                 ubi->beb_rsvd_pebs -= 1;
1542         }
1543         ubi->bad_peb_count += 1;
1544         ubi->good_peb_count -= 1;
1545         ubi_calculate_reserved(ubi);
1546         if (available_consumed)
1547                 ubi_warn("no PEBs in the reserved pool, used an available PEB");
1548         else if (ubi->beb_rsvd_pebs)
1549                 ubi_msg("%d PEBs left in the reserve", ubi->beb_rsvd_pebs);
1550         else
1551                 ubi_warn("last PEB from the reserve was used");
1552         spin_unlock(&ubi->volumes_lock);
1553
1554         return err;
1555
1556 out_ro:
1557         if (available_consumed) {
1558                 spin_lock(&ubi->volumes_lock);
1559                 ubi->avail_pebs += 1;
1560                 spin_unlock(&ubi->volumes_lock);
1561         }
1562         ubi_ro_mode(ubi);
1563         return err;
1564 }
1565
1566 /**
1567  * ubi_wl_put_peb - return a PEB to the wear-leveling sub-system.
1568  * @ubi: UBI device description object
1569  * @vol_id: the volume ID that last used this PEB
1570  * @lnum: the last used logical eraseblock number for the PEB
1571  * @pnum: physical eraseblock to return
1572  * @torture: if this physical eraseblock has to be tortured
1573  *
1574  * This function is called to return physical eraseblock @pnum to the pool of
1575  * free physical eraseblocks. The @torture flag has to be set if an I/O error
1576  * occurred to this @pnum and it has to be tested. This function returns zero
1577  * in case of success, and a negative error code in case of failure.
1578  */
1579 int ubi_wl_put_peb(struct ubi_device *ubi, int vol_id, int lnum,
1580                    int pnum, int torture)
1581 {
1582         int err;
1583         struct ubi_wl_entry *e;
1584
1585         dbg_wl("PEB %d", pnum);
1586         ubi_assert(pnum >= 0);
1587         ubi_assert(pnum < ubi->peb_count);
1588
1589 retry:
1590         spin_lock(&ubi->wl_lock);
1591         e = ubi->lookuptbl[pnum];
1592         if (e == ubi->move_from) {
1593                 /*
1594                  * User is putting the physical eraseblock which was selected to
1595                  * be moved. It will be scheduled for erasure in the
1596                  * wear-leveling worker.
1597                  */
1598                 dbg_wl("PEB %d is being moved, wait", pnum);
1599                 spin_unlock(&ubi->wl_lock);
1600
1601                 /* Wait for the WL worker by taking the @ubi->move_mutex */
1602                 mutex_lock(&ubi->move_mutex);
1603                 mutex_unlock(&ubi->move_mutex);
1604                 goto retry;
1605         } else if (e == ubi->move_to) {
1606                 /*
1607                  * User is putting the physical eraseblock which was selected
1608                  * as the target the data is moved to. It may happen if the EBA
1609                  * sub-system already re-mapped the LEB in 'ubi_eba_copy_leb()'
1610                  * but the WL sub-system has not put the PEB to the "used" tree
1611                  * yet, but it is about to do this. So we just set a flag which
1612                  * will tell the WL worker that the PEB is not needed anymore
1613                  * and should be scheduled for erasure.
1614                  */
1615                 dbg_wl("PEB %d is the target of data moving", pnum);
1616                 ubi_assert(!ubi->move_to_put);
1617                 ubi->move_to_put = 1;
1618                 spin_unlock(&ubi->wl_lock);
1619                 return 0;
1620         } else {
1621                 if (in_wl_tree(e, &ubi->used)) {
1622                         self_check_in_wl_tree(ubi, e, &ubi->used);
1623                         rb_erase(&e->u.rb, &ubi->used);
1624                 } else if (in_wl_tree(e, &ubi->scrub)) {
1625                         self_check_in_wl_tree(ubi, e, &ubi->scrub);
1626                         rb_erase(&e->u.rb, &ubi->scrub);
1627                 } else if (in_wl_tree(e, &ubi->erroneous)) {
1628                         self_check_in_wl_tree(ubi, e, &ubi->erroneous);
1629                         rb_erase(&e->u.rb, &ubi->erroneous);
1630                         ubi->erroneous_peb_count -= 1;
1631                         ubi_assert(ubi->erroneous_peb_count >= 0);
1632                         /* Erroneous PEBs should be tortured */
1633                         torture = 1;
1634                 } else {
1635                         err = prot_queue_del(ubi, e->pnum);
1636                         if (err) {
1637                                 ubi_err("PEB %d not found", pnum);
1638                                 ubi_ro_mode(ubi);
1639                                 spin_unlock(&ubi->wl_lock);
1640                                 return err;
1641                         }
1642                 }
1643         }
1644         spin_unlock(&ubi->wl_lock);
1645
1646         err = schedule_erase(ubi, e, vol_id, lnum, torture, false);
1647         if (err) {
1648                 spin_lock(&ubi->wl_lock);
1649                 wl_tree_add(e, &ubi->used);
1650                 spin_unlock(&ubi->wl_lock);
1651         }
1652
1653         return err;
1654 }
1655
1656 /**
1657  * ubi_wl_scrub_peb - schedule a physical eraseblock for scrubbing.
1658  * @ubi: UBI device description object
1659  * @pnum: the physical eraseblock to schedule
1660  *
1661  * If a bit-flip in a physical eraseblock is detected, this physical eraseblock
1662  * needs scrubbing. This function schedules a physical eraseblock for
1663  * scrubbing which is done in background. This function returns zero in case of
1664  * success and a negative error code in case of failure.
1665  */
1666 int ubi_wl_scrub_peb(struct ubi_device *ubi, int pnum)
1667 {
1668         struct ubi_wl_entry *e;
1669
1670         ubi_msg("schedule PEB %d for scrubbing", pnum);
1671
1672 retry:
1673         spin_lock(&ubi->wl_lock);
1674         e = ubi->lookuptbl[pnum];
1675         if (e == ubi->move_from || in_wl_tree(e, &ubi->scrub) ||
1676                                    in_wl_tree(e, &ubi->erroneous)) {
1677                 spin_unlock(&ubi->wl_lock);
1678                 return 0;
1679         }
1680
1681         if (e == ubi->move_to) {
1682                 /*
1683                  * This physical eraseblock was used to move data to. The data
1684                  * was moved but the PEB was not yet inserted to the proper
1685                  * tree. We should just wait a little and let the WL worker
1686                  * proceed.
1687                  */
1688                 spin_unlock(&ubi->wl_lock);
1689                 dbg_wl("the PEB %d is not in proper tree, retry", pnum);
1690                 yield();
1691                 goto retry;
1692         }
1693
1694         if (in_wl_tree(e, &ubi->used)) {
1695                 self_check_in_wl_tree(ubi, e, &ubi->used);
1696                 rb_erase(&e->u.rb, &ubi->used);
1697         } else {
1698                 int err;
1699
1700                 err = prot_queue_del(ubi, e->pnum);
1701                 if (err) {
1702                         ubi_err("PEB %d not found", pnum);
1703                         ubi_ro_mode(ubi);
1704                         spin_unlock(&ubi->wl_lock);
1705                         return err;
1706                 }
1707         }
1708
1709         wl_tree_add(e, &ubi->scrub);
1710         spin_unlock(&ubi->wl_lock);
1711
1712         /*
1713          * Technically scrubbing is the same as wear-leveling, so it is done
1714          * by the WL worker.
1715          */
1716         return ensure_wear_leveling(ubi, 0);
1717 }
1718
1719 /**
1720  * ubi_wl_flush - flush all pending works.
1721  * @ubi: UBI device description object
1722  * @vol_id: the volume id to flush for
1723  * @lnum: the logical eraseblock number to flush for
1724  *
1725  * This function executes all pending works for a particular volume id /
1726  * logical eraseblock number pair. If either value is set to %UBI_ALL, then it
1727  * acts as a wildcard for all of the corresponding volume numbers or logical
1728  * eraseblock numbers. It returns zero in case of success and a negative error
1729  * code in case of failure.
1730  */
1731 int ubi_wl_flush(struct ubi_device *ubi, int vol_id, int lnum)
1732 {
1733         int err = 0;
1734         int found = 1;
1735
1736         /*
1737          * Erase while the pending works queue is not empty, but not more than
1738          * the number of currently pending works.
1739          */
1740         dbg_wl("flush pending work for LEB %d:%d (%d pending works)",
1741                vol_id, lnum, ubi->works_count);
1742
1743         while (found) {
1744                 struct ubi_work *wrk;
1745                 found = 0;
1746
1747                 down_read(&ubi->work_sem);
1748                 spin_lock(&ubi->wl_lock);
1749                 list_for_each_entry(wrk, &ubi->works, list) {
1750                         if ((vol_id == UBI_ALL || wrk->vol_id == vol_id) &&
1751                             (lnum == UBI_ALL || wrk->lnum == lnum)) {
1752                                 list_del(&wrk->list);
1753                                 ubi->works_count -= 1;
1754                                 ubi_assert(ubi->works_count >= 0);
1755                                 spin_unlock(&ubi->wl_lock);
1756
1757                                 err = wrk->func(ubi, wrk, 0);
1758                                 if (err) {
1759                                         up_read(&ubi->work_sem);
1760                                         return err;
1761                                 }
1762
1763                                 spin_lock(&ubi->wl_lock);
1764                                 found = 1;
1765                                 break;
1766                         }
1767                 }
1768                 spin_unlock(&ubi->wl_lock);
1769                 up_read(&ubi->work_sem);
1770         }
1771
1772         /*
1773          * Make sure all the works which have been done in parallel are
1774          * finished.
1775          */
1776         down_write(&ubi->work_sem);
1777         up_write(&ubi->work_sem);
1778
1779         return err;
1780 }
1781
1782 /**
1783  * tree_destroy - destroy an RB-tree.
1784  * @root: the root of the tree to destroy
1785  */
1786 static void tree_destroy(struct rb_root *root)
1787 {
1788         struct rb_node *rb;
1789         struct ubi_wl_entry *e;
1790
1791         rb = root->rb_node;
1792         while (rb) {
1793                 if (rb->rb_left)
1794                         rb = rb->rb_left;
1795                 else if (rb->rb_right)
1796                         rb = rb->rb_right;
1797                 else {
1798                         e = rb_entry(rb, struct ubi_wl_entry, u.rb);
1799
1800                         rb = rb_parent(rb);
1801                         if (rb) {
1802                                 if (rb->rb_left == &e->u.rb)
1803                                         rb->rb_left = NULL;
1804                                 else
1805                                         rb->rb_right = NULL;
1806                         }
1807
1808                         kmem_cache_free(ubi_wl_entry_slab, e);
1809                 }
1810         }
1811 }
1812
1813 /**
1814  * ubi_thread - UBI background thread.
1815  * @u: the UBI device description object pointer
1816  */
1817 int ubi_thread(void *u)
1818 {
1819         int failures = 0;
1820         struct ubi_device *ubi = u;
1821
1822         ubi_msg("background thread \"%s\" started, PID %d",
1823                 ubi->bgt_name, task_pid_nr(current));
1824
1825         set_freezable();
1826         for (;;) {
1827                 int err;
1828
1829                 if (kthread_should_stop())
1830                         break;
1831
1832                 if (try_to_freeze())
1833                         continue;
1834
1835                 spin_lock(&ubi->wl_lock);
1836                 if (list_empty(&ubi->works) || ubi->ro_mode ||
1837                     !ubi->thread_enabled || ubi_dbg_is_bgt_disabled(ubi)) {
1838                         set_current_state(TASK_INTERRUPTIBLE);
1839                         spin_unlock(&ubi->wl_lock);
1840                         schedule();
1841                         continue;
1842                 }
1843                 spin_unlock(&ubi->wl_lock);
1844
1845                 err = do_work(ubi);
1846                 if (err) {
1847                         ubi_err("%s: work failed with error code %d",
1848                                 ubi->bgt_name, err);
1849                         if (failures++ > WL_MAX_FAILURES) {
1850                                 /*
1851                                  * Too many failures, disable the thread and
1852                                  * switch to read-only mode.
1853                                  */
1854                                 ubi_msg("%s: %d consecutive failures",
1855                                         ubi->bgt_name, WL_MAX_FAILURES);
1856                                 ubi_ro_mode(ubi);
1857                                 ubi->thread_enabled = 0;
1858                                 continue;
1859                         }
1860                 } else
1861                         failures = 0;
1862
1863                 cond_resched();
1864         }
1865
1866         dbg_wl("background thread \"%s\" is killed", ubi->bgt_name);
1867         return 0;
1868 }
1869
1870 /**
1871  * cancel_pending - cancel all pending works.
1872  * @ubi: UBI device description object
1873  */
1874 static void cancel_pending(struct ubi_device *ubi)
1875 {
1876         while (!list_empty(&ubi->works)) {
1877                 struct ubi_work *wrk;
1878
1879                 wrk = list_entry(ubi->works.next, struct ubi_work, list);
1880                 list_del(&wrk->list);
1881                 wrk->func(ubi, wrk, 1);
1882                 ubi->works_count -= 1;
1883                 ubi_assert(ubi->works_count >= 0);
1884         }
1885 }
1886
1887 /**
1888  * ubi_wl_init - initialize the WL sub-system using attaching information.
1889  * @ubi: UBI device description object
1890  * @ai: attaching information
1891  *
1892  * This function returns zero in case of success, and a negative error code in
1893  * case of failure.
1894  */
1895 int ubi_wl_init(struct ubi_device *ubi, struct ubi_attach_info *ai)
1896 {
1897         int err, i, reserved_pebs, found_pebs = 0;
1898         struct rb_node *rb1, *rb2;
1899         struct ubi_ainf_volume *av;
1900         struct ubi_ainf_peb *aeb, *tmp;
1901         struct ubi_wl_entry *e;
1902
1903         ubi->used = ubi->erroneous = ubi->free = ubi->scrub = RB_ROOT;
1904         spin_lock_init(&ubi->wl_lock);
1905         mutex_init(&ubi->move_mutex);
1906         init_rwsem(&ubi->work_sem);
1907         ubi->max_ec = ai->max_ec;
1908         INIT_LIST_HEAD(&ubi->works);
1909 #ifdef CONFIG_MTD_UBI_FASTMAP
1910         INIT_WORK(&ubi->fm_work, update_fastmap_work_fn);
1911 #endif
1912
1913         sprintf(ubi->bgt_name, UBI_BGT_NAME_PATTERN, ubi->ubi_num);
1914
1915         err = -ENOMEM;
1916         ubi->lookuptbl = kzalloc(ubi->peb_count * sizeof(void *), GFP_KERNEL);
1917         if (!ubi->lookuptbl)
1918                 return err;
1919
1920         for (i = 0; i < UBI_PROT_QUEUE_LEN; i++)
1921                 INIT_LIST_HEAD(&ubi->pq[i]);
1922         ubi->pq_head = 0;
1923
1924         list_for_each_entry_safe(aeb, tmp, &ai->erase, u.list) {
1925                 cond_resched();
1926
1927                 e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
1928                 if (!e) {
1929                         err = -ENOMEM;
1930                         goto out_free;
1931                 }
1932
1933                 e->pnum = aeb->pnum;
1934                 e->ec = aeb->ec;
1935                 ubi_assert(!ubi_is_fm_block(ubi, e->pnum));
1936                 ubi->lookuptbl[e->pnum] = e;
1937                 if (schedule_erase(ubi, e, aeb->vol_id, aeb->lnum, 0, false)) {
1938                         kmem_cache_free(ubi_wl_entry_slab, e);
1939                         goto out_free;
1940                 }
1941
1942                 found_pebs++;
1943         }
1944
1945         ubi->free_count = 0;
1946         list_for_each_entry(aeb, &ai->free, u.list) {
1947                 cond_resched();
1948
1949                 e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
1950                 if (!e)
1951                         goto out_free;
1952
1953                 e->pnum = aeb->pnum;
1954                 e->ec = aeb->ec;
1955                 ubi_assert(e->ec >= 0);
1956                 ubi_assert(!ubi_is_fm_block(ubi, e->pnum));
1957
1958                 wl_tree_add(e, &ubi->free);
1959                 ubi->free_count++;
1960
1961                 ubi->lookuptbl[e->pnum] = e;
1962
1963                 found_pebs++;
1964         }
1965
1966         ubi_rb_for_each_entry(rb1, av, &ai->volumes, rb) {
1967                 ubi_rb_for_each_entry(rb2, aeb, &av->root, u.rb) {
1968                         cond_resched();
1969
1970                         e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
1971                         if (!e) {
1972                                 err = -ENOMEM;
1973                                 goto out_free;
1974                         }
1975
1976                         e->pnum = aeb->pnum;
1977                         e->ec = aeb->ec;
1978                         ubi->lookuptbl[e->pnum] = e;
1979
1980                         if (!aeb->scrub) {
1981                                 dbg_wl("add PEB %d EC %d to the used tree",
1982                                        e->pnum, e->ec);
1983                                 wl_tree_add(e, &ubi->used);
1984                         } else {
1985                                 dbg_wl("add PEB %d EC %d to the scrub tree",
1986                                        e->pnum, e->ec);
1987                                 wl_tree_add(e, &ubi->scrub);
1988                         }
1989
1990                         found_pebs++;
1991                 }
1992         }
1993
1994         dbg_wl("found %i PEBs", found_pebs);
1995
1996         if (ubi->fm)
1997                 ubi_assert(ubi->good_peb_count == \
1998                            found_pebs + ubi->fm->used_blocks);
1999         else
2000                 ubi_assert(ubi->good_peb_count == found_pebs);
2001
2002         reserved_pebs = WL_RESERVED_PEBS;
2003 #ifdef CONFIG_MTD_UBI_FASTMAP
2004         /* Reserve enough LEBs to store two fastmaps. */
2005         reserved_pebs += (ubi->fm_size / ubi->leb_size) * 2;
2006 #endif
2007
2008         if (ubi->avail_pebs < reserved_pebs) {
2009                 ubi_err("no enough physical eraseblocks (%d, need %d)",
2010                         ubi->avail_pebs, reserved_pebs);
2011                 if (ubi->corr_peb_count)
2012                         ubi_err("%d PEBs are corrupted and not used",
2013                                 ubi->corr_peb_count);
2014                 err = -ENOSPC;
2015                 goto out_free;
2016         }
2017         ubi->avail_pebs -= reserved_pebs;
2018         ubi->rsvd_pebs += reserved_pebs;
2019
2020         /* Schedule wear-leveling if needed */
2021         err = ensure_wear_leveling(ubi, 0);
2022         if (err)
2023                 goto out_free;
2024
2025         return 0;
2026
2027 out_free:
2028         cancel_pending(ubi);
2029         tree_destroy(&ubi->used);
2030         tree_destroy(&ubi->free);
2031         tree_destroy(&ubi->scrub);
2032         kfree(ubi->lookuptbl);
2033         return err;
2034 }
2035
2036 /**
2037  * protection_queue_destroy - destroy the protection queue.
2038  * @ubi: UBI device description object
2039  */
2040 static void protection_queue_destroy(struct ubi_device *ubi)
2041 {
2042         int i;
2043         struct ubi_wl_entry *e, *tmp;
2044
2045         for (i = 0; i < UBI_PROT_QUEUE_LEN; ++i) {
2046                 list_for_each_entry_safe(e, tmp, &ubi->pq[i], u.list) {
2047                         list_del(&e->u.list);
2048                         kmem_cache_free(ubi_wl_entry_slab, e);
2049                 }
2050         }
2051 }
2052
2053 /**
2054  * ubi_wl_close - close the wear-leveling sub-system.
2055  * @ubi: UBI device description object
2056  */
2057 void ubi_wl_close(struct ubi_device *ubi)
2058 {
2059         dbg_wl("close the WL sub-system");
2060         cancel_pending(ubi);
2061         protection_queue_destroy(ubi);
2062         tree_destroy(&ubi->used);
2063         tree_destroy(&ubi->erroneous);
2064         tree_destroy(&ubi->free);
2065         tree_destroy(&ubi->scrub);
2066         kfree(ubi->lookuptbl);
2067 }
2068
2069 /**
2070  * self_check_ec - make sure that the erase counter of a PEB is correct.
2071  * @ubi: UBI device description object
2072  * @pnum: the physical eraseblock number to check
2073  * @ec: the erase counter to check
2074  *
2075  * This function returns zero if the erase counter of physical eraseblock @pnum
2076  * is equivalent to @ec, and a negative error code if not or if an error
2077  * occurred.
2078  */
2079 static int self_check_ec(struct ubi_device *ubi, int pnum, int ec)
2080 {
2081         int err;
2082         long long read_ec;
2083         struct ubi_ec_hdr *ec_hdr;
2084
2085         if (!ubi_dbg_chk_gen(ubi))
2086                 return 0;
2087
2088         ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS);
2089         if (!ec_hdr)
2090                 return -ENOMEM;
2091
2092         err = ubi_io_read_ec_hdr(ubi, pnum, ec_hdr, 0);
2093         if (err && err != UBI_IO_BITFLIPS) {
2094                 /* The header does not have to exist */
2095                 err = 0;
2096                 goto out_free;
2097         }
2098
2099         read_ec = be64_to_cpu(ec_hdr->ec);
2100         if (ec != read_ec && read_ec - ec > 1) {
2101                 ubi_err("self-check failed for PEB %d", pnum);
2102                 ubi_err("read EC is %lld, should be %d", read_ec, ec);
2103                 dump_stack();
2104                 err = 1;
2105         } else
2106                 err = 0;
2107
2108 out_free:
2109         kfree(ec_hdr);
2110         return err;
2111 }
2112
2113 /**
2114  * self_check_in_wl_tree - check that wear-leveling entry is in WL RB-tree.
2115  * @ubi: UBI device description object
2116  * @e: the wear-leveling entry to check
2117  * @root: the root of the tree
2118  *
2119  * This function returns zero if @e is in the @root RB-tree and %-EINVAL if it
2120  * is not.
2121  */
2122 static int self_check_in_wl_tree(const struct ubi_device *ubi,
2123                                  struct ubi_wl_entry *e, struct rb_root *root)
2124 {
2125         if (!ubi_dbg_chk_gen(ubi))
2126                 return 0;
2127
2128         if (in_wl_tree(e, root))
2129                 return 0;
2130
2131         ubi_err("self-check failed for PEB %d, EC %d, RB-tree %p ",
2132                 e->pnum, e->ec, root);
2133         dump_stack();
2134         return -EINVAL;
2135 }
2136
2137 /**
2138  * self_check_in_pq - check if wear-leveling entry is in the protection
2139  *                        queue.
2140  * @ubi: UBI device description object
2141  * @e: the wear-leveling entry to check
2142  *
2143  * This function returns zero if @e is in @ubi->pq and %-EINVAL if it is not.
2144  */
2145 static int self_check_in_pq(const struct ubi_device *ubi,
2146                             struct ubi_wl_entry *e)
2147 {
2148         struct ubi_wl_entry *p;
2149         int i;
2150
2151         if (!ubi_dbg_chk_gen(ubi))
2152                 return 0;
2153
2154         for (i = 0; i < UBI_PROT_QUEUE_LEN; ++i)
2155                 list_for_each_entry(p, &ubi->pq[i], u.list)
2156                         if (p == e)
2157                                 return 0;
2158
2159         ubi_err("self-check failed for PEB %d, EC %d, Protect queue",
2160                 e->pnum, e->ec);
2161         dump_stack();
2162         return -EINVAL;
2163 }