Linux-libre 4.14.132-gnu
[librecmc/linux-libre.git] / drivers / media / dvb-frontends / drxd_hard.c
1 /*
2  * drxd_hard.c: DVB-T Demodulator Micronas DRX3975D-A2,DRX397xD-B1
3  *
4  * Copyright (C) 2003-2007 Micronas
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * version 2 only, as published by the Free Software Foundation.
9  *
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * To obtain the license, point your browser to
17  * http://www.gnu.org/copyleft/gpl.html
18  */
19
20 #include <linux/kernel.h>
21 #include <linux/module.h>
22 #include <linux/moduleparam.h>
23 #include <linux/init.h>
24 #include <linux/delay.h>
25 #include <linux/firmware.h>
26 #include <linux/i2c.h>
27 #include <asm/div64.h>
28
29 #include "dvb_frontend.h"
30 #include "drxd.h"
31 #include "drxd_firm.h"
32
33 #define DRX_FW_FILENAME_A2 "/*(DEBLOBBED)*/"
34 #define DRX_FW_FILENAME_B1 "/*(DEBLOBBED)*/"
35
36 #define CHUNK_SIZE 48
37
38 #define DRX_I2C_RMW           0x10
39 #define DRX_I2C_BROADCAST     0x20
40 #define DRX_I2C_CLEARCRC      0x80
41 #define DRX_I2C_SINGLE_MASTER 0xC0
42 #define DRX_I2C_MODEFLAGS     0xC0
43 #define DRX_I2C_FLAGS         0xF0
44
45 #define DEFAULT_LOCK_TIMEOUT    1100
46
47 #define DRX_CHANNEL_AUTO 0
48 #define DRX_CHANNEL_HIGH 1
49 #define DRX_CHANNEL_LOW  2
50
51 #define DRX_LOCK_MPEG  1
52 #define DRX_LOCK_FEC   2
53 #define DRX_LOCK_DEMOD 4
54
55 /****************************************************************************/
56
57 enum CSCDState {
58         CSCD_INIT = 0,
59         CSCD_SET,
60         CSCD_SAVED
61 };
62
63 enum CDrxdState {
64         DRXD_UNINITIALIZED = 0,
65         DRXD_STOPPED,
66         DRXD_STARTED
67 };
68
69 enum AGC_CTRL_MODE {
70         AGC_CTRL_AUTO = 0,
71         AGC_CTRL_USER,
72         AGC_CTRL_OFF
73 };
74
75 enum OperationMode {
76         OM_Default,
77         OM_DVBT_Diversity_Front,
78         OM_DVBT_Diversity_End
79 };
80
81 struct SCfgAgc {
82         enum AGC_CTRL_MODE ctrlMode;
83         u16 outputLevel;        /* range [0, ... , 1023], 1/n of fullscale range */
84         u16 settleLevel;        /* range [0, ... , 1023], 1/n of fullscale range */
85         u16 minOutputLevel;     /* range [0, ... , 1023], 1/n of fullscale range */
86         u16 maxOutputLevel;     /* range [0, ... , 1023], 1/n of fullscale range */
87         u16 speed;              /* range [0, ... , 1023], 1/n of fullscale range */
88
89         u16 R1;
90         u16 R2;
91         u16 R3;
92 };
93
94 struct SNoiseCal {
95         int cpOpt;
96         short cpNexpOfs;
97         short tdCal2k;
98         short tdCal8k;
99 };
100
101 enum app_env {
102         APPENV_STATIC = 0,
103         APPENV_PORTABLE = 1,
104         APPENV_MOBILE = 2
105 };
106
107 enum EIFFilter {
108         IFFILTER_SAW = 0,
109         IFFILTER_DISCRETE = 1
110 };
111
112 struct drxd_state {
113         struct dvb_frontend frontend;
114         struct dvb_frontend_ops ops;
115         struct dtv_frontend_properties props;
116
117         const struct firmware *fw;
118         struct device *dev;
119
120         struct i2c_adapter *i2c;
121         void *priv;
122         struct drxd_config config;
123
124         int i2c_access;
125         int init_done;
126         struct mutex mutex;
127
128         u8 chip_adr;
129         u16 hi_cfg_timing_div;
130         u16 hi_cfg_bridge_delay;
131         u16 hi_cfg_wakeup_key;
132         u16 hi_cfg_ctrl;
133
134         u16 intermediate_freq;
135         u16 osc_clock_freq;
136
137         enum CSCDState cscd_state;
138         enum CDrxdState drxd_state;
139
140         u16 sys_clock_freq;
141         s16 osc_clock_deviation;
142         u16 expected_sys_clock_freq;
143
144         u16 insert_rs_byte;
145         u16 enable_parallel;
146
147         int operation_mode;
148
149         struct SCfgAgc if_agc_cfg;
150         struct SCfgAgc rf_agc_cfg;
151
152         struct SNoiseCal noise_cal;
153
154         u32 fe_fs_add_incr;
155         u32 org_fe_fs_add_incr;
156         u16 current_fe_if_incr;
157
158         u16 m_FeAgRegAgPwd;
159         u16 m_FeAgRegAgAgcSio;
160
161         u16 m_EcOcRegOcModeLop;
162         u16 m_EcOcRegSncSncLvl;
163         u8 *m_InitAtomicRead;
164         u8 *m_HiI2cPatch;
165
166         u8 *m_ResetCEFR;
167         u8 *m_InitFE_1;
168         u8 *m_InitFE_2;
169         u8 *m_InitCP;
170         u8 *m_InitCE;
171         u8 *m_InitEQ;
172         u8 *m_InitSC;
173         u8 *m_InitEC;
174         u8 *m_ResetECRAM;
175         u8 *m_InitDiversityFront;
176         u8 *m_InitDiversityEnd;
177         u8 *m_DisableDiversity;
178         u8 *m_StartDiversityFront;
179         u8 *m_StartDiversityEnd;
180
181         u8 *m_DiversityDelay8MHZ;
182         u8 *m_DiversityDelay6MHZ;
183
184         u8 *microcode;
185         u32 microcode_length;
186
187         int type_A;
188         int PGA;
189         int diversity;
190         int tuner_mirrors;
191
192         enum app_env app_env_default;
193         enum app_env app_env_diversity;
194
195 };
196
197 /****************************************************************************/
198 /* I2C **********************************************************************/
199 /****************************************************************************/
200
201 static int i2c_write(struct i2c_adapter *adap, u8 adr, u8 * data, int len)
202 {
203         struct i2c_msg msg = {.addr = adr, .flags = 0, .buf = data, .len = len };
204
205         if (i2c_transfer(adap, &msg, 1) != 1)
206                 return -1;
207         return 0;
208 }
209
210 static int i2c_read(struct i2c_adapter *adap,
211                     u8 adr, u8 *msg, int len, u8 *answ, int alen)
212 {
213         struct i2c_msg msgs[2] = {
214                 {
215                         .addr = adr, .flags = 0,
216                         .buf = msg, .len = len
217                 }, {
218                         .addr = adr, .flags = I2C_M_RD,
219                         .buf = answ, .len = alen
220                 }
221         };
222         if (i2c_transfer(adap, msgs, 2) != 2)
223                 return -1;
224         return 0;
225 }
226
227 static inline u32 MulDiv32(u32 a, u32 b, u32 c)
228 {
229         u64 tmp64;
230
231         tmp64 = (u64)a * (u64)b;
232         do_div(tmp64, c);
233
234         return (u32) tmp64;
235 }
236
237 static int Read16(struct drxd_state *state, u32 reg, u16 *data, u8 flags)
238 {
239         u8 adr = state->config.demod_address;
240         u8 mm1[4] = { reg & 0xff, (reg >> 16) & 0xff,
241                 flags | ((reg >> 24) & 0xff), (reg >> 8) & 0xff
242         };
243         u8 mm2[2];
244         if (i2c_read(state->i2c, adr, mm1, 4, mm2, 2) < 0)
245                 return -1;
246         if (data)
247                 *data = mm2[0] | (mm2[1] << 8);
248         return mm2[0] | (mm2[1] << 8);
249 }
250
251 static int Read32(struct drxd_state *state, u32 reg, u32 *data, u8 flags)
252 {
253         u8 adr = state->config.demod_address;
254         u8 mm1[4] = { reg & 0xff, (reg >> 16) & 0xff,
255                 flags | ((reg >> 24) & 0xff), (reg >> 8) & 0xff
256         };
257         u8 mm2[4];
258
259         if (i2c_read(state->i2c, adr, mm1, 4, mm2, 4) < 0)
260                 return -1;
261         if (data)
262                 *data =
263                     mm2[0] | (mm2[1] << 8) | (mm2[2] << 16) | (mm2[3] << 24);
264         return 0;
265 }
266
267 static int Write16(struct drxd_state *state, u32 reg, u16 data, u8 flags)
268 {
269         u8 adr = state->config.demod_address;
270         u8 mm[6] = { reg & 0xff, (reg >> 16) & 0xff,
271                 flags | ((reg >> 24) & 0xff), (reg >> 8) & 0xff,
272                 data & 0xff, (data >> 8) & 0xff
273         };
274
275         if (i2c_write(state->i2c, adr, mm, 6) < 0)
276                 return -1;
277         return 0;
278 }
279
280 static int Write32(struct drxd_state *state, u32 reg, u32 data, u8 flags)
281 {
282         u8 adr = state->config.demod_address;
283         u8 mm[8] = { reg & 0xff, (reg >> 16) & 0xff,
284                 flags | ((reg >> 24) & 0xff), (reg >> 8) & 0xff,
285                 data & 0xff, (data >> 8) & 0xff,
286                 (data >> 16) & 0xff, (data >> 24) & 0xff
287         };
288
289         if (i2c_write(state->i2c, adr, mm, 8) < 0)
290                 return -1;
291         return 0;
292 }
293
294 static int write_chunk(struct drxd_state *state,
295                        u32 reg, u8 *data, u32 len, u8 flags)
296 {
297         u8 adr = state->config.demod_address;
298         u8 mm[CHUNK_SIZE + 4] = { reg & 0xff, (reg >> 16) & 0xff,
299                 flags | ((reg >> 24) & 0xff), (reg >> 8) & 0xff
300         };
301         int i;
302
303         for (i = 0; i < len; i++)
304                 mm[4 + i] = data[i];
305         if (i2c_write(state->i2c, adr, mm, 4 + len) < 0) {
306                 printk(KERN_ERR "error in write_chunk\n");
307                 return -1;
308         }
309         return 0;
310 }
311
312 static int WriteBlock(struct drxd_state *state,
313                       u32 Address, u16 BlockSize, u8 *pBlock, u8 Flags)
314 {
315         while (BlockSize > 0) {
316                 u16 Chunk = BlockSize > CHUNK_SIZE ? CHUNK_SIZE : BlockSize;
317
318                 if (write_chunk(state, Address, pBlock, Chunk, Flags) < 0)
319                         return -1;
320                 pBlock += Chunk;
321                 Address += (Chunk >> 1);
322                 BlockSize -= Chunk;
323         }
324         return 0;
325 }
326
327 static int WriteTable(struct drxd_state *state, u8 * pTable)
328 {
329         int status = 0;
330
331         if (pTable == NULL)
332                 return 0;
333
334         while (!status) {
335                 u16 Length;
336                 u32 Address = pTable[0] | (pTable[1] << 8) |
337                     (pTable[2] << 16) | (pTable[3] << 24);
338
339                 if (Address == 0xFFFFFFFF)
340                         break;
341                 pTable += sizeof(u32);
342
343                 Length = pTable[0] | (pTable[1] << 8);
344                 pTable += sizeof(u16);
345                 if (!Length)
346                         break;
347                 status = WriteBlock(state, Address, Length * 2, pTable, 0);
348                 pTable += (Length * 2);
349         }
350         return status;
351 }
352
353 /****************************************************************************/
354 /****************************************************************************/
355 /****************************************************************************/
356
357 static int ResetCEFR(struct drxd_state *state)
358 {
359         return WriteTable(state, state->m_ResetCEFR);
360 }
361
362 static int InitCP(struct drxd_state *state)
363 {
364         return WriteTable(state, state->m_InitCP);
365 }
366
367 static int InitCE(struct drxd_state *state)
368 {
369         int status;
370         enum app_env AppEnv = state->app_env_default;
371
372         do {
373                 status = WriteTable(state, state->m_InitCE);
374                 if (status < 0)
375                         break;
376
377                 if (state->operation_mode == OM_DVBT_Diversity_Front ||
378                     state->operation_mode == OM_DVBT_Diversity_End) {
379                         AppEnv = state->app_env_diversity;
380                 }
381                 if (AppEnv == APPENV_STATIC) {
382                         status = Write16(state, CE_REG_TAPSET__A, 0x0000, 0);
383                         if (status < 0)
384                                 break;
385                 } else if (AppEnv == APPENV_PORTABLE) {
386                         status = Write16(state, CE_REG_TAPSET__A, 0x0001, 0);
387                         if (status < 0)
388                                 break;
389                 } else if (AppEnv == APPENV_MOBILE && state->type_A) {
390                         status = Write16(state, CE_REG_TAPSET__A, 0x0002, 0);
391                         if (status < 0)
392                                 break;
393                 } else if (AppEnv == APPENV_MOBILE && !state->type_A) {
394                         status = Write16(state, CE_REG_TAPSET__A, 0x0006, 0);
395                         if (status < 0)
396                                 break;
397                 }
398
399                 /* start ce */
400                 status = Write16(state, B_CE_REG_COMM_EXEC__A, 0x0001, 0);
401                 if (status < 0)
402                         break;
403         } while (0);
404         return status;
405 }
406
407 static int StopOC(struct drxd_state *state)
408 {
409         int status = 0;
410         u16 ocSyncLvl = 0;
411         u16 ocModeLop = state->m_EcOcRegOcModeLop;
412         u16 dtoIncLop = 0;
413         u16 dtoIncHip = 0;
414
415         do {
416                 /* Store output configuration */
417                 status = Read16(state, EC_OC_REG_SNC_ISC_LVL__A, &ocSyncLvl, 0);
418                 if (status < 0)
419                         break;
420                 /* CHK_ERROR(Read16(EC_OC_REG_OC_MODE_LOP__A, &ocModeLop)); */
421                 state->m_EcOcRegSncSncLvl = ocSyncLvl;
422                 /* m_EcOcRegOcModeLop = ocModeLop; */
423
424                 /* Flush FIFO (byte-boundary) at fixed rate */
425                 status = Read16(state, EC_OC_REG_RCN_MAP_LOP__A, &dtoIncLop, 0);
426                 if (status < 0)
427                         break;
428                 status = Read16(state, EC_OC_REG_RCN_MAP_HIP__A, &dtoIncHip, 0);
429                 if (status < 0)
430                         break;
431                 status = Write16(state, EC_OC_REG_DTO_INC_LOP__A, dtoIncLop, 0);
432                 if (status < 0)
433                         break;
434                 status = Write16(state, EC_OC_REG_DTO_INC_HIP__A, dtoIncHip, 0);
435                 if (status < 0)
436                         break;
437                 ocModeLop &= ~(EC_OC_REG_OC_MODE_LOP_DTO_CTR_SRC__M);
438                 ocModeLop |= EC_OC_REG_OC_MODE_LOP_DTO_CTR_SRC_STATIC;
439                 status = Write16(state, EC_OC_REG_OC_MODE_LOP__A, ocModeLop, 0);
440                 if (status < 0)
441                         break;
442                 status = Write16(state, EC_OC_REG_COMM_EXEC__A, EC_OC_REG_COMM_EXEC_CTL_HOLD, 0);
443                 if (status < 0)
444                         break;
445
446                 msleep(1);
447                 /* Output pins to '0' */
448                 status = Write16(state, EC_OC_REG_OCR_MPG_UOS__A, EC_OC_REG_OCR_MPG_UOS__M, 0);
449                 if (status < 0)
450                         break;
451
452                 /* Force the OC out of sync */
453                 ocSyncLvl &= ~(EC_OC_REG_SNC_ISC_LVL_OSC__M);
454                 status = Write16(state, EC_OC_REG_SNC_ISC_LVL__A, ocSyncLvl, 0);
455                 if (status < 0)
456                         break;
457                 ocModeLop &= ~(EC_OC_REG_OC_MODE_LOP_PAR_ENA__M);
458                 ocModeLop |= EC_OC_REG_OC_MODE_LOP_PAR_ENA_ENABLE;
459                 ocModeLop |= 0x2;       /* Magically-out-of-sync */
460                 status = Write16(state, EC_OC_REG_OC_MODE_LOP__A, ocModeLop, 0);
461                 if (status < 0)
462                         break;
463                 status = Write16(state, EC_OC_REG_COMM_INT_STA__A, 0x0, 0);
464                 if (status < 0)
465                         break;
466                 status = Write16(state, EC_OC_REG_COMM_EXEC__A, EC_OC_REG_COMM_EXEC_CTL_ACTIVE, 0);
467                 if (status < 0)
468                         break;
469         } while (0);
470
471         return status;
472 }
473
474 static int StartOC(struct drxd_state *state)
475 {
476         int status = 0;
477
478         do {
479                 /* Stop OC */
480                 status = Write16(state, EC_OC_REG_COMM_EXEC__A, EC_OC_REG_COMM_EXEC_CTL_HOLD, 0);
481                 if (status < 0)
482                         break;
483
484                 /* Restore output configuration */
485                 status = Write16(state, EC_OC_REG_SNC_ISC_LVL__A, state->m_EcOcRegSncSncLvl, 0);
486                 if (status < 0)
487                         break;
488                 status = Write16(state, EC_OC_REG_OC_MODE_LOP__A, state->m_EcOcRegOcModeLop, 0);
489                 if (status < 0)
490                         break;
491
492                 /* Output pins active again */
493                 status = Write16(state, EC_OC_REG_OCR_MPG_UOS__A, EC_OC_REG_OCR_MPG_UOS_INIT, 0);
494                 if (status < 0)
495                         break;
496
497                 /* Start OC */
498                 status = Write16(state, EC_OC_REG_COMM_EXEC__A, EC_OC_REG_COMM_EXEC_CTL_ACTIVE, 0);
499                 if (status < 0)
500                         break;
501         } while (0);
502         return status;
503 }
504
505 static int InitEQ(struct drxd_state *state)
506 {
507         return WriteTable(state, state->m_InitEQ);
508 }
509
510 static int InitEC(struct drxd_state *state)
511 {
512         return WriteTable(state, state->m_InitEC);
513 }
514
515 static int InitSC(struct drxd_state *state)
516 {
517         return WriteTable(state, state->m_InitSC);
518 }
519
520 static int InitAtomicRead(struct drxd_state *state)
521 {
522         return WriteTable(state, state->m_InitAtomicRead);
523 }
524
525 static int CorrectSysClockDeviation(struct drxd_state *state);
526
527 static int DRX_GetLockStatus(struct drxd_state *state, u32 * pLockStatus)
528 {
529         u16 ScRaRamLock = 0;
530         const u16 mpeg_lock_mask = (SC_RA_RAM_LOCK_MPEG__M |
531                                     SC_RA_RAM_LOCK_FEC__M |
532                                     SC_RA_RAM_LOCK_DEMOD__M);
533         const u16 fec_lock_mask = (SC_RA_RAM_LOCK_FEC__M |
534                                    SC_RA_RAM_LOCK_DEMOD__M);
535         const u16 demod_lock_mask = SC_RA_RAM_LOCK_DEMOD__M;
536
537         int status;
538
539         *pLockStatus = 0;
540
541         status = Read16(state, SC_RA_RAM_LOCK__A, &ScRaRamLock, 0x0000);
542         if (status < 0) {
543                 printk(KERN_ERR "Can't read SC_RA_RAM_LOCK__A status = %08x\n", status);
544                 return status;
545         }
546
547         if (state->drxd_state != DRXD_STARTED)
548                 return 0;
549
550         if ((ScRaRamLock & mpeg_lock_mask) == mpeg_lock_mask) {
551                 *pLockStatus |= DRX_LOCK_MPEG;
552                 CorrectSysClockDeviation(state);
553         }
554
555         if ((ScRaRamLock & fec_lock_mask) == fec_lock_mask)
556                 *pLockStatus |= DRX_LOCK_FEC;
557
558         if ((ScRaRamLock & demod_lock_mask) == demod_lock_mask)
559                 *pLockStatus |= DRX_LOCK_DEMOD;
560         return 0;
561 }
562
563 /****************************************************************************/
564
565 static int SetCfgIfAgc(struct drxd_state *state, struct SCfgAgc *cfg)
566 {
567         int status;
568
569         if (cfg->outputLevel > DRXD_FE_CTRL_MAX)
570                 return -1;
571
572         if (cfg->ctrlMode == AGC_CTRL_USER) {
573                 do {
574                         u16 FeAgRegPm1AgcWri;
575                         u16 FeAgRegAgModeLop;
576
577                         status = Read16(state, FE_AG_REG_AG_MODE_LOP__A, &FeAgRegAgModeLop, 0);
578                         if (status < 0)
579                                 break;
580                         FeAgRegAgModeLop &= (~FE_AG_REG_AG_MODE_LOP_MODE_4__M);
581                         FeAgRegAgModeLop |= FE_AG_REG_AG_MODE_LOP_MODE_4_STATIC;
582                         status = Write16(state, FE_AG_REG_AG_MODE_LOP__A, FeAgRegAgModeLop, 0);
583                         if (status < 0)
584                                 break;
585
586                         FeAgRegPm1AgcWri = (u16) (cfg->outputLevel &
587                                                   FE_AG_REG_PM1_AGC_WRI__M);
588                         status = Write16(state, FE_AG_REG_PM1_AGC_WRI__A, FeAgRegPm1AgcWri, 0);
589                         if (status < 0)
590                                 break;
591                 } while (0);
592         } else if (cfg->ctrlMode == AGC_CTRL_AUTO) {
593                 if (((cfg->maxOutputLevel) < (cfg->minOutputLevel)) ||
594                     ((cfg->maxOutputLevel) > DRXD_FE_CTRL_MAX) ||
595                     ((cfg->speed) > DRXD_FE_CTRL_MAX) ||
596                     ((cfg->settleLevel) > DRXD_FE_CTRL_MAX)
597                     )
598                         return -1;
599                 do {
600                         u16 FeAgRegAgModeLop;
601                         u16 FeAgRegEgcSetLvl;
602                         u16 slope, offset;
603
604                         /* == Mode == */
605
606                         status = Read16(state, FE_AG_REG_AG_MODE_LOP__A, &FeAgRegAgModeLop, 0);
607                         if (status < 0)
608                                 break;
609                         FeAgRegAgModeLop &= (~FE_AG_REG_AG_MODE_LOP_MODE_4__M);
610                         FeAgRegAgModeLop |=
611                             FE_AG_REG_AG_MODE_LOP_MODE_4_DYNAMIC;
612                         status = Write16(state, FE_AG_REG_AG_MODE_LOP__A, FeAgRegAgModeLop, 0);
613                         if (status < 0)
614                                 break;
615
616                         /* == Settle level == */
617
618                         FeAgRegEgcSetLvl = (u16) ((cfg->settleLevel >> 1) &
619                                                   FE_AG_REG_EGC_SET_LVL__M);
620                         status = Write16(state, FE_AG_REG_EGC_SET_LVL__A, FeAgRegEgcSetLvl, 0);
621                         if (status < 0)
622                                 break;
623
624                         /* == Min/Max == */
625
626                         slope = (u16) ((cfg->maxOutputLevel -
627                                         cfg->minOutputLevel) / 2);
628                         offset = (u16) ((cfg->maxOutputLevel +
629                                          cfg->minOutputLevel) / 2 - 511);
630
631                         status = Write16(state, FE_AG_REG_GC1_AGC_RIC__A, slope, 0);
632                         if (status < 0)
633                                 break;
634                         status = Write16(state, FE_AG_REG_GC1_AGC_OFF__A, offset, 0);
635                         if (status < 0)
636                                 break;
637
638                         /* == Speed == */
639                         {
640                                 const u16 maxRur = 8;
641                                 static const u16 slowIncrDecLUT[] = {
642                                         3, 4, 4, 5, 6 };
643                                 const u16 fastIncrDecLUT[] = {
644                                         14, 15, 15, 16,
645                                         17, 18, 18, 19,
646                                         20, 21, 22, 23,
647                                         24, 26, 27, 28,
648                                         29, 31
649                                 };
650
651                                 u16 fineSteps = (DRXD_FE_CTRL_MAX + 1) /
652                                     (maxRur + 1);
653                                 u16 fineSpeed = (u16) (cfg->speed -
654                                                        ((cfg->speed /
655                                                          fineSteps) *
656                                                         fineSteps));
657                                 u16 invRurCount = (u16) (cfg->speed /
658                                                          fineSteps);
659                                 u16 rurCount;
660                                 if (invRurCount > maxRur) {
661                                         rurCount = 0;
662                                         fineSpeed += fineSteps;
663                                 } else {
664                                         rurCount = maxRur - invRurCount;
665                                 }
666
667                                 /*
668                                    fastInc = default *
669                                    (2^(fineSpeed/fineSteps))
670                                    => range[default...2*default>
671                                    slowInc = default *
672                                    (2^(fineSpeed/fineSteps))
673                                  */
674                                 {
675                                         u16 fastIncrDec =
676                                             fastIncrDecLUT[fineSpeed /
677                                                            ((fineSteps /
678                                                              (14 + 1)) + 1)];
679                                         u16 slowIncrDec =
680                                             slowIncrDecLUT[fineSpeed /
681                                                            (fineSteps /
682                                                             (3 + 1))];
683
684                                         status = Write16(state, FE_AG_REG_EGC_RUR_CNT__A, rurCount, 0);
685                                         if (status < 0)
686                                                 break;
687                                         status = Write16(state, FE_AG_REG_EGC_FAS_INC__A, fastIncrDec, 0);
688                                         if (status < 0)
689                                                 break;
690                                         status = Write16(state, FE_AG_REG_EGC_FAS_DEC__A, fastIncrDec, 0);
691                                         if (status < 0)
692                                                 break;
693                                         status = Write16(state, FE_AG_REG_EGC_SLO_INC__A, slowIncrDec, 0);
694                                         if (status < 0)
695                                                 break;
696                                         status = Write16(state, FE_AG_REG_EGC_SLO_DEC__A, slowIncrDec, 0);
697                                         if (status < 0)
698                                                 break;
699                                 }
700                         }
701                 } while (0);
702
703         } else {
704                 /* No OFF mode for IF control */
705                 return -1;
706         }
707         return status;
708 }
709
710 static int SetCfgRfAgc(struct drxd_state *state, struct SCfgAgc *cfg)
711 {
712         int status = 0;
713
714         if (cfg->outputLevel > DRXD_FE_CTRL_MAX)
715                 return -1;
716
717         if (cfg->ctrlMode == AGC_CTRL_USER) {
718                 do {
719                         u16 AgModeLop = 0;
720                         u16 level = (cfg->outputLevel);
721
722                         if (level == DRXD_FE_CTRL_MAX)
723                                 level++;
724
725                         status = Write16(state, FE_AG_REG_PM2_AGC_WRI__A, level, 0x0000);
726                         if (status < 0)
727                                 break;
728
729                         /*==== Mode ====*/
730
731                         /* Powerdown PD2, WRI source */
732                         state->m_FeAgRegAgPwd &= ~(FE_AG_REG_AG_PWD_PWD_PD2__M);
733                         state->m_FeAgRegAgPwd |=
734                             FE_AG_REG_AG_PWD_PWD_PD2_DISABLE;
735                         status = Write16(state, FE_AG_REG_AG_PWD__A, state->m_FeAgRegAgPwd, 0x0000);
736                         if (status < 0)
737                                 break;
738
739                         status = Read16(state, FE_AG_REG_AG_MODE_LOP__A, &AgModeLop, 0x0000);
740                         if (status < 0)
741                                 break;
742                         AgModeLop &= (~(FE_AG_REG_AG_MODE_LOP_MODE_5__M |
743                                         FE_AG_REG_AG_MODE_LOP_MODE_E__M));
744                         AgModeLop |= (FE_AG_REG_AG_MODE_LOP_MODE_5_STATIC |
745                                       FE_AG_REG_AG_MODE_LOP_MODE_E_STATIC);
746                         status = Write16(state, FE_AG_REG_AG_MODE_LOP__A, AgModeLop, 0x0000);
747                         if (status < 0)
748                                 break;
749
750                         /* enable AGC2 pin */
751                         {
752                                 u16 FeAgRegAgAgcSio = 0;
753                                 status = Read16(state, FE_AG_REG_AG_AGC_SIO__A, &FeAgRegAgAgcSio, 0x0000);
754                                 if (status < 0)
755                                         break;
756                                 FeAgRegAgAgcSio &=
757                                     ~(FE_AG_REG_AG_AGC_SIO_AGC_SIO_2__M);
758                                 FeAgRegAgAgcSio |=
759                                     FE_AG_REG_AG_AGC_SIO_AGC_SIO_2_OUTPUT;
760                                 status = Write16(state, FE_AG_REG_AG_AGC_SIO__A, FeAgRegAgAgcSio, 0x0000);
761                                 if (status < 0)
762                                         break;
763                         }
764
765                 } while (0);
766         } else if (cfg->ctrlMode == AGC_CTRL_AUTO) {
767                 u16 AgModeLop = 0;
768
769                 do {
770                         u16 level;
771                         /* Automatic control */
772                         /* Powerup PD2, AGC2 as output, TGC source */
773                         (state->m_FeAgRegAgPwd) &=
774                             ~(FE_AG_REG_AG_PWD_PWD_PD2__M);
775                         (state->m_FeAgRegAgPwd) |=
776                             FE_AG_REG_AG_PWD_PWD_PD2_DISABLE;
777                         status = Write16(state, FE_AG_REG_AG_PWD__A, (state->m_FeAgRegAgPwd), 0x0000);
778                         if (status < 0)
779                                 break;
780
781                         status = Read16(state, FE_AG_REG_AG_MODE_LOP__A, &AgModeLop, 0x0000);
782                         if (status < 0)
783                                 break;
784                         AgModeLop &= (~(FE_AG_REG_AG_MODE_LOP_MODE_5__M |
785                                         FE_AG_REG_AG_MODE_LOP_MODE_E__M));
786                         AgModeLop |= (FE_AG_REG_AG_MODE_LOP_MODE_5_STATIC |
787                                       FE_AG_REG_AG_MODE_LOP_MODE_E_DYNAMIC);
788                         status = Write16(state, FE_AG_REG_AG_MODE_LOP__A, AgModeLop, 0x0000);
789                         if (status < 0)
790                                 break;
791                         /* Settle level */
792                         level = (((cfg->settleLevel) >> 4) &
793                                  FE_AG_REG_TGC_SET_LVL__M);
794                         status = Write16(state, FE_AG_REG_TGC_SET_LVL__A, level, 0x0000);
795                         if (status < 0)
796                                 break;
797
798                         /* Min/max: don't care */
799
800                         /* Speed: TODO */
801
802                         /* enable AGC2 pin */
803                         {
804                                 u16 FeAgRegAgAgcSio = 0;
805                                 status = Read16(state, FE_AG_REG_AG_AGC_SIO__A, &FeAgRegAgAgcSio, 0x0000);
806                                 if (status < 0)
807                                         break;
808                                 FeAgRegAgAgcSio &=
809                                     ~(FE_AG_REG_AG_AGC_SIO_AGC_SIO_2__M);
810                                 FeAgRegAgAgcSio |=
811                                     FE_AG_REG_AG_AGC_SIO_AGC_SIO_2_OUTPUT;
812                                 status = Write16(state, FE_AG_REG_AG_AGC_SIO__A, FeAgRegAgAgcSio, 0x0000);
813                                 if (status < 0)
814                                         break;
815                         }
816
817                 } while (0);
818         } else {
819                 u16 AgModeLop = 0;
820
821                 do {
822                         /* No RF AGC control */
823                         /* Powerdown PD2, AGC2 as output, WRI source */
824                         (state->m_FeAgRegAgPwd) &=
825                             ~(FE_AG_REG_AG_PWD_PWD_PD2__M);
826                         (state->m_FeAgRegAgPwd) |=
827                             FE_AG_REG_AG_PWD_PWD_PD2_ENABLE;
828                         status = Write16(state, FE_AG_REG_AG_PWD__A, (state->m_FeAgRegAgPwd), 0x0000);
829                         if (status < 0)
830                                 break;
831
832                         status = Read16(state, FE_AG_REG_AG_MODE_LOP__A, &AgModeLop, 0x0000);
833                         if (status < 0)
834                                 break;
835                         AgModeLop &= (~(FE_AG_REG_AG_MODE_LOP_MODE_5__M |
836                                         FE_AG_REG_AG_MODE_LOP_MODE_E__M));
837                         AgModeLop |= (FE_AG_REG_AG_MODE_LOP_MODE_5_STATIC |
838                                       FE_AG_REG_AG_MODE_LOP_MODE_E_STATIC);
839                         status = Write16(state, FE_AG_REG_AG_MODE_LOP__A, AgModeLop, 0x0000);
840                         if (status < 0)
841                                 break;
842
843                         /* set FeAgRegAgAgcSio AGC2 (RF) as input */
844                         {
845                                 u16 FeAgRegAgAgcSio = 0;
846                                 status = Read16(state, FE_AG_REG_AG_AGC_SIO__A, &FeAgRegAgAgcSio, 0x0000);
847                                 if (status < 0)
848                                         break;
849                                 FeAgRegAgAgcSio &=
850                                     ~(FE_AG_REG_AG_AGC_SIO_AGC_SIO_2__M);
851                                 FeAgRegAgAgcSio |=
852                                     FE_AG_REG_AG_AGC_SIO_AGC_SIO_2_INPUT;
853                                 status = Write16(state, FE_AG_REG_AG_AGC_SIO__A, FeAgRegAgAgcSio, 0x0000);
854                                 if (status < 0)
855                                         break;
856                         }
857                 } while (0);
858         }
859         return status;
860 }
861
862 static int ReadIFAgc(struct drxd_state *state, u32 * pValue)
863 {
864         int status = 0;
865
866         *pValue = 0;
867         if (state->if_agc_cfg.ctrlMode != AGC_CTRL_OFF) {
868                 u16 Value;
869                 status = Read16(state, FE_AG_REG_GC1_AGC_DAT__A, &Value, 0);
870                 Value &= FE_AG_REG_GC1_AGC_DAT__M;
871                 if (status >= 0) {
872                         /*           3.3V
873                            |
874                            R1
875                            |
876                            Vin - R3 - * -- Vout
877                            |
878                            R2
879                            |
880                            GND
881                          */
882                         u32 R1 = state->if_agc_cfg.R1;
883                         u32 R2 = state->if_agc_cfg.R2;
884                         u32 R3 = state->if_agc_cfg.R3;
885
886                         u32 Vmax, Rpar, Vmin, Vout;
887
888                         if (R2 == 0 && (R1 == 0 || R3 == 0))
889                                 return 0;
890
891                         Vmax = (3300 * R2) / (R1 + R2);
892                         Rpar = (R2 * R3) / (R3 + R2);
893                         Vmin = (3300 * Rpar) / (R1 + Rpar);
894                         Vout = Vmin + ((Vmax - Vmin) * Value) / 1024;
895
896                         *pValue = Vout;
897                 }
898         }
899         return status;
900 }
901
902 static int load_firmware(struct drxd_state *state, const char *fw_name)
903 {
904         const struct firmware *fw;
905
906         if (reject_firmware(&fw, fw_name, state->dev) < 0) {
907                 printk(KERN_ERR "drxd: firmware load failure [%s]\n", fw_name);
908                 return -EIO;
909         }
910
911         state->microcode = kmemdup(fw->data, fw->size, GFP_KERNEL);
912         if (state->microcode == NULL) {
913                 release_firmware(fw);
914                 printk(KERN_ERR "drxd: firmware load failure: no memory\n");
915                 return -ENOMEM;
916         }
917
918         state->microcode_length = fw->size;
919         release_firmware(fw);
920         return 0;
921 }
922
923 static int DownloadMicrocode(struct drxd_state *state,
924                              const u8 *pMCImage, u32 Length)
925 {
926         u8 *pSrc;
927         u32 Address;
928         u16 nBlocks;
929         u16 BlockSize;
930         u32 offset = 0;
931         int i, status = 0;
932
933         pSrc = (u8 *) pMCImage;
934         /* We're not using Flags */
935         /* Flags = (pSrc[0] << 8) | pSrc[1]; */
936         pSrc += sizeof(u16);
937         offset += sizeof(u16);
938         nBlocks = (pSrc[0] << 8) | pSrc[1];
939         pSrc += sizeof(u16);
940         offset += sizeof(u16);
941
942         for (i = 0; i < nBlocks; i++) {
943                 Address = (pSrc[0] << 24) | (pSrc[1] << 16) |
944                     (pSrc[2] << 8) | pSrc[3];
945                 pSrc += sizeof(u32);
946                 offset += sizeof(u32);
947
948                 BlockSize = ((pSrc[0] << 8) | pSrc[1]) * sizeof(u16);
949                 pSrc += sizeof(u16);
950                 offset += sizeof(u16);
951
952                 /* We're not using Flags */
953                 /* u16 Flags = (pSrc[0] << 8) | pSrc[1]; */
954                 pSrc += sizeof(u16);
955                 offset += sizeof(u16);
956
957                 /* We're not using BlockCRC */
958                 /* u16 BlockCRC = (pSrc[0] << 8) | pSrc[1]; */
959                 pSrc += sizeof(u16);
960                 offset += sizeof(u16);
961
962                 status = WriteBlock(state, Address, BlockSize,
963                                     pSrc, DRX_I2C_CLEARCRC);
964                 if (status < 0)
965                         break;
966                 pSrc += BlockSize;
967                 offset += BlockSize;
968         }
969
970         return status;
971 }
972
973 static int HI_Command(struct drxd_state *state, u16 cmd, u16 * pResult)
974 {
975         u32 nrRetries = 0;
976         u16 waitCmd;
977         int status;
978
979         status = Write16(state, HI_RA_RAM_SRV_CMD__A, cmd, 0);
980         if (status < 0)
981                 return status;
982
983         do {
984                 nrRetries += 1;
985                 if (nrRetries > DRXD_MAX_RETRIES) {
986                         status = -1;
987                         break;
988                 }
989                 status = Read16(state, HI_RA_RAM_SRV_CMD__A, &waitCmd, 0);
990         } while (waitCmd != 0);
991
992         if (status >= 0)
993                 status = Read16(state, HI_RA_RAM_SRV_RES__A, pResult, 0);
994         return status;
995 }
996
997 static int HI_CfgCommand(struct drxd_state *state)
998 {
999         int status = 0;
1000
1001         mutex_lock(&state->mutex);
1002         Write16(state, HI_RA_RAM_SRV_CFG_KEY__A, HI_RA_RAM_SRV_RST_KEY_ACT, 0);
1003         Write16(state, HI_RA_RAM_SRV_CFG_DIV__A, state->hi_cfg_timing_div, 0);
1004         Write16(state, HI_RA_RAM_SRV_CFG_BDL__A, state->hi_cfg_bridge_delay, 0);
1005         Write16(state, HI_RA_RAM_SRV_CFG_WUP__A, state->hi_cfg_wakeup_key, 0);
1006         Write16(state, HI_RA_RAM_SRV_CFG_ACT__A, state->hi_cfg_ctrl, 0);
1007
1008         Write16(state, HI_RA_RAM_SRV_CFG_KEY__A, HI_RA_RAM_SRV_RST_KEY_ACT, 0);
1009
1010         if ((state->hi_cfg_ctrl & HI_RA_RAM_SRV_CFG_ACT_PWD_EXE) ==
1011             HI_RA_RAM_SRV_CFG_ACT_PWD_EXE)
1012                 status = Write16(state, HI_RA_RAM_SRV_CMD__A,
1013                                  HI_RA_RAM_SRV_CMD_CONFIG, 0);
1014         else
1015                 status = HI_Command(state, HI_RA_RAM_SRV_CMD_CONFIG, NULL);
1016         mutex_unlock(&state->mutex);
1017         return status;
1018 }
1019
1020 static int InitHI(struct drxd_state *state)
1021 {
1022         state->hi_cfg_wakeup_key = (state->chip_adr);
1023         /* port/bridge/power down ctrl */
1024         state->hi_cfg_ctrl = HI_RA_RAM_SRV_CFG_ACT_SLV0_ON;
1025         return HI_CfgCommand(state);
1026 }
1027
1028 static int HI_ResetCommand(struct drxd_state *state)
1029 {
1030         int status;
1031
1032         mutex_lock(&state->mutex);
1033         status = Write16(state, HI_RA_RAM_SRV_RST_KEY__A,
1034                          HI_RA_RAM_SRV_RST_KEY_ACT, 0);
1035         if (status == 0)
1036                 status = HI_Command(state, HI_RA_RAM_SRV_CMD_RESET, NULL);
1037         mutex_unlock(&state->mutex);
1038         msleep(1);
1039         return status;
1040 }
1041
1042 static int DRX_ConfigureI2CBridge(struct drxd_state *state, int bEnableBridge)
1043 {
1044         state->hi_cfg_ctrl &= (~HI_RA_RAM_SRV_CFG_ACT_BRD__M);
1045         if (bEnableBridge)
1046                 state->hi_cfg_ctrl |= HI_RA_RAM_SRV_CFG_ACT_BRD_ON;
1047         else
1048                 state->hi_cfg_ctrl |= HI_RA_RAM_SRV_CFG_ACT_BRD_OFF;
1049
1050         return HI_CfgCommand(state);
1051 }
1052
1053 #define HI_TR_WRITE      0x9
1054 #define HI_TR_READ       0xA
1055 #define HI_TR_READ_WRITE 0xB
1056 #define HI_TR_BROADCAST  0x4
1057
1058 #if 0
1059 static int AtomicReadBlock(struct drxd_state *state,
1060                            u32 Addr, u16 DataSize, u8 *pData, u8 Flags)
1061 {
1062         int status;
1063         int i = 0;
1064
1065         /* Parameter check */
1066         if ((!pData) || ((DataSize & 1) != 0))
1067                 return -1;
1068
1069         mutex_lock(&state->mutex);
1070
1071         do {
1072                 /* Instruct HI to read n bytes */
1073                 /* TODO use proper names forthese egisters */
1074                 status = Write16(state, HI_RA_RAM_SRV_CFG_KEY__A, (HI_TR_FUNC_ADDR & 0xFFFF), 0);
1075                 if (status < 0)
1076                         break;
1077                 status = Write16(state, HI_RA_RAM_SRV_CFG_DIV__A, (u16) (Addr >> 16), 0);
1078                 if (status < 0)
1079                         break;
1080                 status = Write16(state, HI_RA_RAM_SRV_CFG_BDL__A, (u16) (Addr & 0xFFFF), 0);
1081                 if (status < 0)
1082                         break;
1083                 status = Write16(state, HI_RA_RAM_SRV_CFG_WUP__A, (u16) ((DataSize / 2) - 1), 0);
1084                 if (status < 0)
1085                         break;
1086                 status = Write16(state, HI_RA_RAM_SRV_CFG_ACT__A, HI_TR_READ, 0);
1087                 if (status < 0)
1088                         break;
1089
1090                 status = HI_Command(state, HI_RA_RAM_SRV_CMD_EXECUTE, 0);
1091                 if (status < 0)
1092                         break;
1093
1094         } while (0);
1095
1096         if (status >= 0) {
1097                 for (i = 0; i < (DataSize / 2); i += 1) {
1098                         u16 word;
1099
1100                         status = Read16(state, (HI_RA_RAM_USR_BEGIN__A + i),
1101                                         &word, 0);
1102                         if (status < 0)
1103                                 break;
1104                         pData[2 * i] = (u8) (word & 0xFF);
1105                         pData[(2 * i) + 1] = (u8) (word >> 8);
1106                 }
1107         }
1108         mutex_unlock(&state->mutex);
1109         return status;
1110 }
1111
1112 static int AtomicReadReg32(struct drxd_state *state,
1113                            u32 Addr, u32 *pData, u8 Flags)
1114 {
1115         u8 buf[sizeof(u32)];
1116         int status;
1117
1118         if (!pData)
1119                 return -1;
1120         status = AtomicReadBlock(state, Addr, sizeof(u32), buf, Flags);
1121         *pData = (((u32) buf[0]) << 0) +
1122             (((u32) buf[1]) << 8) +
1123             (((u32) buf[2]) << 16) + (((u32) buf[3]) << 24);
1124         return status;
1125 }
1126 #endif
1127
1128 static int StopAllProcessors(struct drxd_state *state)
1129 {
1130         return Write16(state, HI_COMM_EXEC__A,
1131                        SC_COMM_EXEC_CTL_STOP, DRX_I2C_BROADCAST);
1132 }
1133
1134 static int EnableAndResetMB(struct drxd_state *state)
1135 {
1136         if (state->type_A) {
1137                 /* disable? monitor bus observe @ EC_OC */
1138                 Write16(state, EC_OC_REG_OC_MON_SIO__A, 0x0000, 0x0000);
1139         }
1140
1141         /* do inverse broadcast, followed by explicit write to HI */
1142         Write16(state, HI_COMM_MB__A, 0x0000, DRX_I2C_BROADCAST);
1143         Write16(state, HI_COMM_MB__A, 0x0000, 0x0000);
1144         return 0;
1145 }
1146
1147 static int InitCC(struct drxd_state *state)
1148 {
1149         if (state->osc_clock_freq == 0 ||
1150             state->osc_clock_freq > 20000 ||
1151             (state->osc_clock_freq % 4000) != 0) {
1152                 printk(KERN_ERR "invalid osc frequency %d\n", state->osc_clock_freq);
1153                 return -1;
1154         }
1155
1156         Write16(state, CC_REG_OSC_MODE__A, CC_REG_OSC_MODE_M20, 0);
1157         Write16(state, CC_REG_PLL_MODE__A, CC_REG_PLL_MODE_BYPASS_PLL |
1158                 CC_REG_PLL_MODE_PUMP_CUR_12, 0);
1159         Write16(state, CC_REG_REF_DIVIDE__A, state->osc_clock_freq / 4000, 0);
1160         Write16(state, CC_REG_PWD_MODE__A, CC_REG_PWD_MODE_DOWN_PLL, 0);
1161         Write16(state, CC_REG_UPDATE__A, CC_REG_UPDATE_KEY, 0);
1162
1163         return 0;
1164 }
1165
1166 static int ResetECOD(struct drxd_state *state)
1167 {
1168         int status = 0;
1169
1170         if (state->type_A)
1171                 status = Write16(state, EC_OD_REG_SYNC__A, 0x0664, 0);
1172         else
1173                 status = Write16(state, B_EC_OD_REG_SYNC__A, 0x0664, 0);
1174
1175         if (!(status < 0))
1176                 status = WriteTable(state, state->m_ResetECRAM);
1177         if (!(status < 0))
1178                 status = Write16(state, EC_OD_REG_COMM_EXEC__A, 0x0001, 0);
1179         return status;
1180 }
1181
1182 /* Configure PGA switch */
1183
1184 static int SetCfgPga(struct drxd_state *state, int pgaSwitch)
1185 {
1186         int status;
1187         u16 AgModeLop = 0;
1188         u16 AgModeHip = 0;
1189         do {
1190                 if (pgaSwitch) {
1191                         /* PGA on */
1192                         /* fine gain */
1193                         status = Read16(state, B_FE_AG_REG_AG_MODE_LOP__A, &AgModeLop, 0x0000);
1194                         if (status < 0)
1195                                 break;
1196                         AgModeLop &= (~(B_FE_AG_REG_AG_MODE_LOP_MODE_C__M));
1197                         AgModeLop |= B_FE_AG_REG_AG_MODE_LOP_MODE_C_DYNAMIC;
1198                         status = Write16(state, B_FE_AG_REG_AG_MODE_LOP__A, AgModeLop, 0x0000);
1199                         if (status < 0)
1200                                 break;
1201
1202                         /* coarse gain */
1203                         status = Read16(state, B_FE_AG_REG_AG_MODE_HIP__A, &AgModeHip, 0x0000);
1204                         if (status < 0)
1205                                 break;
1206                         AgModeHip &= (~(B_FE_AG_REG_AG_MODE_HIP_MODE_J__M));
1207                         AgModeHip |= B_FE_AG_REG_AG_MODE_HIP_MODE_J_DYNAMIC;
1208                         status = Write16(state, B_FE_AG_REG_AG_MODE_HIP__A, AgModeHip, 0x0000);
1209                         if (status < 0)
1210                                 break;
1211
1212                         /* enable fine and coarse gain, enable AAF,
1213                            no ext resistor */
1214                         status = Write16(state, B_FE_AG_REG_AG_PGA_MODE__A, B_FE_AG_REG_AG_PGA_MODE_PFY_PCY_AFY_REN, 0x0000);
1215                         if (status < 0)
1216                                 break;
1217                 } else {
1218                         /* PGA off, bypass */
1219
1220                         /* fine gain */
1221                         status = Read16(state, B_FE_AG_REG_AG_MODE_LOP__A, &AgModeLop, 0x0000);
1222                         if (status < 0)
1223                                 break;
1224                         AgModeLop &= (~(B_FE_AG_REG_AG_MODE_LOP_MODE_C__M));
1225                         AgModeLop |= B_FE_AG_REG_AG_MODE_LOP_MODE_C_STATIC;
1226                         status = Write16(state, B_FE_AG_REG_AG_MODE_LOP__A, AgModeLop, 0x0000);
1227                         if (status < 0)
1228                                 break;
1229
1230                         /* coarse gain */
1231                         status = Read16(state, B_FE_AG_REG_AG_MODE_HIP__A, &AgModeHip, 0x0000);
1232                         if (status < 0)
1233                                 break;
1234                         AgModeHip &= (~(B_FE_AG_REG_AG_MODE_HIP_MODE_J__M));
1235                         AgModeHip |= B_FE_AG_REG_AG_MODE_HIP_MODE_J_STATIC;
1236                         status = Write16(state, B_FE_AG_REG_AG_MODE_HIP__A, AgModeHip, 0x0000);
1237                         if (status < 0)
1238                                 break;
1239
1240                         /* disable fine and coarse gain, enable AAF,
1241                            no ext resistor */
1242                         status = Write16(state, B_FE_AG_REG_AG_PGA_MODE__A, B_FE_AG_REG_AG_PGA_MODE_PFN_PCN_AFY_REN, 0x0000);
1243                         if (status < 0)
1244                                 break;
1245                 }
1246         } while (0);
1247         return status;
1248 }
1249
1250 static int InitFE(struct drxd_state *state)
1251 {
1252         int status;
1253
1254         do {
1255                 status = WriteTable(state, state->m_InitFE_1);
1256                 if (status < 0)
1257                         break;
1258
1259                 if (state->type_A) {
1260                         status = Write16(state, FE_AG_REG_AG_PGA_MODE__A,
1261                                          FE_AG_REG_AG_PGA_MODE_PFN_PCN_AFY_REN,
1262                                          0);
1263                 } else {
1264                         if (state->PGA)
1265                                 status = SetCfgPga(state, 0);
1266                         else
1267                                 status =
1268                                     Write16(state, B_FE_AG_REG_AG_PGA_MODE__A,
1269                                             B_FE_AG_REG_AG_PGA_MODE_PFN_PCN_AFY_REN,
1270                                             0);
1271                 }
1272
1273                 if (status < 0)
1274                         break;
1275                 status = Write16(state, FE_AG_REG_AG_AGC_SIO__A, state->m_FeAgRegAgAgcSio, 0x0000);
1276                 if (status < 0)
1277                         break;
1278                 status = Write16(state, FE_AG_REG_AG_PWD__A, state->m_FeAgRegAgPwd, 0x0000);
1279                 if (status < 0)
1280                         break;
1281
1282                 status = WriteTable(state, state->m_InitFE_2);
1283                 if (status < 0)
1284                         break;
1285
1286         } while (0);
1287
1288         return status;
1289 }
1290
1291 static int InitFT(struct drxd_state *state)
1292 {
1293         /*
1294            norm OFFSET,  MB says =2 voor 8K en =3 voor 2K waarschijnlijk
1295            SC stuff
1296          */
1297         return Write16(state, FT_REG_COMM_EXEC__A, 0x0001, 0x0000);
1298 }
1299
1300 static int SC_WaitForReady(struct drxd_state *state)
1301 {
1302         u16 curCmd;
1303         int i;
1304
1305         for (i = 0; i < DRXD_MAX_RETRIES; i += 1) {
1306                 int status = Read16(state, SC_RA_RAM_CMD__A, &curCmd, 0);
1307                 if (status == 0 || curCmd == 0)
1308                         return status;
1309         }
1310         return -1;
1311 }
1312
1313 static int SC_SendCommand(struct drxd_state *state, u16 cmd)
1314 {
1315         int status = 0;
1316         u16 errCode;
1317
1318         Write16(state, SC_RA_RAM_CMD__A, cmd, 0);
1319         SC_WaitForReady(state);
1320
1321         Read16(state, SC_RA_RAM_CMD_ADDR__A, &errCode, 0);
1322
1323         if (errCode == 0xFFFF) {
1324                 printk(KERN_ERR "Command Error\n");
1325                 status = -1;
1326         }
1327
1328         return status;
1329 }
1330
1331 static int SC_ProcStartCommand(struct drxd_state *state,
1332                                u16 subCmd, u16 param0, u16 param1)
1333 {
1334         int status = 0;
1335         u16 scExec;
1336
1337         mutex_lock(&state->mutex);
1338         do {
1339                 Read16(state, SC_COMM_EXEC__A, &scExec, 0);
1340                 if (scExec != 1) {
1341                         status = -1;
1342                         break;
1343                 }
1344                 SC_WaitForReady(state);
1345                 Write16(state, SC_RA_RAM_CMD_ADDR__A, subCmd, 0);
1346                 Write16(state, SC_RA_RAM_PARAM1__A, param1, 0);
1347                 Write16(state, SC_RA_RAM_PARAM0__A, param0, 0);
1348
1349                 SC_SendCommand(state, SC_RA_RAM_CMD_PROC_START);
1350         } while (0);
1351         mutex_unlock(&state->mutex);
1352         return status;
1353 }
1354
1355 static int SC_SetPrefParamCommand(struct drxd_state *state,
1356                                   u16 subCmd, u16 param0, u16 param1)
1357 {
1358         int status;
1359
1360         mutex_lock(&state->mutex);
1361         do {
1362                 status = SC_WaitForReady(state);
1363                 if (status < 0)
1364                         break;
1365                 status = Write16(state, SC_RA_RAM_CMD_ADDR__A, subCmd, 0);
1366                 if (status < 0)
1367                         break;
1368                 status = Write16(state, SC_RA_RAM_PARAM1__A, param1, 0);
1369                 if (status < 0)
1370                         break;
1371                 status = Write16(state, SC_RA_RAM_PARAM0__A, param0, 0);
1372                 if (status < 0)
1373                         break;
1374
1375                 status = SC_SendCommand(state, SC_RA_RAM_CMD_SET_PREF_PARAM);
1376                 if (status < 0)
1377                         break;
1378         } while (0);
1379         mutex_unlock(&state->mutex);
1380         return status;
1381 }
1382
1383 #if 0
1384 static int SC_GetOpParamCommand(struct drxd_state *state, u16 * result)
1385 {
1386         int status = 0;
1387
1388         mutex_lock(&state->mutex);
1389         do {
1390                 status = SC_WaitForReady(state);
1391                 if (status < 0)
1392                         break;
1393                 status = SC_SendCommand(state, SC_RA_RAM_CMD_GET_OP_PARAM);
1394                 if (status < 0)
1395                         break;
1396                 status = Read16(state, SC_RA_RAM_PARAM0__A, result, 0);
1397                 if (status < 0)
1398                         break;
1399         } while (0);
1400         mutex_unlock(&state->mutex);
1401         return status;
1402 }
1403 #endif
1404
1405 static int ConfigureMPEGOutput(struct drxd_state *state, int bEnableOutput)
1406 {
1407         int status;
1408
1409         do {
1410                 u16 EcOcRegIprInvMpg = 0;
1411                 u16 EcOcRegOcModeLop = 0;
1412                 u16 EcOcRegOcModeHip = 0;
1413                 u16 EcOcRegOcMpgSio = 0;
1414
1415                 /*CHK_ERROR(Read16(state, EC_OC_REG_OC_MODE_LOP__A, &EcOcRegOcModeLop, 0)); */
1416
1417                 if (state->operation_mode == OM_DVBT_Diversity_Front) {
1418                         if (bEnableOutput) {
1419                                 EcOcRegOcModeHip |=
1420                                     B_EC_OC_REG_OC_MODE_HIP_MPG_BUS_SRC_MONITOR;
1421                         } else
1422                                 EcOcRegOcMpgSio |= EC_OC_REG_OC_MPG_SIO__M;
1423                         EcOcRegOcModeLop |=
1424                             EC_OC_REG_OC_MODE_LOP_PAR_ENA_DISABLE;
1425                 } else {
1426                         EcOcRegOcModeLop = state->m_EcOcRegOcModeLop;
1427
1428                         if (bEnableOutput)
1429                                 EcOcRegOcMpgSio &= (~(EC_OC_REG_OC_MPG_SIO__M));
1430                         else
1431                                 EcOcRegOcMpgSio |= EC_OC_REG_OC_MPG_SIO__M;
1432
1433                         /* Don't Insert RS Byte */
1434                         if (state->insert_rs_byte) {
1435                                 EcOcRegOcModeLop &=
1436                                     (~(EC_OC_REG_OC_MODE_LOP_PAR_ENA__M));
1437                                 EcOcRegOcModeHip &=
1438                                     (~EC_OC_REG_OC_MODE_HIP_MPG_PAR_VAL__M);
1439                                 EcOcRegOcModeHip |=
1440                                     EC_OC_REG_OC_MODE_HIP_MPG_PAR_VAL_ENABLE;
1441                         } else {
1442                                 EcOcRegOcModeLop |=
1443                                     EC_OC_REG_OC_MODE_LOP_PAR_ENA_DISABLE;
1444                                 EcOcRegOcModeHip &=
1445                                     (~EC_OC_REG_OC_MODE_HIP_MPG_PAR_VAL__M);
1446                                 EcOcRegOcModeHip |=
1447                                     EC_OC_REG_OC_MODE_HIP_MPG_PAR_VAL_DISABLE;
1448                         }
1449
1450                         /* Mode = Parallel */
1451                         if (state->enable_parallel)
1452                                 EcOcRegOcModeLop &=
1453                                     (~(EC_OC_REG_OC_MODE_LOP_MPG_TRM_MDE__M));
1454                         else
1455                                 EcOcRegOcModeLop |=
1456                                     EC_OC_REG_OC_MODE_LOP_MPG_TRM_MDE_SERIAL;
1457                 }
1458                 /* Invert Data */
1459                 /* EcOcRegIprInvMpg |= 0x00FF; */
1460                 EcOcRegIprInvMpg &= (~(0x00FF));
1461
1462                 /* Invert Error ( we don't use the pin ) */
1463                 /*  EcOcRegIprInvMpg |= 0x0100; */
1464                 EcOcRegIprInvMpg &= (~(0x0100));
1465
1466                 /* Invert Start ( we don't use the pin ) */
1467                 /* EcOcRegIprInvMpg |= 0x0200; */
1468                 EcOcRegIprInvMpg &= (~(0x0200));
1469
1470                 /* Invert Valid ( we don't use the pin ) */
1471                 /* EcOcRegIprInvMpg |= 0x0400; */
1472                 EcOcRegIprInvMpg &= (~(0x0400));
1473
1474                 /* Invert Clock */
1475                 /* EcOcRegIprInvMpg |= 0x0800; */
1476                 EcOcRegIprInvMpg &= (~(0x0800));
1477
1478                 /* EcOcRegOcModeLop =0x05; */
1479                 status = Write16(state, EC_OC_REG_IPR_INV_MPG__A, EcOcRegIprInvMpg, 0);
1480                 if (status < 0)
1481                         break;
1482                 status = Write16(state, EC_OC_REG_OC_MODE_LOP__A, EcOcRegOcModeLop, 0);
1483                 if (status < 0)
1484                         break;
1485                 status = Write16(state, EC_OC_REG_OC_MODE_HIP__A, EcOcRegOcModeHip, 0x0000);
1486                 if (status < 0)
1487                         break;
1488                 status = Write16(state, EC_OC_REG_OC_MPG_SIO__A, EcOcRegOcMpgSio, 0);
1489                 if (status < 0)
1490                         break;
1491         } while (0);
1492         return status;
1493 }
1494
1495 static int SetDeviceTypeId(struct drxd_state *state)
1496 {
1497         int status = 0;
1498         u16 deviceId = 0;
1499
1500         do {
1501                 status = Read16(state, CC_REG_JTAGID_L__A, &deviceId, 0);
1502                 if (status < 0)
1503                         break;
1504                 /* TODO: why twice? */
1505                 status = Read16(state, CC_REG_JTAGID_L__A, &deviceId, 0);
1506                 if (status < 0)
1507                         break;
1508                 printk(KERN_INFO "drxd: deviceId = %04x\n", deviceId);
1509
1510                 state->type_A = 0;
1511                 state->PGA = 0;
1512                 state->diversity = 0;
1513                 if (deviceId == 0) {    /* on A2 only 3975 available */
1514                         state->type_A = 1;
1515                         printk(KERN_INFO "DRX3975D-A2\n");
1516                 } else {
1517                         deviceId >>= 12;
1518                         printk(KERN_INFO "DRX397%dD-B1\n", deviceId);
1519                         switch (deviceId) {
1520                         case 4:
1521                                 state->diversity = 1;
1522                                 /* fall through */
1523                         case 3:
1524                         case 7:
1525                                 state->PGA = 1;
1526                                 break;
1527                         case 6:
1528                                 state->diversity = 1;
1529                                 /* fall through */
1530                         case 5:
1531                         case 8:
1532                                 break;
1533                         default:
1534                                 status = -1;
1535                                 break;
1536                         }
1537                 }
1538         } while (0);
1539
1540         if (status < 0)
1541                 return status;
1542
1543         /* Init Table selection */
1544         state->m_InitAtomicRead = DRXD_InitAtomicRead;
1545         state->m_InitSC = DRXD_InitSC;
1546         state->m_ResetECRAM = DRXD_ResetECRAM;
1547         if (state->type_A) {
1548                 state->m_ResetCEFR = DRXD_ResetCEFR;
1549                 state->m_InitFE_1 = DRXD_InitFEA2_1;
1550                 state->m_InitFE_2 = DRXD_InitFEA2_2;
1551                 state->m_InitCP = DRXD_InitCPA2;
1552                 state->m_InitCE = DRXD_InitCEA2;
1553                 state->m_InitEQ = DRXD_InitEQA2;
1554                 state->m_InitEC = DRXD_InitECA2;
1555                 if (load_firmware(state, DRX_FW_FILENAME_A2))
1556                         return -EIO;
1557         } else {
1558                 state->m_ResetCEFR = NULL;
1559                 state->m_InitFE_1 = DRXD_InitFEB1_1;
1560                 state->m_InitFE_2 = DRXD_InitFEB1_2;
1561                 state->m_InitCP = DRXD_InitCPB1;
1562                 state->m_InitCE = DRXD_InitCEB1;
1563                 state->m_InitEQ = DRXD_InitEQB1;
1564                 state->m_InitEC = DRXD_InitECB1;
1565                 if (load_firmware(state, DRX_FW_FILENAME_B1))
1566                         return -EIO;
1567         }
1568         if (state->diversity) {
1569                 state->m_InitDiversityFront = DRXD_InitDiversityFront;
1570                 state->m_InitDiversityEnd = DRXD_InitDiversityEnd;
1571                 state->m_DisableDiversity = DRXD_DisableDiversity;
1572                 state->m_StartDiversityFront = DRXD_StartDiversityFront;
1573                 state->m_StartDiversityEnd = DRXD_StartDiversityEnd;
1574                 state->m_DiversityDelay8MHZ = DRXD_DiversityDelay8MHZ;
1575                 state->m_DiversityDelay6MHZ = DRXD_DiversityDelay6MHZ;
1576         } else {
1577                 state->m_InitDiversityFront = NULL;
1578                 state->m_InitDiversityEnd = NULL;
1579                 state->m_DisableDiversity = NULL;
1580                 state->m_StartDiversityFront = NULL;
1581                 state->m_StartDiversityEnd = NULL;
1582                 state->m_DiversityDelay8MHZ = NULL;
1583                 state->m_DiversityDelay6MHZ = NULL;
1584         }
1585
1586         return status;
1587 }
1588
1589 static int CorrectSysClockDeviation(struct drxd_state *state)
1590 {
1591         int status;
1592         s32 incr = 0;
1593         s32 nomincr = 0;
1594         u32 bandwidth = 0;
1595         u32 sysClockInHz = 0;
1596         u32 sysClockFreq = 0;   /* in kHz */
1597         s16 oscClockDeviation;
1598         s16 Diff;
1599
1600         do {
1601                 /* Retrieve bandwidth and incr, sanity check */
1602
1603                 /* These accesses should be AtomicReadReg32, but that
1604                    causes trouble (at least for diversity */
1605                 status = Read32(state, LC_RA_RAM_IFINCR_NOM_L__A, ((u32 *) &nomincr), 0);
1606                 if (status < 0)
1607                         break;
1608                 status = Read32(state, FE_IF_REG_INCR0__A, (u32 *) &incr, 0);
1609                 if (status < 0)
1610                         break;
1611
1612                 if (state->type_A) {
1613                         if ((nomincr - incr < -500) || (nomincr - incr > 500))
1614                                 break;
1615                 } else {
1616                         if ((nomincr - incr < -2000) || (nomincr - incr > 2000))
1617                                 break;
1618                 }
1619
1620                 switch (state->props.bandwidth_hz) {
1621                 case 8000000:
1622                         bandwidth = DRXD_BANDWIDTH_8MHZ_IN_HZ;
1623                         break;
1624                 case 7000000:
1625                         bandwidth = DRXD_BANDWIDTH_7MHZ_IN_HZ;
1626                         break;
1627                 case 6000000:
1628                         bandwidth = DRXD_BANDWIDTH_6MHZ_IN_HZ;
1629                         break;
1630                 default:
1631                         return -1;
1632                         break;
1633                 }
1634
1635                 /* Compute new sysclock value
1636                    sysClockFreq = (((incr + 2^23)*bandwidth)/2^21)/1000 */
1637                 incr += (1 << 23);
1638                 sysClockInHz = MulDiv32(incr, bandwidth, 1 << 21);
1639                 sysClockFreq = (u32) (sysClockInHz / 1000);
1640                 /* rounding */
1641                 if ((sysClockInHz % 1000) > 500)
1642                         sysClockFreq++;
1643
1644                 /* Compute clock deviation in ppm */
1645                 oscClockDeviation = (u16) ((((s32) (sysClockFreq) -
1646                                              (s32)
1647                                              (state->expected_sys_clock_freq)) *
1648                                             1000000L) /
1649                                            (s32)
1650                                            (state->expected_sys_clock_freq));
1651
1652                 Diff = oscClockDeviation - state->osc_clock_deviation;
1653                 /*printk(KERN_INFO "sysclockdiff=%d\n", Diff); */
1654                 if (Diff >= -200 && Diff <= 200) {
1655                         state->sys_clock_freq = (u16) sysClockFreq;
1656                         if (oscClockDeviation != state->osc_clock_deviation) {
1657                                 if (state->config.osc_deviation) {
1658                                         state->config.osc_deviation(state->priv,
1659                                                                     oscClockDeviation,
1660                                                                     1);
1661                                         state->osc_clock_deviation =
1662                                             oscClockDeviation;
1663                                 }
1664                         }
1665                         /* switch OFF SRMM scan in SC */
1666                         status = Write16(state, SC_RA_RAM_SAMPLE_RATE_COUNT__A, DRXD_OSCDEV_DONT_SCAN, 0);
1667                         if (status < 0)
1668                                 break;
1669                         /* overrule FE_IF internal value for
1670                            proper re-locking */
1671                         status = Write16(state, SC_RA_RAM_IF_SAVE__AX, state->current_fe_if_incr, 0);
1672                         if (status < 0)
1673                                 break;
1674                         state->cscd_state = CSCD_SAVED;
1675                 }
1676         } while (0);
1677
1678         return status;
1679 }
1680
1681 static int DRX_Stop(struct drxd_state *state)
1682 {
1683         int status;
1684
1685         if (state->drxd_state != DRXD_STARTED)
1686                 return 0;
1687
1688         do {
1689                 if (state->cscd_state != CSCD_SAVED) {
1690                         u32 lock;
1691                         status = DRX_GetLockStatus(state, &lock);
1692                         if (status < 0)
1693                                 break;
1694                 }
1695
1696                 status = StopOC(state);
1697                 if (status < 0)
1698                         break;
1699
1700                 state->drxd_state = DRXD_STOPPED;
1701
1702                 status = ConfigureMPEGOutput(state, 0);
1703                 if (status < 0)
1704                         break;
1705
1706                 if (state->type_A) {
1707                         /* Stop relevant processors off the device */
1708                         status = Write16(state, EC_OD_REG_COMM_EXEC__A, 0x0000, 0x0000);
1709                         if (status < 0)
1710                                 break;
1711
1712                         status = Write16(state, SC_COMM_EXEC__A, SC_COMM_EXEC_CTL_STOP, 0);
1713                         if (status < 0)
1714                                 break;
1715                         status = Write16(state, LC_COMM_EXEC__A, SC_COMM_EXEC_CTL_STOP, 0);
1716                         if (status < 0)
1717                                 break;
1718                 } else {
1719                         /* Stop all processors except HI & CC & FE */
1720                         status = Write16(state, B_SC_COMM_EXEC__A, SC_COMM_EXEC_CTL_STOP, 0);
1721                         if (status < 0)
1722                                 break;
1723                         status = Write16(state, B_LC_COMM_EXEC__A, SC_COMM_EXEC_CTL_STOP, 0);
1724                         if (status < 0)
1725                                 break;
1726                         status = Write16(state, B_FT_COMM_EXEC__A, SC_COMM_EXEC_CTL_STOP, 0);
1727                         if (status < 0)
1728                                 break;
1729                         status = Write16(state, B_CP_COMM_EXEC__A, SC_COMM_EXEC_CTL_STOP, 0);
1730                         if (status < 0)
1731                                 break;
1732                         status = Write16(state, B_CE_COMM_EXEC__A, SC_COMM_EXEC_CTL_STOP, 0);
1733                         if (status < 0)
1734                                 break;
1735                         status = Write16(state, B_EQ_COMM_EXEC__A, SC_COMM_EXEC_CTL_STOP, 0);
1736                         if (status < 0)
1737                                 break;
1738                         status = Write16(state, EC_OD_REG_COMM_EXEC__A, 0x0000, 0);
1739                         if (status < 0)
1740                                 break;
1741                 }
1742
1743         } while (0);
1744         return status;
1745 }
1746
1747 #if 0   /* Currently unused */
1748 static int SetOperationMode(struct drxd_state *state, int oMode)
1749 {
1750         int status;
1751
1752         do {
1753                 if (state->drxd_state != DRXD_STOPPED) {
1754                         status = -1;
1755                         break;
1756                 }
1757
1758                 if (oMode == state->operation_mode) {
1759                         status = 0;
1760                         break;
1761                 }
1762
1763                 if (oMode != OM_Default && !state->diversity) {
1764                         status = -1;
1765                         break;
1766                 }
1767
1768                 switch (oMode) {
1769                 case OM_DVBT_Diversity_Front:
1770                         status = WriteTable(state, state->m_InitDiversityFront);
1771                         break;
1772                 case OM_DVBT_Diversity_End:
1773                         status = WriteTable(state, state->m_InitDiversityEnd);
1774                         break;
1775                 case OM_Default:
1776                         /* We need to check how to
1777                            get DRXD out of diversity */
1778                 default:
1779                         status = WriteTable(state, state->m_DisableDiversity);
1780                         break;
1781                 }
1782         } while (0);
1783
1784         if (!status)
1785                 state->operation_mode = oMode;
1786         return status;
1787 }
1788 #endif
1789
1790 static int StartDiversity(struct drxd_state *state)
1791 {
1792         int status = 0;
1793         u16 rcControl;
1794
1795         do {
1796                 if (state->operation_mode == OM_DVBT_Diversity_Front) {
1797                         status = WriteTable(state, state->m_StartDiversityFront);
1798                         if (status < 0)
1799                                 break;
1800                 } else if (state->operation_mode == OM_DVBT_Diversity_End) {
1801                         status = WriteTable(state, state->m_StartDiversityEnd);
1802                         if (status < 0)
1803                                 break;
1804                         if (state->props.bandwidth_hz == 8000000) {
1805                                 status = WriteTable(state, state->m_DiversityDelay8MHZ);
1806                                 if (status < 0)
1807                                         break;
1808                         } else {
1809                                 status = WriteTable(state, state->m_DiversityDelay6MHZ);
1810                                 if (status < 0)
1811                                         break;
1812                         }
1813
1814                         status = Read16(state, B_EQ_REG_RC_SEL_CAR__A, &rcControl, 0);
1815                         if (status < 0)
1816                                 break;
1817                         rcControl &= ~(B_EQ_REG_RC_SEL_CAR_FFTMODE__M);
1818                         rcControl |= B_EQ_REG_RC_SEL_CAR_DIV_ON |
1819                             /*  combining enabled */
1820                             B_EQ_REG_RC_SEL_CAR_MEAS_A_CC |
1821                             B_EQ_REG_RC_SEL_CAR_PASS_A_CC |
1822                             B_EQ_REG_RC_SEL_CAR_LOCAL_A_CC;
1823                         status = Write16(state, B_EQ_REG_RC_SEL_CAR__A, rcControl, 0);
1824                         if (status < 0)
1825                                 break;
1826                 }
1827         } while (0);
1828         return status;
1829 }
1830
1831 static int SetFrequencyShift(struct drxd_state *state,
1832                              u32 offsetFreq, int channelMirrored)
1833 {
1834         int negativeShift = (state->tuner_mirrors == channelMirrored);
1835
1836         /* Handle all mirroring
1837          *
1838          * Note: ADC mirroring (aliasing) is implictly handled by limiting
1839          * feFsRegAddInc to 28 bits below
1840          * (if the result before masking is more than 28 bits, this means
1841          *  that the ADC is mirroring.
1842          * The masking is in fact the aliasing of the ADC)
1843          *
1844          */
1845
1846         /* Compute register value, unsigned computation */
1847         state->fe_fs_add_incr = MulDiv32(state->intermediate_freq +
1848                                          offsetFreq,
1849                                          1 << 28, state->sys_clock_freq);
1850         /* Remove integer part */
1851         state->fe_fs_add_incr &= 0x0FFFFFFFL;
1852         if (negativeShift)
1853                 state->fe_fs_add_incr = ((1 << 28) - state->fe_fs_add_incr);
1854
1855         /* Save the frequency shift without tunerOffset compensation
1856            for CtrlGetChannel. */
1857         state->org_fe_fs_add_incr = MulDiv32(state->intermediate_freq,
1858                                              1 << 28, state->sys_clock_freq);
1859         /* Remove integer part */
1860         state->org_fe_fs_add_incr &= 0x0FFFFFFFL;
1861         if (negativeShift)
1862                 state->org_fe_fs_add_incr = ((1L << 28) -
1863                                              state->org_fe_fs_add_incr);
1864
1865         return Write32(state, FE_FS_REG_ADD_INC_LOP__A,
1866                        state->fe_fs_add_incr, 0);
1867 }
1868
1869 static int SetCfgNoiseCalibration(struct drxd_state *state,
1870                                   struct SNoiseCal *noiseCal)
1871 {
1872         u16 beOptEna;
1873         int status = 0;
1874
1875         do {
1876                 status = Read16(state, SC_RA_RAM_BE_OPT_ENA__A, &beOptEna, 0);
1877                 if (status < 0)
1878                         break;
1879                 if (noiseCal->cpOpt) {
1880                         beOptEna |= (1 << SC_RA_RAM_BE_OPT_ENA_CP_OPT);
1881                 } else {
1882                         beOptEna &= ~(1 << SC_RA_RAM_BE_OPT_ENA_CP_OPT);
1883                         status = Write16(state, CP_REG_AC_NEXP_OFFS__A, noiseCal->cpNexpOfs, 0);
1884                         if (status < 0)
1885                                 break;
1886                 }
1887                 status = Write16(state, SC_RA_RAM_BE_OPT_ENA__A, beOptEna, 0);
1888                 if (status < 0)
1889                         break;
1890
1891                 if (!state->type_A) {
1892                         status = Write16(state, B_SC_RA_RAM_CO_TD_CAL_2K__A, noiseCal->tdCal2k, 0);
1893                         if (status < 0)
1894                                 break;
1895                         status = Write16(state, B_SC_RA_RAM_CO_TD_CAL_8K__A, noiseCal->tdCal8k, 0);
1896                         if (status < 0)
1897                                 break;
1898                 }
1899         } while (0);
1900
1901         return status;
1902 }
1903
1904 static int DRX_Start(struct drxd_state *state, s32 off)
1905 {
1906         struct dtv_frontend_properties *p = &state->props;
1907         int status;
1908
1909         u16 transmissionParams = 0;
1910         u16 operationMode = 0;
1911         u16 qpskTdTpsPwr = 0;
1912         u16 qam16TdTpsPwr = 0;
1913         u16 qam64TdTpsPwr = 0;
1914         u32 feIfIncr = 0;
1915         u32 bandwidth = 0;
1916         int mirrorFreqSpect;
1917
1918         u16 qpskSnCeGain = 0;
1919         u16 qam16SnCeGain = 0;
1920         u16 qam64SnCeGain = 0;
1921         u16 qpskIsGainMan = 0;
1922         u16 qam16IsGainMan = 0;
1923         u16 qam64IsGainMan = 0;
1924         u16 qpskIsGainExp = 0;
1925         u16 qam16IsGainExp = 0;
1926         u16 qam64IsGainExp = 0;
1927         u16 bandwidthParam = 0;
1928
1929         if (off < 0)
1930                 off = (off - 500) / 1000;
1931         else
1932                 off = (off + 500) / 1000;
1933
1934         do {
1935                 if (state->drxd_state != DRXD_STOPPED)
1936                         return -1;
1937                 status = ResetECOD(state);
1938                 if (status < 0)
1939                         break;
1940                 if (state->type_A) {
1941                         status = InitSC(state);
1942                         if (status < 0)
1943                                 break;
1944                 } else {
1945                         status = InitFT(state);
1946                         if (status < 0)
1947                                 break;
1948                         status = InitCP(state);
1949                         if (status < 0)
1950                                 break;
1951                         status = InitCE(state);
1952                         if (status < 0)
1953                                 break;
1954                         status = InitEQ(state);
1955                         if (status < 0)
1956                                 break;
1957                         status = InitSC(state);
1958                         if (status < 0)
1959                                 break;
1960                 }
1961
1962                 /* Restore current IF & RF AGC settings */
1963
1964                 status = SetCfgIfAgc(state, &state->if_agc_cfg);
1965                 if (status < 0)
1966                         break;
1967                 status = SetCfgRfAgc(state, &state->rf_agc_cfg);
1968                 if (status < 0)
1969                         break;
1970
1971                 mirrorFreqSpect = (state->props.inversion == INVERSION_ON);
1972
1973                 switch (p->transmission_mode) {
1974                 default:        /* Not set, detect it automatically */
1975                         operationMode |= SC_RA_RAM_OP_AUTO_MODE__M;
1976                         /* try first guess DRX_FFTMODE_8K */
1977                         /* fall through */
1978                 case TRANSMISSION_MODE_8K:
1979                         transmissionParams |= SC_RA_RAM_OP_PARAM_MODE_8K;
1980                         if (state->type_A) {
1981                                 status = Write16(state, EC_SB_REG_TR_MODE__A, EC_SB_REG_TR_MODE_8K, 0x0000);
1982                                 if (status < 0)
1983                                         break;
1984                                 qpskSnCeGain = 99;
1985                                 qam16SnCeGain = 83;
1986                                 qam64SnCeGain = 67;
1987                         }
1988                         break;
1989                 case TRANSMISSION_MODE_2K:
1990                         transmissionParams |= SC_RA_RAM_OP_PARAM_MODE_2K;
1991                         if (state->type_A) {
1992                                 status = Write16(state, EC_SB_REG_TR_MODE__A, EC_SB_REG_TR_MODE_2K, 0x0000);
1993                                 if (status < 0)
1994                                         break;
1995                                 qpskSnCeGain = 97;
1996                                 qam16SnCeGain = 71;
1997                                 qam64SnCeGain = 65;
1998                         }
1999                         break;
2000                 }
2001
2002                 switch (p->guard_interval) {
2003                 case GUARD_INTERVAL_1_4:
2004                         transmissionParams |= SC_RA_RAM_OP_PARAM_GUARD_4;
2005                         break;
2006                 case GUARD_INTERVAL_1_8:
2007                         transmissionParams |= SC_RA_RAM_OP_PARAM_GUARD_8;
2008                         break;
2009                 case GUARD_INTERVAL_1_16:
2010                         transmissionParams |= SC_RA_RAM_OP_PARAM_GUARD_16;
2011                         break;
2012                 case GUARD_INTERVAL_1_32:
2013                         transmissionParams |= SC_RA_RAM_OP_PARAM_GUARD_32;
2014                         break;
2015                 default:        /* Not set, detect it automatically */
2016                         operationMode |= SC_RA_RAM_OP_AUTO_GUARD__M;
2017                         /* try first guess 1/4 */
2018                         transmissionParams |= SC_RA_RAM_OP_PARAM_GUARD_4;
2019                         break;
2020                 }
2021
2022                 switch (p->hierarchy) {
2023                 case HIERARCHY_1:
2024                         transmissionParams |= SC_RA_RAM_OP_PARAM_HIER_A1;
2025                         if (state->type_A) {
2026                                 status = Write16(state, EQ_REG_OT_ALPHA__A, 0x0001, 0x0000);
2027                                 if (status < 0)
2028                                         break;
2029                                 status = Write16(state, EC_SB_REG_ALPHA__A, 0x0001, 0x0000);
2030                                 if (status < 0)
2031                                         break;
2032
2033                                 qpskTdTpsPwr = EQ_TD_TPS_PWR_UNKNOWN;
2034                                 qam16TdTpsPwr = EQ_TD_TPS_PWR_QAM16_ALPHA1;
2035                                 qam64TdTpsPwr = EQ_TD_TPS_PWR_QAM64_ALPHA1;
2036
2037                                 qpskIsGainMan =
2038                                     SC_RA_RAM_EQ_IS_GAIN_UNKNOWN_MAN__PRE;
2039                                 qam16IsGainMan =
2040                                     SC_RA_RAM_EQ_IS_GAIN_16QAM_MAN__PRE;
2041                                 qam64IsGainMan =
2042                                     SC_RA_RAM_EQ_IS_GAIN_64QAM_MAN__PRE;
2043
2044                                 qpskIsGainExp =
2045                                     SC_RA_RAM_EQ_IS_GAIN_UNKNOWN_EXP__PRE;
2046                                 qam16IsGainExp =
2047                                     SC_RA_RAM_EQ_IS_GAIN_16QAM_EXP__PRE;
2048                                 qam64IsGainExp =
2049                                     SC_RA_RAM_EQ_IS_GAIN_64QAM_EXP__PRE;
2050                         }
2051                         break;
2052
2053                 case HIERARCHY_2:
2054                         transmissionParams |= SC_RA_RAM_OP_PARAM_HIER_A2;
2055                         if (state->type_A) {
2056                                 status = Write16(state, EQ_REG_OT_ALPHA__A, 0x0002, 0x0000);
2057                                 if (status < 0)
2058                                         break;
2059                                 status = Write16(state, EC_SB_REG_ALPHA__A, 0x0002, 0x0000);
2060                                 if (status < 0)
2061                                         break;
2062
2063                                 qpskTdTpsPwr = EQ_TD_TPS_PWR_UNKNOWN;
2064                                 qam16TdTpsPwr = EQ_TD_TPS_PWR_QAM16_ALPHA2;
2065                                 qam64TdTpsPwr = EQ_TD_TPS_PWR_QAM64_ALPHA2;
2066
2067                                 qpskIsGainMan =
2068                                     SC_RA_RAM_EQ_IS_GAIN_UNKNOWN_MAN__PRE;
2069                                 qam16IsGainMan =
2070                                     SC_RA_RAM_EQ_IS_GAIN_16QAM_A2_MAN__PRE;
2071                                 qam64IsGainMan =
2072                                     SC_RA_RAM_EQ_IS_GAIN_64QAM_A2_MAN__PRE;
2073
2074                                 qpskIsGainExp =
2075                                     SC_RA_RAM_EQ_IS_GAIN_UNKNOWN_EXP__PRE;
2076                                 qam16IsGainExp =
2077                                     SC_RA_RAM_EQ_IS_GAIN_16QAM_A2_EXP__PRE;
2078                                 qam64IsGainExp =
2079                                     SC_RA_RAM_EQ_IS_GAIN_64QAM_A2_EXP__PRE;
2080                         }
2081                         break;
2082                 case HIERARCHY_4:
2083                         transmissionParams |= SC_RA_RAM_OP_PARAM_HIER_A4;
2084                         if (state->type_A) {
2085                                 status = Write16(state, EQ_REG_OT_ALPHA__A, 0x0003, 0x0000);
2086                                 if (status < 0)
2087                                         break;
2088                                 status = Write16(state, EC_SB_REG_ALPHA__A, 0x0003, 0x0000);
2089                                 if (status < 0)
2090                                         break;
2091
2092                                 qpskTdTpsPwr = EQ_TD_TPS_PWR_UNKNOWN;
2093                                 qam16TdTpsPwr = EQ_TD_TPS_PWR_QAM16_ALPHA4;
2094                                 qam64TdTpsPwr = EQ_TD_TPS_PWR_QAM64_ALPHA4;
2095
2096                                 qpskIsGainMan =
2097                                     SC_RA_RAM_EQ_IS_GAIN_UNKNOWN_MAN__PRE;
2098                                 qam16IsGainMan =
2099                                     SC_RA_RAM_EQ_IS_GAIN_16QAM_A4_MAN__PRE;
2100                                 qam64IsGainMan =
2101                                     SC_RA_RAM_EQ_IS_GAIN_64QAM_A4_MAN__PRE;
2102
2103                                 qpskIsGainExp =
2104                                     SC_RA_RAM_EQ_IS_GAIN_UNKNOWN_EXP__PRE;
2105                                 qam16IsGainExp =
2106                                     SC_RA_RAM_EQ_IS_GAIN_16QAM_A4_EXP__PRE;
2107                                 qam64IsGainExp =
2108                                     SC_RA_RAM_EQ_IS_GAIN_64QAM_A4_EXP__PRE;
2109                         }
2110                         break;
2111                 case HIERARCHY_AUTO:
2112                 default:
2113                         /* Not set, detect it automatically, start with none */
2114                         operationMode |= SC_RA_RAM_OP_AUTO_HIER__M;
2115                         transmissionParams |= SC_RA_RAM_OP_PARAM_HIER_NO;
2116                         if (state->type_A) {
2117                                 status = Write16(state, EQ_REG_OT_ALPHA__A, 0x0000, 0x0000);
2118                                 if (status < 0)
2119                                         break;
2120                                 status = Write16(state, EC_SB_REG_ALPHA__A, 0x0000, 0x0000);
2121                                 if (status < 0)
2122                                         break;
2123
2124                                 qpskTdTpsPwr = EQ_TD_TPS_PWR_QPSK;
2125                                 qam16TdTpsPwr = EQ_TD_TPS_PWR_QAM16_ALPHAN;
2126                                 qam64TdTpsPwr = EQ_TD_TPS_PWR_QAM64_ALPHAN;
2127
2128                                 qpskIsGainMan =
2129                                     SC_RA_RAM_EQ_IS_GAIN_QPSK_MAN__PRE;
2130                                 qam16IsGainMan =
2131                                     SC_RA_RAM_EQ_IS_GAIN_16QAM_MAN__PRE;
2132                                 qam64IsGainMan =
2133                                     SC_RA_RAM_EQ_IS_GAIN_64QAM_MAN__PRE;
2134
2135                                 qpskIsGainExp =
2136                                     SC_RA_RAM_EQ_IS_GAIN_QPSK_EXP__PRE;
2137                                 qam16IsGainExp =
2138                                     SC_RA_RAM_EQ_IS_GAIN_16QAM_EXP__PRE;
2139                                 qam64IsGainExp =
2140                                     SC_RA_RAM_EQ_IS_GAIN_64QAM_EXP__PRE;
2141                         }
2142                         break;
2143                 }
2144                 status = status;
2145                 if (status < 0)
2146                         break;
2147
2148                 switch (p->modulation) {
2149                 default:
2150                         operationMode |= SC_RA_RAM_OP_AUTO_CONST__M;
2151                         /* try first guess DRX_CONSTELLATION_QAM64 */
2152                         /* fall through */
2153                 case QAM_64:
2154                         transmissionParams |= SC_RA_RAM_OP_PARAM_CONST_QAM64;
2155                         if (state->type_A) {
2156                                 status = Write16(state, EQ_REG_OT_CONST__A, 0x0002, 0x0000);
2157                                 if (status < 0)
2158                                         break;
2159                                 status = Write16(state, EC_SB_REG_CONST__A, EC_SB_REG_CONST_64QAM, 0x0000);
2160                                 if (status < 0)
2161                                         break;
2162                                 status = Write16(state, EC_SB_REG_SCALE_MSB__A, 0x0020, 0x0000);
2163                                 if (status < 0)
2164                                         break;
2165                                 status = Write16(state, EC_SB_REG_SCALE_BIT2__A, 0x0008, 0x0000);
2166                                 if (status < 0)
2167                                         break;
2168                                 status = Write16(state, EC_SB_REG_SCALE_LSB__A, 0x0002, 0x0000);
2169                                 if (status < 0)
2170                                         break;
2171
2172                                 status = Write16(state, EQ_REG_TD_TPS_PWR_OFS__A, qam64TdTpsPwr, 0x0000);
2173                                 if (status < 0)
2174                                         break;
2175                                 status = Write16(state, EQ_REG_SN_CEGAIN__A, qam64SnCeGain, 0x0000);
2176                                 if (status < 0)
2177                                         break;
2178                                 status = Write16(state, EQ_REG_IS_GAIN_MAN__A, qam64IsGainMan, 0x0000);
2179                                 if (status < 0)
2180                                         break;
2181                                 status = Write16(state, EQ_REG_IS_GAIN_EXP__A, qam64IsGainExp, 0x0000);
2182                                 if (status < 0)
2183                                         break;
2184                         }
2185                         break;
2186                 case QPSK:
2187                         transmissionParams |= SC_RA_RAM_OP_PARAM_CONST_QPSK;
2188                         if (state->type_A) {
2189                                 status = Write16(state, EQ_REG_OT_CONST__A, 0x0000, 0x0000);
2190                                 if (status < 0)
2191                                         break;
2192                                 status = Write16(state, EC_SB_REG_CONST__A, EC_SB_REG_CONST_QPSK, 0x0000);
2193                                 if (status < 0)
2194                                         break;
2195                                 status = Write16(state, EC_SB_REG_SCALE_MSB__A, 0x0010, 0x0000);
2196                                 if (status < 0)
2197                                         break;
2198                                 status = Write16(state, EC_SB_REG_SCALE_BIT2__A, 0x0000, 0x0000);
2199                                 if (status < 0)
2200                                         break;
2201                                 status = Write16(state, EC_SB_REG_SCALE_LSB__A, 0x0000, 0x0000);
2202                                 if (status < 0)
2203                                         break;
2204
2205                                 status = Write16(state, EQ_REG_TD_TPS_PWR_OFS__A, qpskTdTpsPwr, 0x0000);
2206                                 if (status < 0)
2207                                         break;
2208                                 status = Write16(state, EQ_REG_SN_CEGAIN__A, qpskSnCeGain, 0x0000);
2209                                 if (status < 0)
2210                                         break;
2211                                 status = Write16(state, EQ_REG_IS_GAIN_MAN__A, qpskIsGainMan, 0x0000);
2212                                 if (status < 0)
2213                                         break;
2214                                 status = Write16(state, EQ_REG_IS_GAIN_EXP__A, qpskIsGainExp, 0x0000);
2215                                 if (status < 0)
2216                                         break;
2217                         }
2218                         break;
2219
2220                 case QAM_16:
2221                         transmissionParams |= SC_RA_RAM_OP_PARAM_CONST_QAM16;
2222                         if (state->type_A) {
2223                                 status = Write16(state, EQ_REG_OT_CONST__A, 0x0001, 0x0000);
2224                                 if (status < 0)
2225                                         break;
2226                                 status = Write16(state, EC_SB_REG_CONST__A, EC_SB_REG_CONST_16QAM, 0x0000);
2227                                 if (status < 0)
2228                                         break;
2229                                 status = Write16(state, EC_SB_REG_SCALE_MSB__A, 0x0010, 0x0000);
2230                                 if (status < 0)
2231                                         break;
2232                                 status = Write16(state, EC_SB_REG_SCALE_BIT2__A, 0x0004, 0x0000);
2233                                 if (status < 0)
2234                                         break;
2235                                 status = Write16(state, EC_SB_REG_SCALE_LSB__A, 0x0000, 0x0000);
2236                                 if (status < 0)
2237                                         break;
2238
2239                                 status = Write16(state, EQ_REG_TD_TPS_PWR_OFS__A, qam16TdTpsPwr, 0x0000);
2240                                 if (status < 0)
2241                                         break;
2242                                 status = Write16(state, EQ_REG_SN_CEGAIN__A, qam16SnCeGain, 0x0000);
2243                                 if (status < 0)
2244                                         break;
2245                                 status = Write16(state, EQ_REG_IS_GAIN_MAN__A, qam16IsGainMan, 0x0000);
2246                                 if (status < 0)
2247                                         break;
2248                                 status = Write16(state, EQ_REG_IS_GAIN_EXP__A, qam16IsGainExp, 0x0000);
2249                                 if (status < 0)
2250                                         break;
2251                         }
2252                         break;
2253
2254                 }
2255                 status = status;
2256                 if (status < 0)
2257                         break;
2258
2259                 switch (DRX_CHANNEL_HIGH) {
2260                 default:
2261                 case DRX_CHANNEL_AUTO:
2262                 case DRX_CHANNEL_LOW:
2263                         transmissionParams |= SC_RA_RAM_OP_PARAM_PRIO_LO;
2264                         status = Write16(state, EC_SB_REG_PRIOR__A, EC_SB_REG_PRIOR_LO, 0x0000);
2265                         if (status < 0)
2266                                 break;
2267                         break;
2268                 case DRX_CHANNEL_HIGH:
2269                         transmissionParams |= SC_RA_RAM_OP_PARAM_PRIO_HI;
2270                         status = Write16(state, EC_SB_REG_PRIOR__A, EC_SB_REG_PRIOR_HI, 0x0000);
2271                         if (status < 0)
2272                                 break;
2273                         break;
2274
2275                 }
2276
2277                 switch (p->code_rate_HP) {
2278                 case FEC_1_2:
2279                         transmissionParams |= SC_RA_RAM_OP_PARAM_RATE_1_2;
2280                         if (state->type_A) {
2281                                 status = Write16(state, EC_VD_REG_SET_CODERATE__A, EC_VD_REG_SET_CODERATE_C1_2, 0x0000);
2282                                 if (status < 0)
2283                                         break;
2284                         }
2285                         break;
2286                 default:
2287                         operationMode |= SC_RA_RAM_OP_AUTO_RATE__M;
2288                         /* fall through */
2289                 case FEC_2_3:
2290                         transmissionParams |= SC_RA_RAM_OP_PARAM_RATE_2_3;
2291                         if (state->type_A) {
2292                                 status = Write16(state, EC_VD_REG_SET_CODERATE__A, EC_VD_REG_SET_CODERATE_C2_3, 0x0000);
2293                                 if (status < 0)
2294                                         break;
2295                         }
2296                         break;
2297                 case FEC_3_4:
2298                         transmissionParams |= SC_RA_RAM_OP_PARAM_RATE_3_4;
2299                         if (state->type_A) {
2300                                 status = Write16(state, EC_VD_REG_SET_CODERATE__A, EC_VD_REG_SET_CODERATE_C3_4, 0x0000);
2301                                 if (status < 0)
2302                                         break;
2303                         }
2304                         break;
2305                 case FEC_5_6:
2306                         transmissionParams |= SC_RA_RAM_OP_PARAM_RATE_5_6;
2307                         if (state->type_A) {
2308                                 status = Write16(state, EC_VD_REG_SET_CODERATE__A, EC_VD_REG_SET_CODERATE_C5_6, 0x0000);
2309                                 if (status < 0)
2310                                         break;
2311                         }
2312                         break;
2313                 case FEC_7_8:
2314                         transmissionParams |= SC_RA_RAM_OP_PARAM_RATE_7_8;
2315                         if (state->type_A) {
2316                                 status = Write16(state, EC_VD_REG_SET_CODERATE__A, EC_VD_REG_SET_CODERATE_C7_8, 0x0000);
2317                                 if (status < 0)
2318                                         break;
2319                         }
2320                         break;
2321                 }
2322                 status = status;
2323                 if (status < 0)
2324                         break;
2325
2326                 /* First determine real bandwidth (Hz) */
2327                 /* Also set delay for impulse noise cruncher (only A2) */
2328                 /* Also set parameters for EC_OC fix, note
2329                    EC_OC_REG_TMD_HIL_MAR is changed
2330                    by SC for fix for some 8K,1/8 guard but is restored by
2331                    InitEC and ResetEC
2332                    functions */
2333                 switch (p->bandwidth_hz) {
2334                 case 0:
2335                         p->bandwidth_hz = 8000000;
2336                         /* fall through */
2337                 case 8000000:
2338                         /* (64/7)*(8/8)*1000000 */
2339                         bandwidth = DRXD_BANDWIDTH_8MHZ_IN_HZ;
2340
2341                         bandwidthParam = 0;
2342                         status = Write16(state,
2343                                          FE_AG_REG_IND_DEL__A, 50, 0x0000);
2344                         break;
2345                 case 7000000:
2346                         /* (64/7)*(7/8)*1000000 */
2347                         bandwidth = DRXD_BANDWIDTH_7MHZ_IN_HZ;
2348                         bandwidthParam = 0x4807;        /*binary:0100 1000 0000 0111 */
2349                         status = Write16(state,
2350                                          FE_AG_REG_IND_DEL__A, 59, 0x0000);
2351                         break;
2352                 case 6000000:
2353                         /* (64/7)*(6/8)*1000000 */
2354                         bandwidth = DRXD_BANDWIDTH_6MHZ_IN_HZ;
2355                         bandwidthParam = 0x0F07;        /*binary: 0000 1111 0000 0111 */
2356                         status = Write16(state,
2357                                          FE_AG_REG_IND_DEL__A, 71, 0x0000);
2358                         break;
2359                 default:
2360                         status = -EINVAL;
2361                 }
2362                 if (status < 0)
2363                         break;
2364
2365                 status = Write16(state, SC_RA_RAM_BAND__A, bandwidthParam, 0x0000);
2366                 if (status < 0)
2367                         break;
2368
2369                 {
2370                         u16 sc_config;
2371                         status = Read16(state, SC_RA_RAM_CONFIG__A, &sc_config, 0);
2372                         if (status < 0)
2373                                 break;
2374
2375                         /* enable SLAVE mode in 2k 1/32 to
2376                            prevent timing change glitches */
2377                         if ((p->transmission_mode == TRANSMISSION_MODE_2K) &&
2378                             (p->guard_interval == GUARD_INTERVAL_1_32)) {
2379                                 /* enable slave */
2380                                 sc_config |= SC_RA_RAM_CONFIG_SLAVE__M;
2381                         } else {
2382                                 /* disable slave */
2383                                 sc_config &= ~SC_RA_RAM_CONFIG_SLAVE__M;
2384                         }
2385                         status = Write16(state, SC_RA_RAM_CONFIG__A, sc_config, 0);
2386                         if (status < 0)
2387                                 break;
2388                 }
2389
2390                 status = SetCfgNoiseCalibration(state, &state->noise_cal);
2391                 if (status < 0)
2392                         break;
2393
2394                 if (state->cscd_state == CSCD_INIT) {
2395                         /* switch on SRMM scan in SC */
2396                         status = Write16(state, SC_RA_RAM_SAMPLE_RATE_COUNT__A, DRXD_OSCDEV_DO_SCAN, 0x0000);
2397                         if (status < 0)
2398                                 break;
2399 /*            CHK_ERROR(Write16(SC_RA_RAM_SAMPLE_RATE_STEP__A, DRXD_OSCDEV_STEP, 0x0000));*/
2400                         state->cscd_state = CSCD_SET;
2401                 }
2402
2403                 /* Now compute FE_IF_REG_INCR */
2404                 /*((( SysFreq/BandWidth)/2)/2) -1) * 2^23) =>
2405                    ((SysFreq / BandWidth) * (2^21) ) - (2^23) */
2406                 feIfIncr = MulDiv32(state->sys_clock_freq * 1000,
2407                                     (1ULL << 21), bandwidth) - (1 << 23);
2408                 status = Write16(state, FE_IF_REG_INCR0__A, (u16) (feIfIncr & FE_IF_REG_INCR0__M), 0x0000);
2409                 if (status < 0)
2410                         break;
2411                 status = Write16(state, FE_IF_REG_INCR1__A, (u16) ((feIfIncr >> FE_IF_REG_INCR0__W) & FE_IF_REG_INCR1__M), 0x0000);
2412                 if (status < 0)
2413                         break;
2414                 /* Bandwidth setting done */
2415
2416                 /* Mirror & frequency offset */
2417                 SetFrequencyShift(state, off, mirrorFreqSpect);
2418
2419                 /* Start SC, write channel settings to SC */
2420
2421                 /* Enable SC after setting all other parameters */
2422                 status = Write16(state, SC_COMM_STATE__A, 0, 0x0000);
2423                 if (status < 0)
2424                         break;
2425                 status = Write16(state, SC_COMM_EXEC__A, 1, 0x0000);
2426                 if (status < 0)
2427                         break;
2428
2429                 /* Write SC parameter registers, operation mode */
2430 #if 1
2431                 operationMode = (SC_RA_RAM_OP_AUTO_MODE__M |
2432                                  SC_RA_RAM_OP_AUTO_GUARD__M |
2433                                  SC_RA_RAM_OP_AUTO_CONST__M |
2434                                  SC_RA_RAM_OP_AUTO_HIER__M |
2435                                  SC_RA_RAM_OP_AUTO_RATE__M);
2436 #endif
2437                 status = SC_SetPrefParamCommand(state, 0x0000, transmissionParams, operationMode);
2438                 if (status < 0)
2439                         break;
2440
2441                 /* Start correct processes to get in lock */
2442                 status = SC_ProcStartCommand(state, SC_RA_RAM_PROC_LOCKTRACK, SC_RA_RAM_SW_EVENT_RUN_NMASK__M, SC_RA_RAM_LOCKTRACK_MIN);
2443                 if (status < 0)
2444                         break;
2445
2446                 status = StartOC(state);
2447                 if (status < 0)
2448                         break;
2449
2450                 if (state->operation_mode != OM_Default) {
2451                         status = StartDiversity(state);
2452                         if (status < 0)
2453                                 break;
2454                 }
2455
2456                 state->drxd_state = DRXD_STARTED;
2457         } while (0);
2458
2459         return status;
2460 }
2461
2462 static int CDRXD(struct drxd_state *state, u32 IntermediateFrequency)
2463 {
2464         u32 ulRfAgcOutputLevel = 0xffffffff;
2465         u32 ulRfAgcSettleLevel = 528;   /* Optimum value for MT2060 */
2466         u32 ulRfAgcMinLevel = 0;        /* Currently unused */
2467         u32 ulRfAgcMaxLevel = DRXD_FE_CTRL_MAX; /* Currently unused */
2468         u32 ulRfAgcSpeed = 0;   /* Currently unused */
2469         u32 ulRfAgcMode = 0;    /*2;   Off */
2470         u32 ulRfAgcR1 = 820;
2471         u32 ulRfAgcR2 = 2200;
2472         u32 ulRfAgcR3 = 150;
2473         u32 ulIfAgcMode = 0;    /* Auto */
2474         u32 ulIfAgcOutputLevel = 0xffffffff;
2475         u32 ulIfAgcSettleLevel = 0xffffffff;
2476         u32 ulIfAgcMinLevel = 0xffffffff;
2477         u32 ulIfAgcMaxLevel = 0xffffffff;
2478         u32 ulIfAgcSpeed = 0xffffffff;
2479         u32 ulIfAgcR1 = 820;
2480         u32 ulIfAgcR2 = 2200;
2481         u32 ulIfAgcR3 = 150;
2482         u32 ulClock = state->config.clock;
2483         u32 ulSerialMode = 0;
2484         u32 ulEcOcRegOcModeLop = 4;     /* Dynamic DTO source */
2485         u32 ulHiI2cDelay = HI_I2C_DELAY;
2486         u32 ulHiI2cBridgeDelay = HI_I2C_BRIDGE_DELAY;
2487         u32 ulHiI2cPatch = 0;
2488         u32 ulEnvironment = APPENV_PORTABLE;
2489         u32 ulEnvironmentDiversity = APPENV_MOBILE;
2490         u32 ulIFFilter = IFFILTER_SAW;
2491
2492         state->if_agc_cfg.ctrlMode = AGC_CTRL_AUTO;
2493         state->if_agc_cfg.outputLevel = 0;
2494         state->if_agc_cfg.settleLevel = 140;
2495         state->if_agc_cfg.minOutputLevel = 0;
2496         state->if_agc_cfg.maxOutputLevel = 1023;
2497         state->if_agc_cfg.speed = 904;
2498
2499         if (ulIfAgcMode == 1 && ulIfAgcOutputLevel <= DRXD_FE_CTRL_MAX) {
2500                 state->if_agc_cfg.ctrlMode = AGC_CTRL_USER;
2501                 state->if_agc_cfg.outputLevel = (u16) (ulIfAgcOutputLevel);
2502         }
2503
2504         if (ulIfAgcMode == 0 &&
2505             ulIfAgcSettleLevel <= DRXD_FE_CTRL_MAX &&
2506             ulIfAgcMinLevel <= DRXD_FE_CTRL_MAX &&
2507             ulIfAgcMaxLevel <= DRXD_FE_CTRL_MAX &&
2508             ulIfAgcSpeed <= DRXD_FE_CTRL_MAX) {
2509                 state->if_agc_cfg.ctrlMode = AGC_CTRL_AUTO;
2510                 state->if_agc_cfg.settleLevel = (u16) (ulIfAgcSettleLevel);
2511                 state->if_agc_cfg.minOutputLevel = (u16) (ulIfAgcMinLevel);
2512                 state->if_agc_cfg.maxOutputLevel = (u16) (ulIfAgcMaxLevel);
2513                 state->if_agc_cfg.speed = (u16) (ulIfAgcSpeed);
2514         }
2515
2516         state->if_agc_cfg.R1 = (u16) (ulIfAgcR1);
2517         state->if_agc_cfg.R2 = (u16) (ulIfAgcR2);
2518         state->if_agc_cfg.R3 = (u16) (ulIfAgcR3);
2519
2520         state->rf_agc_cfg.R1 = (u16) (ulRfAgcR1);
2521         state->rf_agc_cfg.R2 = (u16) (ulRfAgcR2);
2522         state->rf_agc_cfg.R3 = (u16) (ulRfAgcR3);
2523
2524         state->rf_agc_cfg.ctrlMode = AGC_CTRL_AUTO;
2525         /* rest of the RFAgcCfg structure currently unused */
2526         if (ulRfAgcMode == 1 && ulRfAgcOutputLevel <= DRXD_FE_CTRL_MAX) {
2527                 state->rf_agc_cfg.ctrlMode = AGC_CTRL_USER;
2528                 state->rf_agc_cfg.outputLevel = (u16) (ulRfAgcOutputLevel);
2529         }
2530
2531         if (ulRfAgcMode == 0 &&
2532             ulRfAgcSettleLevel <= DRXD_FE_CTRL_MAX &&
2533             ulRfAgcMinLevel <= DRXD_FE_CTRL_MAX &&
2534             ulRfAgcMaxLevel <= DRXD_FE_CTRL_MAX &&
2535             ulRfAgcSpeed <= DRXD_FE_CTRL_MAX) {
2536                 state->rf_agc_cfg.ctrlMode = AGC_CTRL_AUTO;
2537                 state->rf_agc_cfg.settleLevel = (u16) (ulRfAgcSettleLevel);
2538                 state->rf_agc_cfg.minOutputLevel = (u16) (ulRfAgcMinLevel);
2539                 state->rf_agc_cfg.maxOutputLevel = (u16) (ulRfAgcMaxLevel);
2540                 state->rf_agc_cfg.speed = (u16) (ulRfAgcSpeed);
2541         }
2542
2543         if (ulRfAgcMode == 2)
2544                 state->rf_agc_cfg.ctrlMode = AGC_CTRL_OFF;
2545
2546         if (ulEnvironment <= 2)
2547                 state->app_env_default = (enum app_env)
2548                     (ulEnvironment);
2549         if (ulEnvironmentDiversity <= 2)
2550                 state->app_env_diversity = (enum app_env)
2551                     (ulEnvironmentDiversity);
2552
2553         if (ulIFFilter == IFFILTER_DISCRETE) {
2554                 /* discrete filter */
2555                 state->noise_cal.cpOpt = 0;
2556                 state->noise_cal.cpNexpOfs = 40;
2557                 state->noise_cal.tdCal2k = -40;
2558                 state->noise_cal.tdCal8k = -24;
2559         } else {
2560                 /* SAW filter */
2561                 state->noise_cal.cpOpt = 1;
2562                 state->noise_cal.cpNexpOfs = 0;
2563                 state->noise_cal.tdCal2k = -21;
2564                 state->noise_cal.tdCal8k = -24;
2565         }
2566         state->m_EcOcRegOcModeLop = (u16) (ulEcOcRegOcModeLop);
2567
2568         state->chip_adr = (state->config.demod_address << 1) | 1;
2569         switch (ulHiI2cPatch) {
2570         case 1:
2571                 state->m_HiI2cPatch = DRXD_HiI2cPatch_1;
2572                 break;
2573         case 3:
2574                 state->m_HiI2cPatch = DRXD_HiI2cPatch_3;
2575                 break;
2576         default:
2577                 state->m_HiI2cPatch = NULL;
2578         }
2579
2580         /* modify tuner and clock attributes */
2581         state->intermediate_freq = (u16) (IntermediateFrequency / 1000);
2582         /* expected system clock frequency in kHz */
2583         state->expected_sys_clock_freq = 48000;
2584         /* real system clock frequency in kHz */
2585         state->sys_clock_freq = 48000;
2586         state->osc_clock_freq = (u16) ulClock;
2587         state->osc_clock_deviation = 0;
2588         state->cscd_state = CSCD_INIT;
2589         state->drxd_state = DRXD_UNINITIALIZED;
2590
2591         state->PGA = 0;
2592         state->type_A = 0;
2593         state->tuner_mirrors = 0;
2594
2595         /* modify MPEG output attributes */
2596         state->insert_rs_byte = state->config.insert_rs_byte;
2597         state->enable_parallel = (ulSerialMode != 1);
2598
2599         /* Timing div, 250ns/Psys */
2600         /* Timing div, = ( delay (nano seconds) * sysclk (kHz) )/ 1000 */
2601
2602         state->hi_cfg_timing_div = (u16) ((state->sys_clock_freq / 1000) *
2603                                           ulHiI2cDelay) / 1000;
2604         /* Bridge delay, uses oscilator clock */
2605         /* Delay = ( delay (nano seconds) * oscclk (kHz) )/ 1000 */
2606         state->hi_cfg_bridge_delay = (u16) ((state->osc_clock_freq / 1000) *
2607                                             ulHiI2cBridgeDelay) / 1000;
2608
2609         state->m_FeAgRegAgPwd = DRXD_DEF_AG_PWD_CONSUMER;
2610         /* state->m_FeAgRegAgPwd = DRXD_DEF_AG_PWD_PRO; */
2611         state->m_FeAgRegAgAgcSio = DRXD_DEF_AG_AGC_SIO;
2612         return 0;
2613 }
2614
2615 static int DRXD_init(struct drxd_state *state, const u8 *fw, u32 fw_size)
2616 {
2617         int status = 0;
2618         u32 driverVersion;
2619
2620         if (state->init_done)
2621                 return 0;
2622
2623         CDRXD(state, state->config.IF ? state->config.IF : 36000000);
2624
2625         do {
2626                 state->operation_mode = OM_Default;
2627
2628                 status = SetDeviceTypeId(state);
2629                 if (status < 0)
2630                         break;
2631
2632                 /* Apply I2c address patch to B1 */
2633                 if (!state->type_A && state->m_HiI2cPatch != NULL) {
2634                         status = WriteTable(state, state->m_HiI2cPatch);
2635                         if (status < 0)
2636                                 break;
2637                 }
2638
2639                 if (state->type_A) {
2640                         /* HI firmware patch for UIO readout,
2641                            avoid clearing of result register */
2642                         status = Write16(state, 0x43012D, 0x047f, 0);
2643                         if (status < 0)
2644                                 break;
2645                 }
2646
2647                 status = HI_ResetCommand(state);
2648                 if (status < 0)
2649                         break;
2650
2651                 status = StopAllProcessors(state);
2652                 if (status < 0)
2653                         break;
2654                 status = InitCC(state);
2655                 if (status < 0)
2656                         break;
2657
2658                 state->osc_clock_deviation = 0;
2659
2660                 if (state->config.osc_deviation)
2661                         state->osc_clock_deviation =
2662                             state->config.osc_deviation(state->priv, 0, 0);
2663                 {
2664                         /* Handle clock deviation */
2665                         s32 devB;
2666                         s32 devA = (s32) (state->osc_clock_deviation) *
2667                             (s32) (state->expected_sys_clock_freq);
2668                         /* deviation in kHz */
2669                         s32 deviation = (devA / (1000000L));
2670                         /* rounding, signed */
2671                         if (devA > 0)
2672                                 devB = (2);
2673                         else
2674                                 devB = (-2);
2675                         if ((devB * (devA % 1000000L) > 1000000L)) {
2676                                 /* add +1 or -1 */
2677                                 deviation += (devB / 2);
2678                         }
2679
2680                         state->sys_clock_freq =
2681                             (u16) ((state->expected_sys_clock_freq) +
2682                                    deviation);
2683                 }
2684                 status = InitHI(state);
2685                 if (status < 0)
2686                         break;
2687                 status = InitAtomicRead(state);
2688                 if (status < 0)
2689                         break;
2690
2691                 status = EnableAndResetMB(state);
2692                 if (status < 0)
2693                         break;
2694                 if (state->type_A) {
2695                         status = ResetCEFR(state);
2696                         if (status < 0)
2697                                 break;
2698                 }
2699                 if (fw) {
2700                         status = DownloadMicrocode(state, fw, fw_size);
2701                         if (status < 0)
2702                                 break;
2703                 } else {
2704                         status = DownloadMicrocode(state, state->microcode, state->microcode_length);
2705                         if (status < 0)
2706                                 break;
2707                 }
2708
2709                 if (state->PGA) {
2710                         state->m_FeAgRegAgPwd = DRXD_DEF_AG_PWD_PRO;
2711                         SetCfgPga(state, 0);    /* PGA = 0 dB */
2712                 } else {
2713                         state->m_FeAgRegAgPwd = DRXD_DEF_AG_PWD_CONSUMER;
2714                 }
2715
2716                 state->m_FeAgRegAgAgcSio = DRXD_DEF_AG_AGC_SIO;
2717
2718                 status = InitFE(state);
2719                 if (status < 0)
2720                         break;
2721                 status = InitFT(state);
2722                 if (status < 0)
2723                         break;
2724                 status = InitCP(state);
2725                 if (status < 0)
2726                         break;
2727                 status = InitCE(state);
2728                 if (status < 0)
2729                         break;
2730                 status = InitEQ(state);
2731                 if (status < 0)
2732                         break;
2733                 status = InitEC(state);
2734                 if (status < 0)
2735                         break;
2736                 status = InitSC(state);
2737                 if (status < 0)
2738                         break;
2739
2740                 status = SetCfgIfAgc(state, &state->if_agc_cfg);
2741                 if (status < 0)
2742                         break;
2743                 status = SetCfgRfAgc(state, &state->rf_agc_cfg);
2744                 if (status < 0)
2745                         break;
2746
2747                 state->cscd_state = CSCD_INIT;
2748                 status = Write16(state, SC_COMM_EXEC__A, SC_COMM_EXEC_CTL_STOP, 0);
2749                 if (status < 0)
2750                         break;
2751                 status = Write16(state, LC_COMM_EXEC__A, SC_COMM_EXEC_CTL_STOP, 0);
2752                 if (status < 0)
2753                         break;
2754
2755                 driverVersion = (((VERSION_MAJOR / 10) << 4) +
2756                                  (VERSION_MAJOR % 10)) << 24;
2757                 driverVersion += (((VERSION_MINOR / 10) << 4) +
2758                                   (VERSION_MINOR % 10)) << 16;
2759                 driverVersion += ((VERSION_PATCH / 1000) << 12) +
2760                     ((VERSION_PATCH / 100) << 8) +
2761                     ((VERSION_PATCH / 10) << 4) + (VERSION_PATCH % 10);
2762
2763                 status = Write32(state, SC_RA_RAM_DRIVER_VERSION__AX, driverVersion, 0);
2764                 if (status < 0)
2765                         break;
2766
2767                 status = StopOC(state);
2768                 if (status < 0)
2769                         break;
2770
2771                 state->drxd_state = DRXD_STOPPED;
2772                 state->init_done = 1;
2773                 status = 0;
2774         } while (0);
2775         return status;
2776 }
2777
2778 static int DRXD_status(struct drxd_state *state, u32 *pLockStatus)
2779 {
2780         DRX_GetLockStatus(state, pLockStatus);
2781
2782         /*if (*pLockStatus&DRX_LOCK_MPEG) */
2783         if (*pLockStatus & DRX_LOCK_FEC) {
2784                 ConfigureMPEGOutput(state, 1);
2785                 /* Get status again, in case we have MPEG lock now */
2786                 /*DRX_GetLockStatus(state, pLockStatus); */
2787         }
2788
2789         return 0;
2790 }
2791
2792 /****************************************************************************/
2793 /****************************************************************************/
2794 /****************************************************************************/
2795
2796 static int drxd_read_signal_strength(struct dvb_frontend *fe, u16 * strength)
2797 {
2798         struct drxd_state *state = fe->demodulator_priv;
2799         u32 value;
2800         int res;
2801
2802         res = ReadIFAgc(state, &value);
2803         if (res < 0)
2804                 *strength = 0;
2805         else
2806                 *strength = 0xffff - (value << 4);
2807         return 0;
2808 }
2809
2810 static int drxd_read_status(struct dvb_frontend *fe, enum fe_status *status)
2811 {
2812         struct drxd_state *state = fe->demodulator_priv;
2813         u32 lock;
2814
2815         DRXD_status(state, &lock);
2816         *status = 0;
2817         /* No MPEG lock in V255 firmware, bug ? */
2818 #if 1
2819         if (lock & DRX_LOCK_MPEG)
2820                 *status |= FE_HAS_LOCK;
2821 #else
2822         if (lock & DRX_LOCK_FEC)
2823                 *status |= FE_HAS_LOCK;
2824 #endif
2825         if (lock & DRX_LOCK_FEC)
2826                 *status |= FE_HAS_VITERBI | FE_HAS_SYNC;
2827         if (lock & DRX_LOCK_DEMOD)
2828                 *status |= FE_HAS_CARRIER | FE_HAS_SIGNAL;
2829
2830         return 0;
2831 }
2832
2833 static int drxd_init(struct dvb_frontend *fe)
2834 {
2835         struct drxd_state *state = fe->demodulator_priv;
2836
2837         return DRXD_init(state, NULL, 0);
2838 }
2839
2840 static int drxd_config_i2c(struct dvb_frontend *fe, int onoff)
2841 {
2842         struct drxd_state *state = fe->demodulator_priv;
2843
2844         if (state->config.disable_i2c_gate_ctrl == 1)
2845                 return 0;
2846
2847         return DRX_ConfigureI2CBridge(state, onoff);
2848 }
2849
2850 static int drxd_get_tune_settings(struct dvb_frontend *fe,
2851                                   struct dvb_frontend_tune_settings *sets)
2852 {
2853         sets->min_delay_ms = 10000;
2854         sets->max_drift = 0;
2855         sets->step_size = 0;
2856         return 0;
2857 }
2858
2859 static int drxd_read_ber(struct dvb_frontend *fe, u32 * ber)
2860 {
2861         *ber = 0;
2862         return 0;
2863 }
2864
2865 static int drxd_read_snr(struct dvb_frontend *fe, u16 * snr)
2866 {
2867         *snr = 0;
2868         return 0;
2869 }
2870
2871 static int drxd_read_ucblocks(struct dvb_frontend *fe, u32 * ucblocks)
2872 {
2873         *ucblocks = 0;
2874         return 0;
2875 }
2876
2877 static int drxd_sleep(struct dvb_frontend *fe)
2878 {
2879         struct drxd_state *state = fe->demodulator_priv;
2880
2881         ConfigureMPEGOutput(state, 0);
2882         return 0;
2883 }
2884
2885 static int drxd_i2c_gate_ctrl(struct dvb_frontend *fe, int enable)
2886 {
2887         return drxd_config_i2c(fe, enable);
2888 }
2889
2890 static int drxd_set_frontend(struct dvb_frontend *fe)
2891 {
2892         struct dtv_frontend_properties *p = &fe->dtv_property_cache;
2893         struct drxd_state *state = fe->demodulator_priv;
2894         s32 off = 0;
2895
2896         state->props = *p;
2897         DRX_Stop(state);
2898
2899         if (fe->ops.tuner_ops.set_params) {
2900                 fe->ops.tuner_ops.set_params(fe);
2901                 if (fe->ops.i2c_gate_ctrl)
2902                         fe->ops.i2c_gate_ctrl(fe, 0);
2903         }
2904
2905         msleep(200);
2906
2907         return DRX_Start(state, off);
2908 }
2909
2910 static void drxd_release(struct dvb_frontend *fe)
2911 {
2912         struct drxd_state *state = fe->demodulator_priv;
2913
2914         kfree(state);
2915 }
2916
2917 static const struct dvb_frontend_ops drxd_ops = {
2918         .delsys = { SYS_DVBT},
2919         .info = {
2920                  .name = "Micronas DRXD DVB-T",
2921                  .frequency_min = 47125000,
2922                  .frequency_max = 855250000,
2923                  .frequency_stepsize = 166667,
2924                  .frequency_tolerance = 0,
2925                  .caps = FE_CAN_FEC_1_2 | FE_CAN_FEC_2_3 |
2926                  FE_CAN_FEC_3_4 | FE_CAN_FEC_5_6 | FE_CAN_FEC_7_8 |
2927                  FE_CAN_FEC_AUTO |
2928                  FE_CAN_QAM_16 | FE_CAN_QAM_64 |
2929                  FE_CAN_QAM_AUTO |
2930                  FE_CAN_TRANSMISSION_MODE_AUTO |
2931                  FE_CAN_GUARD_INTERVAL_AUTO |
2932                  FE_CAN_HIERARCHY_AUTO | FE_CAN_RECOVER | FE_CAN_MUTE_TS},
2933
2934         .release = drxd_release,
2935         .init = drxd_init,
2936         .sleep = drxd_sleep,
2937         .i2c_gate_ctrl = drxd_i2c_gate_ctrl,
2938
2939         .set_frontend = drxd_set_frontend,
2940         .get_tune_settings = drxd_get_tune_settings,
2941
2942         .read_status = drxd_read_status,
2943         .read_ber = drxd_read_ber,
2944         .read_signal_strength = drxd_read_signal_strength,
2945         .read_snr = drxd_read_snr,
2946         .read_ucblocks = drxd_read_ucblocks,
2947 };
2948
2949 struct dvb_frontend *drxd_attach(const struct drxd_config *config,
2950                                  void *priv, struct i2c_adapter *i2c,
2951                                  struct device *dev)
2952 {
2953         struct drxd_state *state = NULL;
2954
2955         state = kzalloc(sizeof(*state), GFP_KERNEL);
2956         if (!state)
2957                 return NULL;
2958
2959         state->ops = drxd_ops;
2960         state->dev = dev;
2961         state->config = *config;
2962         state->i2c = i2c;
2963         state->priv = priv;
2964
2965         mutex_init(&state->mutex);
2966
2967         if (Read16(state, 0, NULL, 0) < 0)
2968                 goto error;
2969
2970         state->frontend.ops = drxd_ops;
2971         state->frontend.demodulator_priv = state;
2972         ConfigureMPEGOutput(state, 0);
2973         /* add few initialization to allow gate control */
2974         CDRXD(state, state->config.IF ? state->config.IF : 36000000);
2975         InitHI(state);
2976
2977         return &state->frontend;
2978
2979 error:
2980         printk(KERN_ERR "drxd: not found\n");
2981         kfree(state);
2982         return NULL;
2983 }
2984 EXPORT_SYMBOL(drxd_attach);
2985
2986 MODULE_DESCRIPTION("DRXD driver");
2987 MODULE_AUTHOR("Micronas");
2988 MODULE_LICENSE("GPL");