Linux-libre 3.18.130-gnu
[librecmc/linux-libre.git] / drivers / mtd / tests / mtd_nandecctest.c
1 #define pr_fmt(fmt)     KBUILD_MODNAME ": " fmt
2
3 #include <linux/kernel.h>
4 #include <linux/module.h>
5 #include <linux/list.h>
6 #include <linux/random.h>
7 #include <linux/string.h>
8 #include <linux/bitops.h>
9 #include <linux/slab.h>
10 #include <linux/mtd/nand_ecc.h>
11
12 /*
13  * Test the implementation for software ECC
14  *
15  * No actual MTD device is needed, So we don't need to warry about losing
16  * important data by human error.
17  *
18  * This covers possible patterns of corruption which can be reliably corrected
19  * or detected.
20  */
21
22 #if IS_ENABLED(CONFIG_MTD_NAND)
23
24 struct nand_ecc_test {
25         const char *name;
26         void (*prepare)(void *, void *, void *, void *, const size_t);
27         int (*verify)(void *, void *, void *, const size_t);
28 };
29
30 /*
31  * The reason for this __change_bit_le() instead of __change_bit() is to inject
32  * bit error properly within the region which is not a multiple of
33  * sizeof(unsigned long) on big-endian systems
34  */
35 #ifdef __LITTLE_ENDIAN
36 #define __change_bit_le(nr, addr) __change_bit(nr, addr)
37 #elif defined(__BIG_ENDIAN)
38 #define __change_bit_le(nr, addr) \
39                 __change_bit((nr) ^ ((BITS_PER_LONG - 1) & ~0x7), addr)
40 #else
41 #error "Unknown byte order"
42 #endif
43
44 static void single_bit_error_data(void *error_data, void *correct_data,
45                                 size_t size)
46 {
47         unsigned int offset = prandom_u32() % (size * BITS_PER_BYTE);
48
49         memcpy(error_data, correct_data, size);
50         __change_bit_le(offset, error_data);
51 }
52
53 static void double_bit_error_data(void *error_data, void *correct_data,
54                                 size_t size)
55 {
56         unsigned int offset[2];
57
58         offset[0] = prandom_u32() % (size * BITS_PER_BYTE);
59         do {
60                 offset[1] = prandom_u32() % (size * BITS_PER_BYTE);
61         } while (offset[0] == offset[1]);
62
63         memcpy(error_data, correct_data, size);
64
65         __change_bit_le(offset[0], error_data);
66         __change_bit_le(offset[1], error_data);
67 }
68
69 static unsigned int random_ecc_bit(size_t size)
70 {
71         unsigned int offset = prandom_u32() % (3 * BITS_PER_BYTE);
72
73         if (size == 256) {
74                 /*
75                  * Don't inject a bit error into the insignificant bits (16th
76                  * and 17th bit) in ECC code for 256 byte data block
77                  */
78                 while (offset == 16 || offset == 17)
79                         offset = prandom_u32() % (3 * BITS_PER_BYTE);
80         }
81
82         return offset;
83 }
84
85 static void single_bit_error_ecc(void *error_ecc, void *correct_ecc,
86                                 size_t size)
87 {
88         unsigned int offset = random_ecc_bit(size);
89
90         memcpy(error_ecc, correct_ecc, 3);
91         __change_bit_le(offset, error_ecc);
92 }
93
94 static void double_bit_error_ecc(void *error_ecc, void *correct_ecc,
95                                 size_t size)
96 {
97         unsigned int offset[2];
98
99         offset[0] = random_ecc_bit(size);
100         do {
101                 offset[1] = random_ecc_bit(size);
102         } while (offset[0] == offset[1]);
103
104         memcpy(error_ecc, correct_ecc, 3);
105         __change_bit_le(offset[0], error_ecc);
106         __change_bit_le(offset[1], error_ecc);
107 }
108
109 static void no_bit_error(void *error_data, void *error_ecc,
110                 void *correct_data, void *correct_ecc, const size_t size)
111 {
112         memcpy(error_data, correct_data, size);
113         memcpy(error_ecc, correct_ecc, 3);
114 }
115
116 static int no_bit_error_verify(void *error_data, void *error_ecc,
117                                 void *correct_data, const size_t size)
118 {
119         unsigned char calc_ecc[3];
120         int ret;
121
122         __nand_calculate_ecc(error_data, size, calc_ecc);
123         ret = __nand_correct_data(error_data, error_ecc, calc_ecc, size);
124         if (ret == 0 && !memcmp(correct_data, error_data, size))
125                 return 0;
126
127         return -EINVAL;
128 }
129
130 static void single_bit_error_in_data(void *error_data, void *error_ecc,
131                 void *correct_data, void *correct_ecc, const size_t size)
132 {
133         single_bit_error_data(error_data, correct_data, size);
134         memcpy(error_ecc, correct_ecc, 3);
135 }
136
137 static void single_bit_error_in_ecc(void *error_data, void *error_ecc,
138                 void *correct_data, void *correct_ecc, const size_t size)
139 {
140         memcpy(error_data, correct_data, size);
141         single_bit_error_ecc(error_ecc, correct_ecc, size);
142 }
143
144 static int single_bit_error_correct(void *error_data, void *error_ecc,
145                                 void *correct_data, const size_t size)
146 {
147         unsigned char calc_ecc[3];
148         int ret;
149
150         __nand_calculate_ecc(error_data, size, calc_ecc);
151         ret = __nand_correct_data(error_data, error_ecc, calc_ecc, size);
152         if (ret == 1 && !memcmp(correct_data, error_data, size))
153                 return 0;
154
155         return -EINVAL;
156 }
157
158 static void double_bit_error_in_data(void *error_data, void *error_ecc,
159                 void *correct_data, void *correct_ecc, const size_t size)
160 {
161         double_bit_error_data(error_data, correct_data, size);
162         memcpy(error_ecc, correct_ecc, 3);
163 }
164
165 static void single_bit_error_in_data_and_ecc(void *error_data, void *error_ecc,
166                 void *correct_data, void *correct_ecc, const size_t size)
167 {
168         single_bit_error_data(error_data, correct_data, size);
169         single_bit_error_ecc(error_ecc, correct_ecc, size);
170 }
171
172 static void double_bit_error_in_ecc(void *error_data, void *error_ecc,
173                 void *correct_data, void *correct_ecc, const size_t size)
174 {
175         memcpy(error_data, correct_data, size);
176         double_bit_error_ecc(error_ecc, correct_ecc, size);
177 }
178
179 static int double_bit_error_detect(void *error_data, void *error_ecc,
180                                 void *correct_data, const size_t size)
181 {
182         unsigned char calc_ecc[3];
183         int ret;
184
185         __nand_calculate_ecc(error_data, size, calc_ecc);
186         ret = __nand_correct_data(error_data, error_ecc, calc_ecc, size);
187
188         return (ret == -1) ? 0 : -EINVAL;
189 }
190
191 static const struct nand_ecc_test nand_ecc_test[] = {
192         {
193                 .name = "no-bit-error",
194                 .prepare = no_bit_error,
195                 .verify = no_bit_error_verify,
196         },
197         {
198                 .name = "single-bit-error-in-data-correct",
199                 .prepare = single_bit_error_in_data,
200                 .verify = single_bit_error_correct,
201         },
202         {
203                 .name = "single-bit-error-in-ecc-correct",
204                 .prepare = single_bit_error_in_ecc,
205                 .verify = single_bit_error_correct,
206         },
207         {
208                 .name = "double-bit-error-in-data-detect",
209                 .prepare = double_bit_error_in_data,
210                 .verify = double_bit_error_detect,
211         },
212         {
213                 .name = "single-bit-error-in-data-and-ecc-detect",
214                 .prepare = single_bit_error_in_data_and_ecc,
215                 .verify = double_bit_error_detect,
216         },
217         {
218                 .name = "double-bit-error-in-ecc-detect",
219                 .prepare = double_bit_error_in_ecc,
220                 .verify = double_bit_error_detect,
221         },
222 };
223
224 static void dump_data_ecc(void *error_data, void *error_ecc, void *correct_data,
225                         void *correct_ecc, const size_t size)
226 {
227         pr_info("hexdump of error data:\n");
228         print_hex_dump(KERN_INFO, "", DUMP_PREFIX_OFFSET, 16, 4,
229                         error_data, size, false);
230         print_hex_dump(KERN_INFO, "hexdump of error ecc: ",
231                         DUMP_PREFIX_NONE, 16, 1, error_ecc, 3, false);
232
233         pr_info("hexdump of correct data:\n");
234         print_hex_dump(KERN_INFO, "", DUMP_PREFIX_OFFSET, 16, 4,
235                         correct_data, size, false);
236         print_hex_dump(KERN_INFO, "hexdump of correct ecc: ",
237                         DUMP_PREFIX_NONE, 16, 1, correct_ecc, 3, false);
238 }
239
240 static int nand_ecc_test_run(const size_t size)
241 {
242         int i;
243         int err = 0;
244         void *error_data;
245         void *error_ecc;
246         void *correct_data;
247         void *correct_ecc;
248
249         error_data = kmalloc(size, GFP_KERNEL);
250         error_ecc = kmalloc(3, GFP_KERNEL);
251         correct_data = kmalloc(size, GFP_KERNEL);
252         correct_ecc = kmalloc(3, GFP_KERNEL);
253
254         if (!error_data || !error_ecc || !correct_data || !correct_ecc) {
255                 err = -ENOMEM;
256                 goto error;
257         }
258
259         prandom_bytes(correct_data, size);
260         __nand_calculate_ecc(correct_data, size, correct_ecc);
261
262         for (i = 0; i < ARRAY_SIZE(nand_ecc_test); i++) {
263                 nand_ecc_test[i].prepare(error_data, error_ecc,
264                                 correct_data, correct_ecc, size);
265                 err = nand_ecc_test[i].verify(error_data, error_ecc,
266                                                 correct_data, size);
267
268                 if (err) {
269                         pr_err("not ok - %s-%zd\n",
270                                 nand_ecc_test[i].name, size);
271                         dump_data_ecc(error_data, error_ecc,
272                                 correct_data, correct_ecc, size);
273                         break;
274                 }
275                 pr_info("ok - %s-%zd\n",
276                         nand_ecc_test[i].name, size);
277         }
278 error:
279         kfree(error_data);
280         kfree(error_ecc);
281         kfree(correct_data);
282         kfree(correct_ecc);
283
284         return err;
285 }
286
287 #else
288
289 static int nand_ecc_test_run(const size_t size)
290 {
291         return 0;
292 }
293
294 #endif
295
296 static int __init ecc_test_init(void)
297 {
298         int err;
299
300         err = nand_ecc_test_run(256);
301         if (err)
302                 return err;
303
304         return nand_ecc_test_run(512);
305 }
306
307 static void __exit ecc_test_exit(void)
308 {
309 }
310
311 module_init(ecc_test_init);
312 module_exit(ecc_test_exit);
313
314 MODULE_DESCRIPTION("NAND ECC function test module");
315 MODULE_AUTHOR("Akinobu Mita");
316 MODULE_LICENSE("GPL");