Linux-libre 5.4.47-gnu
[librecmc/linux-libre.git] / drivers / mmc / host / sh_mmcif.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * MMCIF eMMC driver.
4  *
5  * Copyright (C) 2010 Renesas Solutions Corp.
6  * Yusuke Goda <yusuke.goda.sx@renesas.com>
7  */
8
9 /*
10  * The MMCIF driver is now processing MMC requests asynchronously, according
11  * to the Linux MMC API requirement.
12  *
13  * The MMCIF driver processes MMC requests in up to 3 stages: command, optional
14  * data, and optional stop. To achieve asynchronous processing each of these
15  * stages is split into two halves: a top and a bottom half. The top half
16  * initialises the hardware, installs a timeout handler to handle completion
17  * timeouts, and returns. In case of the command stage this immediately returns
18  * control to the caller, leaving all further processing to run asynchronously.
19  * All further request processing is performed by the bottom halves.
20  *
21  * The bottom half further consists of a "hard" IRQ handler, an IRQ handler
22  * thread, a DMA completion callback, if DMA is used, a timeout work, and
23  * request- and stage-specific handler methods.
24  *
25  * Each bottom half run begins with either a hardware interrupt, a DMA callback
26  * invocation, or a timeout work run. In case of an error or a successful
27  * processing completion, the MMC core is informed and the request processing is
28  * finished. In case processing has to continue, i.e., if data has to be read
29  * from or written to the card, or if a stop command has to be sent, the next
30  * top half is called, which performs the necessary hardware handling and
31  * reschedules the timeout work. This returns the driver state machine into the
32  * bottom half waiting state.
33  */
34
35 #include <linux/bitops.h>
36 #include <linux/clk.h>
37 #include <linux/completion.h>
38 #include <linux/delay.h>
39 #include <linux/dma-mapping.h>
40 #include <linux/dmaengine.h>
41 #include <linux/mmc/card.h>
42 #include <linux/mmc/core.h>
43 #include <linux/mmc/host.h>
44 #include <linux/mmc/mmc.h>
45 #include <linux/mmc/sdio.h>
46 #include <linux/mmc/sh_mmcif.h>
47 #include <linux/mmc/slot-gpio.h>
48 #include <linux/mod_devicetable.h>
49 #include <linux/mutex.h>
50 #include <linux/of_device.h>
51 #include <linux/pagemap.h>
52 #include <linux/platform_device.h>
53 #include <linux/pm_qos.h>
54 #include <linux/pm_runtime.h>
55 #include <linux/sh_dma.h>
56 #include <linux/spinlock.h>
57 #include <linux/module.h>
58
59 #define DRIVER_NAME     "sh_mmcif"
60
61 /* CE_CMD_SET */
62 #define CMD_MASK                0x3f000000
63 #define CMD_SET_RTYP_NO         ((0 << 23) | (0 << 22))
64 #define CMD_SET_RTYP_6B         ((0 << 23) | (1 << 22)) /* R1/R1b/R3/R4/R5 */
65 #define CMD_SET_RTYP_17B        ((1 << 23) | (0 << 22)) /* R2 */
66 #define CMD_SET_RBSY            (1 << 21) /* R1b */
67 #define CMD_SET_CCSEN           (1 << 20)
68 #define CMD_SET_WDAT            (1 << 19) /* 1: on data, 0: no data */
69 #define CMD_SET_DWEN            (1 << 18) /* 1: write, 0: read */
70 #define CMD_SET_CMLTE           (1 << 17) /* 1: multi block trans, 0: single */
71 #define CMD_SET_CMD12EN         (1 << 16) /* 1: CMD12 auto issue */
72 #define CMD_SET_RIDXC_INDEX     ((0 << 15) | (0 << 14)) /* index check */
73 #define CMD_SET_RIDXC_BITS      ((0 << 15) | (1 << 14)) /* check bits check */
74 #define CMD_SET_RIDXC_NO        ((1 << 15) | (0 << 14)) /* no check */
75 #define CMD_SET_CRC7C           ((0 << 13) | (0 << 12)) /* CRC7 check*/
76 #define CMD_SET_CRC7C_BITS      ((0 << 13) | (1 << 12)) /* check bits check*/
77 #define CMD_SET_CRC7C_INTERNAL  ((1 << 13) | (0 << 12)) /* internal CRC7 check*/
78 #define CMD_SET_CRC16C          (1 << 10) /* 0: CRC16 check*/
79 #define CMD_SET_CRCSTE          (1 << 8) /* 1: not receive CRC status */
80 #define CMD_SET_TBIT            (1 << 7) /* 1: tran mission bit "Low" */
81 #define CMD_SET_OPDM            (1 << 6) /* 1: open/drain */
82 #define CMD_SET_CCSH            (1 << 5)
83 #define CMD_SET_DARS            (1 << 2) /* Dual Data Rate */
84 #define CMD_SET_DATW_1          ((0 << 1) | (0 << 0)) /* 1bit */
85 #define CMD_SET_DATW_4          ((0 << 1) | (1 << 0)) /* 4bit */
86 #define CMD_SET_DATW_8          ((1 << 1) | (0 << 0)) /* 8bit */
87
88 /* CE_CMD_CTRL */
89 #define CMD_CTRL_BREAK          (1 << 0)
90
91 /* CE_BLOCK_SET */
92 #define BLOCK_SIZE_MASK         0x0000ffff
93
94 /* CE_INT */
95 #define INT_CCSDE               (1 << 29)
96 #define INT_CMD12DRE            (1 << 26)
97 #define INT_CMD12RBE            (1 << 25)
98 #define INT_CMD12CRE            (1 << 24)
99 #define INT_DTRANE              (1 << 23)
100 #define INT_BUFRE               (1 << 22)
101 #define INT_BUFWEN              (1 << 21)
102 #define INT_BUFREN              (1 << 20)
103 #define INT_CCSRCV              (1 << 19)
104 #define INT_RBSYE               (1 << 17)
105 #define INT_CRSPE               (1 << 16)
106 #define INT_CMDVIO              (1 << 15)
107 #define INT_BUFVIO              (1 << 14)
108 #define INT_WDATERR             (1 << 11)
109 #define INT_RDATERR             (1 << 10)
110 #define INT_RIDXERR             (1 << 9)
111 #define INT_RSPERR              (1 << 8)
112 #define INT_CCSTO               (1 << 5)
113 #define INT_CRCSTO              (1 << 4)
114 #define INT_WDATTO              (1 << 3)
115 #define INT_RDATTO              (1 << 2)
116 #define INT_RBSYTO              (1 << 1)
117 #define INT_RSPTO               (1 << 0)
118 #define INT_ERR_STS             (INT_CMDVIO | INT_BUFVIO | INT_WDATERR |  \
119                                  INT_RDATERR | INT_RIDXERR | INT_RSPERR | \
120                                  INT_CCSTO | INT_CRCSTO | INT_WDATTO |    \
121                                  INT_RDATTO | INT_RBSYTO | INT_RSPTO)
122
123 #define INT_ALL                 (INT_RBSYE | INT_CRSPE | INT_BUFREN |    \
124                                  INT_BUFWEN | INT_CMD12DRE | INT_BUFRE | \
125                                  INT_DTRANE | INT_CMD12RBE | INT_CMD12CRE)
126
127 #define INT_CCS                 (INT_CCSTO | INT_CCSRCV | INT_CCSDE)
128
129 /* CE_INT_MASK */
130 #define MASK_ALL                0x00000000
131 #define MASK_MCCSDE             (1 << 29)
132 #define MASK_MCMD12DRE          (1 << 26)
133 #define MASK_MCMD12RBE          (1 << 25)
134 #define MASK_MCMD12CRE          (1 << 24)
135 #define MASK_MDTRANE            (1 << 23)
136 #define MASK_MBUFRE             (1 << 22)
137 #define MASK_MBUFWEN            (1 << 21)
138 #define MASK_MBUFREN            (1 << 20)
139 #define MASK_MCCSRCV            (1 << 19)
140 #define MASK_MRBSYE             (1 << 17)
141 #define MASK_MCRSPE             (1 << 16)
142 #define MASK_MCMDVIO            (1 << 15)
143 #define MASK_MBUFVIO            (1 << 14)
144 #define MASK_MWDATERR           (1 << 11)
145 #define MASK_MRDATERR           (1 << 10)
146 #define MASK_MRIDXERR           (1 << 9)
147 #define MASK_MRSPERR            (1 << 8)
148 #define MASK_MCCSTO             (1 << 5)
149 #define MASK_MCRCSTO            (1 << 4)
150 #define MASK_MWDATTO            (1 << 3)
151 #define MASK_MRDATTO            (1 << 2)
152 #define MASK_MRBSYTO            (1 << 1)
153 #define MASK_MRSPTO             (1 << 0)
154
155 #define MASK_START_CMD          (MASK_MCMDVIO | MASK_MBUFVIO | MASK_MWDATERR | \
156                                  MASK_MRDATERR | MASK_MRIDXERR | MASK_MRSPERR | \
157                                  MASK_MCRCSTO | MASK_MWDATTO | \
158                                  MASK_MRDATTO | MASK_MRBSYTO | MASK_MRSPTO)
159
160 #define MASK_CLEAN              (INT_ERR_STS | MASK_MRBSYE | MASK_MCRSPE |      \
161                                  MASK_MBUFREN | MASK_MBUFWEN |                  \
162                                  MASK_MCMD12DRE | MASK_MBUFRE | MASK_MDTRANE |  \
163                                  MASK_MCMD12RBE | MASK_MCMD12CRE)
164
165 /* CE_HOST_STS1 */
166 #define STS1_CMDSEQ             (1 << 31)
167
168 /* CE_HOST_STS2 */
169 #define STS2_CRCSTE             (1 << 31)
170 #define STS2_CRC16E             (1 << 30)
171 #define STS2_AC12CRCE           (1 << 29)
172 #define STS2_RSPCRC7E           (1 << 28)
173 #define STS2_CRCSTEBE           (1 << 27)
174 #define STS2_RDATEBE            (1 << 26)
175 #define STS2_AC12REBE           (1 << 25)
176 #define STS2_RSPEBE             (1 << 24)
177 #define STS2_AC12IDXE           (1 << 23)
178 #define STS2_RSPIDXE            (1 << 22)
179 #define STS2_CCSTO              (1 << 15)
180 #define STS2_RDATTO             (1 << 14)
181 #define STS2_DATBSYTO           (1 << 13)
182 #define STS2_CRCSTTO            (1 << 12)
183 #define STS2_AC12BSYTO          (1 << 11)
184 #define STS2_RSPBSYTO           (1 << 10)
185 #define STS2_AC12RSPTO          (1 << 9)
186 #define STS2_RSPTO              (1 << 8)
187 #define STS2_CRC_ERR            (STS2_CRCSTE | STS2_CRC16E |            \
188                                  STS2_AC12CRCE | STS2_RSPCRC7E | STS2_CRCSTEBE)
189 #define STS2_TIMEOUT_ERR        (STS2_CCSTO | STS2_RDATTO |             \
190                                  STS2_DATBSYTO | STS2_CRCSTTO |         \
191                                  STS2_AC12BSYTO | STS2_RSPBSYTO |       \
192                                  STS2_AC12RSPTO | STS2_RSPTO)
193
194 #define CLKDEV_EMMC_DATA        52000000 /* 52MHz */
195 #define CLKDEV_MMC_DATA         20000000 /* 20MHz */
196 #define CLKDEV_INIT             400000   /* 400 KHz */
197
198 enum sh_mmcif_state {
199         STATE_IDLE,
200         STATE_REQUEST,
201         STATE_IOS,
202         STATE_TIMEOUT,
203 };
204
205 enum sh_mmcif_wait_for {
206         MMCIF_WAIT_FOR_REQUEST,
207         MMCIF_WAIT_FOR_CMD,
208         MMCIF_WAIT_FOR_MREAD,
209         MMCIF_WAIT_FOR_MWRITE,
210         MMCIF_WAIT_FOR_READ,
211         MMCIF_WAIT_FOR_WRITE,
212         MMCIF_WAIT_FOR_READ_END,
213         MMCIF_WAIT_FOR_WRITE_END,
214         MMCIF_WAIT_FOR_STOP,
215 };
216
217 /*
218  * difference for each SoC
219  */
220 struct sh_mmcif_host {
221         struct mmc_host *mmc;
222         struct mmc_request *mrq;
223         struct platform_device *pd;
224         struct clk *clk;
225         int bus_width;
226         unsigned char timing;
227         bool sd_error;
228         bool dying;
229         long timeout;
230         void __iomem *addr;
231         u32 *pio_ptr;
232         spinlock_t lock;                /* protect sh_mmcif_host::state */
233         enum sh_mmcif_state state;
234         enum sh_mmcif_wait_for wait_for;
235         struct delayed_work timeout_work;
236         size_t blocksize;
237         int sg_idx;
238         int sg_blkidx;
239         bool power;
240         bool ccs_enable;                /* Command Completion Signal support */
241         bool clk_ctrl2_enable;
242         struct mutex thread_lock;
243         u32 clkdiv_map;         /* see CE_CLK_CTRL::CLKDIV */
244
245         /* DMA support */
246         struct dma_chan         *chan_rx;
247         struct dma_chan         *chan_tx;
248         struct completion       dma_complete;
249         bool                    dma_active;
250 };
251
252 static const struct of_device_id sh_mmcif_of_match[] = {
253         { .compatible = "renesas,sh-mmcif" },
254         { }
255 };
256 MODULE_DEVICE_TABLE(of, sh_mmcif_of_match);
257
258 #define sh_mmcif_host_to_dev(host) (&host->pd->dev)
259
260 static inline void sh_mmcif_bitset(struct sh_mmcif_host *host,
261                                         unsigned int reg, u32 val)
262 {
263         writel(val | readl(host->addr + reg), host->addr + reg);
264 }
265
266 static inline void sh_mmcif_bitclr(struct sh_mmcif_host *host,
267                                         unsigned int reg, u32 val)
268 {
269         writel(~val & readl(host->addr + reg), host->addr + reg);
270 }
271
272 static void sh_mmcif_dma_complete(void *arg)
273 {
274         struct sh_mmcif_host *host = arg;
275         struct mmc_request *mrq = host->mrq;
276         struct device *dev = sh_mmcif_host_to_dev(host);
277
278         dev_dbg(dev, "Command completed\n");
279
280         if (WARN(!mrq || !mrq->data, "%s: NULL data in DMA completion!\n",
281                  dev_name(dev)))
282                 return;
283
284         complete(&host->dma_complete);
285 }
286
287 static void sh_mmcif_start_dma_rx(struct sh_mmcif_host *host)
288 {
289         struct mmc_data *data = host->mrq->data;
290         struct scatterlist *sg = data->sg;
291         struct dma_async_tx_descriptor *desc = NULL;
292         struct dma_chan *chan = host->chan_rx;
293         struct device *dev = sh_mmcif_host_to_dev(host);
294         dma_cookie_t cookie = -EINVAL;
295         int ret;
296
297         ret = dma_map_sg(chan->device->dev, sg, data->sg_len,
298                          DMA_FROM_DEVICE);
299         if (ret > 0) {
300                 host->dma_active = true;
301                 desc = dmaengine_prep_slave_sg(chan, sg, ret,
302                         DMA_DEV_TO_MEM, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
303         }
304
305         if (desc) {
306                 desc->callback = sh_mmcif_dma_complete;
307                 desc->callback_param = host;
308                 cookie = dmaengine_submit(desc);
309                 sh_mmcif_bitset(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN);
310                 dma_async_issue_pending(chan);
311         }
312         dev_dbg(dev, "%s(): mapped %d -> %d, cookie %d\n",
313                 __func__, data->sg_len, ret, cookie);
314
315         if (!desc) {
316                 /* DMA failed, fall back to PIO */
317                 if (ret >= 0)
318                         ret = -EIO;
319                 host->chan_rx = NULL;
320                 host->dma_active = false;
321                 dma_release_channel(chan);
322                 /* Free the Tx channel too */
323                 chan = host->chan_tx;
324                 if (chan) {
325                         host->chan_tx = NULL;
326                         dma_release_channel(chan);
327                 }
328                 dev_warn(dev,
329                          "DMA failed: %d, falling back to PIO\n", ret);
330                 sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
331         }
332
333         dev_dbg(dev, "%s(): desc %p, cookie %d, sg[%d]\n", __func__,
334                 desc, cookie, data->sg_len);
335 }
336
337 static void sh_mmcif_start_dma_tx(struct sh_mmcif_host *host)
338 {
339         struct mmc_data *data = host->mrq->data;
340         struct scatterlist *sg = data->sg;
341         struct dma_async_tx_descriptor *desc = NULL;
342         struct dma_chan *chan = host->chan_tx;
343         struct device *dev = sh_mmcif_host_to_dev(host);
344         dma_cookie_t cookie = -EINVAL;
345         int ret;
346
347         ret = dma_map_sg(chan->device->dev, sg, data->sg_len,
348                          DMA_TO_DEVICE);
349         if (ret > 0) {
350                 host->dma_active = true;
351                 desc = dmaengine_prep_slave_sg(chan, sg, ret,
352                         DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
353         }
354
355         if (desc) {
356                 desc->callback = sh_mmcif_dma_complete;
357                 desc->callback_param = host;
358                 cookie = dmaengine_submit(desc);
359                 sh_mmcif_bitset(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAWEN);
360                 dma_async_issue_pending(chan);
361         }
362         dev_dbg(dev, "%s(): mapped %d -> %d, cookie %d\n",
363                 __func__, data->sg_len, ret, cookie);
364
365         if (!desc) {
366                 /* DMA failed, fall back to PIO */
367                 if (ret >= 0)
368                         ret = -EIO;
369                 host->chan_tx = NULL;
370                 host->dma_active = false;
371                 dma_release_channel(chan);
372                 /* Free the Rx channel too */
373                 chan = host->chan_rx;
374                 if (chan) {
375                         host->chan_rx = NULL;
376                         dma_release_channel(chan);
377                 }
378                 dev_warn(dev,
379                          "DMA failed: %d, falling back to PIO\n", ret);
380                 sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
381         }
382
383         dev_dbg(dev, "%s(): desc %p, cookie %d\n", __func__,
384                 desc, cookie);
385 }
386
387 static struct dma_chan *
388 sh_mmcif_request_dma_pdata(struct sh_mmcif_host *host, uintptr_t slave_id)
389 {
390         dma_cap_mask_t mask;
391
392         dma_cap_zero(mask);
393         dma_cap_set(DMA_SLAVE, mask);
394         if (slave_id <= 0)
395                 return NULL;
396
397         return dma_request_channel(mask, shdma_chan_filter, (void *)slave_id);
398 }
399
400 static int sh_mmcif_dma_slave_config(struct sh_mmcif_host *host,
401                                      struct dma_chan *chan,
402                                      enum dma_transfer_direction direction)
403 {
404         struct resource *res;
405         struct dma_slave_config cfg = { 0, };
406
407         res = platform_get_resource(host->pd, IORESOURCE_MEM, 0);
408         cfg.direction = direction;
409
410         if (direction == DMA_DEV_TO_MEM) {
411                 cfg.src_addr = res->start + MMCIF_CE_DATA;
412                 cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
413         } else {
414                 cfg.dst_addr = res->start + MMCIF_CE_DATA;
415                 cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
416         }
417
418         return dmaengine_slave_config(chan, &cfg);
419 }
420
421 static void sh_mmcif_request_dma(struct sh_mmcif_host *host)
422 {
423         struct device *dev = sh_mmcif_host_to_dev(host);
424         host->dma_active = false;
425
426         /* We can only either use DMA for both Tx and Rx or not use it at all */
427         if (IS_ENABLED(CONFIG_SUPERH) && dev->platform_data) {
428                 struct sh_mmcif_plat_data *pdata = dev->platform_data;
429
430                 host->chan_tx = sh_mmcif_request_dma_pdata(host,
431                                                         pdata->slave_id_tx);
432                 host->chan_rx = sh_mmcif_request_dma_pdata(host,
433                                                         pdata->slave_id_rx);
434         } else {
435                 host->chan_tx = dma_request_slave_channel(dev, "tx");
436                 host->chan_rx = dma_request_slave_channel(dev, "rx");
437         }
438         dev_dbg(dev, "%s: got channel TX %p RX %p\n", __func__, host->chan_tx,
439                 host->chan_rx);
440
441         if (!host->chan_tx || !host->chan_rx ||
442             sh_mmcif_dma_slave_config(host, host->chan_tx, DMA_MEM_TO_DEV) ||
443             sh_mmcif_dma_slave_config(host, host->chan_rx, DMA_DEV_TO_MEM))
444                 goto error;
445
446         return;
447
448 error:
449         if (host->chan_tx)
450                 dma_release_channel(host->chan_tx);
451         if (host->chan_rx)
452                 dma_release_channel(host->chan_rx);
453         host->chan_tx = host->chan_rx = NULL;
454 }
455
456 static void sh_mmcif_release_dma(struct sh_mmcif_host *host)
457 {
458         sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
459         /* Descriptors are freed automatically */
460         if (host->chan_tx) {
461                 struct dma_chan *chan = host->chan_tx;
462                 host->chan_tx = NULL;
463                 dma_release_channel(chan);
464         }
465         if (host->chan_rx) {
466                 struct dma_chan *chan = host->chan_rx;
467                 host->chan_rx = NULL;
468                 dma_release_channel(chan);
469         }
470
471         host->dma_active = false;
472 }
473
474 static void sh_mmcif_clock_control(struct sh_mmcif_host *host, unsigned int clk)
475 {
476         struct device *dev = sh_mmcif_host_to_dev(host);
477         struct sh_mmcif_plat_data *p = dev->platform_data;
478         bool sup_pclk = p ? p->sup_pclk : false;
479         unsigned int current_clk = clk_get_rate(host->clk);
480         unsigned int clkdiv;
481
482         sh_mmcif_bitclr(host, MMCIF_CE_CLK_CTRL, CLK_ENABLE);
483         sh_mmcif_bitclr(host, MMCIF_CE_CLK_CTRL, CLK_CLEAR);
484
485         if (!clk)
486                 return;
487
488         if (host->clkdiv_map) {
489                 unsigned int freq, best_freq, myclk, div, diff_min, diff;
490                 int i;
491
492                 clkdiv = 0;
493                 diff_min = ~0;
494                 best_freq = 0;
495                 for (i = 31; i >= 0; i--) {
496                         if (!((1 << i) & host->clkdiv_map))
497                                 continue;
498
499                         /*
500                          * clk = parent_freq / div
501                          * -> parent_freq = clk x div
502                          */
503
504                         div = 1 << (i + 1);
505                         freq = clk_round_rate(host->clk, clk * div);
506                         myclk = freq / div;
507                         diff = (myclk > clk) ? myclk - clk : clk - myclk;
508
509                         if (diff <= diff_min) {
510                                 best_freq = freq;
511                                 clkdiv = i;
512                                 diff_min = diff;
513                         }
514                 }
515
516                 dev_dbg(dev, "clk %u/%u (%u, 0x%x)\n",
517                         (best_freq / (1 << (clkdiv + 1))), clk,
518                         best_freq, clkdiv);
519
520                 clk_set_rate(host->clk, best_freq);
521                 clkdiv = clkdiv << 16;
522         } else if (sup_pclk && clk == current_clk) {
523                 clkdiv = CLK_SUP_PCLK;
524         } else {
525                 clkdiv = (fls(DIV_ROUND_UP(current_clk, clk) - 1) - 1) << 16;
526         }
527
528         sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, CLK_CLEAR & clkdiv);
529         sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, CLK_ENABLE);
530 }
531
532 static void sh_mmcif_sync_reset(struct sh_mmcif_host *host)
533 {
534         u32 tmp;
535
536         tmp = 0x010f0000 & sh_mmcif_readl(host->addr, MMCIF_CE_CLK_CTRL);
537
538         sh_mmcif_writel(host->addr, MMCIF_CE_VERSION, SOFT_RST_ON);
539         sh_mmcif_writel(host->addr, MMCIF_CE_VERSION, SOFT_RST_OFF);
540         if (host->ccs_enable)
541                 tmp |= SCCSTO_29;
542         if (host->clk_ctrl2_enable)
543                 sh_mmcif_writel(host->addr, MMCIF_CE_CLK_CTRL2, 0x0F0F0000);
544         sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, tmp |
545                 SRSPTO_256 | SRBSYTO_29 | SRWDTO_29);
546         /* byte swap on */
547         sh_mmcif_bitset(host, MMCIF_CE_BUF_ACC, BUF_ACC_ATYP);
548 }
549
550 static int sh_mmcif_error_manage(struct sh_mmcif_host *host)
551 {
552         struct device *dev = sh_mmcif_host_to_dev(host);
553         u32 state1, state2;
554         int ret, timeout;
555
556         host->sd_error = false;
557
558         state1 = sh_mmcif_readl(host->addr, MMCIF_CE_HOST_STS1);
559         state2 = sh_mmcif_readl(host->addr, MMCIF_CE_HOST_STS2);
560         dev_dbg(dev, "ERR HOST_STS1 = %08x\n", state1);
561         dev_dbg(dev, "ERR HOST_STS2 = %08x\n", state2);
562
563         if (state1 & STS1_CMDSEQ) {
564                 sh_mmcif_bitset(host, MMCIF_CE_CMD_CTRL, CMD_CTRL_BREAK);
565                 sh_mmcif_bitset(host, MMCIF_CE_CMD_CTRL, ~CMD_CTRL_BREAK);
566                 for (timeout = 10000; timeout; timeout--) {
567                         if (!(sh_mmcif_readl(host->addr, MMCIF_CE_HOST_STS1)
568                               & STS1_CMDSEQ))
569                                 break;
570                         mdelay(1);
571                 }
572                 if (!timeout) {
573                         dev_err(dev,
574                                 "Forced end of command sequence timeout err\n");
575                         return -EIO;
576                 }
577                 sh_mmcif_sync_reset(host);
578                 dev_dbg(dev, "Forced end of command sequence\n");
579                 return -EIO;
580         }
581
582         if (state2 & STS2_CRC_ERR) {
583                 dev_err(dev, " CRC error: state %u, wait %u\n",
584                         host->state, host->wait_for);
585                 ret = -EIO;
586         } else if (state2 & STS2_TIMEOUT_ERR) {
587                 dev_err(dev, " Timeout: state %u, wait %u\n",
588                         host->state, host->wait_for);
589                 ret = -ETIMEDOUT;
590         } else {
591                 dev_dbg(dev, " End/Index error: state %u, wait %u\n",
592                         host->state, host->wait_for);
593                 ret = -EIO;
594         }
595         return ret;
596 }
597
598 static bool sh_mmcif_next_block(struct sh_mmcif_host *host, u32 *p)
599 {
600         struct mmc_data *data = host->mrq->data;
601
602         host->sg_blkidx += host->blocksize;
603
604         /* data->sg->length must be a multiple of host->blocksize? */
605         BUG_ON(host->sg_blkidx > data->sg->length);
606
607         if (host->sg_blkidx == data->sg->length) {
608                 host->sg_blkidx = 0;
609                 if (++host->sg_idx < data->sg_len)
610                         host->pio_ptr = sg_virt(++data->sg);
611         } else {
612                 host->pio_ptr = p;
613         }
614
615         return host->sg_idx != data->sg_len;
616 }
617
618 static void sh_mmcif_single_read(struct sh_mmcif_host *host,
619                                  struct mmc_request *mrq)
620 {
621         host->blocksize = (sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) &
622                            BLOCK_SIZE_MASK) + 3;
623
624         host->wait_for = MMCIF_WAIT_FOR_READ;
625
626         /* buf read enable */
627         sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFREN);
628 }
629
630 static bool sh_mmcif_read_block(struct sh_mmcif_host *host)
631 {
632         struct device *dev = sh_mmcif_host_to_dev(host);
633         struct mmc_data *data = host->mrq->data;
634         u32 *p = sg_virt(data->sg);
635         int i;
636
637         if (host->sd_error) {
638                 data->error = sh_mmcif_error_manage(host);
639                 dev_dbg(dev, "%s(): %d\n", __func__, data->error);
640                 return false;
641         }
642
643         for (i = 0; i < host->blocksize / 4; i++)
644                 *p++ = sh_mmcif_readl(host->addr, MMCIF_CE_DATA);
645
646         /* buffer read end */
647         sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFRE);
648         host->wait_for = MMCIF_WAIT_FOR_READ_END;
649
650         return true;
651 }
652
653 static void sh_mmcif_multi_read(struct sh_mmcif_host *host,
654                                 struct mmc_request *mrq)
655 {
656         struct mmc_data *data = mrq->data;
657
658         if (!data->sg_len || !data->sg->length)
659                 return;
660
661         host->blocksize = sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) &
662                 BLOCK_SIZE_MASK;
663
664         host->wait_for = MMCIF_WAIT_FOR_MREAD;
665         host->sg_idx = 0;
666         host->sg_blkidx = 0;
667         host->pio_ptr = sg_virt(data->sg);
668
669         sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFREN);
670 }
671
672 static bool sh_mmcif_mread_block(struct sh_mmcif_host *host)
673 {
674         struct device *dev = sh_mmcif_host_to_dev(host);
675         struct mmc_data *data = host->mrq->data;
676         u32 *p = host->pio_ptr;
677         int i;
678
679         if (host->sd_error) {
680                 data->error = sh_mmcif_error_manage(host);
681                 dev_dbg(dev, "%s(): %d\n", __func__, data->error);
682                 return false;
683         }
684
685         BUG_ON(!data->sg->length);
686
687         for (i = 0; i < host->blocksize / 4; i++)
688                 *p++ = sh_mmcif_readl(host->addr, MMCIF_CE_DATA);
689
690         if (!sh_mmcif_next_block(host, p))
691                 return false;
692
693         sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFREN);
694
695         return true;
696 }
697
698 static void sh_mmcif_single_write(struct sh_mmcif_host *host,
699                                         struct mmc_request *mrq)
700 {
701         host->blocksize = (sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) &
702                            BLOCK_SIZE_MASK) + 3;
703
704         host->wait_for = MMCIF_WAIT_FOR_WRITE;
705
706         /* buf write enable */
707         sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFWEN);
708 }
709
710 static bool sh_mmcif_write_block(struct sh_mmcif_host *host)
711 {
712         struct device *dev = sh_mmcif_host_to_dev(host);
713         struct mmc_data *data = host->mrq->data;
714         u32 *p = sg_virt(data->sg);
715         int i;
716
717         if (host->sd_error) {
718                 data->error = sh_mmcif_error_manage(host);
719                 dev_dbg(dev, "%s(): %d\n", __func__, data->error);
720                 return false;
721         }
722
723         for (i = 0; i < host->blocksize / 4; i++)
724                 sh_mmcif_writel(host->addr, MMCIF_CE_DATA, *p++);
725
726         /* buffer write end */
727         sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MDTRANE);
728         host->wait_for = MMCIF_WAIT_FOR_WRITE_END;
729
730         return true;
731 }
732
733 static void sh_mmcif_multi_write(struct sh_mmcif_host *host,
734                                 struct mmc_request *mrq)
735 {
736         struct mmc_data *data = mrq->data;
737
738         if (!data->sg_len || !data->sg->length)
739                 return;
740
741         host->blocksize = sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) &
742                 BLOCK_SIZE_MASK;
743
744         host->wait_for = MMCIF_WAIT_FOR_MWRITE;
745         host->sg_idx = 0;
746         host->sg_blkidx = 0;
747         host->pio_ptr = sg_virt(data->sg);
748
749         sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFWEN);
750 }
751
752 static bool sh_mmcif_mwrite_block(struct sh_mmcif_host *host)
753 {
754         struct device *dev = sh_mmcif_host_to_dev(host);
755         struct mmc_data *data = host->mrq->data;
756         u32 *p = host->pio_ptr;
757         int i;
758
759         if (host->sd_error) {
760                 data->error = sh_mmcif_error_manage(host);
761                 dev_dbg(dev, "%s(): %d\n", __func__, data->error);
762                 return false;
763         }
764
765         BUG_ON(!data->sg->length);
766
767         for (i = 0; i < host->blocksize / 4; i++)
768                 sh_mmcif_writel(host->addr, MMCIF_CE_DATA, *p++);
769
770         if (!sh_mmcif_next_block(host, p))
771                 return false;
772
773         sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFWEN);
774
775         return true;
776 }
777
778 static void sh_mmcif_get_response(struct sh_mmcif_host *host,
779                                                 struct mmc_command *cmd)
780 {
781         if (cmd->flags & MMC_RSP_136) {
782                 cmd->resp[0] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP3);
783                 cmd->resp[1] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP2);
784                 cmd->resp[2] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP1);
785                 cmd->resp[3] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP0);
786         } else
787                 cmd->resp[0] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP0);
788 }
789
790 static void sh_mmcif_get_cmd12response(struct sh_mmcif_host *host,
791                                                 struct mmc_command *cmd)
792 {
793         cmd->resp[0] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP_CMD12);
794 }
795
796 static u32 sh_mmcif_set_cmd(struct sh_mmcif_host *host,
797                             struct mmc_request *mrq)
798 {
799         struct device *dev = sh_mmcif_host_to_dev(host);
800         struct mmc_data *data = mrq->data;
801         struct mmc_command *cmd = mrq->cmd;
802         u32 opc = cmd->opcode;
803         u32 tmp = 0;
804
805         /* Response Type check */
806         switch (mmc_resp_type(cmd)) {
807         case MMC_RSP_NONE:
808                 tmp |= CMD_SET_RTYP_NO;
809                 break;
810         case MMC_RSP_R1:
811         case MMC_RSP_R3:
812                 tmp |= CMD_SET_RTYP_6B;
813                 break;
814         case MMC_RSP_R1B:
815                 tmp |= CMD_SET_RBSY | CMD_SET_RTYP_6B;
816                 break;
817         case MMC_RSP_R2:
818                 tmp |= CMD_SET_RTYP_17B;
819                 break;
820         default:
821                 dev_err(dev, "Unsupported response type.\n");
822                 break;
823         }
824
825         /* WDAT / DATW */
826         if (data) {
827                 tmp |= CMD_SET_WDAT;
828                 switch (host->bus_width) {
829                 case MMC_BUS_WIDTH_1:
830                         tmp |= CMD_SET_DATW_1;
831                         break;
832                 case MMC_BUS_WIDTH_4:
833                         tmp |= CMD_SET_DATW_4;
834                         break;
835                 case MMC_BUS_WIDTH_8:
836                         tmp |= CMD_SET_DATW_8;
837                         break;
838                 default:
839                         dev_err(dev, "Unsupported bus width.\n");
840                         break;
841                 }
842                 switch (host->timing) {
843                 case MMC_TIMING_MMC_DDR52:
844                         /*
845                          * MMC core will only set this timing, if the host
846                          * advertises the MMC_CAP_1_8V_DDR/MMC_CAP_1_2V_DDR
847                          * capability. MMCIF implementations with this
848                          * capability, e.g. sh73a0, will have to set it
849                          * in their platform data.
850                          */
851                         tmp |= CMD_SET_DARS;
852                         break;
853                 }
854         }
855         /* DWEN */
856         if (opc == MMC_WRITE_BLOCK || opc == MMC_WRITE_MULTIPLE_BLOCK)
857                 tmp |= CMD_SET_DWEN;
858         /* CMLTE/CMD12EN */
859         if (opc == MMC_READ_MULTIPLE_BLOCK || opc == MMC_WRITE_MULTIPLE_BLOCK) {
860                 tmp |= CMD_SET_CMLTE | CMD_SET_CMD12EN;
861                 sh_mmcif_bitset(host, MMCIF_CE_BLOCK_SET,
862                                 data->blocks << 16);
863         }
864         /* RIDXC[1:0] check bits */
865         if (opc == MMC_SEND_OP_COND || opc == MMC_ALL_SEND_CID ||
866             opc == MMC_SEND_CSD || opc == MMC_SEND_CID)
867                 tmp |= CMD_SET_RIDXC_BITS;
868         /* RCRC7C[1:0] check bits */
869         if (opc == MMC_SEND_OP_COND)
870                 tmp |= CMD_SET_CRC7C_BITS;
871         /* RCRC7C[1:0] internal CRC7 */
872         if (opc == MMC_ALL_SEND_CID ||
873                 opc == MMC_SEND_CSD || opc == MMC_SEND_CID)
874                 tmp |= CMD_SET_CRC7C_INTERNAL;
875
876         return (opc << 24) | tmp;
877 }
878
879 static int sh_mmcif_data_trans(struct sh_mmcif_host *host,
880                                struct mmc_request *mrq, u32 opc)
881 {
882         struct device *dev = sh_mmcif_host_to_dev(host);
883
884         switch (opc) {
885         case MMC_READ_MULTIPLE_BLOCK:
886                 sh_mmcif_multi_read(host, mrq);
887                 return 0;
888         case MMC_WRITE_MULTIPLE_BLOCK:
889                 sh_mmcif_multi_write(host, mrq);
890                 return 0;
891         case MMC_WRITE_BLOCK:
892                 sh_mmcif_single_write(host, mrq);
893                 return 0;
894         case MMC_READ_SINGLE_BLOCK:
895         case MMC_SEND_EXT_CSD:
896                 sh_mmcif_single_read(host, mrq);
897                 return 0;
898         default:
899                 dev_err(dev, "Unsupported CMD%d\n", opc);
900                 return -EINVAL;
901         }
902 }
903
904 static void sh_mmcif_start_cmd(struct sh_mmcif_host *host,
905                                struct mmc_request *mrq)
906 {
907         struct mmc_command *cmd = mrq->cmd;
908         u32 opc;
909         u32 mask = 0;
910         unsigned long flags;
911
912         if (cmd->flags & MMC_RSP_BUSY)
913                 mask = MASK_START_CMD | MASK_MRBSYE;
914         else
915                 mask = MASK_START_CMD | MASK_MCRSPE;
916
917         if (host->ccs_enable)
918                 mask |= MASK_MCCSTO;
919
920         if (mrq->data) {
921                 sh_mmcif_writel(host->addr, MMCIF_CE_BLOCK_SET, 0);
922                 sh_mmcif_writel(host->addr, MMCIF_CE_BLOCK_SET,
923                                 mrq->data->blksz);
924         }
925         opc = sh_mmcif_set_cmd(host, mrq);
926
927         if (host->ccs_enable)
928                 sh_mmcif_writel(host->addr, MMCIF_CE_INT, 0xD80430C0);
929         else
930                 sh_mmcif_writel(host->addr, MMCIF_CE_INT, 0xD80430C0 | INT_CCS);
931         sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, mask);
932         /* set arg */
933         sh_mmcif_writel(host->addr, MMCIF_CE_ARG, cmd->arg);
934         /* set cmd */
935         spin_lock_irqsave(&host->lock, flags);
936         sh_mmcif_writel(host->addr, MMCIF_CE_CMD_SET, opc);
937
938         host->wait_for = MMCIF_WAIT_FOR_CMD;
939         schedule_delayed_work(&host->timeout_work, host->timeout);
940         spin_unlock_irqrestore(&host->lock, flags);
941 }
942
943 static void sh_mmcif_stop_cmd(struct sh_mmcif_host *host,
944                               struct mmc_request *mrq)
945 {
946         struct device *dev = sh_mmcif_host_to_dev(host);
947
948         switch (mrq->cmd->opcode) {
949         case MMC_READ_MULTIPLE_BLOCK:
950                 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MCMD12DRE);
951                 break;
952         case MMC_WRITE_MULTIPLE_BLOCK:
953                 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MCMD12RBE);
954                 break;
955         default:
956                 dev_err(dev, "unsupported stop cmd\n");
957                 mrq->stop->error = sh_mmcif_error_manage(host);
958                 return;
959         }
960
961         host->wait_for = MMCIF_WAIT_FOR_STOP;
962 }
963
964 static void sh_mmcif_request(struct mmc_host *mmc, struct mmc_request *mrq)
965 {
966         struct sh_mmcif_host *host = mmc_priv(mmc);
967         struct device *dev = sh_mmcif_host_to_dev(host);
968         unsigned long flags;
969
970         spin_lock_irqsave(&host->lock, flags);
971         if (host->state != STATE_IDLE) {
972                 dev_dbg(dev, "%s() rejected, state %u\n",
973                         __func__, host->state);
974                 spin_unlock_irqrestore(&host->lock, flags);
975                 mrq->cmd->error = -EAGAIN;
976                 mmc_request_done(mmc, mrq);
977                 return;
978         }
979
980         host->state = STATE_REQUEST;
981         spin_unlock_irqrestore(&host->lock, flags);
982
983         host->mrq = mrq;
984
985         sh_mmcif_start_cmd(host, mrq);
986 }
987
988 static void sh_mmcif_clk_setup(struct sh_mmcif_host *host)
989 {
990         struct device *dev = sh_mmcif_host_to_dev(host);
991
992         if (host->mmc->f_max) {
993                 unsigned int f_max, f_min = 0, f_min_old;
994
995                 f_max = host->mmc->f_max;
996                 for (f_min_old = f_max; f_min_old > 2;) {
997                         f_min = clk_round_rate(host->clk, f_min_old / 2);
998                         if (f_min == f_min_old)
999                                 break;
1000                         f_min_old = f_min;
1001                 }
1002
1003                 /*
1004                  * This driver assumes this SoC is R-Car Gen2 or later
1005                  */
1006                 host->clkdiv_map = 0x3ff;
1007
1008                 host->mmc->f_max = f_max / (1 << ffs(host->clkdiv_map));
1009                 host->mmc->f_min = f_min / (1 << fls(host->clkdiv_map));
1010         } else {
1011                 unsigned int clk = clk_get_rate(host->clk);
1012
1013                 host->mmc->f_max = clk / 2;
1014                 host->mmc->f_min = clk / 512;
1015         }
1016
1017         dev_dbg(dev, "clk max/min = %d/%d\n",
1018                 host->mmc->f_max, host->mmc->f_min);
1019 }
1020
1021 static void sh_mmcif_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
1022 {
1023         struct sh_mmcif_host *host = mmc_priv(mmc);
1024         struct device *dev = sh_mmcif_host_to_dev(host);
1025         unsigned long flags;
1026
1027         spin_lock_irqsave(&host->lock, flags);
1028         if (host->state != STATE_IDLE) {
1029                 dev_dbg(dev, "%s() rejected, state %u\n",
1030                         __func__, host->state);
1031                 spin_unlock_irqrestore(&host->lock, flags);
1032                 return;
1033         }
1034
1035         host->state = STATE_IOS;
1036         spin_unlock_irqrestore(&host->lock, flags);
1037
1038         switch (ios->power_mode) {
1039         case MMC_POWER_UP:
1040                 if (!IS_ERR(mmc->supply.vmmc))
1041                         mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, ios->vdd);
1042                 if (!host->power) {
1043                         clk_prepare_enable(host->clk);
1044                         pm_runtime_get_sync(dev);
1045                         sh_mmcif_sync_reset(host);
1046                         sh_mmcif_request_dma(host);
1047                         host->power = true;
1048                 }
1049                 break;
1050         case MMC_POWER_OFF:
1051                 if (!IS_ERR(mmc->supply.vmmc))
1052                         mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, 0);
1053                 if (host->power) {
1054                         sh_mmcif_clock_control(host, 0);
1055                         sh_mmcif_release_dma(host);
1056                         pm_runtime_put(dev);
1057                         clk_disable_unprepare(host->clk);
1058                         host->power = false;
1059                 }
1060                 break;
1061         case MMC_POWER_ON:
1062                 sh_mmcif_clock_control(host, ios->clock);
1063                 break;
1064         }
1065
1066         host->timing = ios->timing;
1067         host->bus_width = ios->bus_width;
1068         host->state = STATE_IDLE;
1069 }
1070
1071 static const struct mmc_host_ops sh_mmcif_ops = {
1072         .request        = sh_mmcif_request,
1073         .set_ios        = sh_mmcif_set_ios,
1074         .get_cd         = mmc_gpio_get_cd,
1075 };
1076
1077 static bool sh_mmcif_end_cmd(struct sh_mmcif_host *host)
1078 {
1079         struct mmc_command *cmd = host->mrq->cmd;
1080         struct mmc_data *data = host->mrq->data;
1081         struct device *dev = sh_mmcif_host_to_dev(host);
1082         long time;
1083
1084         if (host->sd_error) {
1085                 switch (cmd->opcode) {
1086                 case MMC_ALL_SEND_CID:
1087                 case MMC_SELECT_CARD:
1088                 case MMC_APP_CMD:
1089                         cmd->error = -ETIMEDOUT;
1090                         break;
1091                 default:
1092                         cmd->error = sh_mmcif_error_manage(host);
1093                         break;
1094                 }
1095                 dev_dbg(dev, "CMD%d error %d\n",
1096                         cmd->opcode, cmd->error);
1097                 host->sd_error = false;
1098                 return false;
1099         }
1100         if (!(cmd->flags & MMC_RSP_PRESENT)) {
1101                 cmd->error = 0;
1102                 return false;
1103         }
1104
1105         sh_mmcif_get_response(host, cmd);
1106
1107         if (!data)
1108                 return false;
1109
1110         /*
1111          * Completion can be signalled from DMA callback and error, so, have to
1112          * reset here, before setting .dma_active
1113          */
1114         init_completion(&host->dma_complete);
1115
1116         if (data->flags & MMC_DATA_READ) {
1117                 if (host->chan_rx)
1118                         sh_mmcif_start_dma_rx(host);
1119         } else {
1120                 if (host->chan_tx)
1121                         sh_mmcif_start_dma_tx(host);
1122         }
1123
1124         if (!host->dma_active) {
1125                 data->error = sh_mmcif_data_trans(host, host->mrq, cmd->opcode);
1126                 return !data->error;
1127         }
1128
1129         /* Running in the IRQ thread, can sleep */
1130         time = wait_for_completion_interruptible_timeout(&host->dma_complete,
1131                                                          host->timeout);
1132
1133         if (data->flags & MMC_DATA_READ)
1134                 dma_unmap_sg(host->chan_rx->device->dev,
1135                              data->sg, data->sg_len,
1136                              DMA_FROM_DEVICE);
1137         else
1138                 dma_unmap_sg(host->chan_tx->device->dev,
1139                              data->sg, data->sg_len,
1140                              DMA_TO_DEVICE);
1141
1142         if (host->sd_error) {
1143                 dev_err(host->mmc->parent,
1144                         "Error IRQ while waiting for DMA completion!\n");
1145                 /* Woken up by an error IRQ: abort DMA */
1146                 data->error = sh_mmcif_error_manage(host);
1147         } else if (!time) {
1148                 dev_err(host->mmc->parent, "DMA timeout!\n");
1149                 data->error = -ETIMEDOUT;
1150         } else if (time < 0) {
1151                 dev_err(host->mmc->parent,
1152                         "wait_for_completion_...() error %ld!\n", time);
1153                 data->error = time;
1154         }
1155         sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC,
1156                         BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
1157         host->dma_active = false;
1158
1159         if (data->error) {
1160                 data->bytes_xfered = 0;
1161                 /* Abort DMA */
1162                 if (data->flags & MMC_DATA_READ)
1163                         dmaengine_terminate_all(host->chan_rx);
1164                 else
1165                         dmaengine_terminate_all(host->chan_tx);
1166         }
1167
1168         return false;
1169 }
1170
1171 static irqreturn_t sh_mmcif_irqt(int irq, void *dev_id)
1172 {
1173         struct sh_mmcif_host *host = dev_id;
1174         struct mmc_request *mrq;
1175         struct device *dev = sh_mmcif_host_to_dev(host);
1176         bool wait = false;
1177         unsigned long flags;
1178         int wait_work;
1179
1180         spin_lock_irqsave(&host->lock, flags);
1181         wait_work = host->wait_for;
1182         spin_unlock_irqrestore(&host->lock, flags);
1183
1184         cancel_delayed_work_sync(&host->timeout_work);
1185
1186         mutex_lock(&host->thread_lock);
1187
1188         mrq = host->mrq;
1189         if (!mrq) {
1190                 dev_dbg(dev, "IRQ thread state %u, wait %u: NULL mrq!\n",
1191                         host->state, host->wait_for);
1192                 mutex_unlock(&host->thread_lock);
1193                 return IRQ_HANDLED;
1194         }
1195
1196         /*
1197          * All handlers return true, if processing continues, and false, if the
1198          * request has to be completed - successfully or not
1199          */
1200         switch (wait_work) {
1201         case MMCIF_WAIT_FOR_REQUEST:
1202                 /* We're too late, the timeout has already kicked in */
1203                 mutex_unlock(&host->thread_lock);
1204                 return IRQ_HANDLED;
1205         case MMCIF_WAIT_FOR_CMD:
1206                 /* Wait for data? */
1207                 wait = sh_mmcif_end_cmd(host);
1208                 break;
1209         case MMCIF_WAIT_FOR_MREAD:
1210                 /* Wait for more data? */
1211                 wait = sh_mmcif_mread_block(host);
1212                 break;
1213         case MMCIF_WAIT_FOR_READ:
1214                 /* Wait for data end? */
1215                 wait = sh_mmcif_read_block(host);
1216                 break;
1217         case MMCIF_WAIT_FOR_MWRITE:
1218                 /* Wait data to write? */
1219                 wait = sh_mmcif_mwrite_block(host);
1220                 break;
1221         case MMCIF_WAIT_FOR_WRITE:
1222                 /* Wait for data end? */
1223                 wait = sh_mmcif_write_block(host);
1224                 break;
1225         case MMCIF_WAIT_FOR_STOP:
1226                 if (host->sd_error) {
1227                         mrq->stop->error = sh_mmcif_error_manage(host);
1228                         dev_dbg(dev, "%s(): %d\n", __func__, mrq->stop->error);
1229                         break;
1230                 }
1231                 sh_mmcif_get_cmd12response(host, mrq->stop);
1232                 mrq->stop->error = 0;
1233                 break;
1234         case MMCIF_WAIT_FOR_READ_END:
1235         case MMCIF_WAIT_FOR_WRITE_END:
1236                 if (host->sd_error) {
1237                         mrq->data->error = sh_mmcif_error_manage(host);
1238                         dev_dbg(dev, "%s(): %d\n", __func__, mrq->data->error);
1239                 }
1240                 break;
1241         default:
1242                 BUG();
1243         }
1244
1245         if (wait) {
1246                 schedule_delayed_work(&host->timeout_work, host->timeout);
1247                 /* Wait for more data */
1248                 mutex_unlock(&host->thread_lock);
1249                 return IRQ_HANDLED;
1250         }
1251
1252         if (host->wait_for != MMCIF_WAIT_FOR_STOP) {
1253                 struct mmc_data *data = mrq->data;
1254                 if (!mrq->cmd->error && data && !data->error)
1255                         data->bytes_xfered =
1256                                 data->blocks * data->blksz;
1257
1258                 if (mrq->stop && !mrq->cmd->error && (!data || !data->error)) {
1259                         sh_mmcif_stop_cmd(host, mrq);
1260                         if (!mrq->stop->error) {
1261                                 schedule_delayed_work(&host->timeout_work, host->timeout);
1262                                 mutex_unlock(&host->thread_lock);
1263                                 return IRQ_HANDLED;
1264                         }
1265                 }
1266         }
1267
1268         host->wait_for = MMCIF_WAIT_FOR_REQUEST;
1269         host->state = STATE_IDLE;
1270         host->mrq = NULL;
1271         mmc_request_done(host->mmc, mrq);
1272
1273         mutex_unlock(&host->thread_lock);
1274
1275         return IRQ_HANDLED;
1276 }
1277
1278 static irqreturn_t sh_mmcif_intr(int irq, void *dev_id)
1279 {
1280         struct sh_mmcif_host *host = dev_id;
1281         struct device *dev = sh_mmcif_host_to_dev(host);
1282         u32 state, mask;
1283
1284         state = sh_mmcif_readl(host->addr, MMCIF_CE_INT);
1285         mask = sh_mmcif_readl(host->addr, MMCIF_CE_INT_MASK);
1286         if (host->ccs_enable)
1287                 sh_mmcif_writel(host->addr, MMCIF_CE_INT, ~(state & mask));
1288         else
1289                 sh_mmcif_writel(host->addr, MMCIF_CE_INT, INT_CCS | ~(state & mask));
1290         sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, state & MASK_CLEAN);
1291
1292         if (state & ~MASK_CLEAN)
1293                 dev_dbg(dev, "IRQ state = 0x%08x incompletely cleared\n",
1294                         state);
1295
1296         if (state & INT_ERR_STS || state & ~INT_ALL) {
1297                 host->sd_error = true;
1298                 dev_dbg(dev, "int err state = 0x%08x\n", state);
1299         }
1300         if (state & ~(INT_CMD12RBE | INT_CMD12CRE)) {
1301                 if (!host->mrq)
1302                         dev_dbg(dev, "NULL IRQ state = 0x%08x\n", state);
1303                 if (!host->dma_active)
1304                         return IRQ_WAKE_THREAD;
1305                 else if (host->sd_error)
1306                         sh_mmcif_dma_complete(host);
1307         } else {
1308                 dev_dbg(dev, "Unexpected IRQ 0x%x\n", state);
1309         }
1310
1311         return IRQ_HANDLED;
1312 }
1313
1314 static void sh_mmcif_timeout_work(struct work_struct *work)
1315 {
1316         struct delayed_work *d = to_delayed_work(work);
1317         struct sh_mmcif_host *host = container_of(d, struct sh_mmcif_host, timeout_work);
1318         struct mmc_request *mrq = host->mrq;
1319         struct device *dev = sh_mmcif_host_to_dev(host);
1320         unsigned long flags;
1321
1322         if (host->dying)
1323                 /* Don't run after mmc_remove_host() */
1324                 return;
1325
1326         spin_lock_irqsave(&host->lock, flags);
1327         if (host->state == STATE_IDLE) {
1328                 spin_unlock_irqrestore(&host->lock, flags);
1329                 return;
1330         }
1331
1332         dev_err(dev, "Timeout waiting for %u on CMD%u\n",
1333                 host->wait_for, mrq->cmd->opcode);
1334
1335         host->state = STATE_TIMEOUT;
1336         spin_unlock_irqrestore(&host->lock, flags);
1337
1338         /*
1339          * Handle races with cancel_delayed_work(), unless
1340          * cancel_delayed_work_sync() is used
1341          */
1342         switch (host->wait_for) {
1343         case MMCIF_WAIT_FOR_CMD:
1344                 mrq->cmd->error = sh_mmcif_error_manage(host);
1345                 break;
1346         case MMCIF_WAIT_FOR_STOP:
1347                 mrq->stop->error = sh_mmcif_error_manage(host);
1348                 break;
1349         case MMCIF_WAIT_FOR_MREAD:
1350         case MMCIF_WAIT_FOR_MWRITE:
1351         case MMCIF_WAIT_FOR_READ:
1352         case MMCIF_WAIT_FOR_WRITE:
1353         case MMCIF_WAIT_FOR_READ_END:
1354         case MMCIF_WAIT_FOR_WRITE_END:
1355                 mrq->data->error = sh_mmcif_error_manage(host);
1356                 break;
1357         default:
1358                 BUG();
1359         }
1360
1361         host->state = STATE_IDLE;
1362         host->wait_for = MMCIF_WAIT_FOR_REQUEST;
1363         host->mrq = NULL;
1364         mmc_request_done(host->mmc, mrq);
1365 }
1366
1367 static void sh_mmcif_init_ocr(struct sh_mmcif_host *host)
1368 {
1369         struct device *dev = sh_mmcif_host_to_dev(host);
1370         struct sh_mmcif_plat_data *pd = dev->platform_data;
1371         struct mmc_host *mmc = host->mmc;
1372
1373         mmc_regulator_get_supply(mmc);
1374
1375         if (!pd)
1376                 return;
1377
1378         if (!mmc->ocr_avail)
1379                 mmc->ocr_avail = pd->ocr;
1380         else if (pd->ocr)
1381                 dev_warn(mmc_dev(mmc), "Platform OCR mask is ignored\n");
1382 }
1383
1384 static int sh_mmcif_probe(struct platform_device *pdev)
1385 {
1386         int ret = 0, irq[2];
1387         struct mmc_host *mmc;
1388         struct sh_mmcif_host *host;
1389         struct device *dev = &pdev->dev;
1390         struct sh_mmcif_plat_data *pd = dev->platform_data;
1391         struct resource *res;
1392         void __iomem *reg;
1393         const char *name;
1394
1395         irq[0] = platform_get_irq(pdev, 0);
1396         irq[1] = platform_get_irq_optional(pdev, 1);
1397         if (irq[0] < 0)
1398                 return -ENXIO;
1399
1400         res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1401         reg = devm_ioremap_resource(dev, res);
1402         if (IS_ERR(reg))
1403                 return PTR_ERR(reg);
1404
1405         mmc = mmc_alloc_host(sizeof(struct sh_mmcif_host), dev);
1406         if (!mmc)
1407                 return -ENOMEM;
1408
1409         ret = mmc_of_parse(mmc);
1410         if (ret < 0)
1411                 goto err_host;
1412
1413         host            = mmc_priv(mmc);
1414         host->mmc       = mmc;
1415         host->addr      = reg;
1416         host->timeout   = msecs_to_jiffies(10000);
1417         host->ccs_enable = true;
1418         host->clk_ctrl2_enable = false;
1419
1420         host->pd = pdev;
1421
1422         spin_lock_init(&host->lock);
1423
1424         mmc->ops = &sh_mmcif_ops;
1425         sh_mmcif_init_ocr(host);
1426
1427         mmc->caps |= MMC_CAP_MMC_HIGHSPEED | MMC_CAP_WAIT_WHILE_BUSY;
1428         mmc->caps2 |= MMC_CAP2_NO_SD | MMC_CAP2_NO_SDIO;
1429         mmc->max_busy_timeout = 10000;
1430
1431         if (pd && pd->caps)
1432                 mmc->caps |= pd->caps;
1433         mmc->max_segs = 32;
1434         mmc->max_blk_size = 512;
1435         mmc->max_req_size = PAGE_SIZE * mmc->max_segs;
1436         mmc->max_blk_count = mmc->max_req_size / mmc->max_blk_size;
1437         mmc->max_seg_size = mmc->max_req_size;
1438
1439         platform_set_drvdata(pdev, host);
1440
1441         host->clk = devm_clk_get(dev, NULL);
1442         if (IS_ERR(host->clk)) {
1443                 ret = PTR_ERR(host->clk);
1444                 dev_err(dev, "cannot get clock: %d\n", ret);
1445                 goto err_host;
1446         }
1447
1448         ret = clk_prepare_enable(host->clk);
1449         if (ret < 0)
1450                 goto err_host;
1451
1452         sh_mmcif_clk_setup(host);
1453
1454         pm_runtime_enable(dev);
1455         host->power = false;
1456
1457         ret = pm_runtime_get_sync(dev);
1458         if (ret < 0)
1459                 goto err_clk;
1460
1461         INIT_DELAYED_WORK(&host->timeout_work, sh_mmcif_timeout_work);
1462
1463         sh_mmcif_sync_reset(host);
1464         sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, MASK_ALL);
1465
1466         name = irq[1] < 0 ? dev_name(dev) : "sh_mmc:error";
1467         ret = devm_request_threaded_irq(dev, irq[0], sh_mmcif_intr,
1468                                         sh_mmcif_irqt, 0, name, host);
1469         if (ret) {
1470                 dev_err(dev, "request_irq error (%s)\n", name);
1471                 goto err_clk;
1472         }
1473         if (irq[1] >= 0) {
1474                 ret = devm_request_threaded_irq(dev, irq[1],
1475                                                 sh_mmcif_intr, sh_mmcif_irqt,
1476                                                 0, "sh_mmc:int", host);
1477                 if (ret) {
1478                         dev_err(dev, "request_irq error (sh_mmc:int)\n");
1479                         goto err_clk;
1480                 }
1481         }
1482
1483         mutex_init(&host->thread_lock);
1484
1485         ret = mmc_add_host(mmc);
1486         if (ret < 0)
1487                 goto err_clk;
1488
1489         dev_pm_qos_expose_latency_limit(dev, 100);
1490
1491         dev_info(dev, "Chip version 0x%04x, clock rate %luMHz\n",
1492                  sh_mmcif_readl(host->addr, MMCIF_CE_VERSION) & 0xffff,
1493                  clk_get_rate(host->clk) / 1000000UL);
1494
1495         pm_runtime_put(dev);
1496         clk_disable_unprepare(host->clk);
1497         return ret;
1498
1499 err_clk:
1500         clk_disable_unprepare(host->clk);
1501         pm_runtime_put_sync(dev);
1502         pm_runtime_disable(dev);
1503 err_host:
1504         mmc_free_host(mmc);
1505         return ret;
1506 }
1507
1508 static int sh_mmcif_remove(struct platform_device *pdev)
1509 {
1510         struct sh_mmcif_host *host = platform_get_drvdata(pdev);
1511
1512         host->dying = true;
1513         clk_prepare_enable(host->clk);
1514         pm_runtime_get_sync(&pdev->dev);
1515
1516         dev_pm_qos_hide_latency_limit(&pdev->dev);
1517
1518         mmc_remove_host(host->mmc);
1519         sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, MASK_ALL);
1520
1521         /*
1522          * FIXME: cancel_delayed_work(_sync)() and free_irq() race with the
1523          * mmc_remove_host() call above. But swapping order doesn't help either
1524          * (a query on the linux-mmc mailing list didn't bring any replies).
1525          */
1526         cancel_delayed_work_sync(&host->timeout_work);
1527
1528         clk_disable_unprepare(host->clk);
1529         mmc_free_host(host->mmc);
1530         pm_runtime_put_sync(&pdev->dev);
1531         pm_runtime_disable(&pdev->dev);
1532
1533         return 0;
1534 }
1535
1536 #ifdef CONFIG_PM_SLEEP
1537 static int sh_mmcif_suspend(struct device *dev)
1538 {
1539         struct sh_mmcif_host *host = dev_get_drvdata(dev);
1540
1541         pm_runtime_get_sync(dev);
1542         sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, MASK_ALL);
1543         pm_runtime_put(dev);
1544
1545         return 0;
1546 }
1547
1548 static int sh_mmcif_resume(struct device *dev)
1549 {
1550         return 0;
1551 }
1552 #endif
1553
1554 static const struct dev_pm_ops sh_mmcif_dev_pm_ops = {
1555         SET_SYSTEM_SLEEP_PM_OPS(sh_mmcif_suspend, sh_mmcif_resume)
1556 };
1557
1558 static struct platform_driver sh_mmcif_driver = {
1559         .probe          = sh_mmcif_probe,
1560         .remove         = sh_mmcif_remove,
1561         .driver         = {
1562                 .name   = DRIVER_NAME,
1563                 .pm     = &sh_mmcif_dev_pm_ops,
1564                 .of_match_table = sh_mmcif_of_match,
1565         },
1566 };
1567
1568 module_platform_driver(sh_mmcif_driver);
1569
1570 MODULE_DESCRIPTION("SuperH on-chip MMC/eMMC interface driver");
1571 MODULE_LICENSE("GPL v2");
1572 MODULE_ALIAS("platform:" DRIVER_NAME);
1573 MODULE_AUTHOR("Yusuke Goda <yusuke.goda.sx@renesas.com>");