Linux-libre 4.19.8-gnu
[librecmc/linux-libre.git] / drivers / media / dvb-frontends / drxd_hard.c
1 /*
2  * drxd_hard.c: DVB-T Demodulator Micronas DRX3975D-A2,DRX397xD-B1
3  *
4  * Copyright (C) 2003-2007 Micronas
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * version 2 only, as published by the Free Software Foundation.
9  *
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * To obtain the license, point your browser to
17  * http://www.gnu.org/copyleft/gpl.html
18  */
19
20 #include <linux/kernel.h>
21 #include <linux/module.h>
22 #include <linux/moduleparam.h>
23 #include <linux/init.h>
24 #include <linux/delay.h>
25 #include <linux/firmware.h>
26 #include <linux/i2c.h>
27 #include <asm/div64.h>
28
29 #include <media/dvb_frontend.h>
30 #include "drxd.h"
31 #include "drxd_firm.h"
32
33 #define DRX_FW_FILENAME_A2 "/*(DEBLOBBED)*/"
34 #define DRX_FW_FILENAME_B1 "/*(DEBLOBBED)*/"
35
36 #define CHUNK_SIZE 48
37
38 #define DRX_I2C_RMW           0x10
39 #define DRX_I2C_BROADCAST     0x20
40 #define DRX_I2C_CLEARCRC      0x80
41 #define DRX_I2C_SINGLE_MASTER 0xC0
42 #define DRX_I2C_MODEFLAGS     0xC0
43 #define DRX_I2C_FLAGS         0xF0
44
45 #define DEFAULT_LOCK_TIMEOUT    1100
46
47 #define DRX_CHANNEL_AUTO 0
48 #define DRX_CHANNEL_HIGH 1
49 #define DRX_CHANNEL_LOW  2
50
51 #define DRX_LOCK_MPEG  1
52 #define DRX_LOCK_FEC   2
53 #define DRX_LOCK_DEMOD 4
54
55 /****************************************************************************/
56
57 enum CSCDState {
58         CSCD_INIT = 0,
59         CSCD_SET,
60         CSCD_SAVED
61 };
62
63 enum CDrxdState {
64         DRXD_UNINITIALIZED = 0,
65         DRXD_STOPPED,
66         DRXD_STARTED
67 };
68
69 enum AGC_CTRL_MODE {
70         AGC_CTRL_AUTO = 0,
71         AGC_CTRL_USER,
72         AGC_CTRL_OFF
73 };
74
75 enum OperationMode {
76         OM_Default,
77         OM_DVBT_Diversity_Front,
78         OM_DVBT_Diversity_End
79 };
80
81 struct SCfgAgc {
82         enum AGC_CTRL_MODE ctrlMode;
83         u16 outputLevel;        /* range [0, ... , 1023], 1/n of fullscale range */
84         u16 settleLevel;        /* range [0, ... , 1023], 1/n of fullscale range */
85         u16 minOutputLevel;     /* range [0, ... , 1023], 1/n of fullscale range */
86         u16 maxOutputLevel;     /* range [0, ... , 1023], 1/n of fullscale range */
87         u16 speed;              /* range [0, ... , 1023], 1/n of fullscale range */
88
89         u16 R1;
90         u16 R2;
91         u16 R3;
92 };
93
94 struct SNoiseCal {
95         int cpOpt;
96         short cpNexpOfs;
97         short tdCal2k;
98         short tdCal8k;
99 };
100
101 enum app_env {
102         APPENV_STATIC = 0,
103         APPENV_PORTABLE = 1,
104         APPENV_MOBILE = 2
105 };
106
107 enum EIFFilter {
108         IFFILTER_SAW = 0,
109         IFFILTER_DISCRETE = 1
110 };
111
112 struct drxd_state {
113         struct dvb_frontend frontend;
114         struct dvb_frontend_ops ops;
115         struct dtv_frontend_properties props;
116
117         const struct firmware *fw;
118         struct device *dev;
119
120         struct i2c_adapter *i2c;
121         void *priv;
122         struct drxd_config config;
123
124         int i2c_access;
125         int init_done;
126         struct mutex mutex;
127
128         u8 chip_adr;
129         u16 hi_cfg_timing_div;
130         u16 hi_cfg_bridge_delay;
131         u16 hi_cfg_wakeup_key;
132         u16 hi_cfg_ctrl;
133
134         u16 intermediate_freq;
135         u16 osc_clock_freq;
136
137         enum CSCDState cscd_state;
138         enum CDrxdState drxd_state;
139
140         u16 sys_clock_freq;
141         s16 osc_clock_deviation;
142         u16 expected_sys_clock_freq;
143
144         u16 insert_rs_byte;
145         u16 enable_parallel;
146
147         int operation_mode;
148
149         struct SCfgAgc if_agc_cfg;
150         struct SCfgAgc rf_agc_cfg;
151
152         struct SNoiseCal noise_cal;
153
154         u32 fe_fs_add_incr;
155         u32 org_fe_fs_add_incr;
156         u16 current_fe_if_incr;
157
158         u16 m_FeAgRegAgPwd;
159         u16 m_FeAgRegAgAgcSio;
160
161         u16 m_EcOcRegOcModeLop;
162         u16 m_EcOcRegSncSncLvl;
163         u8 *m_InitAtomicRead;
164         u8 *m_HiI2cPatch;
165
166         u8 *m_ResetCEFR;
167         u8 *m_InitFE_1;
168         u8 *m_InitFE_2;
169         u8 *m_InitCP;
170         u8 *m_InitCE;
171         u8 *m_InitEQ;
172         u8 *m_InitSC;
173         u8 *m_InitEC;
174         u8 *m_ResetECRAM;
175         u8 *m_InitDiversityFront;
176         u8 *m_InitDiversityEnd;
177         u8 *m_DisableDiversity;
178         u8 *m_StartDiversityFront;
179         u8 *m_StartDiversityEnd;
180
181         u8 *m_DiversityDelay8MHZ;
182         u8 *m_DiversityDelay6MHZ;
183
184         u8 *microcode;
185         u32 microcode_length;
186
187         int type_A;
188         int PGA;
189         int diversity;
190         int tuner_mirrors;
191
192         enum app_env app_env_default;
193         enum app_env app_env_diversity;
194
195 };
196
197 /****************************************************************************/
198 /* I2C **********************************************************************/
199 /****************************************************************************/
200
201 static int i2c_write(struct i2c_adapter *adap, u8 adr, u8 * data, int len)
202 {
203         struct i2c_msg msg = {.addr = adr, .flags = 0, .buf = data, .len = len };
204
205         if (i2c_transfer(adap, &msg, 1) != 1)
206                 return -1;
207         return 0;
208 }
209
210 static int i2c_read(struct i2c_adapter *adap,
211                     u8 adr, u8 *msg, int len, u8 *answ, int alen)
212 {
213         struct i2c_msg msgs[2] = {
214                 {
215                         .addr = adr, .flags = 0,
216                         .buf = msg, .len = len
217                 }, {
218                         .addr = adr, .flags = I2C_M_RD,
219                         .buf = answ, .len = alen
220                 }
221         };
222         if (i2c_transfer(adap, msgs, 2) != 2)
223                 return -1;
224         return 0;
225 }
226
227 static inline u32 MulDiv32(u32 a, u32 b, u32 c)
228 {
229         u64 tmp64;
230
231         tmp64 = (u64)a * (u64)b;
232         do_div(tmp64, c);
233
234         return (u32) tmp64;
235 }
236
237 static int Read16(struct drxd_state *state, u32 reg, u16 *data, u8 flags)
238 {
239         u8 adr = state->config.demod_address;
240         u8 mm1[4] = { reg & 0xff, (reg >> 16) & 0xff,
241                 flags | ((reg >> 24) & 0xff), (reg >> 8) & 0xff
242         };
243         u8 mm2[2];
244         if (i2c_read(state->i2c, adr, mm1, 4, mm2, 2) < 0)
245                 return -1;
246         if (data)
247                 *data = mm2[0] | (mm2[1] << 8);
248         return mm2[0] | (mm2[1] << 8);
249 }
250
251 static int Read32(struct drxd_state *state, u32 reg, u32 *data, u8 flags)
252 {
253         u8 adr = state->config.demod_address;
254         u8 mm1[4] = { reg & 0xff, (reg >> 16) & 0xff,
255                 flags | ((reg >> 24) & 0xff), (reg >> 8) & 0xff
256         };
257         u8 mm2[4];
258
259         if (i2c_read(state->i2c, adr, mm1, 4, mm2, 4) < 0)
260                 return -1;
261         if (data)
262                 *data =
263                     mm2[0] | (mm2[1] << 8) | (mm2[2] << 16) | (mm2[3] << 24);
264         return 0;
265 }
266
267 static int Write16(struct drxd_state *state, u32 reg, u16 data, u8 flags)
268 {
269         u8 adr = state->config.demod_address;
270         u8 mm[6] = { reg & 0xff, (reg >> 16) & 0xff,
271                 flags | ((reg >> 24) & 0xff), (reg >> 8) & 0xff,
272                 data & 0xff, (data >> 8) & 0xff
273         };
274
275         if (i2c_write(state->i2c, adr, mm, 6) < 0)
276                 return -1;
277         return 0;
278 }
279
280 static int Write32(struct drxd_state *state, u32 reg, u32 data, u8 flags)
281 {
282         u8 adr = state->config.demod_address;
283         u8 mm[8] = { reg & 0xff, (reg >> 16) & 0xff,
284                 flags | ((reg >> 24) & 0xff), (reg >> 8) & 0xff,
285                 data & 0xff, (data >> 8) & 0xff,
286                 (data >> 16) & 0xff, (data >> 24) & 0xff
287         };
288
289         if (i2c_write(state->i2c, adr, mm, 8) < 0)
290                 return -1;
291         return 0;
292 }
293
294 static int write_chunk(struct drxd_state *state,
295                        u32 reg, u8 *data, u32 len, u8 flags)
296 {
297         u8 adr = state->config.demod_address;
298         u8 mm[CHUNK_SIZE + 4] = { reg & 0xff, (reg >> 16) & 0xff,
299                 flags | ((reg >> 24) & 0xff), (reg >> 8) & 0xff
300         };
301         int i;
302
303         for (i = 0; i < len; i++)
304                 mm[4 + i] = data[i];
305         if (i2c_write(state->i2c, adr, mm, 4 + len) < 0) {
306                 printk(KERN_ERR "error in write_chunk\n");
307                 return -1;
308         }
309         return 0;
310 }
311
312 static int WriteBlock(struct drxd_state *state,
313                       u32 Address, u16 BlockSize, u8 *pBlock, u8 Flags)
314 {
315         while (BlockSize > 0) {
316                 u16 Chunk = BlockSize > CHUNK_SIZE ? CHUNK_SIZE : BlockSize;
317
318                 if (write_chunk(state, Address, pBlock, Chunk, Flags) < 0)
319                         return -1;
320                 pBlock += Chunk;
321                 Address += (Chunk >> 1);
322                 BlockSize -= Chunk;
323         }
324         return 0;
325 }
326
327 static int WriteTable(struct drxd_state *state, u8 * pTable)
328 {
329         int status = 0;
330
331         if (!pTable)
332                 return 0;
333
334         while (!status) {
335                 u16 Length;
336                 u32 Address = pTable[0] | (pTable[1] << 8) |
337                     (pTable[2] << 16) | (pTable[3] << 24);
338
339                 if (Address == 0xFFFFFFFF)
340                         break;
341                 pTable += sizeof(u32);
342
343                 Length = pTable[0] | (pTable[1] << 8);
344                 pTable += sizeof(u16);
345                 if (!Length)
346                         break;
347                 status = WriteBlock(state, Address, Length * 2, pTable, 0);
348                 pTable += (Length * 2);
349         }
350         return status;
351 }
352
353 /****************************************************************************/
354 /****************************************************************************/
355 /****************************************************************************/
356
357 static int ResetCEFR(struct drxd_state *state)
358 {
359         return WriteTable(state, state->m_ResetCEFR);
360 }
361
362 static int InitCP(struct drxd_state *state)
363 {
364         return WriteTable(state, state->m_InitCP);
365 }
366
367 static int InitCE(struct drxd_state *state)
368 {
369         int status;
370         enum app_env AppEnv = state->app_env_default;
371
372         do {
373                 status = WriteTable(state, state->m_InitCE);
374                 if (status < 0)
375                         break;
376
377                 if (state->operation_mode == OM_DVBT_Diversity_Front ||
378                     state->operation_mode == OM_DVBT_Diversity_End) {
379                         AppEnv = state->app_env_diversity;
380                 }
381                 if (AppEnv == APPENV_STATIC) {
382                         status = Write16(state, CE_REG_TAPSET__A, 0x0000, 0);
383                         if (status < 0)
384                                 break;
385                 } else if (AppEnv == APPENV_PORTABLE) {
386                         status = Write16(state, CE_REG_TAPSET__A, 0x0001, 0);
387                         if (status < 0)
388                                 break;
389                 } else if (AppEnv == APPENV_MOBILE && state->type_A) {
390                         status = Write16(state, CE_REG_TAPSET__A, 0x0002, 0);
391                         if (status < 0)
392                                 break;
393                 } else if (AppEnv == APPENV_MOBILE && !state->type_A) {
394                         status = Write16(state, CE_REG_TAPSET__A, 0x0006, 0);
395                         if (status < 0)
396                                 break;
397                 }
398
399                 /* start ce */
400                 status = Write16(state, B_CE_REG_COMM_EXEC__A, 0x0001, 0);
401                 if (status < 0)
402                         break;
403         } while (0);
404         return status;
405 }
406
407 static int StopOC(struct drxd_state *state)
408 {
409         int status = 0;
410         u16 ocSyncLvl = 0;
411         u16 ocModeLop = state->m_EcOcRegOcModeLop;
412         u16 dtoIncLop = 0;
413         u16 dtoIncHip = 0;
414
415         do {
416                 /* Store output configuration */
417                 status = Read16(state, EC_OC_REG_SNC_ISC_LVL__A, &ocSyncLvl, 0);
418                 if (status < 0)
419                         break;
420                 /* CHK_ERROR(Read16(EC_OC_REG_OC_MODE_LOP__A, &ocModeLop)); */
421                 state->m_EcOcRegSncSncLvl = ocSyncLvl;
422                 /* m_EcOcRegOcModeLop = ocModeLop; */
423
424                 /* Flush FIFO (byte-boundary) at fixed rate */
425                 status = Read16(state, EC_OC_REG_RCN_MAP_LOP__A, &dtoIncLop, 0);
426                 if (status < 0)
427                         break;
428                 status = Read16(state, EC_OC_REG_RCN_MAP_HIP__A, &dtoIncHip, 0);
429                 if (status < 0)
430                         break;
431                 status = Write16(state, EC_OC_REG_DTO_INC_LOP__A, dtoIncLop, 0);
432                 if (status < 0)
433                         break;
434                 status = Write16(state, EC_OC_REG_DTO_INC_HIP__A, dtoIncHip, 0);
435                 if (status < 0)
436                         break;
437                 ocModeLop &= ~(EC_OC_REG_OC_MODE_LOP_DTO_CTR_SRC__M);
438                 ocModeLop |= EC_OC_REG_OC_MODE_LOP_DTO_CTR_SRC_STATIC;
439                 status = Write16(state, EC_OC_REG_OC_MODE_LOP__A, ocModeLop, 0);
440                 if (status < 0)
441                         break;
442                 status = Write16(state, EC_OC_REG_COMM_EXEC__A, EC_OC_REG_COMM_EXEC_CTL_HOLD, 0);
443                 if (status < 0)
444                         break;
445
446                 msleep(1);
447                 /* Output pins to '0' */
448                 status = Write16(state, EC_OC_REG_OCR_MPG_UOS__A, EC_OC_REG_OCR_MPG_UOS__M, 0);
449                 if (status < 0)
450                         break;
451
452                 /* Force the OC out of sync */
453                 ocSyncLvl &= ~(EC_OC_REG_SNC_ISC_LVL_OSC__M);
454                 status = Write16(state, EC_OC_REG_SNC_ISC_LVL__A, ocSyncLvl, 0);
455                 if (status < 0)
456                         break;
457                 ocModeLop &= ~(EC_OC_REG_OC_MODE_LOP_PAR_ENA__M);
458                 ocModeLop |= EC_OC_REG_OC_MODE_LOP_PAR_ENA_ENABLE;
459                 ocModeLop |= 0x2;       /* Magically-out-of-sync */
460                 status = Write16(state, EC_OC_REG_OC_MODE_LOP__A, ocModeLop, 0);
461                 if (status < 0)
462                         break;
463                 status = Write16(state, EC_OC_REG_COMM_INT_STA__A, 0x0, 0);
464                 if (status < 0)
465                         break;
466                 status = Write16(state, EC_OC_REG_COMM_EXEC__A, EC_OC_REG_COMM_EXEC_CTL_ACTIVE, 0);
467                 if (status < 0)
468                         break;
469         } while (0);
470
471         return status;
472 }
473
474 static int StartOC(struct drxd_state *state)
475 {
476         int status = 0;
477
478         do {
479                 /* Stop OC */
480                 status = Write16(state, EC_OC_REG_COMM_EXEC__A, EC_OC_REG_COMM_EXEC_CTL_HOLD, 0);
481                 if (status < 0)
482                         break;
483
484                 /* Restore output configuration */
485                 status = Write16(state, EC_OC_REG_SNC_ISC_LVL__A, state->m_EcOcRegSncSncLvl, 0);
486                 if (status < 0)
487                         break;
488                 status = Write16(state, EC_OC_REG_OC_MODE_LOP__A, state->m_EcOcRegOcModeLop, 0);
489                 if (status < 0)
490                         break;
491
492                 /* Output pins active again */
493                 status = Write16(state, EC_OC_REG_OCR_MPG_UOS__A, EC_OC_REG_OCR_MPG_UOS_INIT, 0);
494                 if (status < 0)
495                         break;
496
497                 /* Start OC */
498                 status = Write16(state, EC_OC_REG_COMM_EXEC__A, EC_OC_REG_COMM_EXEC_CTL_ACTIVE, 0);
499                 if (status < 0)
500                         break;
501         } while (0);
502         return status;
503 }
504
505 static int InitEQ(struct drxd_state *state)
506 {
507         return WriteTable(state, state->m_InitEQ);
508 }
509
510 static int InitEC(struct drxd_state *state)
511 {
512         return WriteTable(state, state->m_InitEC);
513 }
514
515 static int InitSC(struct drxd_state *state)
516 {
517         return WriteTable(state, state->m_InitSC);
518 }
519
520 static int InitAtomicRead(struct drxd_state *state)
521 {
522         return WriteTable(state, state->m_InitAtomicRead);
523 }
524
525 static int CorrectSysClockDeviation(struct drxd_state *state);
526
527 static int DRX_GetLockStatus(struct drxd_state *state, u32 * pLockStatus)
528 {
529         u16 ScRaRamLock = 0;
530         const u16 mpeg_lock_mask = (SC_RA_RAM_LOCK_MPEG__M |
531                                     SC_RA_RAM_LOCK_FEC__M |
532                                     SC_RA_RAM_LOCK_DEMOD__M);
533         const u16 fec_lock_mask = (SC_RA_RAM_LOCK_FEC__M |
534                                    SC_RA_RAM_LOCK_DEMOD__M);
535         const u16 demod_lock_mask = SC_RA_RAM_LOCK_DEMOD__M;
536
537         int status;
538
539         *pLockStatus = 0;
540
541         status = Read16(state, SC_RA_RAM_LOCK__A, &ScRaRamLock, 0x0000);
542         if (status < 0) {
543                 printk(KERN_ERR "Can't read SC_RA_RAM_LOCK__A status = %08x\n", status);
544                 return status;
545         }
546
547         if (state->drxd_state != DRXD_STARTED)
548                 return 0;
549
550         if ((ScRaRamLock & mpeg_lock_mask) == mpeg_lock_mask) {
551                 *pLockStatus |= DRX_LOCK_MPEG;
552                 CorrectSysClockDeviation(state);
553         }
554
555         if ((ScRaRamLock & fec_lock_mask) == fec_lock_mask)
556                 *pLockStatus |= DRX_LOCK_FEC;
557
558         if ((ScRaRamLock & demod_lock_mask) == demod_lock_mask)
559                 *pLockStatus |= DRX_LOCK_DEMOD;
560         return 0;
561 }
562
563 /****************************************************************************/
564
565 static int SetCfgIfAgc(struct drxd_state *state, struct SCfgAgc *cfg)
566 {
567         int status;
568
569         if (cfg->outputLevel > DRXD_FE_CTRL_MAX)
570                 return -1;
571
572         if (cfg->ctrlMode == AGC_CTRL_USER) {
573                 do {
574                         u16 FeAgRegPm1AgcWri;
575                         u16 FeAgRegAgModeLop;
576
577                         status = Read16(state, FE_AG_REG_AG_MODE_LOP__A, &FeAgRegAgModeLop, 0);
578                         if (status < 0)
579                                 break;
580                         FeAgRegAgModeLop &= (~FE_AG_REG_AG_MODE_LOP_MODE_4__M);
581                         FeAgRegAgModeLop |= FE_AG_REG_AG_MODE_LOP_MODE_4_STATIC;
582                         status = Write16(state, FE_AG_REG_AG_MODE_LOP__A, FeAgRegAgModeLop, 0);
583                         if (status < 0)
584                                 break;
585
586                         FeAgRegPm1AgcWri = (u16) (cfg->outputLevel &
587                                                   FE_AG_REG_PM1_AGC_WRI__M);
588                         status = Write16(state, FE_AG_REG_PM1_AGC_WRI__A, FeAgRegPm1AgcWri, 0);
589                         if (status < 0)
590                                 break;
591                 } while (0);
592         } else if (cfg->ctrlMode == AGC_CTRL_AUTO) {
593                 if (((cfg->maxOutputLevel) < (cfg->minOutputLevel)) ||
594                     ((cfg->maxOutputLevel) > DRXD_FE_CTRL_MAX) ||
595                     ((cfg->speed) > DRXD_FE_CTRL_MAX) ||
596                     ((cfg->settleLevel) > DRXD_FE_CTRL_MAX)
597                     )
598                         return -1;
599                 do {
600                         u16 FeAgRegAgModeLop;
601                         u16 FeAgRegEgcSetLvl;
602                         u16 slope, offset;
603
604                         /* == Mode == */
605
606                         status = Read16(state, FE_AG_REG_AG_MODE_LOP__A, &FeAgRegAgModeLop, 0);
607                         if (status < 0)
608                                 break;
609                         FeAgRegAgModeLop &= (~FE_AG_REG_AG_MODE_LOP_MODE_4__M);
610                         FeAgRegAgModeLop |=
611                             FE_AG_REG_AG_MODE_LOP_MODE_4_DYNAMIC;
612                         status = Write16(state, FE_AG_REG_AG_MODE_LOP__A, FeAgRegAgModeLop, 0);
613                         if (status < 0)
614                                 break;
615
616                         /* == Settle level == */
617
618                         FeAgRegEgcSetLvl = (u16) ((cfg->settleLevel >> 1) &
619                                                   FE_AG_REG_EGC_SET_LVL__M);
620                         status = Write16(state, FE_AG_REG_EGC_SET_LVL__A, FeAgRegEgcSetLvl, 0);
621                         if (status < 0)
622                                 break;
623
624                         /* == Min/Max == */
625
626                         slope = (u16) ((cfg->maxOutputLevel -
627                                         cfg->minOutputLevel) / 2);
628                         offset = (u16) ((cfg->maxOutputLevel +
629                                          cfg->minOutputLevel) / 2 - 511);
630
631                         status = Write16(state, FE_AG_REG_GC1_AGC_RIC__A, slope, 0);
632                         if (status < 0)
633                                 break;
634                         status = Write16(state, FE_AG_REG_GC1_AGC_OFF__A, offset, 0);
635                         if (status < 0)
636                                 break;
637
638                         /* == Speed == */
639                         {
640                                 const u16 maxRur = 8;
641                                 static const u16 slowIncrDecLUT[] = {
642                                         3, 4, 4, 5, 6 };
643                                 static const u16 fastIncrDecLUT[] = {
644                                         14, 15, 15, 16,
645                                         17, 18, 18, 19,
646                                         20, 21, 22, 23,
647                                         24, 26, 27, 28,
648                                         29, 31
649                                 };
650
651                                 u16 fineSteps = (DRXD_FE_CTRL_MAX + 1) /
652                                     (maxRur + 1);
653                                 u16 fineSpeed = (u16) (cfg->speed -
654                                                        ((cfg->speed /
655                                                          fineSteps) *
656                                                         fineSteps));
657                                 u16 invRurCount = (u16) (cfg->speed /
658                                                          fineSteps);
659                                 u16 rurCount;
660                                 if (invRurCount > maxRur) {
661                                         rurCount = 0;
662                                         fineSpeed += fineSteps;
663                                 } else {
664                                         rurCount = maxRur - invRurCount;
665                                 }
666
667                                 /*
668                                    fastInc = default *
669                                    (2^(fineSpeed/fineSteps))
670                                    => range[default...2*default>
671                                    slowInc = default *
672                                    (2^(fineSpeed/fineSteps))
673                                  */
674                                 {
675                                         u16 fastIncrDec =
676                                             fastIncrDecLUT[fineSpeed /
677                                                            ((fineSteps /
678                                                              (14 + 1)) + 1)];
679                                         u16 slowIncrDec =
680                                             slowIncrDecLUT[fineSpeed /
681                                                            (fineSteps /
682                                                             (3 + 1))];
683
684                                         status = Write16(state, FE_AG_REG_EGC_RUR_CNT__A, rurCount, 0);
685                                         if (status < 0)
686                                                 break;
687                                         status = Write16(state, FE_AG_REG_EGC_FAS_INC__A, fastIncrDec, 0);
688                                         if (status < 0)
689                                                 break;
690                                         status = Write16(state, FE_AG_REG_EGC_FAS_DEC__A, fastIncrDec, 0);
691                                         if (status < 0)
692                                                 break;
693                                         status = Write16(state, FE_AG_REG_EGC_SLO_INC__A, slowIncrDec, 0);
694                                         if (status < 0)
695                                                 break;
696                                         status = Write16(state, FE_AG_REG_EGC_SLO_DEC__A, slowIncrDec, 0);
697                                         if (status < 0)
698                                                 break;
699                                 }
700                         }
701                 } while (0);
702
703         } else {
704                 /* No OFF mode for IF control */
705                 return -1;
706         }
707         return status;
708 }
709
710 static int SetCfgRfAgc(struct drxd_state *state, struct SCfgAgc *cfg)
711 {
712         int status = 0;
713
714         if (cfg->outputLevel > DRXD_FE_CTRL_MAX)
715                 return -1;
716
717         if (cfg->ctrlMode == AGC_CTRL_USER) {
718                 do {
719                         u16 AgModeLop = 0;
720                         u16 level = (cfg->outputLevel);
721
722                         if (level == DRXD_FE_CTRL_MAX)
723                                 level++;
724
725                         status = Write16(state, FE_AG_REG_PM2_AGC_WRI__A, level, 0x0000);
726                         if (status < 0)
727                                 break;
728
729                         /*==== Mode ====*/
730
731                         /* Powerdown PD2, WRI source */
732                         state->m_FeAgRegAgPwd &= ~(FE_AG_REG_AG_PWD_PWD_PD2__M);
733                         state->m_FeAgRegAgPwd |=
734                             FE_AG_REG_AG_PWD_PWD_PD2_DISABLE;
735                         status = Write16(state, FE_AG_REG_AG_PWD__A, state->m_FeAgRegAgPwd, 0x0000);
736                         if (status < 0)
737                                 break;
738
739                         status = Read16(state, FE_AG_REG_AG_MODE_LOP__A, &AgModeLop, 0x0000);
740                         if (status < 0)
741                                 break;
742                         AgModeLop &= (~(FE_AG_REG_AG_MODE_LOP_MODE_5__M |
743                                         FE_AG_REG_AG_MODE_LOP_MODE_E__M));
744                         AgModeLop |= (FE_AG_REG_AG_MODE_LOP_MODE_5_STATIC |
745                                       FE_AG_REG_AG_MODE_LOP_MODE_E_STATIC);
746                         status = Write16(state, FE_AG_REG_AG_MODE_LOP__A, AgModeLop, 0x0000);
747                         if (status < 0)
748                                 break;
749
750                         /* enable AGC2 pin */
751                         {
752                                 u16 FeAgRegAgAgcSio = 0;
753                                 status = Read16(state, FE_AG_REG_AG_AGC_SIO__A, &FeAgRegAgAgcSio, 0x0000);
754                                 if (status < 0)
755                                         break;
756                                 FeAgRegAgAgcSio &=
757                                     ~(FE_AG_REG_AG_AGC_SIO_AGC_SIO_2__M);
758                                 FeAgRegAgAgcSio |=
759                                     FE_AG_REG_AG_AGC_SIO_AGC_SIO_2_OUTPUT;
760                                 status = Write16(state, FE_AG_REG_AG_AGC_SIO__A, FeAgRegAgAgcSio, 0x0000);
761                                 if (status < 0)
762                                         break;
763                         }
764
765                 } while (0);
766         } else if (cfg->ctrlMode == AGC_CTRL_AUTO) {
767                 u16 AgModeLop = 0;
768
769                 do {
770                         u16 level;
771                         /* Automatic control */
772                         /* Powerup PD2, AGC2 as output, TGC source */
773                         (state->m_FeAgRegAgPwd) &=
774                             ~(FE_AG_REG_AG_PWD_PWD_PD2__M);
775                         (state->m_FeAgRegAgPwd) |=
776                             FE_AG_REG_AG_PWD_PWD_PD2_DISABLE;
777                         status = Write16(state, FE_AG_REG_AG_PWD__A, (state->m_FeAgRegAgPwd), 0x0000);
778                         if (status < 0)
779                                 break;
780
781                         status = Read16(state, FE_AG_REG_AG_MODE_LOP__A, &AgModeLop, 0x0000);
782                         if (status < 0)
783                                 break;
784                         AgModeLop &= (~(FE_AG_REG_AG_MODE_LOP_MODE_5__M |
785                                         FE_AG_REG_AG_MODE_LOP_MODE_E__M));
786                         AgModeLop |= (FE_AG_REG_AG_MODE_LOP_MODE_5_STATIC |
787                                       FE_AG_REG_AG_MODE_LOP_MODE_E_DYNAMIC);
788                         status = Write16(state, FE_AG_REG_AG_MODE_LOP__A, AgModeLop, 0x0000);
789                         if (status < 0)
790                                 break;
791                         /* Settle level */
792                         level = (((cfg->settleLevel) >> 4) &
793                                  FE_AG_REG_TGC_SET_LVL__M);
794                         status = Write16(state, FE_AG_REG_TGC_SET_LVL__A, level, 0x0000);
795                         if (status < 0)
796                                 break;
797
798                         /* Min/max: don't care */
799
800                         /* Speed: TODO */
801
802                         /* enable AGC2 pin */
803                         {
804                                 u16 FeAgRegAgAgcSio = 0;
805                                 status = Read16(state, FE_AG_REG_AG_AGC_SIO__A, &FeAgRegAgAgcSio, 0x0000);
806                                 if (status < 0)
807                                         break;
808                                 FeAgRegAgAgcSio &=
809                                     ~(FE_AG_REG_AG_AGC_SIO_AGC_SIO_2__M);
810                                 FeAgRegAgAgcSio |=
811                                     FE_AG_REG_AG_AGC_SIO_AGC_SIO_2_OUTPUT;
812                                 status = Write16(state, FE_AG_REG_AG_AGC_SIO__A, FeAgRegAgAgcSio, 0x0000);
813                                 if (status < 0)
814                                         break;
815                         }
816
817                 } while (0);
818         } else {
819                 u16 AgModeLop = 0;
820
821                 do {
822                         /* No RF AGC control */
823                         /* Powerdown PD2, AGC2 as output, WRI source */
824                         (state->m_FeAgRegAgPwd) &=
825                             ~(FE_AG_REG_AG_PWD_PWD_PD2__M);
826                         (state->m_FeAgRegAgPwd) |=
827                             FE_AG_REG_AG_PWD_PWD_PD2_ENABLE;
828                         status = Write16(state, FE_AG_REG_AG_PWD__A, (state->m_FeAgRegAgPwd), 0x0000);
829                         if (status < 0)
830                                 break;
831
832                         status = Read16(state, FE_AG_REG_AG_MODE_LOP__A, &AgModeLop, 0x0000);
833                         if (status < 0)
834                                 break;
835                         AgModeLop &= (~(FE_AG_REG_AG_MODE_LOP_MODE_5__M |
836                                         FE_AG_REG_AG_MODE_LOP_MODE_E__M));
837                         AgModeLop |= (FE_AG_REG_AG_MODE_LOP_MODE_5_STATIC |
838                                       FE_AG_REG_AG_MODE_LOP_MODE_E_STATIC);
839                         status = Write16(state, FE_AG_REG_AG_MODE_LOP__A, AgModeLop, 0x0000);
840                         if (status < 0)
841                                 break;
842
843                         /* set FeAgRegAgAgcSio AGC2 (RF) as input */
844                         {
845                                 u16 FeAgRegAgAgcSio = 0;
846                                 status = Read16(state, FE_AG_REG_AG_AGC_SIO__A, &FeAgRegAgAgcSio, 0x0000);
847                                 if (status < 0)
848                                         break;
849                                 FeAgRegAgAgcSio &=
850                                     ~(FE_AG_REG_AG_AGC_SIO_AGC_SIO_2__M);
851                                 FeAgRegAgAgcSio |=
852                                     FE_AG_REG_AG_AGC_SIO_AGC_SIO_2_INPUT;
853                                 status = Write16(state, FE_AG_REG_AG_AGC_SIO__A, FeAgRegAgAgcSio, 0x0000);
854                                 if (status < 0)
855                                         break;
856                         }
857                 } while (0);
858         }
859         return status;
860 }
861
862 static int ReadIFAgc(struct drxd_state *state, u32 * pValue)
863 {
864         int status = 0;
865
866         *pValue = 0;
867         if (state->if_agc_cfg.ctrlMode != AGC_CTRL_OFF) {
868                 u16 Value;
869                 status = Read16(state, FE_AG_REG_GC1_AGC_DAT__A, &Value, 0);
870                 Value &= FE_AG_REG_GC1_AGC_DAT__M;
871                 if (status >= 0) {
872                         /*           3.3V
873                            |
874                            R1
875                            |
876                            Vin - R3 - * -- Vout
877                            |
878                            R2
879                            |
880                            GND
881                          */
882                         u32 R1 = state->if_agc_cfg.R1;
883                         u32 R2 = state->if_agc_cfg.R2;
884                         u32 R3 = state->if_agc_cfg.R3;
885
886                         u32 Vmax, Rpar, Vmin, Vout;
887
888                         if (R2 == 0 && (R1 == 0 || R3 == 0))
889                                 return 0;
890
891                         Vmax = (3300 * R2) / (R1 + R2);
892                         Rpar = (R2 * R3) / (R3 + R2);
893                         Vmin = (3300 * Rpar) / (R1 + Rpar);
894                         Vout = Vmin + ((Vmax - Vmin) * Value) / 1024;
895
896                         *pValue = Vout;
897                 }
898         }
899         return status;
900 }
901
902 static int load_firmware(struct drxd_state *state, const char *fw_name)
903 {
904         const struct firmware *fw;
905
906         if (reject_firmware(&fw, fw_name, state->dev) < 0) {
907                 printk(KERN_ERR "drxd: firmware load failure [%s]\n", fw_name);
908                 return -EIO;
909         }
910
911         state->microcode = kmemdup(fw->data, fw->size, GFP_KERNEL);
912         if (!state->microcode) {
913                 release_firmware(fw);
914                 return -ENOMEM;
915         }
916
917         state->microcode_length = fw->size;
918         release_firmware(fw);
919         return 0;
920 }
921
922 static int DownloadMicrocode(struct drxd_state *state,
923                              const u8 *pMCImage, u32 Length)
924 {
925         u8 *pSrc;
926         u32 Address;
927         u16 nBlocks;
928         u16 BlockSize;
929         u32 offset = 0;
930         int i, status = 0;
931
932         pSrc = (u8 *) pMCImage;
933         /* We're not using Flags */
934         /* Flags = (pSrc[0] << 8) | pSrc[1]; */
935         pSrc += sizeof(u16);
936         offset += sizeof(u16);
937         nBlocks = (pSrc[0] << 8) | pSrc[1];
938         pSrc += sizeof(u16);
939         offset += sizeof(u16);
940
941         for (i = 0; i < nBlocks; i++) {
942                 Address = (pSrc[0] << 24) | (pSrc[1] << 16) |
943                     (pSrc[2] << 8) | pSrc[3];
944                 pSrc += sizeof(u32);
945                 offset += sizeof(u32);
946
947                 BlockSize = ((pSrc[0] << 8) | pSrc[1]) * sizeof(u16);
948                 pSrc += sizeof(u16);
949                 offset += sizeof(u16);
950
951                 /* We're not using Flags */
952                 /* u16 Flags = (pSrc[0] << 8) | pSrc[1]; */
953                 pSrc += sizeof(u16);
954                 offset += sizeof(u16);
955
956                 /* We're not using BlockCRC */
957                 /* u16 BlockCRC = (pSrc[0] << 8) | pSrc[1]; */
958                 pSrc += sizeof(u16);
959                 offset += sizeof(u16);
960
961                 status = WriteBlock(state, Address, BlockSize,
962                                     pSrc, DRX_I2C_CLEARCRC);
963                 if (status < 0)
964                         break;
965                 pSrc += BlockSize;
966                 offset += BlockSize;
967         }
968
969         return status;
970 }
971
972 static int HI_Command(struct drxd_state *state, u16 cmd, u16 * pResult)
973 {
974         u32 nrRetries = 0;
975         int status;
976
977         status = Write16(state, HI_RA_RAM_SRV_CMD__A, cmd, 0);
978         if (status < 0)
979                 return status;
980
981         do {
982                 nrRetries += 1;
983                 if (nrRetries > DRXD_MAX_RETRIES) {
984                         status = -1;
985                         break;
986                 }
987                 status = Read16(state, HI_RA_RAM_SRV_CMD__A, NULL, 0);
988         } while (status != 0);
989
990         if (status >= 0)
991                 status = Read16(state, HI_RA_RAM_SRV_RES__A, pResult, 0);
992         return status;
993 }
994
995 static int HI_CfgCommand(struct drxd_state *state)
996 {
997         int status = 0;
998
999         mutex_lock(&state->mutex);
1000         Write16(state, HI_RA_RAM_SRV_CFG_KEY__A, HI_RA_RAM_SRV_RST_KEY_ACT, 0);
1001         Write16(state, HI_RA_RAM_SRV_CFG_DIV__A, state->hi_cfg_timing_div, 0);
1002         Write16(state, HI_RA_RAM_SRV_CFG_BDL__A, state->hi_cfg_bridge_delay, 0);
1003         Write16(state, HI_RA_RAM_SRV_CFG_WUP__A, state->hi_cfg_wakeup_key, 0);
1004         Write16(state, HI_RA_RAM_SRV_CFG_ACT__A, state->hi_cfg_ctrl, 0);
1005
1006         Write16(state, HI_RA_RAM_SRV_CFG_KEY__A, HI_RA_RAM_SRV_RST_KEY_ACT, 0);
1007
1008         if ((state->hi_cfg_ctrl & HI_RA_RAM_SRV_CFG_ACT_PWD_EXE) ==
1009             HI_RA_RAM_SRV_CFG_ACT_PWD_EXE)
1010                 status = Write16(state, HI_RA_RAM_SRV_CMD__A,
1011                                  HI_RA_RAM_SRV_CMD_CONFIG, 0);
1012         else
1013                 status = HI_Command(state, HI_RA_RAM_SRV_CMD_CONFIG, NULL);
1014         mutex_unlock(&state->mutex);
1015         return status;
1016 }
1017
1018 static int InitHI(struct drxd_state *state)
1019 {
1020         state->hi_cfg_wakeup_key = (state->chip_adr);
1021         /* port/bridge/power down ctrl */
1022         state->hi_cfg_ctrl = HI_RA_RAM_SRV_CFG_ACT_SLV0_ON;
1023         return HI_CfgCommand(state);
1024 }
1025
1026 static int HI_ResetCommand(struct drxd_state *state)
1027 {
1028         int status;
1029
1030         mutex_lock(&state->mutex);
1031         status = Write16(state, HI_RA_RAM_SRV_RST_KEY__A,
1032                          HI_RA_RAM_SRV_RST_KEY_ACT, 0);
1033         if (status == 0)
1034                 status = HI_Command(state, HI_RA_RAM_SRV_CMD_RESET, NULL);
1035         mutex_unlock(&state->mutex);
1036         msleep(1);
1037         return status;
1038 }
1039
1040 static int DRX_ConfigureI2CBridge(struct drxd_state *state, int bEnableBridge)
1041 {
1042         state->hi_cfg_ctrl &= (~HI_RA_RAM_SRV_CFG_ACT_BRD__M);
1043         if (bEnableBridge)
1044                 state->hi_cfg_ctrl |= HI_RA_RAM_SRV_CFG_ACT_BRD_ON;
1045         else
1046                 state->hi_cfg_ctrl |= HI_RA_RAM_SRV_CFG_ACT_BRD_OFF;
1047
1048         return HI_CfgCommand(state);
1049 }
1050
1051 #define HI_TR_WRITE      0x9
1052 #define HI_TR_READ       0xA
1053 #define HI_TR_READ_WRITE 0xB
1054 #define HI_TR_BROADCAST  0x4
1055
1056 #if 0
1057 static int AtomicReadBlock(struct drxd_state *state,
1058                            u32 Addr, u16 DataSize, u8 *pData, u8 Flags)
1059 {
1060         int status;
1061         int i = 0;
1062
1063         /* Parameter check */
1064         if ((!pData) || ((DataSize & 1) != 0))
1065                 return -1;
1066
1067         mutex_lock(&state->mutex);
1068
1069         do {
1070                 /* Instruct HI to read n bytes */
1071                 /* TODO use proper names forthese egisters */
1072                 status = Write16(state, HI_RA_RAM_SRV_CFG_KEY__A, (HI_TR_FUNC_ADDR & 0xFFFF), 0);
1073                 if (status < 0)
1074                         break;
1075                 status = Write16(state, HI_RA_RAM_SRV_CFG_DIV__A, (u16) (Addr >> 16), 0);
1076                 if (status < 0)
1077                         break;
1078                 status = Write16(state, HI_RA_RAM_SRV_CFG_BDL__A, (u16) (Addr & 0xFFFF), 0);
1079                 if (status < 0)
1080                         break;
1081                 status = Write16(state, HI_RA_RAM_SRV_CFG_WUP__A, (u16) ((DataSize / 2) - 1), 0);
1082                 if (status < 0)
1083                         break;
1084                 status = Write16(state, HI_RA_RAM_SRV_CFG_ACT__A, HI_TR_READ, 0);
1085                 if (status < 0)
1086                         break;
1087
1088                 status = HI_Command(state, HI_RA_RAM_SRV_CMD_EXECUTE, 0);
1089                 if (status < 0)
1090                         break;
1091
1092         } while (0);
1093
1094         if (status >= 0) {
1095                 for (i = 0; i < (DataSize / 2); i += 1) {
1096                         u16 word;
1097
1098                         status = Read16(state, (HI_RA_RAM_USR_BEGIN__A + i),
1099                                         &word, 0);
1100                         if (status < 0)
1101                                 break;
1102                         pData[2 * i] = (u8) (word & 0xFF);
1103                         pData[(2 * i) + 1] = (u8) (word >> 8);
1104                 }
1105         }
1106         mutex_unlock(&state->mutex);
1107         return status;
1108 }
1109
1110 static int AtomicReadReg32(struct drxd_state *state,
1111                            u32 Addr, u32 *pData, u8 Flags)
1112 {
1113         u8 buf[sizeof(u32)];
1114         int status;
1115
1116         if (!pData)
1117                 return -1;
1118         status = AtomicReadBlock(state, Addr, sizeof(u32), buf, Flags);
1119         *pData = (((u32) buf[0]) << 0) +
1120             (((u32) buf[1]) << 8) +
1121             (((u32) buf[2]) << 16) + (((u32) buf[3]) << 24);
1122         return status;
1123 }
1124 #endif
1125
1126 static int StopAllProcessors(struct drxd_state *state)
1127 {
1128         return Write16(state, HI_COMM_EXEC__A,
1129                        SC_COMM_EXEC_CTL_STOP, DRX_I2C_BROADCAST);
1130 }
1131
1132 static int EnableAndResetMB(struct drxd_state *state)
1133 {
1134         if (state->type_A) {
1135                 /* disable? monitor bus observe @ EC_OC */
1136                 Write16(state, EC_OC_REG_OC_MON_SIO__A, 0x0000, 0x0000);
1137         }
1138
1139         /* do inverse broadcast, followed by explicit write to HI */
1140         Write16(state, HI_COMM_MB__A, 0x0000, DRX_I2C_BROADCAST);
1141         Write16(state, HI_COMM_MB__A, 0x0000, 0x0000);
1142         return 0;
1143 }
1144
1145 static int InitCC(struct drxd_state *state)
1146 {
1147         if (state->osc_clock_freq == 0 ||
1148             state->osc_clock_freq > 20000 ||
1149             (state->osc_clock_freq % 4000) != 0) {
1150                 printk(KERN_ERR "invalid osc frequency %d\n", state->osc_clock_freq);
1151                 return -1;
1152         }
1153
1154         Write16(state, CC_REG_OSC_MODE__A, CC_REG_OSC_MODE_M20, 0);
1155         Write16(state, CC_REG_PLL_MODE__A, CC_REG_PLL_MODE_BYPASS_PLL |
1156                 CC_REG_PLL_MODE_PUMP_CUR_12, 0);
1157         Write16(state, CC_REG_REF_DIVIDE__A, state->osc_clock_freq / 4000, 0);
1158         Write16(state, CC_REG_PWD_MODE__A, CC_REG_PWD_MODE_DOWN_PLL, 0);
1159         Write16(state, CC_REG_UPDATE__A, CC_REG_UPDATE_KEY, 0);
1160
1161         return 0;
1162 }
1163
1164 static int ResetECOD(struct drxd_state *state)
1165 {
1166         int status = 0;
1167
1168         if (state->type_A)
1169                 status = Write16(state, EC_OD_REG_SYNC__A, 0x0664, 0);
1170         else
1171                 status = Write16(state, B_EC_OD_REG_SYNC__A, 0x0664, 0);
1172
1173         if (!(status < 0))
1174                 status = WriteTable(state, state->m_ResetECRAM);
1175         if (!(status < 0))
1176                 status = Write16(state, EC_OD_REG_COMM_EXEC__A, 0x0001, 0);
1177         return status;
1178 }
1179
1180 /* Configure PGA switch */
1181
1182 static int SetCfgPga(struct drxd_state *state, int pgaSwitch)
1183 {
1184         int status;
1185         u16 AgModeLop = 0;
1186         u16 AgModeHip = 0;
1187         do {
1188                 if (pgaSwitch) {
1189                         /* PGA on */
1190                         /* fine gain */
1191                         status = Read16(state, B_FE_AG_REG_AG_MODE_LOP__A, &AgModeLop, 0x0000);
1192                         if (status < 0)
1193                                 break;
1194                         AgModeLop &= (~(B_FE_AG_REG_AG_MODE_LOP_MODE_C__M));
1195                         AgModeLop |= B_FE_AG_REG_AG_MODE_LOP_MODE_C_DYNAMIC;
1196                         status = Write16(state, B_FE_AG_REG_AG_MODE_LOP__A, AgModeLop, 0x0000);
1197                         if (status < 0)
1198                                 break;
1199
1200                         /* coarse gain */
1201                         status = Read16(state, B_FE_AG_REG_AG_MODE_HIP__A, &AgModeHip, 0x0000);
1202                         if (status < 0)
1203                                 break;
1204                         AgModeHip &= (~(B_FE_AG_REG_AG_MODE_HIP_MODE_J__M));
1205                         AgModeHip |= B_FE_AG_REG_AG_MODE_HIP_MODE_J_DYNAMIC;
1206                         status = Write16(state, B_FE_AG_REG_AG_MODE_HIP__A, AgModeHip, 0x0000);
1207                         if (status < 0)
1208                                 break;
1209
1210                         /* enable fine and coarse gain, enable AAF,
1211                            no ext resistor */
1212                         status = Write16(state, B_FE_AG_REG_AG_PGA_MODE__A, B_FE_AG_REG_AG_PGA_MODE_PFY_PCY_AFY_REN, 0x0000);
1213                         if (status < 0)
1214                                 break;
1215                 } else {
1216                         /* PGA off, bypass */
1217
1218                         /* fine gain */
1219                         status = Read16(state, B_FE_AG_REG_AG_MODE_LOP__A, &AgModeLop, 0x0000);
1220                         if (status < 0)
1221                                 break;
1222                         AgModeLop &= (~(B_FE_AG_REG_AG_MODE_LOP_MODE_C__M));
1223                         AgModeLop |= B_FE_AG_REG_AG_MODE_LOP_MODE_C_STATIC;
1224                         status = Write16(state, B_FE_AG_REG_AG_MODE_LOP__A, AgModeLop, 0x0000);
1225                         if (status < 0)
1226                                 break;
1227
1228                         /* coarse gain */
1229                         status = Read16(state, B_FE_AG_REG_AG_MODE_HIP__A, &AgModeHip, 0x0000);
1230                         if (status < 0)
1231                                 break;
1232                         AgModeHip &= (~(B_FE_AG_REG_AG_MODE_HIP_MODE_J__M));
1233                         AgModeHip |= B_FE_AG_REG_AG_MODE_HIP_MODE_J_STATIC;
1234                         status = Write16(state, B_FE_AG_REG_AG_MODE_HIP__A, AgModeHip, 0x0000);
1235                         if (status < 0)
1236                                 break;
1237
1238                         /* disable fine and coarse gain, enable AAF,
1239                            no ext resistor */
1240                         status = Write16(state, B_FE_AG_REG_AG_PGA_MODE__A, B_FE_AG_REG_AG_PGA_MODE_PFN_PCN_AFY_REN, 0x0000);
1241                         if (status < 0)
1242                                 break;
1243                 }
1244         } while (0);
1245         return status;
1246 }
1247
1248 static int InitFE(struct drxd_state *state)
1249 {
1250         int status;
1251
1252         do {
1253                 status = WriteTable(state, state->m_InitFE_1);
1254                 if (status < 0)
1255                         break;
1256
1257                 if (state->type_A) {
1258                         status = Write16(state, FE_AG_REG_AG_PGA_MODE__A,
1259                                          FE_AG_REG_AG_PGA_MODE_PFN_PCN_AFY_REN,
1260                                          0);
1261                 } else {
1262                         if (state->PGA)
1263                                 status = SetCfgPga(state, 0);
1264                         else
1265                                 status =
1266                                     Write16(state, B_FE_AG_REG_AG_PGA_MODE__A,
1267                                             B_FE_AG_REG_AG_PGA_MODE_PFN_PCN_AFY_REN,
1268                                             0);
1269                 }
1270
1271                 if (status < 0)
1272                         break;
1273                 status = Write16(state, FE_AG_REG_AG_AGC_SIO__A, state->m_FeAgRegAgAgcSio, 0x0000);
1274                 if (status < 0)
1275                         break;
1276                 status = Write16(state, FE_AG_REG_AG_PWD__A, state->m_FeAgRegAgPwd, 0x0000);
1277                 if (status < 0)
1278                         break;
1279
1280                 status = WriteTable(state, state->m_InitFE_2);
1281                 if (status < 0)
1282                         break;
1283
1284         } while (0);
1285
1286         return status;
1287 }
1288
1289 static int InitFT(struct drxd_state *state)
1290 {
1291         /*
1292            norm OFFSET,  MB says =2 voor 8K en =3 voor 2K waarschijnlijk
1293            SC stuff
1294          */
1295         return Write16(state, FT_REG_COMM_EXEC__A, 0x0001, 0x0000);
1296 }
1297
1298 static int SC_WaitForReady(struct drxd_state *state)
1299 {
1300         int i;
1301
1302         for (i = 0; i < DRXD_MAX_RETRIES; i += 1) {
1303                 int status = Read16(state, SC_RA_RAM_CMD__A, NULL, 0);
1304                 if (status == 0)
1305                         return status;
1306         }
1307         return -1;
1308 }
1309
1310 static int SC_SendCommand(struct drxd_state *state, u16 cmd)
1311 {
1312         int status = 0, ret;
1313         u16 errCode;
1314
1315         Write16(state, SC_RA_RAM_CMD__A, cmd, 0);
1316         SC_WaitForReady(state);
1317
1318         ret = Read16(state, SC_RA_RAM_CMD_ADDR__A, &errCode, 0);
1319
1320         if (ret < 0 || errCode == 0xFFFF) {
1321                 printk(KERN_ERR "Command Error\n");
1322                 status = -1;
1323         }
1324
1325         return status;
1326 }
1327
1328 static int SC_ProcStartCommand(struct drxd_state *state,
1329                                u16 subCmd, u16 param0, u16 param1)
1330 {
1331         int ret, status = 0;
1332         u16 scExec;
1333
1334         mutex_lock(&state->mutex);
1335         do {
1336                 ret = Read16(state, SC_COMM_EXEC__A, &scExec, 0);
1337                 if (ret < 0 || scExec != 1) {
1338                         status = -1;
1339                         break;
1340                 }
1341                 SC_WaitForReady(state);
1342                 Write16(state, SC_RA_RAM_CMD_ADDR__A, subCmd, 0);
1343                 Write16(state, SC_RA_RAM_PARAM1__A, param1, 0);
1344                 Write16(state, SC_RA_RAM_PARAM0__A, param0, 0);
1345
1346                 SC_SendCommand(state, SC_RA_RAM_CMD_PROC_START);
1347         } while (0);
1348         mutex_unlock(&state->mutex);
1349         return status;
1350 }
1351
1352 static int SC_SetPrefParamCommand(struct drxd_state *state,
1353                                   u16 subCmd, u16 param0, u16 param1)
1354 {
1355         int status;
1356
1357         mutex_lock(&state->mutex);
1358         do {
1359                 status = SC_WaitForReady(state);
1360                 if (status < 0)
1361                         break;
1362                 status = Write16(state, SC_RA_RAM_CMD_ADDR__A, subCmd, 0);
1363                 if (status < 0)
1364                         break;
1365                 status = Write16(state, SC_RA_RAM_PARAM1__A, param1, 0);
1366                 if (status < 0)
1367                         break;
1368                 status = Write16(state, SC_RA_RAM_PARAM0__A, param0, 0);
1369                 if (status < 0)
1370                         break;
1371
1372                 status = SC_SendCommand(state, SC_RA_RAM_CMD_SET_PREF_PARAM);
1373                 if (status < 0)
1374                         break;
1375         } while (0);
1376         mutex_unlock(&state->mutex);
1377         return status;
1378 }
1379
1380 #if 0
1381 static int SC_GetOpParamCommand(struct drxd_state *state, u16 * result)
1382 {
1383         int status = 0;
1384
1385         mutex_lock(&state->mutex);
1386         do {
1387                 status = SC_WaitForReady(state);
1388                 if (status < 0)
1389                         break;
1390                 status = SC_SendCommand(state, SC_RA_RAM_CMD_GET_OP_PARAM);
1391                 if (status < 0)
1392                         break;
1393                 status = Read16(state, SC_RA_RAM_PARAM0__A, result, 0);
1394                 if (status < 0)
1395                         break;
1396         } while (0);
1397         mutex_unlock(&state->mutex);
1398         return status;
1399 }
1400 #endif
1401
1402 static int ConfigureMPEGOutput(struct drxd_state *state, int bEnableOutput)
1403 {
1404         int status;
1405
1406         do {
1407                 u16 EcOcRegIprInvMpg = 0;
1408                 u16 EcOcRegOcModeLop = 0;
1409                 u16 EcOcRegOcModeHip = 0;
1410                 u16 EcOcRegOcMpgSio = 0;
1411
1412                 /*CHK_ERROR(Read16(state, EC_OC_REG_OC_MODE_LOP__A, &EcOcRegOcModeLop, 0)); */
1413
1414                 if (state->operation_mode == OM_DVBT_Diversity_Front) {
1415                         if (bEnableOutput) {
1416                                 EcOcRegOcModeHip |=
1417                                     B_EC_OC_REG_OC_MODE_HIP_MPG_BUS_SRC_MONITOR;
1418                         } else
1419                                 EcOcRegOcMpgSio |= EC_OC_REG_OC_MPG_SIO__M;
1420                         EcOcRegOcModeLop |=
1421                             EC_OC_REG_OC_MODE_LOP_PAR_ENA_DISABLE;
1422                 } else {
1423                         EcOcRegOcModeLop = state->m_EcOcRegOcModeLop;
1424
1425                         if (bEnableOutput)
1426                                 EcOcRegOcMpgSio &= (~(EC_OC_REG_OC_MPG_SIO__M));
1427                         else
1428                                 EcOcRegOcMpgSio |= EC_OC_REG_OC_MPG_SIO__M;
1429
1430                         /* Don't Insert RS Byte */
1431                         if (state->insert_rs_byte) {
1432                                 EcOcRegOcModeLop &=
1433                                     (~(EC_OC_REG_OC_MODE_LOP_PAR_ENA__M));
1434                                 EcOcRegOcModeHip &=
1435                                     (~EC_OC_REG_OC_MODE_HIP_MPG_PAR_VAL__M);
1436                                 EcOcRegOcModeHip |=
1437                                     EC_OC_REG_OC_MODE_HIP_MPG_PAR_VAL_ENABLE;
1438                         } else {
1439                                 EcOcRegOcModeLop |=
1440                                     EC_OC_REG_OC_MODE_LOP_PAR_ENA_DISABLE;
1441                                 EcOcRegOcModeHip &=
1442                                     (~EC_OC_REG_OC_MODE_HIP_MPG_PAR_VAL__M);
1443                                 EcOcRegOcModeHip |=
1444                                     EC_OC_REG_OC_MODE_HIP_MPG_PAR_VAL_DISABLE;
1445                         }
1446
1447                         /* Mode = Parallel */
1448                         if (state->enable_parallel)
1449                                 EcOcRegOcModeLop &=
1450                                     (~(EC_OC_REG_OC_MODE_LOP_MPG_TRM_MDE__M));
1451                         else
1452                                 EcOcRegOcModeLop |=
1453                                     EC_OC_REG_OC_MODE_LOP_MPG_TRM_MDE_SERIAL;
1454                 }
1455                 /* Invert Data */
1456                 /* EcOcRegIprInvMpg |= 0x00FF; */
1457                 EcOcRegIprInvMpg &= (~(0x00FF));
1458
1459                 /* Invert Error ( we don't use the pin ) */
1460                 /*  EcOcRegIprInvMpg |= 0x0100; */
1461                 EcOcRegIprInvMpg &= (~(0x0100));
1462
1463                 /* Invert Start ( we don't use the pin ) */
1464                 /* EcOcRegIprInvMpg |= 0x0200; */
1465                 EcOcRegIprInvMpg &= (~(0x0200));
1466
1467                 /* Invert Valid ( we don't use the pin ) */
1468                 /* EcOcRegIprInvMpg |= 0x0400; */
1469                 EcOcRegIprInvMpg &= (~(0x0400));
1470
1471                 /* Invert Clock */
1472                 /* EcOcRegIprInvMpg |= 0x0800; */
1473                 EcOcRegIprInvMpg &= (~(0x0800));
1474
1475                 /* EcOcRegOcModeLop =0x05; */
1476                 status = Write16(state, EC_OC_REG_IPR_INV_MPG__A, EcOcRegIprInvMpg, 0);
1477                 if (status < 0)
1478                         break;
1479                 status = Write16(state, EC_OC_REG_OC_MODE_LOP__A, EcOcRegOcModeLop, 0);
1480                 if (status < 0)
1481                         break;
1482                 status = Write16(state, EC_OC_REG_OC_MODE_HIP__A, EcOcRegOcModeHip, 0x0000);
1483                 if (status < 0)
1484                         break;
1485                 status = Write16(state, EC_OC_REG_OC_MPG_SIO__A, EcOcRegOcMpgSio, 0);
1486                 if (status < 0)
1487                         break;
1488         } while (0);
1489         return status;
1490 }
1491
1492 static int SetDeviceTypeId(struct drxd_state *state)
1493 {
1494         int status = 0;
1495         u16 deviceId = 0;
1496
1497         do {
1498                 status = Read16(state, CC_REG_JTAGID_L__A, &deviceId, 0);
1499                 if (status < 0)
1500                         break;
1501                 /* TODO: why twice? */
1502                 status = Read16(state, CC_REG_JTAGID_L__A, &deviceId, 0);
1503                 if (status < 0)
1504                         break;
1505                 printk(KERN_INFO "drxd: deviceId = %04x\n", deviceId);
1506
1507                 state->type_A = 0;
1508                 state->PGA = 0;
1509                 state->diversity = 0;
1510                 if (deviceId == 0) {    /* on A2 only 3975 available */
1511                         state->type_A = 1;
1512                         printk(KERN_INFO "DRX3975D-A2\n");
1513                 } else {
1514                         deviceId >>= 12;
1515                         printk(KERN_INFO "DRX397%dD-B1\n", deviceId);
1516                         switch (deviceId) {
1517                         case 4:
1518                                 state->diversity = 1;
1519                                 /* fall through */
1520                         case 3:
1521                         case 7:
1522                                 state->PGA = 1;
1523                                 break;
1524                         case 6:
1525                                 state->diversity = 1;
1526                                 /* fall through */
1527                         case 5:
1528                         case 8:
1529                                 break;
1530                         default:
1531                                 status = -1;
1532                                 break;
1533                         }
1534                 }
1535         } while (0);
1536
1537         if (status < 0)
1538                 return status;
1539
1540         /* Init Table selection */
1541         state->m_InitAtomicRead = DRXD_InitAtomicRead;
1542         state->m_InitSC = DRXD_InitSC;
1543         state->m_ResetECRAM = DRXD_ResetECRAM;
1544         if (state->type_A) {
1545                 state->m_ResetCEFR = DRXD_ResetCEFR;
1546                 state->m_InitFE_1 = DRXD_InitFEA2_1;
1547                 state->m_InitFE_2 = DRXD_InitFEA2_2;
1548                 state->m_InitCP = DRXD_InitCPA2;
1549                 state->m_InitCE = DRXD_InitCEA2;
1550                 state->m_InitEQ = DRXD_InitEQA2;
1551                 state->m_InitEC = DRXD_InitECA2;
1552                 if (load_firmware(state, DRX_FW_FILENAME_A2))
1553                         return -EIO;
1554         } else {
1555                 state->m_ResetCEFR = NULL;
1556                 state->m_InitFE_1 = DRXD_InitFEB1_1;
1557                 state->m_InitFE_2 = DRXD_InitFEB1_2;
1558                 state->m_InitCP = DRXD_InitCPB1;
1559                 state->m_InitCE = DRXD_InitCEB1;
1560                 state->m_InitEQ = DRXD_InitEQB1;
1561                 state->m_InitEC = DRXD_InitECB1;
1562                 if (load_firmware(state, DRX_FW_FILENAME_B1))
1563                         return -EIO;
1564         }
1565         if (state->diversity) {
1566                 state->m_InitDiversityFront = DRXD_InitDiversityFront;
1567                 state->m_InitDiversityEnd = DRXD_InitDiversityEnd;
1568                 state->m_DisableDiversity = DRXD_DisableDiversity;
1569                 state->m_StartDiversityFront = DRXD_StartDiversityFront;
1570                 state->m_StartDiversityEnd = DRXD_StartDiversityEnd;
1571                 state->m_DiversityDelay8MHZ = DRXD_DiversityDelay8MHZ;
1572                 state->m_DiversityDelay6MHZ = DRXD_DiversityDelay6MHZ;
1573         } else {
1574                 state->m_InitDiversityFront = NULL;
1575                 state->m_InitDiversityEnd = NULL;
1576                 state->m_DisableDiversity = NULL;
1577                 state->m_StartDiversityFront = NULL;
1578                 state->m_StartDiversityEnd = NULL;
1579                 state->m_DiversityDelay8MHZ = NULL;
1580                 state->m_DiversityDelay6MHZ = NULL;
1581         }
1582
1583         return status;
1584 }
1585
1586 static int CorrectSysClockDeviation(struct drxd_state *state)
1587 {
1588         int status;
1589         s32 incr = 0;
1590         s32 nomincr = 0;
1591         u32 bandwidth = 0;
1592         u32 sysClockInHz = 0;
1593         u32 sysClockFreq = 0;   /* in kHz */
1594         s16 oscClockDeviation;
1595         s16 Diff;
1596
1597         do {
1598                 /* Retrieve bandwidth and incr, sanity check */
1599
1600                 /* These accesses should be AtomicReadReg32, but that
1601                    causes trouble (at least for diversity */
1602                 status = Read32(state, LC_RA_RAM_IFINCR_NOM_L__A, ((u32 *) &nomincr), 0);
1603                 if (status < 0)
1604                         break;
1605                 status = Read32(state, FE_IF_REG_INCR0__A, (u32 *) &incr, 0);
1606                 if (status < 0)
1607                         break;
1608
1609                 if (state->type_A) {
1610                         if ((nomincr - incr < -500) || (nomincr - incr > 500))
1611                                 break;
1612                 } else {
1613                         if ((nomincr - incr < -2000) || (nomincr - incr > 2000))
1614                                 break;
1615                 }
1616
1617                 switch (state->props.bandwidth_hz) {
1618                 case 8000000:
1619                         bandwidth = DRXD_BANDWIDTH_8MHZ_IN_HZ;
1620                         break;
1621                 case 7000000:
1622                         bandwidth = DRXD_BANDWIDTH_7MHZ_IN_HZ;
1623                         break;
1624                 case 6000000:
1625                         bandwidth = DRXD_BANDWIDTH_6MHZ_IN_HZ;
1626                         break;
1627                 default:
1628                         return -1;
1629                         break;
1630                 }
1631
1632                 /* Compute new sysclock value
1633                    sysClockFreq = (((incr + 2^23)*bandwidth)/2^21)/1000 */
1634                 incr += (1 << 23);
1635                 sysClockInHz = MulDiv32(incr, bandwidth, 1 << 21);
1636                 sysClockFreq = (u32) (sysClockInHz / 1000);
1637                 /* rounding */
1638                 if ((sysClockInHz % 1000) > 500)
1639                         sysClockFreq++;
1640
1641                 /* Compute clock deviation in ppm */
1642                 oscClockDeviation = (u16) ((((s32) (sysClockFreq) -
1643                                              (s32)
1644                                              (state->expected_sys_clock_freq)) *
1645                                             1000000L) /
1646                                            (s32)
1647                                            (state->expected_sys_clock_freq));
1648
1649                 Diff = oscClockDeviation - state->osc_clock_deviation;
1650                 /*printk(KERN_INFO "sysclockdiff=%d\n", Diff); */
1651                 if (Diff >= -200 && Diff <= 200) {
1652                         state->sys_clock_freq = (u16) sysClockFreq;
1653                         if (oscClockDeviation != state->osc_clock_deviation) {
1654                                 if (state->config.osc_deviation) {
1655                                         state->config.osc_deviation(state->priv,
1656                                                                     oscClockDeviation,
1657                                                                     1);
1658                                         state->osc_clock_deviation =
1659                                             oscClockDeviation;
1660                                 }
1661                         }
1662                         /* switch OFF SRMM scan in SC */
1663                         status = Write16(state, SC_RA_RAM_SAMPLE_RATE_COUNT__A, DRXD_OSCDEV_DONT_SCAN, 0);
1664                         if (status < 0)
1665                                 break;
1666                         /* overrule FE_IF internal value for
1667                            proper re-locking */
1668                         status = Write16(state, SC_RA_RAM_IF_SAVE__AX, state->current_fe_if_incr, 0);
1669                         if (status < 0)
1670                                 break;
1671                         state->cscd_state = CSCD_SAVED;
1672                 }
1673         } while (0);
1674
1675         return status;
1676 }
1677
1678 static int DRX_Stop(struct drxd_state *state)
1679 {
1680         int status;
1681
1682         if (state->drxd_state != DRXD_STARTED)
1683                 return 0;
1684
1685         do {
1686                 if (state->cscd_state != CSCD_SAVED) {
1687                         u32 lock;
1688                         status = DRX_GetLockStatus(state, &lock);
1689                         if (status < 0)
1690                                 break;
1691                 }
1692
1693                 status = StopOC(state);
1694                 if (status < 0)
1695                         break;
1696
1697                 state->drxd_state = DRXD_STOPPED;
1698
1699                 status = ConfigureMPEGOutput(state, 0);
1700                 if (status < 0)
1701                         break;
1702
1703                 if (state->type_A) {
1704                         /* Stop relevant processors off the device */
1705                         status = Write16(state, EC_OD_REG_COMM_EXEC__A, 0x0000, 0x0000);
1706                         if (status < 0)
1707                                 break;
1708
1709                         status = Write16(state, SC_COMM_EXEC__A, SC_COMM_EXEC_CTL_STOP, 0);
1710                         if (status < 0)
1711                                 break;
1712                         status = Write16(state, LC_COMM_EXEC__A, SC_COMM_EXEC_CTL_STOP, 0);
1713                         if (status < 0)
1714                                 break;
1715                 } else {
1716                         /* Stop all processors except HI & CC & FE */
1717                         status = Write16(state, B_SC_COMM_EXEC__A, SC_COMM_EXEC_CTL_STOP, 0);
1718                         if (status < 0)
1719                                 break;
1720                         status = Write16(state, B_LC_COMM_EXEC__A, SC_COMM_EXEC_CTL_STOP, 0);
1721                         if (status < 0)
1722                                 break;
1723                         status = Write16(state, B_FT_COMM_EXEC__A, SC_COMM_EXEC_CTL_STOP, 0);
1724                         if (status < 0)
1725                                 break;
1726                         status = Write16(state, B_CP_COMM_EXEC__A, SC_COMM_EXEC_CTL_STOP, 0);
1727                         if (status < 0)
1728                                 break;
1729                         status = Write16(state, B_CE_COMM_EXEC__A, SC_COMM_EXEC_CTL_STOP, 0);
1730                         if (status < 0)
1731                                 break;
1732                         status = Write16(state, B_EQ_COMM_EXEC__A, SC_COMM_EXEC_CTL_STOP, 0);
1733                         if (status < 0)
1734                                 break;
1735                         status = Write16(state, EC_OD_REG_COMM_EXEC__A, 0x0000, 0);
1736                         if (status < 0)
1737                                 break;
1738                 }
1739
1740         } while (0);
1741         return status;
1742 }
1743
1744 #if 0   /* Currently unused */
1745 static int SetOperationMode(struct drxd_state *state, int oMode)
1746 {
1747         int status;
1748
1749         do {
1750                 if (state->drxd_state != DRXD_STOPPED) {
1751                         status = -1;
1752                         break;
1753                 }
1754
1755                 if (oMode == state->operation_mode) {
1756                         status = 0;
1757                         break;
1758                 }
1759
1760                 if (oMode != OM_Default && !state->diversity) {
1761                         status = -1;
1762                         break;
1763                 }
1764
1765                 switch (oMode) {
1766                 case OM_DVBT_Diversity_Front:
1767                         status = WriteTable(state, state->m_InitDiversityFront);
1768                         break;
1769                 case OM_DVBT_Diversity_End:
1770                         status = WriteTable(state, state->m_InitDiversityEnd);
1771                         break;
1772                 case OM_Default:
1773                         /* We need to check how to
1774                            get DRXD out of diversity */
1775                 default:
1776                         status = WriteTable(state, state->m_DisableDiversity);
1777                         break;
1778                 }
1779         } while (0);
1780
1781         if (!status)
1782                 state->operation_mode = oMode;
1783         return status;
1784 }
1785 #endif
1786
1787 static int StartDiversity(struct drxd_state *state)
1788 {
1789         int status = 0;
1790         u16 rcControl;
1791
1792         do {
1793                 if (state->operation_mode == OM_DVBT_Diversity_Front) {
1794                         status = WriteTable(state, state->m_StartDiversityFront);
1795                         if (status < 0)
1796                                 break;
1797                 } else if (state->operation_mode == OM_DVBT_Diversity_End) {
1798                         status = WriteTable(state, state->m_StartDiversityEnd);
1799                         if (status < 0)
1800                                 break;
1801                         if (state->props.bandwidth_hz == 8000000) {
1802                                 status = WriteTable(state, state->m_DiversityDelay8MHZ);
1803                                 if (status < 0)
1804                                         break;
1805                         } else {
1806                                 status = WriteTable(state, state->m_DiversityDelay6MHZ);
1807                                 if (status < 0)
1808                                         break;
1809                         }
1810
1811                         status = Read16(state, B_EQ_REG_RC_SEL_CAR__A, &rcControl, 0);
1812                         if (status < 0)
1813                                 break;
1814                         rcControl &= ~(B_EQ_REG_RC_SEL_CAR_FFTMODE__M);
1815                         rcControl |= B_EQ_REG_RC_SEL_CAR_DIV_ON |
1816                             /*  combining enabled */
1817                             B_EQ_REG_RC_SEL_CAR_MEAS_A_CC |
1818                             B_EQ_REG_RC_SEL_CAR_PASS_A_CC |
1819                             B_EQ_REG_RC_SEL_CAR_LOCAL_A_CC;
1820                         status = Write16(state, B_EQ_REG_RC_SEL_CAR__A, rcControl, 0);
1821                         if (status < 0)
1822                                 break;
1823                 }
1824         } while (0);
1825         return status;
1826 }
1827
1828 static int SetFrequencyShift(struct drxd_state *state,
1829                              u32 offsetFreq, int channelMirrored)
1830 {
1831         int negativeShift = (state->tuner_mirrors == channelMirrored);
1832
1833         /* Handle all mirroring
1834          *
1835          * Note: ADC mirroring (aliasing) is implictly handled by limiting
1836          * feFsRegAddInc to 28 bits below
1837          * (if the result before masking is more than 28 bits, this means
1838          *  that the ADC is mirroring.
1839          * The masking is in fact the aliasing of the ADC)
1840          *
1841          */
1842
1843         /* Compute register value, unsigned computation */
1844         state->fe_fs_add_incr = MulDiv32(state->intermediate_freq +
1845                                          offsetFreq,
1846                                          1 << 28, state->sys_clock_freq);
1847         /* Remove integer part */
1848         state->fe_fs_add_incr &= 0x0FFFFFFFL;
1849         if (negativeShift)
1850                 state->fe_fs_add_incr = ((1 << 28) - state->fe_fs_add_incr);
1851
1852         /* Save the frequency shift without tunerOffset compensation
1853            for CtrlGetChannel. */
1854         state->org_fe_fs_add_incr = MulDiv32(state->intermediate_freq,
1855                                              1 << 28, state->sys_clock_freq);
1856         /* Remove integer part */
1857         state->org_fe_fs_add_incr &= 0x0FFFFFFFL;
1858         if (negativeShift)
1859                 state->org_fe_fs_add_incr = ((1L << 28) -
1860                                              state->org_fe_fs_add_incr);
1861
1862         return Write32(state, FE_FS_REG_ADD_INC_LOP__A,
1863                        state->fe_fs_add_incr, 0);
1864 }
1865
1866 static int SetCfgNoiseCalibration(struct drxd_state *state,
1867                                   struct SNoiseCal *noiseCal)
1868 {
1869         u16 beOptEna;
1870         int status = 0;
1871
1872         do {
1873                 status = Read16(state, SC_RA_RAM_BE_OPT_ENA__A, &beOptEna, 0);
1874                 if (status < 0)
1875                         break;
1876                 if (noiseCal->cpOpt) {
1877                         beOptEna |= (1 << SC_RA_RAM_BE_OPT_ENA_CP_OPT);
1878                 } else {
1879                         beOptEna &= ~(1 << SC_RA_RAM_BE_OPT_ENA_CP_OPT);
1880                         status = Write16(state, CP_REG_AC_NEXP_OFFS__A, noiseCal->cpNexpOfs, 0);
1881                         if (status < 0)
1882                                 break;
1883                 }
1884                 status = Write16(state, SC_RA_RAM_BE_OPT_ENA__A, beOptEna, 0);
1885                 if (status < 0)
1886                         break;
1887
1888                 if (!state->type_A) {
1889                         status = Write16(state, B_SC_RA_RAM_CO_TD_CAL_2K__A, noiseCal->tdCal2k, 0);
1890                         if (status < 0)
1891                                 break;
1892                         status = Write16(state, B_SC_RA_RAM_CO_TD_CAL_8K__A, noiseCal->tdCal8k, 0);
1893                         if (status < 0)
1894                                 break;
1895                 }
1896         } while (0);
1897
1898         return status;
1899 }
1900
1901 static int DRX_Start(struct drxd_state *state, s32 off)
1902 {
1903         struct dtv_frontend_properties *p = &state->props;
1904         int status;
1905
1906         u16 transmissionParams = 0;
1907         u16 operationMode = 0;
1908         u16 qpskTdTpsPwr = 0;
1909         u16 qam16TdTpsPwr = 0;
1910         u16 qam64TdTpsPwr = 0;
1911         u32 feIfIncr = 0;
1912         u32 bandwidth = 0;
1913         int mirrorFreqSpect;
1914
1915         u16 qpskSnCeGain = 0;
1916         u16 qam16SnCeGain = 0;
1917         u16 qam64SnCeGain = 0;
1918         u16 qpskIsGainMan = 0;
1919         u16 qam16IsGainMan = 0;
1920         u16 qam64IsGainMan = 0;
1921         u16 qpskIsGainExp = 0;
1922         u16 qam16IsGainExp = 0;
1923         u16 qam64IsGainExp = 0;
1924         u16 bandwidthParam = 0;
1925
1926         if (off < 0)
1927                 off = (off - 500) / 1000;
1928         else
1929                 off = (off + 500) / 1000;
1930
1931         do {
1932                 if (state->drxd_state != DRXD_STOPPED)
1933                         return -1;
1934                 status = ResetECOD(state);
1935                 if (status < 0)
1936                         break;
1937                 if (state->type_A) {
1938                         status = InitSC(state);
1939                         if (status < 0)
1940                                 break;
1941                 } else {
1942                         status = InitFT(state);
1943                         if (status < 0)
1944                                 break;
1945                         status = InitCP(state);
1946                         if (status < 0)
1947                                 break;
1948                         status = InitCE(state);
1949                         if (status < 0)
1950                                 break;
1951                         status = InitEQ(state);
1952                         if (status < 0)
1953                                 break;
1954                         status = InitSC(state);
1955                         if (status < 0)
1956                                 break;
1957                 }
1958
1959                 /* Restore current IF & RF AGC settings */
1960
1961                 status = SetCfgIfAgc(state, &state->if_agc_cfg);
1962                 if (status < 0)
1963                         break;
1964                 status = SetCfgRfAgc(state, &state->rf_agc_cfg);
1965                 if (status < 0)
1966                         break;
1967
1968                 mirrorFreqSpect = (state->props.inversion == INVERSION_ON);
1969
1970                 switch (p->transmission_mode) {
1971                 default:        /* Not set, detect it automatically */
1972                         operationMode |= SC_RA_RAM_OP_AUTO_MODE__M;
1973                         /* fall through - try first guess DRX_FFTMODE_8K */
1974                 case TRANSMISSION_MODE_8K:
1975                         transmissionParams |= SC_RA_RAM_OP_PARAM_MODE_8K;
1976                         if (state->type_A) {
1977                                 status = Write16(state, EC_SB_REG_TR_MODE__A, EC_SB_REG_TR_MODE_8K, 0x0000);
1978                                 if (status < 0)
1979                                         break;
1980                                 qpskSnCeGain = 99;
1981                                 qam16SnCeGain = 83;
1982                                 qam64SnCeGain = 67;
1983                         }
1984                         break;
1985                 case TRANSMISSION_MODE_2K:
1986                         transmissionParams |= SC_RA_RAM_OP_PARAM_MODE_2K;
1987                         if (state->type_A) {
1988                                 status = Write16(state, EC_SB_REG_TR_MODE__A, EC_SB_REG_TR_MODE_2K, 0x0000);
1989                                 if (status < 0)
1990                                         break;
1991                                 qpskSnCeGain = 97;
1992                                 qam16SnCeGain = 71;
1993                                 qam64SnCeGain = 65;
1994                         }
1995                         break;
1996                 }
1997
1998                 switch (p->guard_interval) {
1999                 case GUARD_INTERVAL_1_4:
2000                         transmissionParams |= SC_RA_RAM_OP_PARAM_GUARD_4;
2001                         break;
2002                 case GUARD_INTERVAL_1_8:
2003                         transmissionParams |= SC_RA_RAM_OP_PARAM_GUARD_8;
2004                         break;
2005                 case GUARD_INTERVAL_1_16:
2006                         transmissionParams |= SC_RA_RAM_OP_PARAM_GUARD_16;
2007                         break;
2008                 case GUARD_INTERVAL_1_32:
2009                         transmissionParams |= SC_RA_RAM_OP_PARAM_GUARD_32;
2010                         break;
2011                 default:        /* Not set, detect it automatically */
2012                         operationMode |= SC_RA_RAM_OP_AUTO_GUARD__M;
2013                         /* try first guess 1/4 */
2014                         transmissionParams |= SC_RA_RAM_OP_PARAM_GUARD_4;
2015                         break;
2016                 }
2017
2018                 switch (p->hierarchy) {
2019                 case HIERARCHY_1:
2020                         transmissionParams |= SC_RA_RAM_OP_PARAM_HIER_A1;
2021                         if (state->type_A) {
2022                                 status = Write16(state, EQ_REG_OT_ALPHA__A, 0x0001, 0x0000);
2023                                 if (status < 0)
2024                                         break;
2025                                 status = Write16(state, EC_SB_REG_ALPHA__A, 0x0001, 0x0000);
2026                                 if (status < 0)
2027                                         break;
2028
2029                                 qpskTdTpsPwr = EQ_TD_TPS_PWR_UNKNOWN;
2030                                 qam16TdTpsPwr = EQ_TD_TPS_PWR_QAM16_ALPHA1;
2031                                 qam64TdTpsPwr = EQ_TD_TPS_PWR_QAM64_ALPHA1;
2032
2033                                 qpskIsGainMan =
2034                                     SC_RA_RAM_EQ_IS_GAIN_UNKNOWN_MAN__PRE;
2035                                 qam16IsGainMan =
2036                                     SC_RA_RAM_EQ_IS_GAIN_16QAM_MAN__PRE;
2037                                 qam64IsGainMan =
2038                                     SC_RA_RAM_EQ_IS_GAIN_64QAM_MAN__PRE;
2039
2040                                 qpskIsGainExp =
2041                                     SC_RA_RAM_EQ_IS_GAIN_UNKNOWN_EXP__PRE;
2042                                 qam16IsGainExp =
2043                                     SC_RA_RAM_EQ_IS_GAIN_16QAM_EXP__PRE;
2044                                 qam64IsGainExp =
2045                                     SC_RA_RAM_EQ_IS_GAIN_64QAM_EXP__PRE;
2046                         }
2047                         break;
2048
2049                 case HIERARCHY_2:
2050                         transmissionParams |= SC_RA_RAM_OP_PARAM_HIER_A2;
2051                         if (state->type_A) {
2052                                 status = Write16(state, EQ_REG_OT_ALPHA__A, 0x0002, 0x0000);
2053                                 if (status < 0)
2054                                         break;
2055                                 status = Write16(state, EC_SB_REG_ALPHA__A, 0x0002, 0x0000);
2056                                 if (status < 0)
2057                                         break;
2058
2059                                 qpskTdTpsPwr = EQ_TD_TPS_PWR_UNKNOWN;
2060                                 qam16TdTpsPwr = EQ_TD_TPS_PWR_QAM16_ALPHA2;
2061                                 qam64TdTpsPwr = EQ_TD_TPS_PWR_QAM64_ALPHA2;
2062
2063                                 qpskIsGainMan =
2064                                     SC_RA_RAM_EQ_IS_GAIN_UNKNOWN_MAN__PRE;
2065                                 qam16IsGainMan =
2066                                     SC_RA_RAM_EQ_IS_GAIN_16QAM_A2_MAN__PRE;
2067                                 qam64IsGainMan =
2068                                     SC_RA_RAM_EQ_IS_GAIN_64QAM_A2_MAN__PRE;
2069
2070                                 qpskIsGainExp =
2071                                     SC_RA_RAM_EQ_IS_GAIN_UNKNOWN_EXP__PRE;
2072                                 qam16IsGainExp =
2073                                     SC_RA_RAM_EQ_IS_GAIN_16QAM_A2_EXP__PRE;
2074                                 qam64IsGainExp =
2075                                     SC_RA_RAM_EQ_IS_GAIN_64QAM_A2_EXP__PRE;
2076                         }
2077                         break;
2078                 case HIERARCHY_4:
2079                         transmissionParams |= SC_RA_RAM_OP_PARAM_HIER_A4;
2080                         if (state->type_A) {
2081                                 status = Write16(state, EQ_REG_OT_ALPHA__A, 0x0003, 0x0000);
2082                                 if (status < 0)
2083                                         break;
2084                                 status = Write16(state, EC_SB_REG_ALPHA__A, 0x0003, 0x0000);
2085                                 if (status < 0)
2086                                         break;
2087
2088                                 qpskTdTpsPwr = EQ_TD_TPS_PWR_UNKNOWN;
2089                                 qam16TdTpsPwr = EQ_TD_TPS_PWR_QAM16_ALPHA4;
2090                                 qam64TdTpsPwr = EQ_TD_TPS_PWR_QAM64_ALPHA4;
2091
2092                                 qpskIsGainMan =
2093                                     SC_RA_RAM_EQ_IS_GAIN_UNKNOWN_MAN__PRE;
2094                                 qam16IsGainMan =
2095                                     SC_RA_RAM_EQ_IS_GAIN_16QAM_A4_MAN__PRE;
2096                                 qam64IsGainMan =
2097                                     SC_RA_RAM_EQ_IS_GAIN_64QAM_A4_MAN__PRE;
2098
2099                                 qpskIsGainExp =
2100                                     SC_RA_RAM_EQ_IS_GAIN_UNKNOWN_EXP__PRE;
2101                                 qam16IsGainExp =
2102                                     SC_RA_RAM_EQ_IS_GAIN_16QAM_A4_EXP__PRE;
2103                                 qam64IsGainExp =
2104                                     SC_RA_RAM_EQ_IS_GAIN_64QAM_A4_EXP__PRE;
2105                         }
2106                         break;
2107                 case HIERARCHY_AUTO:
2108                 default:
2109                         /* Not set, detect it automatically, start with none */
2110                         operationMode |= SC_RA_RAM_OP_AUTO_HIER__M;
2111                         transmissionParams |= SC_RA_RAM_OP_PARAM_HIER_NO;
2112                         if (state->type_A) {
2113                                 status = Write16(state, EQ_REG_OT_ALPHA__A, 0x0000, 0x0000);
2114                                 if (status < 0)
2115                                         break;
2116                                 status = Write16(state, EC_SB_REG_ALPHA__A, 0x0000, 0x0000);
2117                                 if (status < 0)
2118                                         break;
2119
2120                                 qpskTdTpsPwr = EQ_TD_TPS_PWR_QPSK;
2121                                 qam16TdTpsPwr = EQ_TD_TPS_PWR_QAM16_ALPHAN;
2122                                 qam64TdTpsPwr = EQ_TD_TPS_PWR_QAM64_ALPHAN;
2123
2124                                 qpskIsGainMan =
2125                                     SC_RA_RAM_EQ_IS_GAIN_QPSK_MAN__PRE;
2126                                 qam16IsGainMan =
2127                                     SC_RA_RAM_EQ_IS_GAIN_16QAM_MAN__PRE;
2128                                 qam64IsGainMan =
2129                                     SC_RA_RAM_EQ_IS_GAIN_64QAM_MAN__PRE;
2130
2131                                 qpskIsGainExp =
2132                                     SC_RA_RAM_EQ_IS_GAIN_QPSK_EXP__PRE;
2133                                 qam16IsGainExp =
2134                                     SC_RA_RAM_EQ_IS_GAIN_16QAM_EXP__PRE;
2135                                 qam64IsGainExp =
2136                                     SC_RA_RAM_EQ_IS_GAIN_64QAM_EXP__PRE;
2137                         }
2138                         break;
2139                 }
2140                 if (status < 0)
2141                         break;
2142
2143                 switch (p->modulation) {
2144                 default:
2145                         operationMode |= SC_RA_RAM_OP_AUTO_CONST__M;
2146                         /* fall through - try first guess DRX_CONSTELLATION_QAM64 */
2147                 case QAM_64:
2148                         transmissionParams |= SC_RA_RAM_OP_PARAM_CONST_QAM64;
2149                         if (state->type_A) {
2150                                 status = Write16(state, EQ_REG_OT_CONST__A, 0x0002, 0x0000);
2151                                 if (status < 0)
2152                                         break;
2153                                 status = Write16(state, EC_SB_REG_CONST__A, EC_SB_REG_CONST_64QAM, 0x0000);
2154                                 if (status < 0)
2155                                         break;
2156                                 status = Write16(state, EC_SB_REG_SCALE_MSB__A, 0x0020, 0x0000);
2157                                 if (status < 0)
2158                                         break;
2159                                 status = Write16(state, EC_SB_REG_SCALE_BIT2__A, 0x0008, 0x0000);
2160                                 if (status < 0)
2161                                         break;
2162                                 status = Write16(state, EC_SB_REG_SCALE_LSB__A, 0x0002, 0x0000);
2163                                 if (status < 0)
2164                                         break;
2165
2166                                 status = Write16(state, EQ_REG_TD_TPS_PWR_OFS__A, qam64TdTpsPwr, 0x0000);
2167                                 if (status < 0)
2168                                         break;
2169                                 status = Write16(state, EQ_REG_SN_CEGAIN__A, qam64SnCeGain, 0x0000);
2170                                 if (status < 0)
2171                                         break;
2172                                 status = Write16(state, EQ_REG_IS_GAIN_MAN__A, qam64IsGainMan, 0x0000);
2173                                 if (status < 0)
2174                                         break;
2175                                 status = Write16(state, EQ_REG_IS_GAIN_EXP__A, qam64IsGainExp, 0x0000);
2176                                 if (status < 0)
2177                                         break;
2178                         }
2179                         break;
2180                 case QPSK:
2181                         transmissionParams |= SC_RA_RAM_OP_PARAM_CONST_QPSK;
2182                         if (state->type_A) {
2183                                 status = Write16(state, EQ_REG_OT_CONST__A, 0x0000, 0x0000);
2184                                 if (status < 0)
2185                                         break;
2186                                 status = Write16(state, EC_SB_REG_CONST__A, EC_SB_REG_CONST_QPSK, 0x0000);
2187                                 if (status < 0)
2188                                         break;
2189                                 status = Write16(state, EC_SB_REG_SCALE_MSB__A, 0x0010, 0x0000);
2190                                 if (status < 0)
2191                                         break;
2192                                 status = Write16(state, EC_SB_REG_SCALE_BIT2__A, 0x0000, 0x0000);
2193                                 if (status < 0)
2194                                         break;
2195                                 status = Write16(state, EC_SB_REG_SCALE_LSB__A, 0x0000, 0x0000);
2196                                 if (status < 0)
2197                                         break;
2198
2199                                 status = Write16(state, EQ_REG_TD_TPS_PWR_OFS__A, qpskTdTpsPwr, 0x0000);
2200                                 if (status < 0)
2201                                         break;
2202                                 status = Write16(state, EQ_REG_SN_CEGAIN__A, qpskSnCeGain, 0x0000);
2203                                 if (status < 0)
2204                                         break;
2205                                 status = Write16(state, EQ_REG_IS_GAIN_MAN__A, qpskIsGainMan, 0x0000);
2206                                 if (status < 0)
2207                                         break;
2208                                 status = Write16(state, EQ_REG_IS_GAIN_EXP__A, qpskIsGainExp, 0x0000);
2209                                 if (status < 0)
2210                                         break;
2211                         }
2212                         break;
2213
2214                 case QAM_16:
2215                         transmissionParams |= SC_RA_RAM_OP_PARAM_CONST_QAM16;
2216                         if (state->type_A) {
2217                                 status = Write16(state, EQ_REG_OT_CONST__A, 0x0001, 0x0000);
2218                                 if (status < 0)
2219                                         break;
2220                                 status = Write16(state, EC_SB_REG_CONST__A, EC_SB_REG_CONST_16QAM, 0x0000);
2221                                 if (status < 0)
2222                                         break;
2223                                 status = Write16(state, EC_SB_REG_SCALE_MSB__A, 0x0010, 0x0000);
2224                                 if (status < 0)
2225                                         break;
2226                                 status = Write16(state, EC_SB_REG_SCALE_BIT2__A, 0x0004, 0x0000);
2227                                 if (status < 0)
2228                                         break;
2229                                 status = Write16(state, EC_SB_REG_SCALE_LSB__A, 0x0000, 0x0000);
2230                                 if (status < 0)
2231                                         break;
2232
2233                                 status = Write16(state, EQ_REG_TD_TPS_PWR_OFS__A, qam16TdTpsPwr, 0x0000);
2234                                 if (status < 0)
2235                                         break;
2236                                 status = Write16(state, EQ_REG_SN_CEGAIN__A, qam16SnCeGain, 0x0000);
2237                                 if (status < 0)
2238                                         break;
2239                                 status = Write16(state, EQ_REG_IS_GAIN_MAN__A, qam16IsGainMan, 0x0000);
2240                                 if (status < 0)
2241                                         break;
2242                                 status = Write16(state, EQ_REG_IS_GAIN_EXP__A, qam16IsGainExp, 0x0000);
2243                                 if (status < 0)
2244                                         break;
2245                         }
2246                         break;
2247
2248                 }
2249                 if (status < 0)
2250                         break;
2251
2252                 switch (DRX_CHANNEL_HIGH) {
2253                 default:
2254                 case DRX_CHANNEL_AUTO:
2255                 case DRX_CHANNEL_LOW:
2256                         transmissionParams |= SC_RA_RAM_OP_PARAM_PRIO_LO;
2257                         status = Write16(state, EC_SB_REG_PRIOR__A, EC_SB_REG_PRIOR_LO, 0x0000);
2258                         if (status < 0)
2259                                 break;
2260                         break;
2261                 case DRX_CHANNEL_HIGH:
2262                         transmissionParams |= SC_RA_RAM_OP_PARAM_PRIO_HI;
2263                         status = Write16(state, EC_SB_REG_PRIOR__A, EC_SB_REG_PRIOR_HI, 0x0000);
2264                         if (status < 0)
2265                                 break;
2266                         break;
2267
2268                 }
2269
2270                 switch (p->code_rate_HP) {
2271                 case FEC_1_2:
2272                         transmissionParams |= SC_RA_RAM_OP_PARAM_RATE_1_2;
2273                         if (state->type_A) {
2274                                 status = Write16(state, EC_VD_REG_SET_CODERATE__A, EC_VD_REG_SET_CODERATE_C1_2, 0x0000);
2275                                 if (status < 0)
2276                                         break;
2277                         }
2278                         break;
2279                 default:
2280                         operationMode |= SC_RA_RAM_OP_AUTO_RATE__M;
2281                         /* fall through */
2282                 case FEC_2_3:
2283                         transmissionParams |= SC_RA_RAM_OP_PARAM_RATE_2_3;
2284                         if (state->type_A) {
2285                                 status = Write16(state, EC_VD_REG_SET_CODERATE__A, EC_VD_REG_SET_CODERATE_C2_3, 0x0000);
2286                                 if (status < 0)
2287                                         break;
2288                         }
2289                         break;
2290                 case FEC_3_4:
2291                         transmissionParams |= SC_RA_RAM_OP_PARAM_RATE_3_4;
2292                         if (state->type_A) {
2293                                 status = Write16(state, EC_VD_REG_SET_CODERATE__A, EC_VD_REG_SET_CODERATE_C3_4, 0x0000);
2294                                 if (status < 0)
2295                                         break;
2296                         }
2297                         break;
2298                 case FEC_5_6:
2299                         transmissionParams |= SC_RA_RAM_OP_PARAM_RATE_5_6;
2300                         if (state->type_A) {
2301                                 status = Write16(state, EC_VD_REG_SET_CODERATE__A, EC_VD_REG_SET_CODERATE_C5_6, 0x0000);
2302                                 if (status < 0)
2303                                         break;
2304                         }
2305                         break;
2306                 case FEC_7_8:
2307                         transmissionParams |= SC_RA_RAM_OP_PARAM_RATE_7_8;
2308                         if (state->type_A) {
2309                                 status = Write16(state, EC_VD_REG_SET_CODERATE__A, EC_VD_REG_SET_CODERATE_C7_8, 0x0000);
2310                                 if (status < 0)
2311                                         break;
2312                         }
2313                         break;
2314                 }
2315                 if (status < 0)
2316                         break;
2317
2318                 /* First determine real bandwidth (Hz) */
2319                 /* Also set delay for impulse noise cruncher (only A2) */
2320                 /* Also set parameters for EC_OC fix, note
2321                    EC_OC_REG_TMD_HIL_MAR is changed
2322                    by SC for fix for some 8K,1/8 guard but is restored by
2323                    InitEC and ResetEC
2324                    functions */
2325                 switch (p->bandwidth_hz) {
2326                 case 0:
2327                         p->bandwidth_hz = 8000000;
2328                         /* fall through */
2329                 case 8000000:
2330                         /* (64/7)*(8/8)*1000000 */
2331                         bandwidth = DRXD_BANDWIDTH_8MHZ_IN_HZ;
2332
2333                         bandwidthParam = 0;
2334                         status = Write16(state,
2335                                          FE_AG_REG_IND_DEL__A, 50, 0x0000);
2336                         break;
2337                 case 7000000:
2338                         /* (64/7)*(7/8)*1000000 */
2339                         bandwidth = DRXD_BANDWIDTH_7MHZ_IN_HZ;
2340                         bandwidthParam = 0x4807;        /*binary:0100 1000 0000 0111 */
2341                         status = Write16(state,
2342                                          FE_AG_REG_IND_DEL__A, 59, 0x0000);
2343                         break;
2344                 case 6000000:
2345                         /* (64/7)*(6/8)*1000000 */
2346                         bandwidth = DRXD_BANDWIDTH_6MHZ_IN_HZ;
2347                         bandwidthParam = 0x0F07;        /*binary: 0000 1111 0000 0111 */
2348                         status = Write16(state,
2349                                          FE_AG_REG_IND_DEL__A, 71, 0x0000);
2350                         break;
2351                 default:
2352                         status = -EINVAL;
2353                 }
2354                 if (status < 0)
2355                         break;
2356
2357                 status = Write16(state, SC_RA_RAM_BAND__A, bandwidthParam, 0x0000);
2358                 if (status < 0)
2359                         break;
2360
2361                 {
2362                         u16 sc_config;
2363                         status = Read16(state, SC_RA_RAM_CONFIG__A, &sc_config, 0);
2364                         if (status < 0)
2365                                 break;
2366
2367                         /* enable SLAVE mode in 2k 1/32 to
2368                            prevent timing change glitches */
2369                         if ((p->transmission_mode == TRANSMISSION_MODE_2K) &&
2370                             (p->guard_interval == GUARD_INTERVAL_1_32)) {
2371                                 /* enable slave */
2372                                 sc_config |= SC_RA_RAM_CONFIG_SLAVE__M;
2373                         } else {
2374                                 /* disable slave */
2375                                 sc_config &= ~SC_RA_RAM_CONFIG_SLAVE__M;
2376                         }
2377                         status = Write16(state, SC_RA_RAM_CONFIG__A, sc_config, 0);
2378                         if (status < 0)
2379                                 break;
2380                 }
2381
2382                 status = SetCfgNoiseCalibration(state, &state->noise_cal);
2383                 if (status < 0)
2384                         break;
2385
2386                 if (state->cscd_state == CSCD_INIT) {
2387                         /* switch on SRMM scan in SC */
2388                         status = Write16(state, SC_RA_RAM_SAMPLE_RATE_COUNT__A, DRXD_OSCDEV_DO_SCAN, 0x0000);
2389                         if (status < 0)
2390                                 break;
2391 /*            CHK_ERROR(Write16(SC_RA_RAM_SAMPLE_RATE_STEP__A, DRXD_OSCDEV_STEP, 0x0000));*/
2392                         state->cscd_state = CSCD_SET;
2393                 }
2394
2395                 /* Now compute FE_IF_REG_INCR */
2396                 /*((( SysFreq/BandWidth)/2)/2) -1) * 2^23) =>
2397                    ((SysFreq / BandWidth) * (2^21) ) - (2^23) */
2398                 feIfIncr = MulDiv32(state->sys_clock_freq * 1000,
2399                                     (1ULL << 21), bandwidth) - (1 << 23);
2400                 status = Write16(state, FE_IF_REG_INCR0__A, (u16) (feIfIncr & FE_IF_REG_INCR0__M), 0x0000);
2401                 if (status < 0)
2402                         break;
2403                 status = Write16(state, FE_IF_REG_INCR1__A, (u16) ((feIfIncr >> FE_IF_REG_INCR0__W) & FE_IF_REG_INCR1__M), 0x0000);
2404                 if (status < 0)
2405                         break;
2406                 /* Bandwidth setting done */
2407
2408                 /* Mirror & frequency offset */
2409                 SetFrequencyShift(state, off, mirrorFreqSpect);
2410
2411                 /* Start SC, write channel settings to SC */
2412
2413                 /* Enable SC after setting all other parameters */
2414                 status = Write16(state, SC_COMM_STATE__A, 0, 0x0000);
2415                 if (status < 0)
2416                         break;
2417                 status = Write16(state, SC_COMM_EXEC__A, 1, 0x0000);
2418                 if (status < 0)
2419                         break;
2420
2421                 /* Write SC parameter registers, operation mode */
2422 #if 1
2423                 operationMode = (SC_RA_RAM_OP_AUTO_MODE__M |
2424                                  SC_RA_RAM_OP_AUTO_GUARD__M |
2425                                  SC_RA_RAM_OP_AUTO_CONST__M |
2426                                  SC_RA_RAM_OP_AUTO_HIER__M |
2427                                  SC_RA_RAM_OP_AUTO_RATE__M);
2428 #endif
2429                 status = SC_SetPrefParamCommand(state, 0x0000, transmissionParams, operationMode);
2430                 if (status < 0)
2431                         break;
2432
2433                 /* Start correct processes to get in lock */
2434                 status = SC_ProcStartCommand(state, SC_RA_RAM_PROC_LOCKTRACK, SC_RA_RAM_SW_EVENT_RUN_NMASK__M, SC_RA_RAM_LOCKTRACK_MIN);
2435                 if (status < 0)
2436                         break;
2437
2438                 status = StartOC(state);
2439                 if (status < 0)
2440                         break;
2441
2442                 if (state->operation_mode != OM_Default) {
2443                         status = StartDiversity(state);
2444                         if (status < 0)
2445                                 break;
2446                 }
2447
2448                 state->drxd_state = DRXD_STARTED;
2449         } while (0);
2450
2451         return status;
2452 }
2453
2454 static int CDRXD(struct drxd_state *state, u32 IntermediateFrequency)
2455 {
2456         u32 ulRfAgcOutputLevel = 0xffffffff;
2457         u32 ulRfAgcSettleLevel = 528;   /* Optimum value for MT2060 */
2458         u32 ulRfAgcMinLevel = 0;        /* Currently unused */
2459         u32 ulRfAgcMaxLevel = DRXD_FE_CTRL_MAX; /* Currently unused */
2460         u32 ulRfAgcSpeed = 0;   /* Currently unused */
2461         u32 ulRfAgcMode = 0;    /*2;   Off */
2462         u32 ulRfAgcR1 = 820;
2463         u32 ulRfAgcR2 = 2200;
2464         u32 ulRfAgcR3 = 150;
2465         u32 ulIfAgcMode = 0;    /* Auto */
2466         u32 ulIfAgcOutputLevel = 0xffffffff;
2467         u32 ulIfAgcSettleLevel = 0xffffffff;
2468         u32 ulIfAgcMinLevel = 0xffffffff;
2469         u32 ulIfAgcMaxLevel = 0xffffffff;
2470         u32 ulIfAgcSpeed = 0xffffffff;
2471         u32 ulIfAgcR1 = 820;
2472         u32 ulIfAgcR2 = 2200;
2473         u32 ulIfAgcR3 = 150;
2474         u32 ulClock = state->config.clock;
2475         u32 ulSerialMode = 0;
2476         u32 ulEcOcRegOcModeLop = 4;     /* Dynamic DTO source */
2477         u32 ulHiI2cDelay = HI_I2C_DELAY;
2478         u32 ulHiI2cBridgeDelay = HI_I2C_BRIDGE_DELAY;
2479         u32 ulHiI2cPatch = 0;
2480         u32 ulEnvironment = APPENV_PORTABLE;
2481         u32 ulEnvironmentDiversity = APPENV_MOBILE;
2482         u32 ulIFFilter = IFFILTER_SAW;
2483
2484         state->if_agc_cfg.ctrlMode = AGC_CTRL_AUTO;
2485         state->if_agc_cfg.outputLevel = 0;
2486         state->if_agc_cfg.settleLevel = 140;
2487         state->if_agc_cfg.minOutputLevel = 0;
2488         state->if_agc_cfg.maxOutputLevel = 1023;
2489         state->if_agc_cfg.speed = 904;
2490
2491         if (ulIfAgcMode == 1 && ulIfAgcOutputLevel <= DRXD_FE_CTRL_MAX) {
2492                 state->if_agc_cfg.ctrlMode = AGC_CTRL_USER;
2493                 state->if_agc_cfg.outputLevel = (u16) (ulIfAgcOutputLevel);
2494         }
2495
2496         if (ulIfAgcMode == 0 &&
2497             ulIfAgcSettleLevel <= DRXD_FE_CTRL_MAX &&
2498             ulIfAgcMinLevel <= DRXD_FE_CTRL_MAX &&
2499             ulIfAgcMaxLevel <= DRXD_FE_CTRL_MAX &&
2500             ulIfAgcSpeed <= DRXD_FE_CTRL_MAX) {
2501                 state->if_agc_cfg.ctrlMode = AGC_CTRL_AUTO;
2502                 state->if_agc_cfg.settleLevel = (u16) (ulIfAgcSettleLevel);
2503                 state->if_agc_cfg.minOutputLevel = (u16) (ulIfAgcMinLevel);
2504                 state->if_agc_cfg.maxOutputLevel = (u16) (ulIfAgcMaxLevel);
2505                 state->if_agc_cfg.speed = (u16) (ulIfAgcSpeed);
2506         }
2507
2508         state->if_agc_cfg.R1 = (u16) (ulIfAgcR1);
2509         state->if_agc_cfg.R2 = (u16) (ulIfAgcR2);
2510         state->if_agc_cfg.R3 = (u16) (ulIfAgcR3);
2511
2512         state->rf_agc_cfg.R1 = (u16) (ulRfAgcR1);
2513         state->rf_agc_cfg.R2 = (u16) (ulRfAgcR2);
2514         state->rf_agc_cfg.R3 = (u16) (ulRfAgcR3);
2515
2516         state->rf_agc_cfg.ctrlMode = AGC_CTRL_AUTO;
2517         /* rest of the RFAgcCfg structure currently unused */
2518         if (ulRfAgcMode == 1 && ulRfAgcOutputLevel <= DRXD_FE_CTRL_MAX) {
2519                 state->rf_agc_cfg.ctrlMode = AGC_CTRL_USER;
2520                 state->rf_agc_cfg.outputLevel = (u16) (ulRfAgcOutputLevel);
2521         }
2522
2523         if (ulRfAgcMode == 0 &&
2524             ulRfAgcSettleLevel <= DRXD_FE_CTRL_MAX &&
2525             ulRfAgcMinLevel <= DRXD_FE_CTRL_MAX &&
2526             ulRfAgcMaxLevel <= DRXD_FE_CTRL_MAX &&
2527             ulRfAgcSpeed <= DRXD_FE_CTRL_MAX) {
2528                 state->rf_agc_cfg.ctrlMode = AGC_CTRL_AUTO;
2529                 state->rf_agc_cfg.settleLevel = (u16) (ulRfAgcSettleLevel);
2530                 state->rf_agc_cfg.minOutputLevel = (u16) (ulRfAgcMinLevel);
2531                 state->rf_agc_cfg.maxOutputLevel = (u16) (ulRfAgcMaxLevel);
2532                 state->rf_agc_cfg.speed = (u16) (ulRfAgcSpeed);
2533         }
2534
2535         if (ulRfAgcMode == 2)
2536                 state->rf_agc_cfg.ctrlMode = AGC_CTRL_OFF;
2537
2538         if (ulEnvironment <= 2)
2539                 state->app_env_default = (enum app_env)
2540                     (ulEnvironment);
2541         if (ulEnvironmentDiversity <= 2)
2542                 state->app_env_diversity = (enum app_env)
2543                     (ulEnvironmentDiversity);
2544
2545         if (ulIFFilter == IFFILTER_DISCRETE) {
2546                 /* discrete filter */
2547                 state->noise_cal.cpOpt = 0;
2548                 state->noise_cal.cpNexpOfs = 40;
2549                 state->noise_cal.tdCal2k = -40;
2550                 state->noise_cal.tdCal8k = -24;
2551         } else {
2552                 /* SAW filter */
2553                 state->noise_cal.cpOpt = 1;
2554                 state->noise_cal.cpNexpOfs = 0;
2555                 state->noise_cal.tdCal2k = -21;
2556                 state->noise_cal.tdCal8k = -24;
2557         }
2558         state->m_EcOcRegOcModeLop = (u16) (ulEcOcRegOcModeLop);
2559
2560         state->chip_adr = (state->config.demod_address << 1) | 1;
2561         switch (ulHiI2cPatch) {
2562         case 1:
2563                 state->m_HiI2cPatch = DRXD_HiI2cPatch_1;
2564                 break;
2565         case 3:
2566                 state->m_HiI2cPatch = DRXD_HiI2cPatch_3;
2567                 break;
2568         default:
2569                 state->m_HiI2cPatch = NULL;
2570         }
2571
2572         /* modify tuner and clock attributes */
2573         state->intermediate_freq = (u16) (IntermediateFrequency / 1000);
2574         /* expected system clock frequency in kHz */
2575         state->expected_sys_clock_freq = 48000;
2576         /* real system clock frequency in kHz */
2577         state->sys_clock_freq = 48000;
2578         state->osc_clock_freq = (u16) ulClock;
2579         state->osc_clock_deviation = 0;
2580         state->cscd_state = CSCD_INIT;
2581         state->drxd_state = DRXD_UNINITIALIZED;
2582
2583         state->PGA = 0;
2584         state->type_A = 0;
2585         state->tuner_mirrors = 0;
2586
2587         /* modify MPEG output attributes */
2588         state->insert_rs_byte = state->config.insert_rs_byte;
2589         state->enable_parallel = (ulSerialMode != 1);
2590
2591         /* Timing div, 250ns/Psys */
2592         /* Timing div, = ( delay (nano seconds) * sysclk (kHz) )/ 1000 */
2593
2594         state->hi_cfg_timing_div = (u16) ((state->sys_clock_freq / 1000) *
2595                                           ulHiI2cDelay) / 1000;
2596         /* Bridge delay, uses oscilator clock */
2597         /* Delay = ( delay (nano seconds) * oscclk (kHz) )/ 1000 */
2598         state->hi_cfg_bridge_delay = (u16) ((state->osc_clock_freq / 1000) *
2599                                             ulHiI2cBridgeDelay) / 1000;
2600
2601         state->m_FeAgRegAgPwd = DRXD_DEF_AG_PWD_CONSUMER;
2602         /* state->m_FeAgRegAgPwd = DRXD_DEF_AG_PWD_PRO; */
2603         state->m_FeAgRegAgAgcSio = DRXD_DEF_AG_AGC_SIO;
2604         return 0;
2605 }
2606
2607 static int DRXD_init(struct drxd_state *state, const u8 *fw, u32 fw_size)
2608 {
2609         int status = 0;
2610         u32 driverVersion;
2611
2612         if (state->init_done)
2613                 return 0;
2614
2615         CDRXD(state, state->config.IF ? state->config.IF : 36000000);
2616
2617         do {
2618                 state->operation_mode = OM_Default;
2619
2620                 status = SetDeviceTypeId(state);
2621                 if (status < 0)
2622                         break;
2623
2624                 /* Apply I2c address patch to B1 */
2625                 if (!state->type_A && state->m_HiI2cPatch) {
2626                         status = WriteTable(state, state->m_HiI2cPatch);
2627                         if (status < 0)
2628                                 break;
2629                 }
2630
2631                 if (state->type_A) {
2632                         /* HI firmware patch for UIO readout,
2633                            avoid clearing of result register */
2634                         status = Write16(state, 0x43012D, 0x047f, 0);
2635                         if (status < 0)
2636                                 break;
2637                 }
2638
2639                 status = HI_ResetCommand(state);
2640                 if (status < 0)
2641                         break;
2642
2643                 status = StopAllProcessors(state);
2644                 if (status < 0)
2645                         break;
2646                 status = InitCC(state);
2647                 if (status < 0)
2648                         break;
2649
2650                 state->osc_clock_deviation = 0;
2651
2652                 if (state->config.osc_deviation)
2653                         state->osc_clock_deviation =
2654                             state->config.osc_deviation(state->priv, 0, 0);
2655                 {
2656                         /* Handle clock deviation */
2657                         s32 devB;
2658                         s32 devA = (s32) (state->osc_clock_deviation) *
2659                             (s32) (state->expected_sys_clock_freq);
2660                         /* deviation in kHz */
2661                         s32 deviation = (devA / (1000000L));
2662                         /* rounding, signed */
2663                         if (devA > 0)
2664                                 devB = (2);
2665                         else
2666                                 devB = (-2);
2667                         if ((devB * (devA % 1000000L) > 1000000L)) {
2668                                 /* add +1 or -1 */
2669                                 deviation += (devB / 2);
2670                         }
2671
2672                         state->sys_clock_freq =
2673                             (u16) ((state->expected_sys_clock_freq) +
2674                                    deviation);
2675                 }
2676                 status = InitHI(state);
2677                 if (status < 0)
2678                         break;
2679                 status = InitAtomicRead(state);
2680                 if (status < 0)
2681                         break;
2682
2683                 status = EnableAndResetMB(state);
2684                 if (status < 0)
2685                         break;
2686                 if (state->type_A) {
2687                         status = ResetCEFR(state);
2688                         if (status < 0)
2689                                 break;
2690                 }
2691                 if (fw) {
2692                         status = DownloadMicrocode(state, fw, fw_size);
2693                         if (status < 0)
2694                                 break;
2695                 } else {
2696                         status = DownloadMicrocode(state, state->microcode, state->microcode_length);
2697                         if (status < 0)
2698                                 break;
2699                 }
2700
2701                 if (state->PGA) {
2702                         state->m_FeAgRegAgPwd = DRXD_DEF_AG_PWD_PRO;
2703                         SetCfgPga(state, 0);    /* PGA = 0 dB */
2704                 } else {
2705                         state->m_FeAgRegAgPwd = DRXD_DEF_AG_PWD_CONSUMER;
2706                 }
2707
2708                 state->m_FeAgRegAgAgcSio = DRXD_DEF_AG_AGC_SIO;
2709
2710                 status = InitFE(state);
2711                 if (status < 0)
2712                         break;
2713                 status = InitFT(state);
2714                 if (status < 0)
2715                         break;
2716                 status = InitCP(state);
2717                 if (status < 0)
2718                         break;
2719                 status = InitCE(state);
2720                 if (status < 0)
2721                         break;
2722                 status = InitEQ(state);
2723                 if (status < 0)
2724                         break;
2725                 status = InitEC(state);
2726                 if (status < 0)
2727                         break;
2728                 status = InitSC(state);
2729                 if (status < 0)
2730                         break;
2731
2732                 status = SetCfgIfAgc(state, &state->if_agc_cfg);
2733                 if (status < 0)
2734                         break;
2735                 status = SetCfgRfAgc(state, &state->rf_agc_cfg);
2736                 if (status < 0)
2737                         break;
2738
2739                 state->cscd_state = CSCD_INIT;
2740                 status = Write16(state, SC_COMM_EXEC__A, SC_COMM_EXEC_CTL_STOP, 0);
2741                 if (status < 0)
2742                         break;
2743                 status = Write16(state, LC_COMM_EXEC__A, SC_COMM_EXEC_CTL_STOP, 0);
2744                 if (status < 0)
2745                         break;
2746
2747                 driverVersion = (((VERSION_MAJOR / 10) << 4) +
2748                                  (VERSION_MAJOR % 10)) << 24;
2749                 driverVersion += (((VERSION_MINOR / 10) << 4) +
2750                                   (VERSION_MINOR % 10)) << 16;
2751                 driverVersion += ((VERSION_PATCH / 1000) << 12) +
2752                     ((VERSION_PATCH / 100) << 8) +
2753                     ((VERSION_PATCH / 10) << 4) + (VERSION_PATCH % 10);
2754
2755                 status = Write32(state, SC_RA_RAM_DRIVER_VERSION__AX, driverVersion, 0);
2756                 if (status < 0)
2757                         break;
2758
2759                 status = StopOC(state);
2760                 if (status < 0)
2761                         break;
2762
2763                 state->drxd_state = DRXD_STOPPED;
2764                 state->init_done = 1;
2765                 status = 0;
2766         } while (0);
2767         return status;
2768 }
2769
2770 static int DRXD_status(struct drxd_state *state, u32 *pLockStatus)
2771 {
2772         DRX_GetLockStatus(state, pLockStatus);
2773
2774         /*if (*pLockStatus&DRX_LOCK_MPEG) */
2775         if (*pLockStatus & DRX_LOCK_FEC) {
2776                 ConfigureMPEGOutput(state, 1);
2777                 /* Get status again, in case we have MPEG lock now */
2778                 /*DRX_GetLockStatus(state, pLockStatus); */
2779         }
2780
2781         return 0;
2782 }
2783
2784 /****************************************************************************/
2785 /****************************************************************************/
2786 /****************************************************************************/
2787
2788 static int drxd_read_signal_strength(struct dvb_frontend *fe, u16 * strength)
2789 {
2790         struct drxd_state *state = fe->demodulator_priv;
2791         u32 value;
2792         int res;
2793
2794         res = ReadIFAgc(state, &value);
2795         if (res < 0)
2796                 *strength = 0;
2797         else
2798                 *strength = 0xffff - (value << 4);
2799         return 0;
2800 }
2801
2802 static int drxd_read_status(struct dvb_frontend *fe, enum fe_status *status)
2803 {
2804         struct drxd_state *state = fe->demodulator_priv;
2805         u32 lock;
2806
2807         DRXD_status(state, &lock);
2808         *status = 0;
2809         /* No MPEG lock in V255 firmware, bug ? */
2810 #if 1
2811         if (lock & DRX_LOCK_MPEG)
2812                 *status |= FE_HAS_LOCK;
2813 #else
2814         if (lock & DRX_LOCK_FEC)
2815                 *status |= FE_HAS_LOCK;
2816 #endif
2817         if (lock & DRX_LOCK_FEC)
2818                 *status |= FE_HAS_VITERBI | FE_HAS_SYNC;
2819         if (lock & DRX_LOCK_DEMOD)
2820                 *status |= FE_HAS_CARRIER | FE_HAS_SIGNAL;
2821
2822         return 0;
2823 }
2824
2825 static int drxd_init(struct dvb_frontend *fe)
2826 {
2827         struct drxd_state *state = fe->demodulator_priv;
2828
2829         return DRXD_init(state, NULL, 0);
2830 }
2831
2832 static int drxd_config_i2c(struct dvb_frontend *fe, int onoff)
2833 {
2834         struct drxd_state *state = fe->demodulator_priv;
2835
2836         if (state->config.disable_i2c_gate_ctrl == 1)
2837                 return 0;
2838
2839         return DRX_ConfigureI2CBridge(state, onoff);
2840 }
2841
2842 static int drxd_get_tune_settings(struct dvb_frontend *fe,
2843                                   struct dvb_frontend_tune_settings *sets)
2844 {
2845         sets->min_delay_ms = 10000;
2846         sets->max_drift = 0;
2847         sets->step_size = 0;
2848         return 0;
2849 }
2850
2851 static int drxd_read_ber(struct dvb_frontend *fe, u32 * ber)
2852 {
2853         *ber = 0;
2854         return 0;
2855 }
2856
2857 static int drxd_read_snr(struct dvb_frontend *fe, u16 * snr)
2858 {
2859         *snr = 0;
2860         return 0;
2861 }
2862
2863 static int drxd_read_ucblocks(struct dvb_frontend *fe, u32 * ucblocks)
2864 {
2865         *ucblocks = 0;
2866         return 0;
2867 }
2868
2869 static int drxd_sleep(struct dvb_frontend *fe)
2870 {
2871         struct drxd_state *state = fe->demodulator_priv;
2872
2873         ConfigureMPEGOutput(state, 0);
2874         return 0;
2875 }
2876
2877 static int drxd_i2c_gate_ctrl(struct dvb_frontend *fe, int enable)
2878 {
2879         return drxd_config_i2c(fe, enable);
2880 }
2881
2882 static int drxd_set_frontend(struct dvb_frontend *fe)
2883 {
2884         struct dtv_frontend_properties *p = &fe->dtv_property_cache;
2885         struct drxd_state *state = fe->demodulator_priv;
2886         s32 off = 0;
2887
2888         state->props = *p;
2889         DRX_Stop(state);
2890
2891         if (fe->ops.tuner_ops.set_params) {
2892                 fe->ops.tuner_ops.set_params(fe);
2893                 if (fe->ops.i2c_gate_ctrl)
2894                         fe->ops.i2c_gate_ctrl(fe, 0);
2895         }
2896
2897         msleep(200);
2898
2899         return DRX_Start(state, off);
2900 }
2901
2902 static void drxd_release(struct dvb_frontend *fe)
2903 {
2904         struct drxd_state *state = fe->demodulator_priv;
2905
2906         kfree(state);
2907 }
2908
2909 static const struct dvb_frontend_ops drxd_ops = {
2910         .delsys = { SYS_DVBT},
2911         .info = {
2912                  .name = "Micronas DRXD DVB-T",
2913                  .frequency_min_hz =  47125 * kHz,
2914                  .frequency_max_hz = 855250 * kHz,
2915                  .frequency_stepsize_hz = 166667,
2916                  .caps = FE_CAN_FEC_1_2 | FE_CAN_FEC_2_3 |
2917                  FE_CAN_FEC_3_4 | FE_CAN_FEC_5_6 | FE_CAN_FEC_7_8 |
2918                  FE_CAN_FEC_AUTO |
2919                  FE_CAN_QAM_16 | FE_CAN_QAM_64 |
2920                  FE_CAN_QAM_AUTO |
2921                  FE_CAN_TRANSMISSION_MODE_AUTO |
2922                  FE_CAN_GUARD_INTERVAL_AUTO |
2923                  FE_CAN_HIERARCHY_AUTO | FE_CAN_RECOVER | FE_CAN_MUTE_TS},
2924
2925         .release = drxd_release,
2926         .init = drxd_init,
2927         .sleep = drxd_sleep,
2928         .i2c_gate_ctrl = drxd_i2c_gate_ctrl,
2929
2930         .set_frontend = drxd_set_frontend,
2931         .get_tune_settings = drxd_get_tune_settings,
2932
2933         .read_status = drxd_read_status,
2934         .read_ber = drxd_read_ber,
2935         .read_signal_strength = drxd_read_signal_strength,
2936         .read_snr = drxd_read_snr,
2937         .read_ucblocks = drxd_read_ucblocks,
2938 };
2939
2940 struct dvb_frontend *drxd_attach(const struct drxd_config *config,
2941                                  void *priv, struct i2c_adapter *i2c,
2942                                  struct device *dev)
2943 {
2944         struct drxd_state *state = NULL;
2945
2946         state = kzalloc(sizeof(*state), GFP_KERNEL);
2947         if (!state)
2948                 return NULL;
2949
2950         state->ops = drxd_ops;
2951         state->dev = dev;
2952         state->config = *config;
2953         state->i2c = i2c;
2954         state->priv = priv;
2955
2956         mutex_init(&state->mutex);
2957
2958         if (Read16(state, 0, NULL, 0) < 0)
2959                 goto error;
2960
2961         state->frontend.ops = drxd_ops;
2962         state->frontend.demodulator_priv = state;
2963         ConfigureMPEGOutput(state, 0);
2964         /* add few initialization to allow gate control */
2965         CDRXD(state, state->config.IF ? state->config.IF : 36000000);
2966         InitHI(state);
2967
2968         return &state->frontend;
2969
2970 error:
2971         printk(KERN_ERR "drxd: not found\n");
2972         kfree(state);
2973         return NULL;
2974 }
2975 EXPORT_SYMBOL(drxd_attach);
2976
2977 MODULE_DESCRIPTION("DRXD driver");
2978 MODULE_AUTHOR("Micronas");
2979 MODULE_LICENSE("GPL");