Linux-libre 4.14.132-gnu
[librecmc/linux-libre.git] / drivers / mtd / nand / fsl_ifc_nand.c
1 /*
2  * Freescale Integrated Flash Controller NAND driver
3  *
4  * Copyright 2011-2012 Freescale Semiconductor, Inc
5  *
6  * Author: Dipen Dudhat <Dipen.Dudhat@freescale.com>
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License as published by
10  * the Free Software Foundation; either version 2 of the License, or
11  * (at your option) any later version.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  * GNU General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software
20  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
21  */
22
23 #include <linux/module.h>
24 #include <linux/types.h>
25 #include <linux/kernel.h>
26 #include <linux/of_address.h>
27 #include <linux/slab.h>
28 #include <linux/mtd/mtd.h>
29 #include <linux/mtd/rawnand.h>
30 #include <linux/mtd/partitions.h>
31 #include <linux/mtd/nand_ecc.h>
32 #include <linux/fsl_ifc.h>
33
34 #define ERR_BYTE                0xFF /* Value returned for read
35                                         bytes when read failed  */
36 #define IFC_TIMEOUT_MSECS       500  /* Maximum number of mSecs to wait
37                                         for IFC NAND Machine    */
38
39 struct fsl_ifc_ctrl;
40
41 /* mtd information per set */
42 struct fsl_ifc_mtd {
43         struct nand_chip chip;
44         struct fsl_ifc_ctrl *ctrl;
45
46         struct device *dev;
47         int bank;               /* Chip select bank number              */
48         unsigned int bufnum_mask; /* bufnum = page & bufnum_mask */
49         u8 __iomem *vbase;      /* Chip select base virtual address     */
50 };
51
52 /* overview of the fsl ifc controller */
53 struct fsl_ifc_nand_ctrl {
54         struct nand_hw_control controller;
55         struct fsl_ifc_mtd *chips[FSL_IFC_BANK_COUNT];
56
57         void __iomem *addr;     /* Address of assigned IFC buffer       */
58         unsigned int page;      /* Last page written to / read from     */
59         unsigned int read_bytes;/* Number of bytes read during command  */
60         unsigned int column;    /* Saved column from SEQIN              */
61         unsigned int index;     /* Pointer to next byte to 'read'       */
62         unsigned int oob;       /* Non zero if operating on OOB data    */
63         unsigned int eccread;   /* Non zero for a full-page ECC read    */
64         unsigned int counter;   /* counter for the initializations      */
65         unsigned int max_bitflips;  /* Saved during READ0 cmd           */
66 };
67
68 static struct fsl_ifc_nand_ctrl *ifc_nand_ctrl;
69
70 /*
71  * Generic flash bbt descriptors
72  */
73 static u8 bbt_pattern[] = {'B', 'b', 't', '0' };
74 static u8 mirror_pattern[] = {'1', 't', 'b', 'B' };
75
76 static struct nand_bbt_descr bbt_main_descr = {
77         .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE |
78                    NAND_BBT_2BIT | NAND_BBT_VERSION,
79         .offs = 2, /* 0 on 8-bit small page */
80         .len = 4,
81         .veroffs = 6,
82         .maxblocks = 4,
83         .pattern = bbt_pattern,
84 };
85
86 static struct nand_bbt_descr bbt_mirror_descr = {
87         .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE |
88                    NAND_BBT_2BIT | NAND_BBT_VERSION,
89         .offs = 2, /* 0 on 8-bit small page */
90         .len = 4,
91         .veroffs = 6,
92         .maxblocks = 4,
93         .pattern = mirror_pattern,
94 };
95
96 static int fsl_ifc_ooblayout_ecc(struct mtd_info *mtd, int section,
97                                  struct mtd_oob_region *oobregion)
98 {
99         struct nand_chip *chip = mtd_to_nand(mtd);
100
101         if (section)
102                 return -ERANGE;
103
104         oobregion->offset = 8;
105         oobregion->length = chip->ecc.total;
106
107         return 0;
108 }
109
110 static int fsl_ifc_ooblayout_free(struct mtd_info *mtd, int section,
111                                   struct mtd_oob_region *oobregion)
112 {
113         struct nand_chip *chip = mtd_to_nand(mtd);
114
115         if (section > 1)
116                 return -ERANGE;
117
118         if (mtd->writesize == 512 &&
119             !(chip->options & NAND_BUSWIDTH_16)) {
120                 if (!section) {
121                         oobregion->offset = 0;
122                         oobregion->length = 5;
123                 } else {
124                         oobregion->offset = 6;
125                         oobregion->length = 2;
126                 }
127
128                 return 0;
129         }
130
131         if (!section) {
132                 oobregion->offset = 2;
133                 oobregion->length = 6;
134         } else {
135                 oobregion->offset = chip->ecc.total + 8;
136                 oobregion->length = mtd->oobsize - oobregion->offset;
137         }
138
139         return 0;
140 }
141
142 static const struct mtd_ooblayout_ops fsl_ifc_ooblayout_ops = {
143         .ecc = fsl_ifc_ooblayout_ecc,
144         .free = fsl_ifc_ooblayout_free,
145 };
146
147 /*
148  * Set up the IFC hardware block and page address fields, and the ifc nand
149  * structure addr field to point to the correct IFC buffer in memory
150  */
151 static void set_addr(struct mtd_info *mtd, int column, int page_addr, int oob)
152 {
153         struct nand_chip *chip = mtd_to_nand(mtd);
154         struct fsl_ifc_mtd *priv = nand_get_controller_data(chip);
155         struct fsl_ifc_ctrl *ctrl = priv->ctrl;
156         struct fsl_ifc_runtime __iomem *ifc = ctrl->rregs;
157         int buf_num;
158
159         ifc_nand_ctrl->page = page_addr;
160         /* Program ROW0/COL0 */
161         ifc_out32(page_addr, &ifc->ifc_nand.row0);
162         ifc_out32((oob ? IFC_NAND_COL_MS : 0) | column, &ifc->ifc_nand.col0);
163
164         buf_num = page_addr & priv->bufnum_mask;
165
166         ifc_nand_ctrl->addr = priv->vbase + buf_num * (mtd->writesize * 2);
167         ifc_nand_ctrl->index = column;
168
169         /* for OOB data point to the second half of the buffer */
170         if (oob)
171                 ifc_nand_ctrl->index += mtd->writesize;
172 }
173
174 /* returns nonzero if entire page is blank */
175 static int check_read_ecc(struct mtd_info *mtd, struct fsl_ifc_ctrl *ctrl,
176                           u32 eccstat, unsigned int bufnum)
177 {
178         return  (eccstat >> ((3 - bufnum % 4) * 8)) & 15;
179 }
180
181 /*
182  * execute IFC NAND command and wait for it to complete
183  */
184 static void fsl_ifc_run_command(struct mtd_info *mtd)
185 {
186         struct nand_chip *chip = mtd_to_nand(mtd);
187         struct fsl_ifc_mtd *priv = nand_get_controller_data(chip);
188         struct fsl_ifc_ctrl *ctrl = priv->ctrl;
189         struct fsl_ifc_nand_ctrl *nctrl = ifc_nand_ctrl;
190         struct fsl_ifc_runtime __iomem *ifc = ctrl->rregs;
191         u32 eccstat;
192         int i;
193
194         /* set the chip select for NAND Transaction */
195         ifc_out32(priv->bank << IFC_NAND_CSEL_SHIFT,
196                   &ifc->ifc_nand.nand_csel);
197
198         dev_vdbg(priv->dev,
199                         "%s: fir0=%08x fcr0=%08x\n",
200                         __func__,
201                         ifc_in32(&ifc->ifc_nand.nand_fir0),
202                         ifc_in32(&ifc->ifc_nand.nand_fcr0));
203
204         ctrl->nand_stat = 0;
205
206         /* start read/write seq */
207         ifc_out32(IFC_NAND_SEQ_STRT_FIR_STRT, &ifc->ifc_nand.nandseq_strt);
208
209         /* wait for command complete flag or timeout */
210         wait_event_timeout(ctrl->nand_wait, ctrl->nand_stat,
211                            msecs_to_jiffies(IFC_TIMEOUT_MSECS));
212
213         /* ctrl->nand_stat will be updated from IRQ context */
214         if (!ctrl->nand_stat)
215                 dev_err(priv->dev, "Controller is not responding\n");
216         if (ctrl->nand_stat & IFC_NAND_EVTER_STAT_FTOER)
217                 dev_err(priv->dev, "NAND Flash Timeout Error\n");
218         if (ctrl->nand_stat & IFC_NAND_EVTER_STAT_WPER)
219                 dev_err(priv->dev, "NAND Flash Write Protect Error\n");
220
221         nctrl->max_bitflips = 0;
222
223         if (nctrl->eccread) {
224                 int errors;
225                 int bufnum = nctrl->page & priv->bufnum_mask;
226                 int sector_start = bufnum * chip->ecc.steps;
227                 int sector_end = sector_start + chip->ecc.steps - 1;
228                 __be32 *eccstat_regs;
229
230                 eccstat_regs = ifc->ifc_nand.nand_eccstat;
231                 eccstat = ifc_in32(&eccstat_regs[sector_start / 4]);
232
233                 for (i = sector_start; i <= sector_end; i++) {
234                         if (i != sector_start && !(i % 4))
235                                 eccstat = ifc_in32(&eccstat_regs[i / 4]);
236
237                         errors = check_read_ecc(mtd, ctrl, eccstat, i);
238
239                         if (errors == 15) {
240                                 /*
241                                  * Uncorrectable error.
242                                  * We'll check for blank pages later.
243                                  *
244                                  * We disable ECCER reporting due to...
245                                  * erratum IFC-A002770 -- so report it now if we
246                                  * see an uncorrectable error in ECCSTAT.
247                                  */
248                                 ctrl->nand_stat |= IFC_NAND_EVTER_STAT_ECCER;
249                                 continue;
250                         }
251
252                         mtd->ecc_stats.corrected += errors;
253                         nctrl->max_bitflips = max_t(unsigned int,
254                                                     nctrl->max_bitflips,
255                                                     errors);
256                 }
257
258                 nctrl->eccread = 0;
259         }
260 }
261
262 static void fsl_ifc_do_read(struct nand_chip *chip,
263                             int oob,
264                             struct mtd_info *mtd)
265 {
266         struct fsl_ifc_mtd *priv = nand_get_controller_data(chip);
267         struct fsl_ifc_ctrl *ctrl = priv->ctrl;
268         struct fsl_ifc_runtime __iomem *ifc = ctrl->rregs;
269
270         /* Program FIR/IFC_NAND_FCR0 for Small/Large page */
271         if (mtd->writesize > 512) {
272                 ifc_out32((IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) |
273                           (IFC_FIR_OP_CA0 << IFC_NAND_FIR0_OP1_SHIFT) |
274                           (IFC_FIR_OP_RA0 << IFC_NAND_FIR0_OP2_SHIFT) |
275                           (IFC_FIR_OP_CMD1 << IFC_NAND_FIR0_OP3_SHIFT) |
276                           (IFC_FIR_OP_RBCD << IFC_NAND_FIR0_OP4_SHIFT),
277                           &ifc->ifc_nand.nand_fir0);
278                 ifc_out32(0x0, &ifc->ifc_nand.nand_fir1);
279
280                 ifc_out32((NAND_CMD_READ0 << IFC_NAND_FCR0_CMD0_SHIFT) |
281                           (NAND_CMD_READSTART << IFC_NAND_FCR0_CMD1_SHIFT),
282                           &ifc->ifc_nand.nand_fcr0);
283         } else {
284                 ifc_out32((IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) |
285                           (IFC_FIR_OP_CA0 << IFC_NAND_FIR0_OP1_SHIFT) |
286                           (IFC_FIR_OP_RA0  << IFC_NAND_FIR0_OP2_SHIFT) |
287                           (IFC_FIR_OP_RBCD << IFC_NAND_FIR0_OP3_SHIFT),
288                           &ifc->ifc_nand.nand_fir0);
289                 ifc_out32(0x0, &ifc->ifc_nand.nand_fir1);
290
291                 if (oob)
292                         ifc_out32(NAND_CMD_READOOB <<
293                                   IFC_NAND_FCR0_CMD0_SHIFT,
294                                   &ifc->ifc_nand.nand_fcr0);
295                 else
296                         ifc_out32(NAND_CMD_READ0 <<
297                                   IFC_NAND_FCR0_CMD0_SHIFT,
298                                   &ifc->ifc_nand.nand_fcr0);
299         }
300 }
301
302 /* cmdfunc send commands to the IFC NAND Machine */
303 static void fsl_ifc_cmdfunc(struct mtd_info *mtd, unsigned int command,
304                              int column, int page_addr) {
305         struct nand_chip *chip = mtd_to_nand(mtd);
306         struct fsl_ifc_mtd *priv = nand_get_controller_data(chip);
307         struct fsl_ifc_ctrl *ctrl = priv->ctrl;
308         struct fsl_ifc_runtime __iomem *ifc = ctrl->rregs;
309
310         /* clear the read buffer */
311         ifc_nand_ctrl->read_bytes = 0;
312         if (command != NAND_CMD_PAGEPROG)
313                 ifc_nand_ctrl->index = 0;
314
315         switch (command) {
316         /* READ0 read the entire buffer to use hardware ECC. */
317         case NAND_CMD_READ0:
318                 ifc_out32(0, &ifc->ifc_nand.nand_fbcr);
319                 set_addr(mtd, 0, page_addr, 0);
320
321                 ifc_nand_ctrl->read_bytes = mtd->writesize + mtd->oobsize;
322                 ifc_nand_ctrl->index += column;
323
324                 if (chip->ecc.mode == NAND_ECC_HW)
325                         ifc_nand_ctrl->eccread = 1;
326
327                 fsl_ifc_do_read(chip, 0, mtd);
328                 fsl_ifc_run_command(mtd);
329                 return;
330
331         /* READOOB reads only the OOB because no ECC is performed. */
332         case NAND_CMD_READOOB:
333                 ifc_out32(mtd->oobsize - column, &ifc->ifc_nand.nand_fbcr);
334                 set_addr(mtd, column, page_addr, 1);
335
336                 ifc_nand_ctrl->read_bytes = mtd->writesize + mtd->oobsize;
337
338                 fsl_ifc_do_read(chip, 1, mtd);
339                 fsl_ifc_run_command(mtd);
340
341                 return;
342
343         case NAND_CMD_READID:
344         case NAND_CMD_PARAM: {
345                 /*
346                  * For READID, read 8 bytes that are currently used.
347                  * For PARAM, read all 3 copies of 256-bytes pages.
348                  */
349                 int len = 8;
350                 int timing = IFC_FIR_OP_RB;
351                 if (command == NAND_CMD_PARAM) {
352                         timing = IFC_FIR_OP_RBCD;
353                         len = 256 * 3;
354                 }
355
356                 ifc_out32((IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) |
357                           (IFC_FIR_OP_UA  << IFC_NAND_FIR0_OP1_SHIFT) |
358                           (timing << IFC_NAND_FIR0_OP2_SHIFT),
359                           &ifc->ifc_nand.nand_fir0);
360                 ifc_out32(command << IFC_NAND_FCR0_CMD0_SHIFT,
361                           &ifc->ifc_nand.nand_fcr0);
362                 ifc_out32(column, &ifc->ifc_nand.row3);
363
364                 ifc_out32(len, &ifc->ifc_nand.nand_fbcr);
365                 ifc_nand_ctrl->read_bytes = len;
366
367                 set_addr(mtd, 0, 0, 0);
368                 fsl_ifc_run_command(mtd);
369                 return;
370         }
371
372         /* ERASE1 stores the block and page address */
373         case NAND_CMD_ERASE1:
374                 set_addr(mtd, 0, page_addr, 0);
375                 return;
376
377         /* ERASE2 uses the block and page address from ERASE1 */
378         case NAND_CMD_ERASE2:
379                 ifc_out32((IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) |
380                           (IFC_FIR_OP_RA0 << IFC_NAND_FIR0_OP1_SHIFT) |
381                           (IFC_FIR_OP_CMD1 << IFC_NAND_FIR0_OP2_SHIFT),
382                           &ifc->ifc_nand.nand_fir0);
383
384                 ifc_out32((NAND_CMD_ERASE1 << IFC_NAND_FCR0_CMD0_SHIFT) |
385                           (NAND_CMD_ERASE2 << IFC_NAND_FCR0_CMD1_SHIFT),
386                           &ifc->ifc_nand.nand_fcr0);
387
388                 ifc_out32(0, &ifc->ifc_nand.nand_fbcr);
389                 ifc_nand_ctrl->read_bytes = 0;
390                 fsl_ifc_run_command(mtd);
391                 return;
392
393         /* SEQIN sets up the addr buffer and all registers except the length */
394         case NAND_CMD_SEQIN: {
395                 u32 nand_fcr0;
396                 ifc_nand_ctrl->column = column;
397                 ifc_nand_ctrl->oob = 0;
398
399                 if (mtd->writesize > 512) {
400                         nand_fcr0 =
401                                 (NAND_CMD_SEQIN << IFC_NAND_FCR0_CMD0_SHIFT) |
402                                 (NAND_CMD_STATUS << IFC_NAND_FCR0_CMD1_SHIFT) |
403                                 (NAND_CMD_PAGEPROG << IFC_NAND_FCR0_CMD2_SHIFT);
404
405                         ifc_out32(
406                                 (IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) |
407                                 (IFC_FIR_OP_CA0 << IFC_NAND_FIR0_OP1_SHIFT) |
408                                 (IFC_FIR_OP_RA0 << IFC_NAND_FIR0_OP2_SHIFT) |
409                                 (IFC_FIR_OP_WBCD << IFC_NAND_FIR0_OP3_SHIFT) |
410                                 (IFC_FIR_OP_CMD2 << IFC_NAND_FIR0_OP4_SHIFT),
411                                 &ifc->ifc_nand.nand_fir0);
412                         ifc_out32(
413                                 (IFC_FIR_OP_CW1 << IFC_NAND_FIR1_OP5_SHIFT) |
414                                 (IFC_FIR_OP_RDSTAT << IFC_NAND_FIR1_OP6_SHIFT) |
415                                 (IFC_FIR_OP_NOP << IFC_NAND_FIR1_OP7_SHIFT),
416                                 &ifc->ifc_nand.nand_fir1);
417                 } else {
418                         nand_fcr0 = ((NAND_CMD_PAGEPROG <<
419                                         IFC_NAND_FCR0_CMD1_SHIFT) |
420                                     (NAND_CMD_SEQIN <<
421                                         IFC_NAND_FCR0_CMD2_SHIFT) |
422                                     (NAND_CMD_STATUS <<
423                                         IFC_NAND_FCR0_CMD3_SHIFT));
424
425                         ifc_out32(
426                                 (IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) |
427                                 (IFC_FIR_OP_CMD2 << IFC_NAND_FIR0_OP1_SHIFT) |
428                                 (IFC_FIR_OP_CA0 << IFC_NAND_FIR0_OP2_SHIFT) |
429                                 (IFC_FIR_OP_RA0 << IFC_NAND_FIR0_OP3_SHIFT) |
430                                 (IFC_FIR_OP_WBCD << IFC_NAND_FIR0_OP4_SHIFT),
431                                 &ifc->ifc_nand.nand_fir0);
432                         ifc_out32(
433                                 (IFC_FIR_OP_CMD1 << IFC_NAND_FIR1_OP5_SHIFT) |
434                                 (IFC_FIR_OP_CW3 << IFC_NAND_FIR1_OP6_SHIFT) |
435                                 (IFC_FIR_OP_RDSTAT << IFC_NAND_FIR1_OP7_SHIFT) |
436                                 (IFC_FIR_OP_NOP << IFC_NAND_FIR1_OP8_SHIFT),
437                                 &ifc->ifc_nand.nand_fir1);
438
439                         if (column >= mtd->writesize)
440                                 nand_fcr0 |=
441                                 NAND_CMD_READOOB << IFC_NAND_FCR0_CMD0_SHIFT;
442                         else
443                                 nand_fcr0 |=
444                                 NAND_CMD_READ0 << IFC_NAND_FCR0_CMD0_SHIFT;
445                 }
446
447                 if (column >= mtd->writesize) {
448                         /* OOB area --> READOOB */
449                         column -= mtd->writesize;
450                         ifc_nand_ctrl->oob = 1;
451                 }
452                 ifc_out32(nand_fcr0, &ifc->ifc_nand.nand_fcr0);
453                 set_addr(mtd, column, page_addr, ifc_nand_ctrl->oob);
454                 return;
455         }
456
457         /* PAGEPROG reuses all of the setup from SEQIN and adds the length */
458         case NAND_CMD_PAGEPROG: {
459                 if (ifc_nand_ctrl->oob) {
460                         ifc_out32(ifc_nand_ctrl->index -
461                                   ifc_nand_ctrl->column,
462                                   &ifc->ifc_nand.nand_fbcr);
463                 } else {
464                         ifc_out32(0, &ifc->ifc_nand.nand_fbcr);
465                 }
466
467                 fsl_ifc_run_command(mtd);
468                 return;
469         }
470
471         case NAND_CMD_STATUS: {
472                 void __iomem *addr;
473
474                 ifc_out32((IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) |
475                           (IFC_FIR_OP_RB << IFC_NAND_FIR0_OP1_SHIFT),
476                           &ifc->ifc_nand.nand_fir0);
477                 ifc_out32(NAND_CMD_STATUS << IFC_NAND_FCR0_CMD0_SHIFT,
478                           &ifc->ifc_nand.nand_fcr0);
479                 ifc_out32(1, &ifc->ifc_nand.nand_fbcr);
480                 set_addr(mtd, 0, 0, 0);
481                 ifc_nand_ctrl->read_bytes = 1;
482
483                 fsl_ifc_run_command(mtd);
484
485                 /*
486                  * The chip always seems to report that it is
487                  * write-protected, even when it is not.
488                  */
489                 addr = ifc_nand_ctrl->addr;
490                 if (chip->options & NAND_BUSWIDTH_16)
491                         ifc_out16(ifc_in16(addr) | (NAND_STATUS_WP), addr);
492                 else
493                         ifc_out8(ifc_in8(addr) | (NAND_STATUS_WP), addr);
494                 return;
495         }
496
497         case NAND_CMD_RESET:
498                 ifc_out32(IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT,
499                           &ifc->ifc_nand.nand_fir0);
500                 ifc_out32(NAND_CMD_RESET << IFC_NAND_FCR0_CMD0_SHIFT,
501                           &ifc->ifc_nand.nand_fcr0);
502                 fsl_ifc_run_command(mtd);
503                 return;
504
505         default:
506                 dev_err(priv->dev, "%s: error, unsupported command 0x%x.\n",
507                                         __func__, command);
508         }
509 }
510
511 static void fsl_ifc_select_chip(struct mtd_info *mtd, int chip)
512 {
513         /* The hardware does not seem to support multiple
514          * chips per bank.
515          */
516 }
517
518 /*
519  * Write buf to the IFC NAND Controller Data Buffer
520  */
521 static void fsl_ifc_write_buf(struct mtd_info *mtd, const u8 *buf, int len)
522 {
523         struct nand_chip *chip = mtd_to_nand(mtd);
524         struct fsl_ifc_mtd *priv = nand_get_controller_data(chip);
525         unsigned int bufsize = mtd->writesize + mtd->oobsize;
526
527         if (len <= 0) {
528                 dev_err(priv->dev, "%s: len %d bytes", __func__, len);
529                 return;
530         }
531
532         if ((unsigned int)len > bufsize - ifc_nand_ctrl->index) {
533                 dev_err(priv->dev,
534                         "%s: beyond end of buffer (%d requested, %u available)\n",
535                         __func__, len, bufsize - ifc_nand_ctrl->index);
536                 len = bufsize - ifc_nand_ctrl->index;
537         }
538
539         memcpy_toio(ifc_nand_ctrl->addr + ifc_nand_ctrl->index, buf, len);
540         ifc_nand_ctrl->index += len;
541 }
542
543 /*
544  * Read a byte from either the IFC hardware buffer
545  * read function for 8-bit buswidth
546  */
547 static uint8_t fsl_ifc_read_byte(struct mtd_info *mtd)
548 {
549         struct nand_chip *chip = mtd_to_nand(mtd);
550         struct fsl_ifc_mtd *priv = nand_get_controller_data(chip);
551         unsigned int offset;
552
553         /*
554          * If there are still bytes in the IFC buffer, then use the
555          * next byte.
556          */
557         if (ifc_nand_ctrl->index < ifc_nand_ctrl->read_bytes) {
558                 offset = ifc_nand_ctrl->index++;
559                 return ifc_in8(ifc_nand_ctrl->addr + offset);
560         }
561
562         dev_err(priv->dev, "%s: beyond end of buffer\n", __func__);
563         return ERR_BYTE;
564 }
565
566 /*
567  * Read two bytes from the IFC hardware buffer
568  * read function for 16-bit buswith
569  */
570 static uint8_t fsl_ifc_read_byte16(struct mtd_info *mtd)
571 {
572         struct nand_chip *chip = mtd_to_nand(mtd);
573         struct fsl_ifc_mtd *priv = nand_get_controller_data(chip);
574         uint16_t data;
575
576         /*
577          * If there are still bytes in the IFC buffer, then use the
578          * next byte.
579          */
580         if (ifc_nand_ctrl->index < ifc_nand_ctrl->read_bytes) {
581                 data = ifc_in16(ifc_nand_ctrl->addr + ifc_nand_ctrl->index);
582                 ifc_nand_ctrl->index += 2;
583                 return (uint8_t) data;
584         }
585
586         dev_err(priv->dev, "%s: beyond end of buffer\n", __func__);
587         return ERR_BYTE;
588 }
589
590 /*
591  * Read from the IFC Controller Data Buffer
592  */
593 static void fsl_ifc_read_buf(struct mtd_info *mtd, u8 *buf, int len)
594 {
595         struct nand_chip *chip = mtd_to_nand(mtd);
596         struct fsl_ifc_mtd *priv = nand_get_controller_data(chip);
597         int avail;
598
599         if (len < 0) {
600                 dev_err(priv->dev, "%s: len %d bytes", __func__, len);
601                 return;
602         }
603
604         avail = min((unsigned int)len,
605                         ifc_nand_ctrl->read_bytes - ifc_nand_ctrl->index);
606         memcpy_fromio(buf, ifc_nand_ctrl->addr + ifc_nand_ctrl->index, avail);
607         ifc_nand_ctrl->index += avail;
608
609         if (len > avail)
610                 dev_err(priv->dev,
611                         "%s: beyond end of buffer (%d requested, %d available)\n",
612                         __func__, len, avail);
613 }
614
615 /*
616  * This function is called after Program and Erase Operations to
617  * check for success or failure.
618  */
619 static int fsl_ifc_wait(struct mtd_info *mtd, struct nand_chip *chip)
620 {
621         struct fsl_ifc_mtd *priv = nand_get_controller_data(chip);
622         struct fsl_ifc_ctrl *ctrl = priv->ctrl;
623         struct fsl_ifc_runtime __iomem *ifc = ctrl->rregs;
624         u32 nand_fsr;
625         int status;
626
627         /* Use READ_STATUS command, but wait for the device to be ready */
628         ifc_out32((IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) |
629                   (IFC_FIR_OP_RDSTAT << IFC_NAND_FIR0_OP1_SHIFT),
630                   &ifc->ifc_nand.nand_fir0);
631         ifc_out32(NAND_CMD_STATUS << IFC_NAND_FCR0_CMD0_SHIFT,
632                   &ifc->ifc_nand.nand_fcr0);
633         ifc_out32(1, &ifc->ifc_nand.nand_fbcr);
634         set_addr(mtd, 0, 0, 0);
635         ifc_nand_ctrl->read_bytes = 1;
636
637         fsl_ifc_run_command(mtd);
638
639         nand_fsr = ifc_in32(&ifc->ifc_nand.nand_fsr);
640         status = nand_fsr >> 24;
641         /*
642          * The chip always seems to report that it is
643          * write-protected, even when it is not.
644          */
645         return status | NAND_STATUS_WP;
646 }
647
648 /*
649  * The controller does not check for bitflips in erased pages,
650  * therefore software must check instead.
651  */
652 static int check_erased_page(struct nand_chip *chip, u8 *buf)
653 {
654         struct mtd_info *mtd = nand_to_mtd(chip);
655         u8 *ecc = chip->oob_poi;
656         const int ecc_size = chip->ecc.bytes;
657         const int pkt_size = chip->ecc.size;
658         int i, res, bitflips = 0;
659         struct mtd_oob_region oobregion = { };
660
661         mtd_ooblayout_ecc(mtd, 0, &oobregion);
662         ecc += oobregion.offset;
663
664         for (i = 0; i < chip->ecc.steps; ++i) {
665                 res = nand_check_erased_ecc_chunk(buf, pkt_size, ecc, ecc_size,
666                                                   NULL, 0,
667                                                   chip->ecc.strength);
668                 if (res < 0)
669                         mtd->ecc_stats.failed++;
670                 else
671                         mtd->ecc_stats.corrected += res;
672
673                 bitflips = max(res, bitflips);
674                 buf += pkt_size;
675                 ecc += ecc_size;
676         }
677
678         return bitflips;
679 }
680
681 static int fsl_ifc_read_page(struct mtd_info *mtd, struct nand_chip *chip,
682                              uint8_t *buf, int oob_required, int page)
683 {
684         struct fsl_ifc_mtd *priv = nand_get_controller_data(chip);
685         struct fsl_ifc_ctrl *ctrl = priv->ctrl;
686         struct fsl_ifc_nand_ctrl *nctrl = ifc_nand_ctrl;
687
688         fsl_ifc_read_buf(mtd, buf, mtd->writesize);
689         if (oob_required)
690                 fsl_ifc_read_buf(mtd, chip->oob_poi, mtd->oobsize);
691
692         if (ctrl->nand_stat & IFC_NAND_EVTER_STAT_ECCER) {
693                 if (!oob_required)
694                         fsl_ifc_read_buf(mtd, chip->oob_poi, mtd->oobsize);
695
696                 return check_erased_page(chip, buf);
697         }
698
699         if (ctrl->nand_stat != IFC_NAND_EVTER_STAT_OPC)
700                 mtd->ecc_stats.failed++;
701
702         return nctrl->max_bitflips;
703 }
704
705 /* ECC will be calculated automatically, and errors will be detected in
706  * waitfunc.
707  */
708 static int fsl_ifc_write_page(struct mtd_info *mtd, struct nand_chip *chip,
709                                const uint8_t *buf, int oob_required, int page)
710 {
711         fsl_ifc_write_buf(mtd, buf, mtd->writesize);
712         fsl_ifc_write_buf(mtd, chip->oob_poi, mtd->oobsize);
713
714         return 0;
715 }
716
717 static int fsl_ifc_chip_init_tail(struct mtd_info *mtd)
718 {
719         struct nand_chip *chip = mtd_to_nand(mtd);
720         struct fsl_ifc_mtd *priv = nand_get_controller_data(chip);
721
722         dev_dbg(priv->dev, "%s: nand->numchips = %d\n", __func__,
723                                                         chip->numchips);
724         dev_dbg(priv->dev, "%s: nand->chipsize = %lld\n", __func__,
725                                                         chip->chipsize);
726         dev_dbg(priv->dev, "%s: nand->pagemask = %8x\n", __func__,
727                                                         chip->pagemask);
728         dev_dbg(priv->dev, "%s: nand->chip_delay = %d\n", __func__,
729                                                         chip->chip_delay);
730         dev_dbg(priv->dev, "%s: nand->badblockpos = %d\n", __func__,
731                                                         chip->badblockpos);
732         dev_dbg(priv->dev, "%s: nand->chip_shift = %d\n", __func__,
733                                                         chip->chip_shift);
734         dev_dbg(priv->dev, "%s: nand->page_shift = %d\n", __func__,
735                                                         chip->page_shift);
736         dev_dbg(priv->dev, "%s: nand->phys_erase_shift = %d\n", __func__,
737                                                         chip->phys_erase_shift);
738         dev_dbg(priv->dev, "%s: nand->ecc.mode = %d\n", __func__,
739                                                         chip->ecc.mode);
740         dev_dbg(priv->dev, "%s: nand->ecc.steps = %d\n", __func__,
741                                                         chip->ecc.steps);
742         dev_dbg(priv->dev, "%s: nand->ecc.bytes = %d\n", __func__,
743                                                         chip->ecc.bytes);
744         dev_dbg(priv->dev, "%s: nand->ecc.total = %d\n", __func__,
745                                                         chip->ecc.total);
746         dev_dbg(priv->dev, "%s: mtd->ooblayout = %p\n", __func__,
747                                                         mtd->ooblayout);
748         dev_dbg(priv->dev, "%s: mtd->flags = %08x\n", __func__, mtd->flags);
749         dev_dbg(priv->dev, "%s: mtd->size = %lld\n", __func__, mtd->size);
750         dev_dbg(priv->dev, "%s: mtd->erasesize = %d\n", __func__,
751                                                         mtd->erasesize);
752         dev_dbg(priv->dev, "%s: mtd->writesize = %d\n", __func__,
753                                                         mtd->writesize);
754         dev_dbg(priv->dev, "%s: mtd->oobsize = %d\n", __func__,
755                                                         mtd->oobsize);
756
757         return 0;
758 }
759
760 static void fsl_ifc_sram_init(struct fsl_ifc_mtd *priv)
761 {
762         struct fsl_ifc_ctrl *ctrl = priv->ctrl;
763         struct fsl_ifc_runtime __iomem *ifc_runtime = ctrl->rregs;
764         struct fsl_ifc_global __iomem *ifc_global = ctrl->gregs;
765         uint32_t csor = 0, csor_8k = 0, csor_ext = 0;
766         uint32_t cs = priv->bank;
767
768         /* Save CSOR and CSOR_ext */
769         csor = ifc_in32(&ifc_global->csor_cs[cs].csor);
770         csor_ext = ifc_in32(&ifc_global->csor_cs[cs].csor_ext);
771
772         /* chage PageSize 8K and SpareSize 1K*/
773         csor_8k = (csor & ~(CSOR_NAND_PGS_MASK)) | 0x0018C000;
774         ifc_out32(csor_8k, &ifc_global->csor_cs[cs].csor);
775         ifc_out32(0x0000400, &ifc_global->csor_cs[cs].csor_ext);
776
777         /* READID */
778         ifc_out32((IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) |
779                     (IFC_FIR_OP_UA  << IFC_NAND_FIR0_OP1_SHIFT) |
780                     (IFC_FIR_OP_RB << IFC_NAND_FIR0_OP2_SHIFT),
781                     &ifc_runtime->ifc_nand.nand_fir0);
782         ifc_out32(NAND_CMD_READID << IFC_NAND_FCR0_CMD0_SHIFT,
783                     &ifc_runtime->ifc_nand.nand_fcr0);
784         ifc_out32(0x0, &ifc_runtime->ifc_nand.row3);
785
786         ifc_out32(0x0, &ifc_runtime->ifc_nand.nand_fbcr);
787
788         /* Program ROW0/COL0 */
789         ifc_out32(0x0, &ifc_runtime->ifc_nand.row0);
790         ifc_out32(0x0, &ifc_runtime->ifc_nand.col0);
791
792         /* set the chip select for NAND Transaction */
793         ifc_out32(cs << IFC_NAND_CSEL_SHIFT,
794                 &ifc_runtime->ifc_nand.nand_csel);
795
796         /* start read seq */
797         ifc_out32(IFC_NAND_SEQ_STRT_FIR_STRT,
798                 &ifc_runtime->ifc_nand.nandseq_strt);
799
800         /* wait for command complete flag or timeout */
801         wait_event_timeout(ctrl->nand_wait, ctrl->nand_stat,
802                            msecs_to_jiffies(IFC_TIMEOUT_MSECS));
803
804         if (ctrl->nand_stat != IFC_NAND_EVTER_STAT_OPC)
805                 printk(KERN_ERR "fsl-ifc: Failed to Initialise SRAM\n");
806
807         /* Restore CSOR and CSOR_ext */
808         ifc_out32(csor, &ifc_global->csor_cs[cs].csor);
809         ifc_out32(csor_ext, &ifc_global->csor_cs[cs].csor_ext);
810 }
811
812 static int fsl_ifc_chip_init(struct fsl_ifc_mtd *priv)
813 {
814         struct fsl_ifc_ctrl *ctrl = priv->ctrl;
815         struct fsl_ifc_global __iomem *ifc_global = ctrl->gregs;
816         struct fsl_ifc_runtime __iomem *ifc_runtime = ctrl->rregs;
817         struct nand_chip *chip = &priv->chip;
818         struct mtd_info *mtd = nand_to_mtd(&priv->chip);
819         u32 csor;
820
821         /* Fill in fsl_ifc_mtd structure */
822         mtd->dev.parent = priv->dev;
823         nand_set_flash_node(chip, priv->dev->of_node);
824
825         /* fill in nand_chip structure */
826         /* set up function call table */
827         if ((ifc_in32(&ifc_global->cspr_cs[priv->bank].cspr))
828                 & CSPR_PORT_SIZE_16)
829                 chip->read_byte = fsl_ifc_read_byte16;
830         else
831                 chip->read_byte = fsl_ifc_read_byte;
832
833         chip->write_buf = fsl_ifc_write_buf;
834         chip->read_buf = fsl_ifc_read_buf;
835         chip->select_chip = fsl_ifc_select_chip;
836         chip->cmdfunc = fsl_ifc_cmdfunc;
837         chip->waitfunc = fsl_ifc_wait;
838         chip->onfi_set_features = nand_onfi_get_set_features_notsupp;
839         chip->onfi_get_features = nand_onfi_get_set_features_notsupp;
840
841         chip->bbt_td = &bbt_main_descr;
842         chip->bbt_md = &bbt_mirror_descr;
843
844         ifc_out32(0x0, &ifc_runtime->ifc_nand.ncfgr);
845
846         /* set up nand options */
847         chip->bbt_options = NAND_BBT_USE_FLASH;
848         chip->options = NAND_NO_SUBPAGE_WRITE;
849
850         if (ifc_in32(&ifc_global->cspr_cs[priv->bank].cspr)
851                 & CSPR_PORT_SIZE_16) {
852                 chip->read_byte = fsl_ifc_read_byte16;
853                 chip->options |= NAND_BUSWIDTH_16;
854         } else {
855                 chip->read_byte = fsl_ifc_read_byte;
856         }
857
858         chip->controller = &ifc_nand_ctrl->controller;
859         nand_set_controller_data(chip, priv);
860
861         chip->ecc.read_page = fsl_ifc_read_page;
862         chip->ecc.write_page = fsl_ifc_write_page;
863
864         csor = ifc_in32(&ifc_global->csor_cs[priv->bank].csor);
865
866         switch (csor & CSOR_NAND_PGS_MASK) {
867         case CSOR_NAND_PGS_512:
868                 if (!(chip->options & NAND_BUSWIDTH_16)) {
869                         /* Avoid conflict with bad block marker */
870                         bbt_main_descr.offs = 0;
871                         bbt_mirror_descr.offs = 0;
872                 }
873
874                 priv->bufnum_mask = 15;
875                 break;
876
877         case CSOR_NAND_PGS_2K:
878                 priv->bufnum_mask = 3;
879                 break;
880
881         case CSOR_NAND_PGS_4K:
882                 priv->bufnum_mask = 1;
883                 break;
884
885         case CSOR_NAND_PGS_8K:
886                 priv->bufnum_mask = 0;
887                 break;
888
889         default:
890                 dev_err(priv->dev, "bad csor %#x: bad page size\n", csor);
891                 return -ENODEV;
892         }
893
894         /* Must also set CSOR_NAND_ECC_ENC_EN if DEC_EN set */
895         if (csor & CSOR_NAND_ECC_DEC_EN) {
896                 chip->ecc.mode = NAND_ECC_HW;
897                 mtd_set_ooblayout(mtd, &fsl_ifc_ooblayout_ops);
898
899                 /* Hardware generates ECC per 512 Bytes */
900                 chip->ecc.size = 512;
901                 if ((csor & CSOR_NAND_ECC_MODE_MASK) == CSOR_NAND_ECC_MODE_4) {
902                         chip->ecc.bytes = 8;
903                         chip->ecc.strength = 4;
904                 } else {
905                         chip->ecc.bytes = 16;
906                         chip->ecc.strength = 8;
907                 }
908         } else {
909                 chip->ecc.mode = NAND_ECC_SOFT;
910                 chip->ecc.algo = NAND_ECC_HAMMING;
911         }
912
913         if (ctrl->version >= FSL_IFC_VERSION_1_1_0)
914                 fsl_ifc_sram_init(priv);
915
916         /*
917          * As IFC version 2.0.0 has 16KB of internal SRAM as compared to older
918          * versions which had 8KB. Hence bufnum mask needs to be updated.
919          */
920         if (ctrl->version >= FSL_IFC_VERSION_2_0_0)
921                 priv->bufnum_mask = (priv->bufnum_mask * 2) + 1;
922
923         return 0;
924 }
925
926 static int fsl_ifc_chip_remove(struct fsl_ifc_mtd *priv)
927 {
928         struct mtd_info *mtd = nand_to_mtd(&priv->chip);
929
930         nand_release(mtd);
931
932         kfree(mtd->name);
933
934         if (priv->vbase)
935                 iounmap(priv->vbase);
936
937         ifc_nand_ctrl->chips[priv->bank] = NULL;
938
939         return 0;
940 }
941
942 static int match_bank(struct fsl_ifc_global __iomem *ifc_global, int bank,
943                       phys_addr_t addr)
944 {
945         u32 cspr = ifc_in32(&ifc_global->cspr_cs[bank].cspr);
946
947         if (!(cspr & CSPR_V))
948                 return 0;
949         if ((cspr & CSPR_MSEL) != CSPR_MSEL_NAND)
950                 return 0;
951
952         return (cspr & CSPR_BA) == convert_ifc_address(addr);
953 }
954
955 static DEFINE_MUTEX(fsl_ifc_nand_mutex);
956
957 static int fsl_ifc_nand_probe(struct platform_device *dev)
958 {
959         struct fsl_ifc_runtime __iomem *ifc;
960         struct fsl_ifc_mtd *priv;
961         struct resource res;
962         static const char *part_probe_types[]
963                 = { "cmdlinepart", "RedBoot", "ofpart", NULL };
964         int ret;
965         int bank;
966         struct device_node *node = dev->dev.of_node;
967         struct mtd_info *mtd;
968
969         if (!fsl_ifc_ctrl_dev || !fsl_ifc_ctrl_dev->rregs)
970                 return -ENODEV;
971         ifc = fsl_ifc_ctrl_dev->rregs;
972
973         /* get, allocate and map the memory resource */
974         ret = of_address_to_resource(node, 0, &res);
975         if (ret) {
976                 dev_err(&dev->dev, "%s: failed to get resource\n", __func__);
977                 return ret;
978         }
979
980         /* find which chip select it is connected to */
981         for (bank = 0; bank < fsl_ifc_ctrl_dev->banks; bank++) {
982                 if (match_bank(fsl_ifc_ctrl_dev->gregs, bank, res.start))
983                         break;
984         }
985
986         if (bank >= fsl_ifc_ctrl_dev->banks) {
987                 dev_err(&dev->dev, "%s: address did not match any chip selects\n",
988                         __func__);
989                 return -ENODEV;
990         }
991
992         priv = devm_kzalloc(&dev->dev, sizeof(*priv), GFP_KERNEL);
993         if (!priv)
994                 return -ENOMEM;
995
996         mutex_lock(&fsl_ifc_nand_mutex);
997         if (!fsl_ifc_ctrl_dev->nand) {
998                 ifc_nand_ctrl = kzalloc(sizeof(*ifc_nand_ctrl), GFP_KERNEL);
999                 if (!ifc_nand_ctrl) {
1000                         mutex_unlock(&fsl_ifc_nand_mutex);
1001                         return -ENOMEM;
1002                 }
1003
1004                 ifc_nand_ctrl->read_bytes = 0;
1005                 ifc_nand_ctrl->index = 0;
1006                 ifc_nand_ctrl->addr = NULL;
1007                 fsl_ifc_ctrl_dev->nand = ifc_nand_ctrl;
1008
1009                 nand_hw_control_init(&ifc_nand_ctrl->controller);
1010         } else {
1011                 ifc_nand_ctrl = fsl_ifc_ctrl_dev->nand;
1012         }
1013         mutex_unlock(&fsl_ifc_nand_mutex);
1014
1015         ifc_nand_ctrl->chips[bank] = priv;
1016         priv->bank = bank;
1017         priv->ctrl = fsl_ifc_ctrl_dev;
1018         priv->dev = &dev->dev;
1019
1020         priv->vbase = ioremap(res.start, resource_size(&res));
1021         if (!priv->vbase) {
1022                 dev_err(priv->dev, "%s: failed to map chip region\n", __func__);
1023                 ret = -ENOMEM;
1024                 goto err;
1025         }
1026
1027         dev_set_drvdata(priv->dev, priv);
1028
1029         ifc_out32(IFC_NAND_EVTER_EN_OPC_EN |
1030                   IFC_NAND_EVTER_EN_FTOER_EN |
1031                   IFC_NAND_EVTER_EN_WPER_EN,
1032                   &ifc->ifc_nand.nand_evter_en);
1033
1034         /* enable NAND Machine Interrupts */
1035         ifc_out32(IFC_NAND_EVTER_INTR_OPCIR_EN |
1036                   IFC_NAND_EVTER_INTR_FTOERIR_EN |
1037                   IFC_NAND_EVTER_INTR_WPERIR_EN,
1038                   &ifc->ifc_nand.nand_evter_intr_en);
1039
1040         mtd = nand_to_mtd(&priv->chip);
1041         mtd->name = kasprintf(GFP_KERNEL, "%llx.flash", (u64)res.start);
1042         if (!mtd->name) {
1043                 ret = -ENOMEM;
1044                 goto err;
1045         }
1046
1047         ret = fsl_ifc_chip_init(priv);
1048         if (ret)
1049                 goto err;
1050
1051         ret = nand_scan_ident(mtd, 1, NULL);
1052         if (ret)
1053                 goto err;
1054
1055         ret = fsl_ifc_chip_init_tail(mtd);
1056         if (ret)
1057                 goto err;
1058
1059         ret = nand_scan_tail(mtd);
1060         if (ret)
1061                 goto err;
1062
1063         /* First look for RedBoot table or partitions on the command
1064          * line, these take precedence over device tree information */
1065         mtd_device_parse_register(mtd, part_probe_types, NULL, NULL, 0);
1066
1067         dev_info(priv->dev, "IFC NAND device at 0x%llx, bank %d\n",
1068                  (unsigned long long)res.start, priv->bank);
1069         return 0;
1070
1071 err:
1072         fsl_ifc_chip_remove(priv);
1073         return ret;
1074 }
1075
1076 static int fsl_ifc_nand_remove(struct platform_device *dev)
1077 {
1078         struct fsl_ifc_mtd *priv = dev_get_drvdata(&dev->dev);
1079
1080         fsl_ifc_chip_remove(priv);
1081
1082         mutex_lock(&fsl_ifc_nand_mutex);
1083         ifc_nand_ctrl->counter--;
1084         if (!ifc_nand_ctrl->counter) {
1085                 fsl_ifc_ctrl_dev->nand = NULL;
1086                 kfree(ifc_nand_ctrl);
1087         }
1088         mutex_unlock(&fsl_ifc_nand_mutex);
1089
1090         return 0;
1091 }
1092
1093 static const struct of_device_id fsl_ifc_nand_match[] = {
1094         {
1095                 .compatible = "fsl,ifc-nand",
1096         },
1097         {}
1098 };
1099 MODULE_DEVICE_TABLE(of, fsl_ifc_nand_match);
1100
1101 static struct platform_driver fsl_ifc_nand_driver = {
1102         .driver = {
1103                 .name   = "fsl,ifc-nand",
1104                 .of_match_table = fsl_ifc_nand_match,
1105         },
1106         .probe       = fsl_ifc_nand_probe,
1107         .remove      = fsl_ifc_nand_remove,
1108 };
1109
1110 module_platform_driver(fsl_ifc_nand_driver);
1111
1112 MODULE_LICENSE("GPL");
1113 MODULE_AUTHOR("Freescale");
1114 MODULE_DESCRIPTION("Freescale Integrated Flash Controller MTD NAND driver");