Linux-libre 5.4.48-gnu
[librecmc/linux-libre.git] / drivers / mtd / nand / raw / fsl_ifc_nand.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Freescale Integrated Flash Controller NAND driver
4  *
5  * Copyright 2011-2012 Freescale Semiconductor, Inc
6  *
7  * Author: Dipen Dudhat <Dipen.Dudhat@freescale.com>
8  */
9
10 #include <linux/module.h>
11 #include <linux/types.h>
12 #include <linux/kernel.h>
13 #include <linux/of_address.h>
14 #include <linux/slab.h>
15 #include <linux/mtd/mtd.h>
16 #include <linux/mtd/rawnand.h>
17 #include <linux/mtd/partitions.h>
18 #include <linux/mtd/nand_ecc.h>
19 #include <linux/fsl_ifc.h>
20 #include <linux/iopoll.h>
21
22 #define ERR_BYTE                0xFF /* Value returned for read
23                                         bytes when read failed  */
24 #define IFC_TIMEOUT_MSECS       500  /* Maximum number of mSecs to wait
25                                         for IFC NAND Machine    */
26
27 struct fsl_ifc_ctrl;
28
29 /* mtd information per set */
30 struct fsl_ifc_mtd {
31         struct nand_chip chip;
32         struct fsl_ifc_ctrl *ctrl;
33
34         struct device *dev;
35         int bank;               /* Chip select bank number              */
36         unsigned int bufnum_mask; /* bufnum = page & bufnum_mask */
37         u8 __iomem *vbase;      /* Chip select base virtual address     */
38 };
39
40 /* overview of the fsl ifc controller */
41 struct fsl_ifc_nand_ctrl {
42         struct nand_controller controller;
43         struct fsl_ifc_mtd *chips[FSL_IFC_BANK_COUNT];
44
45         void __iomem *addr;     /* Address of assigned IFC buffer       */
46         unsigned int page;      /* Last page written to / read from     */
47         unsigned int read_bytes;/* Number of bytes read during command  */
48         unsigned int column;    /* Saved column from SEQIN              */
49         unsigned int index;     /* Pointer to next byte to 'read'       */
50         unsigned int oob;       /* Non zero if operating on OOB data    */
51         unsigned int eccread;   /* Non zero for a full-page ECC read    */
52         unsigned int counter;   /* counter for the initializations      */
53         unsigned int max_bitflips;  /* Saved during READ0 cmd           */
54 };
55
56 static struct fsl_ifc_nand_ctrl *ifc_nand_ctrl;
57
58 /*
59  * Generic flash bbt descriptors
60  */
61 static u8 bbt_pattern[] = {'B', 'b', 't', '0' };
62 static u8 mirror_pattern[] = {'1', 't', 'b', 'B' };
63
64 static struct nand_bbt_descr bbt_main_descr = {
65         .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE |
66                    NAND_BBT_2BIT | NAND_BBT_VERSION,
67         .offs = 2, /* 0 on 8-bit small page */
68         .len = 4,
69         .veroffs = 6,
70         .maxblocks = 4,
71         .pattern = bbt_pattern,
72 };
73
74 static struct nand_bbt_descr bbt_mirror_descr = {
75         .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE |
76                    NAND_BBT_2BIT | NAND_BBT_VERSION,
77         .offs = 2, /* 0 on 8-bit small page */
78         .len = 4,
79         .veroffs = 6,
80         .maxblocks = 4,
81         .pattern = mirror_pattern,
82 };
83
84 static int fsl_ifc_ooblayout_ecc(struct mtd_info *mtd, int section,
85                                  struct mtd_oob_region *oobregion)
86 {
87         struct nand_chip *chip = mtd_to_nand(mtd);
88
89         if (section)
90                 return -ERANGE;
91
92         oobregion->offset = 8;
93         oobregion->length = chip->ecc.total;
94
95         return 0;
96 }
97
98 static int fsl_ifc_ooblayout_free(struct mtd_info *mtd, int section,
99                                   struct mtd_oob_region *oobregion)
100 {
101         struct nand_chip *chip = mtd_to_nand(mtd);
102
103         if (section > 1)
104                 return -ERANGE;
105
106         if (mtd->writesize == 512 &&
107             !(chip->options & NAND_BUSWIDTH_16)) {
108                 if (!section) {
109                         oobregion->offset = 0;
110                         oobregion->length = 5;
111                 } else {
112                         oobregion->offset = 6;
113                         oobregion->length = 2;
114                 }
115
116                 return 0;
117         }
118
119         if (!section) {
120                 oobregion->offset = 2;
121                 oobregion->length = 6;
122         } else {
123                 oobregion->offset = chip->ecc.total + 8;
124                 oobregion->length = mtd->oobsize - oobregion->offset;
125         }
126
127         return 0;
128 }
129
130 static const struct mtd_ooblayout_ops fsl_ifc_ooblayout_ops = {
131         .ecc = fsl_ifc_ooblayout_ecc,
132         .free = fsl_ifc_ooblayout_free,
133 };
134
135 /*
136  * Set up the IFC hardware block and page address fields, and the ifc nand
137  * structure addr field to point to the correct IFC buffer in memory
138  */
139 static void set_addr(struct mtd_info *mtd, int column, int page_addr, int oob)
140 {
141         struct nand_chip *chip = mtd_to_nand(mtd);
142         struct fsl_ifc_mtd *priv = nand_get_controller_data(chip);
143         struct fsl_ifc_ctrl *ctrl = priv->ctrl;
144         struct fsl_ifc_runtime __iomem *ifc = ctrl->rregs;
145         int buf_num;
146
147         ifc_nand_ctrl->page = page_addr;
148         /* Program ROW0/COL0 */
149         ifc_out32(page_addr, &ifc->ifc_nand.row0);
150         ifc_out32((oob ? IFC_NAND_COL_MS : 0) | column, &ifc->ifc_nand.col0);
151
152         buf_num = page_addr & priv->bufnum_mask;
153
154         ifc_nand_ctrl->addr = priv->vbase + buf_num * (mtd->writesize * 2);
155         ifc_nand_ctrl->index = column;
156
157         /* for OOB data point to the second half of the buffer */
158         if (oob)
159                 ifc_nand_ctrl->index += mtd->writesize;
160 }
161
162 /* returns nonzero if entire page is blank */
163 static int check_read_ecc(struct mtd_info *mtd, struct fsl_ifc_ctrl *ctrl,
164                           u32 eccstat, unsigned int bufnum)
165 {
166         return  (eccstat >> ((3 - bufnum % 4) * 8)) & 15;
167 }
168
169 /*
170  * execute IFC NAND command and wait for it to complete
171  */
172 static void fsl_ifc_run_command(struct mtd_info *mtd)
173 {
174         struct nand_chip *chip = mtd_to_nand(mtd);
175         struct fsl_ifc_mtd *priv = nand_get_controller_data(chip);
176         struct fsl_ifc_ctrl *ctrl = priv->ctrl;
177         struct fsl_ifc_nand_ctrl *nctrl = ifc_nand_ctrl;
178         struct fsl_ifc_runtime __iomem *ifc = ctrl->rregs;
179         u32 eccstat;
180         int i;
181
182         /* set the chip select for NAND Transaction */
183         ifc_out32(priv->bank << IFC_NAND_CSEL_SHIFT,
184                   &ifc->ifc_nand.nand_csel);
185
186         dev_vdbg(priv->dev,
187                         "%s: fir0=%08x fcr0=%08x\n",
188                         __func__,
189                         ifc_in32(&ifc->ifc_nand.nand_fir0),
190                         ifc_in32(&ifc->ifc_nand.nand_fcr0));
191
192         ctrl->nand_stat = 0;
193
194         /* start read/write seq */
195         ifc_out32(IFC_NAND_SEQ_STRT_FIR_STRT, &ifc->ifc_nand.nandseq_strt);
196
197         /* wait for command complete flag or timeout */
198         wait_event_timeout(ctrl->nand_wait, ctrl->nand_stat,
199                            msecs_to_jiffies(IFC_TIMEOUT_MSECS));
200
201         /* ctrl->nand_stat will be updated from IRQ context */
202         if (!ctrl->nand_stat)
203                 dev_err(priv->dev, "Controller is not responding\n");
204         if (ctrl->nand_stat & IFC_NAND_EVTER_STAT_FTOER)
205                 dev_err(priv->dev, "NAND Flash Timeout Error\n");
206         if (ctrl->nand_stat & IFC_NAND_EVTER_STAT_WPER)
207                 dev_err(priv->dev, "NAND Flash Write Protect Error\n");
208
209         nctrl->max_bitflips = 0;
210
211         if (nctrl->eccread) {
212                 int errors;
213                 int bufnum = nctrl->page & priv->bufnum_mask;
214                 int sector_start = bufnum * chip->ecc.steps;
215                 int sector_end = sector_start + chip->ecc.steps - 1;
216                 __be32 __iomem *eccstat_regs;
217
218                 eccstat_regs = ifc->ifc_nand.nand_eccstat;
219                 eccstat = ifc_in32(&eccstat_regs[sector_start / 4]);
220
221                 for (i = sector_start; i <= sector_end; i++) {
222                         if (i != sector_start && !(i % 4))
223                                 eccstat = ifc_in32(&eccstat_regs[i / 4]);
224
225                         errors = check_read_ecc(mtd, ctrl, eccstat, i);
226
227                         if (errors == 15) {
228                                 /*
229                                  * Uncorrectable error.
230                                  * We'll check for blank pages later.
231                                  *
232                                  * We disable ECCER reporting due to...
233                                  * erratum IFC-A002770 -- so report it now if we
234                                  * see an uncorrectable error in ECCSTAT.
235                                  */
236                                 ctrl->nand_stat |= IFC_NAND_EVTER_STAT_ECCER;
237                                 continue;
238                         }
239
240                         mtd->ecc_stats.corrected += errors;
241                         nctrl->max_bitflips = max_t(unsigned int,
242                                                     nctrl->max_bitflips,
243                                                     errors);
244                 }
245
246                 nctrl->eccread = 0;
247         }
248 }
249
250 static void fsl_ifc_do_read(struct nand_chip *chip,
251                             int oob,
252                             struct mtd_info *mtd)
253 {
254         struct fsl_ifc_mtd *priv = nand_get_controller_data(chip);
255         struct fsl_ifc_ctrl *ctrl = priv->ctrl;
256         struct fsl_ifc_runtime __iomem *ifc = ctrl->rregs;
257
258         /* Program FIR/IFC_NAND_FCR0 for Small/Large page */
259         if (mtd->writesize > 512) {
260                 ifc_out32((IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) |
261                           (IFC_FIR_OP_CA0 << IFC_NAND_FIR0_OP1_SHIFT) |
262                           (IFC_FIR_OP_RA0 << IFC_NAND_FIR0_OP2_SHIFT) |
263                           (IFC_FIR_OP_CMD1 << IFC_NAND_FIR0_OP3_SHIFT) |
264                           (IFC_FIR_OP_RBCD << IFC_NAND_FIR0_OP4_SHIFT),
265                           &ifc->ifc_nand.nand_fir0);
266                 ifc_out32(0x0, &ifc->ifc_nand.nand_fir1);
267
268                 ifc_out32((NAND_CMD_READ0 << IFC_NAND_FCR0_CMD0_SHIFT) |
269                           (NAND_CMD_READSTART << IFC_NAND_FCR0_CMD1_SHIFT),
270                           &ifc->ifc_nand.nand_fcr0);
271         } else {
272                 ifc_out32((IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) |
273                           (IFC_FIR_OP_CA0 << IFC_NAND_FIR0_OP1_SHIFT) |
274                           (IFC_FIR_OP_RA0  << IFC_NAND_FIR0_OP2_SHIFT) |
275                           (IFC_FIR_OP_RBCD << IFC_NAND_FIR0_OP3_SHIFT),
276                           &ifc->ifc_nand.nand_fir0);
277                 ifc_out32(0x0, &ifc->ifc_nand.nand_fir1);
278
279                 if (oob)
280                         ifc_out32(NAND_CMD_READOOB <<
281                                   IFC_NAND_FCR0_CMD0_SHIFT,
282                                   &ifc->ifc_nand.nand_fcr0);
283                 else
284                         ifc_out32(NAND_CMD_READ0 <<
285                                   IFC_NAND_FCR0_CMD0_SHIFT,
286                                   &ifc->ifc_nand.nand_fcr0);
287         }
288 }
289
290 /* cmdfunc send commands to the IFC NAND Machine */
291 static void fsl_ifc_cmdfunc(struct nand_chip *chip, unsigned int command,
292                             int column, int page_addr) {
293         struct mtd_info *mtd = nand_to_mtd(chip);
294         struct fsl_ifc_mtd *priv = nand_get_controller_data(chip);
295         struct fsl_ifc_ctrl *ctrl = priv->ctrl;
296         struct fsl_ifc_runtime __iomem *ifc = ctrl->rregs;
297
298         /* clear the read buffer */
299         ifc_nand_ctrl->read_bytes = 0;
300         if (command != NAND_CMD_PAGEPROG)
301                 ifc_nand_ctrl->index = 0;
302
303         switch (command) {
304         /* READ0 read the entire buffer to use hardware ECC. */
305         case NAND_CMD_READ0:
306                 ifc_out32(0, &ifc->ifc_nand.nand_fbcr);
307                 set_addr(mtd, 0, page_addr, 0);
308
309                 ifc_nand_ctrl->read_bytes = mtd->writesize + mtd->oobsize;
310                 ifc_nand_ctrl->index += column;
311
312                 if (chip->ecc.mode == NAND_ECC_HW)
313                         ifc_nand_ctrl->eccread = 1;
314
315                 fsl_ifc_do_read(chip, 0, mtd);
316                 fsl_ifc_run_command(mtd);
317                 return;
318
319         /* READOOB reads only the OOB because no ECC is performed. */
320         case NAND_CMD_READOOB:
321                 ifc_out32(mtd->oobsize - column, &ifc->ifc_nand.nand_fbcr);
322                 set_addr(mtd, column, page_addr, 1);
323
324                 ifc_nand_ctrl->read_bytes = mtd->writesize + mtd->oobsize;
325
326                 fsl_ifc_do_read(chip, 1, mtd);
327                 fsl_ifc_run_command(mtd);
328
329                 return;
330
331         case NAND_CMD_READID:
332         case NAND_CMD_PARAM: {
333                 /*
334                  * For READID, read 8 bytes that are currently used.
335                  * For PARAM, read all 3 copies of 256-bytes pages.
336                  */
337                 int len = 8;
338                 int timing = IFC_FIR_OP_RB;
339                 if (command == NAND_CMD_PARAM) {
340                         timing = IFC_FIR_OP_RBCD;
341                         len = 256 * 3;
342                 }
343
344                 ifc_out32((IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) |
345                           (IFC_FIR_OP_UA  << IFC_NAND_FIR0_OP1_SHIFT) |
346                           (timing << IFC_NAND_FIR0_OP2_SHIFT),
347                           &ifc->ifc_nand.nand_fir0);
348                 ifc_out32(command << IFC_NAND_FCR0_CMD0_SHIFT,
349                           &ifc->ifc_nand.nand_fcr0);
350                 ifc_out32(column, &ifc->ifc_nand.row3);
351
352                 ifc_out32(len, &ifc->ifc_nand.nand_fbcr);
353                 ifc_nand_ctrl->read_bytes = len;
354
355                 set_addr(mtd, 0, 0, 0);
356                 fsl_ifc_run_command(mtd);
357                 return;
358         }
359
360         /* ERASE1 stores the block and page address */
361         case NAND_CMD_ERASE1:
362                 set_addr(mtd, 0, page_addr, 0);
363                 return;
364
365         /* ERASE2 uses the block and page address from ERASE1 */
366         case NAND_CMD_ERASE2:
367                 ifc_out32((IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) |
368                           (IFC_FIR_OP_RA0 << IFC_NAND_FIR0_OP1_SHIFT) |
369                           (IFC_FIR_OP_CMD1 << IFC_NAND_FIR0_OP2_SHIFT),
370                           &ifc->ifc_nand.nand_fir0);
371
372                 ifc_out32((NAND_CMD_ERASE1 << IFC_NAND_FCR0_CMD0_SHIFT) |
373                           (NAND_CMD_ERASE2 << IFC_NAND_FCR0_CMD1_SHIFT),
374                           &ifc->ifc_nand.nand_fcr0);
375
376                 ifc_out32(0, &ifc->ifc_nand.nand_fbcr);
377                 ifc_nand_ctrl->read_bytes = 0;
378                 fsl_ifc_run_command(mtd);
379                 return;
380
381         /* SEQIN sets up the addr buffer and all registers except the length */
382         case NAND_CMD_SEQIN: {
383                 u32 nand_fcr0;
384                 ifc_nand_ctrl->column = column;
385                 ifc_nand_ctrl->oob = 0;
386
387                 if (mtd->writesize > 512) {
388                         nand_fcr0 =
389                                 (NAND_CMD_SEQIN << IFC_NAND_FCR0_CMD0_SHIFT) |
390                                 (NAND_CMD_STATUS << IFC_NAND_FCR0_CMD1_SHIFT) |
391                                 (NAND_CMD_PAGEPROG << IFC_NAND_FCR0_CMD2_SHIFT);
392
393                         ifc_out32(
394                                 (IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) |
395                                 (IFC_FIR_OP_CA0 << IFC_NAND_FIR0_OP1_SHIFT) |
396                                 (IFC_FIR_OP_RA0 << IFC_NAND_FIR0_OP2_SHIFT) |
397                                 (IFC_FIR_OP_WBCD << IFC_NAND_FIR0_OP3_SHIFT) |
398                                 (IFC_FIR_OP_CMD2 << IFC_NAND_FIR0_OP4_SHIFT),
399                                 &ifc->ifc_nand.nand_fir0);
400                         ifc_out32(
401                                 (IFC_FIR_OP_CW1 << IFC_NAND_FIR1_OP5_SHIFT) |
402                                 (IFC_FIR_OP_RDSTAT << IFC_NAND_FIR1_OP6_SHIFT) |
403                                 (IFC_FIR_OP_NOP << IFC_NAND_FIR1_OP7_SHIFT),
404                                 &ifc->ifc_nand.nand_fir1);
405                 } else {
406                         nand_fcr0 = ((NAND_CMD_PAGEPROG <<
407                                         IFC_NAND_FCR0_CMD1_SHIFT) |
408                                     (NAND_CMD_SEQIN <<
409                                         IFC_NAND_FCR0_CMD2_SHIFT) |
410                                     (NAND_CMD_STATUS <<
411                                         IFC_NAND_FCR0_CMD3_SHIFT));
412
413                         ifc_out32(
414                                 (IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) |
415                                 (IFC_FIR_OP_CMD2 << IFC_NAND_FIR0_OP1_SHIFT) |
416                                 (IFC_FIR_OP_CA0 << IFC_NAND_FIR0_OP2_SHIFT) |
417                                 (IFC_FIR_OP_RA0 << IFC_NAND_FIR0_OP3_SHIFT) |
418                                 (IFC_FIR_OP_WBCD << IFC_NAND_FIR0_OP4_SHIFT),
419                                 &ifc->ifc_nand.nand_fir0);
420                         ifc_out32(
421                                 (IFC_FIR_OP_CMD1 << IFC_NAND_FIR1_OP5_SHIFT) |
422                                 (IFC_FIR_OP_CW3 << IFC_NAND_FIR1_OP6_SHIFT) |
423                                 (IFC_FIR_OP_RDSTAT << IFC_NAND_FIR1_OP7_SHIFT) |
424                                 (IFC_FIR_OP_NOP << IFC_NAND_FIR1_OP8_SHIFT),
425                                 &ifc->ifc_nand.nand_fir1);
426
427                         if (column >= mtd->writesize)
428                                 nand_fcr0 |=
429                                 NAND_CMD_READOOB << IFC_NAND_FCR0_CMD0_SHIFT;
430                         else
431                                 nand_fcr0 |=
432                                 NAND_CMD_READ0 << IFC_NAND_FCR0_CMD0_SHIFT;
433                 }
434
435                 if (column >= mtd->writesize) {
436                         /* OOB area --> READOOB */
437                         column -= mtd->writesize;
438                         ifc_nand_ctrl->oob = 1;
439                 }
440                 ifc_out32(nand_fcr0, &ifc->ifc_nand.nand_fcr0);
441                 set_addr(mtd, column, page_addr, ifc_nand_ctrl->oob);
442                 return;
443         }
444
445         /* PAGEPROG reuses all of the setup from SEQIN and adds the length */
446         case NAND_CMD_PAGEPROG: {
447                 if (ifc_nand_ctrl->oob) {
448                         ifc_out32(ifc_nand_ctrl->index -
449                                   ifc_nand_ctrl->column,
450                                   &ifc->ifc_nand.nand_fbcr);
451                 } else {
452                         ifc_out32(0, &ifc->ifc_nand.nand_fbcr);
453                 }
454
455                 fsl_ifc_run_command(mtd);
456                 return;
457         }
458
459         case NAND_CMD_STATUS: {
460                 void __iomem *addr;
461
462                 ifc_out32((IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) |
463                           (IFC_FIR_OP_RB << IFC_NAND_FIR0_OP1_SHIFT),
464                           &ifc->ifc_nand.nand_fir0);
465                 ifc_out32(NAND_CMD_STATUS << IFC_NAND_FCR0_CMD0_SHIFT,
466                           &ifc->ifc_nand.nand_fcr0);
467                 ifc_out32(1, &ifc->ifc_nand.nand_fbcr);
468                 set_addr(mtd, 0, 0, 0);
469                 ifc_nand_ctrl->read_bytes = 1;
470
471                 fsl_ifc_run_command(mtd);
472
473                 /*
474                  * The chip always seems to report that it is
475                  * write-protected, even when it is not.
476                  */
477                 addr = ifc_nand_ctrl->addr;
478                 if (chip->options & NAND_BUSWIDTH_16)
479                         ifc_out16(ifc_in16(addr) | (NAND_STATUS_WP), addr);
480                 else
481                         ifc_out8(ifc_in8(addr) | (NAND_STATUS_WP), addr);
482                 return;
483         }
484
485         case NAND_CMD_RESET:
486                 ifc_out32(IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT,
487                           &ifc->ifc_nand.nand_fir0);
488                 ifc_out32(NAND_CMD_RESET << IFC_NAND_FCR0_CMD0_SHIFT,
489                           &ifc->ifc_nand.nand_fcr0);
490                 fsl_ifc_run_command(mtd);
491                 return;
492
493         default:
494                 dev_err(priv->dev, "%s: error, unsupported command 0x%x.\n",
495                                         __func__, command);
496         }
497 }
498
499 static void fsl_ifc_select_chip(struct nand_chip *chip, int cs)
500 {
501         /* The hardware does not seem to support multiple
502          * chips per bank.
503          */
504 }
505
506 /*
507  * Write buf to the IFC NAND Controller Data Buffer
508  */
509 static void fsl_ifc_write_buf(struct nand_chip *chip, const u8 *buf, int len)
510 {
511         struct mtd_info *mtd = nand_to_mtd(chip);
512         struct fsl_ifc_mtd *priv = nand_get_controller_data(chip);
513         unsigned int bufsize = mtd->writesize + mtd->oobsize;
514
515         if (len <= 0) {
516                 dev_err(priv->dev, "%s: len %d bytes", __func__, len);
517                 return;
518         }
519
520         if ((unsigned int)len > bufsize - ifc_nand_ctrl->index) {
521                 dev_err(priv->dev,
522                         "%s: beyond end of buffer (%d requested, %u available)\n",
523                         __func__, len, bufsize - ifc_nand_ctrl->index);
524                 len = bufsize - ifc_nand_ctrl->index;
525         }
526
527         memcpy_toio(ifc_nand_ctrl->addr + ifc_nand_ctrl->index, buf, len);
528         ifc_nand_ctrl->index += len;
529 }
530
531 /*
532  * Read a byte from either the IFC hardware buffer
533  * read function for 8-bit buswidth
534  */
535 static uint8_t fsl_ifc_read_byte(struct nand_chip *chip)
536 {
537         struct fsl_ifc_mtd *priv = nand_get_controller_data(chip);
538         unsigned int offset;
539
540         /*
541          * If there are still bytes in the IFC buffer, then use the
542          * next byte.
543          */
544         if (ifc_nand_ctrl->index < ifc_nand_ctrl->read_bytes) {
545                 offset = ifc_nand_ctrl->index++;
546                 return ifc_in8(ifc_nand_ctrl->addr + offset);
547         }
548
549         dev_err(priv->dev, "%s: beyond end of buffer\n", __func__);
550         return ERR_BYTE;
551 }
552
553 /*
554  * Read two bytes from the IFC hardware buffer
555  * read function for 16-bit buswith
556  */
557 static uint8_t fsl_ifc_read_byte16(struct nand_chip *chip)
558 {
559         struct fsl_ifc_mtd *priv = nand_get_controller_data(chip);
560         uint16_t data;
561
562         /*
563          * If there are still bytes in the IFC buffer, then use the
564          * next byte.
565          */
566         if (ifc_nand_ctrl->index < ifc_nand_ctrl->read_bytes) {
567                 data = ifc_in16(ifc_nand_ctrl->addr + ifc_nand_ctrl->index);
568                 ifc_nand_ctrl->index += 2;
569                 return (uint8_t) data;
570         }
571
572         dev_err(priv->dev, "%s: beyond end of buffer\n", __func__);
573         return ERR_BYTE;
574 }
575
576 /*
577  * Read from the IFC Controller Data Buffer
578  */
579 static void fsl_ifc_read_buf(struct nand_chip *chip, u8 *buf, int len)
580 {
581         struct fsl_ifc_mtd *priv = nand_get_controller_data(chip);
582         int avail;
583
584         if (len < 0) {
585                 dev_err(priv->dev, "%s: len %d bytes", __func__, len);
586                 return;
587         }
588
589         avail = min((unsigned int)len,
590                         ifc_nand_ctrl->read_bytes - ifc_nand_ctrl->index);
591         memcpy_fromio(buf, ifc_nand_ctrl->addr + ifc_nand_ctrl->index, avail);
592         ifc_nand_ctrl->index += avail;
593
594         if (len > avail)
595                 dev_err(priv->dev,
596                         "%s: beyond end of buffer (%d requested, %d available)\n",
597                         __func__, len, avail);
598 }
599
600 /*
601  * This function is called after Program and Erase Operations to
602  * check for success or failure.
603  */
604 static int fsl_ifc_wait(struct nand_chip *chip)
605 {
606         struct mtd_info *mtd = nand_to_mtd(chip);
607         struct fsl_ifc_mtd *priv = nand_get_controller_data(chip);
608         struct fsl_ifc_ctrl *ctrl = priv->ctrl;
609         struct fsl_ifc_runtime __iomem *ifc = ctrl->rregs;
610         u32 nand_fsr;
611         int status;
612
613         /* Use READ_STATUS command, but wait for the device to be ready */
614         ifc_out32((IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) |
615                   (IFC_FIR_OP_RDSTAT << IFC_NAND_FIR0_OP1_SHIFT),
616                   &ifc->ifc_nand.nand_fir0);
617         ifc_out32(NAND_CMD_STATUS << IFC_NAND_FCR0_CMD0_SHIFT,
618                   &ifc->ifc_nand.nand_fcr0);
619         ifc_out32(1, &ifc->ifc_nand.nand_fbcr);
620         set_addr(mtd, 0, 0, 0);
621         ifc_nand_ctrl->read_bytes = 1;
622
623         fsl_ifc_run_command(mtd);
624
625         nand_fsr = ifc_in32(&ifc->ifc_nand.nand_fsr);
626         status = nand_fsr >> 24;
627         /*
628          * The chip always seems to report that it is
629          * write-protected, even when it is not.
630          */
631         return status | NAND_STATUS_WP;
632 }
633
634 /*
635  * The controller does not check for bitflips in erased pages,
636  * therefore software must check instead.
637  */
638 static int check_erased_page(struct nand_chip *chip, u8 *buf)
639 {
640         struct mtd_info *mtd = nand_to_mtd(chip);
641         u8 *ecc = chip->oob_poi;
642         const int ecc_size = chip->ecc.bytes;
643         const int pkt_size = chip->ecc.size;
644         int i, res, bitflips = 0;
645         struct mtd_oob_region oobregion = { };
646
647         mtd_ooblayout_ecc(mtd, 0, &oobregion);
648         ecc += oobregion.offset;
649
650         for (i = 0; i < chip->ecc.steps; ++i) {
651                 res = nand_check_erased_ecc_chunk(buf, pkt_size, ecc, ecc_size,
652                                                   NULL, 0,
653                                                   chip->ecc.strength);
654                 if (res < 0)
655                         mtd->ecc_stats.failed++;
656                 else
657                         mtd->ecc_stats.corrected += res;
658
659                 bitflips = max(res, bitflips);
660                 buf += pkt_size;
661                 ecc += ecc_size;
662         }
663
664         return bitflips;
665 }
666
667 static int fsl_ifc_read_page(struct nand_chip *chip, uint8_t *buf,
668                              int oob_required, int page)
669 {
670         struct mtd_info *mtd = nand_to_mtd(chip);
671         struct fsl_ifc_mtd *priv = nand_get_controller_data(chip);
672         struct fsl_ifc_ctrl *ctrl = priv->ctrl;
673         struct fsl_ifc_nand_ctrl *nctrl = ifc_nand_ctrl;
674
675         nand_read_page_op(chip, page, 0, buf, mtd->writesize);
676         if (oob_required)
677                 fsl_ifc_read_buf(chip, chip->oob_poi, mtd->oobsize);
678
679         if (ctrl->nand_stat & IFC_NAND_EVTER_STAT_ECCER) {
680                 if (!oob_required)
681                         fsl_ifc_read_buf(chip, chip->oob_poi, mtd->oobsize);
682
683                 return check_erased_page(chip, buf);
684         }
685
686         if (ctrl->nand_stat != IFC_NAND_EVTER_STAT_OPC)
687                 mtd->ecc_stats.failed++;
688
689         return nctrl->max_bitflips;
690 }
691
692 /* ECC will be calculated automatically, and errors will be detected in
693  * waitfunc.
694  */
695 static int fsl_ifc_write_page(struct nand_chip *chip, const uint8_t *buf,
696                               int oob_required, int page)
697 {
698         struct mtd_info *mtd = nand_to_mtd(chip);
699
700         nand_prog_page_begin_op(chip, page, 0, buf, mtd->writesize);
701         fsl_ifc_write_buf(chip, chip->oob_poi, mtd->oobsize);
702
703         return nand_prog_page_end_op(chip);
704 }
705
706 static int fsl_ifc_attach_chip(struct nand_chip *chip)
707 {
708         struct mtd_info *mtd = nand_to_mtd(chip);
709         struct fsl_ifc_mtd *priv = nand_get_controller_data(chip);
710
711         dev_dbg(priv->dev, "%s: nand->numchips = %d\n", __func__,
712                 nanddev_ntargets(&chip->base));
713         dev_dbg(priv->dev, "%s: nand->chipsize = %lld\n", __func__,
714                 nanddev_target_size(&chip->base));
715         dev_dbg(priv->dev, "%s: nand->pagemask = %8x\n", __func__,
716                                                         chip->pagemask);
717         dev_dbg(priv->dev, "%s: nand->legacy.chip_delay = %d\n", __func__,
718                 chip->legacy.chip_delay);
719         dev_dbg(priv->dev, "%s: nand->badblockpos = %d\n", __func__,
720                                                         chip->badblockpos);
721         dev_dbg(priv->dev, "%s: nand->chip_shift = %d\n", __func__,
722                                                         chip->chip_shift);
723         dev_dbg(priv->dev, "%s: nand->page_shift = %d\n", __func__,
724                                                         chip->page_shift);
725         dev_dbg(priv->dev, "%s: nand->phys_erase_shift = %d\n", __func__,
726                                                         chip->phys_erase_shift);
727         dev_dbg(priv->dev, "%s: nand->ecc.mode = %d\n", __func__,
728                                                         chip->ecc.mode);
729         dev_dbg(priv->dev, "%s: nand->ecc.steps = %d\n", __func__,
730                                                         chip->ecc.steps);
731         dev_dbg(priv->dev, "%s: nand->ecc.bytes = %d\n", __func__,
732                                                         chip->ecc.bytes);
733         dev_dbg(priv->dev, "%s: nand->ecc.total = %d\n", __func__,
734                                                         chip->ecc.total);
735         dev_dbg(priv->dev, "%s: mtd->ooblayout = %p\n", __func__,
736                                                         mtd->ooblayout);
737         dev_dbg(priv->dev, "%s: mtd->flags = %08x\n", __func__, mtd->flags);
738         dev_dbg(priv->dev, "%s: mtd->size = %lld\n", __func__, mtd->size);
739         dev_dbg(priv->dev, "%s: mtd->erasesize = %d\n", __func__,
740                                                         mtd->erasesize);
741         dev_dbg(priv->dev, "%s: mtd->writesize = %d\n", __func__,
742                                                         mtd->writesize);
743         dev_dbg(priv->dev, "%s: mtd->oobsize = %d\n", __func__,
744                                                         mtd->oobsize);
745
746         return 0;
747 }
748
749 static const struct nand_controller_ops fsl_ifc_controller_ops = {
750         .attach_chip = fsl_ifc_attach_chip,
751 };
752
753 static int fsl_ifc_sram_init(struct fsl_ifc_mtd *priv)
754 {
755         struct fsl_ifc_ctrl *ctrl = priv->ctrl;
756         struct fsl_ifc_runtime __iomem *ifc_runtime = ctrl->rregs;
757         struct fsl_ifc_global __iomem *ifc_global = ctrl->gregs;
758         uint32_t csor = 0, csor_8k = 0, csor_ext = 0;
759         uint32_t cs = priv->bank;
760
761         if (ctrl->version < FSL_IFC_VERSION_1_1_0)
762                 return 0;
763
764         if (ctrl->version > FSL_IFC_VERSION_1_1_0) {
765                 u32 ncfgr, status;
766                 int ret;
767
768                 /* Trigger auto initialization */
769                 ncfgr = ifc_in32(&ifc_runtime->ifc_nand.ncfgr);
770                 ifc_out32(ncfgr | IFC_NAND_NCFGR_SRAM_INIT_EN, &ifc_runtime->ifc_nand.ncfgr);
771
772                 /* Wait until done */
773                 ret = readx_poll_timeout(ifc_in32, &ifc_runtime->ifc_nand.ncfgr,
774                                          status, !(status & IFC_NAND_NCFGR_SRAM_INIT_EN),
775                                          10, IFC_TIMEOUT_MSECS * 1000);
776                 if (ret)
777                         dev_err(priv->dev, "Failed to initialize SRAM!\n");
778
779                 return ret;
780         }
781
782         /* Save CSOR and CSOR_ext */
783         csor = ifc_in32(&ifc_global->csor_cs[cs].csor);
784         csor_ext = ifc_in32(&ifc_global->csor_cs[cs].csor_ext);
785
786         /* chage PageSize 8K and SpareSize 1K*/
787         csor_8k = (csor & ~(CSOR_NAND_PGS_MASK)) | 0x0018C000;
788         ifc_out32(csor_8k, &ifc_global->csor_cs[cs].csor);
789         ifc_out32(0x0000400, &ifc_global->csor_cs[cs].csor_ext);
790
791         /* READID */
792         ifc_out32((IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) |
793                     (IFC_FIR_OP_UA  << IFC_NAND_FIR0_OP1_SHIFT) |
794                     (IFC_FIR_OP_RB << IFC_NAND_FIR0_OP2_SHIFT),
795                     &ifc_runtime->ifc_nand.nand_fir0);
796         ifc_out32(NAND_CMD_READID << IFC_NAND_FCR0_CMD0_SHIFT,
797                     &ifc_runtime->ifc_nand.nand_fcr0);
798         ifc_out32(0x0, &ifc_runtime->ifc_nand.row3);
799
800         ifc_out32(0x0, &ifc_runtime->ifc_nand.nand_fbcr);
801
802         /* Program ROW0/COL0 */
803         ifc_out32(0x0, &ifc_runtime->ifc_nand.row0);
804         ifc_out32(0x0, &ifc_runtime->ifc_nand.col0);
805
806         /* set the chip select for NAND Transaction */
807         ifc_out32(cs << IFC_NAND_CSEL_SHIFT,
808                 &ifc_runtime->ifc_nand.nand_csel);
809
810         /* start read seq */
811         ifc_out32(IFC_NAND_SEQ_STRT_FIR_STRT,
812                 &ifc_runtime->ifc_nand.nandseq_strt);
813
814         /* wait for command complete flag or timeout */
815         wait_event_timeout(ctrl->nand_wait, ctrl->nand_stat,
816                            msecs_to_jiffies(IFC_TIMEOUT_MSECS));
817
818         if (ctrl->nand_stat != IFC_NAND_EVTER_STAT_OPC) {
819                 pr_err("fsl-ifc: Failed to Initialise SRAM\n");
820                 return -ETIMEDOUT;
821         }
822
823         /* Restore CSOR and CSOR_ext */
824         ifc_out32(csor, &ifc_global->csor_cs[cs].csor);
825         ifc_out32(csor_ext, &ifc_global->csor_cs[cs].csor_ext);
826
827         return 0;
828 }
829
830 static int fsl_ifc_chip_init(struct fsl_ifc_mtd *priv)
831 {
832         struct fsl_ifc_ctrl *ctrl = priv->ctrl;
833         struct fsl_ifc_global __iomem *ifc_global = ctrl->gregs;
834         struct fsl_ifc_runtime __iomem *ifc_runtime = ctrl->rregs;
835         struct nand_chip *chip = &priv->chip;
836         struct mtd_info *mtd = nand_to_mtd(&priv->chip);
837         u32 csor;
838         int ret;
839
840         /* Fill in fsl_ifc_mtd structure */
841         mtd->dev.parent = priv->dev;
842         nand_set_flash_node(chip, priv->dev->of_node);
843
844         /* fill in nand_chip structure */
845         /* set up function call table */
846         if ((ifc_in32(&ifc_global->cspr_cs[priv->bank].cspr))
847                 & CSPR_PORT_SIZE_16)
848                 chip->legacy.read_byte = fsl_ifc_read_byte16;
849         else
850                 chip->legacy.read_byte = fsl_ifc_read_byte;
851
852         chip->legacy.write_buf = fsl_ifc_write_buf;
853         chip->legacy.read_buf = fsl_ifc_read_buf;
854         chip->legacy.select_chip = fsl_ifc_select_chip;
855         chip->legacy.cmdfunc = fsl_ifc_cmdfunc;
856         chip->legacy.waitfunc = fsl_ifc_wait;
857         chip->legacy.set_features = nand_get_set_features_notsupp;
858         chip->legacy.get_features = nand_get_set_features_notsupp;
859
860         chip->bbt_td = &bbt_main_descr;
861         chip->bbt_md = &bbt_mirror_descr;
862
863         ifc_out32(0x0, &ifc_runtime->ifc_nand.ncfgr);
864
865         /* set up nand options */
866         chip->bbt_options = NAND_BBT_USE_FLASH;
867         chip->options = NAND_NO_SUBPAGE_WRITE;
868
869         if (ifc_in32(&ifc_global->cspr_cs[priv->bank].cspr)
870                 & CSPR_PORT_SIZE_16) {
871                 chip->legacy.read_byte = fsl_ifc_read_byte16;
872                 chip->options |= NAND_BUSWIDTH_16;
873         } else {
874                 chip->legacy.read_byte = fsl_ifc_read_byte;
875         }
876
877         chip->controller = &ifc_nand_ctrl->controller;
878         nand_set_controller_data(chip, priv);
879
880         chip->ecc.read_page = fsl_ifc_read_page;
881         chip->ecc.write_page = fsl_ifc_write_page;
882
883         csor = ifc_in32(&ifc_global->csor_cs[priv->bank].csor);
884
885         switch (csor & CSOR_NAND_PGS_MASK) {
886         case CSOR_NAND_PGS_512:
887                 if (!(chip->options & NAND_BUSWIDTH_16)) {
888                         /* Avoid conflict with bad block marker */
889                         bbt_main_descr.offs = 0;
890                         bbt_mirror_descr.offs = 0;
891                 }
892
893                 priv->bufnum_mask = 15;
894                 break;
895
896         case CSOR_NAND_PGS_2K:
897                 priv->bufnum_mask = 3;
898                 break;
899
900         case CSOR_NAND_PGS_4K:
901                 priv->bufnum_mask = 1;
902                 break;
903
904         case CSOR_NAND_PGS_8K:
905                 priv->bufnum_mask = 0;
906                 break;
907
908         default:
909                 dev_err(priv->dev, "bad csor %#x: bad page size\n", csor);
910                 return -ENODEV;
911         }
912
913         /* Must also set CSOR_NAND_ECC_ENC_EN if DEC_EN set */
914         if (csor & CSOR_NAND_ECC_DEC_EN) {
915                 chip->ecc.mode = NAND_ECC_HW;
916                 mtd_set_ooblayout(mtd, &fsl_ifc_ooblayout_ops);
917
918                 /* Hardware generates ECC per 512 Bytes */
919                 chip->ecc.size = 512;
920                 if ((csor & CSOR_NAND_ECC_MODE_MASK) == CSOR_NAND_ECC_MODE_4) {
921                         chip->ecc.bytes = 8;
922                         chip->ecc.strength = 4;
923                 } else {
924                         chip->ecc.bytes = 16;
925                         chip->ecc.strength = 8;
926                 }
927         } else {
928                 chip->ecc.mode = NAND_ECC_SOFT;
929                 chip->ecc.algo = NAND_ECC_HAMMING;
930         }
931
932         ret = fsl_ifc_sram_init(priv);
933         if (ret)
934                 return ret;
935
936         /*
937          * As IFC version 2.0.0 has 16KB of internal SRAM as compared to older
938          * versions which had 8KB. Hence bufnum mask needs to be updated.
939          */
940         if (ctrl->version >= FSL_IFC_VERSION_2_0_0)
941                 priv->bufnum_mask = (priv->bufnum_mask * 2) + 1;
942
943         return 0;
944 }
945
946 static int fsl_ifc_chip_remove(struct fsl_ifc_mtd *priv)
947 {
948         struct mtd_info *mtd = nand_to_mtd(&priv->chip);
949
950         kfree(mtd->name);
951
952         if (priv->vbase)
953                 iounmap(priv->vbase);
954
955         ifc_nand_ctrl->chips[priv->bank] = NULL;
956
957         return 0;
958 }
959
960 static int match_bank(struct fsl_ifc_global __iomem *ifc_global, int bank,
961                       phys_addr_t addr)
962 {
963         u32 cspr = ifc_in32(&ifc_global->cspr_cs[bank].cspr);
964
965         if (!(cspr & CSPR_V))
966                 return 0;
967         if ((cspr & CSPR_MSEL) != CSPR_MSEL_NAND)
968                 return 0;
969
970         return (cspr & CSPR_BA) == convert_ifc_address(addr);
971 }
972
973 static DEFINE_MUTEX(fsl_ifc_nand_mutex);
974
975 static int fsl_ifc_nand_probe(struct platform_device *dev)
976 {
977         struct fsl_ifc_runtime __iomem *ifc;
978         struct fsl_ifc_mtd *priv;
979         struct resource res;
980         static const char *part_probe_types[]
981                 = { "cmdlinepart", "RedBoot", "ofpart", NULL };
982         int ret;
983         int bank;
984         struct device_node *node = dev->dev.of_node;
985         struct mtd_info *mtd;
986
987         if (!fsl_ifc_ctrl_dev || !fsl_ifc_ctrl_dev->rregs)
988                 return -ENODEV;
989         ifc = fsl_ifc_ctrl_dev->rregs;
990
991         /* get, allocate and map the memory resource */
992         ret = of_address_to_resource(node, 0, &res);
993         if (ret) {
994                 dev_err(&dev->dev, "%s: failed to get resource\n", __func__);
995                 return ret;
996         }
997
998         /* find which chip select it is connected to */
999         for (bank = 0; bank < fsl_ifc_ctrl_dev->banks; bank++) {
1000                 if (match_bank(fsl_ifc_ctrl_dev->gregs, bank, res.start))
1001                         break;
1002         }
1003
1004         if (bank >= fsl_ifc_ctrl_dev->banks) {
1005                 dev_err(&dev->dev, "%s: address did not match any chip selects\n",
1006                         __func__);
1007                 return -ENODEV;
1008         }
1009
1010         priv = devm_kzalloc(&dev->dev, sizeof(*priv), GFP_KERNEL);
1011         if (!priv)
1012                 return -ENOMEM;
1013
1014         mutex_lock(&fsl_ifc_nand_mutex);
1015         if (!fsl_ifc_ctrl_dev->nand) {
1016                 ifc_nand_ctrl = kzalloc(sizeof(*ifc_nand_ctrl), GFP_KERNEL);
1017                 if (!ifc_nand_ctrl) {
1018                         mutex_unlock(&fsl_ifc_nand_mutex);
1019                         return -ENOMEM;
1020                 }
1021
1022                 ifc_nand_ctrl->read_bytes = 0;
1023                 ifc_nand_ctrl->index = 0;
1024                 ifc_nand_ctrl->addr = NULL;
1025                 fsl_ifc_ctrl_dev->nand = ifc_nand_ctrl;
1026
1027                 nand_controller_init(&ifc_nand_ctrl->controller);
1028         } else {
1029                 ifc_nand_ctrl = fsl_ifc_ctrl_dev->nand;
1030         }
1031         mutex_unlock(&fsl_ifc_nand_mutex);
1032
1033         ifc_nand_ctrl->chips[bank] = priv;
1034         priv->bank = bank;
1035         priv->ctrl = fsl_ifc_ctrl_dev;
1036         priv->dev = &dev->dev;
1037
1038         priv->vbase = ioremap(res.start, resource_size(&res));
1039         if (!priv->vbase) {
1040                 dev_err(priv->dev, "%s: failed to map chip region\n", __func__);
1041                 ret = -ENOMEM;
1042                 goto err;
1043         }
1044
1045         dev_set_drvdata(priv->dev, priv);
1046
1047         ifc_out32(IFC_NAND_EVTER_EN_OPC_EN |
1048                   IFC_NAND_EVTER_EN_FTOER_EN |
1049                   IFC_NAND_EVTER_EN_WPER_EN,
1050                   &ifc->ifc_nand.nand_evter_en);
1051
1052         /* enable NAND Machine Interrupts */
1053         ifc_out32(IFC_NAND_EVTER_INTR_OPCIR_EN |
1054                   IFC_NAND_EVTER_INTR_FTOERIR_EN |
1055                   IFC_NAND_EVTER_INTR_WPERIR_EN,
1056                   &ifc->ifc_nand.nand_evter_intr_en);
1057
1058         mtd = nand_to_mtd(&priv->chip);
1059         mtd->name = kasprintf(GFP_KERNEL, "%llx.flash", (u64)res.start);
1060         if (!mtd->name) {
1061                 ret = -ENOMEM;
1062                 goto err;
1063         }
1064
1065         ret = fsl_ifc_chip_init(priv);
1066         if (ret)
1067                 goto err;
1068
1069         priv->chip.controller->ops = &fsl_ifc_controller_ops;
1070         ret = nand_scan(&priv->chip, 1);
1071         if (ret)
1072                 goto err;
1073
1074         /* First look for RedBoot table or partitions on the command
1075          * line, these take precedence over device tree information */
1076         ret = mtd_device_parse_register(mtd, part_probe_types, NULL, NULL, 0);
1077         if (ret)
1078                 goto cleanup_nand;
1079
1080         dev_info(priv->dev, "IFC NAND device at 0x%llx, bank %d\n",
1081                  (unsigned long long)res.start, priv->bank);
1082
1083         return 0;
1084
1085 cleanup_nand:
1086         nand_cleanup(&priv->chip);
1087 err:
1088         fsl_ifc_chip_remove(priv);
1089
1090         return ret;
1091 }
1092
1093 static int fsl_ifc_nand_remove(struct platform_device *dev)
1094 {
1095         struct fsl_ifc_mtd *priv = dev_get_drvdata(&dev->dev);
1096
1097         nand_release(&priv->chip);
1098         fsl_ifc_chip_remove(priv);
1099
1100         mutex_lock(&fsl_ifc_nand_mutex);
1101         ifc_nand_ctrl->counter--;
1102         if (!ifc_nand_ctrl->counter) {
1103                 fsl_ifc_ctrl_dev->nand = NULL;
1104                 kfree(ifc_nand_ctrl);
1105         }
1106         mutex_unlock(&fsl_ifc_nand_mutex);
1107
1108         return 0;
1109 }
1110
1111 static const struct of_device_id fsl_ifc_nand_match[] = {
1112         {
1113                 .compatible = "fsl,ifc-nand",
1114         },
1115         {}
1116 };
1117 MODULE_DEVICE_TABLE(of, fsl_ifc_nand_match);
1118
1119 static struct platform_driver fsl_ifc_nand_driver = {
1120         .driver = {
1121                 .name   = "fsl,ifc-nand",
1122                 .of_match_table = fsl_ifc_nand_match,
1123         },
1124         .probe       = fsl_ifc_nand_probe,
1125         .remove      = fsl_ifc_nand_remove,
1126 };
1127
1128 module_platform_driver(fsl_ifc_nand_driver);
1129
1130 MODULE_LICENSE("GPL");
1131 MODULE_AUTHOR("Freescale");
1132 MODULE_DESCRIPTION("Freescale Integrated Flash Controller MTD NAND driver");