Linux-libre 5.7.6-gnu
[librecmc/linux-libre.git] / drivers / mmc / host / mmci.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/drivers/mmc/host/mmci.c - ARM PrimeCell MMCI PL180/1 driver
4  *
5  *  Copyright (C) 2003 Deep Blue Solutions, Ltd, All Rights Reserved.
6  *  Copyright (C) 2010 ST-Ericsson SA
7  */
8 #include <linux/module.h>
9 #include <linux/moduleparam.h>
10 #include <linux/init.h>
11 #include <linux/ioport.h>
12 #include <linux/device.h>
13 #include <linux/io.h>
14 #include <linux/interrupt.h>
15 #include <linux/kernel.h>
16 #include <linux/slab.h>
17 #include <linux/delay.h>
18 #include <linux/err.h>
19 #include <linux/highmem.h>
20 #include <linux/log2.h>
21 #include <linux/mmc/mmc.h>
22 #include <linux/mmc/pm.h>
23 #include <linux/mmc/host.h>
24 #include <linux/mmc/card.h>
25 #include <linux/mmc/sd.h>
26 #include <linux/mmc/slot-gpio.h>
27 #include <linux/amba/bus.h>
28 #include <linux/clk.h>
29 #include <linux/scatterlist.h>
30 #include <linux/of.h>
31 #include <linux/regulator/consumer.h>
32 #include <linux/dmaengine.h>
33 #include <linux/dma-mapping.h>
34 #include <linux/amba/mmci.h>
35 #include <linux/pm_runtime.h>
36 #include <linux/types.h>
37 #include <linux/pinctrl/consumer.h>
38 #include <linux/reset.h>
39
40 #include <asm/div64.h>
41 #include <asm/io.h>
42
43 #include "mmci.h"
44
45 #define DRIVER_NAME "mmci-pl18x"
46
47 static void mmci_variant_init(struct mmci_host *host);
48 static void ux500_variant_init(struct mmci_host *host);
49 static void ux500v2_variant_init(struct mmci_host *host);
50
51 static unsigned int fmax = 515633;
52
53 static struct variant_data variant_arm = {
54         .fifosize               = 16 * 4,
55         .fifohalfsize           = 8 * 4,
56         .cmdreg_cpsm_enable     = MCI_CPSM_ENABLE,
57         .cmdreg_lrsp_crc        = MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
58         .cmdreg_srsp_crc        = MCI_CPSM_RESPONSE,
59         .cmdreg_srsp            = MCI_CPSM_RESPONSE,
60         .datalength_bits        = 16,
61         .datactrl_blocksz       = 11,
62         .pwrreg_powerup         = MCI_PWR_UP,
63         .f_max                  = 100000000,
64         .reversed_irq_handling  = true,
65         .mmcimask1              = true,
66         .irq_pio_mask           = MCI_IRQ_PIO_MASK,
67         .start_err              = MCI_STARTBITERR,
68         .opendrain              = MCI_ROD,
69         .init                   = mmci_variant_init,
70 };
71
72 static struct variant_data variant_arm_extended_fifo = {
73         .fifosize               = 128 * 4,
74         .fifohalfsize           = 64 * 4,
75         .cmdreg_cpsm_enable     = MCI_CPSM_ENABLE,
76         .cmdreg_lrsp_crc        = MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
77         .cmdreg_srsp_crc        = MCI_CPSM_RESPONSE,
78         .cmdreg_srsp            = MCI_CPSM_RESPONSE,
79         .datalength_bits        = 16,
80         .datactrl_blocksz       = 11,
81         .pwrreg_powerup         = MCI_PWR_UP,
82         .f_max                  = 100000000,
83         .mmcimask1              = true,
84         .irq_pio_mask           = MCI_IRQ_PIO_MASK,
85         .start_err              = MCI_STARTBITERR,
86         .opendrain              = MCI_ROD,
87         .init                   = mmci_variant_init,
88 };
89
90 static struct variant_data variant_arm_extended_fifo_hwfc = {
91         .fifosize               = 128 * 4,
92         .fifohalfsize           = 64 * 4,
93         .clkreg_enable          = MCI_ARM_HWFCEN,
94         .cmdreg_cpsm_enable     = MCI_CPSM_ENABLE,
95         .cmdreg_lrsp_crc        = MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
96         .cmdreg_srsp_crc        = MCI_CPSM_RESPONSE,
97         .cmdreg_srsp            = MCI_CPSM_RESPONSE,
98         .datalength_bits        = 16,
99         .datactrl_blocksz       = 11,
100         .pwrreg_powerup         = MCI_PWR_UP,
101         .f_max                  = 100000000,
102         .mmcimask1              = true,
103         .irq_pio_mask           = MCI_IRQ_PIO_MASK,
104         .start_err              = MCI_STARTBITERR,
105         .opendrain              = MCI_ROD,
106         .init                   = mmci_variant_init,
107 };
108
109 static struct variant_data variant_u300 = {
110         .fifosize               = 16 * 4,
111         .fifohalfsize           = 8 * 4,
112         .clkreg_enable          = MCI_ST_U300_HWFCEN,
113         .clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
114         .cmdreg_cpsm_enable     = MCI_CPSM_ENABLE,
115         .cmdreg_lrsp_crc        = MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
116         .cmdreg_srsp_crc        = MCI_CPSM_RESPONSE,
117         .cmdreg_srsp            = MCI_CPSM_RESPONSE,
118         .datalength_bits        = 16,
119         .datactrl_blocksz       = 11,
120         .datactrl_mask_sdio     = MCI_DPSM_ST_SDIOEN,
121         .st_sdio                        = true,
122         .pwrreg_powerup         = MCI_PWR_ON,
123         .f_max                  = 100000000,
124         .signal_direction       = true,
125         .pwrreg_clkgate         = true,
126         .pwrreg_nopower         = true,
127         .mmcimask1              = true,
128         .irq_pio_mask           = MCI_IRQ_PIO_MASK,
129         .start_err              = MCI_STARTBITERR,
130         .opendrain              = MCI_OD,
131         .init                   = mmci_variant_init,
132 };
133
134 static struct variant_data variant_nomadik = {
135         .fifosize               = 16 * 4,
136         .fifohalfsize           = 8 * 4,
137         .clkreg                 = MCI_CLK_ENABLE,
138         .clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
139         .cmdreg_cpsm_enable     = MCI_CPSM_ENABLE,
140         .cmdreg_lrsp_crc        = MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
141         .cmdreg_srsp_crc        = MCI_CPSM_RESPONSE,
142         .cmdreg_srsp            = MCI_CPSM_RESPONSE,
143         .datalength_bits        = 24,
144         .datactrl_blocksz       = 11,
145         .datactrl_mask_sdio     = MCI_DPSM_ST_SDIOEN,
146         .st_sdio                = true,
147         .st_clkdiv              = true,
148         .pwrreg_powerup         = MCI_PWR_ON,
149         .f_max                  = 100000000,
150         .signal_direction       = true,
151         .pwrreg_clkgate         = true,
152         .pwrreg_nopower         = true,
153         .mmcimask1              = true,
154         .irq_pio_mask           = MCI_IRQ_PIO_MASK,
155         .start_err              = MCI_STARTBITERR,
156         .opendrain              = MCI_OD,
157         .init                   = mmci_variant_init,
158 };
159
160 static struct variant_data variant_ux500 = {
161         .fifosize               = 30 * 4,
162         .fifohalfsize           = 8 * 4,
163         .clkreg                 = MCI_CLK_ENABLE,
164         .clkreg_enable          = MCI_ST_UX500_HWFCEN,
165         .clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
166         .clkreg_neg_edge_enable = MCI_ST_UX500_NEG_EDGE,
167         .cmdreg_cpsm_enable     = MCI_CPSM_ENABLE,
168         .cmdreg_lrsp_crc        = MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
169         .cmdreg_srsp_crc        = MCI_CPSM_RESPONSE,
170         .cmdreg_srsp            = MCI_CPSM_RESPONSE,
171         .datalength_bits        = 24,
172         .datactrl_blocksz       = 11,
173         .datactrl_any_blocksz   = true,
174         .dma_power_of_2         = true,
175         .datactrl_mask_sdio     = MCI_DPSM_ST_SDIOEN,
176         .st_sdio                = true,
177         .st_clkdiv              = true,
178         .pwrreg_powerup         = MCI_PWR_ON,
179         .f_max                  = 100000000,
180         .signal_direction       = true,
181         .pwrreg_clkgate         = true,
182         .busy_detect            = true,
183         .busy_dpsm_flag         = MCI_DPSM_ST_BUSYMODE,
184         .busy_detect_flag       = MCI_ST_CARDBUSY,
185         .busy_detect_mask       = MCI_ST_BUSYENDMASK,
186         .pwrreg_nopower         = true,
187         .mmcimask1              = true,
188         .irq_pio_mask           = MCI_IRQ_PIO_MASK,
189         .start_err              = MCI_STARTBITERR,
190         .opendrain              = MCI_OD,
191         .init                   = ux500_variant_init,
192 };
193
194 static struct variant_data variant_ux500v2 = {
195         .fifosize               = 30 * 4,
196         .fifohalfsize           = 8 * 4,
197         .clkreg                 = MCI_CLK_ENABLE,
198         .clkreg_enable          = MCI_ST_UX500_HWFCEN,
199         .clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
200         .clkreg_neg_edge_enable = MCI_ST_UX500_NEG_EDGE,
201         .cmdreg_cpsm_enable     = MCI_CPSM_ENABLE,
202         .cmdreg_lrsp_crc        = MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
203         .cmdreg_srsp_crc        = MCI_CPSM_RESPONSE,
204         .cmdreg_srsp            = MCI_CPSM_RESPONSE,
205         .datactrl_mask_ddrmode  = MCI_DPSM_ST_DDRMODE,
206         .datalength_bits        = 24,
207         .datactrl_blocksz       = 11,
208         .datactrl_any_blocksz   = true,
209         .dma_power_of_2         = true,
210         .datactrl_mask_sdio     = MCI_DPSM_ST_SDIOEN,
211         .st_sdio                = true,
212         .st_clkdiv              = true,
213         .pwrreg_powerup         = MCI_PWR_ON,
214         .f_max                  = 100000000,
215         .signal_direction       = true,
216         .pwrreg_clkgate         = true,
217         .busy_detect            = true,
218         .busy_dpsm_flag         = MCI_DPSM_ST_BUSYMODE,
219         .busy_detect_flag       = MCI_ST_CARDBUSY,
220         .busy_detect_mask       = MCI_ST_BUSYENDMASK,
221         .pwrreg_nopower         = true,
222         .mmcimask1              = true,
223         .irq_pio_mask           = MCI_IRQ_PIO_MASK,
224         .start_err              = MCI_STARTBITERR,
225         .opendrain              = MCI_OD,
226         .init                   = ux500v2_variant_init,
227 };
228
229 static struct variant_data variant_stm32 = {
230         .fifosize               = 32 * 4,
231         .fifohalfsize           = 8 * 4,
232         .clkreg                 = MCI_CLK_ENABLE,
233         .clkreg_enable          = MCI_ST_UX500_HWFCEN,
234         .clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
235         .clkreg_neg_edge_enable = MCI_ST_UX500_NEG_EDGE,
236         .cmdreg_cpsm_enable     = MCI_CPSM_ENABLE,
237         .cmdreg_lrsp_crc        = MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
238         .cmdreg_srsp_crc        = MCI_CPSM_RESPONSE,
239         .cmdreg_srsp            = MCI_CPSM_RESPONSE,
240         .irq_pio_mask           = MCI_IRQ_PIO_MASK,
241         .datalength_bits        = 24,
242         .datactrl_blocksz       = 11,
243         .datactrl_mask_sdio     = MCI_DPSM_ST_SDIOEN,
244         .st_sdio                = true,
245         .st_clkdiv              = true,
246         .pwrreg_powerup         = MCI_PWR_ON,
247         .f_max                  = 48000000,
248         .pwrreg_clkgate         = true,
249         .pwrreg_nopower         = true,
250         .init                   = mmci_variant_init,
251 };
252
253 static struct variant_data variant_stm32_sdmmc = {
254         .fifosize               = 16 * 4,
255         .fifohalfsize           = 8 * 4,
256         .f_max                  = 208000000,
257         .stm32_clkdiv           = true,
258         .cmdreg_cpsm_enable     = MCI_CPSM_STM32_ENABLE,
259         .cmdreg_lrsp_crc        = MCI_CPSM_STM32_LRSP_CRC,
260         .cmdreg_srsp_crc        = MCI_CPSM_STM32_SRSP_CRC,
261         .cmdreg_srsp            = MCI_CPSM_STM32_SRSP,
262         .cmdreg_stop            = MCI_CPSM_STM32_CMDSTOP,
263         .data_cmd_enable        = MCI_CPSM_STM32_CMDTRANS,
264         .irq_pio_mask           = MCI_IRQ_PIO_STM32_MASK,
265         .datactrl_first         = true,
266         .datacnt_useless        = true,
267         .datalength_bits        = 25,
268         .datactrl_blocksz       = 14,
269         .datactrl_any_blocksz   = true,
270         .stm32_idmabsize_mask   = GENMASK(12, 5),
271         .busy_timeout           = true,
272         .busy_detect            = true,
273         .busy_detect_flag       = MCI_STM32_BUSYD0,
274         .busy_detect_mask       = MCI_STM32_BUSYD0ENDMASK,
275         .init                   = sdmmc_variant_init,
276 };
277
278 static struct variant_data variant_stm32_sdmmcv2 = {
279         .fifosize               = 16 * 4,
280         .fifohalfsize           = 8 * 4,
281         .f_max                  = 208000000,
282         .stm32_clkdiv           = true,
283         .cmdreg_cpsm_enable     = MCI_CPSM_STM32_ENABLE,
284         .cmdreg_lrsp_crc        = MCI_CPSM_STM32_LRSP_CRC,
285         .cmdreg_srsp_crc        = MCI_CPSM_STM32_SRSP_CRC,
286         .cmdreg_srsp            = MCI_CPSM_STM32_SRSP,
287         .cmdreg_stop            = MCI_CPSM_STM32_CMDSTOP,
288         .data_cmd_enable        = MCI_CPSM_STM32_CMDTRANS,
289         .irq_pio_mask           = MCI_IRQ_PIO_STM32_MASK,
290         .datactrl_first         = true,
291         .datacnt_useless        = true,
292         .datalength_bits        = 25,
293         .datactrl_blocksz       = 14,
294         .datactrl_any_blocksz   = true,
295         .stm32_idmabsize_mask   = GENMASK(16, 5),
296         .dma_lli                = true,
297         .busy_timeout           = true,
298         .busy_detect            = true,
299         .busy_detect_flag       = MCI_STM32_BUSYD0,
300         .busy_detect_mask       = MCI_STM32_BUSYD0ENDMASK,
301         .init                   = sdmmc_variant_init,
302 };
303
304 static struct variant_data variant_qcom = {
305         .fifosize               = 16 * 4,
306         .fifohalfsize           = 8 * 4,
307         .clkreg                 = MCI_CLK_ENABLE,
308         .clkreg_enable          = MCI_QCOM_CLK_FLOWENA |
309                                   MCI_QCOM_CLK_SELECT_IN_FBCLK,
310         .clkreg_8bit_bus_enable = MCI_QCOM_CLK_WIDEBUS_8,
311         .datactrl_mask_ddrmode  = MCI_QCOM_CLK_SELECT_IN_DDR_MODE,
312         .cmdreg_cpsm_enable     = MCI_CPSM_ENABLE,
313         .cmdreg_lrsp_crc        = MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
314         .cmdreg_srsp_crc        = MCI_CPSM_RESPONSE,
315         .cmdreg_srsp            = MCI_CPSM_RESPONSE,
316         .data_cmd_enable        = MCI_CPSM_QCOM_DATCMD,
317         .datalength_bits        = 24,
318         .datactrl_blocksz       = 11,
319         .datactrl_any_blocksz   = true,
320         .pwrreg_powerup         = MCI_PWR_UP,
321         .f_max                  = 208000000,
322         .explicit_mclk_control  = true,
323         .qcom_fifo              = true,
324         .qcom_dml               = true,
325         .mmcimask1              = true,
326         .irq_pio_mask           = MCI_IRQ_PIO_MASK,
327         .start_err              = MCI_STARTBITERR,
328         .opendrain              = MCI_ROD,
329         .init                   = qcom_variant_init,
330 };
331
332 /* Busy detection for the ST Micro variant */
333 static int mmci_card_busy(struct mmc_host *mmc)
334 {
335         struct mmci_host *host = mmc_priv(mmc);
336         unsigned long flags;
337         int busy = 0;
338
339         spin_lock_irqsave(&host->lock, flags);
340         if (readl(host->base + MMCISTATUS) & host->variant->busy_detect_flag)
341                 busy = 1;
342         spin_unlock_irqrestore(&host->lock, flags);
343
344         return busy;
345 }
346
347 static void mmci_reg_delay(struct mmci_host *host)
348 {
349         /*
350          * According to the spec, at least three feedback clock cycles
351          * of max 52 MHz must pass between two writes to the MMCICLOCK reg.
352          * Three MCLK clock cycles must pass between two MMCIPOWER reg writes.
353          * Worst delay time during card init is at 100 kHz => 30 us.
354          * Worst delay time when up and running is at 25 MHz => 120 ns.
355          */
356         if (host->cclk < 25000000)
357                 udelay(30);
358         else
359                 ndelay(120);
360 }
361
362 /*
363  * This must be called with host->lock held
364  */
365 void mmci_write_clkreg(struct mmci_host *host, u32 clk)
366 {
367         if (host->clk_reg != clk) {
368                 host->clk_reg = clk;
369                 writel(clk, host->base + MMCICLOCK);
370         }
371 }
372
373 /*
374  * This must be called with host->lock held
375  */
376 void mmci_write_pwrreg(struct mmci_host *host, u32 pwr)
377 {
378         if (host->pwr_reg != pwr) {
379                 host->pwr_reg = pwr;
380                 writel(pwr, host->base + MMCIPOWER);
381         }
382 }
383
384 /*
385  * This must be called with host->lock held
386  */
387 static void mmci_write_datactrlreg(struct mmci_host *host, u32 datactrl)
388 {
389         /* Keep busy mode in DPSM if enabled */
390         datactrl |= host->datactrl_reg & host->variant->busy_dpsm_flag;
391
392         if (host->datactrl_reg != datactrl) {
393                 host->datactrl_reg = datactrl;
394                 writel(datactrl, host->base + MMCIDATACTRL);
395         }
396 }
397
398 /*
399  * This must be called with host->lock held
400  */
401 static void mmci_set_clkreg(struct mmci_host *host, unsigned int desired)
402 {
403         struct variant_data *variant = host->variant;
404         u32 clk = variant->clkreg;
405
406         /* Make sure cclk reflects the current calculated clock */
407         host->cclk = 0;
408
409         if (desired) {
410                 if (variant->explicit_mclk_control) {
411                         host->cclk = host->mclk;
412                 } else if (desired >= host->mclk) {
413                         clk = MCI_CLK_BYPASS;
414                         if (variant->st_clkdiv)
415                                 clk |= MCI_ST_UX500_NEG_EDGE;
416                         host->cclk = host->mclk;
417                 } else if (variant->st_clkdiv) {
418                         /*
419                          * DB8500 TRM says f = mclk / (clkdiv + 2)
420                          * => clkdiv = (mclk / f) - 2
421                          * Round the divider up so we don't exceed the max
422                          * frequency
423                          */
424                         clk = DIV_ROUND_UP(host->mclk, desired) - 2;
425                         if (clk >= 256)
426                                 clk = 255;
427                         host->cclk = host->mclk / (clk + 2);
428                 } else {
429                         /*
430                          * PL180 TRM says f = mclk / (2 * (clkdiv + 1))
431                          * => clkdiv = mclk / (2 * f) - 1
432                          */
433                         clk = host->mclk / (2 * desired) - 1;
434                         if (clk >= 256)
435                                 clk = 255;
436                         host->cclk = host->mclk / (2 * (clk + 1));
437                 }
438
439                 clk |= variant->clkreg_enable;
440                 clk |= MCI_CLK_ENABLE;
441                 /* This hasn't proven to be worthwhile */
442                 /* clk |= MCI_CLK_PWRSAVE; */
443         }
444
445         /* Set actual clock for debug */
446         host->mmc->actual_clock = host->cclk;
447
448         if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_4)
449                 clk |= MCI_4BIT_BUS;
450         if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_8)
451                 clk |= variant->clkreg_8bit_bus_enable;
452
453         if (host->mmc->ios.timing == MMC_TIMING_UHS_DDR50 ||
454             host->mmc->ios.timing == MMC_TIMING_MMC_DDR52)
455                 clk |= variant->clkreg_neg_edge_enable;
456
457         mmci_write_clkreg(host, clk);
458 }
459
460 static void mmci_dma_release(struct mmci_host *host)
461 {
462         if (host->ops && host->ops->dma_release)
463                 host->ops->dma_release(host);
464
465         host->use_dma = false;
466 }
467
468 static void mmci_dma_setup(struct mmci_host *host)
469 {
470         if (!host->ops || !host->ops->dma_setup)
471                 return;
472
473         if (host->ops->dma_setup(host))
474                 return;
475
476         /* initialize pre request cookie */
477         host->next_cookie = 1;
478
479         host->use_dma = true;
480 }
481
482 /*
483  * Validate mmc prerequisites
484  */
485 static int mmci_validate_data(struct mmci_host *host,
486                               struct mmc_data *data)
487 {
488         struct variant_data *variant = host->variant;
489
490         if (!data)
491                 return 0;
492         if (!is_power_of_2(data->blksz) && !variant->datactrl_any_blocksz) {
493                 dev_err(mmc_dev(host->mmc),
494                         "unsupported block size (%d bytes)\n", data->blksz);
495                 return -EINVAL;
496         }
497
498         if (host->ops && host->ops->validate_data)
499                 return host->ops->validate_data(host, data);
500
501         return 0;
502 }
503
504 static int mmci_prep_data(struct mmci_host *host, struct mmc_data *data, bool next)
505 {
506         int err;
507
508         if (!host->ops || !host->ops->prep_data)
509                 return 0;
510
511         err = host->ops->prep_data(host, data, next);
512
513         if (next && !err)
514                 data->host_cookie = ++host->next_cookie < 0 ?
515                         1 : host->next_cookie;
516
517         return err;
518 }
519
520 static void mmci_unprep_data(struct mmci_host *host, struct mmc_data *data,
521                       int err)
522 {
523         if (host->ops && host->ops->unprep_data)
524                 host->ops->unprep_data(host, data, err);
525
526         data->host_cookie = 0;
527 }
528
529 static void mmci_get_next_data(struct mmci_host *host, struct mmc_data *data)
530 {
531         WARN_ON(data->host_cookie && data->host_cookie != host->next_cookie);
532
533         if (host->ops && host->ops->get_next_data)
534                 host->ops->get_next_data(host, data);
535 }
536
537 static int mmci_dma_start(struct mmci_host *host, unsigned int datactrl)
538 {
539         struct mmc_data *data = host->data;
540         int ret;
541
542         if (!host->use_dma)
543                 return -EINVAL;
544
545         ret = mmci_prep_data(host, data, false);
546         if (ret)
547                 return ret;
548
549         if (!host->ops || !host->ops->dma_start)
550                 return -EINVAL;
551
552         /* Okay, go for it. */
553         dev_vdbg(mmc_dev(host->mmc),
554                  "Submit MMCI DMA job, sglen %d blksz %04x blks %04x flags %08x\n",
555                  data->sg_len, data->blksz, data->blocks, data->flags);
556
557         ret = host->ops->dma_start(host, &datactrl);
558         if (ret)
559                 return ret;
560
561         /* Trigger the DMA transfer */
562         mmci_write_datactrlreg(host, datactrl);
563
564         /*
565          * Let the MMCI say when the data is ended and it's time
566          * to fire next DMA request. When that happens, MMCI will
567          * call mmci_data_end()
568          */
569         writel(readl(host->base + MMCIMASK0) | MCI_DATAENDMASK,
570                host->base + MMCIMASK0);
571         return 0;
572 }
573
574 static void mmci_dma_finalize(struct mmci_host *host, struct mmc_data *data)
575 {
576         if (!host->use_dma)
577                 return;
578
579         if (host->ops && host->ops->dma_finalize)
580                 host->ops->dma_finalize(host, data);
581 }
582
583 static void mmci_dma_error(struct mmci_host *host)
584 {
585         if (!host->use_dma)
586                 return;
587
588         if (host->ops && host->ops->dma_error)
589                 host->ops->dma_error(host);
590 }
591
592 static void
593 mmci_request_end(struct mmci_host *host, struct mmc_request *mrq)
594 {
595         writel(0, host->base + MMCICOMMAND);
596
597         BUG_ON(host->data);
598
599         host->mrq = NULL;
600         host->cmd = NULL;
601
602         mmc_request_done(host->mmc, mrq);
603 }
604
605 static void mmci_set_mask1(struct mmci_host *host, unsigned int mask)
606 {
607         void __iomem *base = host->base;
608         struct variant_data *variant = host->variant;
609
610         if (host->singleirq) {
611                 unsigned int mask0 = readl(base + MMCIMASK0);
612
613                 mask0 &= ~variant->irq_pio_mask;
614                 mask0 |= mask;
615
616                 writel(mask0, base + MMCIMASK0);
617         }
618
619         if (variant->mmcimask1)
620                 writel(mask, base + MMCIMASK1);
621
622         host->mask1_reg = mask;
623 }
624
625 static void mmci_stop_data(struct mmci_host *host)
626 {
627         mmci_write_datactrlreg(host, 0);
628         mmci_set_mask1(host, 0);
629         host->data = NULL;
630 }
631
632 static void mmci_init_sg(struct mmci_host *host, struct mmc_data *data)
633 {
634         unsigned int flags = SG_MITER_ATOMIC;
635
636         if (data->flags & MMC_DATA_READ)
637                 flags |= SG_MITER_TO_SG;
638         else
639                 flags |= SG_MITER_FROM_SG;
640
641         sg_miter_start(&host->sg_miter, data->sg, data->sg_len, flags);
642 }
643
644 static u32 mmci_get_dctrl_cfg(struct mmci_host *host)
645 {
646         return MCI_DPSM_ENABLE | mmci_dctrl_blksz(host);
647 }
648
649 static u32 ux500v2_get_dctrl_cfg(struct mmci_host *host)
650 {
651         return MCI_DPSM_ENABLE | (host->data->blksz << 16);
652 }
653
654 static bool ux500_busy_complete(struct mmci_host *host, u32 status, u32 err_msk)
655 {
656         void __iomem *base = host->base;
657
658         /*
659          * Before unmasking for the busy end IRQ, confirm that the
660          * command was sent successfully. To keep track of having a
661          * command in-progress, waiting for busy signaling to end,
662          * store the status in host->busy_status.
663          *
664          * Note that, the card may need a couple of clock cycles before
665          * it starts signaling busy on DAT0, hence re-read the
666          * MMCISTATUS register here, to allow the busy bit to be set.
667          * Potentially we may even need to poll the register for a
668          * while, to allow it to be set, but tests indicates that it
669          * isn't needed.
670          */
671         if (!host->busy_status && !(status & err_msk) &&
672             (readl(base + MMCISTATUS) & host->variant->busy_detect_flag)) {
673                 writel(readl(base + MMCIMASK0) |
674                        host->variant->busy_detect_mask,
675                        base + MMCIMASK0);
676
677                 host->busy_status = status & (MCI_CMDSENT | MCI_CMDRESPEND);
678                 return false;
679         }
680
681         /*
682          * If there is a command in-progress that has been successfully
683          * sent, then bail out if busy status is set and wait for the
684          * busy end IRQ.
685          *
686          * Note that, the HW triggers an IRQ on both edges while
687          * monitoring DAT0 for busy completion, but there is only one
688          * status bit in MMCISTATUS for the busy state. Therefore
689          * both the start and the end interrupts needs to be cleared,
690          * one after the other. So, clear the busy start IRQ here.
691          */
692         if (host->busy_status &&
693             (status & host->variant->busy_detect_flag)) {
694                 writel(host->variant->busy_detect_mask, base + MMCICLEAR);
695                 return false;
696         }
697
698         /*
699          * If there is a command in-progress that has been successfully
700          * sent and the busy bit isn't set, it means we have received
701          * the busy end IRQ. Clear and mask the IRQ, then continue to
702          * process the command.
703          */
704         if (host->busy_status) {
705                 writel(host->variant->busy_detect_mask, base + MMCICLEAR);
706
707                 writel(readl(base + MMCIMASK0) &
708                        ~host->variant->busy_detect_mask, base + MMCIMASK0);
709                 host->busy_status = 0;
710         }
711
712         return true;
713 }
714
715 /*
716  * All the DMA operation mode stuff goes inside this ifdef.
717  * This assumes that you have a generic DMA device interface,
718  * no custom DMA interfaces are supported.
719  */
720 #ifdef CONFIG_DMA_ENGINE
721 struct mmci_dmae_next {
722         struct dma_async_tx_descriptor *desc;
723         struct dma_chan *chan;
724 };
725
726 struct mmci_dmae_priv {
727         struct dma_chan *cur;
728         struct dma_chan *rx_channel;
729         struct dma_chan *tx_channel;
730         struct dma_async_tx_descriptor  *desc_current;
731         struct mmci_dmae_next next_data;
732 };
733
734 int mmci_dmae_setup(struct mmci_host *host)
735 {
736         const char *rxname, *txname;
737         struct mmci_dmae_priv *dmae;
738
739         dmae = devm_kzalloc(mmc_dev(host->mmc), sizeof(*dmae), GFP_KERNEL);
740         if (!dmae)
741                 return -ENOMEM;
742
743         host->dma_priv = dmae;
744
745         dmae->rx_channel = dma_request_chan(mmc_dev(host->mmc), "rx");
746         if (IS_ERR(dmae->rx_channel)) {
747                 int ret = PTR_ERR(dmae->rx_channel);
748                 dmae->rx_channel = NULL;
749                 return ret;
750         }
751
752         dmae->tx_channel = dma_request_chan(mmc_dev(host->mmc), "tx");
753         if (IS_ERR(dmae->tx_channel)) {
754                 if (PTR_ERR(dmae->tx_channel) == -EPROBE_DEFER)
755                         dev_warn(mmc_dev(host->mmc),
756                                  "Deferred probe for TX channel ignored\n");
757                 dmae->tx_channel = NULL;
758         }
759
760         /*
761          * If only an RX channel is specified, the driver will
762          * attempt to use it bidirectionally, however if it is
763          * is specified but cannot be located, DMA will be disabled.
764          */
765         if (dmae->rx_channel && !dmae->tx_channel)
766                 dmae->tx_channel = dmae->rx_channel;
767
768         if (dmae->rx_channel)
769                 rxname = dma_chan_name(dmae->rx_channel);
770         else
771                 rxname = "none";
772
773         if (dmae->tx_channel)
774                 txname = dma_chan_name(dmae->tx_channel);
775         else
776                 txname = "none";
777
778         dev_info(mmc_dev(host->mmc), "DMA channels RX %s, TX %s\n",
779                  rxname, txname);
780
781         /*
782          * Limit the maximum segment size in any SG entry according to
783          * the parameters of the DMA engine device.
784          */
785         if (dmae->tx_channel) {
786                 struct device *dev = dmae->tx_channel->device->dev;
787                 unsigned int max_seg_size = dma_get_max_seg_size(dev);
788
789                 if (max_seg_size < host->mmc->max_seg_size)
790                         host->mmc->max_seg_size = max_seg_size;
791         }
792         if (dmae->rx_channel) {
793                 struct device *dev = dmae->rx_channel->device->dev;
794                 unsigned int max_seg_size = dma_get_max_seg_size(dev);
795
796                 if (max_seg_size < host->mmc->max_seg_size)
797                         host->mmc->max_seg_size = max_seg_size;
798         }
799
800         if (!dmae->tx_channel || !dmae->rx_channel) {
801                 mmci_dmae_release(host);
802                 return -EINVAL;
803         }
804
805         return 0;
806 }
807
808 /*
809  * This is used in or so inline it
810  * so it can be discarded.
811  */
812 void mmci_dmae_release(struct mmci_host *host)
813 {
814         struct mmci_dmae_priv *dmae = host->dma_priv;
815
816         if (dmae->rx_channel)
817                 dma_release_channel(dmae->rx_channel);
818         if (dmae->tx_channel)
819                 dma_release_channel(dmae->tx_channel);
820         dmae->rx_channel = dmae->tx_channel = NULL;
821 }
822
823 static void mmci_dma_unmap(struct mmci_host *host, struct mmc_data *data)
824 {
825         struct mmci_dmae_priv *dmae = host->dma_priv;
826         struct dma_chan *chan;
827
828         if (data->flags & MMC_DATA_READ)
829                 chan = dmae->rx_channel;
830         else
831                 chan = dmae->tx_channel;
832
833         dma_unmap_sg(chan->device->dev, data->sg, data->sg_len,
834                      mmc_get_dma_dir(data));
835 }
836
837 void mmci_dmae_error(struct mmci_host *host)
838 {
839         struct mmci_dmae_priv *dmae = host->dma_priv;
840
841         if (!dma_inprogress(host))
842                 return;
843
844         dev_err(mmc_dev(host->mmc), "error during DMA transfer!\n");
845         dmaengine_terminate_all(dmae->cur);
846         host->dma_in_progress = false;
847         dmae->cur = NULL;
848         dmae->desc_current = NULL;
849         host->data->host_cookie = 0;
850
851         mmci_dma_unmap(host, host->data);
852 }
853
854 void mmci_dmae_finalize(struct mmci_host *host, struct mmc_data *data)
855 {
856         struct mmci_dmae_priv *dmae = host->dma_priv;
857         u32 status;
858         int i;
859
860         if (!dma_inprogress(host))
861                 return;
862
863         /* Wait up to 1ms for the DMA to complete */
864         for (i = 0; ; i++) {
865                 status = readl(host->base + MMCISTATUS);
866                 if (!(status & MCI_RXDATAAVLBLMASK) || i >= 100)
867                         break;
868                 udelay(10);
869         }
870
871         /*
872          * Check to see whether we still have some data left in the FIFO -
873          * this catches DMA controllers which are unable to monitor the
874          * DMALBREQ and DMALSREQ signals while allowing us to DMA to non-
875          * contiguous buffers.  On TX, we'll get a FIFO underrun error.
876          */
877         if (status & MCI_RXDATAAVLBLMASK) {
878                 mmci_dma_error(host);
879                 if (!data->error)
880                         data->error = -EIO;
881         } else if (!data->host_cookie) {
882                 mmci_dma_unmap(host, data);
883         }
884
885         /*
886          * Use of DMA with scatter-gather is impossible.
887          * Give up with DMA and switch back to PIO mode.
888          */
889         if (status & MCI_RXDATAAVLBLMASK) {
890                 dev_err(mmc_dev(host->mmc), "buggy DMA detected. Taking evasive action.\n");
891                 mmci_dma_release(host);
892         }
893
894         host->dma_in_progress = false;
895         dmae->cur = NULL;
896         dmae->desc_current = NULL;
897 }
898
899 /* prepares DMA channel and DMA descriptor, returns non-zero on failure */
900 static int _mmci_dmae_prep_data(struct mmci_host *host, struct mmc_data *data,
901                                 struct dma_chan **dma_chan,
902                                 struct dma_async_tx_descriptor **dma_desc)
903 {
904         struct mmci_dmae_priv *dmae = host->dma_priv;
905         struct variant_data *variant = host->variant;
906         struct dma_slave_config conf = {
907                 .src_addr = host->phybase + MMCIFIFO,
908                 .dst_addr = host->phybase + MMCIFIFO,
909                 .src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
910                 .dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
911                 .src_maxburst = variant->fifohalfsize >> 2, /* # of words */
912                 .dst_maxburst = variant->fifohalfsize >> 2, /* # of words */
913                 .device_fc = false,
914         };
915         struct dma_chan *chan;
916         struct dma_device *device;
917         struct dma_async_tx_descriptor *desc;
918         int nr_sg;
919         unsigned long flags = DMA_CTRL_ACK;
920
921         if (data->flags & MMC_DATA_READ) {
922                 conf.direction = DMA_DEV_TO_MEM;
923                 chan = dmae->rx_channel;
924         } else {
925                 conf.direction = DMA_MEM_TO_DEV;
926                 chan = dmae->tx_channel;
927         }
928
929         /* If there's no DMA channel, fall back to PIO */
930         if (!chan)
931                 return -EINVAL;
932
933         /* If less than or equal to the fifo size, don't bother with DMA */
934         if (data->blksz * data->blocks <= variant->fifosize)
935                 return -EINVAL;
936
937         /*
938          * This is necessary to get SDIO working on the Ux500. We do not yet
939          * know if this is a bug in:
940          * - The Ux500 DMA controller (DMA40)
941          * - The MMCI DMA interface on the Ux500
942          * some power of two blocks (such as 64 bytes) are sent regularly
943          * during SDIO traffic and those work fine so for these we enable DMA
944          * transfers.
945          */
946         if (host->variant->dma_power_of_2 && !is_power_of_2(data->blksz))
947                 return -EINVAL;
948
949         device = chan->device;
950         nr_sg = dma_map_sg(device->dev, data->sg, data->sg_len,
951                            mmc_get_dma_dir(data));
952         if (nr_sg == 0)
953                 return -EINVAL;
954
955         if (host->variant->qcom_dml)
956                 flags |= DMA_PREP_INTERRUPT;
957
958         dmaengine_slave_config(chan, &conf);
959         desc = dmaengine_prep_slave_sg(chan, data->sg, nr_sg,
960                                             conf.direction, flags);
961         if (!desc)
962                 goto unmap_exit;
963
964         *dma_chan = chan;
965         *dma_desc = desc;
966
967         return 0;
968
969  unmap_exit:
970         dma_unmap_sg(device->dev, data->sg, data->sg_len,
971                      mmc_get_dma_dir(data));
972         return -ENOMEM;
973 }
974
975 int mmci_dmae_prep_data(struct mmci_host *host,
976                         struct mmc_data *data,
977                         bool next)
978 {
979         struct mmci_dmae_priv *dmae = host->dma_priv;
980         struct mmci_dmae_next *nd = &dmae->next_data;
981
982         if (!host->use_dma)
983                 return -EINVAL;
984
985         if (next)
986                 return _mmci_dmae_prep_data(host, data, &nd->chan, &nd->desc);
987         /* Check if next job is already prepared. */
988         if (dmae->cur && dmae->desc_current)
989                 return 0;
990
991         /* No job were prepared thus do it now. */
992         return _mmci_dmae_prep_data(host, data, &dmae->cur,
993                                     &dmae->desc_current);
994 }
995
996 int mmci_dmae_start(struct mmci_host *host, unsigned int *datactrl)
997 {
998         struct mmci_dmae_priv *dmae = host->dma_priv;
999         int ret;
1000
1001         host->dma_in_progress = true;
1002         ret = dma_submit_error(dmaengine_submit(dmae->desc_current));
1003         if (ret < 0) {
1004                 host->dma_in_progress = false;
1005                 return ret;
1006         }
1007         dma_async_issue_pending(dmae->cur);
1008
1009         *datactrl |= MCI_DPSM_DMAENABLE;
1010
1011         return 0;
1012 }
1013
1014 void mmci_dmae_get_next_data(struct mmci_host *host, struct mmc_data *data)
1015 {
1016         struct mmci_dmae_priv *dmae = host->dma_priv;
1017         struct mmci_dmae_next *next = &dmae->next_data;
1018
1019         if (!host->use_dma)
1020                 return;
1021
1022         WARN_ON(!data->host_cookie && (next->desc || next->chan));
1023
1024         dmae->desc_current = next->desc;
1025         dmae->cur = next->chan;
1026         next->desc = NULL;
1027         next->chan = NULL;
1028 }
1029
1030 void mmci_dmae_unprep_data(struct mmci_host *host,
1031                            struct mmc_data *data, int err)
1032
1033 {
1034         struct mmci_dmae_priv *dmae = host->dma_priv;
1035
1036         if (!host->use_dma)
1037                 return;
1038
1039         mmci_dma_unmap(host, data);
1040
1041         if (err) {
1042                 struct mmci_dmae_next *next = &dmae->next_data;
1043                 struct dma_chan *chan;
1044                 if (data->flags & MMC_DATA_READ)
1045                         chan = dmae->rx_channel;
1046                 else
1047                         chan = dmae->tx_channel;
1048                 dmaengine_terminate_all(chan);
1049
1050                 if (dmae->desc_current == next->desc)
1051                         dmae->desc_current = NULL;
1052
1053                 if (dmae->cur == next->chan) {
1054                         host->dma_in_progress = false;
1055                         dmae->cur = NULL;
1056                 }
1057
1058                 next->desc = NULL;
1059                 next->chan = NULL;
1060         }
1061 }
1062
1063 static struct mmci_host_ops mmci_variant_ops = {
1064         .prep_data = mmci_dmae_prep_data,
1065         .unprep_data = mmci_dmae_unprep_data,
1066         .get_datactrl_cfg = mmci_get_dctrl_cfg,
1067         .get_next_data = mmci_dmae_get_next_data,
1068         .dma_setup = mmci_dmae_setup,
1069         .dma_release = mmci_dmae_release,
1070         .dma_start = mmci_dmae_start,
1071         .dma_finalize = mmci_dmae_finalize,
1072         .dma_error = mmci_dmae_error,
1073 };
1074 #else
1075 static struct mmci_host_ops mmci_variant_ops = {
1076         .get_datactrl_cfg = mmci_get_dctrl_cfg,
1077 };
1078 #endif
1079
1080 static void mmci_variant_init(struct mmci_host *host)
1081 {
1082         host->ops = &mmci_variant_ops;
1083 }
1084
1085 static void ux500_variant_init(struct mmci_host *host)
1086 {
1087         host->ops = &mmci_variant_ops;
1088         host->ops->busy_complete = ux500_busy_complete;
1089 }
1090
1091 static void ux500v2_variant_init(struct mmci_host *host)
1092 {
1093         host->ops = &mmci_variant_ops;
1094         host->ops->busy_complete = ux500_busy_complete;
1095         host->ops->get_datactrl_cfg = ux500v2_get_dctrl_cfg;
1096 }
1097
1098 static void mmci_pre_request(struct mmc_host *mmc, struct mmc_request *mrq)
1099 {
1100         struct mmci_host *host = mmc_priv(mmc);
1101         struct mmc_data *data = mrq->data;
1102
1103         if (!data)
1104                 return;
1105
1106         WARN_ON(data->host_cookie);
1107
1108         if (mmci_validate_data(host, data))
1109                 return;
1110
1111         mmci_prep_data(host, data, true);
1112 }
1113
1114 static void mmci_post_request(struct mmc_host *mmc, struct mmc_request *mrq,
1115                               int err)
1116 {
1117         struct mmci_host *host = mmc_priv(mmc);
1118         struct mmc_data *data = mrq->data;
1119
1120         if (!data || !data->host_cookie)
1121                 return;
1122
1123         mmci_unprep_data(host, data, err);
1124 }
1125
1126 static void mmci_start_data(struct mmci_host *host, struct mmc_data *data)
1127 {
1128         struct variant_data *variant = host->variant;
1129         unsigned int datactrl, timeout, irqmask;
1130         unsigned long long clks;
1131         void __iomem *base;
1132
1133         dev_dbg(mmc_dev(host->mmc), "blksz %04x blks %04x flags %08x\n",
1134                 data->blksz, data->blocks, data->flags);
1135
1136         host->data = data;
1137         host->size = data->blksz * data->blocks;
1138         data->bytes_xfered = 0;
1139
1140         clks = (unsigned long long)data->timeout_ns * host->cclk;
1141         do_div(clks, NSEC_PER_SEC);
1142
1143         timeout = data->timeout_clks + (unsigned int)clks;
1144
1145         base = host->base;
1146         writel(timeout, base + MMCIDATATIMER);
1147         writel(host->size, base + MMCIDATALENGTH);
1148
1149         datactrl = host->ops->get_datactrl_cfg(host);
1150         datactrl |= host->data->flags & MMC_DATA_READ ? MCI_DPSM_DIRECTION : 0;
1151
1152         if (host->mmc->card && mmc_card_sdio(host->mmc->card)) {
1153                 u32 clk;
1154
1155                 datactrl |= variant->datactrl_mask_sdio;
1156
1157                 /*
1158                  * The ST Micro variant for SDIO small write transfers
1159                  * needs to have clock H/W flow control disabled,
1160                  * otherwise the transfer will not start. The threshold
1161                  * depends on the rate of MCLK.
1162                  */
1163                 if (variant->st_sdio && data->flags & MMC_DATA_WRITE &&
1164                     (host->size < 8 ||
1165                      (host->size <= 8 && host->mclk > 50000000)))
1166                         clk = host->clk_reg & ~variant->clkreg_enable;
1167                 else
1168                         clk = host->clk_reg | variant->clkreg_enable;
1169
1170                 mmci_write_clkreg(host, clk);
1171         }
1172
1173         if (host->mmc->ios.timing == MMC_TIMING_UHS_DDR50 ||
1174             host->mmc->ios.timing == MMC_TIMING_MMC_DDR52)
1175                 datactrl |= variant->datactrl_mask_ddrmode;
1176
1177         /*
1178          * Attempt to use DMA operation mode, if this
1179          * should fail, fall back to PIO mode
1180          */
1181         if (!mmci_dma_start(host, datactrl))
1182                 return;
1183
1184         /* IRQ mode, map the SG list for CPU reading/writing */
1185         mmci_init_sg(host, data);
1186
1187         if (data->flags & MMC_DATA_READ) {
1188                 irqmask = MCI_RXFIFOHALFFULLMASK;
1189
1190                 /*
1191                  * If we have less than the fifo 'half-full' threshold to
1192                  * transfer, trigger a PIO interrupt as soon as any data
1193                  * is available.
1194                  */
1195                 if (host->size < variant->fifohalfsize)
1196                         irqmask |= MCI_RXDATAAVLBLMASK;
1197         } else {
1198                 /*
1199                  * We don't actually need to include "FIFO empty" here
1200                  * since its implicit in "FIFO half empty".
1201                  */
1202                 irqmask = MCI_TXFIFOHALFEMPTYMASK;
1203         }
1204
1205         mmci_write_datactrlreg(host, datactrl);
1206         writel(readl(base + MMCIMASK0) & ~MCI_DATAENDMASK, base + MMCIMASK0);
1207         mmci_set_mask1(host, irqmask);
1208 }
1209
1210 static void
1211 mmci_start_command(struct mmci_host *host, struct mmc_command *cmd, u32 c)
1212 {
1213         void __iomem *base = host->base;
1214         unsigned long long clks;
1215
1216         dev_dbg(mmc_dev(host->mmc), "op %02x arg %08x flags %08x\n",
1217             cmd->opcode, cmd->arg, cmd->flags);
1218
1219         if (readl(base + MMCICOMMAND) & host->variant->cmdreg_cpsm_enable) {
1220                 writel(0, base + MMCICOMMAND);
1221                 mmci_reg_delay(host);
1222         }
1223
1224         if (host->variant->cmdreg_stop &&
1225             cmd->opcode == MMC_STOP_TRANSMISSION)
1226                 c |= host->variant->cmdreg_stop;
1227
1228         c |= cmd->opcode | host->variant->cmdreg_cpsm_enable;
1229         if (cmd->flags & MMC_RSP_PRESENT) {
1230                 if (cmd->flags & MMC_RSP_136)
1231                         c |= host->variant->cmdreg_lrsp_crc;
1232                 else if (cmd->flags & MMC_RSP_CRC)
1233                         c |= host->variant->cmdreg_srsp_crc;
1234                 else
1235                         c |= host->variant->cmdreg_srsp;
1236         }
1237
1238         if (host->variant->busy_timeout && cmd->flags & MMC_RSP_BUSY) {
1239                 if (!cmd->busy_timeout)
1240                         cmd->busy_timeout = 10 * MSEC_PER_SEC;
1241
1242                 clks = (unsigned long long)cmd->busy_timeout * host->cclk;
1243                 do_div(clks, MSEC_PER_SEC);
1244                 writel_relaxed(clks, host->base + MMCIDATATIMER);
1245         }
1246
1247         if (host->ops->pre_sig_volt_switch && cmd->opcode == SD_SWITCH_VOLTAGE)
1248                 host->ops->pre_sig_volt_switch(host);
1249
1250         if (/*interrupt*/0)
1251                 c |= MCI_CPSM_INTERRUPT;
1252
1253         if (mmc_cmd_type(cmd) == MMC_CMD_ADTC)
1254                 c |= host->variant->data_cmd_enable;
1255
1256         host->cmd = cmd;
1257
1258         writel(cmd->arg, base + MMCIARGUMENT);
1259         writel(c, base + MMCICOMMAND);
1260 }
1261
1262 static void mmci_stop_command(struct mmci_host *host)
1263 {
1264         host->stop_abort.error = 0;
1265         mmci_start_command(host, &host->stop_abort, 0);
1266 }
1267
1268 static void
1269 mmci_data_irq(struct mmci_host *host, struct mmc_data *data,
1270               unsigned int status)
1271 {
1272         unsigned int status_err;
1273
1274         /* Make sure we have data to handle */
1275         if (!data)
1276                 return;
1277
1278         /* First check for errors */
1279         status_err = status & (host->variant->start_err |
1280                                MCI_DATACRCFAIL | MCI_DATATIMEOUT |
1281                                MCI_TXUNDERRUN | MCI_RXOVERRUN);
1282
1283         if (status_err) {
1284                 u32 remain, success;
1285
1286                 /* Terminate the DMA transfer */
1287                 mmci_dma_error(host);
1288
1289                 /*
1290                  * Calculate how far we are into the transfer.  Note that
1291                  * the data counter gives the number of bytes transferred
1292                  * on the MMC bus, not on the host side.  On reads, this
1293                  * can be as much as a FIFO-worth of data ahead.  This
1294                  * matters for FIFO overruns only.
1295                  */
1296                 if (!host->variant->datacnt_useless) {
1297                         remain = readl(host->base + MMCIDATACNT);
1298                         success = data->blksz * data->blocks - remain;
1299                 } else {
1300                         success = 0;
1301                 }
1302
1303                 dev_dbg(mmc_dev(host->mmc), "MCI ERROR IRQ, status 0x%08x at 0x%08x\n",
1304                         status_err, success);
1305                 if (status_err & MCI_DATACRCFAIL) {
1306                         /* Last block was not successful */
1307                         success -= 1;
1308                         data->error = -EILSEQ;
1309                 } else if (status_err & MCI_DATATIMEOUT) {
1310                         data->error = -ETIMEDOUT;
1311                 } else if (status_err & MCI_STARTBITERR) {
1312                         data->error = -ECOMM;
1313                 } else if (status_err & MCI_TXUNDERRUN) {
1314                         data->error = -EIO;
1315                 } else if (status_err & MCI_RXOVERRUN) {
1316                         if (success > host->variant->fifosize)
1317                                 success -= host->variant->fifosize;
1318                         else
1319                                 success = 0;
1320                         data->error = -EIO;
1321                 }
1322                 data->bytes_xfered = round_down(success, data->blksz);
1323         }
1324
1325         if (status & MCI_DATABLOCKEND)
1326                 dev_err(mmc_dev(host->mmc), "stray MCI_DATABLOCKEND interrupt\n");
1327
1328         if (status & MCI_DATAEND || data->error) {
1329                 mmci_dma_finalize(host, data);
1330
1331                 mmci_stop_data(host);
1332
1333                 if (!data->error)
1334                         /* The error clause is handled above, success! */
1335                         data->bytes_xfered = data->blksz * data->blocks;
1336
1337                 if (!data->stop) {
1338                         if (host->variant->cmdreg_stop && data->error)
1339                                 mmci_stop_command(host);
1340                         else
1341                                 mmci_request_end(host, data->mrq);
1342                 } else if (host->mrq->sbc && !data->error) {
1343                         mmci_request_end(host, data->mrq);
1344                 } else {
1345                         mmci_start_command(host, data->stop, 0);
1346                 }
1347         }
1348 }
1349
1350 static void
1351 mmci_cmd_irq(struct mmci_host *host, struct mmc_command *cmd,
1352              unsigned int status)
1353 {
1354         u32 err_msk = MCI_CMDCRCFAIL | MCI_CMDTIMEOUT;
1355         void __iomem *base = host->base;
1356         bool sbc, busy_resp;
1357
1358         if (!cmd)
1359                 return;
1360
1361         sbc = (cmd == host->mrq->sbc);
1362         busy_resp = !!(cmd->flags & MMC_RSP_BUSY);
1363
1364         /*
1365          * We need to be one of these interrupts to be considered worth
1366          * handling. Note that we tag on any latent IRQs postponed
1367          * due to waiting for busy status.
1368          */
1369         if (host->variant->busy_timeout && busy_resp)
1370                 err_msk |= MCI_DATATIMEOUT;
1371
1372         if (!((status | host->busy_status) &
1373               (err_msk | MCI_CMDSENT | MCI_CMDRESPEND)))
1374                 return;
1375
1376         /* Handle busy detection on DAT0 if the variant supports it. */
1377         if (busy_resp && host->variant->busy_detect)
1378                 if (!host->ops->busy_complete(host, status, err_msk))
1379                         return;
1380
1381         host->cmd = NULL;
1382
1383         if (status & MCI_CMDTIMEOUT) {
1384                 cmd->error = -ETIMEDOUT;
1385         } else if (status & MCI_CMDCRCFAIL && cmd->flags & MMC_RSP_CRC) {
1386                 cmd->error = -EILSEQ;
1387         } else if (host->variant->busy_timeout && busy_resp &&
1388                    status & MCI_DATATIMEOUT) {
1389                 cmd->error = -ETIMEDOUT;
1390                 host->irq_action = IRQ_WAKE_THREAD;
1391         } else {
1392                 cmd->resp[0] = readl(base + MMCIRESPONSE0);
1393                 cmd->resp[1] = readl(base + MMCIRESPONSE1);
1394                 cmd->resp[2] = readl(base + MMCIRESPONSE2);
1395                 cmd->resp[3] = readl(base + MMCIRESPONSE3);
1396         }
1397
1398         if ((!sbc && !cmd->data) || cmd->error) {
1399                 if (host->data) {
1400                         /* Terminate the DMA transfer */
1401                         mmci_dma_error(host);
1402
1403                         mmci_stop_data(host);
1404                         if (host->variant->cmdreg_stop && cmd->error) {
1405                                 mmci_stop_command(host);
1406                                 return;
1407                         }
1408                 }
1409
1410                 if (host->irq_action != IRQ_WAKE_THREAD)
1411                         mmci_request_end(host, host->mrq);
1412
1413         } else if (sbc) {
1414                 mmci_start_command(host, host->mrq->cmd, 0);
1415         } else if (!host->variant->datactrl_first &&
1416                    !(cmd->data->flags & MMC_DATA_READ)) {
1417                 mmci_start_data(host, cmd->data);
1418         }
1419 }
1420
1421 static int mmci_get_rx_fifocnt(struct mmci_host *host, u32 status, int remain)
1422 {
1423         return remain - (readl(host->base + MMCIFIFOCNT) << 2);
1424 }
1425
1426 static int mmci_qcom_get_rx_fifocnt(struct mmci_host *host, u32 status, int r)
1427 {
1428         /*
1429          * on qcom SDCC4 only 8 words are used in each burst so only 8 addresses
1430          * from the fifo range should be used
1431          */
1432         if (status & MCI_RXFIFOHALFFULL)
1433                 return host->variant->fifohalfsize;
1434         else if (status & MCI_RXDATAAVLBL)
1435                 return 4;
1436
1437         return 0;
1438 }
1439
1440 static int mmci_pio_read(struct mmci_host *host, char *buffer, unsigned int remain)
1441 {
1442         void __iomem *base = host->base;
1443         char *ptr = buffer;
1444         u32 status = readl(host->base + MMCISTATUS);
1445         int host_remain = host->size;
1446
1447         do {
1448                 int count = host->get_rx_fifocnt(host, status, host_remain);
1449
1450                 if (count > remain)
1451                         count = remain;
1452
1453                 if (count <= 0)
1454                         break;
1455
1456                 /*
1457                  * SDIO especially may want to send something that is
1458                  * not divisible by 4 (as opposed to card sectors
1459                  * etc). Therefore make sure to always read the last bytes
1460                  * while only doing full 32-bit reads towards the FIFO.
1461                  */
1462                 if (unlikely(count & 0x3)) {
1463                         if (count < 4) {
1464                                 unsigned char buf[4];
1465                                 ioread32_rep(base + MMCIFIFO, buf, 1);
1466                                 memcpy(ptr, buf, count);
1467                         } else {
1468                                 ioread32_rep(base + MMCIFIFO, ptr, count >> 2);
1469                                 count &= ~0x3;
1470                         }
1471                 } else {
1472                         ioread32_rep(base + MMCIFIFO, ptr, count >> 2);
1473                 }
1474
1475                 ptr += count;
1476                 remain -= count;
1477                 host_remain -= count;
1478
1479                 if (remain == 0)
1480                         break;
1481
1482                 status = readl(base + MMCISTATUS);
1483         } while (status & MCI_RXDATAAVLBL);
1484
1485         return ptr - buffer;
1486 }
1487
1488 static int mmci_pio_write(struct mmci_host *host, char *buffer, unsigned int remain, u32 status)
1489 {
1490         struct variant_data *variant = host->variant;
1491         void __iomem *base = host->base;
1492         char *ptr = buffer;
1493
1494         do {
1495                 unsigned int count, maxcnt;
1496
1497                 maxcnt = status & MCI_TXFIFOEMPTY ?
1498                          variant->fifosize : variant->fifohalfsize;
1499                 count = min(remain, maxcnt);
1500
1501                 /*
1502                  * SDIO especially may want to send something that is
1503                  * not divisible by 4 (as opposed to card sectors
1504                  * etc), and the FIFO only accept full 32-bit writes.
1505                  * So compensate by adding +3 on the count, a single
1506                  * byte become a 32bit write, 7 bytes will be two
1507                  * 32bit writes etc.
1508                  */
1509                 iowrite32_rep(base + MMCIFIFO, ptr, (count + 3) >> 2);
1510
1511                 ptr += count;
1512                 remain -= count;
1513
1514                 if (remain == 0)
1515                         break;
1516
1517                 status = readl(base + MMCISTATUS);
1518         } while (status & MCI_TXFIFOHALFEMPTY);
1519
1520         return ptr - buffer;
1521 }
1522
1523 /*
1524  * PIO data transfer IRQ handler.
1525  */
1526 static irqreturn_t mmci_pio_irq(int irq, void *dev_id)
1527 {
1528         struct mmci_host *host = dev_id;
1529         struct sg_mapping_iter *sg_miter = &host->sg_miter;
1530         struct variant_data *variant = host->variant;
1531         void __iomem *base = host->base;
1532         u32 status;
1533
1534         status = readl(base + MMCISTATUS);
1535
1536         dev_dbg(mmc_dev(host->mmc), "irq1 (pio) %08x\n", status);
1537
1538         do {
1539                 unsigned int remain, len;
1540                 char *buffer;
1541
1542                 /*
1543                  * For write, we only need to test the half-empty flag
1544                  * here - if the FIFO is completely empty, then by
1545                  * definition it is more than half empty.
1546                  *
1547                  * For read, check for data available.
1548                  */
1549                 if (!(status & (MCI_TXFIFOHALFEMPTY|MCI_RXDATAAVLBL)))
1550                         break;
1551
1552                 if (!sg_miter_next(sg_miter))
1553                         break;
1554
1555                 buffer = sg_miter->addr;
1556                 remain = sg_miter->length;
1557
1558                 len = 0;
1559                 if (status & MCI_RXACTIVE)
1560                         len = mmci_pio_read(host, buffer, remain);
1561                 if (status & MCI_TXACTIVE)
1562                         len = mmci_pio_write(host, buffer, remain, status);
1563
1564                 sg_miter->consumed = len;
1565
1566                 host->size -= len;
1567                 remain -= len;
1568
1569                 if (remain)
1570                         break;
1571
1572                 status = readl(base + MMCISTATUS);
1573         } while (1);
1574
1575         sg_miter_stop(sg_miter);
1576
1577         /*
1578          * If we have less than the fifo 'half-full' threshold to transfer,
1579          * trigger a PIO interrupt as soon as any data is available.
1580          */
1581         if (status & MCI_RXACTIVE && host->size < variant->fifohalfsize)
1582                 mmci_set_mask1(host, MCI_RXDATAAVLBLMASK);
1583
1584         /*
1585          * If we run out of data, disable the data IRQs; this
1586          * prevents a race where the FIFO becomes empty before
1587          * the chip itself has disabled the data path, and
1588          * stops us racing with our data end IRQ.
1589          */
1590         if (host->size == 0) {
1591                 mmci_set_mask1(host, 0);
1592                 writel(readl(base + MMCIMASK0) | MCI_DATAENDMASK, base + MMCIMASK0);
1593         }
1594
1595         return IRQ_HANDLED;
1596 }
1597
1598 /*
1599  * Handle completion of command and data transfers.
1600  */
1601 static irqreturn_t mmci_irq(int irq, void *dev_id)
1602 {
1603         struct mmci_host *host = dev_id;
1604         u32 status;
1605
1606         spin_lock(&host->lock);
1607         host->irq_action = IRQ_HANDLED;
1608
1609         do {
1610                 status = readl(host->base + MMCISTATUS);
1611
1612                 if (host->singleirq) {
1613                         if (status & host->mask1_reg)
1614                                 mmci_pio_irq(irq, dev_id);
1615
1616                         status &= ~host->variant->irq_pio_mask;
1617                 }
1618
1619                 /*
1620                  * Busy detection is managed by mmci_cmd_irq(), including to
1621                  * clear the corresponding IRQ.
1622                  */
1623                 status &= readl(host->base + MMCIMASK0);
1624                 if (host->variant->busy_detect)
1625                         writel(status & ~host->variant->busy_detect_mask,
1626                                host->base + MMCICLEAR);
1627                 else
1628                         writel(status, host->base + MMCICLEAR);
1629
1630                 dev_dbg(mmc_dev(host->mmc), "irq0 (data+cmd) %08x\n", status);
1631
1632                 if (host->variant->reversed_irq_handling) {
1633                         mmci_data_irq(host, host->data, status);
1634                         mmci_cmd_irq(host, host->cmd, status);
1635                 } else {
1636                         mmci_cmd_irq(host, host->cmd, status);
1637                         mmci_data_irq(host, host->data, status);
1638                 }
1639
1640                 /*
1641                  * Busy detection has been handled by mmci_cmd_irq() above.
1642                  * Clear the status bit to prevent polling in IRQ context.
1643                  */
1644                 if (host->variant->busy_detect_flag)
1645                         status &= ~host->variant->busy_detect_flag;
1646
1647         } while (status);
1648
1649         spin_unlock(&host->lock);
1650
1651         return host->irq_action;
1652 }
1653
1654 /*
1655  * mmci_irq_thread() - A threaded IRQ handler that manages a reset of the HW.
1656  *
1657  * A reset is needed for some variants, where a datatimeout for a R1B request
1658  * causes the DPSM to stay busy (non-functional).
1659  */
1660 static irqreturn_t mmci_irq_thread(int irq, void *dev_id)
1661 {
1662         struct mmci_host *host = dev_id;
1663         unsigned long flags;
1664
1665         if (host->rst) {
1666                 reset_control_assert(host->rst);
1667                 udelay(2);
1668                 reset_control_deassert(host->rst);
1669         }
1670
1671         spin_lock_irqsave(&host->lock, flags);
1672         writel(host->clk_reg, host->base + MMCICLOCK);
1673         writel(host->pwr_reg, host->base + MMCIPOWER);
1674         writel(MCI_IRQENABLE | host->variant->start_err,
1675                host->base + MMCIMASK0);
1676
1677         host->irq_action = IRQ_HANDLED;
1678         mmci_request_end(host, host->mrq);
1679         spin_unlock_irqrestore(&host->lock, flags);
1680
1681         return host->irq_action;
1682 }
1683
1684 static void mmci_request(struct mmc_host *mmc, struct mmc_request *mrq)
1685 {
1686         struct mmci_host *host = mmc_priv(mmc);
1687         unsigned long flags;
1688
1689         WARN_ON(host->mrq != NULL);
1690
1691         mrq->cmd->error = mmci_validate_data(host, mrq->data);
1692         if (mrq->cmd->error) {
1693                 mmc_request_done(mmc, mrq);
1694                 return;
1695         }
1696
1697         spin_lock_irqsave(&host->lock, flags);
1698
1699         host->mrq = mrq;
1700
1701         if (mrq->data)
1702                 mmci_get_next_data(host, mrq->data);
1703
1704         if (mrq->data &&
1705             (host->variant->datactrl_first || mrq->data->flags & MMC_DATA_READ))
1706                 mmci_start_data(host, mrq->data);
1707
1708         if (mrq->sbc)
1709                 mmci_start_command(host, mrq->sbc, 0);
1710         else
1711                 mmci_start_command(host, mrq->cmd, 0);
1712
1713         spin_unlock_irqrestore(&host->lock, flags);
1714 }
1715
1716 static void mmci_set_max_busy_timeout(struct mmc_host *mmc)
1717 {
1718         struct mmci_host *host = mmc_priv(mmc);
1719         u32 max_busy_timeout = 0;
1720
1721         if (!host->variant->busy_detect)
1722                 return;
1723
1724         if (host->variant->busy_timeout && mmc->actual_clock)
1725                 max_busy_timeout = ~0UL / (mmc->actual_clock / MSEC_PER_SEC);
1726
1727         mmc->max_busy_timeout = max_busy_timeout;
1728 }
1729
1730 static void mmci_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
1731 {
1732         struct mmci_host *host = mmc_priv(mmc);
1733         struct variant_data *variant = host->variant;
1734         u32 pwr = 0;
1735         unsigned long flags;
1736         int ret;
1737
1738         if (host->plat->ios_handler &&
1739                 host->plat->ios_handler(mmc_dev(mmc), ios))
1740                         dev_err(mmc_dev(mmc), "platform ios_handler failed\n");
1741
1742         switch (ios->power_mode) {
1743         case MMC_POWER_OFF:
1744                 if (!IS_ERR(mmc->supply.vmmc))
1745                         mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, 0);
1746
1747                 if (!IS_ERR(mmc->supply.vqmmc) && host->vqmmc_enabled) {
1748                         regulator_disable(mmc->supply.vqmmc);
1749                         host->vqmmc_enabled = false;
1750                 }
1751
1752                 break;
1753         case MMC_POWER_UP:
1754                 if (!IS_ERR(mmc->supply.vmmc))
1755                         mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, ios->vdd);
1756
1757                 /*
1758                  * The ST Micro variant doesn't have the PL180s MCI_PWR_UP
1759                  * and instead uses MCI_PWR_ON so apply whatever value is
1760                  * configured in the variant data.
1761                  */
1762                 pwr |= variant->pwrreg_powerup;
1763
1764                 break;
1765         case MMC_POWER_ON:
1766                 if (!IS_ERR(mmc->supply.vqmmc) && !host->vqmmc_enabled) {
1767                         ret = regulator_enable(mmc->supply.vqmmc);
1768                         if (ret < 0)
1769                                 dev_err(mmc_dev(mmc),
1770                                         "failed to enable vqmmc regulator\n");
1771                         else
1772                                 host->vqmmc_enabled = true;
1773                 }
1774
1775                 pwr |= MCI_PWR_ON;
1776                 break;
1777         }
1778
1779         if (variant->signal_direction && ios->power_mode != MMC_POWER_OFF) {
1780                 /*
1781                  * The ST Micro variant has some additional bits
1782                  * indicating signal direction for the signals in
1783                  * the SD/MMC bus and feedback-clock usage.
1784                  */
1785                 pwr |= host->pwr_reg_add;
1786
1787                 if (ios->bus_width == MMC_BUS_WIDTH_4)
1788                         pwr &= ~MCI_ST_DATA74DIREN;
1789                 else if (ios->bus_width == MMC_BUS_WIDTH_1)
1790                         pwr &= (~MCI_ST_DATA74DIREN &
1791                                 ~MCI_ST_DATA31DIREN &
1792                                 ~MCI_ST_DATA2DIREN);
1793         }
1794
1795         if (variant->opendrain) {
1796                 if (ios->bus_mode == MMC_BUSMODE_OPENDRAIN)
1797                         pwr |= variant->opendrain;
1798         } else {
1799                 /*
1800                  * If the variant cannot configure the pads by its own, then we
1801                  * expect the pinctrl to be able to do that for us
1802                  */
1803                 if (ios->bus_mode == MMC_BUSMODE_OPENDRAIN)
1804                         pinctrl_select_state(host->pinctrl, host->pins_opendrain);
1805                 else
1806                         pinctrl_select_default_state(mmc_dev(mmc));
1807         }
1808
1809         /*
1810          * If clock = 0 and the variant requires the MMCIPOWER to be used for
1811          * gating the clock, the MCI_PWR_ON bit is cleared.
1812          */
1813         if (!ios->clock && variant->pwrreg_clkgate)
1814                 pwr &= ~MCI_PWR_ON;
1815
1816         if (host->variant->explicit_mclk_control &&
1817             ios->clock != host->clock_cache) {
1818                 ret = clk_set_rate(host->clk, ios->clock);
1819                 if (ret < 0)
1820                         dev_err(mmc_dev(host->mmc),
1821                                 "Error setting clock rate (%d)\n", ret);
1822                 else
1823                         host->mclk = clk_get_rate(host->clk);
1824         }
1825         host->clock_cache = ios->clock;
1826
1827         spin_lock_irqsave(&host->lock, flags);
1828
1829         if (host->ops && host->ops->set_clkreg)
1830                 host->ops->set_clkreg(host, ios->clock);
1831         else
1832                 mmci_set_clkreg(host, ios->clock);
1833
1834         mmci_set_max_busy_timeout(mmc);
1835
1836         if (host->ops && host->ops->set_pwrreg)
1837                 host->ops->set_pwrreg(host, pwr);
1838         else
1839                 mmci_write_pwrreg(host, pwr);
1840
1841         mmci_reg_delay(host);
1842
1843         spin_unlock_irqrestore(&host->lock, flags);
1844 }
1845
1846 static int mmci_get_cd(struct mmc_host *mmc)
1847 {
1848         struct mmci_host *host = mmc_priv(mmc);
1849         struct mmci_platform_data *plat = host->plat;
1850         unsigned int status = mmc_gpio_get_cd(mmc);
1851
1852         if (status == -ENOSYS) {
1853                 if (!plat->status)
1854                         return 1; /* Assume always present */
1855
1856                 status = plat->status(mmc_dev(host->mmc));
1857         }
1858         return status;
1859 }
1860
1861 static int mmci_sig_volt_switch(struct mmc_host *mmc, struct mmc_ios *ios)
1862 {
1863         struct mmci_host *host = mmc_priv(mmc);
1864         int ret;
1865
1866         ret = mmc_regulator_set_vqmmc(mmc, ios);
1867
1868         if (!ret && host->ops && host->ops->post_sig_volt_switch)
1869                 ret = host->ops->post_sig_volt_switch(host, ios);
1870         else if (ret)
1871                 ret = 0;
1872
1873         if (ret < 0)
1874                 dev_warn(mmc_dev(mmc), "Voltage switch failed\n");
1875
1876         return ret;
1877 }
1878
1879 static struct mmc_host_ops mmci_ops = {
1880         .request        = mmci_request,
1881         .pre_req        = mmci_pre_request,
1882         .post_req       = mmci_post_request,
1883         .set_ios        = mmci_set_ios,
1884         .get_ro         = mmc_gpio_get_ro,
1885         .get_cd         = mmci_get_cd,
1886         .start_signal_voltage_switch = mmci_sig_volt_switch,
1887 };
1888
1889 static int mmci_of_parse(struct device_node *np, struct mmc_host *mmc)
1890 {
1891         struct mmci_host *host = mmc_priv(mmc);
1892         int ret = mmc_of_parse(mmc);
1893
1894         if (ret)
1895                 return ret;
1896
1897         if (of_get_property(np, "st,sig-dir-dat0", NULL))
1898                 host->pwr_reg_add |= MCI_ST_DATA0DIREN;
1899         if (of_get_property(np, "st,sig-dir-dat2", NULL))
1900                 host->pwr_reg_add |= MCI_ST_DATA2DIREN;
1901         if (of_get_property(np, "st,sig-dir-dat31", NULL))
1902                 host->pwr_reg_add |= MCI_ST_DATA31DIREN;
1903         if (of_get_property(np, "st,sig-dir-dat74", NULL))
1904                 host->pwr_reg_add |= MCI_ST_DATA74DIREN;
1905         if (of_get_property(np, "st,sig-dir-cmd", NULL))
1906                 host->pwr_reg_add |= MCI_ST_CMDDIREN;
1907         if (of_get_property(np, "st,sig-pin-fbclk", NULL))
1908                 host->pwr_reg_add |= MCI_ST_FBCLKEN;
1909         if (of_get_property(np, "st,sig-dir", NULL))
1910                 host->pwr_reg_add |= MCI_STM32_DIRPOL;
1911         if (of_get_property(np, "st,neg-edge", NULL))
1912                 host->clk_reg_add |= MCI_STM32_CLK_NEGEDGE;
1913         if (of_get_property(np, "st,use-ckin", NULL))
1914                 host->clk_reg_add |= MCI_STM32_CLK_SELCKIN;
1915
1916         if (of_get_property(np, "mmc-cap-mmc-highspeed", NULL))
1917                 mmc->caps |= MMC_CAP_MMC_HIGHSPEED;
1918         if (of_get_property(np, "mmc-cap-sd-highspeed", NULL))
1919                 mmc->caps |= MMC_CAP_SD_HIGHSPEED;
1920
1921         return 0;
1922 }
1923
1924 static int mmci_probe(struct amba_device *dev,
1925         const struct amba_id *id)
1926 {
1927         struct mmci_platform_data *plat = dev->dev.platform_data;
1928         struct device_node *np = dev->dev.of_node;
1929         struct variant_data *variant = id->data;
1930         struct mmci_host *host;
1931         struct mmc_host *mmc;
1932         int ret;
1933
1934         /* Must have platform data or Device Tree. */
1935         if (!plat && !np) {
1936                 dev_err(&dev->dev, "No plat data or DT found\n");
1937                 return -EINVAL;
1938         }
1939
1940         if (!plat) {
1941                 plat = devm_kzalloc(&dev->dev, sizeof(*plat), GFP_KERNEL);
1942                 if (!plat)
1943                         return -ENOMEM;
1944         }
1945
1946         mmc = mmc_alloc_host(sizeof(struct mmci_host), &dev->dev);
1947         if (!mmc)
1948                 return -ENOMEM;
1949
1950         ret = mmci_of_parse(np, mmc);
1951         if (ret)
1952                 goto host_free;
1953
1954         host = mmc_priv(mmc);
1955         host->mmc = mmc;
1956         host->mmc_ops = &mmci_ops;
1957         mmc->ops = &mmci_ops;
1958
1959         /*
1960          * Some variant (STM32) doesn't have opendrain bit, nevertheless
1961          * pins can be set accordingly using pinctrl
1962          */
1963         if (!variant->opendrain) {
1964                 host->pinctrl = devm_pinctrl_get(&dev->dev);
1965                 if (IS_ERR(host->pinctrl)) {
1966                         dev_err(&dev->dev, "failed to get pinctrl");
1967                         ret = PTR_ERR(host->pinctrl);
1968                         goto host_free;
1969                 }
1970
1971                 host->pins_opendrain = pinctrl_lookup_state(host->pinctrl,
1972                                                             MMCI_PINCTRL_STATE_OPENDRAIN);
1973                 if (IS_ERR(host->pins_opendrain)) {
1974                         dev_err(mmc_dev(mmc), "Can't select opendrain pins\n");
1975                         ret = PTR_ERR(host->pins_opendrain);
1976                         goto host_free;
1977                 }
1978         }
1979
1980         host->hw_designer = amba_manf(dev);
1981         host->hw_revision = amba_rev(dev);
1982         dev_dbg(mmc_dev(mmc), "designer ID = 0x%02x\n", host->hw_designer);
1983         dev_dbg(mmc_dev(mmc), "revision = 0x%01x\n", host->hw_revision);
1984
1985         host->clk = devm_clk_get(&dev->dev, NULL);
1986         if (IS_ERR(host->clk)) {
1987                 ret = PTR_ERR(host->clk);
1988                 goto host_free;
1989         }
1990
1991         ret = clk_prepare_enable(host->clk);
1992         if (ret)
1993                 goto host_free;
1994
1995         if (variant->qcom_fifo)
1996                 host->get_rx_fifocnt = mmci_qcom_get_rx_fifocnt;
1997         else
1998                 host->get_rx_fifocnt = mmci_get_rx_fifocnt;
1999
2000         host->plat = plat;
2001         host->variant = variant;
2002         host->mclk = clk_get_rate(host->clk);
2003         /*
2004          * According to the spec, mclk is max 100 MHz,
2005          * so we try to adjust the clock down to this,
2006          * (if possible).
2007          */
2008         if (host->mclk > variant->f_max) {
2009                 ret = clk_set_rate(host->clk, variant->f_max);
2010                 if (ret < 0)
2011                         goto clk_disable;
2012                 host->mclk = clk_get_rate(host->clk);
2013                 dev_dbg(mmc_dev(mmc), "eventual mclk rate: %u Hz\n",
2014                         host->mclk);
2015         }
2016
2017         host->phybase = dev->res.start;
2018         host->base = devm_ioremap_resource(&dev->dev, &dev->res);
2019         if (IS_ERR(host->base)) {
2020                 ret = PTR_ERR(host->base);
2021                 goto clk_disable;
2022         }
2023
2024         if (variant->init)
2025                 variant->init(host);
2026
2027         /*
2028          * The ARM and ST versions of the block have slightly different
2029          * clock divider equations which means that the minimum divider
2030          * differs too.
2031          * on Qualcomm like controllers get the nearest minimum clock to 100Khz
2032          */
2033         if (variant->st_clkdiv)
2034                 mmc->f_min = DIV_ROUND_UP(host->mclk, 257);
2035         else if (variant->stm32_clkdiv)
2036                 mmc->f_min = DIV_ROUND_UP(host->mclk, 2046);
2037         else if (variant->explicit_mclk_control)
2038                 mmc->f_min = clk_round_rate(host->clk, 100000);
2039         else
2040                 mmc->f_min = DIV_ROUND_UP(host->mclk, 512);
2041         /*
2042          * If no maximum operating frequency is supplied, fall back to use
2043          * the module parameter, which has a (low) default value in case it
2044          * is not specified. Either value must not exceed the clock rate into
2045          * the block, of course.
2046          */
2047         if (mmc->f_max)
2048                 mmc->f_max = variant->explicit_mclk_control ?
2049                                 min(variant->f_max, mmc->f_max) :
2050                                 min(host->mclk, mmc->f_max);
2051         else
2052                 mmc->f_max = variant->explicit_mclk_control ?
2053                                 fmax : min(host->mclk, fmax);
2054
2055
2056         dev_dbg(mmc_dev(mmc), "clocking block at %u Hz\n", mmc->f_max);
2057
2058         host->rst = devm_reset_control_get_optional_exclusive(&dev->dev, NULL);
2059         if (IS_ERR(host->rst)) {
2060                 ret = PTR_ERR(host->rst);
2061                 goto clk_disable;
2062         }
2063
2064         /* Get regulators and the supported OCR mask */
2065         ret = mmc_regulator_get_supply(mmc);
2066         if (ret)
2067                 goto clk_disable;
2068
2069         if (!mmc->ocr_avail)
2070                 mmc->ocr_avail = plat->ocr_mask;
2071         else if (plat->ocr_mask)
2072                 dev_warn(mmc_dev(mmc), "Platform OCR mask is ignored\n");
2073
2074         /* We support these capabilities. */
2075         mmc->caps |= MMC_CAP_CMD23;
2076
2077         /*
2078          * Enable busy detection.
2079          */
2080         if (variant->busy_detect) {
2081                 mmci_ops.card_busy = mmci_card_busy;
2082                 /*
2083                  * Not all variants have a flag to enable busy detection
2084                  * in the DPSM, but if they do, set it here.
2085                  */
2086                 if (variant->busy_dpsm_flag)
2087                         mmci_write_datactrlreg(host,
2088                                                host->variant->busy_dpsm_flag);
2089                 mmc->caps |= MMC_CAP_WAIT_WHILE_BUSY;
2090         }
2091
2092         /* Prepare a CMD12 - needed to clear the DPSM on some variants. */
2093         host->stop_abort.opcode = MMC_STOP_TRANSMISSION;
2094         host->stop_abort.arg = 0;
2095         host->stop_abort.flags = MMC_RSP_R1B | MMC_CMD_AC;
2096
2097         /* We support these PM capabilities. */
2098         mmc->pm_caps |= MMC_PM_KEEP_POWER;
2099
2100         /*
2101          * We can do SGIO
2102          */
2103         mmc->max_segs = NR_SG;
2104
2105         /*
2106          * Since only a certain number of bits are valid in the data length
2107          * register, we must ensure that we don't exceed 2^num-1 bytes in a
2108          * single request.
2109          */
2110         mmc->max_req_size = (1 << variant->datalength_bits) - 1;
2111
2112         /*
2113          * Set the maximum segment size.  Since we aren't doing DMA
2114          * (yet) we are only limited by the data length register.
2115          */
2116         mmc->max_seg_size = mmc->max_req_size;
2117
2118         /*
2119          * Block size can be up to 2048 bytes, but must be a power of two.
2120          */
2121         mmc->max_blk_size = 1 << variant->datactrl_blocksz;
2122
2123         /*
2124          * Limit the number of blocks transferred so that we don't overflow
2125          * the maximum request size.
2126          */
2127         mmc->max_blk_count = mmc->max_req_size >> variant->datactrl_blocksz;
2128
2129         spin_lock_init(&host->lock);
2130
2131         writel(0, host->base + MMCIMASK0);
2132
2133         if (variant->mmcimask1)
2134                 writel(0, host->base + MMCIMASK1);
2135
2136         writel(0xfff, host->base + MMCICLEAR);
2137
2138         /*
2139          * If:
2140          * - not using DT but using a descriptor table, or
2141          * - using a table of descriptors ALONGSIDE DT, or
2142          * look up these descriptors named "cd" and "wp" right here, fail
2143          * silently of these do not exist
2144          */
2145         if (!np) {
2146                 ret = mmc_gpiod_request_cd(mmc, "cd", 0, false, 0);
2147                 if (ret == -EPROBE_DEFER)
2148                         goto clk_disable;
2149
2150                 ret = mmc_gpiod_request_ro(mmc, "wp", 0, 0);
2151                 if (ret == -EPROBE_DEFER)
2152                         goto clk_disable;
2153         }
2154
2155         ret = devm_request_threaded_irq(&dev->dev, dev->irq[0], mmci_irq,
2156                                         mmci_irq_thread, IRQF_SHARED,
2157                                         DRIVER_NAME " (cmd)", host);
2158         if (ret)
2159                 goto clk_disable;
2160
2161         if (!dev->irq[1])
2162                 host->singleirq = true;
2163         else {
2164                 ret = devm_request_irq(&dev->dev, dev->irq[1], mmci_pio_irq,
2165                                 IRQF_SHARED, DRIVER_NAME " (pio)", host);
2166                 if (ret)
2167                         goto clk_disable;
2168         }
2169
2170         writel(MCI_IRQENABLE | variant->start_err, host->base + MMCIMASK0);
2171
2172         amba_set_drvdata(dev, mmc);
2173
2174         dev_info(&dev->dev, "%s: PL%03x manf %x rev%u at 0x%08llx irq %d,%d (pio)\n",
2175                  mmc_hostname(mmc), amba_part(dev), amba_manf(dev),
2176                  amba_rev(dev), (unsigned long long)dev->res.start,
2177                  dev->irq[0], dev->irq[1]);
2178
2179         mmci_dma_setup(host);
2180
2181         pm_runtime_set_autosuspend_delay(&dev->dev, 50);
2182         pm_runtime_use_autosuspend(&dev->dev);
2183
2184         mmc_add_host(mmc);
2185
2186         pm_runtime_put(&dev->dev);
2187         return 0;
2188
2189  clk_disable:
2190         clk_disable_unprepare(host->clk);
2191  host_free:
2192         mmc_free_host(mmc);
2193         return ret;
2194 }
2195
2196 static int mmci_remove(struct amba_device *dev)
2197 {
2198         struct mmc_host *mmc = amba_get_drvdata(dev);
2199
2200         if (mmc) {
2201                 struct mmci_host *host = mmc_priv(mmc);
2202                 struct variant_data *variant = host->variant;
2203
2204                 /*
2205                  * Undo pm_runtime_put() in probe.  We use the _sync
2206                  * version here so that we can access the primecell.
2207                  */
2208                 pm_runtime_get_sync(&dev->dev);
2209
2210                 mmc_remove_host(mmc);
2211
2212                 writel(0, host->base + MMCIMASK0);
2213
2214                 if (variant->mmcimask1)
2215                         writel(0, host->base + MMCIMASK1);
2216
2217                 writel(0, host->base + MMCICOMMAND);
2218                 writel(0, host->base + MMCIDATACTRL);
2219
2220                 mmci_dma_release(host);
2221                 clk_disable_unprepare(host->clk);
2222                 mmc_free_host(mmc);
2223         }
2224
2225         return 0;
2226 }
2227
2228 #ifdef CONFIG_PM
2229 static void mmci_save(struct mmci_host *host)
2230 {
2231         unsigned long flags;
2232
2233         spin_lock_irqsave(&host->lock, flags);
2234
2235         writel(0, host->base + MMCIMASK0);
2236         if (host->variant->pwrreg_nopower) {
2237                 writel(0, host->base + MMCIDATACTRL);
2238                 writel(0, host->base + MMCIPOWER);
2239                 writel(0, host->base + MMCICLOCK);
2240         }
2241         mmci_reg_delay(host);
2242
2243         spin_unlock_irqrestore(&host->lock, flags);
2244 }
2245
2246 static void mmci_restore(struct mmci_host *host)
2247 {
2248         unsigned long flags;
2249
2250         spin_lock_irqsave(&host->lock, flags);
2251
2252         if (host->variant->pwrreg_nopower) {
2253                 writel(host->clk_reg, host->base + MMCICLOCK);
2254                 writel(host->datactrl_reg, host->base + MMCIDATACTRL);
2255                 writel(host->pwr_reg, host->base + MMCIPOWER);
2256         }
2257         writel(MCI_IRQENABLE | host->variant->start_err,
2258                host->base + MMCIMASK0);
2259         mmci_reg_delay(host);
2260
2261         spin_unlock_irqrestore(&host->lock, flags);
2262 }
2263
2264 static int mmci_runtime_suspend(struct device *dev)
2265 {
2266         struct amba_device *adev = to_amba_device(dev);
2267         struct mmc_host *mmc = amba_get_drvdata(adev);
2268
2269         if (mmc) {
2270                 struct mmci_host *host = mmc_priv(mmc);
2271                 pinctrl_pm_select_sleep_state(dev);
2272                 mmci_save(host);
2273                 clk_disable_unprepare(host->clk);
2274         }
2275
2276         return 0;
2277 }
2278
2279 static int mmci_runtime_resume(struct device *dev)
2280 {
2281         struct amba_device *adev = to_amba_device(dev);
2282         struct mmc_host *mmc = amba_get_drvdata(adev);
2283
2284         if (mmc) {
2285                 struct mmci_host *host = mmc_priv(mmc);
2286                 clk_prepare_enable(host->clk);
2287                 mmci_restore(host);
2288                 pinctrl_select_default_state(dev);
2289         }
2290
2291         return 0;
2292 }
2293 #endif
2294
2295 static const struct dev_pm_ops mmci_dev_pm_ops = {
2296         SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
2297                                 pm_runtime_force_resume)
2298         SET_RUNTIME_PM_OPS(mmci_runtime_suspend, mmci_runtime_resume, NULL)
2299 };
2300
2301 static const struct amba_id mmci_ids[] = {
2302         {
2303                 .id     = 0x00041180,
2304                 .mask   = 0xff0fffff,
2305                 .data   = &variant_arm,
2306         },
2307         {
2308                 .id     = 0x01041180,
2309                 .mask   = 0xff0fffff,
2310                 .data   = &variant_arm_extended_fifo,
2311         },
2312         {
2313                 .id     = 0x02041180,
2314                 .mask   = 0xff0fffff,
2315                 .data   = &variant_arm_extended_fifo_hwfc,
2316         },
2317         {
2318                 .id     = 0x00041181,
2319                 .mask   = 0x000fffff,
2320                 .data   = &variant_arm,
2321         },
2322         /* ST Micro variants */
2323         {
2324                 .id     = 0x00180180,
2325                 .mask   = 0x00ffffff,
2326                 .data   = &variant_u300,
2327         },
2328         {
2329                 .id     = 0x10180180,
2330                 .mask   = 0xf0ffffff,
2331                 .data   = &variant_nomadik,
2332         },
2333         {
2334                 .id     = 0x00280180,
2335                 .mask   = 0x00ffffff,
2336                 .data   = &variant_nomadik,
2337         },
2338         {
2339                 .id     = 0x00480180,
2340                 .mask   = 0xf0ffffff,
2341                 .data   = &variant_ux500,
2342         },
2343         {
2344                 .id     = 0x10480180,
2345                 .mask   = 0xf0ffffff,
2346                 .data   = &variant_ux500v2,
2347         },
2348         {
2349                 .id     = 0x00880180,
2350                 .mask   = 0x00ffffff,
2351                 .data   = &variant_stm32,
2352         },
2353         {
2354                 .id     = 0x10153180,
2355                 .mask   = 0xf0ffffff,
2356                 .data   = &variant_stm32_sdmmc,
2357         },
2358         {
2359                 .id     = 0x00253180,
2360                 .mask   = 0xf0ffffff,
2361                 .data   = &variant_stm32_sdmmcv2,
2362         },
2363         /* Qualcomm variants */
2364         {
2365                 .id     = 0x00051180,
2366                 .mask   = 0x000fffff,
2367                 .data   = &variant_qcom,
2368         },
2369         { 0, 0 },
2370 };
2371
2372 MODULE_DEVICE_TABLE(amba, mmci_ids);
2373
2374 static struct amba_driver mmci_driver = {
2375         .drv            = {
2376                 .name   = DRIVER_NAME,
2377                 .pm     = &mmci_dev_pm_ops,
2378         },
2379         .probe          = mmci_probe,
2380         .remove         = mmci_remove,
2381         .id_table       = mmci_ids,
2382 };
2383
2384 module_amba_driver(mmci_driver);
2385
2386 module_param(fmax, uint, 0444);
2387
2388 MODULE_DESCRIPTION("ARM PrimeCell PL180/181 Multimedia Card Interface driver");
2389 MODULE_LICENSE("GPL");