Linux-libre 4.19.20-gnu
[librecmc/linux-libre.git] / drivers / mmc / host / sh_mmcif.c
1 /*
2  * MMCIF eMMC driver.
3  *
4  * Copyright (C) 2010 Renesas Solutions Corp.
5  * Yusuke Goda <yusuke.goda.sx@renesas.com>
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License as published by
9  * the Free Software Foundation; either version 2 of the License.
10  */
11
12 /*
13  * The MMCIF driver is now processing MMC requests asynchronously, according
14  * to the Linux MMC API requirement.
15  *
16  * The MMCIF driver processes MMC requests in up to 3 stages: command, optional
17  * data, and optional stop. To achieve asynchronous processing each of these
18  * stages is split into two halves: a top and a bottom half. The top half
19  * initialises the hardware, installs a timeout handler to handle completion
20  * timeouts, and returns. In case of the command stage this immediately returns
21  * control to the caller, leaving all further processing to run asynchronously.
22  * All further request processing is performed by the bottom halves.
23  *
24  * The bottom half further consists of a "hard" IRQ handler, an IRQ handler
25  * thread, a DMA completion callback, if DMA is used, a timeout work, and
26  * request- and stage-specific handler methods.
27  *
28  * Each bottom half run begins with either a hardware interrupt, a DMA callback
29  * invocation, or a timeout work run. In case of an error or a successful
30  * processing completion, the MMC core is informed and the request processing is
31  * finished. In case processing has to continue, i.e., if data has to be read
32  * from or written to the card, or if a stop command has to be sent, the next
33  * top half is called, which performs the necessary hardware handling and
34  * reschedules the timeout work. This returns the driver state machine into the
35  * bottom half waiting state.
36  */
37
38 #include <linux/bitops.h>
39 #include <linux/clk.h>
40 #include <linux/completion.h>
41 #include <linux/delay.h>
42 #include <linux/dma-mapping.h>
43 #include <linux/dmaengine.h>
44 #include <linux/mmc/card.h>
45 #include <linux/mmc/core.h>
46 #include <linux/mmc/host.h>
47 #include <linux/mmc/mmc.h>
48 #include <linux/mmc/sdio.h>
49 #include <linux/mmc/sh_mmcif.h>
50 #include <linux/mmc/slot-gpio.h>
51 #include <linux/mod_devicetable.h>
52 #include <linux/mutex.h>
53 #include <linux/of_device.h>
54 #include <linux/pagemap.h>
55 #include <linux/platform_device.h>
56 #include <linux/pm_qos.h>
57 #include <linux/pm_runtime.h>
58 #include <linux/sh_dma.h>
59 #include <linux/spinlock.h>
60 #include <linux/module.h>
61
62 #define DRIVER_NAME     "sh_mmcif"
63
64 /* CE_CMD_SET */
65 #define CMD_MASK                0x3f000000
66 #define CMD_SET_RTYP_NO         ((0 << 23) | (0 << 22))
67 #define CMD_SET_RTYP_6B         ((0 << 23) | (1 << 22)) /* R1/R1b/R3/R4/R5 */
68 #define CMD_SET_RTYP_17B        ((1 << 23) | (0 << 22)) /* R2 */
69 #define CMD_SET_RBSY            (1 << 21) /* R1b */
70 #define CMD_SET_CCSEN           (1 << 20)
71 #define CMD_SET_WDAT            (1 << 19) /* 1: on data, 0: no data */
72 #define CMD_SET_DWEN            (1 << 18) /* 1: write, 0: read */
73 #define CMD_SET_CMLTE           (1 << 17) /* 1: multi block trans, 0: single */
74 #define CMD_SET_CMD12EN         (1 << 16) /* 1: CMD12 auto issue */
75 #define CMD_SET_RIDXC_INDEX     ((0 << 15) | (0 << 14)) /* index check */
76 #define CMD_SET_RIDXC_BITS      ((0 << 15) | (1 << 14)) /* check bits check */
77 #define CMD_SET_RIDXC_NO        ((1 << 15) | (0 << 14)) /* no check */
78 #define CMD_SET_CRC7C           ((0 << 13) | (0 << 12)) /* CRC7 check*/
79 #define CMD_SET_CRC7C_BITS      ((0 << 13) | (1 << 12)) /* check bits check*/
80 #define CMD_SET_CRC7C_INTERNAL  ((1 << 13) | (0 << 12)) /* internal CRC7 check*/
81 #define CMD_SET_CRC16C          (1 << 10) /* 0: CRC16 check*/
82 #define CMD_SET_CRCSTE          (1 << 8) /* 1: not receive CRC status */
83 #define CMD_SET_TBIT            (1 << 7) /* 1: tran mission bit "Low" */
84 #define CMD_SET_OPDM            (1 << 6) /* 1: open/drain */
85 #define CMD_SET_CCSH            (1 << 5)
86 #define CMD_SET_DARS            (1 << 2) /* Dual Data Rate */
87 #define CMD_SET_DATW_1          ((0 << 1) | (0 << 0)) /* 1bit */
88 #define CMD_SET_DATW_4          ((0 << 1) | (1 << 0)) /* 4bit */
89 #define CMD_SET_DATW_8          ((1 << 1) | (0 << 0)) /* 8bit */
90
91 /* CE_CMD_CTRL */
92 #define CMD_CTRL_BREAK          (1 << 0)
93
94 /* CE_BLOCK_SET */
95 #define BLOCK_SIZE_MASK         0x0000ffff
96
97 /* CE_INT */
98 #define INT_CCSDE               (1 << 29)
99 #define INT_CMD12DRE            (1 << 26)
100 #define INT_CMD12RBE            (1 << 25)
101 #define INT_CMD12CRE            (1 << 24)
102 #define INT_DTRANE              (1 << 23)
103 #define INT_BUFRE               (1 << 22)
104 #define INT_BUFWEN              (1 << 21)
105 #define INT_BUFREN              (1 << 20)
106 #define INT_CCSRCV              (1 << 19)
107 #define INT_RBSYE               (1 << 17)
108 #define INT_CRSPE               (1 << 16)
109 #define INT_CMDVIO              (1 << 15)
110 #define INT_BUFVIO              (1 << 14)
111 #define INT_WDATERR             (1 << 11)
112 #define INT_RDATERR             (1 << 10)
113 #define INT_RIDXERR             (1 << 9)
114 #define INT_RSPERR              (1 << 8)
115 #define INT_CCSTO               (1 << 5)
116 #define INT_CRCSTO              (1 << 4)
117 #define INT_WDATTO              (1 << 3)
118 #define INT_RDATTO              (1 << 2)
119 #define INT_RBSYTO              (1 << 1)
120 #define INT_RSPTO               (1 << 0)
121 #define INT_ERR_STS             (INT_CMDVIO | INT_BUFVIO | INT_WDATERR |  \
122                                  INT_RDATERR | INT_RIDXERR | INT_RSPERR | \
123                                  INT_CCSTO | INT_CRCSTO | INT_WDATTO |    \
124                                  INT_RDATTO | INT_RBSYTO | INT_RSPTO)
125
126 #define INT_ALL                 (INT_RBSYE | INT_CRSPE | INT_BUFREN |    \
127                                  INT_BUFWEN | INT_CMD12DRE | INT_BUFRE | \
128                                  INT_DTRANE | INT_CMD12RBE | INT_CMD12CRE)
129
130 #define INT_CCS                 (INT_CCSTO | INT_CCSRCV | INT_CCSDE)
131
132 /* CE_INT_MASK */
133 #define MASK_ALL                0x00000000
134 #define MASK_MCCSDE             (1 << 29)
135 #define MASK_MCMD12DRE          (1 << 26)
136 #define MASK_MCMD12RBE          (1 << 25)
137 #define MASK_MCMD12CRE          (1 << 24)
138 #define MASK_MDTRANE            (1 << 23)
139 #define MASK_MBUFRE             (1 << 22)
140 #define MASK_MBUFWEN            (1 << 21)
141 #define MASK_MBUFREN            (1 << 20)
142 #define MASK_MCCSRCV            (1 << 19)
143 #define MASK_MRBSYE             (1 << 17)
144 #define MASK_MCRSPE             (1 << 16)
145 #define MASK_MCMDVIO            (1 << 15)
146 #define MASK_MBUFVIO            (1 << 14)
147 #define MASK_MWDATERR           (1 << 11)
148 #define MASK_MRDATERR           (1 << 10)
149 #define MASK_MRIDXERR           (1 << 9)
150 #define MASK_MRSPERR            (1 << 8)
151 #define MASK_MCCSTO             (1 << 5)
152 #define MASK_MCRCSTO            (1 << 4)
153 #define MASK_MWDATTO            (1 << 3)
154 #define MASK_MRDATTO            (1 << 2)
155 #define MASK_MRBSYTO            (1 << 1)
156 #define MASK_MRSPTO             (1 << 0)
157
158 #define MASK_START_CMD          (MASK_MCMDVIO | MASK_MBUFVIO | MASK_MWDATERR | \
159                                  MASK_MRDATERR | MASK_MRIDXERR | MASK_MRSPERR | \
160                                  MASK_MCRCSTO | MASK_MWDATTO | \
161                                  MASK_MRDATTO | MASK_MRBSYTO | MASK_MRSPTO)
162
163 #define MASK_CLEAN              (INT_ERR_STS | MASK_MRBSYE | MASK_MCRSPE |      \
164                                  MASK_MBUFREN | MASK_MBUFWEN |                  \
165                                  MASK_MCMD12DRE | MASK_MBUFRE | MASK_MDTRANE |  \
166                                  MASK_MCMD12RBE | MASK_MCMD12CRE)
167
168 /* CE_HOST_STS1 */
169 #define STS1_CMDSEQ             (1 << 31)
170
171 /* CE_HOST_STS2 */
172 #define STS2_CRCSTE             (1 << 31)
173 #define STS2_CRC16E             (1 << 30)
174 #define STS2_AC12CRCE           (1 << 29)
175 #define STS2_RSPCRC7E           (1 << 28)
176 #define STS2_CRCSTEBE           (1 << 27)
177 #define STS2_RDATEBE            (1 << 26)
178 #define STS2_AC12REBE           (1 << 25)
179 #define STS2_RSPEBE             (1 << 24)
180 #define STS2_AC12IDXE           (1 << 23)
181 #define STS2_RSPIDXE            (1 << 22)
182 #define STS2_CCSTO              (1 << 15)
183 #define STS2_RDATTO             (1 << 14)
184 #define STS2_DATBSYTO           (1 << 13)
185 #define STS2_CRCSTTO            (1 << 12)
186 #define STS2_AC12BSYTO          (1 << 11)
187 #define STS2_RSPBSYTO           (1 << 10)
188 #define STS2_AC12RSPTO          (1 << 9)
189 #define STS2_RSPTO              (1 << 8)
190 #define STS2_CRC_ERR            (STS2_CRCSTE | STS2_CRC16E |            \
191                                  STS2_AC12CRCE | STS2_RSPCRC7E | STS2_CRCSTEBE)
192 #define STS2_TIMEOUT_ERR        (STS2_CCSTO | STS2_RDATTO |             \
193                                  STS2_DATBSYTO | STS2_CRCSTTO |         \
194                                  STS2_AC12BSYTO | STS2_RSPBSYTO |       \
195                                  STS2_AC12RSPTO | STS2_RSPTO)
196
197 #define CLKDEV_EMMC_DATA        52000000 /* 52MHz */
198 #define CLKDEV_MMC_DATA         20000000 /* 20MHz */
199 #define CLKDEV_INIT             400000   /* 400 KHz */
200
201 enum sh_mmcif_state {
202         STATE_IDLE,
203         STATE_REQUEST,
204         STATE_IOS,
205         STATE_TIMEOUT,
206 };
207
208 enum sh_mmcif_wait_for {
209         MMCIF_WAIT_FOR_REQUEST,
210         MMCIF_WAIT_FOR_CMD,
211         MMCIF_WAIT_FOR_MREAD,
212         MMCIF_WAIT_FOR_MWRITE,
213         MMCIF_WAIT_FOR_READ,
214         MMCIF_WAIT_FOR_WRITE,
215         MMCIF_WAIT_FOR_READ_END,
216         MMCIF_WAIT_FOR_WRITE_END,
217         MMCIF_WAIT_FOR_STOP,
218 };
219
220 /*
221  * difference for each SoC
222  */
223 struct sh_mmcif_host {
224         struct mmc_host *mmc;
225         struct mmc_request *mrq;
226         struct platform_device *pd;
227         struct clk *clk;
228         int bus_width;
229         unsigned char timing;
230         bool sd_error;
231         bool dying;
232         long timeout;
233         void __iomem *addr;
234         u32 *pio_ptr;
235         spinlock_t lock;                /* protect sh_mmcif_host::state */
236         enum sh_mmcif_state state;
237         enum sh_mmcif_wait_for wait_for;
238         struct delayed_work timeout_work;
239         size_t blocksize;
240         int sg_idx;
241         int sg_blkidx;
242         bool power;
243         bool ccs_enable;                /* Command Completion Signal support */
244         bool clk_ctrl2_enable;
245         struct mutex thread_lock;
246         u32 clkdiv_map;         /* see CE_CLK_CTRL::CLKDIV */
247
248         /* DMA support */
249         struct dma_chan         *chan_rx;
250         struct dma_chan         *chan_tx;
251         struct completion       dma_complete;
252         bool                    dma_active;
253 };
254
255 static const struct of_device_id sh_mmcif_of_match[] = {
256         { .compatible = "renesas,sh-mmcif" },
257         { }
258 };
259 MODULE_DEVICE_TABLE(of, sh_mmcif_of_match);
260
261 #define sh_mmcif_host_to_dev(host) (&host->pd->dev)
262
263 static inline void sh_mmcif_bitset(struct sh_mmcif_host *host,
264                                         unsigned int reg, u32 val)
265 {
266         writel(val | readl(host->addr + reg), host->addr + reg);
267 }
268
269 static inline void sh_mmcif_bitclr(struct sh_mmcif_host *host,
270                                         unsigned int reg, u32 val)
271 {
272         writel(~val & readl(host->addr + reg), host->addr + reg);
273 }
274
275 static void sh_mmcif_dma_complete(void *arg)
276 {
277         struct sh_mmcif_host *host = arg;
278         struct mmc_request *mrq = host->mrq;
279         struct device *dev = sh_mmcif_host_to_dev(host);
280
281         dev_dbg(dev, "Command completed\n");
282
283         if (WARN(!mrq || !mrq->data, "%s: NULL data in DMA completion!\n",
284                  dev_name(dev)))
285                 return;
286
287         complete(&host->dma_complete);
288 }
289
290 static void sh_mmcif_start_dma_rx(struct sh_mmcif_host *host)
291 {
292         struct mmc_data *data = host->mrq->data;
293         struct scatterlist *sg = data->sg;
294         struct dma_async_tx_descriptor *desc = NULL;
295         struct dma_chan *chan = host->chan_rx;
296         struct device *dev = sh_mmcif_host_to_dev(host);
297         dma_cookie_t cookie = -EINVAL;
298         int ret;
299
300         ret = dma_map_sg(chan->device->dev, sg, data->sg_len,
301                          DMA_FROM_DEVICE);
302         if (ret > 0) {
303                 host->dma_active = true;
304                 desc = dmaengine_prep_slave_sg(chan, sg, ret,
305                         DMA_DEV_TO_MEM, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
306         }
307
308         if (desc) {
309                 desc->callback = sh_mmcif_dma_complete;
310                 desc->callback_param = host;
311                 cookie = dmaengine_submit(desc);
312                 sh_mmcif_bitset(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN);
313                 dma_async_issue_pending(chan);
314         }
315         dev_dbg(dev, "%s(): mapped %d -> %d, cookie %d\n",
316                 __func__, data->sg_len, ret, cookie);
317
318         if (!desc) {
319                 /* DMA failed, fall back to PIO */
320                 if (ret >= 0)
321                         ret = -EIO;
322                 host->chan_rx = NULL;
323                 host->dma_active = false;
324                 dma_release_channel(chan);
325                 /* Free the Tx channel too */
326                 chan = host->chan_tx;
327                 if (chan) {
328                         host->chan_tx = NULL;
329                         dma_release_channel(chan);
330                 }
331                 dev_warn(dev,
332                          "DMA failed: %d, falling back to PIO\n", ret);
333                 sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
334         }
335
336         dev_dbg(dev, "%s(): desc %p, cookie %d, sg[%d]\n", __func__,
337                 desc, cookie, data->sg_len);
338 }
339
340 static void sh_mmcif_start_dma_tx(struct sh_mmcif_host *host)
341 {
342         struct mmc_data *data = host->mrq->data;
343         struct scatterlist *sg = data->sg;
344         struct dma_async_tx_descriptor *desc = NULL;
345         struct dma_chan *chan = host->chan_tx;
346         struct device *dev = sh_mmcif_host_to_dev(host);
347         dma_cookie_t cookie = -EINVAL;
348         int ret;
349
350         ret = dma_map_sg(chan->device->dev, sg, data->sg_len,
351                          DMA_TO_DEVICE);
352         if (ret > 0) {
353                 host->dma_active = true;
354                 desc = dmaengine_prep_slave_sg(chan, sg, ret,
355                         DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
356         }
357
358         if (desc) {
359                 desc->callback = sh_mmcif_dma_complete;
360                 desc->callback_param = host;
361                 cookie = dmaengine_submit(desc);
362                 sh_mmcif_bitset(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAWEN);
363                 dma_async_issue_pending(chan);
364         }
365         dev_dbg(dev, "%s(): mapped %d -> %d, cookie %d\n",
366                 __func__, data->sg_len, ret, cookie);
367
368         if (!desc) {
369                 /* DMA failed, fall back to PIO */
370                 if (ret >= 0)
371                         ret = -EIO;
372                 host->chan_tx = NULL;
373                 host->dma_active = false;
374                 dma_release_channel(chan);
375                 /* Free the Rx channel too */
376                 chan = host->chan_rx;
377                 if (chan) {
378                         host->chan_rx = NULL;
379                         dma_release_channel(chan);
380                 }
381                 dev_warn(dev,
382                          "DMA failed: %d, falling back to PIO\n", ret);
383                 sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
384         }
385
386         dev_dbg(dev, "%s(): desc %p, cookie %d\n", __func__,
387                 desc, cookie);
388 }
389
390 static struct dma_chan *
391 sh_mmcif_request_dma_pdata(struct sh_mmcif_host *host, uintptr_t slave_id)
392 {
393         dma_cap_mask_t mask;
394
395         dma_cap_zero(mask);
396         dma_cap_set(DMA_SLAVE, mask);
397         if (slave_id <= 0)
398                 return NULL;
399
400         return dma_request_channel(mask, shdma_chan_filter, (void *)slave_id);
401 }
402
403 static int sh_mmcif_dma_slave_config(struct sh_mmcif_host *host,
404                                      struct dma_chan *chan,
405                                      enum dma_transfer_direction direction)
406 {
407         struct resource *res;
408         struct dma_slave_config cfg = { 0, };
409
410         res = platform_get_resource(host->pd, IORESOURCE_MEM, 0);
411         cfg.direction = direction;
412
413         if (direction == DMA_DEV_TO_MEM) {
414                 cfg.src_addr = res->start + MMCIF_CE_DATA;
415                 cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
416         } else {
417                 cfg.dst_addr = res->start + MMCIF_CE_DATA;
418                 cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
419         }
420
421         return dmaengine_slave_config(chan, &cfg);
422 }
423
424 static void sh_mmcif_request_dma(struct sh_mmcif_host *host)
425 {
426         struct device *dev = sh_mmcif_host_to_dev(host);
427         host->dma_active = false;
428
429         /* We can only either use DMA for both Tx and Rx or not use it at all */
430         if (IS_ENABLED(CONFIG_SUPERH) && dev->platform_data) {
431                 struct sh_mmcif_plat_data *pdata = dev->platform_data;
432
433                 host->chan_tx = sh_mmcif_request_dma_pdata(host,
434                                                         pdata->slave_id_tx);
435                 host->chan_rx = sh_mmcif_request_dma_pdata(host,
436                                                         pdata->slave_id_rx);
437         } else {
438                 host->chan_tx = dma_request_slave_channel(dev, "tx");
439                 host->chan_rx = dma_request_slave_channel(dev, "rx");
440         }
441         dev_dbg(dev, "%s: got channel TX %p RX %p\n", __func__, host->chan_tx,
442                 host->chan_rx);
443
444         if (!host->chan_tx || !host->chan_rx ||
445             sh_mmcif_dma_slave_config(host, host->chan_tx, DMA_MEM_TO_DEV) ||
446             sh_mmcif_dma_slave_config(host, host->chan_rx, DMA_DEV_TO_MEM))
447                 goto error;
448
449         return;
450
451 error:
452         if (host->chan_tx)
453                 dma_release_channel(host->chan_tx);
454         if (host->chan_rx)
455                 dma_release_channel(host->chan_rx);
456         host->chan_tx = host->chan_rx = NULL;
457 }
458
459 static void sh_mmcif_release_dma(struct sh_mmcif_host *host)
460 {
461         sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
462         /* Descriptors are freed automatically */
463         if (host->chan_tx) {
464                 struct dma_chan *chan = host->chan_tx;
465                 host->chan_tx = NULL;
466                 dma_release_channel(chan);
467         }
468         if (host->chan_rx) {
469                 struct dma_chan *chan = host->chan_rx;
470                 host->chan_rx = NULL;
471                 dma_release_channel(chan);
472         }
473
474         host->dma_active = false;
475 }
476
477 static void sh_mmcif_clock_control(struct sh_mmcif_host *host, unsigned int clk)
478 {
479         struct device *dev = sh_mmcif_host_to_dev(host);
480         struct sh_mmcif_plat_data *p = dev->platform_data;
481         bool sup_pclk = p ? p->sup_pclk : false;
482         unsigned int current_clk = clk_get_rate(host->clk);
483         unsigned int clkdiv;
484
485         sh_mmcif_bitclr(host, MMCIF_CE_CLK_CTRL, CLK_ENABLE);
486         sh_mmcif_bitclr(host, MMCIF_CE_CLK_CTRL, CLK_CLEAR);
487
488         if (!clk)
489                 return;
490
491         if (host->clkdiv_map) {
492                 unsigned int freq, best_freq, myclk, div, diff_min, diff;
493                 int i;
494
495                 clkdiv = 0;
496                 diff_min = ~0;
497                 best_freq = 0;
498                 for (i = 31; i >= 0; i--) {
499                         if (!((1 << i) & host->clkdiv_map))
500                                 continue;
501
502                         /*
503                          * clk = parent_freq / div
504                          * -> parent_freq = clk x div
505                          */
506
507                         div = 1 << (i + 1);
508                         freq = clk_round_rate(host->clk, clk * div);
509                         myclk = freq / div;
510                         diff = (myclk > clk) ? myclk - clk : clk - myclk;
511
512                         if (diff <= diff_min) {
513                                 best_freq = freq;
514                                 clkdiv = i;
515                                 diff_min = diff;
516                         }
517                 }
518
519                 dev_dbg(dev, "clk %u/%u (%u, 0x%x)\n",
520                         (best_freq / (1 << (clkdiv + 1))), clk,
521                         best_freq, clkdiv);
522
523                 clk_set_rate(host->clk, best_freq);
524                 clkdiv = clkdiv << 16;
525         } else if (sup_pclk && clk == current_clk) {
526                 clkdiv = CLK_SUP_PCLK;
527         } else {
528                 clkdiv = (fls(DIV_ROUND_UP(current_clk, clk) - 1) - 1) << 16;
529         }
530
531         sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, CLK_CLEAR & clkdiv);
532         sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, CLK_ENABLE);
533 }
534
535 static void sh_mmcif_sync_reset(struct sh_mmcif_host *host)
536 {
537         u32 tmp;
538
539         tmp = 0x010f0000 & sh_mmcif_readl(host->addr, MMCIF_CE_CLK_CTRL);
540
541         sh_mmcif_writel(host->addr, MMCIF_CE_VERSION, SOFT_RST_ON);
542         sh_mmcif_writel(host->addr, MMCIF_CE_VERSION, SOFT_RST_OFF);
543         if (host->ccs_enable)
544                 tmp |= SCCSTO_29;
545         if (host->clk_ctrl2_enable)
546                 sh_mmcif_writel(host->addr, MMCIF_CE_CLK_CTRL2, 0x0F0F0000);
547         sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, tmp |
548                 SRSPTO_256 | SRBSYTO_29 | SRWDTO_29);
549         /* byte swap on */
550         sh_mmcif_bitset(host, MMCIF_CE_BUF_ACC, BUF_ACC_ATYP);
551 }
552
553 static int sh_mmcif_error_manage(struct sh_mmcif_host *host)
554 {
555         struct device *dev = sh_mmcif_host_to_dev(host);
556         u32 state1, state2;
557         int ret, timeout;
558
559         host->sd_error = false;
560
561         state1 = sh_mmcif_readl(host->addr, MMCIF_CE_HOST_STS1);
562         state2 = sh_mmcif_readl(host->addr, MMCIF_CE_HOST_STS2);
563         dev_dbg(dev, "ERR HOST_STS1 = %08x\n", state1);
564         dev_dbg(dev, "ERR HOST_STS2 = %08x\n", state2);
565
566         if (state1 & STS1_CMDSEQ) {
567                 sh_mmcif_bitset(host, MMCIF_CE_CMD_CTRL, CMD_CTRL_BREAK);
568                 sh_mmcif_bitset(host, MMCIF_CE_CMD_CTRL, ~CMD_CTRL_BREAK);
569                 for (timeout = 10000; timeout; timeout--) {
570                         if (!(sh_mmcif_readl(host->addr, MMCIF_CE_HOST_STS1)
571                               & STS1_CMDSEQ))
572                                 break;
573                         mdelay(1);
574                 }
575                 if (!timeout) {
576                         dev_err(dev,
577                                 "Forced end of command sequence timeout err\n");
578                         return -EIO;
579                 }
580                 sh_mmcif_sync_reset(host);
581                 dev_dbg(dev, "Forced end of command sequence\n");
582                 return -EIO;
583         }
584
585         if (state2 & STS2_CRC_ERR) {
586                 dev_err(dev, " CRC error: state %u, wait %u\n",
587                         host->state, host->wait_for);
588                 ret = -EIO;
589         } else if (state2 & STS2_TIMEOUT_ERR) {
590                 dev_err(dev, " Timeout: state %u, wait %u\n",
591                         host->state, host->wait_for);
592                 ret = -ETIMEDOUT;
593         } else {
594                 dev_dbg(dev, " End/Index error: state %u, wait %u\n",
595                         host->state, host->wait_for);
596                 ret = -EIO;
597         }
598         return ret;
599 }
600
601 static bool sh_mmcif_next_block(struct sh_mmcif_host *host, u32 *p)
602 {
603         struct mmc_data *data = host->mrq->data;
604
605         host->sg_blkidx += host->blocksize;
606
607         /* data->sg->length must be a multiple of host->blocksize? */
608         BUG_ON(host->sg_blkidx > data->sg->length);
609
610         if (host->sg_blkidx == data->sg->length) {
611                 host->sg_blkidx = 0;
612                 if (++host->sg_idx < data->sg_len)
613                         host->pio_ptr = sg_virt(++data->sg);
614         } else {
615                 host->pio_ptr = p;
616         }
617
618         return host->sg_idx != data->sg_len;
619 }
620
621 static void sh_mmcif_single_read(struct sh_mmcif_host *host,
622                                  struct mmc_request *mrq)
623 {
624         host->blocksize = (sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) &
625                            BLOCK_SIZE_MASK) + 3;
626
627         host->wait_for = MMCIF_WAIT_FOR_READ;
628
629         /* buf read enable */
630         sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFREN);
631 }
632
633 static bool sh_mmcif_read_block(struct sh_mmcif_host *host)
634 {
635         struct device *dev = sh_mmcif_host_to_dev(host);
636         struct mmc_data *data = host->mrq->data;
637         u32 *p = sg_virt(data->sg);
638         int i;
639
640         if (host->sd_error) {
641                 data->error = sh_mmcif_error_manage(host);
642                 dev_dbg(dev, "%s(): %d\n", __func__, data->error);
643                 return false;
644         }
645
646         for (i = 0; i < host->blocksize / 4; i++)
647                 *p++ = sh_mmcif_readl(host->addr, MMCIF_CE_DATA);
648
649         /* buffer read end */
650         sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFRE);
651         host->wait_for = MMCIF_WAIT_FOR_READ_END;
652
653         return true;
654 }
655
656 static void sh_mmcif_multi_read(struct sh_mmcif_host *host,
657                                 struct mmc_request *mrq)
658 {
659         struct mmc_data *data = mrq->data;
660
661         if (!data->sg_len || !data->sg->length)
662                 return;
663
664         host->blocksize = sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) &
665                 BLOCK_SIZE_MASK;
666
667         host->wait_for = MMCIF_WAIT_FOR_MREAD;
668         host->sg_idx = 0;
669         host->sg_blkidx = 0;
670         host->pio_ptr = sg_virt(data->sg);
671
672         sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFREN);
673 }
674
675 static bool sh_mmcif_mread_block(struct sh_mmcif_host *host)
676 {
677         struct device *dev = sh_mmcif_host_to_dev(host);
678         struct mmc_data *data = host->mrq->data;
679         u32 *p = host->pio_ptr;
680         int i;
681
682         if (host->sd_error) {
683                 data->error = sh_mmcif_error_manage(host);
684                 dev_dbg(dev, "%s(): %d\n", __func__, data->error);
685                 return false;
686         }
687
688         BUG_ON(!data->sg->length);
689
690         for (i = 0; i < host->blocksize / 4; i++)
691                 *p++ = sh_mmcif_readl(host->addr, MMCIF_CE_DATA);
692
693         if (!sh_mmcif_next_block(host, p))
694                 return false;
695
696         sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFREN);
697
698         return true;
699 }
700
701 static void sh_mmcif_single_write(struct sh_mmcif_host *host,
702                                         struct mmc_request *mrq)
703 {
704         host->blocksize = (sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) &
705                            BLOCK_SIZE_MASK) + 3;
706
707         host->wait_for = MMCIF_WAIT_FOR_WRITE;
708
709         /* buf write enable */
710         sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFWEN);
711 }
712
713 static bool sh_mmcif_write_block(struct sh_mmcif_host *host)
714 {
715         struct device *dev = sh_mmcif_host_to_dev(host);
716         struct mmc_data *data = host->mrq->data;
717         u32 *p = sg_virt(data->sg);
718         int i;
719
720         if (host->sd_error) {
721                 data->error = sh_mmcif_error_manage(host);
722                 dev_dbg(dev, "%s(): %d\n", __func__, data->error);
723                 return false;
724         }
725
726         for (i = 0; i < host->blocksize / 4; i++)
727                 sh_mmcif_writel(host->addr, MMCIF_CE_DATA, *p++);
728
729         /* buffer write end */
730         sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MDTRANE);
731         host->wait_for = MMCIF_WAIT_FOR_WRITE_END;
732
733         return true;
734 }
735
736 static void sh_mmcif_multi_write(struct sh_mmcif_host *host,
737                                 struct mmc_request *mrq)
738 {
739         struct mmc_data *data = mrq->data;
740
741         if (!data->sg_len || !data->sg->length)
742                 return;
743
744         host->blocksize = sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) &
745                 BLOCK_SIZE_MASK;
746
747         host->wait_for = MMCIF_WAIT_FOR_MWRITE;
748         host->sg_idx = 0;
749         host->sg_blkidx = 0;
750         host->pio_ptr = sg_virt(data->sg);
751
752         sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFWEN);
753 }
754
755 static bool sh_mmcif_mwrite_block(struct sh_mmcif_host *host)
756 {
757         struct device *dev = sh_mmcif_host_to_dev(host);
758         struct mmc_data *data = host->mrq->data;
759         u32 *p = host->pio_ptr;
760         int i;
761
762         if (host->sd_error) {
763                 data->error = sh_mmcif_error_manage(host);
764                 dev_dbg(dev, "%s(): %d\n", __func__, data->error);
765                 return false;
766         }
767
768         BUG_ON(!data->sg->length);
769
770         for (i = 0; i < host->blocksize / 4; i++)
771                 sh_mmcif_writel(host->addr, MMCIF_CE_DATA, *p++);
772
773         if (!sh_mmcif_next_block(host, p))
774                 return false;
775
776         sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFWEN);
777
778         return true;
779 }
780
781 static void sh_mmcif_get_response(struct sh_mmcif_host *host,
782                                                 struct mmc_command *cmd)
783 {
784         if (cmd->flags & MMC_RSP_136) {
785                 cmd->resp[0] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP3);
786                 cmd->resp[1] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP2);
787                 cmd->resp[2] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP1);
788                 cmd->resp[3] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP0);
789         } else
790                 cmd->resp[0] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP0);
791 }
792
793 static void sh_mmcif_get_cmd12response(struct sh_mmcif_host *host,
794                                                 struct mmc_command *cmd)
795 {
796         cmd->resp[0] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP_CMD12);
797 }
798
799 static u32 sh_mmcif_set_cmd(struct sh_mmcif_host *host,
800                             struct mmc_request *mrq)
801 {
802         struct device *dev = sh_mmcif_host_to_dev(host);
803         struct mmc_data *data = mrq->data;
804         struct mmc_command *cmd = mrq->cmd;
805         u32 opc = cmd->opcode;
806         u32 tmp = 0;
807
808         /* Response Type check */
809         switch (mmc_resp_type(cmd)) {
810         case MMC_RSP_NONE:
811                 tmp |= CMD_SET_RTYP_NO;
812                 break;
813         case MMC_RSP_R1:
814         case MMC_RSP_R3:
815                 tmp |= CMD_SET_RTYP_6B;
816                 break;
817         case MMC_RSP_R1B:
818                 tmp |= CMD_SET_RBSY | CMD_SET_RTYP_6B;
819                 break;
820         case MMC_RSP_R2:
821                 tmp |= CMD_SET_RTYP_17B;
822                 break;
823         default:
824                 dev_err(dev, "Unsupported response type.\n");
825                 break;
826         }
827
828         /* WDAT / DATW */
829         if (data) {
830                 tmp |= CMD_SET_WDAT;
831                 switch (host->bus_width) {
832                 case MMC_BUS_WIDTH_1:
833                         tmp |= CMD_SET_DATW_1;
834                         break;
835                 case MMC_BUS_WIDTH_4:
836                         tmp |= CMD_SET_DATW_4;
837                         break;
838                 case MMC_BUS_WIDTH_8:
839                         tmp |= CMD_SET_DATW_8;
840                         break;
841                 default:
842                         dev_err(dev, "Unsupported bus width.\n");
843                         break;
844                 }
845                 switch (host->timing) {
846                 case MMC_TIMING_MMC_DDR52:
847                         /*
848                          * MMC core will only set this timing, if the host
849                          * advertises the MMC_CAP_1_8V_DDR/MMC_CAP_1_2V_DDR
850                          * capability. MMCIF implementations with this
851                          * capability, e.g. sh73a0, will have to set it
852                          * in their platform data.
853                          */
854                         tmp |= CMD_SET_DARS;
855                         break;
856                 }
857         }
858         /* DWEN */
859         if (opc == MMC_WRITE_BLOCK || opc == MMC_WRITE_MULTIPLE_BLOCK)
860                 tmp |= CMD_SET_DWEN;
861         /* CMLTE/CMD12EN */
862         if (opc == MMC_READ_MULTIPLE_BLOCK || opc == MMC_WRITE_MULTIPLE_BLOCK) {
863                 tmp |= CMD_SET_CMLTE | CMD_SET_CMD12EN;
864                 sh_mmcif_bitset(host, MMCIF_CE_BLOCK_SET,
865                                 data->blocks << 16);
866         }
867         /* RIDXC[1:0] check bits */
868         if (opc == MMC_SEND_OP_COND || opc == MMC_ALL_SEND_CID ||
869             opc == MMC_SEND_CSD || opc == MMC_SEND_CID)
870                 tmp |= CMD_SET_RIDXC_BITS;
871         /* RCRC7C[1:0] check bits */
872         if (opc == MMC_SEND_OP_COND)
873                 tmp |= CMD_SET_CRC7C_BITS;
874         /* RCRC7C[1:0] internal CRC7 */
875         if (opc == MMC_ALL_SEND_CID ||
876                 opc == MMC_SEND_CSD || opc == MMC_SEND_CID)
877                 tmp |= CMD_SET_CRC7C_INTERNAL;
878
879         return (opc << 24) | tmp;
880 }
881
882 static int sh_mmcif_data_trans(struct sh_mmcif_host *host,
883                                struct mmc_request *mrq, u32 opc)
884 {
885         struct device *dev = sh_mmcif_host_to_dev(host);
886
887         switch (opc) {
888         case MMC_READ_MULTIPLE_BLOCK:
889                 sh_mmcif_multi_read(host, mrq);
890                 return 0;
891         case MMC_WRITE_MULTIPLE_BLOCK:
892                 sh_mmcif_multi_write(host, mrq);
893                 return 0;
894         case MMC_WRITE_BLOCK:
895                 sh_mmcif_single_write(host, mrq);
896                 return 0;
897         case MMC_READ_SINGLE_BLOCK:
898         case MMC_SEND_EXT_CSD:
899                 sh_mmcif_single_read(host, mrq);
900                 return 0;
901         default:
902                 dev_err(dev, "Unsupported CMD%d\n", opc);
903                 return -EINVAL;
904         }
905 }
906
907 static void sh_mmcif_start_cmd(struct sh_mmcif_host *host,
908                                struct mmc_request *mrq)
909 {
910         struct mmc_command *cmd = mrq->cmd;
911         u32 opc;
912         u32 mask = 0;
913         unsigned long flags;
914
915         if (cmd->flags & MMC_RSP_BUSY)
916                 mask = MASK_START_CMD | MASK_MRBSYE;
917         else
918                 mask = MASK_START_CMD | MASK_MCRSPE;
919
920         if (host->ccs_enable)
921                 mask |= MASK_MCCSTO;
922
923         if (mrq->data) {
924                 sh_mmcif_writel(host->addr, MMCIF_CE_BLOCK_SET, 0);
925                 sh_mmcif_writel(host->addr, MMCIF_CE_BLOCK_SET,
926                                 mrq->data->blksz);
927         }
928         opc = sh_mmcif_set_cmd(host, mrq);
929
930         if (host->ccs_enable)
931                 sh_mmcif_writel(host->addr, MMCIF_CE_INT, 0xD80430C0);
932         else
933                 sh_mmcif_writel(host->addr, MMCIF_CE_INT, 0xD80430C0 | INT_CCS);
934         sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, mask);
935         /* set arg */
936         sh_mmcif_writel(host->addr, MMCIF_CE_ARG, cmd->arg);
937         /* set cmd */
938         spin_lock_irqsave(&host->lock, flags);
939         sh_mmcif_writel(host->addr, MMCIF_CE_CMD_SET, opc);
940
941         host->wait_for = MMCIF_WAIT_FOR_CMD;
942         schedule_delayed_work(&host->timeout_work, host->timeout);
943         spin_unlock_irqrestore(&host->lock, flags);
944 }
945
946 static void sh_mmcif_stop_cmd(struct sh_mmcif_host *host,
947                               struct mmc_request *mrq)
948 {
949         struct device *dev = sh_mmcif_host_to_dev(host);
950
951         switch (mrq->cmd->opcode) {
952         case MMC_READ_MULTIPLE_BLOCK:
953                 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MCMD12DRE);
954                 break;
955         case MMC_WRITE_MULTIPLE_BLOCK:
956                 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MCMD12RBE);
957                 break;
958         default:
959                 dev_err(dev, "unsupported stop cmd\n");
960                 mrq->stop->error = sh_mmcif_error_manage(host);
961                 return;
962         }
963
964         host->wait_for = MMCIF_WAIT_FOR_STOP;
965 }
966
967 static void sh_mmcif_request(struct mmc_host *mmc, struct mmc_request *mrq)
968 {
969         struct sh_mmcif_host *host = mmc_priv(mmc);
970         struct device *dev = sh_mmcif_host_to_dev(host);
971         unsigned long flags;
972
973         spin_lock_irqsave(&host->lock, flags);
974         if (host->state != STATE_IDLE) {
975                 dev_dbg(dev, "%s() rejected, state %u\n",
976                         __func__, host->state);
977                 spin_unlock_irqrestore(&host->lock, flags);
978                 mrq->cmd->error = -EAGAIN;
979                 mmc_request_done(mmc, mrq);
980                 return;
981         }
982
983         host->state = STATE_REQUEST;
984         spin_unlock_irqrestore(&host->lock, flags);
985
986         host->mrq = mrq;
987
988         sh_mmcif_start_cmd(host, mrq);
989 }
990
991 static void sh_mmcif_clk_setup(struct sh_mmcif_host *host)
992 {
993         struct device *dev = sh_mmcif_host_to_dev(host);
994
995         if (host->mmc->f_max) {
996                 unsigned int f_max, f_min = 0, f_min_old;
997
998                 f_max = host->mmc->f_max;
999                 for (f_min_old = f_max; f_min_old > 2;) {
1000                         f_min = clk_round_rate(host->clk, f_min_old / 2);
1001                         if (f_min == f_min_old)
1002                                 break;
1003                         f_min_old = f_min;
1004                 }
1005
1006                 /*
1007                  * This driver assumes this SoC is R-Car Gen2 or later
1008                  */
1009                 host->clkdiv_map = 0x3ff;
1010
1011                 host->mmc->f_max = f_max / (1 << ffs(host->clkdiv_map));
1012                 host->mmc->f_min = f_min / (1 << fls(host->clkdiv_map));
1013         } else {
1014                 unsigned int clk = clk_get_rate(host->clk);
1015
1016                 host->mmc->f_max = clk / 2;
1017                 host->mmc->f_min = clk / 512;
1018         }
1019
1020         dev_dbg(dev, "clk max/min = %d/%d\n",
1021                 host->mmc->f_max, host->mmc->f_min);
1022 }
1023
1024 static void sh_mmcif_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
1025 {
1026         struct sh_mmcif_host *host = mmc_priv(mmc);
1027         struct device *dev = sh_mmcif_host_to_dev(host);
1028         unsigned long flags;
1029
1030         spin_lock_irqsave(&host->lock, flags);
1031         if (host->state != STATE_IDLE) {
1032                 dev_dbg(dev, "%s() rejected, state %u\n",
1033                         __func__, host->state);
1034                 spin_unlock_irqrestore(&host->lock, flags);
1035                 return;
1036         }
1037
1038         host->state = STATE_IOS;
1039         spin_unlock_irqrestore(&host->lock, flags);
1040
1041         switch (ios->power_mode) {
1042         case MMC_POWER_UP:
1043                 if (!IS_ERR(mmc->supply.vmmc))
1044                         mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, ios->vdd);
1045                 if (!host->power) {
1046                         clk_prepare_enable(host->clk);
1047                         pm_runtime_get_sync(dev);
1048                         sh_mmcif_sync_reset(host);
1049                         sh_mmcif_request_dma(host);
1050                         host->power = true;
1051                 }
1052                 break;
1053         case MMC_POWER_OFF:
1054                 if (!IS_ERR(mmc->supply.vmmc))
1055                         mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, 0);
1056                 if (host->power) {
1057                         sh_mmcif_clock_control(host, 0);
1058                         sh_mmcif_release_dma(host);
1059                         pm_runtime_put(dev);
1060                         clk_disable_unprepare(host->clk);
1061                         host->power = false;
1062                 }
1063                 break;
1064         case MMC_POWER_ON:
1065                 sh_mmcif_clock_control(host, ios->clock);
1066                 break;
1067         }
1068
1069         host->timing = ios->timing;
1070         host->bus_width = ios->bus_width;
1071         host->state = STATE_IDLE;
1072 }
1073
1074 static const struct mmc_host_ops sh_mmcif_ops = {
1075         .request        = sh_mmcif_request,
1076         .set_ios        = sh_mmcif_set_ios,
1077         .get_cd         = mmc_gpio_get_cd,
1078 };
1079
1080 static bool sh_mmcif_end_cmd(struct sh_mmcif_host *host)
1081 {
1082         struct mmc_command *cmd = host->mrq->cmd;
1083         struct mmc_data *data = host->mrq->data;
1084         struct device *dev = sh_mmcif_host_to_dev(host);
1085         long time;
1086
1087         if (host->sd_error) {
1088                 switch (cmd->opcode) {
1089                 case MMC_ALL_SEND_CID:
1090                 case MMC_SELECT_CARD:
1091                 case MMC_APP_CMD:
1092                         cmd->error = -ETIMEDOUT;
1093                         break;
1094                 default:
1095                         cmd->error = sh_mmcif_error_manage(host);
1096                         break;
1097                 }
1098                 dev_dbg(dev, "CMD%d error %d\n",
1099                         cmd->opcode, cmd->error);
1100                 host->sd_error = false;
1101                 return false;
1102         }
1103         if (!(cmd->flags & MMC_RSP_PRESENT)) {
1104                 cmd->error = 0;
1105                 return false;
1106         }
1107
1108         sh_mmcif_get_response(host, cmd);
1109
1110         if (!data)
1111                 return false;
1112
1113         /*
1114          * Completion can be signalled from DMA callback and error, so, have to
1115          * reset here, before setting .dma_active
1116          */
1117         init_completion(&host->dma_complete);
1118
1119         if (data->flags & MMC_DATA_READ) {
1120                 if (host->chan_rx)
1121                         sh_mmcif_start_dma_rx(host);
1122         } else {
1123                 if (host->chan_tx)
1124                         sh_mmcif_start_dma_tx(host);
1125         }
1126
1127         if (!host->dma_active) {
1128                 data->error = sh_mmcif_data_trans(host, host->mrq, cmd->opcode);
1129                 return !data->error;
1130         }
1131
1132         /* Running in the IRQ thread, can sleep */
1133         time = wait_for_completion_interruptible_timeout(&host->dma_complete,
1134                                                          host->timeout);
1135
1136         if (data->flags & MMC_DATA_READ)
1137                 dma_unmap_sg(host->chan_rx->device->dev,
1138                              data->sg, data->sg_len,
1139                              DMA_FROM_DEVICE);
1140         else
1141                 dma_unmap_sg(host->chan_tx->device->dev,
1142                              data->sg, data->sg_len,
1143                              DMA_TO_DEVICE);
1144
1145         if (host->sd_error) {
1146                 dev_err(host->mmc->parent,
1147                         "Error IRQ while waiting for DMA completion!\n");
1148                 /* Woken up by an error IRQ: abort DMA */
1149                 data->error = sh_mmcif_error_manage(host);
1150         } else if (!time) {
1151                 dev_err(host->mmc->parent, "DMA timeout!\n");
1152                 data->error = -ETIMEDOUT;
1153         } else if (time < 0) {
1154                 dev_err(host->mmc->parent,
1155                         "wait_for_completion_...() error %ld!\n", time);
1156                 data->error = time;
1157         }
1158         sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC,
1159                         BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
1160         host->dma_active = false;
1161
1162         if (data->error) {
1163                 data->bytes_xfered = 0;
1164                 /* Abort DMA */
1165                 if (data->flags & MMC_DATA_READ)
1166                         dmaengine_terminate_all(host->chan_rx);
1167                 else
1168                         dmaengine_terminate_all(host->chan_tx);
1169         }
1170
1171         return false;
1172 }
1173
1174 static irqreturn_t sh_mmcif_irqt(int irq, void *dev_id)
1175 {
1176         struct sh_mmcif_host *host = dev_id;
1177         struct mmc_request *mrq;
1178         struct device *dev = sh_mmcif_host_to_dev(host);
1179         bool wait = false;
1180         unsigned long flags;
1181         int wait_work;
1182
1183         spin_lock_irqsave(&host->lock, flags);
1184         wait_work = host->wait_for;
1185         spin_unlock_irqrestore(&host->lock, flags);
1186
1187         cancel_delayed_work_sync(&host->timeout_work);
1188
1189         mutex_lock(&host->thread_lock);
1190
1191         mrq = host->mrq;
1192         if (!mrq) {
1193                 dev_dbg(dev, "IRQ thread state %u, wait %u: NULL mrq!\n",
1194                         host->state, host->wait_for);
1195                 mutex_unlock(&host->thread_lock);
1196                 return IRQ_HANDLED;
1197         }
1198
1199         /*
1200          * All handlers return true, if processing continues, and false, if the
1201          * request has to be completed - successfully or not
1202          */
1203         switch (wait_work) {
1204         case MMCIF_WAIT_FOR_REQUEST:
1205                 /* We're too late, the timeout has already kicked in */
1206                 mutex_unlock(&host->thread_lock);
1207                 return IRQ_HANDLED;
1208         case MMCIF_WAIT_FOR_CMD:
1209                 /* Wait for data? */
1210                 wait = sh_mmcif_end_cmd(host);
1211                 break;
1212         case MMCIF_WAIT_FOR_MREAD:
1213                 /* Wait for more data? */
1214                 wait = sh_mmcif_mread_block(host);
1215                 break;
1216         case MMCIF_WAIT_FOR_READ:
1217                 /* Wait for data end? */
1218                 wait = sh_mmcif_read_block(host);
1219                 break;
1220         case MMCIF_WAIT_FOR_MWRITE:
1221                 /* Wait data to write? */
1222                 wait = sh_mmcif_mwrite_block(host);
1223                 break;
1224         case MMCIF_WAIT_FOR_WRITE:
1225                 /* Wait for data end? */
1226                 wait = sh_mmcif_write_block(host);
1227                 break;
1228         case MMCIF_WAIT_FOR_STOP:
1229                 if (host->sd_error) {
1230                         mrq->stop->error = sh_mmcif_error_manage(host);
1231                         dev_dbg(dev, "%s(): %d\n", __func__, mrq->stop->error);
1232                         break;
1233                 }
1234                 sh_mmcif_get_cmd12response(host, mrq->stop);
1235                 mrq->stop->error = 0;
1236                 break;
1237         case MMCIF_WAIT_FOR_READ_END:
1238         case MMCIF_WAIT_FOR_WRITE_END:
1239                 if (host->sd_error) {
1240                         mrq->data->error = sh_mmcif_error_manage(host);
1241                         dev_dbg(dev, "%s(): %d\n", __func__, mrq->data->error);
1242                 }
1243                 break;
1244         default:
1245                 BUG();
1246         }
1247
1248         if (wait) {
1249                 schedule_delayed_work(&host->timeout_work, host->timeout);
1250                 /* Wait for more data */
1251                 mutex_unlock(&host->thread_lock);
1252                 return IRQ_HANDLED;
1253         }
1254
1255         if (host->wait_for != MMCIF_WAIT_FOR_STOP) {
1256                 struct mmc_data *data = mrq->data;
1257                 if (!mrq->cmd->error && data && !data->error)
1258                         data->bytes_xfered =
1259                                 data->blocks * data->blksz;
1260
1261                 if (mrq->stop && !mrq->cmd->error && (!data || !data->error)) {
1262                         sh_mmcif_stop_cmd(host, mrq);
1263                         if (!mrq->stop->error) {
1264                                 schedule_delayed_work(&host->timeout_work, host->timeout);
1265                                 mutex_unlock(&host->thread_lock);
1266                                 return IRQ_HANDLED;
1267                         }
1268                 }
1269         }
1270
1271         host->wait_for = MMCIF_WAIT_FOR_REQUEST;
1272         host->state = STATE_IDLE;
1273         host->mrq = NULL;
1274         mmc_request_done(host->mmc, mrq);
1275
1276         mutex_unlock(&host->thread_lock);
1277
1278         return IRQ_HANDLED;
1279 }
1280
1281 static irqreturn_t sh_mmcif_intr(int irq, void *dev_id)
1282 {
1283         struct sh_mmcif_host *host = dev_id;
1284         struct device *dev = sh_mmcif_host_to_dev(host);
1285         u32 state, mask;
1286
1287         state = sh_mmcif_readl(host->addr, MMCIF_CE_INT);
1288         mask = sh_mmcif_readl(host->addr, MMCIF_CE_INT_MASK);
1289         if (host->ccs_enable)
1290                 sh_mmcif_writel(host->addr, MMCIF_CE_INT, ~(state & mask));
1291         else
1292                 sh_mmcif_writel(host->addr, MMCIF_CE_INT, INT_CCS | ~(state & mask));
1293         sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, state & MASK_CLEAN);
1294
1295         if (state & ~MASK_CLEAN)
1296                 dev_dbg(dev, "IRQ state = 0x%08x incompletely cleared\n",
1297                         state);
1298
1299         if (state & INT_ERR_STS || state & ~INT_ALL) {
1300                 host->sd_error = true;
1301                 dev_dbg(dev, "int err state = 0x%08x\n", state);
1302         }
1303         if (state & ~(INT_CMD12RBE | INT_CMD12CRE)) {
1304                 if (!host->mrq)
1305                         dev_dbg(dev, "NULL IRQ state = 0x%08x\n", state);
1306                 if (!host->dma_active)
1307                         return IRQ_WAKE_THREAD;
1308                 else if (host->sd_error)
1309                         sh_mmcif_dma_complete(host);
1310         } else {
1311                 dev_dbg(dev, "Unexpected IRQ 0x%x\n", state);
1312         }
1313
1314         return IRQ_HANDLED;
1315 }
1316
1317 static void sh_mmcif_timeout_work(struct work_struct *work)
1318 {
1319         struct delayed_work *d = to_delayed_work(work);
1320         struct sh_mmcif_host *host = container_of(d, struct sh_mmcif_host, timeout_work);
1321         struct mmc_request *mrq = host->mrq;
1322         struct device *dev = sh_mmcif_host_to_dev(host);
1323         unsigned long flags;
1324
1325         if (host->dying)
1326                 /* Don't run after mmc_remove_host() */
1327                 return;
1328
1329         spin_lock_irqsave(&host->lock, flags);
1330         if (host->state == STATE_IDLE) {
1331                 spin_unlock_irqrestore(&host->lock, flags);
1332                 return;
1333         }
1334
1335         dev_err(dev, "Timeout waiting for %u on CMD%u\n",
1336                 host->wait_for, mrq->cmd->opcode);
1337
1338         host->state = STATE_TIMEOUT;
1339         spin_unlock_irqrestore(&host->lock, flags);
1340
1341         /*
1342          * Handle races with cancel_delayed_work(), unless
1343          * cancel_delayed_work_sync() is used
1344          */
1345         switch (host->wait_for) {
1346         case MMCIF_WAIT_FOR_CMD:
1347                 mrq->cmd->error = sh_mmcif_error_manage(host);
1348                 break;
1349         case MMCIF_WAIT_FOR_STOP:
1350                 mrq->stop->error = sh_mmcif_error_manage(host);
1351                 break;
1352         case MMCIF_WAIT_FOR_MREAD:
1353         case MMCIF_WAIT_FOR_MWRITE:
1354         case MMCIF_WAIT_FOR_READ:
1355         case MMCIF_WAIT_FOR_WRITE:
1356         case MMCIF_WAIT_FOR_READ_END:
1357         case MMCIF_WAIT_FOR_WRITE_END:
1358                 mrq->data->error = sh_mmcif_error_manage(host);
1359                 break;
1360         default:
1361                 BUG();
1362         }
1363
1364         host->state = STATE_IDLE;
1365         host->wait_for = MMCIF_WAIT_FOR_REQUEST;
1366         host->mrq = NULL;
1367         mmc_request_done(host->mmc, mrq);
1368 }
1369
1370 static void sh_mmcif_init_ocr(struct sh_mmcif_host *host)
1371 {
1372         struct device *dev = sh_mmcif_host_to_dev(host);
1373         struct sh_mmcif_plat_data *pd = dev->platform_data;
1374         struct mmc_host *mmc = host->mmc;
1375
1376         mmc_regulator_get_supply(mmc);
1377
1378         if (!pd)
1379                 return;
1380
1381         if (!mmc->ocr_avail)
1382                 mmc->ocr_avail = pd->ocr;
1383         else if (pd->ocr)
1384                 dev_warn(mmc_dev(mmc), "Platform OCR mask is ignored\n");
1385 }
1386
1387 static int sh_mmcif_probe(struct platform_device *pdev)
1388 {
1389         int ret = 0, irq[2];
1390         struct mmc_host *mmc;
1391         struct sh_mmcif_host *host;
1392         struct device *dev = &pdev->dev;
1393         struct sh_mmcif_plat_data *pd = dev->platform_data;
1394         struct resource *res;
1395         void __iomem *reg;
1396         const char *name;
1397
1398         irq[0] = platform_get_irq(pdev, 0);
1399         irq[1] = platform_get_irq(pdev, 1);
1400         if (irq[0] < 0) {
1401                 dev_err(dev, "Get irq error\n");
1402                 return -ENXIO;
1403         }
1404
1405         res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1406         reg = devm_ioremap_resource(dev, res);
1407         if (IS_ERR(reg))
1408                 return PTR_ERR(reg);
1409
1410         mmc = mmc_alloc_host(sizeof(struct sh_mmcif_host), dev);
1411         if (!mmc)
1412                 return -ENOMEM;
1413
1414         ret = mmc_of_parse(mmc);
1415         if (ret < 0)
1416                 goto err_host;
1417
1418         host            = mmc_priv(mmc);
1419         host->mmc       = mmc;
1420         host->addr      = reg;
1421         host->timeout   = msecs_to_jiffies(10000);
1422         host->ccs_enable = true;
1423         host->clk_ctrl2_enable = false;
1424
1425         host->pd = pdev;
1426
1427         spin_lock_init(&host->lock);
1428
1429         mmc->ops = &sh_mmcif_ops;
1430         sh_mmcif_init_ocr(host);
1431
1432         mmc->caps |= MMC_CAP_MMC_HIGHSPEED | MMC_CAP_WAIT_WHILE_BUSY;
1433         mmc->caps2 |= MMC_CAP2_NO_SD | MMC_CAP2_NO_SDIO;
1434         mmc->max_busy_timeout = 10000;
1435
1436         if (pd && pd->caps)
1437                 mmc->caps |= pd->caps;
1438         mmc->max_segs = 32;
1439         mmc->max_blk_size = 512;
1440         mmc->max_req_size = PAGE_SIZE * mmc->max_segs;
1441         mmc->max_blk_count = mmc->max_req_size / mmc->max_blk_size;
1442         mmc->max_seg_size = mmc->max_req_size;
1443
1444         platform_set_drvdata(pdev, host);
1445
1446         host->clk = devm_clk_get(dev, NULL);
1447         if (IS_ERR(host->clk)) {
1448                 ret = PTR_ERR(host->clk);
1449                 dev_err(dev, "cannot get clock: %d\n", ret);
1450                 goto err_host;
1451         }
1452
1453         ret = clk_prepare_enable(host->clk);
1454         if (ret < 0)
1455                 goto err_host;
1456
1457         sh_mmcif_clk_setup(host);
1458
1459         pm_runtime_enable(dev);
1460         host->power = false;
1461
1462         ret = pm_runtime_get_sync(dev);
1463         if (ret < 0)
1464                 goto err_clk;
1465
1466         INIT_DELAYED_WORK(&host->timeout_work, sh_mmcif_timeout_work);
1467
1468         sh_mmcif_sync_reset(host);
1469         sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, MASK_ALL);
1470
1471         name = irq[1] < 0 ? dev_name(dev) : "sh_mmc:error";
1472         ret = devm_request_threaded_irq(dev, irq[0], sh_mmcif_intr,
1473                                         sh_mmcif_irqt, 0, name, host);
1474         if (ret) {
1475                 dev_err(dev, "request_irq error (%s)\n", name);
1476                 goto err_clk;
1477         }
1478         if (irq[1] >= 0) {
1479                 ret = devm_request_threaded_irq(dev, irq[1],
1480                                                 sh_mmcif_intr, sh_mmcif_irqt,
1481                                                 0, "sh_mmc:int", host);
1482                 if (ret) {
1483                         dev_err(dev, "request_irq error (sh_mmc:int)\n");
1484                         goto err_clk;
1485                 }
1486         }
1487
1488         mutex_init(&host->thread_lock);
1489
1490         ret = mmc_add_host(mmc);
1491         if (ret < 0)
1492                 goto err_clk;
1493
1494         dev_pm_qos_expose_latency_limit(dev, 100);
1495
1496         dev_info(dev, "Chip version 0x%04x, clock rate %luMHz\n",
1497                  sh_mmcif_readl(host->addr, MMCIF_CE_VERSION) & 0xffff,
1498                  clk_get_rate(host->clk) / 1000000UL);
1499
1500         pm_runtime_put(dev);
1501         clk_disable_unprepare(host->clk);
1502         return ret;
1503
1504 err_clk:
1505         clk_disable_unprepare(host->clk);
1506         pm_runtime_put_sync(dev);
1507         pm_runtime_disable(dev);
1508 err_host:
1509         mmc_free_host(mmc);
1510         return ret;
1511 }
1512
1513 static int sh_mmcif_remove(struct platform_device *pdev)
1514 {
1515         struct sh_mmcif_host *host = platform_get_drvdata(pdev);
1516
1517         host->dying = true;
1518         clk_prepare_enable(host->clk);
1519         pm_runtime_get_sync(&pdev->dev);
1520
1521         dev_pm_qos_hide_latency_limit(&pdev->dev);
1522
1523         mmc_remove_host(host->mmc);
1524         sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, MASK_ALL);
1525
1526         /*
1527          * FIXME: cancel_delayed_work(_sync)() and free_irq() race with the
1528          * mmc_remove_host() call above. But swapping order doesn't help either
1529          * (a query on the linux-mmc mailing list didn't bring any replies).
1530          */
1531         cancel_delayed_work_sync(&host->timeout_work);
1532
1533         clk_disable_unprepare(host->clk);
1534         mmc_free_host(host->mmc);
1535         pm_runtime_put_sync(&pdev->dev);
1536         pm_runtime_disable(&pdev->dev);
1537
1538         return 0;
1539 }
1540
1541 #ifdef CONFIG_PM_SLEEP
1542 static int sh_mmcif_suspend(struct device *dev)
1543 {
1544         struct sh_mmcif_host *host = dev_get_drvdata(dev);
1545
1546         pm_runtime_get_sync(dev);
1547         sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, MASK_ALL);
1548         pm_runtime_put(dev);
1549
1550         return 0;
1551 }
1552
1553 static int sh_mmcif_resume(struct device *dev)
1554 {
1555         return 0;
1556 }
1557 #endif
1558
1559 static const struct dev_pm_ops sh_mmcif_dev_pm_ops = {
1560         SET_SYSTEM_SLEEP_PM_OPS(sh_mmcif_suspend, sh_mmcif_resume)
1561 };
1562
1563 static struct platform_driver sh_mmcif_driver = {
1564         .probe          = sh_mmcif_probe,
1565         .remove         = sh_mmcif_remove,
1566         .driver         = {
1567                 .name   = DRIVER_NAME,
1568                 .pm     = &sh_mmcif_dev_pm_ops,
1569                 .of_match_table = sh_mmcif_of_match,
1570         },
1571 };
1572
1573 module_platform_driver(sh_mmcif_driver);
1574
1575 MODULE_DESCRIPTION("SuperH on-chip MMC/eMMC interface driver");
1576 MODULE_LICENSE("GPL");
1577 MODULE_ALIAS("platform:" DRIVER_NAME);
1578 MODULE_AUTHOR("Yusuke Goda <yusuke.goda.sx@renesas.com>");