Linux-libre 3.0.78-gnu1
[librecmc/linux-libre.git] / drivers / mtd / lpddr / lpddr_cmds.c
1 /*
2  * LPDDR flash memory device operations. This module provides read, write,
3  * erase, lock/unlock support for LPDDR flash memories
4  * (C) 2008 Korolev Alexey <akorolev@infradead.org>
5  * (C) 2008 Vasiliy Leonenko <vasiliy.leonenko@gmail.com>
6  * Many thanks to Roman Borisov for initial enabling
7  *
8  * This program is free software; you can redistribute it and/or
9  * modify it under the terms of the GNU General Public License
10  * as published by the Free Software Foundation; either version 2
11  * of the License, or (at your option) any later version.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  * GNU General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software
20  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
21  * 02110-1301, USA.
22  * TODO:
23  * Implement VPP management
24  * Implement XIP support
25  * Implement OTP support
26  */
27 #include <linux/mtd/pfow.h>
28 #include <linux/mtd/qinfo.h>
29 #include <linux/slab.h>
30
31 static int lpddr_read(struct mtd_info *mtd, loff_t adr, size_t len,
32                                         size_t *retlen, u_char *buf);
33 static int lpddr_write_buffers(struct mtd_info *mtd, loff_t to,
34                                 size_t len, size_t *retlen, const u_char *buf);
35 static int lpddr_writev(struct mtd_info *mtd, const struct kvec *vecs,
36                                 unsigned long count, loff_t to, size_t *retlen);
37 static int lpddr_erase(struct mtd_info *mtd, struct erase_info *instr);
38 static int lpddr_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len);
39 static int lpddr_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len);
40 static int lpddr_point(struct mtd_info *mtd, loff_t adr, size_t len,
41                         size_t *retlen, void **mtdbuf, resource_size_t *phys);
42 static void lpddr_unpoint(struct mtd_info *mtd, loff_t adr, size_t len);
43 static int get_chip(struct map_info *map, struct flchip *chip, int mode);
44 static int chip_ready(struct map_info *map, struct flchip *chip, int mode);
45 static void put_chip(struct map_info *map, struct flchip *chip);
46
47 struct mtd_info *lpddr_cmdset(struct map_info *map)
48 {
49         struct lpddr_private *lpddr = map->fldrv_priv;
50         struct flchip_shared *shared;
51         struct flchip *chip;
52         struct mtd_info *mtd;
53         int numchips;
54         int i, j;
55
56         mtd = kzalloc(sizeof(*mtd), GFP_KERNEL);
57         if (!mtd) {
58                 printk(KERN_ERR "Failed to allocate memory for MTD device\n");
59                 return NULL;
60         }
61         mtd->priv = map;
62         mtd->type = MTD_NORFLASH;
63
64         /* Fill in the default mtd operations */
65         mtd->read = lpddr_read;
66         mtd->type = MTD_NORFLASH;
67         mtd->flags = MTD_CAP_NORFLASH;
68         mtd->flags &= ~MTD_BIT_WRITEABLE;
69         mtd->erase = lpddr_erase;
70         mtd->write = lpddr_write_buffers;
71         mtd->writev = lpddr_writev;
72         mtd->read_oob = NULL;
73         mtd->write_oob = NULL;
74         mtd->sync = NULL;
75         mtd->lock = lpddr_lock;
76         mtd->unlock = lpddr_unlock;
77         mtd->suspend = NULL;
78         mtd->resume = NULL;
79         if (map_is_linear(map)) {
80                 mtd->point = lpddr_point;
81                 mtd->unpoint = lpddr_unpoint;
82         }
83         mtd->block_isbad = NULL;
84         mtd->block_markbad = NULL;
85         mtd->size = 1 << lpddr->qinfo->DevSizeShift;
86         mtd->erasesize = 1 << lpddr->qinfo->UniformBlockSizeShift;
87         mtd->writesize = 1 << lpddr->qinfo->BufSizeShift;
88
89         shared = kmalloc(sizeof(struct flchip_shared) * lpddr->numchips,
90                                                 GFP_KERNEL);
91         if (!shared) {
92                 kfree(lpddr);
93                 kfree(mtd);
94                 return NULL;
95         }
96
97         chip = &lpddr->chips[0];
98         numchips = lpddr->numchips / lpddr->qinfo->HWPartsNum;
99         for (i = 0; i < numchips; i++) {
100                 shared[i].writing = shared[i].erasing = NULL;
101                 mutex_init(&shared[i].lock);
102                 for (j = 0; j < lpddr->qinfo->HWPartsNum; j++) {
103                         *chip = lpddr->chips[i];
104                         chip->start += j << lpddr->chipshift;
105                         chip->oldstate = chip->state = FL_READY;
106                         chip->priv = &shared[i];
107                         /* those should be reset too since
108                            they create memory references. */
109                         init_waitqueue_head(&chip->wq);
110                         mutex_init(&chip->mutex);
111                         chip++;
112                 }
113         }
114
115         return mtd;
116 }
117 EXPORT_SYMBOL(lpddr_cmdset);
118
119 static int wait_for_ready(struct map_info *map, struct flchip *chip,
120                 unsigned int chip_op_time)
121 {
122         unsigned int timeo, reset_timeo, sleep_time;
123         unsigned int dsr;
124         flstate_t chip_state = chip->state;
125         int ret = 0;
126
127         /* set our timeout to 8 times the expected delay */
128         timeo = chip_op_time * 8;
129         if (!timeo)
130                 timeo = 500000;
131         reset_timeo = timeo;
132         sleep_time = chip_op_time / 2;
133
134         for (;;) {
135                 dsr = CMDVAL(map_read(map, map->pfow_base + PFOW_DSR));
136                 if (dsr & DSR_READY_STATUS)
137                         break;
138                 if (!timeo) {
139                         printk(KERN_ERR "%s: Flash timeout error state %d \n",
140                                                         map->name, chip_state);
141                         ret = -ETIME;
142                         break;
143                 }
144
145                 /* OK Still waiting. Drop the lock, wait a while and retry. */
146                 mutex_unlock(&chip->mutex);
147                 if (sleep_time >= 1000000/HZ) {
148                         /*
149                          * Half of the normal delay still remaining
150                          * can be performed with a sleeping delay instead
151                          * of busy waiting.
152                          */
153                         msleep(sleep_time/1000);
154                         timeo -= sleep_time;
155                         sleep_time = 1000000/HZ;
156                 } else {
157                         udelay(1);
158                         cond_resched();
159                         timeo--;
160                 }
161                 mutex_lock(&chip->mutex);
162
163                 while (chip->state != chip_state) {
164                         /* Someone's suspended the operation: sleep */
165                         DECLARE_WAITQUEUE(wait, current);
166                         set_current_state(TASK_UNINTERRUPTIBLE);
167                         add_wait_queue(&chip->wq, &wait);
168                         mutex_unlock(&chip->mutex);
169                         schedule();
170                         remove_wait_queue(&chip->wq, &wait);
171                         mutex_lock(&chip->mutex);
172                 }
173                 if (chip->erase_suspended || chip->write_suspended)  {
174                         /* Suspend has occurred while sleep: reset timeout */
175                         timeo = reset_timeo;
176                         chip->erase_suspended = chip->write_suspended = 0;
177                 }
178         }
179         /* check status for errors */
180         if (dsr & DSR_ERR) {
181                 /* Clear DSR*/
182                 map_write(map, CMD(~(DSR_ERR)), map->pfow_base + PFOW_DSR);
183                 printk(KERN_WARNING"%s: Bad status on wait: 0x%x \n",
184                                 map->name, dsr);
185                 print_drs_error(dsr);
186                 ret = -EIO;
187         }
188         chip->state = FL_READY;
189         return ret;
190 }
191
192 static int get_chip(struct map_info *map, struct flchip *chip, int mode)
193 {
194         int ret;
195         DECLARE_WAITQUEUE(wait, current);
196
197  retry:
198         if (chip->priv && (mode == FL_WRITING || mode == FL_ERASING)
199                 && chip->state != FL_SYNCING) {
200                 /*
201                  * OK. We have possibility for contension on the write/erase
202                  * operations which are global to the real chip and not per
203                  * partition.  So let's fight it over in the partition which
204                  * currently has authority on the operation.
205                  *
206                  * The rules are as follows:
207                  *
208                  * - any write operation must own shared->writing.
209                  *
210                  * - any erase operation must own _both_ shared->writing and
211                  *   shared->erasing.
212                  *
213                  * - contension arbitration is handled in the owner's context.
214                  *
215                  * The 'shared' struct can be read and/or written only when
216                  * its lock is taken.
217                  */
218                 struct flchip_shared *shared = chip->priv;
219                 struct flchip *contender;
220                 mutex_lock(&shared->lock);
221                 contender = shared->writing;
222                 if (contender && contender != chip) {
223                         /*
224                          * The engine to perform desired operation on this
225                          * partition is already in use by someone else.
226                          * Let's fight over it in the context of the chip
227                          * currently using it.  If it is possible to suspend,
228                          * that other partition will do just that, otherwise
229                          * it'll happily send us to sleep.  In any case, when
230                          * get_chip returns success we're clear to go ahead.
231                          */
232                         ret = mutex_trylock(&contender->mutex);
233                         mutex_unlock(&shared->lock);
234                         if (!ret)
235                                 goto retry;
236                         mutex_unlock(&chip->mutex);
237                         ret = chip_ready(map, contender, mode);
238                         mutex_lock(&chip->mutex);
239
240                         if (ret == -EAGAIN) {
241                                 mutex_unlock(&contender->mutex);
242                                 goto retry;
243                         }
244                         if (ret) {
245                                 mutex_unlock(&contender->mutex);
246                                 return ret;
247                         }
248                         mutex_lock(&shared->lock);
249
250                         /* We should not own chip if it is already in FL_SYNCING
251                          * state. Put contender and retry. */
252                         if (chip->state == FL_SYNCING) {
253                                 put_chip(map, contender);
254                                 mutex_unlock(&contender->mutex);
255                                 goto retry;
256                         }
257                         mutex_unlock(&contender->mutex);
258                 }
259
260                 /* Check if we have suspended erase on this chip.
261                    Must sleep in such a case. */
262                 if (mode == FL_ERASING && shared->erasing
263                     && shared->erasing->oldstate == FL_ERASING) {
264                         mutex_unlock(&shared->lock);
265                         set_current_state(TASK_UNINTERRUPTIBLE);
266                         add_wait_queue(&chip->wq, &wait);
267                         mutex_unlock(&chip->mutex);
268                         schedule();
269                         remove_wait_queue(&chip->wq, &wait);
270                         mutex_lock(&chip->mutex);
271                         goto retry;
272                 }
273
274                 /* We now own it */
275                 shared->writing = chip;
276                 if (mode == FL_ERASING)
277                         shared->erasing = chip;
278                 mutex_unlock(&shared->lock);
279         }
280
281         ret = chip_ready(map, chip, mode);
282         if (ret == -EAGAIN)
283                 goto retry;
284
285         return ret;
286 }
287
288 static int chip_ready(struct map_info *map, struct flchip *chip, int mode)
289 {
290         struct lpddr_private *lpddr = map->fldrv_priv;
291         int ret = 0;
292         DECLARE_WAITQUEUE(wait, current);
293
294         /* Prevent setting state FL_SYNCING for chip in suspended state. */
295         if (FL_SYNCING == mode && FL_READY != chip->oldstate)
296                 goto sleep;
297
298         switch (chip->state) {
299         case FL_READY:
300         case FL_JEDEC_QUERY:
301                 return 0;
302
303         case FL_ERASING:
304                 if (!lpddr->qinfo->SuspEraseSupp ||
305                         !(mode == FL_READY || mode == FL_POINT))
306                         goto sleep;
307
308                 map_write(map, CMD(LPDDR_SUSPEND),
309                         map->pfow_base + PFOW_PROGRAM_ERASE_SUSPEND);
310                 chip->oldstate = FL_ERASING;
311                 chip->state = FL_ERASE_SUSPENDING;
312                 ret = wait_for_ready(map, chip, 0);
313                 if (ret) {
314                         /* Oops. something got wrong. */
315                         /* Resume and pretend we weren't here.  */
316                         put_chip(map, chip);
317                         printk(KERN_ERR "%s: suspend operation failed."
318                                         "State may be wrong \n", map->name);
319                         return -EIO;
320                 }
321                 chip->erase_suspended = 1;
322                 chip->state = FL_READY;
323                 return 0;
324                 /* Erase suspend */
325         case FL_POINT:
326                 /* Only if there's no operation suspended... */
327                 if (mode == FL_READY && chip->oldstate == FL_READY)
328                         return 0;
329
330         default:
331 sleep:
332                 set_current_state(TASK_UNINTERRUPTIBLE);
333                 add_wait_queue(&chip->wq, &wait);
334                 mutex_unlock(&chip->mutex);
335                 schedule();
336                 remove_wait_queue(&chip->wq, &wait);
337                 mutex_lock(&chip->mutex);
338                 return -EAGAIN;
339         }
340 }
341
342 static void put_chip(struct map_info *map, struct flchip *chip)
343 {
344         if (chip->priv) {
345                 struct flchip_shared *shared = chip->priv;
346                 mutex_lock(&shared->lock);
347                 if (shared->writing == chip && chip->oldstate == FL_READY) {
348                         /* We own the ability to write, but we're done */
349                         shared->writing = shared->erasing;
350                         if (shared->writing && shared->writing != chip) {
351                                 /* give back the ownership */
352                                 struct flchip *loaner = shared->writing;
353                                 mutex_lock(&loaner->mutex);
354                                 mutex_unlock(&shared->lock);
355                                 mutex_unlock(&chip->mutex);
356                                 put_chip(map, loaner);
357                                 mutex_lock(&chip->mutex);
358                                 mutex_unlock(&loaner->mutex);
359                                 wake_up(&chip->wq);
360                                 return;
361                         }
362                         shared->erasing = NULL;
363                         shared->writing = NULL;
364                 } else if (shared->erasing == chip && shared->writing != chip) {
365                         /*
366                          * We own the ability to erase without the ability
367                          * to write, which means the erase was suspended
368                          * and some other partition is currently writing.
369                          * Don't let the switch below mess things up since
370                          * we don't have ownership to resume anything.
371                          */
372                         mutex_unlock(&shared->lock);
373                         wake_up(&chip->wq);
374                         return;
375                 }
376                 mutex_unlock(&shared->lock);
377         }
378
379         switch (chip->oldstate) {
380         case FL_ERASING:
381                 map_write(map, CMD(LPDDR_RESUME),
382                                 map->pfow_base + PFOW_COMMAND_CODE);
383                 map_write(map, CMD(LPDDR_START_EXECUTION),
384                                 map->pfow_base + PFOW_COMMAND_EXECUTE);
385                 chip->oldstate = FL_READY;
386                 chip->state = FL_ERASING;
387                 break;
388         case FL_READY:
389                 break;
390         default:
391                 printk(KERN_ERR "%s: put_chip() called with oldstate %d!\n",
392                                 map->name, chip->oldstate);
393         }
394         wake_up(&chip->wq);
395 }
396
397 int do_write_buffer(struct map_info *map, struct flchip *chip,
398                         unsigned long adr, const struct kvec **pvec,
399                         unsigned long *pvec_seek, int len)
400 {
401         struct lpddr_private *lpddr = map->fldrv_priv;
402         map_word datum;
403         int ret, wbufsize, word_gap, words;
404         const struct kvec *vec;
405         unsigned long vec_seek;
406         unsigned long prog_buf_ofs;
407
408         wbufsize = 1 << lpddr->qinfo->BufSizeShift;
409
410         mutex_lock(&chip->mutex);
411         ret = get_chip(map, chip, FL_WRITING);
412         if (ret) {
413                 mutex_unlock(&chip->mutex);
414                 return ret;
415         }
416         /* Figure out the number of words to write */
417         word_gap = (-adr & (map_bankwidth(map)-1));
418         words = (len - word_gap + map_bankwidth(map) - 1) / map_bankwidth(map);
419         if (!word_gap) {
420                 words--;
421         } else {
422                 word_gap = map_bankwidth(map) - word_gap;
423                 adr -= word_gap;
424                 datum = map_word_ff(map);
425         }
426         /* Write data */
427         /* Get the program buffer offset from PFOW register data first*/
428         prog_buf_ofs = map->pfow_base + CMDVAL(map_read(map,
429                                 map->pfow_base + PFOW_PROGRAM_BUFFER_OFFSET));
430         vec = *pvec;
431         vec_seek = *pvec_seek;
432         do {
433                 int n = map_bankwidth(map) - word_gap;
434
435                 if (n > vec->iov_len - vec_seek)
436                         n = vec->iov_len - vec_seek;
437                 if (n > len)
438                         n = len;
439
440                 if (!word_gap && (len < map_bankwidth(map)))
441                         datum = map_word_ff(map);
442
443                 datum = map_word_load_partial(map, datum,
444                                 vec->iov_base + vec_seek, word_gap, n);
445
446                 len -= n;
447                 word_gap += n;
448                 if (!len || word_gap == map_bankwidth(map)) {
449                         map_write(map, datum, prog_buf_ofs);
450                         prog_buf_ofs += map_bankwidth(map);
451                         word_gap = 0;
452                 }
453
454                 vec_seek += n;
455                 if (vec_seek == vec->iov_len) {
456                         vec++;
457                         vec_seek = 0;
458                 }
459         } while (len);
460         *pvec = vec;
461         *pvec_seek = vec_seek;
462
463         /* GO GO GO */
464         send_pfow_command(map, LPDDR_BUFF_PROGRAM, adr, wbufsize, NULL);
465         chip->state = FL_WRITING;
466         ret = wait_for_ready(map, chip, (1<<lpddr->qinfo->ProgBufferTime));
467         if (ret)        {
468                 printk(KERN_WARNING"%s Buffer program error: %d at %lx; \n",
469                         map->name, ret, adr);
470                 goto out;
471         }
472
473  out:   put_chip(map, chip);
474         mutex_unlock(&chip->mutex);
475         return ret;
476 }
477
478 int do_erase_oneblock(struct mtd_info *mtd, loff_t adr)
479 {
480         struct map_info *map = mtd->priv;
481         struct lpddr_private *lpddr = map->fldrv_priv;
482         int chipnum = adr >> lpddr->chipshift;
483         struct flchip *chip = &lpddr->chips[chipnum];
484         int ret;
485
486         mutex_lock(&chip->mutex);
487         ret = get_chip(map, chip, FL_ERASING);
488         if (ret) {
489                 mutex_unlock(&chip->mutex);
490                 return ret;
491         }
492         send_pfow_command(map, LPDDR_BLOCK_ERASE, adr, 0, NULL);
493         chip->state = FL_ERASING;
494         ret = wait_for_ready(map, chip, (1<<lpddr->qinfo->BlockEraseTime)*1000);
495         if (ret) {
496                 printk(KERN_WARNING"%s Erase block error %d at : %llx\n",
497                         map->name, ret, adr);
498                 goto out;
499         }
500  out:   put_chip(map, chip);
501         mutex_unlock(&chip->mutex);
502         return ret;
503 }
504
505 static int lpddr_read(struct mtd_info *mtd, loff_t adr, size_t len,
506                         size_t *retlen, u_char *buf)
507 {
508         struct map_info *map = mtd->priv;
509         struct lpddr_private *lpddr = map->fldrv_priv;
510         int chipnum = adr >> lpddr->chipshift;
511         struct flchip *chip = &lpddr->chips[chipnum];
512         int ret = 0;
513
514         mutex_lock(&chip->mutex);
515         ret = get_chip(map, chip, FL_READY);
516         if (ret) {
517                 mutex_unlock(&chip->mutex);
518                 return ret;
519         }
520
521         map_copy_from(map, buf, adr, len);
522         *retlen = len;
523
524         put_chip(map, chip);
525         mutex_unlock(&chip->mutex);
526         return ret;
527 }
528
529 static int lpddr_point(struct mtd_info *mtd, loff_t adr, size_t len,
530                         size_t *retlen, void **mtdbuf, resource_size_t *phys)
531 {
532         struct map_info *map = mtd->priv;
533         struct lpddr_private *lpddr = map->fldrv_priv;
534         int chipnum = adr >> lpddr->chipshift;
535         unsigned long ofs, last_end = 0;
536         struct flchip *chip = &lpddr->chips[chipnum];
537         int ret = 0;
538
539         if (!map->virt || (adr + len > mtd->size))
540                 return -EINVAL;
541
542         /* ofs: offset within the first chip that the first read should start */
543         ofs = adr - (chipnum << lpddr->chipshift);
544
545         *mtdbuf = (void *)map->virt + chip->start + ofs;
546         *retlen = 0;
547
548         while (len) {
549                 unsigned long thislen;
550
551                 if (chipnum >= lpddr->numchips)
552                         break;
553
554                 /* We cannot point across chips that are virtually disjoint */
555                 if (!last_end)
556                         last_end = chip->start;
557                 else if (chip->start != last_end)
558                         break;
559
560                 if ((len + ofs - 1) >> lpddr->chipshift)
561                         thislen = (1<<lpddr->chipshift) - ofs;
562                 else
563                         thislen = len;
564                 /* get the chip */
565                 mutex_lock(&chip->mutex);
566                 ret = get_chip(map, chip, FL_POINT);
567                 mutex_unlock(&chip->mutex);
568                 if (ret)
569                         break;
570
571                 chip->state = FL_POINT;
572                 chip->ref_point_counter++;
573                 *retlen += thislen;
574                 len -= thislen;
575
576                 ofs = 0;
577                 last_end += 1 << lpddr->chipshift;
578                 chipnum++;
579                 chip = &lpddr->chips[chipnum];
580         }
581         return 0;
582 }
583
584 static void lpddr_unpoint (struct mtd_info *mtd, loff_t adr, size_t len)
585 {
586         struct map_info *map = mtd->priv;
587         struct lpddr_private *lpddr = map->fldrv_priv;
588         int chipnum = adr >> lpddr->chipshift;
589         unsigned long ofs;
590
591         /* ofs: offset within the first chip that the first read should start */
592         ofs = adr - (chipnum << lpddr->chipshift);
593
594         while (len) {
595                 unsigned long thislen;
596                 struct flchip *chip;
597
598                 chip = &lpddr->chips[chipnum];
599                 if (chipnum >= lpddr->numchips)
600                         break;
601
602                 if ((len + ofs - 1) >> lpddr->chipshift)
603                         thislen = (1<<lpddr->chipshift) - ofs;
604                 else
605                         thislen = len;
606
607                 mutex_lock(&chip->mutex);
608                 if (chip->state == FL_POINT) {
609                         chip->ref_point_counter--;
610                         if (chip->ref_point_counter == 0)
611                                 chip->state = FL_READY;
612                 } else
613                         printk(KERN_WARNING "%s: Warning: unpoint called on non"
614                                         "pointed region\n", map->name);
615
616                 put_chip(map, chip);
617                 mutex_unlock(&chip->mutex);
618
619                 len -= thislen;
620                 ofs = 0;
621                 chipnum++;
622         }
623 }
624
625 static int lpddr_write_buffers(struct mtd_info *mtd, loff_t to, size_t len,
626                                 size_t *retlen, const u_char *buf)
627 {
628         struct kvec vec;
629
630         vec.iov_base = (void *) buf;
631         vec.iov_len = len;
632
633         return lpddr_writev(mtd, &vec, 1, to, retlen);
634 }
635
636
637 static int lpddr_writev(struct mtd_info *mtd, const struct kvec *vecs,
638                                 unsigned long count, loff_t to, size_t *retlen)
639 {
640         struct map_info *map = mtd->priv;
641         struct lpddr_private *lpddr = map->fldrv_priv;
642         int ret = 0;
643         int chipnum;
644         unsigned long ofs, vec_seek, i;
645         int wbufsize = 1 << lpddr->qinfo->BufSizeShift;
646
647         size_t len = 0;
648
649         for (i = 0; i < count; i++)
650                 len += vecs[i].iov_len;
651
652         *retlen = 0;
653         if (!len)
654                 return 0;
655
656         chipnum = to >> lpddr->chipshift;
657
658         ofs = to;
659         vec_seek = 0;
660
661         do {
662                 /* We must not cross write block boundaries */
663                 int size = wbufsize - (ofs & (wbufsize-1));
664
665                 if (size > len)
666                         size = len;
667
668                 ret = do_write_buffer(map, &lpddr->chips[chipnum],
669                                           ofs, &vecs, &vec_seek, size);
670                 if (ret)
671                         return ret;
672
673                 ofs += size;
674                 (*retlen) += size;
675                 len -= size;
676
677                 /* Be nice and reschedule with the chip in a usable
678                  * state for other processes */
679                 cond_resched();
680
681         } while (len);
682
683         return 0;
684 }
685
686 static int lpddr_erase(struct mtd_info *mtd, struct erase_info *instr)
687 {
688         unsigned long ofs, len;
689         int ret;
690         struct map_info *map = mtd->priv;
691         struct lpddr_private *lpddr = map->fldrv_priv;
692         int size = 1 << lpddr->qinfo->UniformBlockSizeShift;
693
694         ofs = instr->addr;
695         len = instr->len;
696
697         if (ofs > mtd->size || (len + ofs) > mtd->size)
698                 return -EINVAL;
699
700         while (len > 0) {
701                 ret = do_erase_oneblock(mtd, ofs);
702                 if (ret)
703                         return ret;
704                 ofs += size;
705                 len -= size;
706         }
707         instr->state = MTD_ERASE_DONE;
708         mtd_erase_callback(instr);
709
710         return 0;
711 }
712
713 #define DO_XXLOCK_LOCK          1
714 #define DO_XXLOCK_UNLOCK        2
715 int do_xxlock(struct mtd_info *mtd, loff_t adr, uint32_t len, int thunk)
716 {
717         int ret = 0;
718         struct map_info *map = mtd->priv;
719         struct lpddr_private *lpddr = map->fldrv_priv;
720         int chipnum = adr >> lpddr->chipshift;
721         struct flchip *chip = &lpddr->chips[chipnum];
722
723         mutex_lock(&chip->mutex);
724         ret = get_chip(map, chip, FL_LOCKING);
725         if (ret) {
726                 mutex_unlock(&chip->mutex);
727                 return ret;
728         }
729
730         if (thunk == DO_XXLOCK_LOCK) {
731                 send_pfow_command(map, LPDDR_LOCK_BLOCK, adr, adr + len, NULL);
732                 chip->state = FL_LOCKING;
733         } else if (thunk == DO_XXLOCK_UNLOCK) {
734                 send_pfow_command(map, LPDDR_UNLOCK_BLOCK, adr, adr + len, NULL);
735                 chip->state = FL_UNLOCKING;
736         } else
737                 BUG();
738
739         ret = wait_for_ready(map, chip, 1);
740         if (ret)        {
741                 printk(KERN_ERR "%s: block unlock error status %d \n",
742                                 map->name, ret);
743                 goto out;
744         }
745 out:    put_chip(map, chip);
746         mutex_unlock(&chip->mutex);
747         return ret;
748 }
749
750 static int lpddr_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
751 {
752         return do_xxlock(mtd, ofs, len, DO_XXLOCK_LOCK);
753 }
754
755 static int lpddr_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
756 {
757         return do_xxlock(mtd, ofs, len, DO_XXLOCK_UNLOCK);
758 }
759
760 int word_program(struct map_info *map, loff_t adr, uint32_t curval)
761 {
762     int ret;
763         struct lpddr_private *lpddr = map->fldrv_priv;
764         int chipnum = adr >> lpddr->chipshift;
765         struct flchip *chip = &lpddr->chips[chipnum];
766
767         mutex_lock(&chip->mutex);
768         ret = get_chip(map, chip, FL_WRITING);
769         if (ret) {
770                 mutex_unlock(&chip->mutex);
771                 return ret;
772         }
773
774         send_pfow_command(map, LPDDR_WORD_PROGRAM, adr, 0x00, (map_word *)&curval);
775
776         ret = wait_for_ready(map, chip, (1<<lpddr->qinfo->SingleWordProgTime));
777         if (ret)        {
778                 printk(KERN_WARNING"%s word_program error at: %llx; val: %x\n",
779                         map->name, adr, curval);
780                 goto out;
781         }
782
783 out:    put_chip(map, chip);
784         mutex_unlock(&chip->mutex);
785         return ret;
786 }
787
788 MODULE_LICENSE("GPL");
789 MODULE_AUTHOR("Alexey Korolev <akorolev@infradead.org>");
790 MODULE_DESCRIPTION("MTD driver for LPDDR flash chips");