Linux-libre 3.0.53-gnu1
[librecmc/linux-libre.git] / drivers / mtd / nand / nand_base.c
1 /*
2  *  drivers/mtd/nand.c
3  *
4  *  Overview:
5  *   This is the generic MTD driver for NAND flash devices. It should be
6  *   capable of working with almost all NAND chips currently available.
7  *   Basic support for AG-AND chips is provided.
8  *
9  *      Additional technical information is available on
10  *      http://www.linux-mtd.infradead.org/doc/nand.html
11  *
12  *  Copyright (C) 2000 Steven J. Hill (sjhill@realitydiluted.com)
13  *                2002-2006 Thomas Gleixner (tglx@linutronix.de)
14  *
15  *  Credits:
16  *      David Woodhouse for adding multichip support
17  *
18  *      Aleph One Ltd. and Toby Churchill Ltd. for supporting the
19  *      rework for 2K page size chips
20  *
21  *  TODO:
22  *      Enable cached programming for 2k page size chips
23  *      Check, if mtd->ecctype should be set to MTD_ECC_HW
24  *      if we have HW ecc support.
25  *      The AG-AND chips have nice features for speed improvement,
26  *      which are not supported yet. Read / program 4 pages in one go.
27  *      BBT table is not serialized, has to be fixed
28  *
29  * This program is free software; you can redistribute it and/or modify
30  * it under the terms of the GNU General Public License version 2 as
31  * published by the Free Software Foundation.
32  *
33  */
34
35 #include <linux/module.h>
36 #include <linux/delay.h>
37 #include <linux/errno.h>
38 #include <linux/err.h>
39 #include <linux/sched.h>
40 #include <linux/slab.h>
41 #include <linux/types.h>
42 #include <linux/mtd/mtd.h>
43 #include <linux/mtd/nand.h>
44 #include <linux/mtd/nand_ecc.h>
45 #include <linux/mtd/nand_bch.h>
46 #include <linux/interrupt.h>
47 #include <linux/bitops.h>
48 #include <linux/leds.h>
49 #include <linux/io.h>
50 #include <linux/mtd/partitions.h>
51
52 /* Define default oob placement schemes for large and small page devices */
53 static struct nand_ecclayout nand_oob_8 = {
54         .eccbytes = 3,
55         .eccpos = {0, 1, 2},
56         .oobfree = {
57                 {.offset = 3,
58                  .length = 2},
59                 {.offset = 6,
60                  .length = 2} }
61 };
62
63 static struct nand_ecclayout nand_oob_16 = {
64         .eccbytes = 6,
65         .eccpos = {0, 1, 2, 3, 6, 7},
66         .oobfree = {
67                 {.offset = 8,
68                  . length = 8} }
69 };
70
71 static struct nand_ecclayout nand_oob_64 = {
72         .eccbytes = 24,
73         .eccpos = {
74                    40, 41, 42, 43, 44, 45, 46, 47,
75                    48, 49, 50, 51, 52, 53, 54, 55,
76                    56, 57, 58, 59, 60, 61, 62, 63},
77         .oobfree = {
78                 {.offset = 2,
79                  .length = 38} }
80 };
81
82 static struct nand_ecclayout nand_oob_128 = {
83         .eccbytes = 48,
84         .eccpos = {
85                    80, 81, 82, 83, 84, 85, 86, 87,
86                    88, 89, 90, 91, 92, 93, 94, 95,
87                    96, 97, 98, 99, 100, 101, 102, 103,
88                    104, 105, 106, 107, 108, 109, 110, 111,
89                    112, 113, 114, 115, 116, 117, 118, 119,
90                    120, 121, 122, 123, 124, 125, 126, 127},
91         .oobfree = {
92                 {.offset = 2,
93                  .length = 78} }
94 };
95
96 static int nand_get_device(struct nand_chip *chip, struct mtd_info *mtd,
97                            int new_state);
98
99 static int nand_do_write_oob(struct mtd_info *mtd, loff_t to,
100                              struct mtd_oob_ops *ops);
101
102 /*
103  * For devices which display every fart in the system on a separate LED. Is
104  * compiled away when LED support is disabled.
105  */
106 DEFINE_LED_TRIGGER(nand_led_trigger);
107
108 static int check_offs_len(struct mtd_info *mtd,
109                                         loff_t ofs, uint64_t len)
110 {
111         struct nand_chip *chip = mtd->priv;
112         int ret = 0;
113
114         /* Start address must align on block boundary */
115         if (ofs & ((1 << chip->phys_erase_shift) - 1)) {
116                 DEBUG(MTD_DEBUG_LEVEL0, "%s: Unaligned address\n", __func__);
117                 ret = -EINVAL;
118         }
119
120         /* Length must align on block boundary */
121         if (len & ((1 << chip->phys_erase_shift) - 1)) {
122                 DEBUG(MTD_DEBUG_LEVEL0, "%s: Length not block aligned\n",
123                                         __func__);
124                 ret = -EINVAL;
125         }
126
127         /* Do not allow past end of device */
128         if (ofs + len > mtd->size) {
129                 DEBUG(MTD_DEBUG_LEVEL0, "%s: Past end of device\n",
130                                         __func__);
131                 ret = -EINVAL;
132         }
133
134         return ret;
135 }
136
137 /**
138  * nand_release_device - [GENERIC] release chip
139  * @mtd:        MTD device structure
140  *
141  * Deselect, release chip lock and wake up anyone waiting on the device
142  */
143 static void nand_release_device(struct mtd_info *mtd)
144 {
145         struct nand_chip *chip = mtd->priv;
146
147         /* De-select the NAND device */
148         chip->select_chip(mtd, -1);
149
150         /* Release the controller and the chip */
151         spin_lock(&chip->controller->lock);
152         chip->controller->active = NULL;
153         chip->state = FL_READY;
154         wake_up(&chip->controller->wq);
155         spin_unlock(&chip->controller->lock);
156 }
157
158 /**
159  * nand_read_byte - [DEFAULT] read one byte from the chip
160  * @mtd:        MTD device structure
161  *
162  * Default read function for 8bit buswith
163  */
164 static uint8_t nand_read_byte(struct mtd_info *mtd)
165 {
166         struct nand_chip *chip = mtd->priv;
167         return readb(chip->IO_ADDR_R);
168 }
169
170 /**
171  * nand_read_byte16 - [DEFAULT] read one byte endianess aware from the chip
172  * @mtd:        MTD device structure
173  *
174  * Default read function for 16bit buswith with
175  * endianess conversion
176  */
177 static uint8_t nand_read_byte16(struct mtd_info *mtd)
178 {
179         struct nand_chip *chip = mtd->priv;
180         return (uint8_t) cpu_to_le16(readw(chip->IO_ADDR_R));
181 }
182
183 /**
184  * nand_read_word - [DEFAULT] read one word from the chip
185  * @mtd:        MTD device structure
186  *
187  * Default read function for 16bit buswith without
188  * endianess conversion
189  */
190 static u16 nand_read_word(struct mtd_info *mtd)
191 {
192         struct nand_chip *chip = mtd->priv;
193         return readw(chip->IO_ADDR_R);
194 }
195
196 /**
197  * nand_select_chip - [DEFAULT] control CE line
198  * @mtd:        MTD device structure
199  * @chipnr:     chipnumber to select, -1 for deselect
200  *
201  * Default select function for 1 chip devices.
202  */
203 static void nand_select_chip(struct mtd_info *mtd, int chipnr)
204 {
205         struct nand_chip *chip = mtd->priv;
206
207         switch (chipnr) {
208         case -1:
209                 chip->cmd_ctrl(mtd, NAND_CMD_NONE, 0 | NAND_CTRL_CHANGE);
210                 break;
211         case 0:
212                 break;
213
214         default:
215                 BUG();
216         }
217 }
218
219 /**
220  * nand_write_buf - [DEFAULT] write buffer to chip
221  * @mtd:        MTD device structure
222  * @buf:        data buffer
223  * @len:        number of bytes to write
224  *
225  * Default write function for 8bit buswith
226  */
227 static void nand_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
228 {
229         int i;
230         struct nand_chip *chip = mtd->priv;
231
232         for (i = 0; i < len; i++)
233                 writeb(buf[i], chip->IO_ADDR_W);
234 }
235
236 /**
237  * nand_read_buf - [DEFAULT] read chip data into buffer
238  * @mtd:        MTD device structure
239  * @buf:        buffer to store date
240  * @len:        number of bytes to read
241  *
242  * Default read function for 8bit buswith
243  */
244 static void nand_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
245 {
246         int i;
247         struct nand_chip *chip = mtd->priv;
248
249         for (i = 0; i < len; i++)
250                 buf[i] = readb(chip->IO_ADDR_R);
251 }
252
253 /**
254  * nand_verify_buf - [DEFAULT] Verify chip data against buffer
255  * @mtd:        MTD device structure
256  * @buf:        buffer containing the data to compare
257  * @len:        number of bytes to compare
258  *
259  * Default verify function for 8bit buswith
260  */
261 static int nand_verify_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
262 {
263         int i;
264         struct nand_chip *chip = mtd->priv;
265
266         for (i = 0; i < len; i++)
267                 if (buf[i] != readb(chip->IO_ADDR_R))
268                         return -EFAULT;
269         return 0;
270 }
271
272 /**
273  * nand_write_buf16 - [DEFAULT] write buffer to chip
274  * @mtd:        MTD device structure
275  * @buf:        data buffer
276  * @len:        number of bytes to write
277  *
278  * Default write function for 16bit buswith
279  */
280 static void nand_write_buf16(struct mtd_info *mtd, const uint8_t *buf, int len)
281 {
282         int i;
283         struct nand_chip *chip = mtd->priv;
284         u16 *p = (u16 *) buf;
285         len >>= 1;
286
287         for (i = 0; i < len; i++)
288                 writew(p[i], chip->IO_ADDR_W);
289
290 }
291
292 /**
293  * nand_read_buf16 - [DEFAULT] read chip data into buffer
294  * @mtd:        MTD device structure
295  * @buf:        buffer to store date
296  * @len:        number of bytes to read
297  *
298  * Default read function for 16bit buswith
299  */
300 static void nand_read_buf16(struct mtd_info *mtd, uint8_t *buf, int len)
301 {
302         int i;
303         struct nand_chip *chip = mtd->priv;
304         u16 *p = (u16 *) buf;
305         len >>= 1;
306
307         for (i = 0; i < len; i++)
308                 p[i] = readw(chip->IO_ADDR_R);
309 }
310
311 /**
312  * nand_verify_buf16 - [DEFAULT] Verify chip data against buffer
313  * @mtd:        MTD device structure
314  * @buf:        buffer containing the data to compare
315  * @len:        number of bytes to compare
316  *
317  * Default verify function for 16bit buswith
318  */
319 static int nand_verify_buf16(struct mtd_info *mtd, const uint8_t *buf, int len)
320 {
321         int i;
322         struct nand_chip *chip = mtd->priv;
323         u16 *p = (u16 *) buf;
324         len >>= 1;
325
326         for (i = 0; i < len; i++)
327                 if (p[i] != readw(chip->IO_ADDR_R))
328                         return -EFAULT;
329
330         return 0;
331 }
332
333 /**
334  * nand_block_bad - [DEFAULT] Read bad block marker from the chip
335  * @mtd:        MTD device structure
336  * @ofs:        offset from device start
337  * @getchip:    0, if the chip is already selected
338  *
339  * Check, if the block is bad.
340  */
341 static int nand_block_bad(struct mtd_info *mtd, loff_t ofs, int getchip)
342 {
343         int page, chipnr, res = 0;
344         struct nand_chip *chip = mtd->priv;
345         u16 bad;
346
347         if (chip->options & NAND_BBT_SCANLASTPAGE)
348                 ofs += mtd->erasesize - mtd->writesize;
349
350         page = (int)(ofs >> chip->page_shift) & chip->pagemask;
351
352         if (getchip) {
353                 chipnr = (int)(ofs >> chip->chip_shift);
354
355                 nand_get_device(chip, mtd, FL_READING);
356
357                 /* Select the NAND device */
358                 chip->select_chip(mtd, chipnr);
359         }
360
361         if (chip->options & NAND_BUSWIDTH_16) {
362                 chip->cmdfunc(mtd, NAND_CMD_READOOB, chip->badblockpos & 0xFE,
363                               page);
364                 bad = cpu_to_le16(chip->read_word(mtd));
365                 if (chip->badblockpos & 0x1)
366                         bad >>= 8;
367                 else
368                         bad &= 0xFF;
369         } else {
370                 chip->cmdfunc(mtd, NAND_CMD_READOOB, chip->badblockpos, page);
371                 bad = chip->read_byte(mtd);
372         }
373
374         if (likely(chip->badblockbits == 8))
375                 res = bad != 0xFF;
376         else
377                 res = hweight8(bad) < chip->badblockbits;
378
379         if (getchip)
380                 nand_release_device(mtd);
381
382         return res;
383 }
384
385 /**
386  * nand_default_block_markbad - [DEFAULT] mark a block bad
387  * @mtd:        MTD device structure
388  * @ofs:        offset from device start
389  *
390  * This is the default implementation, which can be overridden by
391  * a hardware specific driver.
392 */
393 static int nand_default_block_markbad(struct mtd_info *mtd, loff_t ofs)
394 {
395         struct nand_chip *chip = mtd->priv;
396         uint8_t buf[2] = { 0, 0 };
397         int block, ret, i = 0;
398
399         if (chip->options & NAND_BBT_SCANLASTPAGE)
400                 ofs += mtd->erasesize - mtd->writesize;
401
402         /* Get block number */
403         block = (int)(ofs >> chip->bbt_erase_shift);
404         if (chip->bbt)
405                 chip->bbt[block >> 2] |= 0x01 << ((block & 0x03) << 1);
406
407         /* Do we have a flash based bad block table ? */
408         if (chip->options & NAND_USE_FLASH_BBT)
409                 ret = nand_update_bbt(mtd, ofs);
410         else {
411                 nand_get_device(chip, mtd, FL_WRITING);
412
413                 /* Write to first two pages and to byte 1 and 6 if necessary.
414                  * If we write to more than one location, the first error
415                  * encountered quits the procedure. We write two bytes per
416                  * location, so we dont have to mess with 16 bit access.
417                  */
418                 do {
419                         chip->ops.len = chip->ops.ooblen = 2;
420                         chip->ops.datbuf = NULL;
421                         chip->ops.oobbuf = buf;
422                         chip->ops.ooboffs = chip->badblockpos & ~0x01;
423
424                         ret = nand_do_write_oob(mtd, ofs, &chip->ops);
425
426                         if (!ret && (chip->options & NAND_BBT_SCANBYTE1AND6)) {
427                                 chip->ops.ooboffs = NAND_SMALL_BADBLOCK_POS
428                                         & ~0x01;
429                                 ret = nand_do_write_oob(mtd, ofs, &chip->ops);
430                         }
431                         i++;
432                         ofs += mtd->writesize;
433                 } while (!ret && (chip->options & NAND_BBT_SCAN2NDPAGE) &&
434                                 i < 2);
435
436                 nand_release_device(mtd);
437         }
438         if (!ret)
439                 mtd->ecc_stats.badblocks++;
440
441         return ret;
442 }
443
444 /**
445  * nand_check_wp - [GENERIC] check if the chip is write protected
446  * @mtd:        MTD device structure
447  * Check, if the device is write protected
448  *
449  * The function expects, that the device is already selected
450  */
451 static int nand_check_wp(struct mtd_info *mtd)
452 {
453         struct nand_chip *chip = mtd->priv;
454
455         /* broken xD cards report WP despite being writable */
456         if (chip->options & NAND_BROKEN_XD)
457                 return 0;
458
459         /* Check the WP bit */
460         chip->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1);
461         return (chip->read_byte(mtd) & NAND_STATUS_WP) ? 0 : 1;
462 }
463
464 /**
465  * nand_block_checkbad - [GENERIC] Check if a block is marked bad
466  * @mtd:        MTD device structure
467  * @ofs:        offset from device start
468  * @getchip:    0, if the chip is already selected
469  * @allowbbt:   1, if its allowed to access the bbt area
470  *
471  * Check, if the block is bad. Either by reading the bad block table or
472  * calling of the scan function.
473  */
474 static int nand_block_checkbad(struct mtd_info *mtd, loff_t ofs, int getchip,
475                                int allowbbt)
476 {
477         struct nand_chip *chip = mtd->priv;
478
479         if (!chip->bbt)
480                 return chip->block_bad(mtd, ofs, getchip);
481
482         /* Return info from the table */
483         return nand_isbad_bbt(mtd, ofs, allowbbt);
484 }
485
486 /**
487  * panic_nand_wait_ready - [GENERIC] Wait for the ready pin after commands.
488  * @mtd:        MTD device structure
489  * @timeo:      Timeout
490  *
491  * Helper function for nand_wait_ready used when needing to wait in interrupt
492  * context.
493  */
494 static void panic_nand_wait_ready(struct mtd_info *mtd, unsigned long timeo)
495 {
496         struct nand_chip *chip = mtd->priv;
497         int i;
498
499         /* Wait for the device to get ready */
500         for (i = 0; i < timeo; i++) {
501                 if (chip->dev_ready(mtd))
502                         break;
503                 touch_softlockup_watchdog();
504                 mdelay(1);
505         }
506 }
507
508 /*
509  * Wait for the ready pin, after a command
510  * The timeout is catched later.
511  */
512 void nand_wait_ready(struct mtd_info *mtd)
513 {
514         struct nand_chip *chip = mtd->priv;
515         unsigned long timeo = jiffies + 2;
516
517         /* 400ms timeout */
518         if (in_interrupt() || oops_in_progress)
519                 return panic_nand_wait_ready(mtd, 400);
520
521         led_trigger_event(nand_led_trigger, LED_FULL);
522         /* wait until command is processed or timeout occures */
523         do {
524                 if (chip->dev_ready(mtd))
525                         break;
526                 touch_softlockup_watchdog();
527         } while (time_before(jiffies, timeo));
528         led_trigger_event(nand_led_trigger, LED_OFF);
529 }
530 EXPORT_SYMBOL_GPL(nand_wait_ready);
531
532 /**
533  * nand_command - [DEFAULT] Send command to NAND device
534  * @mtd:        MTD device structure
535  * @command:    the command to be sent
536  * @column:     the column address for this command, -1 if none
537  * @page_addr:  the page address for this command, -1 if none
538  *
539  * Send command to NAND device. This function is used for small page
540  * devices (256/512 Bytes per page)
541  */
542 static void nand_command(struct mtd_info *mtd, unsigned int command,
543                          int column, int page_addr)
544 {
545         register struct nand_chip *chip = mtd->priv;
546         int ctrl = NAND_CTRL_CLE | NAND_CTRL_CHANGE;
547
548         /*
549          * Write out the command to the device.
550          */
551         if (command == NAND_CMD_SEQIN) {
552                 int readcmd;
553
554                 if (column >= mtd->writesize) {
555                         /* OOB area */
556                         column -= mtd->writesize;
557                         readcmd = NAND_CMD_READOOB;
558                 } else if (column < 256) {
559                         /* First 256 bytes --> READ0 */
560                         readcmd = NAND_CMD_READ0;
561                 } else {
562                         column -= 256;
563                         readcmd = NAND_CMD_READ1;
564                 }
565                 chip->cmd_ctrl(mtd, readcmd, ctrl);
566                 ctrl &= ~NAND_CTRL_CHANGE;
567         }
568         chip->cmd_ctrl(mtd, command, ctrl);
569
570         /*
571          * Address cycle, when necessary
572          */
573         ctrl = NAND_CTRL_ALE | NAND_CTRL_CHANGE;
574         /* Serially input address */
575         if (column != -1) {
576                 /* Adjust columns for 16 bit buswidth */
577                 if (chip->options & NAND_BUSWIDTH_16)
578                         column >>= 1;
579                 chip->cmd_ctrl(mtd, column, ctrl);
580                 ctrl &= ~NAND_CTRL_CHANGE;
581         }
582         if (page_addr != -1) {
583                 chip->cmd_ctrl(mtd, page_addr, ctrl);
584                 ctrl &= ~NAND_CTRL_CHANGE;
585                 chip->cmd_ctrl(mtd, page_addr >> 8, ctrl);
586                 /* One more address cycle for devices > 32MiB */
587                 if (chip->chipsize > (32 << 20))
588                         chip->cmd_ctrl(mtd, page_addr >> 16, ctrl);
589         }
590         chip->cmd_ctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
591
592         /*
593          * program and erase have their own busy handlers
594          * status and sequential in needs no delay
595          */
596         switch (command) {
597
598         case NAND_CMD_PAGEPROG:
599         case NAND_CMD_ERASE1:
600         case NAND_CMD_ERASE2:
601         case NAND_CMD_SEQIN:
602         case NAND_CMD_STATUS:
603                 return;
604
605         case NAND_CMD_RESET:
606                 if (chip->dev_ready)
607                         break;
608                 udelay(chip->chip_delay);
609                 chip->cmd_ctrl(mtd, NAND_CMD_STATUS,
610                                NAND_CTRL_CLE | NAND_CTRL_CHANGE);
611                 chip->cmd_ctrl(mtd,
612                                NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
613                 while (!(chip->read_byte(mtd) & NAND_STATUS_READY))
614                                 ;
615                 return;
616
617                 /* This applies to read commands */
618         default:
619                 /*
620                  * If we don't have access to the busy pin, we apply the given
621                  * command delay
622                  */
623                 if (!chip->dev_ready) {
624                         udelay(chip->chip_delay);
625                         return;
626                 }
627         }
628         /* Apply this short delay always to ensure that we do wait tWB in
629          * any case on any machine. */
630         ndelay(100);
631
632         nand_wait_ready(mtd);
633 }
634
635 /**
636  * nand_command_lp - [DEFAULT] Send command to NAND large page device
637  * @mtd:        MTD device structure
638  * @command:    the command to be sent
639  * @column:     the column address for this command, -1 if none
640  * @page_addr:  the page address for this command, -1 if none
641  *
642  * Send command to NAND device. This is the version for the new large page
643  * devices We dont have the separate regions as we have in the small page
644  * devices.  We must emulate NAND_CMD_READOOB to keep the code compatible.
645  */
646 static void nand_command_lp(struct mtd_info *mtd, unsigned int command,
647                             int column, int page_addr)
648 {
649         register struct nand_chip *chip = mtd->priv;
650
651         /* Emulate NAND_CMD_READOOB */
652         if (command == NAND_CMD_READOOB) {
653                 column += mtd->writesize;
654                 command = NAND_CMD_READ0;
655         }
656
657         /* Command latch cycle */
658         chip->cmd_ctrl(mtd, command & 0xff,
659                        NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
660
661         if (column != -1 || page_addr != -1) {
662                 int ctrl = NAND_CTRL_CHANGE | NAND_NCE | NAND_ALE;
663
664                 /* Serially input address */
665                 if (column != -1) {
666                         /* Adjust columns for 16 bit buswidth */
667                         if (chip->options & NAND_BUSWIDTH_16)
668                                 column >>= 1;
669                         chip->cmd_ctrl(mtd, column, ctrl);
670                         ctrl &= ~NAND_CTRL_CHANGE;
671                         chip->cmd_ctrl(mtd, column >> 8, ctrl);
672                 }
673                 if (page_addr != -1) {
674                         chip->cmd_ctrl(mtd, page_addr, ctrl);
675                         chip->cmd_ctrl(mtd, page_addr >> 8,
676                                        NAND_NCE | NAND_ALE);
677                         /* One more address cycle for devices > 128MiB */
678                         if (chip->chipsize > (128 << 20))
679                                 chip->cmd_ctrl(mtd, page_addr >> 16,
680                                                NAND_NCE | NAND_ALE);
681                 }
682         }
683         chip->cmd_ctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
684
685         /*
686          * program and erase have their own busy handlers
687          * status, sequential in, and deplete1 need no delay
688          */
689         switch (command) {
690
691         case NAND_CMD_CACHEDPROG:
692         case NAND_CMD_PAGEPROG:
693         case NAND_CMD_ERASE1:
694         case NAND_CMD_ERASE2:
695         case NAND_CMD_SEQIN:
696         case NAND_CMD_RNDIN:
697         case NAND_CMD_STATUS:
698         case NAND_CMD_DEPLETE1:
699                 return;
700
701                 /*
702                  * read error status commands require only a short delay
703                  */
704         case NAND_CMD_STATUS_ERROR:
705         case NAND_CMD_STATUS_ERROR0:
706         case NAND_CMD_STATUS_ERROR1:
707         case NAND_CMD_STATUS_ERROR2:
708         case NAND_CMD_STATUS_ERROR3:
709                 udelay(chip->chip_delay);
710                 return;
711
712         case NAND_CMD_RESET:
713                 if (chip->dev_ready)
714                         break;
715                 udelay(chip->chip_delay);
716                 chip->cmd_ctrl(mtd, NAND_CMD_STATUS,
717                                NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
718                 chip->cmd_ctrl(mtd, NAND_CMD_NONE,
719                                NAND_NCE | NAND_CTRL_CHANGE);
720                 while (!(chip->read_byte(mtd) & NAND_STATUS_READY))
721                                 ;
722                 return;
723
724         case NAND_CMD_RNDOUT:
725                 /* No ready / busy check necessary */
726                 chip->cmd_ctrl(mtd, NAND_CMD_RNDOUTSTART,
727                                NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
728                 chip->cmd_ctrl(mtd, NAND_CMD_NONE,
729                                NAND_NCE | NAND_CTRL_CHANGE);
730                 return;
731
732         case NAND_CMD_READ0:
733                 chip->cmd_ctrl(mtd, NAND_CMD_READSTART,
734                                NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
735                 chip->cmd_ctrl(mtd, NAND_CMD_NONE,
736                                NAND_NCE | NAND_CTRL_CHANGE);
737
738                 /* This applies to read commands */
739         default:
740                 /*
741                  * If we don't have access to the busy pin, we apply the given
742                  * command delay
743                  */
744                 if (!chip->dev_ready) {
745                         udelay(chip->chip_delay);
746                         return;
747                 }
748         }
749
750         /* Apply this short delay always to ensure that we do wait tWB in
751          * any case on any machine. */
752         ndelay(100);
753
754         nand_wait_ready(mtd);
755 }
756
757 /**
758  * panic_nand_get_device - [GENERIC] Get chip for selected access
759  * @chip:       the nand chip descriptor
760  * @mtd:        MTD device structure
761  * @new_state:  the state which is requested
762  *
763  * Used when in panic, no locks are taken.
764  */
765 static void panic_nand_get_device(struct nand_chip *chip,
766                       struct mtd_info *mtd, int new_state)
767 {
768         /* Hardware controller shared among independend devices */
769         chip->controller->active = chip;
770         chip->state = new_state;
771 }
772
773 /**
774  * nand_get_device - [GENERIC] Get chip for selected access
775  * @chip:       the nand chip descriptor
776  * @mtd:        MTD device structure
777  * @new_state:  the state which is requested
778  *
779  * Get the device and lock it for exclusive access
780  */
781 static int
782 nand_get_device(struct nand_chip *chip, struct mtd_info *mtd, int new_state)
783 {
784         spinlock_t *lock = &chip->controller->lock;
785         wait_queue_head_t *wq = &chip->controller->wq;
786         DECLARE_WAITQUEUE(wait, current);
787 retry:
788         spin_lock(lock);
789
790         /* Hardware controller shared among independent devices */
791         if (!chip->controller->active)
792                 chip->controller->active = chip;
793
794         if (chip->controller->active == chip && chip->state == FL_READY) {
795                 chip->state = new_state;
796                 spin_unlock(lock);
797                 return 0;
798         }
799         if (new_state == FL_PM_SUSPENDED) {
800                 if (chip->controller->active->state == FL_PM_SUSPENDED) {
801                         chip->state = FL_PM_SUSPENDED;
802                         spin_unlock(lock);
803                         return 0;
804                 }
805         }
806         set_current_state(TASK_UNINTERRUPTIBLE);
807         add_wait_queue(wq, &wait);
808         spin_unlock(lock);
809         schedule();
810         remove_wait_queue(wq, &wait);
811         goto retry;
812 }
813
814 /**
815  * panic_nand_wait - [GENERIC]  wait until the command is done
816  * @mtd:        MTD device structure
817  * @chip:       NAND chip structure
818  * @timeo:      Timeout
819  *
820  * Wait for command done. This is a helper function for nand_wait used when
821  * we are in interrupt context. May happen when in panic and trying to write
822  * an oops through mtdoops.
823  */
824 static void panic_nand_wait(struct mtd_info *mtd, struct nand_chip *chip,
825                             unsigned long timeo)
826 {
827         int i;
828         for (i = 0; i < timeo; i++) {
829                 if (chip->dev_ready) {
830                         if (chip->dev_ready(mtd))
831                                 break;
832                 } else {
833                         if (chip->read_byte(mtd) & NAND_STATUS_READY)
834                                 break;
835                 }
836                 mdelay(1);
837         }
838 }
839
840 /**
841  * nand_wait - [DEFAULT]  wait until the command is done
842  * @mtd:        MTD device structure
843  * @chip:       NAND chip structure
844  *
845  * Wait for command done. This applies to erase and program only
846  * Erase can take up to 400ms and program up to 20ms according to
847  * general NAND and SmartMedia specs
848  */
849 static int nand_wait(struct mtd_info *mtd, struct nand_chip *chip)
850 {
851
852         unsigned long timeo = jiffies;
853         int status, state = chip->state;
854
855         if (state == FL_ERASING)
856                 timeo += (HZ * 400) / 1000;
857         else
858                 timeo += (HZ * 20) / 1000;
859
860         led_trigger_event(nand_led_trigger, LED_FULL);
861
862         /* Apply this short delay always to ensure that we do wait tWB in
863          * any case on any machine. */
864         ndelay(100);
865
866         if ((state == FL_ERASING) && (chip->options & NAND_IS_AND))
867                 chip->cmdfunc(mtd, NAND_CMD_STATUS_MULTI, -1, -1);
868         else
869                 chip->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1);
870
871         if (in_interrupt() || oops_in_progress)
872                 panic_nand_wait(mtd, chip, timeo);
873         else {
874                 while (time_before(jiffies, timeo)) {
875                         if (chip->dev_ready) {
876                                 if (chip->dev_ready(mtd))
877                                         break;
878                         } else {
879                                 if (chip->read_byte(mtd) & NAND_STATUS_READY)
880                                         break;
881                         }
882                         cond_resched();
883                 }
884         }
885         led_trigger_event(nand_led_trigger, LED_OFF);
886
887         status = (int)chip->read_byte(mtd);
888         return status;
889 }
890
891 /**
892  * __nand_unlock - [REPLACEABLE] unlocks specified locked blocks
893  *
894  * @mtd: mtd info
895  * @ofs: offset to start unlock from
896  * @len: length to unlock
897  * @invert:   when = 0, unlock the range of blocks within the lower and
898  *                      upper boundary address
899  *            when = 1, unlock the range of blocks outside the boundaries
900  *                      of the lower and upper boundary address
901  *
902  * return - unlock status
903  */
904 static int __nand_unlock(struct mtd_info *mtd, loff_t ofs,
905                                         uint64_t len, int invert)
906 {
907         int ret = 0;
908         int status, page;
909         struct nand_chip *chip = mtd->priv;
910
911         /* Submit address of first page to unlock */
912         page = ofs >> chip->page_shift;
913         chip->cmdfunc(mtd, NAND_CMD_UNLOCK1, -1, page & chip->pagemask);
914
915         /* Submit address of last page to unlock */
916         page = (ofs + len) >> chip->page_shift;
917         chip->cmdfunc(mtd, NAND_CMD_UNLOCK2, -1,
918                                 (page | invert) & chip->pagemask);
919
920         /* Call wait ready function */
921         status = chip->waitfunc(mtd, chip);
922         udelay(1000);
923         /* See if device thinks it succeeded */
924         if (status & 0x01) {
925                 DEBUG(MTD_DEBUG_LEVEL0, "%s: Error status = 0x%08x\n",
926                                         __func__, status);
927                 ret = -EIO;
928         }
929
930         return ret;
931 }
932
933 /**
934  * nand_unlock - [REPLACEABLE] unlocks specified locked blocks
935  *
936  * @mtd: mtd info
937  * @ofs: offset to start unlock from
938  * @len: length to unlock
939  *
940  * return - unlock status
941  */
942 int nand_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
943 {
944         int ret = 0;
945         int chipnr;
946         struct nand_chip *chip = mtd->priv;
947
948         DEBUG(MTD_DEBUG_LEVEL3, "%s: start = 0x%012llx, len = %llu\n",
949                         __func__, (unsigned long long)ofs, len);
950
951         if (check_offs_len(mtd, ofs, len))
952                 ret = -EINVAL;
953
954         /* Align to last block address if size addresses end of the device */
955         if (ofs + len == mtd->size)
956                 len -= mtd->erasesize;
957
958         nand_get_device(chip, mtd, FL_UNLOCKING);
959
960         /* Shift to get chip number */
961         chipnr = ofs >> chip->chip_shift;
962
963         chip->select_chip(mtd, chipnr);
964
965         /* Check, if it is write protected */
966         if (nand_check_wp(mtd)) {
967                 DEBUG(MTD_DEBUG_LEVEL0, "%s: Device is write protected!!!\n",
968                                         __func__);
969                 ret = -EIO;
970                 goto out;
971         }
972
973         ret = __nand_unlock(mtd, ofs, len, 0);
974
975 out:
976         nand_release_device(mtd);
977
978         return ret;
979 }
980 EXPORT_SYMBOL(nand_unlock);
981
982 /**
983  * nand_lock - [REPLACEABLE] locks all blocks present in the device
984  *
985  * @mtd: mtd info
986  * @ofs: offset to start unlock from
987  * @len: length to unlock
988  *
989  * return - lock status
990  *
991  * This feature is not supported in many NAND parts. 'Micron' NAND parts
992  * do have this feature, but it allows only to lock all blocks, not for
993  * specified range for block.
994  *
995  * Implementing 'lock' feature by making use of 'unlock', for now.
996  */
997 int nand_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
998 {
999         int ret = 0;
1000         int chipnr, status, page;
1001         struct nand_chip *chip = mtd->priv;
1002
1003         DEBUG(MTD_DEBUG_LEVEL3, "%s: start = 0x%012llx, len = %llu\n",
1004                         __func__, (unsigned long long)ofs, len);
1005
1006         if (check_offs_len(mtd, ofs, len))
1007                 ret = -EINVAL;
1008
1009         nand_get_device(chip, mtd, FL_LOCKING);
1010
1011         /* Shift to get chip number */
1012         chipnr = ofs >> chip->chip_shift;
1013
1014         chip->select_chip(mtd, chipnr);
1015
1016         /* Check, if it is write protected */
1017         if (nand_check_wp(mtd)) {
1018                 DEBUG(MTD_DEBUG_LEVEL0, "%s: Device is write protected!!!\n",
1019                                         __func__);
1020                 status = MTD_ERASE_FAILED;
1021                 ret = -EIO;
1022                 goto out;
1023         }
1024
1025         /* Submit address of first page to lock */
1026         page = ofs >> chip->page_shift;
1027         chip->cmdfunc(mtd, NAND_CMD_LOCK, -1, page & chip->pagemask);
1028
1029         /* Call wait ready function */
1030         status = chip->waitfunc(mtd, chip);
1031         udelay(1000);
1032         /* See if device thinks it succeeded */
1033         if (status & 0x01) {
1034                 DEBUG(MTD_DEBUG_LEVEL0, "%s: Error status = 0x%08x\n",
1035                                         __func__, status);
1036                 ret = -EIO;
1037                 goto out;
1038         }
1039
1040         ret = __nand_unlock(mtd, ofs, len, 0x1);
1041
1042 out:
1043         nand_release_device(mtd);
1044
1045         return ret;
1046 }
1047 EXPORT_SYMBOL(nand_lock);
1048
1049 /**
1050  * nand_read_page_raw - [Intern] read raw page data without ecc
1051  * @mtd:        mtd info structure
1052  * @chip:       nand chip info structure
1053  * @buf:        buffer to store read data
1054  * @page:       page number to read
1055  *
1056  * Not for syndrome calculating ecc controllers, which use a special oob layout
1057  */
1058 static int nand_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
1059                               uint8_t *buf, int page)
1060 {
1061         chip->read_buf(mtd, buf, mtd->writesize);
1062         chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1063         return 0;
1064 }
1065
1066 /**
1067  * nand_read_page_raw_syndrome - [Intern] read raw page data without ecc
1068  * @mtd:        mtd info structure
1069  * @chip:       nand chip info structure
1070  * @buf:        buffer to store read data
1071  * @page:       page number to read
1072  *
1073  * We need a special oob layout and handling even when OOB isn't used.
1074  */
1075 static int nand_read_page_raw_syndrome(struct mtd_info *mtd,
1076                                         struct nand_chip *chip,
1077                                         uint8_t *buf, int page)
1078 {
1079         int eccsize = chip->ecc.size;
1080         int eccbytes = chip->ecc.bytes;
1081         uint8_t *oob = chip->oob_poi;
1082         int steps, size;
1083
1084         for (steps = chip->ecc.steps; steps > 0; steps--) {
1085                 chip->read_buf(mtd, buf, eccsize);
1086                 buf += eccsize;
1087
1088                 if (chip->ecc.prepad) {
1089                         chip->read_buf(mtd, oob, chip->ecc.prepad);
1090                         oob += chip->ecc.prepad;
1091                 }
1092
1093                 chip->read_buf(mtd, oob, eccbytes);
1094                 oob += eccbytes;
1095
1096                 if (chip->ecc.postpad) {
1097                         chip->read_buf(mtd, oob, chip->ecc.postpad);
1098                         oob += chip->ecc.postpad;
1099                 }
1100         }
1101
1102         size = mtd->oobsize - (oob - chip->oob_poi);
1103         if (size)
1104                 chip->read_buf(mtd, oob, size);
1105
1106         return 0;
1107 }
1108
1109 /**
1110  * nand_read_page_swecc - [REPLACABLE] software ecc based page read function
1111  * @mtd:        mtd info structure
1112  * @chip:       nand chip info structure
1113  * @buf:        buffer to store read data
1114  * @page:       page number to read
1115  */
1116 static int nand_read_page_swecc(struct mtd_info *mtd, struct nand_chip *chip,
1117                                 uint8_t *buf, int page)
1118 {
1119         int i, eccsize = chip->ecc.size;
1120         int eccbytes = chip->ecc.bytes;
1121         int eccsteps = chip->ecc.steps;
1122         uint8_t *p = buf;
1123         uint8_t *ecc_calc = chip->buffers->ecccalc;
1124         uint8_t *ecc_code = chip->buffers->ecccode;
1125         uint32_t *eccpos = chip->ecc.layout->eccpos;
1126
1127         chip->ecc.read_page_raw(mtd, chip, buf, page);
1128
1129         for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
1130                 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
1131
1132         for (i = 0; i < chip->ecc.total; i++)
1133                 ecc_code[i] = chip->oob_poi[eccpos[i]];
1134
1135         eccsteps = chip->ecc.steps;
1136         p = buf;
1137
1138         for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1139                 int stat;
1140
1141                 stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
1142                 if (stat < 0)
1143                         mtd->ecc_stats.failed++;
1144                 else
1145                         mtd->ecc_stats.corrected += stat;
1146         }
1147         return 0;
1148 }
1149
1150 /**
1151  * nand_read_subpage - [REPLACABLE] software ecc based sub-page read function
1152  * @mtd:        mtd info structure
1153  * @chip:       nand chip info structure
1154  * @data_offs:  offset of requested data within the page
1155  * @readlen:    data length
1156  * @bufpoi:     buffer to store read data
1157  */
1158 static int nand_read_subpage(struct mtd_info *mtd, struct nand_chip *chip,
1159                         uint32_t data_offs, uint32_t readlen, uint8_t *bufpoi)
1160 {
1161         int start_step, end_step, num_steps;
1162         uint32_t *eccpos = chip->ecc.layout->eccpos;
1163         uint8_t *p;
1164         int data_col_addr, i, gaps = 0;
1165         int datafrag_len, eccfrag_len, aligned_len, aligned_pos;
1166         int busw = (chip->options & NAND_BUSWIDTH_16) ? 2 : 1;
1167         int index = 0;
1168
1169         /* Column address wihin the page aligned to ECC size (256bytes). */
1170         start_step = data_offs / chip->ecc.size;
1171         end_step = (data_offs + readlen - 1) / chip->ecc.size;
1172         num_steps = end_step - start_step + 1;
1173
1174         /* Data size aligned to ECC ecc.size*/
1175         datafrag_len = num_steps * chip->ecc.size;
1176         eccfrag_len = num_steps * chip->ecc.bytes;
1177
1178         data_col_addr = start_step * chip->ecc.size;
1179         /* If we read not a page aligned data */
1180         if (data_col_addr != 0)
1181                 chip->cmdfunc(mtd, NAND_CMD_RNDOUT, data_col_addr, -1);
1182
1183         p = bufpoi + data_col_addr;
1184         chip->read_buf(mtd, p, datafrag_len);
1185
1186         /* Calculate  ECC */
1187         for (i = 0; i < eccfrag_len ; i += chip->ecc.bytes, p += chip->ecc.size)
1188                 chip->ecc.calculate(mtd, p, &chip->buffers->ecccalc[i]);
1189
1190         /* The performance is faster if to position offsets
1191            according to ecc.pos. Let make sure here that
1192            there are no gaps in ecc positions */
1193         for (i = 0; i < eccfrag_len - 1; i++) {
1194                 if (eccpos[i + start_step * chip->ecc.bytes] + 1 !=
1195                         eccpos[i + start_step * chip->ecc.bytes + 1]) {
1196                         gaps = 1;
1197                         break;
1198                 }
1199         }
1200         if (gaps) {
1201                 chip->cmdfunc(mtd, NAND_CMD_RNDOUT, mtd->writesize, -1);
1202                 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1203         } else {
1204                 /* send the command to read the particular ecc bytes */
1205                 /* take care about buswidth alignment in read_buf */
1206                 index = start_step * chip->ecc.bytes;
1207
1208                 aligned_pos = eccpos[index] & ~(busw - 1);
1209                 aligned_len = eccfrag_len;
1210                 if (eccpos[index] & (busw - 1))
1211                         aligned_len++;
1212                 if (eccpos[index + (num_steps * chip->ecc.bytes)] & (busw - 1))
1213                         aligned_len++;
1214
1215                 chip->cmdfunc(mtd, NAND_CMD_RNDOUT,
1216                                         mtd->writesize + aligned_pos, -1);
1217                 chip->read_buf(mtd, &chip->oob_poi[aligned_pos], aligned_len);
1218         }
1219
1220         for (i = 0; i < eccfrag_len; i++)
1221                 chip->buffers->ecccode[i] = chip->oob_poi[eccpos[i + index]];
1222
1223         p = bufpoi + data_col_addr;
1224         for (i = 0; i < eccfrag_len ; i += chip->ecc.bytes, p += chip->ecc.size) {
1225                 int stat;
1226
1227                 stat = chip->ecc.correct(mtd, p,
1228                         &chip->buffers->ecccode[i], &chip->buffers->ecccalc[i]);
1229                 if (stat < 0)
1230                         mtd->ecc_stats.failed++;
1231                 else
1232                         mtd->ecc_stats.corrected += stat;
1233         }
1234         return 0;
1235 }
1236
1237 /**
1238  * nand_read_page_hwecc - [REPLACABLE] hardware ecc based page read function
1239  * @mtd:        mtd info structure
1240  * @chip:       nand chip info structure
1241  * @buf:        buffer to store read data
1242  * @page:       page number to read
1243  *
1244  * Not for syndrome calculating ecc controllers which need a special oob layout
1245  */
1246 static int nand_read_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip,
1247                                 uint8_t *buf, int page)
1248 {
1249         int i, eccsize = chip->ecc.size;
1250         int eccbytes = chip->ecc.bytes;
1251         int eccsteps = chip->ecc.steps;
1252         uint8_t *p = buf;
1253         uint8_t *ecc_calc = chip->buffers->ecccalc;
1254         uint8_t *ecc_code = chip->buffers->ecccode;
1255         uint32_t *eccpos = chip->ecc.layout->eccpos;
1256
1257         for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1258                 chip->ecc.hwctl(mtd, NAND_ECC_READ);
1259                 chip->read_buf(mtd, p, eccsize);
1260                 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
1261         }
1262         chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1263
1264         for (i = 0; i < chip->ecc.total; i++)
1265                 ecc_code[i] = chip->oob_poi[eccpos[i]];
1266
1267         eccsteps = chip->ecc.steps;
1268         p = buf;
1269
1270         for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1271                 int stat;
1272
1273                 stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
1274                 if (stat < 0)
1275                         mtd->ecc_stats.failed++;
1276                 else
1277                         mtd->ecc_stats.corrected += stat;
1278         }
1279         return 0;
1280 }
1281
1282 /**
1283  * nand_read_page_hwecc_oob_first - [REPLACABLE] hw ecc, read oob first
1284  * @mtd:        mtd info structure
1285  * @chip:       nand chip info structure
1286  * @buf:        buffer to store read data
1287  * @page:       page number to read
1288  *
1289  * Hardware ECC for large page chips, require OOB to be read first.
1290  * For this ECC mode, the write_page method is re-used from ECC_HW.
1291  * These methods read/write ECC from the OOB area, unlike the
1292  * ECC_HW_SYNDROME support with multiple ECC steps, follows the
1293  * "infix ECC" scheme and reads/writes ECC from the data area, by
1294  * overwriting the NAND manufacturer bad block markings.
1295  */
1296 static int nand_read_page_hwecc_oob_first(struct mtd_info *mtd,
1297         struct nand_chip *chip, uint8_t *buf, int page)
1298 {
1299         int i, eccsize = chip->ecc.size;
1300         int eccbytes = chip->ecc.bytes;
1301         int eccsteps = chip->ecc.steps;
1302         uint8_t *p = buf;
1303         uint8_t *ecc_code = chip->buffers->ecccode;
1304         uint32_t *eccpos = chip->ecc.layout->eccpos;
1305         uint8_t *ecc_calc = chip->buffers->ecccalc;
1306
1307         /* Read the OOB area first */
1308         chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page);
1309         chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1310         chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page);
1311
1312         for (i = 0; i < chip->ecc.total; i++)
1313                 ecc_code[i] = chip->oob_poi[eccpos[i]];
1314
1315         for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1316                 int stat;
1317
1318                 chip->ecc.hwctl(mtd, NAND_ECC_READ);
1319                 chip->read_buf(mtd, p, eccsize);
1320                 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
1321
1322                 stat = chip->ecc.correct(mtd, p, &ecc_code[i], NULL);
1323                 if (stat < 0)
1324                         mtd->ecc_stats.failed++;
1325                 else
1326                         mtd->ecc_stats.corrected += stat;
1327         }
1328         return 0;
1329 }
1330
1331 /**
1332  * nand_read_page_syndrome - [REPLACABLE] hardware ecc syndrom based page read
1333  * @mtd:        mtd info structure
1334  * @chip:       nand chip info structure
1335  * @buf:        buffer to store read data
1336  * @page:       page number to read
1337  *
1338  * The hw generator calculates the error syndrome automatically. Therefor
1339  * we need a special oob layout and handling.
1340  */
1341 static int nand_read_page_syndrome(struct mtd_info *mtd, struct nand_chip *chip,
1342                                    uint8_t *buf, int page)
1343 {
1344         int i, eccsize = chip->ecc.size;
1345         int eccbytes = chip->ecc.bytes;
1346         int eccsteps = chip->ecc.steps;
1347         uint8_t *p = buf;
1348         uint8_t *oob = chip->oob_poi;
1349
1350         for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1351                 int stat;
1352
1353                 chip->ecc.hwctl(mtd, NAND_ECC_READ);
1354                 chip->read_buf(mtd, p, eccsize);
1355
1356                 if (chip->ecc.prepad) {
1357                         chip->read_buf(mtd, oob, chip->ecc.prepad);
1358                         oob += chip->ecc.prepad;
1359                 }
1360
1361                 chip->ecc.hwctl(mtd, NAND_ECC_READSYN);
1362                 chip->read_buf(mtd, oob, eccbytes);
1363                 stat = chip->ecc.correct(mtd, p, oob, NULL);
1364
1365                 if (stat < 0)
1366                         mtd->ecc_stats.failed++;
1367                 else
1368                         mtd->ecc_stats.corrected += stat;
1369
1370                 oob += eccbytes;
1371
1372                 if (chip->ecc.postpad) {
1373                         chip->read_buf(mtd, oob, chip->ecc.postpad);
1374                         oob += chip->ecc.postpad;
1375                 }
1376         }
1377
1378         /* Calculate remaining oob bytes */
1379         i = mtd->oobsize - (oob - chip->oob_poi);
1380         if (i)
1381                 chip->read_buf(mtd, oob, i);
1382
1383         return 0;
1384 }
1385
1386 /**
1387  * nand_transfer_oob - [Internal] Transfer oob to client buffer
1388  * @chip:       nand chip structure
1389  * @oob:        oob destination address
1390  * @ops:        oob ops structure
1391  * @len:        size of oob to transfer
1392  */
1393 static uint8_t *nand_transfer_oob(struct nand_chip *chip, uint8_t *oob,
1394                                   struct mtd_oob_ops *ops, size_t len)
1395 {
1396         switch (ops->mode) {
1397
1398         case MTD_OOB_PLACE:
1399         case MTD_OOB_RAW:
1400                 memcpy(oob, chip->oob_poi + ops->ooboffs, len);
1401                 return oob + len;
1402
1403         case MTD_OOB_AUTO: {
1404                 struct nand_oobfree *free = chip->ecc.layout->oobfree;
1405                 uint32_t boffs = 0, roffs = ops->ooboffs;
1406                 size_t bytes = 0;
1407
1408                 for (; free->length && len; free++, len -= bytes) {
1409                         /* Read request not from offset 0 ? */
1410                         if (unlikely(roffs)) {
1411                                 if (roffs >= free->length) {
1412                                         roffs -= free->length;
1413                                         continue;
1414                                 }
1415                                 boffs = free->offset + roffs;
1416                                 bytes = min_t(size_t, len,
1417                                               (free->length - roffs));
1418                                 roffs = 0;
1419                         } else {
1420                                 bytes = min_t(size_t, len, free->length);
1421                                 boffs = free->offset;
1422                         }
1423                         memcpy(oob, chip->oob_poi + boffs, bytes);
1424                         oob += bytes;
1425                 }
1426                 return oob;
1427         }
1428         default:
1429                 BUG();
1430         }
1431         return NULL;
1432 }
1433
1434 /**
1435  * nand_do_read_ops - [Internal] Read data with ECC
1436  *
1437  * @mtd:        MTD device structure
1438  * @from:       offset to read from
1439  * @ops:        oob ops structure
1440  *
1441  * Internal function. Called with chip held.
1442  */
1443 static int nand_do_read_ops(struct mtd_info *mtd, loff_t from,
1444                             struct mtd_oob_ops *ops)
1445 {
1446         int chipnr, page, realpage, col, bytes, aligned;
1447         struct nand_chip *chip = mtd->priv;
1448         struct mtd_ecc_stats stats;
1449         int blkcheck = (1 << (chip->phys_erase_shift - chip->page_shift)) - 1;
1450         int sndcmd = 1;
1451         int ret = 0;
1452         uint32_t readlen = ops->len;
1453         uint32_t oobreadlen = ops->ooblen;
1454         uint32_t max_oobsize = ops->mode == MTD_OOB_AUTO ?
1455                 mtd->oobavail : mtd->oobsize;
1456
1457         uint8_t *bufpoi, *oob, *buf;
1458
1459         stats = mtd->ecc_stats;
1460
1461         chipnr = (int)(from >> chip->chip_shift);
1462         chip->select_chip(mtd, chipnr);
1463
1464         realpage = (int)(from >> chip->page_shift);
1465         page = realpage & chip->pagemask;
1466
1467         col = (int)(from & (mtd->writesize - 1));
1468
1469         buf = ops->datbuf;
1470         oob = ops->oobbuf;
1471
1472         while (1) {
1473                 bytes = min(mtd->writesize - col, readlen);
1474                 aligned = (bytes == mtd->writesize);
1475
1476                 /* Is the current page in the buffer ? */
1477                 if (realpage != chip->pagebuf || oob) {
1478                         bufpoi = aligned ? buf : chip->buffers->databuf;
1479
1480                         if (likely(sndcmd)) {
1481                                 chip->cmdfunc(mtd, NAND_CMD_READ0, 0x00, page);
1482                                 sndcmd = 0;
1483                         }
1484
1485                         /* Now read the page into the buffer */
1486                         if (unlikely(ops->mode == MTD_OOB_RAW))
1487                                 ret = chip->ecc.read_page_raw(mtd, chip,
1488                                                               bufpoi, page);
1489                         else if (!aligned && NAND_SUBPAGE_READ(chip) && !oob)
1490                                 ret = chip->ecc.read_subpage(mtd, chip,
1491                                                         col, bytes, bufpoi);
1492                         else
1493                                 ret = chip->ecc.read_page(mtd, chip, bufpoi,
1494                                                           page);
1495                         if (ret < 0)
1496                                 break;
1497
1498                         /* Transfer not aligned data */
1499                         if (!aligned) {
1500                                 if (!NAND_SUBPAGE_READ(chip) && !oob &&
1501                                     !(mtd->ecc_stats.failed - stats.failed))
1502                                         chip->pagebuf = realpage;
1503                                 memcpy(buf, chip->buffers->databuf + col, bytes);
1504                         }
1505
1506                         buf += bytes;
1507
1508                         if (unlikely(oob)) {
1509
1510                                 int toread = min(oobreadlen, max_oobsize);
1511
1512                                 if (toread) {
1513                                         oob = nand_transfer_oob(chip,
1514                                                 oob, ops, toread);
1515                                         oobreadlen -= toread;
1516                                 }
1517                         }
1518
1519                         if (!(chip->options & NAND_NO_READRDY)) {
1520                                 /*
1521                                  * Apply delay or wait for ready/busy pin. Do
1522                                  * this before the AUTOINCR check, so no
1523                                  * problems arise if a chip which does auto
1524                                  * increment is marked as NOAUTOINCR by the
1525                                  * board driver.
1526                                  */
1527                                 if (!chip->dev_ready)
1528                                         udelay(chip->chip_delay);
1529                                 else
1530                                         nand_wait_ready(mtd);
1531                         }
1532                 } else {
1533                         memcpy(buf, chip->buffers->databuf + col, bytes);
1534                         buf += bytes;
1535                 }
1536
1537                 readlen -= bytes;
1538
1539                 if (!readlen)
1540                         break;
1541
1542                 /* For subsequent reads align to page boundary. */
1543                 col = 0;
1544                 /* Increment page address */
1545                 realpage++;
1546
1547                 page = realpage & chip->pagemask;
1548                 /* Check, if we cross a chip boundary */
1549                 if (!page) {
1550                         chipnr++;
1551                         chip->select_chip(mtd, -1);
1552                         chip->select_chip(mtd, chipnr);
1553                 }
1554
1555                 /* Check, if the chip supports auto page increment
1556                  * or if we have hit a block boundary.
1557                  */
1558                 if (!NAND_CANAUTOINCR(chip) || !(page & blkcheck))
1559                         sndcmd = 1;
1560         }
1561
1562         ops->retlen = ops->len - (size_t) readlen;
1563         if (oob)
1564                 ops->oobretlen = ops->ooblen - oobreadlen;
1565
1566         if (ret)
1567                 return ret;
1568
1569         if (mtd->ecc_stats.failed - stats.failed)
1570                 return -EBADMSG;
1571
1572         return  mtd->ecc_stats.corrected - stats.corrected ? -EUCLEAN : 0;
1573 }
1574
1575 /**
1576  * nand_read - [MTD Interface] MTD compatibility function for nand_do_read_ecc
1577  * @mtd:        MTD device structure
1578  * @from:       offset to read from
1579  * @len:        number of bytes to read
1580  * @retlen:     pointer to variable to store the number of read bytes
1581  * @buf:        the databuffer to put data
1582  *
1583  * Get hold of the chip and call nand_do_read
1584  */
1585 static int nand_read(struct mtd_info *mtd, loff_t from, size_t len,
1586                      size_t *retlen, uint8_t *buf)
1587 {
1588         struct nand_chip *chip = mtd->priv;
1589         int ret;
1590
1591         /* Do not allow reads past end of device */
1592         if ((from + len) > mtd->size)
1593                 return -EINVAL;
1594         if (!len)
1595                 return 0;
1596
1597         nand_get_device(chip, mtd, FL_READING);
1598
1599         chip->ops.len = len;
1600         chip->ops.datbuf = buf;
1601         chip->ops.oobbuf = NULL;
1602
1603         ret = nand_do_read_ops(mtd, from, &chip->ops);
1604
1605         *retlen = chip->ops.retlen;
1606
1607         nand_release_device(mtd);
1608
1609         return ret;
1610 }
1611
1612 /**
1613  * nand_read_oob_std - [REPLACABLE] the most common OOB data read function
1614  * @mtd:        mtd info structure
1615  * @chip:       nand chip info structure
1616  * @page:       page number to read
1617  * @sndcmd:     flag whether to issue read command or not
1618  */
1619 static int nand_read_oob_std(struct mtd_info *mtd, struct nand_chip *chip,
1620                              int page, int sndcmd)
1621 {
1622         if (sndcmd) {
1623                 chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page);
1624                 sndcmd = 0;
1625         }
1626         chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1627         return sndcmd;
1628 }
1629
1630 /**
1631  * nand_read_oob_syndrome - [REPLACABLE] OOB data read function for HW ECC
1632  *                          with syndromes
1633  * @mtd:        mtd info structure
1634  * @chip:       nand chip info structure
1635  * @page:       page number to read
1636  * @sndcmd:     flag whether to issue read command or not
1637  */
1638 static int nand_read_oob_syndrome(struct mtd_info *mtd, struct nand_chip *chip,
1639                                   int page, int sndcmd)
1640 {
1641         uint8_t *buf = chip->oob_poi;
1642         int length = mtd->oobsize;
1643         int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad;
1644         int eccsize = chip->ecc.size;
1645         uint8_t *bufpoi = buf;
1646         int i, toread, sndrnd = 0, pos;
1647
1648         chip->cmdfunc(mtd, NAND_CMD_READ0, chip->ecc.size, page);
1649         for (i = 0; i < chip->ecc.steps; i++) {
1650                 if (sndrnd) {
1651                         pos = eccsize + i * (eccsize + chunk);
1652                         if (mtd->writesize > 512)
1653                                 chip->cmdfunc(mtd, NAND_CMD_RNDOUT, pos, -1);
1654                         else
1655                                 chip->cmdfunc(mtd, NAND_CMD_READ0, pos, page);
1656                 } else
1657                         sndrnd = 1;
1658                 toread = min_t(int, length, chunk);
1659                 chip->read_buf(mtd, bufpoi, toread);
1660                 bufpoi += toread;
1661                 length -= toread;
1662         }
1663         if (length > 0)
1664                 chip->read_buf(mtd, bufpoi, length);
1665
1666         return 1;
1667 }
1668
1669 /**
1670  * nand_write_oob_std - [REPLACABLE] the most common OOB data write function
1671  * @mtd:        mtd info structure
1672  * @chip:       nand chip info structure
1673  * @page:       page number to write
1674  */
1675 static int nand_write_oob_std(struct mtd_info *mtd, struct nand_chip *chip,
1676                               int page)
1677 {
1678         int status = 0;
1679         const uint8_t *buf = chip->oob_poi;
1680         int length = mtd->oobsize;
1681
1682         chip->cmdfunc(mtd, NAND_CMD_SEQIN, mtd->writesize, page);
1683         chip->write_buf(mtd, buf, length);
1684         /* Send command to program the OOB data */
1685         chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
1686
1687         status = chip->waitfunc(mtd, chip);
1688
1689         return status & NAND_STATUS_FAIL ? -EIO : 0;
1690 }
1691
1692 /**
1693  * nand_write_oob_syndrome - [REPLACABLE] OOB data write function for HW ECC
1694  *                           with syndrome - only for large page flash !
1695  * @mtd:        mtd info structure
1696  * @chip:       nand chip info structure
1697  * @page:       page number to write
1698  */
1699 static int nand_write_oob_syndrome(struct mtd_info *mtd,
1700                                    struct nand_chip *chip, int page)
1701 {
1702         int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad;
1703         int eccsize = chip->ecc.size, length = mtd->oobsize;
1704         int i, len, pos, status = 0, sndcmd = 0, steps = chip->ecc.steps;
1705         const uint8_t *bufpoi = chip->oob_poi;
1706
1707         /*
1708          * data-ecc-data-ecc ... ecc-oob
1709          * or
1710          * data-pad-ecc-pad-data-pad .... ecc-pad-oob
1711          */
1712         if (!chip->ecc.prepad && !chip->ecc.postpad) {
1713                 pos = steps * (eccsize + chunk);
1714                 steps = 0;
1715         } else
1716                 pos = eccsize;
1717
1718         chip->cmdfunc(mtd, NAND_CMD_SEQIN, pos, page);
1719         for (i = 0; i < steps; i++) {
1720                 if (sndcmd) {
1721                         if (mtd->writesize <= 512) {
1722                                 uint32_t fill = 0xFFFFFFFF;
1723
1724                                 len = eccsize;
1725                                 while (len > 0) {
1726                                         int num = min_t(int, len, 4);
1727                                         chip->write_buf(mtd, (uint8_t *)&fill,
1728                                                         num);
1729                                         len -= num;
1730                                 }
1731                         } else {
1732                                 pos = eccsize + i * (eccsize + chunk);
1733                                 chip->cmdfunc(mtd, NAND_CMD_RNDIN, pos, -1);
1734                         }
1735                 } else
1736                         sndcmd = 1;
1737                 len = min_t(int, length, chunk);
1738                 chip->write_buf(mtd, bufpoi, len);
1739                 bufpoi += len;
1740                 length -= len;
1741         }
1742         if (length > 0)
1743                 chip->write_buf(mtd, bufpoi, length);
1744
1745         chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
1746         status = chip->waitfunc(mtd, chip);
1747
1748         return status & NAND_STATUS_FAIL ? -EIO : 0;
1749 }
1750
1751 /**
1752  * nand_do_read_oob - [Intern] NAND read out-of-band
1753  * @mtd:        MTD device structure
1754  * @from:       offset to read from
1755  * @ops:        oob operations description structure
1756  *
1757  * NAND read out-of-band data from the spare area
1758  */
1759 static int nand_do_read_oob(struct mtd_info *mtd, loff_t from,
1760                             struct mtd_oob_ops *ops)
1761 {
1762         int page, realpage, chipnr, sndcmd = 1;
1763         struct nand_chip *chip = mtd->priv;
1764         int blkcheck = (1 << (chip->phys_erase_shift - chip->page_shift)) - 1;
1765         int readlen = ops->ooblen;
1766         int len;
1767         uint8_t *buf = ops->oobbuf;
1768
1769         DEBUG(MTD_DEBUG_LEVEL3, "%s: from = 0x%08Lx, len = %i\n",
1770                         __func__, (unsigned long long)from, readlen);
1771
1772         if (ops->mode == MTD_OOB_AUTO)
1773                 len = chip->ecc.layout->oobavail;
1774         else
1775                 len = mtd->oobsize;
1776
1777         if (unlikely(ops->ooboffs >= len)) {
1778                 DEBUG(MTD_DEBUG_LEVEL0, "%s: Attempt to start read "
1779                                         "outside oob\n", __func__);
1780                 return -EINVAL;
1781         }
1782
1783         /* Do not allow reads past end of device */
1784         if (unlikely(from >= mtd->size ||
1785                      ops->ooboffs + readlen > ((mtd->size >> chip->page_shift) -
1786                                         (from >> chip->page_shift)) * len)) {
1787                 DEBUG(MTD_DEBUG_LEVEL0, "%s: Attempt read beyond end "
1788                                         "of device\n", __func__);
1789                 return -EINVAL;
1790         }
1791
1792         chipnr = (int)(from >> chip->chip_shift);
1793         chip->select_chip(mtd, chipnr);
1794
1795         /* Shift to get page */
1796         realpage = (int)(from >> chip->page_shift);
1797         page = realpage & chip->pagemask;
1798
1799         while (1) {
1800                 sndcmd = chip->ecc.read_oob(mtd, chip, page, sndcmd);
1801
1802                 len = min(len, readlen);
1803                 buf = nand_transfer_oob(chip, buf, ops, len);
1804
1805                 if (!(chip->options & NAND_NO_READRDY)) {
1806                         /*
1807                          * Apply delay or wait for ready/busy pin. Do this
1808                          * before the AUTOINCR check, so no problems arise if a
1809                          * chip which does auto increment is marked as
1810                          * NOAUTOINCR by the board driver.
1811                          */
1812                         if (!chip->dev_ready)
1813                                 udelay(chip->chip_delay);
1814                         else
1815                                 nand_wait_ready(mtd);
1816                 }
1817
1818                 readlen -= len;
1819                 if (!readlen)
1820                         break;
1821
1822                 /* Increment page address */
1823                 realpage++;
1824
1825                 page = realpage & chip->pagemask;
1826                 /* Check, if we cross a chip boundary */
1827                 if (!page) {
1828                         chipnr++;
1829                         chip->select_chip(mtd, -1);
1830                         chip->select_chip(mtd, chipnr);
1831                 }
1832
1833                 /* Check, if the chip supports auto page increment
1834                  * or if we have hit a block boundary.
1835                  */
1836                 if (!NAND_CANAUTOINCR(chip) || !(page & blkcheck))
1837                         sndcmd = 1;
1838         }
1839
1840         ops->oobretlen = ops->ooblen;
1841         return 0;
1842 }
1843
1844 /**
1845  * nand_read_oob - [MTD Interface] NAND read data and/or out-of-band
1846  * @mtd:        MTD device structure
1847  * @from:       offset to read from
1848  * @ops:        oob operation description structure
1849  *
1850  * NAND read data and/or out-of-band data
1851  */
1852 static int nand_read_oob(struct mtd_info *mtd, loff_t from,
1853                          struct mtd_oob_ops *ops)
1854 {
1855         struct nand_chip *chip = mtd->priv;
1856         int ret = -ENOTSUPP;
1857
1858         ops->retlen = 0;
1859
1860         /* Do not allow reads past end of device */
1861         if (ops->datbuf && (from + ops->len) > mtd->size) {
1862                 DEBUG(MTD_DEBUG_LEVEL0, "%s: Attempt read "
1863                                 "beyond end of device\n", __func__);
1864                 return -EINVAL;
1865         }
1866
1867         nand_get_device(chip, mtd, FL_READING);
1868
1869         switch (ops->mode) {
1870         case MTD_OOB_PLACE:
1871         case MTD_OOB_AUTO:
1872         case MTD_OOB_RAW:
1873                 break;
1874
1875         default:
1876                 goto out;
1877         }
1878
1879         if (!ops->datbuf)
1880                 ret = nand_do_read_oob(mtd, from, ops);
1881         else
1882                 ret = nand_do_read_ops(mtd, from, ops);
1883
1884 out:
1885         nand_release_device(mtd);
1886         return ret;
1887 }
1888
1889
1890 /**
1891  * nand_write_page_raw - [Intern] raw page write function
1892  * @mtd:        mtd info structure
1893  * @chip:       nand chip info structure
1894  * @buf:        data buffer
1895  *
1896  * Not for syndrome calculating ecc controllers, which use a special oob layout
1897  */
1898 static void nand_write_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
1899                                 const uint8_t *buf)
1900 {
1901         chip->write_buf(mtd, buf, mtd->writesize);
1902         chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
1903 }
1904
1905 /**
1906  * nand_write_page_raw_syndrome - [Intern] raw page write function
1907  * @mtd:        mtd info structure
1908  * @chip:       nand chip info structure
1909  * @buf:        data buffer
1910  *
1911  * We need a special oob layout and handling even when ECC isn't checked.
1912  */
1913 static void nand_write_page_raw_syndrome(struct mtd_info *mtd,
1914                                         struct nand_chip *chip,
1915                                         const uint8_t *buf)
1916 {
1917         int eccsize = chip->ecc.size;
1918         int eccbytes = chip->ecc.bytes;
1919         uint8_t *oob = chip->oob_poi;
1920         int steps, size;
1921
1922         for (steps = chip->ecc.steps; steps > 0; steps--) {
1923                 chip->write_buf(mtd, buf, eccsize);
1924                 buf += eccsize;
1925
1926                 if (chip->ecc.prepad) {
1927                         chip->write_buf(mtd, oob, chip->ecc.prepad);
1928                         oob += chip->ecc.prepad;
1929                 }
1930
1931                 chip->read_buf(mtd, oob, eccbytes);
1932                 oob += eccbytes;
1933
1934                 if (chip->ecc.postpad) {
1935                         chip->write_buf(mtd, oob, chip->ecc.postpad);
1936                         oob += chip->ecc.postpad;
1937                 }
1938         }
1939
1940         size = mtd->oobsize - (oob - chip->oob_poi);
1941         if (size)
1942                 chip->write_buf(mtd, oob, size);
1943 }
1944 /**
1945  * nand_write_page_swecc - [REPLACABLE] software ecc based page write function
1946  * @mtd:        mtd info structure
1947  * @chip:       nand chip info structure
1948  * @buf:        data buffer
1949  */
1950 static void nand_write_page_swecc(struct mtd_info *mtd, struct nand_chip *chip,
1951                                   const uint8_t *buf)
1952 {
1953         int i, eccsize = chip->ecc.size;
1954         int eccbytes = chip->ecc.bytes;
1955         int eccsteps = chip->ecc.steps;
1956         uint8_t *ecc_calc = chip->buffers->ecccalc;
1957         const uint8_t *p = buf;
1958         uint32_t *eccpos = chip->ecc.layout->eccpos;
1959
1960         /* Software ecc calculation */
1961         for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
1962                 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
1963
1964         for (i = 0; i < chip->ecc.total; i++)
1965                 chip->oob_poi[eccpos[i]] = ecc_calc[i];
1966
1967         chip->ecc.write_page_raw(mtd, chip, buf);
1968 }
1969
1970 /**
1971  * nand_write_page_hwecc - [REPLACABLE] hardware ecc based page write function
1972  * @mtd:        mtd info structure
1973  * @chip:       nand chip info structure
1974  * @buf:        data buffer
1975  */
1976 static void nand_write_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip,
1977                                   const uint8_t *buf)
1978 {
1979         int i, eccsize = chip->ecc.size;
1980         int eccbytes = chip->ecc.bytes;
1981         int eccsteps = chip->ecc.steps;
1982         uint8_t *ecc_calc = chip->buffers->ecccalc;
1983         const uint8_t *p = buf;
1984         uint32_t *eccpos = chip->ecc.layout->eccpos;
1985
1986         for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1987                 chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
1988                 chip->write_buf(mtd, p, eccsize);
1989                 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
1990         }
1991
1992         for (i = 0; i < chip->ecc.total; i++)
1993                 chip->oob_poi[eccpos[i]] = ecc_calc[i];
1994
1995         chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
1996 }
1997
1998 /**
1999  * nand_write_page_syndrome - [REPLACABLE] hardware ecc syndrom based page write
2000  * @mtd:        mtd info structure
2001  * @chip:       nand chip info structure
2002  * @buf:        data buffer
2003  *
2004  * The hw generator calculates the error syndrome automatically. Therefor
2005  * we need a special oob layout and handling.
2006  */
2007 static void nand_write_page_syndrome(struct mtd_info *mtd,
2008                                     struct nand_chip *chip, const uint8_t *buf)
2009 {
2010         int i, eccsize = chip->ecc.size;
2011         int eccbytes = chip->ecc.bytes;
2012         int eccsteps = chip->ecc.steps;
2013         const uint8_t *p = buf;
2014         uint8_t *oob = chip->oob_poi;
2015
2016         for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
2017
2018                 chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
2019                 chip->write_buf(mtd, p, eccsize);
2020
2021                 if (chip->ecc.prepad) {
2022                         chip->write_buf(mtd, oob, chip->ecc.prepad);
2023                         oob += chip->ecc.prepad;
2024                 }
2025
2026                 chip->ecc.calculate(mtd, p, oob);
2027                 chip->write_buf(mtd, oob, eccbytes);
2028                 oob += eccbytes;
2029
2030                 if (chip->ecc.postpad) {
2031                         chip->write_buf(mtd, oob, chip->ecc.postpad);
2032                         oob += chip->ecc.postpad;
2033                 }
2034         }
2035
2036         /* Calculate remaining oob bytes */
2037         i = mtd->oobsize - (oob - chip->oob_poi);
2038         if (i)
2039                 chip->write_buf(mtd, oob, i);
2040 }
2041
2042 /**
2043  * nand_write_page - [REPLACEABLE] write one page
2044  * @mtd:        MTD device structure
2045  * @chip:       NAND chip descriptor
2046  * @buf:        the data to write
2047  * @page:       page number to write
2048  * @cached:     cached programming
2049  * @raw:        use _raw version of write_page
2050  */
2051 static int nand_write_page(struct mtd_info *mtd, struct nand_chip *chip,
2052                            const uint8_t *buf, int page, int cached, int raw)
2053 {
2054         int status;
2055
2056         chip->cmdfunc(mtd, NAND_CMD_SEQIN, 0x00, page);
2057
2058         if (unlikely(raw))
2059                 chip->ecc.write_page_raw(mtd, chip, buf);
2060         else
2061                 chip->ecc.write_page(mtd, chip, buf);
2062
2063         /*
2064          * Cached progamming disabled for now, Not sure if its worth the
2065          * trouble. The speed gain is not very impressive. (2.3->2.6Mib/s)
2066          */
2067         cached = 0;
2068
2069         if (!cached || !(chip->options & NAND_CACHEPRG)) {
2070
2071                 chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
2072                 status = chip->waitfunc(mtd, chip);
2073                 /*
2074                  * See if operation failed and additional status checks are
2075                  * available
2076                  */
2077                 if ((status & NAND_STATUS_FAIL) && (chip->errstat))
2078                         status = chip->errstat(mtd, chip, FL_WRITING, status,
2079                                                page);
2080
2081                 if (status & NAND_STATUS_FAIL)
2082                         return -EIO;
2083         } else {
2084                 chip->cmdfunc(mtd, NAND_CMD_CACHEDPROG, -1, -1);
2085                 status = chip->waitfunc(mtd, chip);
2086         }
2087
2088 #ifdef CONFIG_MTD_NAND_VERIFY_WRITE
2089         /* Send command to read back the data */
2090         chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page);
2091
2092         if (chip->verify_buf(mtd, buf, mtd->writesize))
2093                 return -EIO;
2094 #endif
2095         return 0;
2096 }
2097
2098 /**
2099  * nand_fill_oob - [Internal] Transfer client buffer to oob
2100  * @mtd:        MTD device structure
2101  * @oob:        oob data buffer
2102  * @len:        oob data write length
2103  * @ops:        oob ops structure
2104  */
2105 static uint8_t *nand_fill_oob(struct mtd_info *mtd, uint8_t *oob, size_t len,
2106                               struct mtd_oob_ops *ops)
2107 {
2108         struct nand_chip *chip = mtd->priv;
2109
2110         /*
2111          * Initialise to all 0xFF, to avoid the possibility of left over OOB
2112          * data from a previous OOB read.
2113          */
2114         memset(chip->oob_poi, 0xff, mtd->oobsize);
2115
2116         switch (ops->mode) {
2117
2118         case MTD_OOB_PLACE:
2119         case MTD_OOB_RAW:
2120                 memcpy(chip->oob_poi + ops->ooboffs, oob, len);
2121                 return oob + len;
2122
2123         case MTD_OOB_AUTO: {
2124                 struct nand_oobfree *free = chip->ecc.layout->oobfree;
2125                 uint32_t boffs = 0, woffs = ops->ooboffs;
2126                 size_t bytes = 0;
2127
2128                 for (; free->length && len; free++, len -= bytes) {
2129                         /* Write request not from offset 0 ? */
2130                         if (unlikely(woffs)) {
2131                                 if (woffs >= free->length) {
2132                                         woffs -= free->length;
2133                                         continue;
2134                                 }
2135                                 boffs = free->offset + woffs;
2136                                 bytes = min_t(size_t, len,
2137                                               (free->length - woffs));
2138                                 woffs = 0;
2139                         } else {
2140                                 bytes = min_t(size_t, len, free->length);
2141                                 boffs = free->offset;
2142                         }
2143                         memcpy(chip->oob_poi + boffs, oob, bytes);
2144                         oob += bytes;
2145                 }
2146                 return oob;
2147         }
2148         default:
2149                 BUG();
2150         }
2151         return NULL;
2152 }
2153
2154 #define NOTALIGNED(x)   ((x & (chip->subpagesize - 1)) != 0)
2155
2156 /**
2157  * nand_do_write_ops - [Internal] NAND write with ECC
2158  * @mtd:        MTD device structure
2159  * @to:         offset to write to
2160  * @ops:        oob operations description structure
2161  *
2162  * NAND write with ECC
2163  */
2164 static int nand_do_write_ops(struct mtd_info *mtd, loff_t to,
2165                              struct mtd_oob_ops *ops)
2166 {
2167         int chipnr, realpage, page, blockmask, column;
2168         struct nand_chip *chip = mtd->priv;
2169         uint32_t writelen = ops->len;
2170
2171         uint32_t oobwritelen = ops->ooblen;
2172         uint32_t oobmaxlen = ops->mode == MTD_OOB_AUTO ?
2173                                 mtd->oobavail : mtd->oobsize;
2174
2175         uint8_t *oob = ops->oobbuf;
2176         uint8_t *buf = ops->datbuf;
2177         int ret, subpage;
2178
2179         ops->retlen = 0;
2180         if (!writelen)
2181                 return 0;
2182
2183         /* reject writes, which are not page aligned */
2184         if (NOTALIGNED(to) || NOTALIGNED(ops->len)) {
2185                 printk(KERN_NOTICE "%s: Attempt to write not "
2186                                 "page aligned data\n", __func__);
2187                 return -EINVAL;
2188         }
2189
2190         column = to & (mtd->writesize - 1);
2191         subpage = column || (writelen & (mtd->writesize - 1));
2192
2193         if (subpage && oob)
2194                 return -EINVAL;
2195
2196         chipnr = (int)(to >> chip->chip_shift);
2197         chip->select_chip(mtd, chipnr);
2198
2199         /* Check, if it is write protected */
2200         if (nand_check_wp(mtd))
2201                 return -EIO;
2202
2203         realpage = (int)(to >> chip->page_shift);
2204         page = realpage & chip->pagemask;
2205         blockmask = (1 << (chip->phys_erase_shift - chip->page_shift)) - 1;
2206
2207         /* Invalidate the page cache, when we write to the cached page */
2208         if (to <= (chip->pagebuf << chip->page_shift) &&
2209             (chip->pagebuf << chip->page_shift) < (to + ops->len))
2210                 chip->pagebuf = -1;
2211
2212         /* Don't allow multipage oob writes with offset */
2213         if (oob && ops->ooboffs && (ops->ooboffs + ops->ooblen > oobmaxlen))
2214                 return -EINVAL;
2215
2216         while (1) {
2217                 int bytes = mtd->writesize;
2218                 int cached = writelen > bytes && page != blockmask;
2219                 uint8_t *wbuf = buf;
2220
2221                 /* Partial page write ? */
2222                 if (unlikely(column || writelen < (mtd->writesize - 1))) {
2223                         cached = 0;
2224                         bytes = min_t(int, bytes - column, (int) writelen);
2225                         chip->pagebuf = -1;
2226                         memset(chip->buffers->databuf, 0xff, mtd->writesize);
2227                         memcpy(&chip->buffers->databuf[column], buf, bytes);
2228                         wbuf = chip->buffers->databuf;
2229                 }
2230
2231                 if (unlikely(oob)) {
2232                         size_t len = min(oobwritelen, oobmaxlen);
2233                         oob = nand_fill_oob(mtd, oob, len, ops);
2234                         oobwritelen -= len;
2235                 } else {
2236                         /* We still need to erase leftover OOB data */
2237                         memset(chip->oob_poi, 0xff, mtd->oobsize);
2238                 }
2239
2240                 ret = chip->write_page(mtd, chip, wbuf, page, cached,
2241                                        (ops->mode == MTD_OOB_RAW));
2242                 if (ret)
2243                         break;
2244
2245                 writelen -= bytes;
2246                 if (!writelen)
2247                         break;
2248
2249                 column = 0;
2250                 buf += bytes;
2251                 realpage++;
2252
2253                 page = realpage & chip->pagemask;
2254                 /* Check, if we cross a chip boundary */
2255                 if (!page) {
2256                         chipnr++;
2257                         chip->select_chip(mtd, -1);
2258                         chip->select_chip(mtd, chipnr);
2259                 }
2260         }
2261
2262         ops->retlen = ops->len - writelen;
2263         if (unlikely(oob))
2264                 ops->oobretlen = ops->ooblen;
2265         return ret;
2266 }
2267
2268 /**
2269  * panic_nand_write - [MTD Interface] NAND write with ECC
2270  * @mtd:        MTD device structure
2271  * @to:         offset to write to
2272  * @len:        number of bytes to write
2273  * @retlen:     pointer to variable to store the number of written bytes
2274  * @buf:        the data to write
2275  *
2276  * NAND write with ECC. Used when performing writes in interrupt context, this
2277  * may for example be called by mtdoops when writing an oops while in panic.
2278  */
2279 static int panic_nand_write(struct mtd_info *mtd, loff_t to, size_t len,
2280                             size_t *retlen, const uint8_t *buf)
2281 {
2282         struct nand_chip *chip = mtd->priv;
2283         int ret;
2284
2285         /* Do not allow reads past end of device */
2286         if ((to + len) > mtd->size)
2287                 return -EINVAL;
2288         if (!len)
2289                 return 0;
2290
2291         /* Wait for the device to get ready.  */
2292         panic_nand_wait(mtd, chip, 400);
2293
2294         /* Grab the device.  */
2295         panic_nand_get_device(chip, mtd, FL_WRITING);
2296
2297         chip->ops.len = len;
2298         chip->ops.datbuf = (uint8_t *)buf;
2299         chip->ops.oobbuf = NULL;
2300
2301         ret = nand_do_write_ops(mtd, to, &chip->ops);
2302
2303         *retlen = chip->ops.retlen;
2304         return ret;
2305 }
2306
2307 /**
2308  * nand_write - [MTD Interface] NAND write with ECC
2309  * @mtd:        MTD device structure
2310  * @to:         offset to write to
2311  * @len:        number of bytes to write
2312  * @retlen:     pointer to variable to store the number of written bytes
2313  * @buf:        the data to write
2314  *
2315  * NAND write with ECC
2316  */
2317 static int nand_write(struct mtd_info *mtd, loff_t to, size_t len,
2318                           size_t *retlen, const uint8_t *buf)
2319 {
2320         struct nand_chip *chip = mtd->priv;
2321         int ret;
2322
2323         /* Do not allow reads past end of device */
2324         if ((to + len) > mtd->size)
2325                 return -EINVAL;
2326         if (!len)
2327                 return 0;
2328
2329         nand_get_device(chip, mtd, FL_WRITING);
2330
2331         chip->ops.len = len;
2332         chip->ops.datbuf = (uint8_t *)buf;
2333         chip->ops.oobbuf = NULL;
2334
2335         ret = nand_do_write_ops(mtd, to, &chip->ops);
2336
2337         *retlen = chip->ops.retlen;
2338
2339         nand_release_device(mtd);
2340
2341         return ret;
2342 }
2343
2344 /**
2345  * nand_do_write_oob - [MTD Interface] NAND write out-of-band
2346  * @mtd:        MTD device structure
2347  * @to:         offset to write to
2348  * @ops:        oob operation description structure
2349  *
2350  * NAND write out-of-band
2351  */
2352 static int nand_do_write_oob(struct mtd_info *mtd, loff_t to,
2353                              struct mtd_oob_ops *ops)
2354 {
2355         int chipnr, page, status, len;
2356         struct nand_chip *chip = mtd->priv;
2357
2358         DEBUG(MTD_DEBUG_LEVEL3, "%s: to = 0x%08x, len = %i\n",
2359                          __func__, (unsigned int)to, (int)ops->ooblen);
2360
2361         if (ops->mode == MTD_OOB_AUTO)
2362                 len = chip->ecc.layout->oobavail;
2363         else
2364                 len = mtd->oobsize;
2365
2366         /* Do not allow write past end of page */
2367         if ((ops->ooboffs + ops->ooblen) > len) {
2368                 DEBUG(MTD_DEBUG_LEVEL0, "%s: Attempt to write "
2369                                 "past end of page\n", __func__);
2370                 return -EINVAL;
2371         }
2372
2373         if (unlikely(ops->ooboffs >= len)) {
2374                 DEBUG(MTD_DEBUG_LEVEL0, "%s: Attempt to start "
2375                                 "write outside oob\n", __func__);
2376                 return -EINVAL;
2377         }
2378
2379         /* Do not allow write past end of device */
2380         if (unlikely(to >= mtd->size ||
2381                      ops->ooboffs + ops->ooblen >
2382                         ((mtd->size >> chip->page_shift) -
2383                          (to >> chip->page_shift)) * len)) {
2384                 DEBUG(MTD_DEBUG_LEVEL0, "%s: Attempt write beyond "
2385                                 "end of device\n", __func__);
2386                 return -EINVAL;
2387         }
2388
2389         chipnr = (int)(to >> chip->chip_shift);
2390         chip->select_chip(mtd, chipnr);
2391
2392         /* Shift to get page */
2393         page = (int)(to >> chip->page_shift);
2394
2395         /*
2396          * Reset the chip. Some chips (like the Toshiba TC5832DC found in one
2397          * of my DiskOnChip 2000 test units) will clear the whole data page too
2398          * if we don't do this. I have no clue why, but I seem to have 'fixed'
2399          * it in the doc2000 driver in August 1999.  dwmw2.
2400          */
2401         chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
2402
2403         /* Check, if it is write protected */
2404         if (nand_check_wp(mtd))
2405                 return -EROFS;
2406
2407         /* Invalidate the page cache, if we write to the cached page */
2408         if (page == chip->pagebuf)
2409                 chip->pagebuf = -1;
2410
2411         nand_fill_oob(mtd, ops->oobbuf, ops->ooblen, ops);
2412         status = chip->ecc.write_oob(mtd, chip, page & chip->pagemask);
2413
2414         if (status)
2415                 return status;
2416
2417         ops->oobretlen = ops->ooblen;
2418
2419         return 0;
2420 }
2421
2422 /**
2423  * nand_write_oob - [MTD Interface] NAND write data and/or out-of-band
2424  * @mtd:        MTD device structure
2425  * @to:         offset to write to
2426  * @ops:        oob operation description structure
2427  */
2428 static int nand_write_oob(struct mtd_info *mtd, loff_t to,
2429                           struct mtd_oob_ops *ops)
2430 {
2431         struct nand_chip *chip = mtd->priv;
2432         int ret = -ENOTSUPP;
2433
2434         ops->retlen = 0;
2435
2436         /* Do not allow writes past end of device */
2437         if (ops->datbuf && (to + ops->len) > mtd->size) {
2438                 DEBUG(MTD_DEBUG_LEVEL0, "%s: Attempt write beyond "
2439                                 "end of device\n", __func__);
2440                 return -EINVAL;
2441         }
2442
2443         nand_get_device(chip, mtd, FL_WRITING);
2444
2445         switch (ops->mode) {
2446         case MTD_OOB_PLACE:
2447         case MTD_OOB_AUTO:
2448         case MTD_OOB_RAW:
2449                 break;
2450
2451         default:
2452                 goto out;
2453         }
2454
2455         if (!ops->datbuf)
2456                 ret = nand_do_write_oob(mtd, to, ops);
2457         else
2458                 ret = nand_do_write_ops(mtd, to, ops);
2459
2460 out:
2461         nand_release_device(mtd);
2462         return ret;
2463 }
2464
2465 /**
2466  * single_erease_cmd - [GENERIC] NAND standard block erase command function
2467  * @mtd:        MTD device structure
2468  * @page:       the page address of the block which will be erased
2469  *
2470  * Standard erase command for NAND chips
2471  */
2472 static void single_erase_cmd(struct mtd_info *mtd, int page)
2473 {
2474         struct nand_chip *chip = mtd->priv;
2475         /* Send commands to erase a block */
2476         chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page);
2477         chip->cmdfunc(mtd, NAND_CMD_ERASE2, -1, -1);
2478 }
2479
2480 /**
2481  * multi_erease_cmd - [GENERIC] AND specific block erase command function
2482  * @mtd:        MTD device structure
2483  * @page:       the page address of the block which will be erased
2484  *
2485  * AND multi block erase command function
2486  * Erase 4 consecutive blocks
2487  */
2488 static void multi_erase_cmd(struct mtd_info *mtd, int page)
2489 {
2490         struct nand_chip *chip = mtd->priv;
2491         /* Send commands to erase a block */
2492         chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page++);
2493         chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page++);
2494         chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page++);
2495         chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page);
2496         chip->cmdfunc(mtd, NAND_CMD_ERASE2, -1, -1);
2497 }
2498
2499 /**
2500  * nand_erase - [MTD Interface] erase block(s)
2501  * @mtd:        MTD device structure
2502  * @instr:      erase instruction
2503  *
2504  * Erase one ore more blocks
2505  */
2506 static int nand_erase(struct mtd_info *mtd, struct erase_info *instr)
2507 {
2508         return nand_erase_nand(mtd, instr, 0);
2509 }
2510
2511 #define BBT_PAGE_MASK   0xffffff3f
2512 /**
2513  * nand_erase_nand - [Internal] erase block(s)
2514  * @mtd:        MTD device structure
2515  * @instr:      erase instruction
2516  * @allowbbt:   allow erasing the bbt area
2517  *
2518  * Erase one ore more blocks
2519  */
2520 int nand_erase_nand(struct mtd_info *mtd, struct erase_info *instr,
2521                     int allowbbt)
2522 {
2523         int page, status, pages_per_block, ret, chipnr;
2524         struct nand_chip *chip = mtd->priv;
2525         loff_t rewrite_bbt[NAND_MAX_CHIPS] = {0};
2526         unsigned int bbt_masked_page = 0xffffffff;
2527         loff_t len;
2528
2529         DEBUG(MTD_DEBUG_LEVEL3, "%s: start = 0x%012llx, len = %llu\n",
2530                                 __func__, (unsigned long long)instr->addr,
2531                                 (unsigned long long)instr->len);
2532
2533         if (check_offs_len(mtd, instr->addr, instr->len))
2534                 return -EINVAL;
2535
2536         instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN;
2537
2538         /* Grab the lock and see if the device is available */
2539         nand_get_device(chip, mtd, FL_ERASING);
2540
2541         /* Shift to get first page */
2542         page = (int)(instr->addr >> chip->page_shift);
2543         chipnr = (int)(instr->addr >> chip->chip_shift);
2544
2545         /* Calculate pages in each block */
2546         pages_per_block = 1 << (chip->phys_erase_shift - chip->page_shift);
2547
2548         /* Select the NAND device */
2549         chip->select_chip(mtd, chipnr);
2550
2551         /* Check, if it is write protected */
2552         if (nand_check_wp(mtd)) {
2553                 DEBUG(MTD_DEBUG_LEVEL0, "%s: Device is write protected!!!\n",
2554                                         __func__);
2555                 instr->state = MTD_ERASE_FAILED;
2556                 goto erase_exit;
2557         }
2558
2559         /*
2560          * If BBT requires refresh, set the BBT page mask to see if the BBT
2561          * should be rewritten. Otherwise the mask is set to 0xffffffff which
2562          * can not be matched. This is also done when the bbt is actually
2563          * erased to avoid recusrsive updates
2564          */
2565         if (chip->options & BBT_AUTO_REFRESH && !allowbbt)
2566                 bbt_masked_page = chip->bbt_td->pages[chipnr] & BBT_PAGE_MASK;
2567
2568         /* Loop through the pages */
2569         len = instr->len;
2570
2571         instr->state = MTD_ERASING;
2572
2573         while (len) {
2574                 /*
2575                  * heck if we have a bad block, we do not erase bad blocks !
2576                  */
2577                 if (nand_block_checkbad(mtd, ((loff_t) page) <<
2578                                         chip->page_shift, 0, allowbbt)) {
2579                         printk(KERN_WARNING "%s: attempt to erase a bad block "
2580                                         "at page 0x%08x\n", __func__, page);
2581                         instr->state = MTD_ERASE_FAILED;
2582                         goto erase_exit;
2583                 }
2584
2585                 /*
2586                  * Invalidate the page cache, if we erase the block which
2587                  * contains the current cached page
2588                  */
2589                 if (page <= chip->pagebuf && chip->pagebuf <
2590                     (page + pages_per_block))
2591                         chip->pagebuf = -1;
2592
2593                 chip->erase_cmd(mtd, page & chip->pagemask);
2594
2595                 status = chip->waitfunc(mtd, chip);
2596
2597                 /*
2598                  * See if operation failed and additional status checks are
2599                  * available
2600                  */
2601                 if ((status & NAND_STATUS_FAIL) && (chip->errstat))
2602                         status = chip->errstat(mtd, chip, FL_ERASING,
2603                                                status, page);
2604
2605                 /* See if block erase succeeded */
2606                 if (status & NAND_STATUS_FAIL) {
2607                         DEBUG(MTD_DEBUG_LEVEL0, "%s: Failed erase, "
2608                                         "page 0x%08x\n", __func__, page);
2609                         instr->state = MTD_ERASE_FAILED;
2610                         instr->fail_addr =
2611                                 ((loff_t)page << chip->page_shift);
2612                         goto erase_exit;
2613                 }
2614
2615                 /*
2616                  * If BBT requires refresh, set the BBT rewrite flag to the
2617                  * page being erased
2618                  */
2619                 if (bbt_masked_page != 0xffffffff &&
2620                     (page & BBT_PAGE_MASK) == bbt_masked_page)
2621                             rewrite_bbt[chipnr] =
2622                                         ((loff_t)page << chip->page_shift);
2623
2624                 /* Increment page address and decrement length */
2625                 len -= (1 << chip->phys_erase_shift);
2626                 page += pages_per_block;
2627
2628                 /* Check, if we cross a chip boundary */
2629                 if (len && !(page & chip->pagemask)) {
2630                         chipnr++;
2631                         chip->select_chip(mtd, -1);
2632                         chip->select_chip(mtd, chipnr);
2633
2634                         /*
2635                          * If BBT requires refresh and BBT-PERCHIP, set the BBT
2636                          * page mask to see if this BBT should be rewritten
2637                          */
2638                         if (bbt_masked_page != 0xffffffff &&
2639                             (chip->bbt_td->options & NAND_BBT_PERCHIP))
2640                                 bbt_masked_page = chip->bbt_td->pages[chipnr] &
2641                                         BBT_PAGE_MASK;
2642                 }
2643         }
2644         instr->state = MTD_ERASE_DONE;
2645
2646 erase_exit:
2647
2648         ret = instr->state == MTD_ERASE_DONE ? 0 : -EIO;
2649
2650         /* Deselect and wake up anyone waiting on the device */
2651         nand_release_device(mtd);
2652
2653         /* Do call back function */
2654         if (!ret)
2655                 mtd_erase_callback(instr);
2656
2657         /*
2658          * If BBT requires refresh and erase was successful, rewrite any
2659          * selected bad block tables
2660          */
2661         if (bbt_masked_page == 0xffffffff || ret)
2662                 return ret;
2663
2664         for (chipnr = 0; chipnr < chip->numchips; chipnr++) {
2665                 if (!rewrite_bbt[chipnr])
2666                         continue;
2667                 /* update the BBT for chip */
2668                 DEBUG(MTD_DEBUG_LEVEL0, "%s: nand_update_bbt "
2669                         "(%d:0x%0llx 0x%0x)\n", __func__, chipnr,
2670                         rewrite_bbt[chipnr], chip->bbt_td->pages[chipnr]);
2671                 nand_update_bbt(mtd, rewrite_bbt[chipnr]);
2672         }
2673
2674         /* Return more or less happy */
2675         return ret;
2676 }
2677
2678 /**
2679  * nand_sync - [MTD Interface] sync
2680  * @mtd:        MTD device structure
2681  *
2682  * Sync is actually a wait for chip ready function
2683  */
2684 static void nand_sync(struct mtd_info *mtd)
2685 {
2686         struct nand_chip *chip = mtd->priv;
2687
2688         DEBUG(MTD_DEBUG_LEVEL3, "%s: called\n", __func__);
2689
2690         /* Grab the lock and see if the device is available */
2691         nand_get_device(chip, mtd, FL_SYNCING);
2692         /* Release it and go back */
2693         nand_release_device(mtd);
2694 }
2695
2696 /**
2697  * nand_block_isbad - [MTD Interface] Check if block at offset is bad
2698  * @mtd:        MTD device structure
2699  * @offs:       offset relative to mtd start
2700  */
2701 static int nand_block_isbad(struct mtd_info *mtd, loff_t offs)
2702 {
2703         /* Check for invalid offset */
2704         if (offs > mtd->size)
2705                 return -EINVAL;
2706
2707         return nand_block_checkbad(mtd, offs, 1, 0);
2708 }
2709
2710 /**
2711  * nand_block_markbad - [MTD Interface] Mark block at the given offset as bad
2712  * @mtd:        MTD device structure
2713  * @ofs:        offset relative to mtd start
2714  */
2715 static int nand_block_markbad(struct mtd_info *mtd, loff_t ofs)
2716 {
2717         struct nand_chip *chip = mtd->priv;
2718         int ret;
2719
2720         ret = nand_block_isbad(mtd, ofs);
2721         if (ret) {
2722                 /* If it was bad already, return success and do nothing. */
2723                 if (ret > 0)
2724                         return 0;
2725                 return ret;
2726         }
2727
2728         return chip->block_markbad(mtd, ofs);
2729 }
2730
2731 /**
2732  * nand_suspend - [MTD Interface] Suspend the NAND flash
2733  * @mtd:        MTD device structure
2734  */
2735 static int nand_suspend(struct mtd_info *mtd)
2736 {
2737         struct nand_chip *chip = mtd->priv;
2738
2739         return nand_get_device(chip, mtd, FL_PM_SUSPENDED);
2740 }
2741
2742 /**
2743  * nand_resume - [MTD Interface] Resume the NAND flash
2744  * @mtd:        MTD device structure
2745  */
2746 static void nand_resume(struct mtd_info *mtd)
2747 {
2748         struct nand_chip *chip = mtd->priv;
2749
2750         if (chip->state == FL_PM_SUSPENDED)
2751                 nand_release_device(mtd);
2752         else
2753                 printk(KERN_ERR "%s called for a chip which is not "
2754                        "in suspended state\n", __func__);
2755 }
2756
2757 /*
2758  * Set default functions
2759  */
2760 static void nand_set_defaults(struct nand_chip *chip, int busw)
2761 {
2762         /* check for proper chip_delay setup, set 20us if not */
2763         if (!chip->chip_delay)
2764                 chip->chip_delay = 20;
2765
2766         /* check, if a user supplied command function given */
2767         if (chip->cmdfunc == NULL)
2768                 chip->cmdfunc = nand_command;
2769
2770         /* check, if a user supplied wait function given */
2771         if (chip->waitfunc == NULL)
2772                 chip->waitfunc = nand_wait;
2773
2774         if (!chip->select_chip)
2775                 chip->select_chip = nand_select_chip;
2776         if (!chip->read_byte)
2777                 chip->read_byte = busw ? nand_read_byte16 : nand_read_byte;
2778         if (!chip->read_word)
2779                 chip->read_word = nand_read_word;
2780         if (!chip->block_bad)
2781                 chip->block_bad = nand_block_bad;
2782         if (!chip->block_markbad)
2783                 chip->block_markbad = nand_default_block_markbad;
2784         if (!chip->write_buf)
2785                 chip->write_buf = busw ? nand_write_buf16 : nand_write_buf;
2786         if (!chip->read_buf)
2787                 chip->read_buf = busw ? nand_read_buf16 : nand_read_buf;
2788         if (!chip->verify_buf)
2789                 chip->verify_buf = busw ? nand_verify_buf16 : nand_verify_buf;
2790         if (!chip->scan_bbt)
2791                 chip->scan_bbt = nand_default_bbt;
2792
2793         if (!chip->controller) {
2794                 chip->controller = &chip->hwcontrol;
2795                 spin_lock_init(&chip->controller->lock);
2796                 init_waitqueue_head(&chip->controller->wq);
2797         }
2798
2799 }
2800
2801 /*
2802  * sanitize ONFI strings so we can safely print them
2803  */
2804 static void sanitize_string(uint8_t *s, size_t len)
2805 {
2806         ssize_t i;
2807
2808         /* null terminate */
2809         s[len - 1] = 0;
2810
2811         /* remove non printable chars */
2812         for (i = 0; i < len - 1; i++) {
2813                 if (s[i] < ' ' || s[i] > 127)
2814                         s[i] = '?';
2815         }
2816
2817         /* remove trailing spaces */
2818         strim(s);
2819 }
2820
2821 static u16 onfi_crc16(u16 crc, u8 const *p, size_t len)
2822 {
2823         int i;
2824         while (len--) {
2825                 crc ^= *p++ << 8;
2826                 for (i = 0; i < 8; i++)
2827                         crc = (crc << 1) ^ ((crc & 0x8000) ? 0x8005 : 0);
2828         }
2829
2830         return crc;
2831 }
2832
2833 /*
2834  * Check if the NAND chip is ONFI compliant, returns 1 if it is, 0 otherwise
2835  */
2836 static int nand_flash_detect_onfi(struct mtd_info *mtd, struct nand_chip *chip,
2837                                         int busw)
2838 {
2839         struct nand_onfi_params *p = &chip->onfi_params;
2840         int i;
2841         int val;
2842
2843         /* try ONFI for unknow chip or LP */
2844         chip->cmdfunc(mtd, NAND_CMD_READID, 0x20, -1);
2845         if (chip->read_byte(mtd) != 'O' || chip->read_byte(mtd) != 'N' ||
2846                 chip->read_byte(mtd) != 'F' || chip->read_byte(mtd) != 'I')
2847                 return 0;
2848
2849         printk(KERN_INFO "ONFI flash detected\n");
2850         chip->cmdfunc(mtd, NAND_CMD_PARAM, 0, -1);
2851         for (i = 0; i < 3; i++) {
2852                 chip->read_buf(mtd, (uint8_t *)p, sizeof(*p));
2853                 if (onfi_crc16(ONFI_CRC_BASE, (uint8_t *)p, 254) ==
2854                                 le16_to_cpu(p->crc)) {
2855                         printk(KERN_INFO "ONFI param page %d valid\n", i);
2856                         break;
2857                 }
2858         }
2859
2860         if (i == 3)
2861                 return 0;
2862
2863         /* check version */
2864         val = le16_to_cpu(p->revision);
2865         if (val & (1 << 5))
2866                 chip->onfi_version = 23;
2867         else if (val & (1 << 4))
2868                 chip->onfi_version = 22;
2869         else if (val & (1 << 3))
2870                 chip->onfi_version = 21;
2871         else if (val & (1 << 2))
2872                 chip->onfi_version = 20;
2873         else if (val & (1 << 1))
2874                 chip->onfi_version = 10;
2875         else
2876                 chip->onfi_version = 0;
2877
2878         if (!chip->onfi_version) {
2879                 printk(KERN_INFO "%s: unsupported ONFI version: %d\n",
2880                                                                 __func__, val);
2881                 return 0;
2882         }
2883
2884         sanitize_string(p->manufacturer, sizeof(p->manufacturer));
2885         sanitize_string(p->model, sizeof(p->model));
2886         if (!mtd->name)
2887                 mtd->name = p->model;
2888         mtd->writesize = le32_to_cpu(p->byte_per_page);
2889         mtd->erasesize = le32_to_cpu(p->pages_per_block) * mtd->writesize;
2890         mtd->oobsize = le16_to_cpu(p->spare_bytes_per_page);
2891         chip->chipsize = (uint64_t)le32_to_cpu(p->blocks_per_lun) * mtd->erasesize;
2892         busw = 0;
2893         if (le16_to_cpu(p->features) & 1)
2894                 busw = NAND_BUSWIDTH_16;
2895
2896         chip->options &= ~NAND_CHIPOPTIONS_MSK;
2897         chip->options |= (NAND_NO_READRDY |
2898                         NAND_NO_AUTOINCR) & NAND_CHIPOPTIONS_MSK;
2899
2900         return 1;
2901 }
2902
2903 /*
2904  * Get the flash and manufacturer id and lookup if the type is supported
2905  */
2906 static struct nand_flash_dev *nand_get_flash_type(struct mtd_info *mtd,
2907                                                   struct nand_chip *chip,
2908                                                   int busw,
2909                                                   int *maf_id, int *dev_id,
2910                                                   struct nand_flash_dev *type)
2911 {
2912         int i, maf_idx;
2913         u8 id_data[8];
2914         int ret;
2915
2916         /* Select the device */
2917         chip->select_chip(mtd, 0);
2918
2919         /*
2920          * Reset the chip, required by some chips (e.g. Micron MT29FxGxxxxx)
2921          * after power-up
2922          */
2923         chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
2924
2925         /* Send the command for reading device ID */
2926         chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
2927
2928         /* Read manufacturer and device IDs */
2929         *maf_id = chip->read_byte(mtd);
2930         *dev_id = chip->read_byte(mtd);
2931
2932         /* Try again to make sure, as some systems the bus-hold or other
2933          * interface concerns can cause random data which looks like a
2934          * possibly credible NAND flash to appear. If the two results do
2935          * not match, ignore the device completely.
2936          */
2937
2938         chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
2939
2940         for (i = 0; i < 2; i++)
2941                 id_data[i] = chip->read_byte(mtd);
2942
2943         if (id_data[0] != *maf_id || id_data[1] != *dev_id) {
2944                 printk(KERN_INFO "%s: second ID read did not match "
2945                        "%02x,%02x against %02x,%02x\n", __func__,
2946                        *maf_id, *dev_id, id_data[0], id_data[1]);
2947                 return ERR_PTR(-ENODEV);
2948         }
2949
2950         if (!type)
2951                 type = nand_flash_ids;
2952
2953         for (; type->name != NULL; type++)
2954                 if (*dev_id == type->id)
2955                         break;
2956
2957         chip->onfi_version = 0;
2958         if (!type->name || !type->pagesize) {
2959                 /* Check is chip is ONFI compliant */
2960                 ret = nand_flash_detect_onfi(mtd, chip, busw);
2961                 if (ret)
2962                         goto ident_done;
2963         }
2964
2965         chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
2966
2967         /* Read entire ID string */
2968
2969         for (i = 0; i < 8; i++)
2970                 id_data[i] = chip->read_byte(mtd);
2971
2972         if (!type->name)
2973                 return ERR_PTR(-ENODEV);
2974
2975         if (!mtd->name)
2976                 mtd->name = type->name;
2977
2978         chip->chipsize = (uint64_t)type->chipsize << 20;
2979
2980         if (!type->pagesize && chip->init_size) {
2981                 /* set the pagesize, oobsize, erasesize by the driver*/
2982                 busw = chip->init_size(mtd, chip, id_data);
2983         } else if (!type->pagesize) {
2984                 int extid;
2985                 /* The 3rd id byte holds MLC / multichip data */
2986                 chip->cellinfo = id_data[2];
2987                 /* The 4th id byte is the important one */
2988                 extid = id_data[3];
2989
2990                 /*
2991                  * Field definitions are in the following datasheets:
2992                  * Old style (4,5 byte ID): Samsung K9GAG08U0M (p.32)
2993                  * New style   (6 byte ID): Samsung K9GBG08U0M (p.40)
2994                  *
2995                  * Check for wraparound + Samsung ID + nonzero 6th byte
2996                  * to decide what to do.
2997                  */
2998                 if (id_data[0] == id_data[6] && id_data[1] == id_data[7] &&
2999                                 id_data[0] == NAND_MFR_SAMSUNG &&
3000                                 (chip->cellinfo & NAND_CI_CELLTYPE_MSK) &&
3001                                 id_data[5] != 0x00) {
3002                         /* Calc pagesize */
3003                         mtd->writesize = 2048 << (extid & 0x03);
3004                         extid >>= 2;
3005                         /* Calc oobsize */
3006                         switch (extid & 0x03) {
3007                         case 1:
3008                                 mtd->oobsize = 128;
3009                                 break;
3010                         case 2:
3011                                 mtd->oobsize = 218;
3012                                 break;
3013                         case 3:
3014                                 mtd->oobsize = 400;
3015                                 break;
3016                         default:
3017                                 mtd->oobsize = 436;
3018                                 break;
3019                         }
3020                         extid >>= 2;
3021                         /* Calc blocksize */
3022                         mtd->erasesize = (128 * 1024) <<
3023                                 (((extid >> 1) & 0x04) | (extid & 0x03));
3024                         busw = 0;
3025                 } else {
3026                         /* Calc pagesize */
3027                         mtd->writesize = 1024 << (extid & 0x03);
3028                         extid >>= 2;
3029                         /* Calc oobsize */
3030                         mtd->oobsize = (8 << (extid & 0x01)) *
3031                                 (mtd->writesize >> 9);
3032                         extid >>= 2;
3033                         /* Calc blocksize. Blocksize is multiples of 64KiB */
3034                         mtd->erasesize = (64 * 1024) << (extid & 0x03);
3035                         extid >>= 2;
3036                         /* Get buswidth information */
3037                         busw = (extid & 0x01) ? NAND_BUSWIDTH_16 : 0;
3038                 }
3039         } else {
3040                 /*
3041                  * Old devices have chip data hardcoded in the device id table
3042                  */
3043                 mtd->erasesize = type->erasesize;
3044                 mtd->writesize = type->pagesize;
3045                 mtd->oobsize = mtd->writesize / 32;
3046                 busw = type->options & NAND_BUSWIDTH_16;
3047
3048                 /*
3049                  * Check for Spansion/AMD ID + repeating 5th, 6th byte since
3050                  * some Spansion chips have erasesize that conflicts with size
3051                  * listed in nand_ids table
3052                  * Data sheet (5 byte ID): Spansion S30ML-P ORNAND (p.39)
3053                  */
3054                 if (*maf_id == NAND_MFR_AMD && id_data[4] != 0x00 &&
3055                                 id_data[5] == 0x00 && id_data[6] == 0x00 &&
3056                                 id_data[7] == 0x00 && mtd->writesize == 512) {
3057                         mtd->erasesize = 128 * 1024;
3058                         mtd->erasesize <<= ((id_data[3] & 0x03) << 1);
3059                 }
3060         }
3061         /* Get chip options, preserve non chip based options */
3062         chip->options &= ~NAND_CHIPOPTIONS_MSK;
3063         chip->options |= type->options & NAND_CHIPOPTIONS_MSK;
3064
3065         /* Check if chip is a not a samsung device. Do not clear the
3066          * options for chips which are not having an extended id.
3067          */
3068         if (*maf_id != NAND_MFR_SAMSUNG && !type->pagesize)
3069                 chip->options &= ~NAND_SAMSUNG_LP_OPTIONS;
3070 ident_done:
3071
3072         /*
3073          * Set chip as a default. Board drivers can override it, if necessary
3074          */
3075         chip->options |= NAND_NO_AUTOINCR;
3076
3077         /* Try to identify manufacturer */
3078         for (maf_idx = 0; nand_manuf_ids[maf_idx].id != 0x0; maf_idx++) {
3079                 if (nand_manuf_ids[maf_idx].id == *maf_id)
3080                         break;
3081         }
3082
3083         /*
3084          * Check, if buswidth is correct. Hardware drivers should set
3085          * chip correct !
3086          */
3087         if (busw != (chip->options & NAND_BUSWIDTH_16)) {
3088                 printk(KERN_INFO "NAND device: Manufacturer ID:"
3089                        " 0x%02x, Chip ID: 0x%02x (%s %s)\n", *maf_id,
3090                        *dev_id, nand_manuf_ids[maf_idx].name, mtd->name);
3091                 printk(KERN_WARNING "NAND bus width %d instead %d bit\n",
3092                        (chip->options & NAND_BUSWIDTH_16) ? 16 : 8,
3093                        busw ? 16 : 8);
3094                 return ERR_PTR(-EINVAL);
3095         }
3096
3097         /* Calculate the address shift from the page size */
3098         chip->page_shift = ffs(mtd->writesize) - 1;
3099         /* Convert chipsize to number of pages per chip -1. */
3100         chip->pagemask = (chip->chipsize >> chip->page_shift) - 1;
3101
3102         chip->bbt_erase_shift = chip->phys_erase_shift =
3103                 ffs(mtd->erasesize) - 1;
3104         if (chip->chipsize & 0xffffffff)
3105                 chip->chip_shift = ffs((unsigned)chip->chipsize) - 1;
3106         else {
3107                 chip->chip_shift = ffs((unsigned)(chip->chipsize >> 32));
3108                 chip->chip_shift += 32 - 1;
3109         }
3110
3111         chip->badblockbits = 8;
3112
3113         /* Set the bad block position */
3114         if (mtd->writesize > 512 || (busw & NAND_BUSWIDTH_16))
3115                 chip->badblockpos = NAND_LARGE_BADBLOCK_POS;
3116         else
3117                 chip->badblockpos = NAND_SMALL_BADBLOCK_POS;
3118
3119         /*
3120          * Bad block marker is stored in the last page of each block
3121          * on Samsung and Hynix MLC devices; stored in first two pages
3122          * of each block on Micron devices with 2KiB pages and on
3123          * SLC Samsung, Hynix, Toshiba and AMD/Spansion. All others scan
3124          * only the first page.
3125          */
3126         if ((chip->cellinfo & NAND_CI_CELLTYPE_MSK) &&
3127                         (*maf_id == NAND_MFR_SAMSUNG ||
3128                          *maf_id == NAND_MFR_HYNIX))
3129                 chip->options |= NAND_BBT_SCANLASTPAGE;
3130         else if ((!(chip->cellinfo & NAND_CI_CELLTYPE_MSK) &&
3131                                 (*maf_id == NAND_MFR_SAMSUNG ||
3132                                  *maf_id == NAND_MFR_HYNIX ||
3133                                  *maf_id == NAND_MFR_TOSHIBA ||
3134                                  *maf_id == NAND_MFR_AMD)) ||
3135                         (mtd->writesize == 2048 &&
3136                          *maf_id == NAND_MFR_MICRON))
3137                 chip->options |= NAND_BBT_SCAN2NDPAGE;
3138
3139         /*
3140          * Numonyx/ST 2K pages, x8 bus use BOTH byte 1 and 6
3141          */
3142         if (!(busw & NAND_BUSWIDTH_16) &&
3143                         *maf_id == NAND_MFR_STMICRO &&
3144                         mtd->writesize == 2048) {
3145                 chip->options |= NAND_BBT_SCANBYTE1AND6;
3146                 chip->badblockpos = 0;
3147         }
3148
3149         /* Check for AND chips with 4 page planes */
3150         if (chip->options & NAND_4PAGE_ARRAY)
3151                 chip->erase_cmd = multi_erase_cmd;
3152         else
3153                 chip->erase_cmd = single_erase_cmd;
3154
3155         /* Do not replace user supplied command function ! */
3156         if (mtd->writesize > 512 && chip->cmdfunc == nand_command)
3157                 chip->cmdfunc = nand_command_lp;
3158
3159         /* TODO onfi flash name */
3160         printk(KERN_INFO "NAND device: Manufacturer ID:"
3161                 " 0x%02x, Chip ID: 0x%02x (%s %s)\n", *maf_id, *dev_id,
3162                 nand_manuf_ids[maf_idx].name,
3163                 chip->onfi_version ? chip->onfi_params.model : type->name);
3164
3165         return type;
3166 }
3167
3168 /**
3169  * nand_scan_ident - [NAND Interface] Scan for the NAND device
3170  * @mtd:             MTD device structure
3171  * @maxchips:        Number of chips to scan for
3172  * @table:           Alternative NAND ID table
3173  *
3174  * This is the first phase of the normal nand_scan() function. It
3175  * reads the flash ID and sets up MTD fields accordingly.
3176  *
3177  * The mtd->owner field must be set to the module of the caller.
3178  */
3179 int nand_scan_ident(struct mtd_info *mtd, int maxchips,
3180                     struct nand_flash_dev *table)
3181 {
3182         int i, busw, nand_maf_id, nand_dev_id;
3183         struct nand_chip *chip = mtd->priv;
3184         struct nand_flash_dev *type;
3185
3186         /* Get buswidth to select the correct functions */
3187         busw = chip->options & NAND_BUSWIDTH_16;
3188         /* Set the default functions */
3189         nand_set_defaults(chip, busw);
3190
3191         /* Read the flash type */
3192         type = nand_get_flash_type(mtd, chip, busw,
3193                                 &nand_maf_id, &nand_dev_id, table);
3194
3195         if (IS_ERR(type)) {
3196                 if (!(chip->options & NAND_SCAN_SILENT_NODEV))
3197                         printk(KERN_WARNING "No NAND device found.\n");
3198                 chip->select_chip(mtd, -1);
3199                 return PTR_ERR(type);
3200         }
3201
3202         /* Check for a chip array */
3203         for (i = 1; i < maxchips; i++) {
3204                 chip->select_chip(mtd, i);
3205                 /* See comment in nand_get_flash_type for reset */
3206                 chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
3207                 /* Send the command for reading device ID */
3208                 chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
3209                 /* Read manufacturer and device IDs */
3210                 if (nand_maf_id != chip->read_byte(mtd) ||
3211                     nand_dev_id != chip->read_byte(mtd))
3212                         break;
3213         }
3214         if (i > 1)
3215                 printk(KERN_INFO "%d NAND chips detected\n", i);
3216
3217         /* Store the number of chips and calc total size for mtd */
3218         chip->numchips = i;
3219         mtd->size = i * chip->chipsize;
3220
3221         return 0;
3222 }
3223 EXPORT_SYMBOL(nand_scan_ident);
3224
3225
3226 /**
3227  * nand_scan_tail - [NAND Interface] Scan for the NAND device
3228  * @mtd:            MTD device structure
3229  *
3230  * This is the second phase of the normal nand_scan() function. It
3231  * fills out all the uninitialized function pointers with the defaults
3232  * and scans for a bad block table if appropriate.
3233  */
3234 int nand_scan_tail(struct mtd_info *mtd)
3235 {
3236         int i;
3237         struct nand_chip *chip = mtd->priv;
3238
3239         if (!(chip->options & NAND_OWN_BUFFERS))
3240                 chip->buffers = kmalloc(sizeof(*chip->buffers), GFP_KERNEL);
3241         if (!chip->buffers)
3242                 return -ENOMEM;
3243
3244         /* Set the internal oob buffer location, just after the page data */
3245         chip->oob_poi = chip->buffers->databuf + mtd->writesize;
3246
3247         /*
3248          * If no default placement scheme is given, select an appropriate one
3249          */
3250         if (!chip->ecc.layout && (chip->ecc.mode != NAND_ECC_SOFT_BCH)) {
3251                 switch (mtd->oobsize) {
3252                 case 8:
3253                         chip->ecc.layout = &nand_oob_8;
3254                         break;
3255                 case 16:
3256                         chip->ecc.layout = &nand_oob_16;
3257                         break;
3258                 case 64:
3259                         chip->ecc.layout = &nand_oob_64;
3260                         break;
3261                 case 128:
3262                         chip->ecc.layout = &nand_oob_128;
3263                         break;
3264                 default:
3265                         printk(KERN_WARNING "No oob scheme defined for "
3266                                "oobsize %d\n", mtd->oobsize);
3267                         BUG();
3268                 }
3269         }
3270
3271         if (!chip->write_page)
3272                 chip->write_page = nand_write_page;
3273
3274         /*
3275          * check ECC mode, default to software if 3byte/512byte hardware ECC is
3276          * selected and we have 256 byte pagesize fallback to software ECC
3277          */
3278
3279         switch (chip->ecc.mode) {
3280         case NAND_ECC_HW_OOB_FIRST:
3281                 /* Similar to NAND_ECC_HW, but a separate read_page handle */
3282                 if (!chip->ecc.calculate || !chip->ecc.correct ||
3283                      !chip->ecc.hwctl) {
3284                         printk(KERN_WARNING "No ECC functions supplied; "
3285                                "Hardware ECC not possible\n");
3286                         BUG();
3287                 }
3288                 if (!chip->ecc.read_page)
3289                         chip->ecc.read_page = nand_read_page_hwecc_oob_first;
3290
3291         case NAND_ECC_HW:
3292                 /* Use standard hwecc read page function ? */
3293                 if (!chip->ecc.read_page)
3294                         chip->ecc.read_page = nand_read_page_hwecc;
3295                 if (!chip->ecc.write_page)
3296                         chip->ecc.write_page = nand_write_page_hwecc;
3297                 if (!chip->ecc.read_page_raw)
3298                         chip->ecc.read_page_raw = nand_read_page_raw;
3299                 if (!chip->ecc.write_page_raw)
3300                         chip->ecc.write_page_raw = nand_write_page_raw;
3301                 if (!chip->ecc.read_oob)
3302                         chip->ecc.read_oob = nand_read_oob_std;
3303                 if (!chip->ecc.write_oob)
3304                         chip->ecc.write_oob = nand_write_oob_std;
3305
3306         case NAND_ECC_HW_SYNDROME:
3307                 if ((!chip->ecc.calculate || !chip->ecc.correct ||
3308                      !chip->ecc.hwctl) &&
3309                     (!chip->ecc.read_page ||
3310                      chip->ecc.read_page == nand_read_page_hwecc ||
3311                      !chip->ecc.write_page ||
3312                      chip->ecc.write_page == nand_write_page_hwecc)) {
3313                         printk(KERN_WARNING "No ECC functions supplied; "
3314                                "Hardware ECC not possible\n");
3315                         BUG();
3316                 }
3317                 /* Use standard syndrome read/write page function ? */
3318                 if (!chip->ecc.read_page)
3319                         chip->ecc.read_page = nand_read_page_syndrome;
3320                 if (!chip->ecc.write_page)
3321                         chip->ecc.write_page = nand_write_page_syndrome;
3322                 if (!chip->ecc.read_page_raw)
3323                         chip->ecc.read_page_raw = nand_read_page_raw_syndrome;
3324                 if (!chip->ecc.write_page_raw)
3325                         chip->ecc.write_page_raw = nand_write_page_raw_syndrome;
3326                 if (!chip->ecc.read_oob)
3327                         chip->ecc.read_oob = nand_read_oob_syndrome;
3328                 if (!chip->ecc.write_oob)
3329                         chip->ecc.write_oob = nand_write_oob_syndrome;
3330
3331                 if (mtd->writesize >= chip->ecc.size)
3332                         break;
3333                 printk(KERN_WARNING "%d byte HW ECC not possible on "
3334                        "%d byte page size, fallback to SW ECC\n",
3335                        chip->ecc.size, mtd->writesize);
3336                 chip->ecc.mode = NAND_ECC_SOFT;
3337
3338         case NAND_ECC_SOFT:
3339                 chip->ecc.calculate = nand_calculate_ecc;
3340                 chip->ecc.correct = nand_correct_data;
3341                 chip->ecc.read_page = nand_read_page_swecc;
3342                 chip->ecc.read_subpage = nand_read_subpage;
3343                 chip->ecc.write_page = nand_write_page_swecc;
3344                 chip->ecc.read_page_raw = nand_read_page_raw;
3345                 chip->ecc.write_page_raw = nand_write_page_raw;
3346                 chip->ecc.read_oob = nand_read_oob_std;
3347                 chip->ecc.write_oob = nand_write_oob_std;
3348                 if (!chip->ecc.size)
3349                         chip->ecc.size = 256;
3350                 chip->ecc.bytes = 3;
3351                 break;
3352
3353         case NAND_ECC_SOFT_BCH:
3354                 if (!mtd_nand_has_bch()) {
3355                         printk(KERN_WARNING "CONFIG_MTD_ECC_BCH not enabled\n");
3356                         BUG();
3357                 }
3358                 chip->ecc.calculate = nand_bch_calculate_ecc;
3359                 chip->ecc.correct = nand_bch_correct_data;
3360                 chip->ecc.read_page = nand_read_page_swecc;
3361                 chip->ecc.read_subpage = nand_read_subpage;
3362                 chip->ecc.write_page = nand_write_page_swecc;
3363                 chip->ecc.read_page_raw = nand_read_page_raw;
3364                 chip->ecc.write_page_raw = nand_write_page_raw;
3365                 chip->ecc.read_oob = nand_read_oob_std;
3366                 chip->ecc.write_oob = nand_write_oob_std;
3367                 /*
3368                  * Board driver should supply ecc.size and ecc.bytes values to
3369                  * select how many bits are correctable; see nand_bch_init()
3370                  * for details.
3371                  * Otherwise, default to 4 bits for large page devices
3372                  */
3373                 if (!chip->ecc.size && (mtd->oobsize >= 64)) {
3374                         chip->ecc.size = 512;
3375                         chip->ecc.bytes = 7;
3376                 }
3377                 chip->ecc.priv = nand_bch_init(mtd,
3378                                                chip->ecc.size,
3379                                                chip->ecc.bytes,
3380                                                &chip->ecc.layout);
3381                 if (!chip->ecc.priv) {
3382                         printk(KERN_WARNING "BCH ECC initialization failed!\n");
3383                         BUG();
3384                 }
3385                 break;
3386
3387         case NAND_ECC_NONE:
3388                 printk(KERN_WARNING "NAND_ECC_NONE selected by board driver. "
3389                        "This is not recommended !!\n");
3390                 chip->ecc.read_page = nand_read_page_raw;
3391                 chip->ecc.write_page = nand_write_page_raw;
3392                 chip->ecc.read_oob = nand_read_oob_std;
3393                 chip->ecc.read_page_raw = nand_read_page_raw;
3394                 chip->ecc.write_page_raw = nand_write_page_raw;
3395                 chip->ecc.write_oob = nand_write_oob_std;
3396                 chip->ecc.size = mtd->writesize;
3397                 chip->ecc.bytes = 0;
3398                 break;
3399
3400         default:
3401                 printk(KERN_WARNING "Invalid NAND_ECC_MODE %d\n",
3402                        chip->ecc.mode);
3403                 BUG();
3404         }
3405
3406         /*
3407          * The number of bytes available for a client to place data into
3408          * the out of band area
3409          */
3410         chip->ecc.layout->oobavail = 0;
3411         for (i = 0; chip->ecc.layout->oobfree[i].length
3412                         && i < ARRAY_SIZE(chip->ecc.layout->oobfree); i++)
3413                 chip->ecc.layout->oobavail +=
3414                         chip->ecc.layout->oobfree[i].length;
3415         mtd->oobavail = chip->ecc.layout->oobavail;
3416
3417         /*
3418          * Set the number of read / write steps for one page depending on ECC
3419          * mode
3420          */
3421         chip->ecc.steps = mtd->writesize / chip->ecc.size;
3422         if (chip->ecc.steps * chip->ecc.size != mtd->writesize) {
3423                 printk(KERN_WARNING "Invalid ecc parameters\n");
3424                 BUG();
3425         }
3426         chip->ecc.total = chip->ecc.steps * chip->ecc.bytes;
3427
3428         /*
3429          * Allow subpage writes up to ecc.steps. Not possible for MLC
3430          * FLASH.
3431          */
3432         if (!(chip->options & NAND_NO_SUBPAGE_WRITE) &&
3433             !(chip->cellinfo & NAND_CI_CELLTYPE_MSK)) {
3434                 switch (chip->ecc.steps) {
3435                 case 2:
3436                         mtd->subpage_sft = 1;
3437                         break;
3438                 case 4:
3439                 case 8:
3440                 case 16:
3441                         mtd->subpage_sft = 2;
3442                         break;
3443                 }
3444         }
3445         chip->subpagesize = mtd->writesize >> mtd->subpage_sft;
3446
3447         /* Initialize state */
3448         chip->state = FL_READY;
3449
3450         /* De-select the device */
3451         chip->select_chip(mtd, -1);
3452
3453         /* Invalidate the pagebuffer reference */
3454         chip->pagebuf = -1;
3455
3456         /* Fill in remaining MTD driver data */
3457         mtd->type = MTD_NANDFLASH;
3458         mtd->flags = (chip->options & NAND_ROM) ? MTD_CAP_ROM :
3459                                                 MTD_CAP_NANDFLASH;
3460         mtd->erase = nand_erase;
3461         mtd->point = NULL;
3462         mtd->unpoint = NULL;
3463         mtd->read = nand_read;
3464         mtd->write = nand_write;
3465         mtd->panic_write = panic_nand_write;
3466         mtd->read_oob = nand_read_oob;
3467         mtd->write_oob = nand_write_oob;
3468         mtd->sync = nand_sync;
3469         mtd->lock = NULL;
3470         mtd->unlock = NULL;
3471         mtd->suspend = nand_suspend;
3472         mtd->resume = nand_resume;
3473         mtd->block_isbad = nand_block_isbad;
3474         mtd->block_markbad = nand_block_markbad;
3475         mtd->writebufsize = mtd->writesize;
3476
3477         /* propagate ecc.layout to mtd_info */
3478         mtd->ecclayout = chip->ecc.layout;
3479
3480         /* Check, if we should skip the bad block table scan */
3481         if (chip->options & NAND_SKIP_BBTSCAN)
3482                 return 0;
3483
3484         /* Build bad block table */
3485         return chip->scan_bbt(mtd);
3486 }
3487 EXPORT_SYMBOL(nand_scan_tail);
3488
3489 /* is_module_text_address() isn't exported, and it's mostly a pointless
3490  * test if this is a module _anyway_ -- they'd have to try _really_ hard
3491  * to call us from in-kernel code if the core NAND support is modular. */
3492 #ifdef MODULE
3493 #define caller_is_module() (1)
3494 #else
3495 #define caller_is_module() \
3496         is_module_text_address((unsigned long)__builtin_return_address(0))
3497 #endif
3498
3499 /**
3500  * nand_scan - [NAND Interface] Scan for the NAND device
3501  * @mtd:        MTD device structure
3502  * @maxchips:   Number of chips to scan for
3503  *
3504  * This fills out all the uninitialized function pointers
3505  * with the defaults.
3506  * The flash ID is read and the mtd/chip structures are
3507  * filled with the appropriate values.
3508  * The mtd->owner field must be set to the module of the caller
3509  *
3510  */
3511 int nand_scan(struct mtd_info *mtd, int maxchips)
3512 {
3513         int ret;
3514
3515         /* Many callers got this wrong, so check for it for a while... */
3516         if (!mtd->owner && caller_is_module()) {
3517                 printk(KERN_CRIT "%s called with NULL mtd->owner!\n",
3518                                 __func__);
3519                 BUG();
3520         }
3521
3522         ret = nand_scan_ident(mtd, maxchips, NULL);
3523         if (!ret)
3524                 ret = nand_scan_tail(mtd);
3525         return ret;
3526 }
3527 EXPORT_SYMBOL(nand_scan);
3528
3529 /**
3530  * nand_release - [NAND Interface] Free resources held by the NAND device
3531  * @mtd:        MTD device structure
3532 */
3533 void nand_release(struct mtd_info *mtd)
3534 {
3535         struct nand_chip *chip = mtd->priv;
3536
3537         if (chip->ecc.mode == NAND_ECC_SOFT_BCH)
3538                 nand_bch_free((struct nand_bch_control *)chip->ecc.priv);
3539
3540         mtd_device_unregister(mtd);
3541
3542         /* Free bad block table memory */
3543         kfree(chip->bbt);
3544         if (!(chip->options & NAND_OWN_BUFFERS))
3545                 kfree(chip->buffers);
3546
3547         /* Free bad block descriptor memory */
3548         if (chip->badblock_pattern && chip->badblock_pattern->options
3549                         & NAND_BBT_DYNAMICSTRUCT)
3550                 kfree(chip->badblock_pattern);
3551 }
3552 EXPORT_SYMBOL_GPL(nand_release);
3553
3554 static int __init nand_base_init(void)
3555 {
3556         led_trigger_register_simple("nand-disk", &nand_led_trigger);
3557         return 0;
3558 }
3559
3560 static void __exit nand_base_exit(void)
3561 {
3562         led_trigger_unregister_simple(nand_led_trigger);
3563 }
3564
3565 module_init(nand_base_init);
3566 module_exit(nand_base_exit);
3567
3568 MODULE_LICENSE("GPL");
3569 MODULE_AUTHOR("Steven J. Hill <sjhill@realitydiluted.com>");
3570 MODULE_AUTHOR("Thomas Gleixner <tglx@linutronix.de>");
3571 MODULE_DESCRIPTION("Generic NAND flash driver code");