Linux-libre 5.0.14-gnu
[librecmc/linux-libre.git] / drivers / mtd / nand / raw / tegra_nand.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2018 Stefan Agner <stefan@agner.ch>
4  * Copyright (C) 2014-2015 Lucas Stach <dev@lynxeye.de>
5  * Copyright (C) 2012 Avionic Design GmbH
6  */
7
8 #include <linux/clk.h>
9 #include <linux/completion.h>
10 #include <linux/dma-mapping.h>
11 #include <linux/err.h>
12 #include <linux/gpio/consumer.h>
13 #include <linux/interrupt.h>
14 #include <linux/io.h>
15 #include <linux/module.h>
16 #include <linux/mtd/partitions.h>
17 #include <linux/mtd/rawnand.h>
18 #include <linux/of.h>
19 #include <linux/platform_device.h>
20 #include <linux/reset.h>
21
22 #define COMMAND                                 0x00
23 #define   COMMAND_GO                            BIT(31)
24 #define   COMMAND_CLE                           BIT(30)
25 #define   COMMAND_ALE                           BIT(29)
26 #define   COMMAND_PIO                           BIT(28)
27 #define   COMMAND_TX                            BIT(27)
28 #define   COMMAND_RX                            BIT(26)
29 #define   COMMAND_SEC_CMD                       BIT(25)
30 #define   COMMAND_AFT_DAT                       BIT(24)
31 #define   COMMAND_TRANS_SIZE(size)              ((((size) - 1) & 0xf) << 20)
32 #define   COMMAND_A_VALID                       BIT(19)
33 #define   COMMAND_B_VALID                       BIT(18)
34 #define   COMMAND_RD_STATUS_CHK                 BIT(17)
35 #define   COMMAND_RBSY_CHK                      BIT(16)
36 #define   COMMAND_CE(x)                         BIT(8 + ((x) & 0x7))
37 #define   COMMAND_CLE_SIZE(size)                ((((size) - 1) & 0x3) << 4)
38 #define   COMMAND_ALE_SIZE(size)                ((((size) - 1) & 0xf) << 0)
39
40 #define STATUS                                  0x04
41
42 #define ISR                                     0x08
43 #define   ISR_CORRFAIL_ERR                      BIT(24)
44 #define   ISR_UND                               BIT(7)
45 #define   ISR_OVR                               BIT(6)
46 #define   ISR_CMD_DONE                          BIT(5)
47 #define   ISR_ECC_ERR                           BIT(4)
48
49 #define IER                                     0x0c
50 #define   IER_ERR_TRIG_VAL(x)                   (((x) & 0xf) << 16)
51 #define   IER_UND                               BIT(7)
52 #define   IER_OVR                               BIT(6)
53 #define   IER_CMD_DONE                          BIT(5)
54 #define   IER_ECC_ERR                           BIT(4)
55 #define   IER_GIE                               BIT(0)
56
57 #define CONFIG                                  0x10
58 #define   CONFIG_HW_ECC                         BIT(31)
59 #define   CONFIG_ECC_SEL                        BIT(30)
60 #define   CONFIG_ERR_COR                        BIT(29)
61 #define   CONFIG_PIPE_EN                        BIT(28)
62 #define   CONFIG_TVAL_4                         (0 << 24)
63 #define   CONFIG_TVAL_6                         (1 << 24)
64 #define   CONFIG_TVAL_8                         (2 << 24)
65 #define   CONFIG_SKIP_SPARE                     BIT(23)
66 #define   CONFIG_BUS_WIDTH_16                   BIT(21)
67 #define   CONFIG_COM_BSY                        BIT(20)
68 #define   CONFIG_PS_256                         (0 << 16)
69 #define   CONFIG_PS_512                         (1 << 16)
70 #define   CONFIG_PS_1024                        (2 << 16)
71 #define   CONFIG_PS_2048                        (3 << 16)
72 #define   CONFIG_PS_4096                        (4 << 16)
73 #define   CONFIG_SKIP_SPARE_SIZE_4              (0 << 14)
74 #define   CONFIG_SKIP_SPARE_SIZE_8              (1 << 14)
75 #define   CONFIG_SKIP_SPARE_SIZE_12             (2 << 14)
76 #define   CONFIG_SKIP_SPARE_SIZE_16             (3 << 14)
77 #define   CONFIG_TAG_BYTE_SIZE(x)                       ((x) & 0xff)
78
79 #define TIMING_1                                0x14
80 #define   TIMING_TRP_RESP(x)                    (((x) & 0xf) << 28)
81 #define   TIMING_TWB(x)                         (((x) & 0xf) << 24)
82 #define   TIMING_TCR_TAR_TRR(x)                 (((x) & 0xf) << 20)
83 #define   TIMING_TWHR(x)                        (((x) & 0xf) << 16)
84 #define   TIMING_TCS(x)                         (((x) & 0x3) << 14)
85 #define   TIMING_TWH(x)                         (((x) & 0x3) << 12)
86 #define   TIMING_TWP(x)                         (((x) & 0xf) <<  8)
87 #define   TIMING_TRH(x)                         (((x) & 0x3) <<  4)
88 #define   TIMING_TRP(x)                         (((x) & 0xf) <<  0)
89
90 #define RESP                                    0x18
91
92 #define TIMING_2                                0x1c
93 #define   TIMING_TADL(x)                        ((x) & 0xf)
94
95 #define CMD_REG1                                0x20
96 #define CMD_REG2                                0x24
97 #define ADDR_REG1                               0x28
98 #define ADDR_REG2                               0x2c
99
100 #define DMA_MST_CTRL                            0x30
101 #define   DMA_MST_CTRL_GO                       BIT(31)
102 #define   DMA_MST_CTRL_IN                       (0 << 30)
103 #define   DMA_MST_CTRL_OUT                      BIT(30)
104 #define   DMA_MST_CTRL_PERF_EN                  BIT(29)
105 #define   DMA_MST_CTRL_IE_DONE                  BIT(28)
106 #define   DMA_MST_CTRL_REUSE                    BIT(27)
107 #define   DMA_MST_CTRL_BURST_1                  (2 << 24)
108 #define   DMA_MST_CTRL_BURST_4                  (3 << 24)
109 #define   DMA_MST_CTRL_BURST_8                  (4 << 24)
110 #define   DMA_MST_CTRL_BURST_16                 (5 << 24)
111 #define   DMA_MST_CTRL_IS_DONE                  BIT(20)
112 #define   DMA_MST_CTRL_EN_A                     BIT(2)
113 #define   DMA_MST_CTRL_EN_B                     BIT(1)
114
115 #define DMA_CFG_A                               0x34
116 #define DMA_CFG_B                               0x38
117
118 #define FIFO_CTRL                               0x3c
119 #define   FIFO_CTRL_CLR_ALL                     BIT(3)
120
121 #define DATA_PTR                                0x40
122 #define TAG_PTR                                 0x44
123 #define ECC_PTR                                 0x48
124
125 #define DEC_STATUS                              0x4c
126 #define   DEC_STATUS_A_ECC_FAIL                 BIT(1)
127 #define   DEC_STATUS_ERR_COUNT_MASK             0x00ff0000
128 #define   DEC_STATUS_ERR_COUNT_SHIFT            16
129
130 #define HWSTATUS_CMD                            0x50
131 #define HWSTATUS_MASK                           0x54
132 #define   HWSTATUS_RDSTATUS_MASK(x)             (((x) & 0xff) << 24)
133 #define   HWSTATUS_RDSTATUS_VALUE(x)            (((x) & 0xff) << 16)
134 #define   HWSTATUS_RBSY_MASK(x)                 (((x) & 0xff) << 8)
135 #define   HWSTATUS_RBSY_VALUE(x)                (((x) & 0xff) << 0)
136
137 #define BCH_CONFIG                              0xcc
138 #define   BCH_ENABLE                            BIT(0)
139 #define   BCH_TVAL_4                            (0 << 4)
140 #define   BCH_TVAL_8                            (1 << 4)
141 #define   BCH_TVAL_14                           (2 << 4)
142 #define   BCH_TVAL_16                           (3 << 4)
143
144 #define DEC_STAT_RESULT                         0xd0
145 #define DEC_STAT_BUF                            0xd4
146 #define   DEC_STAT_BUF_FAIL_SEC_FLAG_MASK       0xff000000
147 #define   DEC_STAT_BUF_FAIL_SEC_FLAG_SHIFT      24
148 #define   DEC_STAT_BUF_CORR_SEC_FLAG_MASK       0x00ff0000
149 #define   DEC_STAT_BUF_CORR_SEC_FLAG_SHIFT      16
150 #define   DEC_STAT_BUF_MAX_CORR_CNT_MASK        0x00001f00
151 #define   DEC_STAT_BUF_MAX_CORR_CNT_SHIFT       8
152
153 #define OFFSET(val, off)        ((val) < (off) ? 0 : (val) - (off))
154
155 #define SKIP_SPARE_BYTES        4
156 #define BITS_PER_STEP_RS        18
157 #define BITS_PER_STEP_BCH       13
158
159 #define INT_MASK                (IER_UND | IER_OVR | IER_CMD_DONE | IER_GIE)
160 #define HWSTATUS_CMD_DEFAULT    NAND_STATUS_READY
161 #define HWSTATUS_MASK_DEFAULT   (HWSTATUS_RDSTATUS_MASK(1) | \
162                                 HWSTATUS_RDSTATUS_VALUE(0) | \
163                                 HWSTATUS_RBSY_MASK(NAND_STATUS_READY) | \
164                                 HWSTATUS_RBSY_VALUE(NAND_STATUS_READY))
165
166 struct tegra_nand_controller {
167         struct nand_controller controller;
168         struct device *dev;
169         void __iomem *regs;
170         int irq;
171         struct clk *clk;
172         struct completion command_complete;
173         struct completion dma_complete;
174         bool last_read_error;
175         int cur_cs;
176         struct nand_chip *chip;
177 };
178
179 struct tegra_nand_chip {
180         struct nand_chip chip;
181         struct gpio_desc *wp_gpio;
182         struct mtd_oob_region ecc;
183         u32 config;
184         u32 config_ecc;
185         u32 bch_config;
186         int cs[1];
187 };
188
189 static inline struct tegra_nand_controller *
190                         to_tegra_ctrl(struct nand_controller *hw_ctrl)
191 {
192         return container_of(hw_ctrl, struct tegra_nand_controller, controller);
193 }
194
195 static inline struct tegra_nand_chip *to_tegra_chip(struct nand_chip *chip)
196 {
197         return container_of(chip, struct tegra_nand_chip, chip);
198 }
199
200 static int tegra_nand_ooblayout_rs_ecc(struct mtd_info *mtd, int section,
201                                        struct mtd_oob_region *oobregion)
202 {
203         struct nand_chip *chip = mtd_to_nand(mtd);
204         int bytes_per_step = DIV_ROUND_UP(BITS_PER_STEP_RS * chip->ecc.strength,
205                                           BITS_PER_BYTE);
206
207         if (section > 0)
208                 return -ERANGE;
209
210         oobregion->offset = SKIP_SPARE_BYTES;
211         oobregion->length = round_up(bytes_per_step * chip->ecc.steps, 4);
212
213         return 0;
214 }
215
216 static int tegra_nand_ooblayout_no_free(struct mtd_info *mtd, int section,
217                                         struct mtd_oob_region *oobregion)
218 {
219         return -ERANGE;
220 }
221
222 static const struct mtd_ooblayout_ops tegra_nand_oob_rs_ops = {
223         .ecc = tegra_nand_ooblayout_rs_ecc,
224         .free = tegra_nand_ooblayout_no_free,
225 };
226
227 static int tegra_nand_ooblayout_bch_ecc(struct mtd_info *mtd, int section,
228                                         struct mtd_oob_region *oobregion)
229 {
230         struct nand_chip *chip = mtd_to_nand(mtd);
231         int bytes_per_step = DIV_ROUND_UP(BITS_PER_STEP_BCH * chip->ecc.strength,
232                                           BITS_PER_BYTE);
233
234         if (section > 0)
235                 return -ERANGE;
236
237         oobregion->offset = SKIP_SPARE_BYTES;
238         oobregion->length = round_up(bytes_per_step * chip->ecc.steps, 4);
239
240         return 0;
241 }
242
243 static const struct mtd_ooblayout_ops tegra_nand_oob_bch_ops = {
244         .ecc = tegra_nand_ooblayout_bch_ecc,
245         .free = tegra_nand_ooblayout_no_free,
246 };
247
248 static irqreturn_t tegra_nand_irq(int irq, void *data)
249 {
250         struct tegra_nand_controller *ctrl = data;
251         u32 isr, dma;
252
253         isr = readl_relaxed(ctrl->regs + ISR);
254         dma = readl_relaxed(ctrl->regs + DMA_MST_CTRL);
255         dev_dbg(ctrl->dev, "isr %08x\n", isr);
256
257         if (!isr && !(dma & DMA_MST_CTRL_IS_DONE))
258                 return IRQ_NONE;
259
260         /*
261          * The bit name is somewhat missleading: This is also set when
262          * HW ECC was successful. The data sheet states:
263          * Correctable OR Un-correctable errors occurred in the DMA transfer...
264          */
265         if (isr & ISR_CORRFAIL_ERR)
266                 ctrl->last_read_error = true;
267
268         if (isr & ISR_CMD_DONE)
269                 complete(&ctrl->command_complete);
270
271         if (isr & ISR_UND)
272                 dev_err(ctrl->dev, "FIFO underrun\n");
273
274         if (isr & ISR_OVR)
275                 dev_err(ctrl->dev, "FIFO overrun\n");
276
277         /* handle DMA interrupts */
278         if (dma & DMA_MST_CTRL_IS_DONE) {
279                 writel_relaxed(dma, ctrl->regs + DMA_MST_CTRL);
280                 complete(&ctrl->dma_complete);
281         }
282
283         /* clear interrupts */
284         writel_relaxed(isr, ctrl->regs + ISR);
285
286         return IRQ_HANDLED;
287 }
288
289 static const char * const tegra_nand_reg_names[] = {
290         "COMMAND",
291         "STATUS",
292         "ISR",
293         "IER",
294         "CONFIG",
295         "TIMING",
296         NULL,
297         "TIMING2",
298         "CMD_REG1",
299         "CMD_REG2",
300         "ADDR_REG1",
301         "ADDR_REG2",
302         "DMA_MST_CTRL",
303         "DMA_CFG_A",
304         "DMA_CFG_B",
305         "FIFO_CTRL",
306 };
307
308 static void tegra_nand_dump_reg(struct tegra_nand_controller *ctrl)
309 {
310         u32 reg;
311         int i;
312
313         dev_err(ctrl->dev, "Tegra NAND controller register dump\n");
314         for (i = 0; i < ARRAY_SIZE(tegra_nand_reg_names); i++) {
315                 const char *reg_name = tegra_nand_reg_names[i];
316
317                 if (!reg_name)
318                         continue;
319
320                 reg = readl_relaxed(ctrl->regs + (i * 4));
321                 dev_err(ctrl->dev, "%s: 0x%08x\n", reg_name, reg);
322         }
323 }
324
325 static void tegra_nand_controller_abort(struct tegra_nand_controller *ctrl)
326 {
327         u32 isr, dma;
328
329         disable_irq(ctrl->irq);
330
331         /* Abort current command/DMA operation */
332         writel_relaxed(0, ctrl->regs + DMA_MST_CTRL);
333         writel_relaxed(0, ctrl->regs + COMMAND);
334
335         /* clear interrupts */
336         isr = readl_relaxed(ctrl->regs + ISR);
337         writel_relaxed(isr, ctrl->regs + ISR);
338         dma = readl_relaxed(ctrl->regs + DMA_MST_CTRL);
339         writel_relaxed(dma, ctrl->regs + DMA_MST_CTRL);
340
341         reinit_completion(&ctrl->command_complete);
342         reinit_completion(&ctrl->dma_complete);
343
344         enable_irq(ctrl->irq);
345 }
346
347 static int tegra_nand_cmd(struct nand_chip *chip,
348                           const struct nand_subop *subop)
349 {
350         const struct nand_op_instr *instr;
351         const struct nand_op_instr *instr_data_in = NULL;
352         struct tegra_nand_controller *ctrl = to_tegra_ctrl(chip->controller);
353         unsigned int op_id, size = 0, offset = 0;
354         bool first_cmd = true;
355         u32 reg, cmd = 0;
356         int ret;
357
358         for (op_id = 0; op_id < subop->ninstrs; op_id++) {
359                 unsigned int naddrs, i;
360                 const u8 *addrs;
361                 u32 addr1 = 0, addr2 = 0;
362
363                 instr = &subop->instrs[op_id];
364
365                 switch (instr->type) {
366                 case NAND_OP_CMD_INSTR:
367                         if (first_cmd) {
368                                 cmd |= COMMAND_CLE;
369                                 writel_relaxed(instr->ctx.cmd.opcode,
370                                                ctrl->regs + CMD_REG1);
371                         } else {
372                                 cmd |= COMMAND_SEC_CMD;
373                                 writel_relaxed(instr->ctx.cmd.opcode,
374                                                ctrl->regs + CMD_REG2);
375                         }
376                         first_cmd = false;
377                         break;
378
379                 case NAND_OP_ADDR_INSTR:
380                         offset = nand_subop_get_addr_start_off(subop, op_id);
381                         naddrs = nand_subop_get_num_addr_cyc(subop, op_id);
382                         addrs = &instr->ctx.addr.addrs[offset];
383
384                         cmd |= COMMAND_ALE | COMMAND_ALE_SIZE(naddrs);
385                         for (i = 0; i < min_t(unsigned int, 4, naddrs); i++)
386                                 addr1 |= *addrs++ << (BITS_PER_BYTE * i);
387                         naddrs -= i;
388                         for (i = 0; i < min_t(unsigned int, 4, naddrs); i++)
389                                 addr2 |= *addrs++ << (BITS_PER_BYTE * i);
390
391                         writel_relaxed(addr1, ctrl->regs + ADDR_REG1);
392                         writel_relaxed(addr2, ctrl->regs + ADDR_REG2);
393                         break;
394
395                 case NAND_OP_DATA_IN_INSTR:
396                         size = nand_subop_get_data_len(subop, op_id);
397                         offset = nand_subop_get_data_start_off(subop, op_id);
398
399                         cmd |= COMMAND_TRANS_SIZE(size) | COMMAND_PIO |
400                                 COMMAND_RX | COMMAND_A_VALID;
401
402                         instr_data_in = instr;
403                         break;
404
405                 case NAND_OP_DATA_OUT_INSTR:
406                         size = nand_subop_get_data_len(subop, op_id);
407                         offset = nand_subop_get_data_start_off(subop, op_id);
408
409                         cmd |= COMMAND_TRANS_SIZE(size) | COMMAND_PIO |
410                                 COMMAND_TX | COMMAND_A_VALID;
411                         memcpy(&reg, instr->ctx.data.buf.out + offset, size);
412
413                         writel_relaxed(reg, ctrl->regs + RESP);
414                         break;
415
416                 case NAND_OP_WAITRDY_INSTR:
417                         cmd |= COMMAND_RBSY_CHK;
418                         break;
419                 }
420         }
421
422         cmd |= COMMAND_GO | COMMAND_CE(ctrl->cur_cs);
423         writel_relaxed(cmd, ctrl->regs + COMMAND);
424         ret = wait_for_completion_timeout(&ctrl->command_complete,
425                                           msecs_to_jiffies(500));
426         if (!ret) {
427                 dev_err(ctrl->dev, "COMMAND timeout\n");
428                 tegra_nand_dump_reg(ctrl);
429                 tegra_nand_controller_abort(ctrl);
430                 return -ETIMEDOUT;
431         }
432
433         if (instr_data_in) {
434                 reg = readl_relaxed(ctrl->regs + RESP);
435                 memcpy(instr_data_in->ctx.data.buf.in + offset, &reg, size);
436         }
437
438         return 0;
439 }
440
441 static const struct nand_op_parser tegra_nand_op_parser = NAND_OP_PARSER(
442         NAND_OP_PARSER_PATTERN(tegra_nand_cmd,
443                 NAND_OP_PARSER_PAT_CMD_ELEM(true),
444                 NAND_OP_PARSER_PAT_ADDR_ELEM(true, 8),
445                 NAND_OP_PARSER_PAT_CMD_ELEM(true),
446                 NAND_OP_PARSER_PAT_WAITRDY_ELEM(true)),
447         NAND_OP_PARSER_PATTERN(tegra_nand_cmd,
448                 NAND_OP_PARSER_PAT_DATA_OUT_ELEM(false, 4)),
449         NAND_OP_PARSER_PATTERN(tegra_nand_cmd,
450                 NAND_OP_PARSER_PAT_CMD_ELEM(true),
451                 NAND_OP_PARSER_PAT_ADDR_ELEM(true, 8),
452                 NAND_OP_PARSER_PAT_CMD_ELEM(true),
453                 NAND_OP_PARSER_PAT_WAITRDY_ELEM(true),
454                 NAND_OP_PARSER_PAT_DATA_IN_ELEM(true, 4)),
455         );
456
457 static void tegra_nand_select_target(struct nand_chip *chip,
458                                      unsigned int die_nr)
459 {
460         struct tegra_nand_chip *nand = to_tegra_chip(chip);
461         struct tegra_nand_controller *ctrl = to_tegra_ctrl(chip->controller);
462
463         ctrl->cur_cs = nand->cs[die_nr];
464 }
465
466 static int tegra_nand_exec_op(struct nand_chip *chip,
467                               const struct nand_operation *op,
468                               bool check_only)
469 {
470         tegra_nand_select_target(chip, op->cs);
471         return nand_op_parser_exec_op(chip, &tegra_nand_op_parser, op,
472                                       check_only);
473 }
474
475 static void tegra_nand_hw_ecc(struct tegra_nand_controller *ctrl,
476                               struct nand_chip *chip, bool enable)
477 {
478         struct tegra_nand_chip *nand = to_tegra_chip(chip);
479
480         if (chip->ecc.algo == NAND_ECC_BCH && enable)
481                 writel_relaxed(nand->bch_config, ctrl->regs + BCH_CONFIG);
482         else
483                 writel_relaxed(0, ctrl->regs + BCH_CONFIG);
484
485         if (enable)
486                 writel_relaxed(nand->config_ecc, ctrl->regs + CONFIG);
487         else
488                 writel_relaxed(nand->config, ctrl->regs + CONFIG);
489 }
490
491 static int tegra_nand_page_xfer(struct mtd_info *mtd, struct nand_chip *chip,
492                                 void *buf, void *oob_buf, int oob_len, int page,
493                                 bool read)
494 {
495         struct tegra_nand_controller *ctrl = to_tegra_ctrl(chip->controller);
496         enum dma_data_direction dir = read ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
497         dma_addr_t dma_addr = 0, dma_addr_oob = 0;
498         u32 addr1, cmd, dma_ctrl;
499         int ret;
500
501         tegra_nand_select_target(chip, chip->cur_cs);
502
503         if (read) {
504                 writel_relaxed(NAND_CMD_READ0, ctrl->regs + CMD_REG1);
505                 writel_relaxed(NAND_CMD_READSTART, ctrl->regs + CMD_REG2);
506         } else {
507                 writel_relaxed(NAND_CMD_SEQIN, ctrl->regs + CMD_REG1);
508                 writel_relaxed(NAND_CMD_PAGEPROG, ctrl->regs + CMD_REG2);
509         }
510         cmd = COMMAND_CLE | COMMAND_SEC_CMD;
511
512         /* Lower 16-bits are column, by default 0 */
513         addr1 = page << 16;
514
515         if (!buf)
516                 addr1 |= mtd->writesize;
517         writel_relaxed(addr1, ctrl->regs + ADDR_REG1);
518
519         if (chip->options & NAND_ROW_ADDR_3) {
520                 writel_relaxed(page >> 16, ctrl->regs + ADDR_REG2);
521                 cmd |= COMMAND_ALE | COMMAND_ALE_SIZE(5);
522         } else {
523                 cmd |= COMMAND_ALE | COMMAND_ALE_SIZE(4);
524         }
525
526         if (buf) {
527                 dma_addr = dma_map_single(ctrl->dev, buf, mtd->writesize, dir);
528                 ret = dma_mapping_error(ctrl->dev, dma_addr);
529                 if (ret) {
530                         dev_err(ctrl->dev, "dma mapping error\n");
531                         return -EINVAL;
532                 }
533
534                 writel_relaxed(mtd->writesize - 1, ctrl->regs + DMA_CFG_A);
535                 writel_relaxed(dma_addr, ctrl->regs + DATA_PTR);
536         }
537
538         if (oob_buf) {
539                 dma_addr_oob = dma_map_single(ctrl->dev, oob_buf, mtd->oobsize,
540                                               dir);
541                 ret = dma_mapping_error(ctrl->dev, dma_addr_oob);
542                 if (ret) {
543                         dev_err(ctrl->dev, "dma mapping error\n");
544                         ret = -EINVAL;
545                         goto err_unmap_dma_page;
546                 }
547
548                 writel_relaxed(oob_len - 1, ctrl->regs + DMA_CFG_B);
549                 writel_relaxed(dma_addr_oob, ctrl->regs + TAG_PTR);
550         }
551
552         dma_ctrl = DMA_MST_CTRL_GO | DMA_MST_CTRL_PERF_EN |
553                    DMA_MST_CTRL_IE_DONE | DMA_MST_CTRL_IS_DONE |
554                    DMA_MST_CTRL_BURST_16;
555
556         if (buf)
557                 dma_ctrl |= DMA_MST_CTRL_EN_A;
558         if (oob_buf)
559                 dma_ctrl |= DMA_MST_CTRL_EN_B;
560
561         if (read)
562                 dma_ctrl |= DMA_MST_CTRL_IN | DMA_MST_CTRL_REUSE;
563         else
564                 dma_ctrl |= DMA_MST_CTRL_OUT;
565
566         writel_relaxed(dma_ctrl, ctrl->regs + DMA_MST_CTRL);
567
568         cmd |= COMMAND_GO | COMMAND_RBSY_CHK | COMMAND_TRANS_SIZE(9) |
569                COMMAND_CE(ctrl->cur_cs);
570
571         if (buf)
572                 cmd |= COMMAND_A_VALID;
573         if (oob_buf)
574                 cmd |= COMMAND_B_VALID;
575
576         if (read)
577                 cmd |= COMMAND_RX;
578         else
579                 cmd |= COMMAND_TX | COMMAND_AFT_DAT;
580
581         writel_relaxed(cmd, ctrl->regs + COMMAND);
582
583         ret = wait_for_completion_timeout(&ctrl->command_complete,
584                                           msecs_to_jiffies(500));
585         if (!ret) {
586                 dev_err(ctrl->dev, "COMMAND timeout\n");
587                 tegra_nand_dump_reg(ctrl);
588                 tegra_nand_controller_abort(ctrl);
589                 ret = -ETIMEDOUT;
590                 goto err_unmap_dma;
591         }
592
593         ret = wait_for_completion_timeout(&ctrl->dma_complete,
594                                           msecs_to_jiffies(500));
595         if (!ret) {
596                 dev_err(ctrl->dev, "DMA timeout\n");
597                 tegra_nand_dump_reg(ctrl);
598                 tegra_nand_controller_abort(ctrl);
599                 ret = -ETIMEDOUT;
600                 goto err_unmap_dma;
601         }
602         ret = 0;
603
604 err_unmap_dma:
605         if (oob_buf)
606                 dma_unmap_single(ctrl->dev, dma_addr_oob, mtd->oobsize, dir);
607 err_unmap_dma_page:
608         if (buf)
609                 dma_unmap_single(ctrl->dev, dma_addr, mtd->writesize, dir);
610
611         return ret;
612 }
613
614 static int tegra_nand_read_page_raw(struct nand_chip *chip, u8 *buf,
615                                     int oob_required, int page)
616 {
617         struct mtd_info *mtd = nand_to_mtd(chip);
618         void *oob_buf = oob_required ? chip->oob_poi : NULL;
619
620         return tegra_nand_page_xfer(mtd, chip, buf, oob_buf,
621                                     mtd->oobsize, page, true);
622 }
623
624 static int tegra_nand_write_page_raw(struct nand_chip *chip, const u8 *buf,
625                                      int oob_required, int page)
626 {
627         struct mtd_info *mtd = nand_to_mtd(chip);
628         void *oob_buf = oob_required ? chip->oob_poi : NULL;
629
630         return tegra_nand_page_xfer(mtd, chip, (void *)buf, oob_buf,
631                                      mtd->oobsize, page, false);
632 }
633
634 static int tegra_nand_read_oob(struct nand_chip *chip, int page)
635 {
636         struct mtd_info *mtd = nand_to_mtd(chip);
637
638         return tegra_nand_page_xfer(mtd, chip, NULL, chip->oob_poi,
639                                     mtd->oobsize, page, true);
640 }
641
642 static int tegra_nand_write_oob(struct nand_chip *chip, int page)
643 {
644         struct mtd_info *mtd = nand_to_mtd(chip);
645
646         return tegra_nand_page_xfer(mtd, chip, NULL, chip->oob_poi,
647                                     mtd->oobsize, page, false);
648 }
649
650 static int tegra_nand_read_page_hwecc(struct nand_chip *chip, u8 *buf,
651                                       int oob_required, int page)
652 {
653         struct mtd_info *mtd = nand_to_mtd(chip);
654         struct tegra_nand_controller *ctrl = to_tegra_ctrl(chip->controller);
655         struct tegra_nand_chip *nand = to_tegra_chip(chip);
656         void *oob_buf = oob_required ? chip->oob_poi : NULL;
657         u32 dec_stat, max_corr_cnt;
658         unsigned long fail_sec_flag;
659         int ret;
660
661         tegra_nand_hw_ecc(ctrl, chip, true);
662         ret = tegra_nand_page_xfer(mtd, chip, buf, oob_buf, 0, page, true);
663         tegra_nand_hw_ecc(ctrl, chip, false);
664         if (ret)
665                 return ret;
666
667         /* No correctable or un-correctable errors, page must have 0 bitflips */
668         if (!ctrl->last_read_error)
669                 return 0;
670
671         /*
672          * Correctable or un-correctable errors occurred. Use DEC_STAT_BUF
673          * which contains information for all ECC selections.
674          *
675          * Note that since we do not use Command Queues DEC_RESULT does not
676          * state the number of pages we can read from the DEC_STAT_BUF. But
677          * since CORRFAIL_ERR did occur during page read we do have a valid
678          * result in DEC_STAT_BUF.
679          */
680         ctrl->last_read_error = false;
681         dec_stat = readl_relaxed(ctrl->regs + DEC_STAT_BUF);
682
683         fail_sec_flag = (dec_stat & DEC_STAT_BUF_FAIL_SEC_FLAG_MASK) >>
684                         DEC_STAT_BUF_FAIL_SEC_FLAG_SHIFT;
685
686         max_corr_cnt = (dec_stat & DEC_STAT_BUF_MAX_CORR_CNT_MASK) >>
687                        DEC_STAT_BUF_MAX_CORR_CNT_SHIFT;
688
689         if (fail_sec_flag) {
690                 int bit, max_bitflips = 0;
691
692                 /*
693                  * Since we do not support subpage writes, a complete page
694                  * is either written or not. We can take a shortcut here by
695                  * checking wheather any of the sector has been successful
696                  * read. If at least one sectors has been read successfully,
697                  * the page must have been a written previously. It cannot
698                  * be an erased page.
699                  *
700                  * E.g. controller might return fail_sec_flag with 0x4, which
701                  * would mean only the third sector failed to correct. The
702                  * page must have been written and the third sector is really
703                  * not correctable anymore.
704                  */
705                 if (fail_sec_flag ^ GENMASK(chip->ecc.steps - 1, 0)) {
706                         mtd->ecc_stats.failed += hweight8(fail_sec_flag);
707                         return max_corr_cnt;
708                 }
709
710                 /*
711                  * All sectors failed to correct, but the ECC isn't smart
712                  * enough to figure out if a page is really just erased.
713                  * Read OOB data and check whether data/OOB is completely
714                  * erased or if error correction just failed for all sub-
715                  * pages.
716                  */
717                 ret = tegra_nand_read_oob(chip, page);
718                 if (ret < 0)
719                         return ret;
720
721                 for_each_set_bit(bit, &fail_sec_flag, chip->ecc.steps) {
722                         u8 *data = buf + (chip->ecc.size * bit);
723                         u8 *oob = chip->oob_poi + nand->ecc.offset +
724                                   (chip->ecc.bytes * bit);
725
726                         ret = nand_check_erased_ecc_chunk(data, chip->ecc.size,
727                                                           oob, chip->ecc.bytes,
728                                                           NULL, 0,
729                                                           chip->ecc.strength);
730                         if (ret < 0) {
731                                 mtd->ecc_stats.failed++;
732                         } else {
733                                 mtd->ecc_stats.corrected += ret;
734                                 max_bitflips = max(ret, max_bitflips);
735                         }
736                 }
737
738                 return max_t(unsigned int, max_corr_cnt, max_bitflips);
739         } else {
740                 int corr_sec_flag;
741
742                 corr_sec_flag = (dec_stat & DEC_STAT_BUF_CORR_SEC_FLAG_MASK) >>
743                                 DEC_STAT_BUF_CORR_SEC_FLAG_SHIFT;
744
745                 /*
746                  * The value returned in the register is the maximum of
747                  * bitflips encountered in any of the ECC regions. As there is
748                  * no way to get the number of bitflips in a specific regions
749                  * we are not able to deliver correct stats but instead
750                  * overestimate the number of corrected bitflips by assuming
751                  * that all regions where errors have been corrected
752                  * encountered the maximum number of bitflips.
753                  */
754                 mtd->ecc_stats.corrected += max_corr_cnt * hweight8(corr_sec_flag);
755
756                 return max_corr_cnt;
757         }
758 }
759
760 static int tegra_nand_write_page_hwecc(struct nand_chip *chip, const u8 *buf,
761                                        int oob_required, int page)
762 {
763         struct mtd_info *mtd = nand_to_mtd(chip);
764         struct tegra_nand_controller *ctrl = to_tegra_ctrl(chip->controller);
765         void *oob_buf = oob_required ? chip->oob_poi : NULL;
766         int ret;
767
768         tegra_nand_hw_ecc(ctrl, chip, true);
769         ret = tegra_nand_page_xfer(mtd, chip, (void *)buf, oob_buf,
770                                    0, page, false);
771         tegra_nand_hw_ecc(ctrl, chip, false);
772
773         return ret;
774 }
775
776 static void tegra_nand_setup_timing(struct tegra_nand_controller *ctrl,
777                                     const struct nand_sdr_timings *timings)
778 {
779         /*
780          * The period (and all other timings in this function) is in ps,
781          * so need to take care here to avoid integer overflows.
782          */
783         unsigned int rate = clk_get_rate(ctrl->clk) / 1000000;
784         unsigned int period = DIV_ROUND_UP(1000000, rate);
785         u32 val, reg = 0;
786
787         val = DIV_ROUND_UP(max3(timings->tAR_min, timings->tRR_min,
788                                 timings->tRC_min), period);
789         reg |= TIMING_TCR_TAR_TRR(OFFSET(val, 3));
790
791         val = DIV_ROUND_UP(max(max(timings->tCS_min, timings->tCH_min),
792                                max(timings->tALS_min, timings->tALH_min)),
793                            period);
794         reg |= TIMING_TCS(OFFSET(val, 2));
795
796         val = DIV_ROUND_UP(max(timings->tRP_min, timings->tREA_max) + 6000,
797                            period);
798         reg |= TIMING_TRP(OFFSET(val, 1)) | TIMING_TRP_RESP(OFFSET(val, 1));
799
800         reg |= TIMING_TWB(OFFSET(DIV_ROUND_UP(timings->tWB_max, period), 1));
801         reg |= TIMING_TWHR(OFFSET(DIV_ROUND_UP(timings->tWHR_min, period), 1));
802         reg |= TIMING_TWH(OFFSET(DIV_ROUND_UP(timings->tWH_min, period), 1));
803         reg |= TIMING_TWP(OFFSET(DIV_ROUND_UP(timings->tWP_min, period), 1));
804         reg |= TIMING_TRH(OFFSET(DIV_ROUND_UP(timings->tREH_min, period), 1));
805
806         writel_relaxed(reg, ctrl->regs + TIMING_1);
807
808         val = DIV_ROUND_UP(timings->tADL_min, period);
809         reg = TIMING_TADL(OFFSET(val, 3));
810
811         writel_relaxed(reg, ctrl->regs + TIMING_2);
812 }
813
814 static int tegra_nand_setup_data_interface(struct nand_chip *chip, int csline,
815                                         const struct nand_data_interface *conf)
816 {
817         struct tegra_nand_controller *ctrl = to_tegra_ctrl(chip->controller);
818         const struct nand_sdr_timings *timings;
819
820         timings = nand_get_sdr_timings(conf);
821         if (IS_ERR(timings))
822                 return PTR_ERR(timings);
823
824         if (csline == NAND_DATA_IFACE_CHECK_ONLY)
825                 return 0;
826
827         tegra_nand_setup_timing(ctrl, timings);
828
829         return 0;
830 }
831
832 static const int rs_strength_bootable[] = { 4 };
833 static const int rs_strength[] = { 4, 6, 8 };
834 static const int bch_strength_bootable[] = { 8, 16 };
835 static const int bch_strength[] = { 4, 8, 14, 16 };
836
837 static int tegra_nand_get_strength(struct nand_chip *chip, const int *strength,
838                                    int strength_len, int bits_per_step,
839                                    int oobsize)
840 {
841         bool maximize = chip->ecc.options & NAND_ECC_MAXIMIZE;
842         int i;
843
844         /*
845          * Loop through available strengths. Backwards in case we try to
846          * maximize the BCH strength.
847          */
848         for (i = 0; i < strength_len; i++) {
849                 int strength_sel, bytes_per_step, bytes_per_page;
850
851                 if (maximize) {
852                         strength_sel = strength[strength_len - i - 1];
853                 } else {
854                         strength_sel = strength[i];
855
856                         if (strength_sel < chip->ecc_strength_ds)
857                                 continue;
858                 }
859
860                 bytes_per_step = DIV_ROUND_UP(bits_per_step * strength_sel,
861                                               BITS_PER_BYTE);
862                 bytes_per_page = round_up(bytes_per_step * chip->ecc.steps, 4);
863
864                 /* Check whether strength fits OOB */
865                 if (bytes_per_page < (oobsize - SKIP_SPARE_BYTES))
866                         return strength_sel;
867         }
868
869         return -EINVAL;
870 }
871
872 static int tegra_nand_select_strength(struct nand_chip *chip, int oobsize)
873 {
874         const int *strength;
875         int strength_len, bits_per_step;
876
877         switch (chip->ecc.algo) {
878         case NAND_ECC_RS:
879                 bits_per_step = BITS_PER_STEP_RS;
880                 if (chip->options & NAND_IS_BOOT_MEDIUM) {
881                         strength = rs_strength_bootable;
882                         strength_len = ARRAY_SIZE(rs_strength_bootable);
883                 } else {
884                         strength = rs_strength;
885                         strength_len = ARRAY_SIZE(rs_strength);
886                 }
887                 break;
888         case NAND_ECC_BCH:
889                 bits_per_step = BITS_PER_STEP_BCH;
890                 if (chip->options & NAND_IS_BOOT_MEDIUM) {
891                         strength = bch_strength_bootable;
892                         strength_len = ARRAY_SIZE(bch_strength_bootable);
893                 } else {
894                         strength = bch_strength;
895                         strength_len = ARRAY_SIZE(bch_strength);
896                 }
897                 break;
898         default:
899                 return -EINVAL;
900         }
901
902         return tegra_nand_get_strength(chip, strength, strength_len,
903                                        bits_per_step, oobsize);
904 }
905
906 static int tegra_nand_attach_chip(struct nand_chip *chip)
907 {
908         struct tegra_nand_controller *ctrl = to_tegra_ctrl(chip->controller);
909         struct tegra_nand_chip *nand = to_tegra_chip(chip);
910         struct mtd_info *mtd = nand_to_mtd(chip);
911         int bits_per_step;
912         int ret;
913
914         if (chip->bbt_options & NAND_BBT_USE_FLASH)
915                 chip->bbt_options |= NAND_BBT_NO_OOB;
916
917         chip->ecc.mode = NAND_ECC_HW;
918         chip->ecc.size = 512;
919         chip->ecc.steps = mtd->writesize / chip->ecc.size;
920         if (chip->ecc_step_ds != 512) {
921                 dev_err(ctrl->dev, "Unsupported step size %d\n",
922                         chip->ecc_step_ds);
923                 return -EINVAL;
924         }
925
926         chip->ecc.read_page = tegra_nand_read_page_hwecc;
927         chip->ecc.write_page = tegra_nand_write_page_hwecc;
928         chip->ecc.read_page_raw = tegra_nand_read_page_raw;
929         chip->ecc.write_page_raw = tegra_nand_write_page_raw;
930         chip->ecc.read_oob = tegra_nand_read_oob;
931         chip->ecc.write_oob = tegra_nand_write_oob;
932
933         if (chip->options & NAND_BUSWIDTH_16)
934                 nand->config |= CONFIG_BUS_WIDTH_16;
935
936         if (chip->ecc.algo == NAND_ECC_UNKNOWN) {
937                 if (mtd->writesize < 2048)
938                         chip->ecc.algo = NAND_ECC_RS;
939                 else
940                         chip->ecc.algo = NAND_ECC_BCH;
941         }
942
943         if (chip->ecc.algo == NAND_ECC_BCH && mtd->writesize < 2048) {
944                 dev_err(ctrl->dev, "BCH supports 2K or 4K page size only\n");
945                 return -EINVAL;
946         }
947
948         if (!chip->ecc.strength) {
949                 ret = tegra_nand_select_strength(chip, mtd->oobsize);
950                 if (ret < 0) {
951                         dev_err(ctrl->dev,
952                                 "No valid strength found, minimum %d\n",
953                                 chip->ecc_strength_ds);
954                         return ret;
955                 }
956
957                 chip->ecc.strength = ret;
958         }
959
960         nand->config_ecc = CONFIG_PIPE_EN | CONFIG_SKIP_SPARE |
961                            CONFIG_SKIP_SPARE_SIZE_4;
962
963         switch (chip->ecc.algo) {
964         case NAND_ECC_RS:
965                 bits_per_step = BITS_PER_STEP_RS * chip->ecc.strength;
966                 mtd_set_ooblayout(mtd, &tegra_nand_oob_rs_ops);
967                 nand->config_ecc |= CONFIG_HW_ECC | CONFIG_ECC_SEL |
968                                     CONFIG_ERR_COR;
969                 switch (chip->ecc.strength) {
970                 case 4:
971                         nand->config_ecc |= CONFIG_TVAL_4;
972                         break;
973                 case 6:
974                         nand->config_ecc |= CONFIG_TVAL_6;
975                         break;
976                 case 8:
977                         nand->config_ecc |= CONFIG_TVAL_8;
978                         break;
979                 default:
980                         dev_err(ctrl->dev, "ECC strength %d not supported\n",
981                                 chip->ecc.strength);
982                         return -EINVAL;
983                 }
984                 break;
985         case NAND_ECC_BCH:
986                 bits_per_step = BITS_PER_STEP_BCH * chip->ecc.strength;
987                 mtd_set_ooblayout(mtd, &tegra_nand_oob_bch_ops);
988                 nand->bch_config = BCH_ENABLE;
989                 switch (chip->ecc.strength) {
990                 case 4:
991                         nand->bch_config |= BCH_TVAL_4;
992                         break;
993                 case 8:
994                         nand->bch_config |= BCH_TVAL_8;
995                         break;
996                 case 14:
997                         nand->bch_config |= BCH_TVAL_14;
998                         break;
999                 case 16:
1000                         nand->bch_config |= BCH_TVAL_16;
1001                         break;
1002                 default:
1003                         dev_err(ctrl->dev, "ECC strength %d not supported\n",
1004                                 chip->ecc.strength);
1005                         return -EINVAL;
1006                 }
1007                 break;
1008         default:
1009                 dev_err(ctrl->dev, "ECC algorithm not supported\n");
1010                 return -EINVAL;
1011         }
1012
1013         dev_info(ctrl->dev, "Using %s with strength %d per 512 byte step\n",
1014                  chip->ecc.algo == NAND_ECC_BCH ? "BCH" : "RS",
1015                  chip->ecc.strength);
1016
1017         chip->ecc.bytes = DIV_ROUND_UP(bits_per_step, BITS_PER_BYTE);
1018
1019         switch (mtd->writesize) {
1020         case 256:
1021                 nand->config |= CONFIG_PS_256;
1022                 break;
1023         case 512:
1024                 nand->config |= CONFIG_PS_512;
1025                 break;
1026         case 1024:
1027                 nand->config |= CONFIG_PS_1024;
1028                 break;
1029         case 2048:
1030                 nand->config |= CONFIG_PS_2048;
1031                 break;
1032         case 4096:
1033                 nand->config |= CONFIG_PS_4096;
1034                 break;
1035         default:
1036                 dev_err(ctrl->dev, "Unsupported writesize %d\n",
1037                         mtd->writesize);
1038                 return -ENODEV;
1039         }
1040
1041         /* Store complete configuration for HW ECC in config_ecc */
1042         nand->config_ecc |= nand->config;
1043
1044         /* Non-HW ECC read/writes complete OOB */
1045         nand->config |= CONFIG_TAG_BYTE_SIZE(mtd->oobsize - 1);
1046         writel_relaxed(nand->config, ctrl->regs + CONFIG);
1047
1048         return 0;
1049 }
1050
1051 static const struct nand_controller_ops tegra_nand_controller_ops = {
1052         .attach_chip = &tegra_nand_attach_chip,
1053         .exec_op = tegra_nand_exec_op,
1054         .setup_data_interface = tegra_nand_setup_data_interface,
1055 };
1056
1057 static int tegra_nand_chips_init(struct device *dev,
1058                                  struct tegra_nand_controller *ctrl)
1059 {
1060         struct device_node *np = dev->of_node;
1061         struct device_node *np_nand;
1062         int nsels, nchips = of_get_child_count(np);
1063         struct tegra_nand_chip *nand;
1064         struct mtd_info *mtd;
1065         struct nand_chip *chip;
1066         int ret;
1067         u32 cs;
1068
1069         if (nchips != 1) {
1070                 dev_err(dev, "Currently only one NAND chip supported\n");
1071                 return -EINVAL;
1072         }
1073
1074         np_nand = of_get_next_child(np, NULL);
1075
1076         nsels = of_property_count_elems_of_size(np_nand, "reg", sizeof(u32));
1077         if (nsels != 1) {
1078                 dev_err(dev, "Missing/invalid reg property\n");
1079                 return -EINVAL;
1080         }
1081
1082         /* Retrieve CS id, currently only single die NAND supported */
1083         ret = of_property_read_u32(np_nand, "reg", &cs);
1084         if (ret) {
1085                 dev_err(dev, "could not retrieve reg property: %d\n", ret);
1086                 return ret;
1087         }
1088
1089         nand = devm_kzalloc(dev, sizeof(*nand), GFP_KERNEL);
1090         if (!nand)
1091                 return -ENOMEM;
1092
1093         nand->cs[0] = cs;
1094
1095         nand->wp_gpio = devm_gpiod_get_optional(dev, "wp", GPIOD_OUT_LOW);
1096
1097         if (IS_ERR(nand->wp_gpio)) {
1098                 ret = PTR_ERR(nand->wp_gpio);
1099                 dev_err(dev, "Failed to request WP GPIO: %d\n", ret);
1100                 return ret;
1101         }
1102
1103         chip = &nand->chip;
1104         chip->controller = &ctrl->controller;
1105
1106         mtd = nand_to_mtd(chip);
1107
1108         mtd->dev.parent = dev;
1109         mtd->owner = THIS_MODULE;
1110
1111         nand_set_flash_node(chip, np_nand);
1112
1113         if (!mtd->name)
1114                 mtd->name = "tegra_nand";
1115
1116         chip->options = NAND_NO_SUBPAGE_WRITE | NAND_USE_BOUNCE_BUFFER;
1117
1118         ret = nand_scan(chip, 1);
1119         if (ret)
1120                 return ret;
1121
1122         mtd_ooblayout_ecc(mtd, 0, &nand->ecc);
1123
1124         ret = mtd_device_register(mtd, NULL, 0);
1125         if (ret) {
1126                 dev_err(dev, "Failed to register mtd device: %d\n", ret);
1127                 nand_cleanup(chip);
1128                 return ret;
1129         }
1130
1131         ctrl->chip = chip;
1132
1133         return 0;
1134 }
1135
1136 static int tegra_nand_probe(struct platform_device *pdev)
1137 {
1138         struct reset_control *rst;
1139         struct tegra_nand_controller *ctrl;
1140         struct resource *res;
1141         int err = 0;
1142
1143         ctrl = devm_kzalloc(&pdev->dev, sizeof(*ctrl), GFP_KERNEL);
1144         if (!ctrl)
1145                 return -ENOMEM;
1146
1147         ctrl->dev = &pdev->dev;
1148         nand_controller_init(&ctrl->controller);
1149         ctrl->controller.ops = &tegra_nand_controller_ops;
1150
1151         res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1152         ctrl->regs = devm_ioremap_resource(&pdev->dev, res);
1153         if (IS_ERR(ctrl->regs))
1154                 return PTR_ERR(ctrl->regs);
1155
1156         rst = devm_reset_control_get(&pdev->dev, "nand");
1157         if (IS_ERR(rst))
1158                 return PTR_ERR(rst);
1159
1160         ctrl->clk = devm_clk_get(&pdev->dev, "nand");
1161         if (IS_ERR(ctrl->clk))
1162                 return PTR_ERR(ctrl->clk);
1163
1164         err = clk_prepare_enable(ctrl->clk);
1165         if (err)
1166                 return err;
1167
1168         err = reset_control_reset(rst);
1169         if (err) {
1170                 dev_err(ctrl->dev, "Failed to reset HW: %d\n", err);
1171                 goto err_disable_clk;
1172         }
1173
1174         writel_relaxed(HWSTATUS_CMD_DEFAULT, ctrl->regs + HWSTATUS_CMD);
1175         writel_relaxed(HWSTATUS_MASK_DEFAULT, ctrl->regs + HWSTATUS_MASK);
1176         writel_relaxed(INT_MASK, ctrl->regs + IER);
1177
1178         init_completion(&ctrl->command_complete);
1179         init_completion(&ctrl->dma_complete);
1180
1181         ctrl->irq = platform_get_irq(pdev, 0);
1182         err = devm_request_irq(&pdev->dev, ctrl->irq, tegra_nand_irq, 0,
1183                                dev_name(&pdev->dev), ctrl);
1184         if (err) {
1185                 dev_err(ctrl->dev, "Failed to get IRQ: %d\n", err);
1186                 goto err_disable_clk;
1187         }
1188
1189         writel_relaxed(DMA_MST_CTRL_IS_DONE, ctrl->regs + DMA_MST_CTRL);
1190
1191         err = tegra_nand_chips_init(ctrl->dev, ctrl);
1192         if (err)
1193                 goto err_disable_clk;
1194
1195         platform_set_drvdata(pdev, ctrl);
1196
1197         return 0;
1198
1199 err_disable_clk:
1200         clk_disable_unprepare(ctrl->clk);
1201         return err;
1202 }
1203
1204 static int tegra_nand_remove(struct platform_device *pdev)
1205 {
1206         struct tegra_nand_controller *ctrl = platform_get_drvdata(pdev);
1207         struct nand_chip *chip = ctrl->chip;
1208         struct mtd_info *mtd = nand_to_mtd(chip);
1209         int ret;
1210
1211         ret = mtd_device_unregister(mtd);
1212         if (ret)
1213                 return ret;
1214
1215         nand_cleanup(chip);
1216
1217         clk_disable_unprepare(ctrl->clk);
1218
1219         return 0;
1220 }
1221
1222 static const struct of_device_id tegra_nand_of_match[] = {
1223         { .compatible = "nvidia,tegra20-nand" },
1224         { /* sentinel */ }
1225 };
1226 MODULE_DEVICE_TABLE(of, tegra_nand_of_match);
1227
1228 static struct platform_driver tegra_nand_driver = {
1229         .driver = {
1230                 .name = "tegra-nand",
1231                 .of_match_table = tegra_nand_of_match,
1232         },
1233         .probe = tegra_nand_probe,
1234         .remove = tegra_nand_remove,
1235 };
1236 module_platform_driver(tegra_nand_driver);
1237
1238 MODULE_DESCRIPTION("NVIDIA Tegra NAND driver");
1239 MODULE_AUTHOR("Thierry Reding <thierry.reding@nvidia.com>");
1240 MODULE_AUTHOR("Lucas Stach <dev@lynxeye.de>");
1241 MODULE_AUTHOR("Stefan Agner <stefan@agner.ch>");
1242 MODULE_LICENSE("GPL v2");