Linux-libre 5.4.47-gnu
[librecmc/linux-libre.git] / drivers / media / cec / cec-adap.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * cec-adap.c - HDMI Consumer Electronics Control framework - CEC adapter
4  *
5  * Copyright 2016 Cisco Systems, Inc. and/or its affiliates. All rights reserved.
6  */
7
8 #include <linux/errno.h>
9 #include <linux/init.h>
10 #include <linux/module.h>
11 #include <linux/kernel.h>
12 #include <linux/kmod.h>
13 #include <linux/ktime.h>
14 #include <linux/slab.h>
15 #include <linux/mm.h>
16 #include <linux/string.h>
17 #include <linux/types.h>
18
19 #include <drm/drm_connector.h>
20 #include <drm/drm_device.h>
21 #include <drm/drm_edid.h>
22 #include <drm/drm_file.h>
23
24 #include "cec-priv.h"
25
26 static void cec_fill_msg_report_features(struct cec_adapter *adap,
27                                          struct cec_msg *msg,
28                                          unsigned int la_idx);
29
30 /*
31  * 400 ms is the time it takes for one 16 byte message to be
32  * transferred and 5 is the maximum number of retries. Add
33  * another 100 ms as a margin. So if the transmit doesn't
34  * finish before that time something is really wrong and we
35  * have to time out.
36  *
37  * This is a sign that something it really wrong and a warning
38  * will be issued.
39  */
40 #define CEC_XFER_TIMEOUT_MS (5 * 400 + 100)
41
42 #define call_op(adap, op, arg...) \
43         (adap->ops->op ? adap->ops->op(adap, ## arg) : 0)
44
45 #define call_void_op(adap, op, arg...)                  \
46         do {                                            \
47                 if (adap->ops->op)                      \
48                         adap->ops->op(adap, ## arg);    \
49         } while (0)
50
51 static int cec_log_addr2idx(const struct cec_adapter *adap, u8 log_addr)
52 {
53         int i;
54
55         for (i = 0; i < adap->log_addrs.num_log_addrs; i++)
56                 if (adap->log_addrs.log_addr[i] == log_addr)
57                         return i;
58         return -1;
59 }
60
61 static unsigned int cec_log_addr2dev(const struct cec_adapter *adap, u8 log_addr)
62 {
63         int i = cec_log_addr2idx(adap, log_addr);
64
65         return adap->log_addrs.primary_device_type[i < 0 ? 0 : i];
66 }
67
68 u16 cec_get_edid_phys_addr(const u8 *edid, unsigned int size,
69                            unsigned int *offset)
70 {
71         unsigned int loc = cec_get_edid_spa_location(edid, size);
72
73         if (offset)
74                 *offset = loc;
75         if (loc == 0)
76                 return CEC_PHYS_ADDR_INVALID;
77         return (edid[loc] << 8) | edid[loc + 1];
78 }
79 EXPORT_SYMBOL_GPL(cec_get_edid_phys_addr);
80
81 void cec_fill_conn_info_from_drm(struct cec_connector_info *conn_info,
82                                  const struct drm_connector *connector)
83 {
84         memset(conn_info, 0, sizeof(*conn_info));
85         conn_info->type = CEC_CONNECTOR_TYPE_DRM;
86         conn_info->drm.card_no = connector->dev->primary->index;
87         conn_info->drm.connector_id = connector->base.id;
88 }
89 EXPORT_SYMBOL_GPL(cec_fill_conn_info_from_drm);
90
91 /*
92  * Queue a new event for this filehandle. If ts == 0, then set it
93  * to the current time.
94  *
95  * We keep a queue of at most max_event events where max_event differs
96  * per event. If the queue becomes full, then drop the oldest event and
97  * keep track of how many events we've dropped.
98  */
99 void cec_queue_event_fh(struct cec_fh *fh,
100                         const struct cec_event *new_ev, u64 ts)
101 {
102         static const u16 max_events[CEC_NUM_EVENTS] = {
103                 1, 1, 800, 800, 8, 8, 8, 8
104         };
105         struct cec_event_entry *entry;
106         unsigned int ev_idx = new_ev->event - 1;
107
108         if (WARN_ON(ev_idx >= ARRAY_SIZE(fh->events)))
109                 return;
110
111         if (ts == 0)
112                 ts = ktime_get_ns();
113
114         mutex_lock(&fh->lock);
115         if (ev_idx < CEC_NUM_CORE_EVENTS)
116                 entry = &fh->core_events[ev_idx];
117         else
118                 entry = kmalloc(sizeof(*entry), GFP_KERNEL);
119         if (entry) {
120                 if (new_ev->event == CEC_EVENT_LOST_MSGS &&
121                     fh->queued_events[ev_idx]) {
122                         entry->ev.lost_msgs.lost_msgs +=
123                                 new_ev->lost_msgs.lost_msgs;
124                         goto unlock;
125                 }
126                 entry->ev = *new_ev;
127                 entry->ev.ts = ts;
128
129                 if (fh->queued_events[ev_idx] < max_events[ev_idx]) {
130                         /* Add new msg at the end of the queue */
131                         list_add_tail(&entry->list, &fh->events[ev_idx]);
132                         fh->queued_events[ev_idx]++;
133                         fh->total_queued_events++;
134                         goto unlock;
135                 }
136
137                 if (ev_idx >= CEC_NUM_CORE_EVENTS) {
138                         list_add_tail(&entry->list, &fh->events[ev_idx]);
139                         /* drop the oldest event */
140                         entry = list_first_entry(&fh->events[ev_idx],
141                                                  struct cec_event_entry, list);
142                         list_del(&entry->list);
143                         kfree(entry);
144                 }
145         }
146         /* Mark that events were lost */
147         entry = list_first_entry_or_null(&fh->events[ev_idx],
148                                          struct cec_event_entry, list);
149         if (entry)
150                 entry->ev.flags |= CEC_EVENT_FL_DROPPED_EVENTS;
151
152 unlock:
153         mutex_unlock(&fh->lock);
154         wake_up_interruptible(&fh->wait);
155 }
156
157 /* Queue a new event for all open filehandles. */
158 static void cec_queue_event(struct cec_adapter *adap,
159                             const struct cec_event *ev)
160 {
161         u64 ts = ktime_get_ns();
162         struct cec_fh *fh;
163
164         mutex_lock(&adap->devnode.lock);
165         list_for_each_entry(fh, &adap->devnode.fhs, list)
166                 cec_queue_event_fh(fh, ev, ts);
167         mutex_unlock(&adap->devnode.lock);
168 }
169
170 /* Notify userspace that the CEC pin changed state at the given time. */
171 void cec_queue_pin_cec_event(struct cec_adapter *adap, bool is_high,
172                              bool dropped_events, ktime_t ts)
173 {
174         struct cec_event ev = {
175                 .event = is_high ? CEC_EVENT_PIN_CEC_HIGH :
176                                    CEC_EVENT_PIN_CEC_LOW,
177                 .flags = dropped_events ? CEC_EVENT_FL_DROPPED_EVENTS : 0,
178         };
179         struct cec_fh *fh;
180
181         mutex_lock(&adap->devnode.lock);
182         list_for_each_entry(fh, &adap->devnode.fhs, list)
183                 if (fh->mode_follower == CEC_MODE_MONITOR_PIN)
184                         cec_queue_event_fh(fh, &ev, ktime_to_ns(ts));
185         mutex_unlock(&adap->devnode.lock);
186 }
187 EXPORT_SYMBOL_GPL(cec_queue_pin_cec_event);
188
189 /* Notify userspace that the HPD pin changed state at the given time. */
190 void cec_queue_pin_hpd_event(struct cec_adapter *adap, bool is_high, ktime_t ts)
191 {
192         struct cec_event ev = {
193                 .event = is_high ? CEC_EVENT_PIN_HPD_HIGH :
194                                    CEC_EVENT_PIN_HPD_LOW,
195         };
196         struct cec_fh *fh;
197
198         mutex_lock(&adap->devnode.lock);
199         list_for_each_entry(fh, &adap->devnode.fhs, list)
200                 cec_queue_event_fh(fh, &ev, ktime_to_ns(ts));
201         mutex_unlock(&adap->devnode.lock);
202 }
203 EXPORT_SYMBOL_GPL(cec_queue_pin_hpd_event);
204
205 /* Notify userspace that the 5V pin changed state at the given time. */
206 void cec_queue_pin_5v_event(struct cec_adapter *adap, bool is_high, ktime_t ts)
207 {
208         struct cec_event ev = {
209                 .event = is_high ? CEC_EVENT_PIN_5V_HIGH :
210                                    CEC_EVENT_PIN_5V_LOW,
211         };
212         struct cec_fh *fh;
213
214         mutex_lock(&adap->devnode.lock);
215         list_for_each_entry(fh, &adap->devnode.fhs, list)
216                 cec_queue_event_fh(fh, &ev, ktime_to_ns(ts));
217         mutex_unlock(&adap->devnode.lock);
218 }
219 EXPORT_SYMBOL_GPL(cec_queue_pin_5v_event);
220
221 /*
222  * Queue a new message for this filehandle.
223  *
224  * We keep a queue of at most CEC_MAX_MSG_RX_QUEUE_SZ messages. If the
225  * queue becomes full, then drop the oldest message and keep track
226  * of how many messages we've dropped.
227  */
228 static void cec_queue_msg_fh(struct cec_fh *fh, const struct cec_msg *msg)
229 {
230         static const struct cec_event ev_lost_msgs = {
231                 .event = CEC_EVENT_LOST_MSGS,
232                 .flags = 0,
233                 {
234                         .lost_msgs = { 1 },
235                 },
236         };
237         struct cec_msg_entry *entry;
238
239         mutex_lock(&fh->lock);
240         entry = kmalloc(sizeof(*entry), GFP_KERNEL);
241         if (entry) {
242                 entry->msg = *msg;
243                 /* Add new msg at the end of the queue */
244                 list_add_tail(&entry->list, &fh->msgs);
245
246                 if (fh->queued_msgs < CEC_MAX_MSG_RX_QUEUE_SZ) {
247                         /* All is fine if there is enough room */
248                         fh->queued_msgs++;
249                         mutex_unlock(&fh->lock);
250                         wake_up_interruptible(&fh->wait);
251                         return;
252                 }
253
254                 /*
255                  * if the message queue is full, then drop the oldest one and
256                  * send a lost message event.
257                  */
258                 entry = list_first_entry(&fh->msgs, struct cec_msg_entry, list);
259                 list_del(&entry->list);
260                 kfree(entry);
261         }
262         mutex_unlock(&fh->lock);
263
264         /*
265          * We lost a message, either because kmalloc failed or the queue
266          * was full.
267          */
268         cec_queue_event_fh(fh, &ev_lost_msgs, ktime_get_ns());
269 }
270
271 /*
272  * Queue the message for those filehandles that are in monitor mode.
273  * If valid_la is true (this message is for us or was sent by us),
274  * then pass it on to any monitoring filehandle. If this message
275  * isn't for us or from us, then only give it to filehandles that
276  * are in MONITOR_ALL mode.
277  *
278  * This can only happen if the CEC_CAP_MONITOR_ALL capability is
279  * set and the CEC adapter was placed in 'monitor all' mode.
280  */
281 static void cec_queue_msg_monitor(struct cec_adapter *adap,
282                                   const struct cec_msg *msg,
283                                   bool valid_la)
284 {
285         struct cec_fh *fh;
286         u32 monitor_mode = valid_la ? CEC_MODE_MONITOR :
287                                       CEC_MODE_MONITOR_ALL;
288
289         mutex_lock(&adap->devnode.lock);
290         list_for_each_entry(fh, &adap->devnode.fhs, list) {
291                 if (fh->mode_follower >= monitor_mode)
292                         cec_queue_msg_fh(fh, msg);
293         }
294         mutex_unlock(&adap->devnode.lock);
295 }
296
297 /*
298  * Queue the message for follower filehandles.
299  */
300 static void cec_queue_msg_followers(struct cec_adapter *adap,
301                                     const struct cec_msg *msg)
302 {
303         struct cec_fh *fh;
304
305         mutex_lock(&adap->devnode.lock);
306         list_for_each_entry(fh, &adap->devnode.fhs, list) {
307                 if (fh->mode_follower == CEC_MODE_FOLLOWER)
308                         cec_queue_msg_fh(fh, msg);
309         }
310         mutex_unlock(&adap->devnode.lock);
311 }
312
313 /* Notify userspace of an adapter state change. */
314 static void cec_post_state_event(struct cec_adapter *adap)
315 {
316         struct cec_event ev = {
317                 .event = CEC_EVENT_STATE_CHANGE,
318         };
319
320         ev.state_change.phys_addr = adap->phys_addr;
321         ev.state_change.log_addr_mask = adap->log_addrs.log_addr_mask;
322         cec_queue_event(adap, &ev);
323 }
324
325 /*
326  * A CEC transmit (and a possible wait for reply) completed.
327  * If this was in blocking mode, then complete it, otherwise
328  * queue the message for userspace to dequeue later.
329  *
330  * This function is called with adap->lock held.
331  */
332 static void cec_data_completed(struct cec_data *data)
333 {
334         /*
335          * Delete this transmit from the filehandle's xfer_list since
336          * we're done with it.
337          *
338          * Note that if the filehandle is closed before this transmit
339          * finished, then the release() function will set data->fh to NULL.
340          * Without that we would be referring to a closed filehandle.
341          */
342         if (data->fh)
343                 list_del(&data->xfer_list);
344
345         if (data->blocking) {
346                 /*
347                  * Someone is blocking so mark the message as completed
348                  * and call complete.
349                  */
350                 data->completed = true;
351                 complete(&data->c);
352         } else {
353                 /*
354                  * No blocking, so just queue the message if needed and
355                  * free the memory.
356                  */
357                 if (data->fh)
358                         cec_queue_msg_fh(data->fh, &data->msg);
359                 kfree(data);
360         }
361 }
362
363 /*
364  * A pending CEC transmit needs to be cancelled, either because the CEC
365  * adapter is disabled or the transmit takes an impossibly long time to
366  * finish.
367  *
368  * This function is called with adap->lock held.
369  */
370 static void cec_data_cancel(struct cec_data *data, u8 tx_status)
371 {
372         /*
373          * It's either the current transmit, or it is a pending
374          * transmit. Take the appropriate action to clear it.
375          */
376         if (data->adap->transmitting == data) {
377                 data->adap->transmitting = NULL;
378         } else {
379                 list_del_init(&data->list);
380                 if (!(data->msg.tx_status & CEC_TX_STATUS_OK))
381                         if (!WARN_ON(!data->adap->transmit_queue_sz))
382                                 data->adap->transmit_queue_sz--;
383         }
384
385         if (data->msg.tx_status & CEC_TX_STATUS_OK) {
386                 data->msg.rx_ts = ktime_get_ns();
387                 data->msg.rx_status = CEC_RX_STATUS_ABORTED;
388         } else {
389                 data->msg.tx_ts = ktime_get_ns();
390                 data->msg.tx_status |= tx_status |
391                                        CEC_TX_STATUS_MAX_RETRIES;
392                 data->msg.tx_error_cnt++;
393                 data->attempts = 0;
394         }
395
396         /* Queue transmitted message for monitoring purposes */
397         cec_queue_msg_monitor(data->adap, &data->msg, 1);
398
399         cec_data_completed(data);
400 }
401
402 /*
403  * Flush all pending transmits and cancel any pending timeout work.
404  *
405  * This function is called with adap->lock held.
406  */
407 static void cec_flush(struct cec_adapter *adap)
408 {
409         struct cec_data *data, *n;
410
411         /*
412          * If the adapter is disabled, or we're asked to stop,
413          * then cancel any pending transmits.
414          */
415         while (!list_empty(&adap->transmit_queue)) {
416                 data = list_first_entry(&adap->transmit_queue,
417                                         struct cec_data, list);
418                 cec_data_cancel(data, CEC_TX_STATUS_ABORTED);
419         }
420         if (adap->transmitting)
421                 cec_data_cancel(adap->transmitting, CEC_TX_STATUS_ABORTED);
422
423         /* Cancel the pending timeout work. */
424         list_for_each_entry_safe(data, n, &adap->wait_queue, list) {
425                 if (cancel_delayed_work(&data->work))
426                         cec_data_cancel(data, CEC_TX_STATUS_OK);
427                 /*
428                  * If cancel_delayed_work returned false, then
429                  * the cec_wait_timeout function is running,
430                  * which will call cec_data_completed. So no
431                  * need to do anything special in that case.
432                  */
433         }
434         /*
435          * If something went wrong and this counter isn't what it should
436          * be, then this will reset it back to 0. Warn if it is not 0,
437          * since it indicates a bug, either in this framework or in a
438          * CEC driver.
439          */
440         if (WARN_ON(adap->transmit_queue_sz))
441                 adap->transmit_queue_sz = 0;
442 }
443
444 /*
445  * Main CEC state machine
446  *
447  * Wait until the thread should be stopped, or we are not transmitting and
448  * a new transmit message is queued up, in which case we start transmitting
449  * that message. When the adapter finished transmitting the message it will
450  * call cec_transmit_done().
451  *
452  * If the adapter is disabled, then remove all queued messages instead.
453  *
454  * If the current transmit times out, then cancel that transmit.
455  */
456 int cec_thread_func(void *_adap)
457 {
458         struct cec_adapter *adap = _adap;
459
460         for (;;) {
461                 unsigned int signal_free_time;
462                 struct cec_data *data;
463                 bool timeout = false;
464                 u8 attempts;
465
466                 if (adap->transmit_in_progress) {
467                         int err;
468
469                         /*
470                          * We are transmitting a message, so add a timeout
471                          * to prevent the state machine to get stuck waiting
472                          * for this message to finalize and add a check to
473                          * see if the adapter is disabled in which case the
474                          * transmit should be canceled.
475                          */
476                         err = wait_event_interruptible_timeout(adap->kthread_waitq,
477                                 (adap->needs_hpd &&
478                                  (!adap->is_configured && !adap->is_configuring)) ||
479                                 kthread_should_stop() ||
480                                 (!adap->transmit_in_progress &&
481                                  !list_empty(&adap->transmit_queue)),
482                                 msecs_to_jiffies(CEC_XFER_TIMEOUT_MS));
483                         timeout = err == 0;
484                 } else {
485                         /* Otherwise we just wait for something to happen. */
486                         wait_event_interruptible(adap->kthread_waitq,
487                                 kthread_should_stop() ||
488                                 (!adap->transmit_in_progress &&
489                                  !list_empty(&adap->transmit_queue)));
490                 }
491
492                 mutex_lock(&adap->lock);
493
494                 if ((adap->needs_hpd &&
495                      (!adap->is_configured && !adap->is_configuring)) ||
496                     kthread_should_stop()) {
497                         cec_flush(adap);
498                         goto unlock;
499                 }
500
501                 if (adap->transmit_in_progress && timeout) {
502                         /*
503                          * If we timeout, then log that. Normally this does
504                          * not happen and it is an indication of a faulty CEC
505                          * adapter driver, or the CEC bus is in some weird
506                          * state. On rare occasions it can happen if there is
507                          * so much traffic on the bus that the adapter was
508                          * unable to transmit for CEC_XFER_TIMEOUT_MS (2.1s).
509                          */
510                         if (adap->transmitting) {
511                                 pr_warn("cec-%s: message %*ph timed out\n", adap->name,
512                                         adap->transmitting->msg.len,
513                                         adap->transmitting->msg.msg);
514                                 /* Just give up on this. */
515                                 cec_data_cancel(adap->transmitting,
516                                                 CEC_TX_STATUS_TIMEOUT);
517                         } else {
518                                 pr_warn("cec-%s: transmit timed out\n", adap->name);
519                         }
520                         adap->transmit_in_progress = false;
521                         adap->tx_timeouts++;
522                         goto unlock;
523                 }
524
525                 /*
526                  * If we are still transmitting, or there is nothing new to
527                  * transmit, then just continue waiting.
528                  */
529                 if (adap->transmit_in_progress || list_empty(&adap->transmit_queue))
530                         goto unlock;
531
532                 /* Get a new message to transmit */
533                 data = list_first_entry(&adap->transmit_queue,
534                                         struct cec_data, list);
535                 list_del_init(&data->list);
536                 if (!WARN_ON(!data->adap->transmit_queue_sz))
537                         adap->transmit_queue_sz--;
538
539                 /* Make this the current transmitting message */
540                 adap->transmitting = data;
541
542                 /*
543                  * Suggested number of attempts as per the CEC 2.0 spec:
544                  * 4 attempts is the default, except for 'secondary poll
545                  * messages', i.e. poll messages not sent during the adapter
546                  * configuration phase when it allocates logical addresses.
547                  */
548                 if (data->msg.len == 1 && adap->is_configured)
549                         attempts = 2;
550                 else
551                         attempts = 4;
552
553                 /* Set the suggested signal free time */
554                 if (data->attempts) {
555                         /* should be >= 3 data bit periods for a retry */
556                         signal_free_time = CEC_SIGNAL_FREE_TIME_RETRY;
557                 } else if (adap->last_initiator !=
558                            cec_msg_initiator(&data->msg)) {
559                         /* should be >= 5 data bit periods for new initiator */
560                         signal_free_time = CEC_SIGNAL_FREE_TIME_NEW_INITIATOR;
561                         adap->last_initiator = cec_msg_initiator(&data->msg);
562                 } else {
563                         /*
564                          * should be >= 7 data bit periods for sending another
565                          * frame immediately after another.
566                          */
567                         signal_free_time = CEC_SIGNAL_FREE_TIME_NEXT_XFER;
568                 }
569                 if (data->attempts == 0)
570                         data->attempts = attempts;
571
572                 /* Tell the adapter to transmit, cancel on error */
573                 if (adap->ops->adap_transmit(adap, data->attempts,
574                                              signal_free_time, &data->msg))
575                         cec_data_cancel(data, CEC_TX_STATUS_ABORTED);
576                 else
577                         adap->transmit_in_progress = true;
578
579 unlock:
580                 mutex_unlock(&adap->lock);
581
582                 if (kthread_should_stop())
583                         break;
584         }
585         return 0;
586 }
587
588 /*
589  * Called by the CEC adapter if a transmit finished.
590  */
591 void cec_transmit_done_ts(struct cec_adapter *adap, u8 status,
592                           u8 arb_lost_cnt, u8 nack_cnt, u8 low_drive_cnt,
593                           u8 error_cnt, ktime_t ts)
594 {
595         struct cec_data *data;
596         struct cec_msg *msg;
597         unsigned int attempts_made = arb_lost_cnt + nack_cnt +
598                                      low_drive_cnt + error_cnt;
599
600         dprintk(2, "%s: status 0x%02x\n", __func__, status);
601         if (attempts_made < 1)
602                 attempts_made = 1;
603
604         mutex_lock(&adap->lock);
605         data = adap->transmitting;
606         if (!data) {
607                 /*
608                  * This might happen if a transmit was issued and the cable is
609                  * unplugged while the transmit is ongoing. Ignore this
610                  * transmit in that case.
611                  */
612                 if (!adap->transmit_in_progress)
613                         dprintk(1, "%s was called without an ongoing transmit!\n",
614                                 __func__);
615                 adap->transmit_in_progress = false;
616                 goto wake_thread;
617         }
618         adap->transmit_in_progress = false;
619
620         msg = &data->msg;
621
622         /* Drivers must fill in the status! */
623         WARN_ON(status == 0);
624         msg->tx_ts = ktime_to_ns(ts);
625         msg->tx_status |= status;
626         msg->tx_arb_lost_cnt += arb_lost_cnt;
627         msg->tx_nack_cnt += nack_cnt;
628         msg->tx_low_drive_cnt += low_drive_cnt;
629         msg->tx_error_cnt += error_cnt;
630
631         /* Mark that we're done with this transmit */
632         adap->transmitting = NULL;
633
634         /*
635          * If there are still retry attempts left and there was an error and
636          * the hardware didn't signal that it retried itself (by setting
637          * CEC_TX_STATUS_MAX_RETRIES), then we will retry ourselves.
638          */
639         if (data->attempts > attempts_made &&
640             !(status & (CEC_TX_STATUS_MAX_RETRIES | CEC_TX_STATUS_OK))) {
641                 /* Retry this message */
642                 data->attempts -= attempts_made;
643                 if (msg->timeout)
644                         dprintk(2, "retransmit: %*ph (attempts: %d, wait for 0x%02x)\n",
645                                 msg->len, msg->msg, data->attempts, msg->reply);
646                 else
647                         dprintk(2, "retransmit: %*ph (attempts: %d)\n",
648                                 msg->len, msg->msg, data->attempts);
649                 /* Add the message in front of the transmit queue */
650                 list_add(&data->list, &adap->transmit_queue);
651                 adap->transmit_queue_sz++;
652                 goto wake_thread;
653         }
654
655         data->attempts = 0;
656
657         /* Always set CEC_TX_STATUS_MAX_RETRIES on error */
658         if (!(status & CEC_TX_STATUS_OK))
659                 msg->tx_status |= CEC_TX_STATUS_MAX_RETRIES;
660
661         /* Queue transmitted message for monitoring purposes */
662         cec_queue_msg_monitor(adap, msg, 1);
663
664         if ((status & CEC_TX_STATUS_OK) && adap->is_configured &&
665             msg->timeout) {
666                 /*
667                  * Queue the message into the wait queue if we want to wait
668                  * for a reply.
669                  */
670                 list_add_tail(&data->list, &adap->wait_queue);
671                 schedule_delayed_work(&data->work,
672                                       msecs_to_jiffies(msg->timeout));
673         } else {
674                 /* Otherwise we're done */
675                 cec_data_completed(data);
676         }
677
678 wake_thread:
679         /*
680          * Wake up the main thread to see if another message is ready
681          * for transmitting or to retry the current message.
682          */
683         wake_up_interruptible(&adap->kthread_waitq);
684         mutex_unlock(&adap->lock);
685 }
686 EXPORT_SYMBOL_GPL(cec_transmit_done_ts);
687
688 void cec_transmit_attempt_done_ts(struct cec_adapter *adap,
689                                   u8 status, ktime_t ts)
690 {
691         switch (status & ~CEC_TX_STATUS_MAX_RETRIES) {
692         case CEC_TX_STATUS_OK:
693                 cec_transmit_done_ts(adap, status, 0, 0, 0, 0, ts);
694                 return;
695         case CEC_TX_STATUS_ARB_LOST:
696                 cec_transmit_done_ts(adap, status, 1, 0, 0, 0, ts);
697                 return;
698         case CEC_TX_STATUS_NACK:
699                 cec_transmit_done_ts(adap, status, 0, 1, 0, 0, ts);
700                 return;
701         case CEC_TX_STATUS_LOW_DRIVE:
702                 cec_transmit_done_ts(adap, status, 0, 0, 1, 0, ts);
703                 return;
704         case CEC_TX_STATUS_ERROR:
705                 cec_transmit_done_ts(adap, status, 0, 0, 0, 1, ts);
706                 return;
707         default:
708                 /* Should never happen */
709                 WARN(1, "cec-%s: invalid status 0x%02x\n", adap->name, status);
710                 return;
711         }
712 }
713 EXPORT_SYMBOL_GPL(cec_transmit_attempt_done_ts);
714
715 /*
716  * Called when waiting for a reply times out.
717  */
718 static void cec_wait_timeout(struct work_struct *work)
719 {
720         struct cec_data *data = container_of(work, struct cec_data, work.work);
721         struct cec_adapter *adap = data->adap;
722
723         mutex_lock(&adap->lock);
724         /*
725          * Sanity check in case the timeout and the arrival of the message
726          * happened at the same time.
727          */
728         if (list_empty(&data->list))
729                 goto unlock;
730
731         /* Mark the message as timed out */
732         list_del_init(&data->list);
733         data->msg.rx_ts = ktime_get_ns();
734         data->msg.rx_status = CEC_RX_STATUS_TIMEOUT;
735         cec_data_completed(data);
736 unlock:
737         mutex_unlock(&adap->lock);
738 }
739
740 /*
741  * Transmit a message. The fh argument may be NULL if the transmit is not
742  * associated with a specific filehandle.
743  *
744  * This function is called with adap->lock held.
745  */
746 int cec_transmit_msg_fh(struct cec_adapter *adap, struct cec_msg *msg,
747                         struct cec_fh *fh, bool block)
748 {
749         struct cec_data *data;
750         bool is_raw = msg_is_raw(msg);
751
752         msg->rx_ts = 0;
753         msg->tx_ts = 0;
754         msg->rx_status = 0;
755         msg->tx_status = 0;
756         msg->tx_arb_lost_cnt = 0;
757         msg->tx_nack_cnt = 0;
758         msg->tx_low_drive_cnt = 0;
759         msg->tx_error_cnt = 0;
760         msg->sequence = 0;
761
762         if (msg->reply && msg->timeout == 0) {
763                 /* Make sure the timeout isn't 0. */
764                 msg->timeout = 1000;
765         }
766         msg->flags &= CEC_MSG_FL_REPLY_TO_FOLLOWERS | CEC_MSG_FL_RAW;
767
768         if (!msg->timeout)
769                 msg->flags &= ~CEC_MSG_FL_REPLY_TO_FOLLOWERS;
770
771         /* Sanity checks */
772         if (msg->len == 0 || msg->len > CEC_MAX_MSG_SIZE) {
773                 dprintk(1, "%s: invalid length %d\n", __func__, msg->len);
774                 return -EINVAL;
775         }
776
777         memset(msg->msg + msg->len, 0, sizeof(msg->msg) - msg->len);
778
779         if (msg->timeout)
780                 dprintk(2, "%s: %*ph (wait for 0x%02x%s)\n",
781                         __func__, msg->len, msg->msg, msg->reply,
782                         !block ? ", nb" : "");
783         else
784                 dprintk(2, "%s: %*ph%s\n",
785                         __func__, msg->len, msg->msg, !block ? " (nb)" : "");
786
787         if (msg->timeout && msg->len == 1) {
788                 dprintk(1, "%s: can't reply to poll msg\n", __func__);
789                 return -EINVAL;
790         }
791
792         if (is_raw) {
793                 if (!capable(CAP_SYS_RAWIO))
794                         return -EPERM;
795         } else {
796                 /* A CDC-Only device can only send CDC messages */
797                 if ((adap->log_addrs.flags & CEC_LOG_ADDRS_FL_CDC_ONLY) &&
798                     (msg->len == 1 || msg->msg[1] != CEC_MSG_CDC_MESSAGE)) {
799                         dprintk(1, "%s: not a CDC message\n", __func__);
800                         return -EINVAL;
801                 }
802
803                 if (msg->len >= 4 && msg->msg[1] == CEC_MSG_CDC_MESSAGE) {
804                         msg->msg[2] = adap->phys_addr >> 8;
805                         msg->msg[3] = adap->phys_addr & 0xff;
806                 }
807
808                 if (msg->len == 1) {
809                         if (cec_msg_destination(msg) == 0xf) {
810                                 dprintk(1, "%s: invalid poll message\n",
811                                         __func__);
812                                 return -EINVAL;
813                         }
814                         if (cec_has_log_addr(adap, cec_msg_destination(msg))) {
815                                 /*
816                                  * If the destination is a logical address our
817                                  * adapter has already claimed, then just NACK
818                                  * this. It depends on the hardware what it will
819                                  * do with a POLL to itself (some OK this), so
820                                  * it is just as easy to handle it here so the
821                                  * behavior will be consistent.
822                                  */
823                                 msg->tx_ts = ktime_get_ns();
824                                 msg->tx_status = CEC_TX_STATUS_NACK |
825                                         CEC_TX_STATUS_MAX_RETRIES;
826                                 msg->tx_nack_cnt = 1;
827                                 msg->sequence = ++adap->sequence;
828                                 if (!msg->sequence)
829                                         msg->sequence = ++adap->sequence;
830                                 return 0;
831                         }
832                 }
833                 if (msg->len > 1 && !cec_msg_is_broadcast(msg) &&
834                     cec_has_log_addr(adap, cec_msg_destination(msg))) {
835                         dprintk(1, "%s: destination is the adapter itself\n",
836                                 __func__);
837                         return -EINVAL;
838                 }
839                 if (msg->len > 1 && adap->is_configured &&
840                     !cec_has_log_addr(adap, cec_msg_initiator(msg))) {
841                         dprintk(1, "%s: initiator has unknown logical address %d\n",
842                                 __func__, cec_msg_initiator(msg));
843                         return -EINVAL;
844                 }
845                 /*
846                  * Special case: allow Ping and IMAGE/TEXT_VIEW_ON to be
847                  * transmitted to a TV, even if the adapter is unconfigured.
848                  * This makes it possible to detect or wake up displays that
849                  * pull down the HPD when in standby.
850                  */
851                 if (!adap->is_configured && !adap->is_configuring &&
852                     (msg->len > 2 ||
853                      cec_msg_destination(msg) != CEC_LOG_ADDR_TV ||
854                      (msg->len == 2 && msg->msg[1] != CEC_MSG_IMAGE_VIEW_ON &&
855                       msg->msg[1] != CEC_MSG_TEXT_VIEW_ON))) {
856                         dprintk(1, "%s: adapter is unconfigured\n", __func__);
857                         return -ENONET;
858                 }
859         }
860
861         if (!adap->is_configured && !adap->is_configuring) {
862                 if (adap->needs_hpd) {
863                         dprintk(1, "%s: adapter is unconfigured and needs HPD\n",
864                                 __func__);
865                         return -ENONET;
866                 }
867                 if (msg->reply) {
868                         dprintk(1, "%s: invalid msg->reply\n", __func__);
869                         return -EINVAL;
870                 }
871         }
872
873         if (adap->transmit_queue_sz >= CEC_MAX_MSG_TX_QUEUE_SZ) {
874                 dprintk(2, "%s: transmit queue full\n", __func__);
875                 return -EBUSY;
876         }
877
878         data = kzalloc(sizeof(*data), GFP_KERNEL);
879         if (!data)
880                 return -ENOMEM;
881
882         msg->sequence = ++adap->sequence;
883         if (!msg->sequence)
884                 msg->sequence = ++adap->sequence;
885
886         data->msg = *msg;
887         data->fh = fh;
888         data->adap = adap;
889         data->blocking = block;
890
891         init_completion(&data->c);
892         INIT_DELAYED_WORK(&data->work, cec_wait_timeout);
893
894         if (fh)
895                 list_add_tail(&data->xfer_list, &fh->xfer_list);
896
897         list_add_tail(&data->list, &adap->transmit_queue);
898         adap->transmit_queue_sz++;
899         if (!adap->transmitting)
900                 wake_up_interruptible(&adap->kthread_waitq);
901
902         /* All done if we don't need to block waiting for completion */
903         if (!block)
904                 return 0;
905
906         /*
907          * Release the lock and wait, retake the lock afterwards.
908          */
909         mutex_unlock(&adap->lock);
910         wait_for_completion_killable(&data->c);
911         if (!data->completed)
912                 cancel_delayed_work_sync(&data->work);
913         mutex_lock(&adap->lock);
914
915         /* Cancel the transmit if it was interrupted */
916         if (!data->completed)
917                 cec_data_cancel(data, CEC_TX_STATUS_ABORTED);
918
919         /* The transmit completed (possibly with an error) */
920         *msg = data->msg;
921         kfree(data);
922         return 0;
923 }
924
925 /* Helper function to be used by drivers and this framework. */
926 int cec_transmit_msg(struct cec_adapter *adap, struct cec_msg *msg,
927                      bool block)
928 {
929         int ret;
930
931         mutex_lock(&adap->lock);
932         ret = cec_transmit_msg_fh(adap, msg, NULL, block);
933         mutex_unlock(&adap->lock);
934         return ret;
935 }
936 EXPORT_SYMBOL_GPL(cec_transmit_msg);
937
938 /*
939  * I don't like forward references but without this the low-level
940  * cec_received_msg() function would come after a bunch of high-level
941  * CEC protocol handling functions. That was very confusing.
942  */
943 static int cec_receive_notify(struct cec_adapter *adap, struct cec_msg *msg,
944                               bool is_reply);
945
946 #define DIRECTED        0x80
947 #define BCAST1_4        0x40
948 #define BCAST2_0        0x20    /* broadcast only allowed for >= 2.0 */
949 #define BCAST           (BCAST1_4 | BCAST2_0)
950 #define BOTH            (BCAST | DIRECTED)
951
952 /*
953  * Specify minimum length and whether the message is directed, broadcast
954  * or both. Messages that do not match the criteria are ignored as per
955  * the CEC specification.
956  */
957 static const u8 cec_msg_size[256] = {
958         [CEC_MSG_ACTIVE_SOURCE] = 4 | BCAST,
959         [CEC_MSG_IMAGE_VIEW_ON] = 2 | DIRECTED,
960         [CEC_MSG_TEXT_VIEW_ON] = 2 | DIRECTED,
961         [CEC_MSG_INACTIVE_SOURCE] = 4 | DIRECTED,
962         [CEC_MSG_REQUEST_ACTIVE_SOURCE] = 2 | BCAST,
963         [CEC_MSG_ROUTING_CHANGE] = 6 | BCAST,
964         [CEC_MSG_ROUTING_INFORMATION] = 4 | BCAST,
965         [CEC_MSG_SET_STREAM_PATH] = 4 | BCAST,
966         [CEC_MSG_STANDBY] = 2 | BOTH,
967         [CEC_MSG_RECORD_OFF] = 2 | DIRECTED,
968         [CEC_MSG_RECORD_ON] = 3 | DIRECTED,
969         [CEC_MSG_RECORD_STATUS] = 3 | DIRECTED,
970         [CEC_MSG_RECORD_TV_SCREEN] = 2 | DIRECTED,
971         [CEC_MSG_CLEAR_ANALOGUE_TIMER] = 13 | DIRECTED,
972         [CEC_MSG_CLEAR_DIGITAL_TIMER] = 16 | DIRECTED,
973         [CEC_MSG_CLEAR_EXT_TIMER] = 13 | DIRECTED,
974         [CEC_MSG_SET_ANALOGUE_TIMER] = 13 | DIRECTED,
975         [CEC_MSG_SET_DIGITAL_TIMER] = 16 | DIRECTED,
976         [CEC_MSG_SET_EXT_TIMER] = 13 | DIRECTED,
977         [CEC_MSG_SET_TIMER_PROGRAM_TITLE] = 2 | DIRECTED,
978         [CEC_MSG_TIMER_CLEARED_STATUS] = 3 | DIRECTED,
979         [CEC_MSG_TIMER_STATUS] = 3 | DIRECTED,
980         [CEC_MSG_CEC_VERSION] = 3 | DIRECTED,
981         [CEC_MSG_GET_CEC_VERSION] = 2 | DIRECTED,
982         [CEC_MSG_GIVE_PHYSICAL_ADDR] = 2 | DIRECTED,
983         [CEC_MSG_GET_MENU_LANGUAGE] = 2 | DIRECTED,
984         [CEC_MSG_REPORT_PHYSICAL_ADDR] = 5 | BCAST,
985         [CEC_MSG_SET_MENU_LANGUAGE] = 5 | BCAST,
986         [CEC_MSG_REPORT_FEATURES] = 6 | BCAST,
987         [CEC_MSG_GIVE_FEATURES] = 2 | DIRECTED,
988         [CEC_MSG_DECK_CONTROL] = 3 | DIRECTED,
989         [CEC_MSG_DECK_STATUS] = 3 | DIRECTED,
990         [CEC_MSG_GIVE_DECK_STATUS] = 3 | DIRECTED,
991         [CEC_MSG_PLAY] = 3 | DIRECTED,
992         [CEC_MSG_GIVE_TUNER_DEVICE_STATUS] = 3 | DIRECTED,
993         [CEC_MSG_SELECT_ANALOGUE_SERVICE] = 6 | DIRECTED,
994         [CEC_MSG_SELECT_DIGITAL_SERVICE] = 9 | DIRECTED,
995         [CEC_MSG_TUNER_DEVICE_STATUS] = 7 | DIRECTED,
996         [CEC_MSG_TUNER_STEP_DECREMENT] = 2 | DIRECTED,
997         [CEC_MSG_TUNER_STEP_INCREMENT] = 2 | DIRECTED,
998         [CEC_MSG_DEVICE_VENDOR_ID] = 5 | BCAST,
999         [CEC_MSG_GIVE_DEVICE_VENDOR_ID] = 2 | DIRECTED,
1000         [CEC_MSG_VENDOR_COMMAND] = 2 | DIRECTED,
1001         [CEC_MSG_VENDOR_COMMAND_WITH_ID] = 5 | BOTH,
1002         [CEC_MSG_VENDOR_REMOTE_BUTTON_DOWN] = 2 | BOTH,
1003         [CEC_MSG_VENDOR_REMOTE_BUTTON_UP] = 2 | BOTH,
1004         [CEC_MSG_SET_OSD_STRING] = 3 | DIRECTED,
1005         [CEC_MSG_GIVE_OSD_NAME] = 2 | DIRECTED,
1006         [CEC_MSG_SET_OSD_NAME] = 2 | DIRECTED,
1007         [CEC_MSG_MENU_REQUEST] = 3 | DIRECTED,
1008         [CEC_MSG_MENU_STATUS] = 3 | DIRECTED,
1009         [CEC_MSG_USER_CONTROL_PRESSED] = 3 | DIRECTED,
1010         [CEC_MSG_USER_CONTROL_RELEASED] = 2 | DIRECTED,
1011         [CEC_MSG_GIVE_DEVICE_POWER_STATUS] = 2 | DIRECTED,
1012         [CEC_MSG_REPORT_POWER_STATUS] = 3 | DIRECTED | BCAST2_0,
1013         [CEC_MSG_FEATURE_ABORT] = 4 | DIRECTED,
1014         [CEC_MSG_ABORT] = 2 | DIRECTED,
1015         [CEC_MSG_GIVE_AUDIO_STATUS] = 2 | DIRECTED,
1016         [CEC_MSG_GIVE_SYSTEM_AUDIO_MODE_STATUS] = 2 | DIRECTED,
1017         [CEC_MSG_REPORT_AUDIO_STATUS] = 3 | DIRECTED,
1018         [CEC_MSG_REPORT_SHORT_AUDIO_DESCRIPTOR] = 2 | DIRECTED,
1019         [CEC_MSG_REQUEST_SHORT_AUDIO_DESCRIPTOR] = 2 | DIRECTED,
1020         [CEC_MSG_SET_SYSTEM_AUDIO_MODE] = 3 | BOTH,
1021         [CEC_MSG_SYSTEM_AUDIO_MODE_REQUEST] = 2 | DIRECTED,
1022         [CEC_MSG_SYSTEM_AUDIO_MODE_STATUS] = 3 | DIRECTED,
1023         [CEC_MSG_SET_AUDIO_RATE] = 3 | DIRECTED,
1024         [CEC_MSG_INITIATE_ARC] = 2 | DIRECTED,
1025         [CEC_MSG_REPORT_ARC_INITIATED] = 2 | DIRECTED,
1026         [CEC_MSG_REPORT_ARC_TERMINATED] = 2 | DIRECTED,
1027         [CEC_MSG_REQUEST_ARC_INITIATION] = 2 | DIRECTED,
1028         [CEC_MSG_REQUEST_ARC_TERMINATION] = 2 | DIRECTED,
1029         [CEC_MSG_TERMINATE_ARC] = 2 | DIRECTED,
1030         [CEC_MSG_REQUEST_CURRENT_LATENCY] = 4 | BCAST,
1031         [CEC_MSG_REPORT_CURRENT_LATENCY] = 6 | BCAST,
1032         [CEC_MSG_CDC_MESSAGE] = 2 | BCAST,
1033 };
1034
1035 /* Called by the CEC adapter if a message is received */
1036 void cec_received_msg_ts(struct cec_adapter *adap,
1037                          struct cec_msg *msg, ktime_t ts)
1038 {
1039         struct cec_data *data;
1040         u8 msg_init = cec_msg_initiator(msg);
1041         u8 msg_dest = cec_msg_destination(msg);
1042         u8 cmd = msg->msg[1];
1043         bool is_reply = false;
1044         bool valid_la = true;
1045         u8 min_len = 0;
1046
1047         if (WARN_ON(!msg->len || msg->len > CEC_MAX_MSG_SIZE))
1048                 return;
1049
1050         /*
1051          * Some CEC adapters will receive the messages that they transmitted.
1052          * This test filters out those messages by checking if we are the
1053          * initiator, and just returning in that case.
1054          *
1055          * Note that this won't work if this is an Unregistered device.
1056          *
1057          * It is bad practice if the hardware receives the message that it
1058          * transmitted and luckily most CEC adapters behave correctly in this
1059          * respect.
1060          */
1061         if (msg_init != CEC_LOG_ADDR_UNREGISTERED &&
1062             cec_has_log_addr(adap, msg_init))
1063                 return;
1064
1065         msg->rx_ts = ktime_to_ns(ts);
1066         msg->rx_status = CEC_RX_STATUS_OK;
1067         msg->sequence = msg->reply = msg->timeout = 0;
1068         msg->tx_status = 0;
1069         msg->tx_ts = 0;
1070         msg->tx_arb_lost_cnt = 0;
1071         msg->tx_nack_cnt = 0;
1072         msg->tx_low_drive_cnt = 0;
1073         msg->tx_error_cnt = 0;
1074         msg->flags = 0;
1075         memset(msg->msg + msg->len, 0, sizeof(msg->msg) - msg->len);
1076
1077         mutex_lock(&adap->lock);
1078         dprintk(2, "%s: %*ph\n", __func__, msg->len, msg->msg);
1079
1080         adap->last_initiator = 0xff;
1081
1082         /* Check if this message was for us (directed or broadcast). */
1083         if (!cec_msg_is_broadcast(msg))
1084                 valid_la = cec_has_log_addr(adap, msg_dest);
1085
1086         /*
1087          * Check if the length is not too short or if the message is a
1088          * broadcast message where a directed message was expected or
1089          * vice versa. If so, then the message has to be ignored (according
1090          * to section CEC 7.3 and CEC 12.2).
1091          */
1092         if (valid_la && msg->len > 1 && cec_msg_size[cmd]) {
1093                 u8 dir_fl = cec_msg_size[cmd] & BOTH;
1094
1095                 min_len = cec_msg_size[cmd] & 0x1f;
1096                 if (msg->len < min_len)
1097                         valid_la = false;
1098                 else if (!cec_msg_is_broadcast(msg) && !(dir_fl & DIRECTED))
1099                         valid_la = false;
1100                 else if (cec_msg_is_broadcast(msg) && !(dir_fl & BCAST))
1101                         valid_la = false;
1102                 else if (cec_msg_is_broadcast(msg) &&
1103                          adap->log_addrs.cec_version < CEC_OP_CEC_VERSION_2_0 &&
1104                          !(dir_fl & BCAST1_4))
1105                         valid_la = false;
1106         }
1107         if (valid_la && min_len) {
1108                 /* These messages have special length requirements */
1109                 switch (cmd) {
1110                 case CEC_MSG_TIMER_STATUS:
1111                         if (msg->msg[2] & 0x10) {
1112                                 switch (msg->msg[2] & 0xf) {
1113                                 case CEC_OP_PROG_INFO_NOT_ENOUGH_SPACE:
1114                                 case CEC_OP_PROG_INFO_MIGHT_NOT_BE_ENOUGH_SPACE:
1115                                         if (msg->len < 5)
1116                                                 valid_la = false;
1117                                         break;
1118                                 }
1119                         } else if ((msg->msg[2] & 0xf) == CEC_OP_PROG_ERROR_DUPLICATE) {
1120                                 if (msg->len < 5)
1121                                         valid_la = false;
1122                         }
1123                         break;
1124                 case CEC_MSG_RECORD_ON:
1125                         switch (msg->msg[2]) {
1126                         case CEC_OP_RECORD_SRC_OWN:
1127                                 break;
1128                         case CEC_OP_RECORD_SRC_DIGITAL:
1129                                 if (msg->len < 10)
1130                                         valid_la = false;
1131                                 break;
1132                         case CEC_OP_RECORD_SRC_ANALOG:
1133                                 if (msg->len < 7)
1134                                         valid_la = false;
1135                                 break;
1136                         case CEC_OP_RECORD_SRC_EXT_PLUG:
1137                                 if (msg->len < 4)
1138                                         valid_la = false;
1139                                 break;
1140                         case CEC_OP_RECORD_SRC_EXT_PHYS_ADDR:
1141                                 if (msg->len < 5)
1142                                         valid_la = false;
1143                                 break;
1144                         }
1145                         break;
1146                 }
1147         }
1148
1149         /* It's a valid message and not a poll or CDC message */
1150         if (valid_la && msg->len > 1 && cmd != CEC_MSG_CDC_MESSAGE) {
1151                 bool abort = cmd == CEC_MSG_FEATURE_ABORT;
1152
1153                 /* The aborted command is in msg[2] */
1154                 if (abort)
1155                         cmd = msg->msg[2];
1156
1157                 /*
1158                  * Walk over all transmitted messages that are waiting for a
1159                  * reply.
1160                  */
1161                 list_for_each_entry(data, &adap->wait_queue, list) {
1162                         struct cec_msg *dst = &data->msg;
1163
1164                         /*
1165                          * The *only* CEC message that has two possible replies
1166                          * is CEC_MSG_INITIATE_ARC.
1167                          * In this case allow either of the two replies.
1168                          */
1169                         if (!abort && dst->msg[1] == CEC_MSG_INITIATE_ARC &&
1170                             (cmd == CEC_MSG_REPORT_ARC_INITIATED ||
1171                              cmd == CEC_MSG_REPORT_ARC_TERMINATED) &&
1172                             (dst->reply == CEC_MSG_REPORT_ARC_INITIATED ||
1173                              dst->reply == CEC_MSG_REPORT_ARC_TERMINATED))
1174                                 dst->reply = cmd;
1175
1176                         /* Does the command match? */
1177                         if ((abort && cmd != dst->msg[1]) ||
1178                             (!abort && cmd != dst->reply))
1179                                 continue;
1180
1181                         /* Does the addressing match? */
1182                         if (msg_init != cec_msg_destination(dst) &&
1183                             !cec_msg_is_broadcast(dst))
1184                                 continue;
1185
1186                         /* We got a reply */
1187                         memcpy(dst->msg, msg->msg, msg->len);
1188                         dst->len = msg->len;
1189                         dst->rx_ts = msg->rx_ts;
1190                         dst->rx_status = msg->rx_status;
1191                         if (abort)
1192                                 dst->rx_status |= CEC_RX_STATUS_FEATURE_ABORT;
1193                         msg->flags = dst->flags;
1194                         /* Remove it from the wait_queue */
1195                         list_del_init(&data->list);
1196
1197                         /* Cancel the pending timeout work */
1198                         if (!cancel_delayed_work(&data->work)) {
1199                                 mutex_unlock(&adap->lock);
1200                                 flush_scheduled_work();
1201                                 mutex_lock(&adap->lock);
1202                         }
1203                         /*
1204                          * Mark this as a reply, provided someone is still
1205                          * waiting for the answer.
1206                          */
1207                         if (data->fh)
1208                                 is_reply = true;
1209                         cec_data_completed(data);
1210                         break;
1211                 }
1212         }
1213         mutex_unlock(&adap->lock);
1214
1215         /* Pass the message on to any monitoring filehandles */
1216         cec_queue_msg_monitor(adap, msg, valid_la);
1217
1218         /* We're done if it is not for us or a poll message */
1219         if (!valid_la || msg->len <= 1)
1220                 return;
1221
1222         if (adap->log_addrs.log_addr_mask == 0)
1223                 return;
1224
1225         /*
1226          * Process the message on the protocol level. If is_reply is true,
1227          * then cec_receive_notify() won't pass on the reply to the listener(s)
1228          * since that was already done by cec_data_completed() above.
1229          */
1230         cec_receive_notify(adap, msg, is_reply);
1231 }
1232 EXPORT_SYMBOL_GPL(cec_received_msg_ts);
1233
1234 /* Logical Address Handling */
1235
1236 /*
1237  * Attempt to claim a specific logical address.
1238  *
1239  * This function is called with adap->lock held.
1240  */
1241 static int cec_config_log_addr(struct cec_adapter *adap,
1242                                unsigned int idx,
1243                                unsigned int log_addr)
1244 {
1245         struct cec_log_addrs *las = &adap->log_addrs;
1246         struct cec_msg msg = { };
1247         const unsigned int max_retries = 2;
1248         unsigned int i;
1249         int err;
1250
1251         if (cec_has_log_addr(adap, log_addr))
1252                 return 0;
1253
1254         /* Send poll message */
1255         msg.len = 1;
1256         msg.msg[0] = (log_addr << 4) | log_addr;
1257
1258         for (i = 0; i < max_retries; i++) {
1259                 err = cec_transmit_msg_fh(adap, &msg, NULL, true);
1260
1261                 /*
1262                  * While trying to poll the physical address was reset
1263                  * and the adapter was unconfigured, so bail out.
1264                  */
1265                 if (!adap->is_configuring)
1266                         return -EINTR;
1267
1268                 if (err)
1269                         return err;
1270
1271                 /*
1272                  * The message was aborted due to a disconnect or
1273                  * unconfigure, just bail out.
1274                  */
1275                 if (msg.tx_status & CEC_TX_STATUS_ABORTED)
1276                         return -EINTR;
1277                 if (msg.tx_status & CEC_TX_STATUS_OK)
1278                         return 0;
1279                 if (msg.tx_status & CEC_TX_STATUS_NACK)
1280                         break;
1281                 /*
1282                  * Retry up to max_retries times if the message was neither
1283                  * OKed or NACKed. This can happen due to e.g. a Lost
1284                  * Arbitration condition.
1285                  */
1286         }
1287
1288         /*
1289          * If we are unable to get an OK or a NACK after max_retries attempts
1290          * (and note that each attempt already consists of four polls), then
1291          * then we assume that something is really weird and that it is not a
1292          * good idea to try and claim this logical address.
1293          */
1294         if (i == max_retries)
1295                 return 0;
1296
1297         /*
1298          * Message not acknowledged, so this logical
1299          * address is free to use.
1300          */
1301         err = adap->ops->adap_log_addr(adap, log_addr);
1302         if (err)
1303                 return err;
1304
1305         las->log_addr[idx] = log_addr;
1306         las->log_addr_mask |= 1 << log_addr;
1307         adap->phys_addrs[log_addr] = adap->phys_addr;
1308         return 1;
1309 }
1310
1311 /*
1312  * Unconfigure the adapter: clear all logical addresses and send
1313  * the state changed event.
1314  *
1315  * This function is called with adap->lock held.
1316  */
1317 static void cec_adap_unconfigure(struct cec_adapter *adap)
1318 {
1319         if (!adap->needs_hpd ||
1320             adap->phys_addr != CEC_PHYS_ADDR_INVALID)
1321                 WARN_ON(adap->ops->adap_log_addr(adap, CEC_LOG_ADDR_INVALID));
1322         adap->log_addrs.log_addr_mask = 0;
1323         adap->is_configuring = false;
1324         adap->is_configured = false;
1325         memset(adap->phys_addrs, 0xff, sizeof(adap->phys_addrs));
1326         cec_flush(adap);
1327         wake_up_interruptible(&adap->kthread_waitq);
1328         cec_post_state_event(adap);
1329 }
1330
1331 /*
1332  * Attempt to claim the required logical addresses.
1333  */
1334 static int cec_config_thread_func(void *arg)
1335 {
1336         /* The various LAs for each type of device */
1337         static const u8 tv_log_addrs[] = {
1338                 CEC_LOG_ADDR_TV, CEC_LOG_ADDR_SPECIFIC,
1339                 CEC_LOG_ADDR_INVALID
1340         };
1341         static const u8 record_log_addrs[] = {
1342                 CEC_LOG_ADDR_RECORD_1, CEC_LOG_ADDR_RECORD_2,
1343                 CEC_LOG_ADDR_RECORD_3,
1344                 CEC_LOG_ADDR_BACKUP_1, CEC_LOG_ADDR_BACKUP_2,
1345                 CEC_LOG_ADDR_INVALID
1346         };
1347         static const u8 tuner_log_addrs[] = {
1348                 CEC_LOG_ADDR_TUNER_1, CEC_LOG_ADDR_TUNER_2,
1349                 CEC_LOG_ADDR_TUNER_3, CEC_LOG_ADDR_TUNER_4,
1350                 CEC_LOG_ADDR_BACKUP_1, CEC_LOG_ADDR_BACKUP_2,
1351                 CEC_LOG_ADDR_INVALID
1352         };
1353         static const u8 playback_log_addrs[] = {
1354                 CEC_LOG_ADDR_PLAYBACK_1, CEC_LOG_ADDR_PLAYBACK_2,
1355                 CEC_LOG_ADDR_PLAYBACK_3,
1356                 CEC_LOG_ADDR_BACKUP_1, CEC_LOG_ADDR_BACKUP_2,
1357                 CEC_LOG_ADDR_INVALID
1358         };
1359         static const u8 audiosystem_log_addrs[] = {
1360                 CEC_LOG_ADDR_AUDIOSYSTEM,
1361                 CEC_LOG_ADDR_INVALID
1362         };
1363         static const u8 specific_use_log_addrs[] = {
1364                 CEC_LOG_ADDR_SPECIFIC,
1365                 CEC_LOG_ADDR_BACKUP_1, CEC_LOG_ADDR_BACKUP_2,
1366                 CEC_LOG_ADDR_INVALID
1367         };
1368         static const u8 *type2addrs[6] = {
1369                 [CEC_LOG_ADDR_TYPE_TV] = tv_log_addrs,
1370                 [CEC_LOG_ADDR_TYPE_RECORD] = record_log_addrs,
1371                 [CEC_LOG_ADDR_TYPE_TUNER] = tuner_log_addrs,
1372                 [CEC_LOG_ADDR_TYPE_PLAYBACK] = playback_log_addrs,
1373                 [CEC_LOG_ADDR_TYPE_AUDIOSYSTEM] = audiosystem_log_addrs,
1374                 [CEC_LOG_ADDR_TYPE_SPECIFIC] = specific_use_log_addrs,
1375         };
1376         static const u16 type2mask[] = {
1377                 [CEC_LOG_ADDR_TYPE_TV] = CEC_LOG_ADDR_MASK_TV,
1378                 [CEC_LOG_ADDR_TYPE_RECORD] = CEC_LOG_ADDR_MASK_RECORD,
1379                 [CEC_LOG_ADDR_TYPE_TUNER] = CEC_LOG_ADDR_MASK_TUNER,
1380                 [CEC_LOG_ADDR_TYPE_PLAYBACK] = CEC_LOG_ADDR_MASK_PLAYBACK,
1381                 [CEC_LOG_ADDR_TYPE_AUDIOSYSTEM] = CEC_LOG_ADDR_MASK_AUDIOSYSTEM,
1382                 [CEC_LOG_ADDR_TYPE_SPECIFIC] = CEC_LOG_ADDR_MASK_SPECIFIC,
1383         };
1384         struct cec_adapter *adap = arg;
1385         struct cec_log_addrs *las = &adap->log_addrs;
1386         int err;
1387         int i, j;
1388
1389         mutex_lock(&adap->lock);
1390         dprintk(1, "physical address: %x.%x.%x.%x, claim %d logical addresses\n",
1391                 cec_phys_addr_exp(adap->phys_addr), las->num_log_addrs);
1392         las->log_addr_mask = 0;
1393
1394         if (las->log_addr_type[0] == CEC_LOG_ADDR_TYPE_UNREGISTERED)
1395                 goto configured;
1396
1397         for (i = 0; i < las->num_log_addrs; i++) {
1398                 unsigned int type = las->log_addr_type[i];
1399                 const u8 *la_list;
1400                 u8 last_la;
1401
1402                 /*
1403                  * The TV functionality can only map to physical address 0.
1404                  * For any other address, try the Specific functionality
1405                  * instead as per the spec.
1406                  */
1407                 if (adap->phys_addr && type == CEC_LOG_ADDR_TYPE_TV)
1408                         type = CEC_LOG_ADDR_TYPE_SPECIFIC;
1409
1410                 la_list = type2addrs[type];
1411                 last_la = las->log_addr[i];
1412                 las->log_addr[i] = CEC_LOG_ADDR_INVALID;
1413                 if (last_la == CEC_LOG_ADDR_INVALID ||
1414                     last_la == CEC_LOG_ADDR_UNREGISTERED ||
1415                     !((1 << last_la) & type2mask[type]))
1416                         last_la = la_list[0];
1417
1418                 err = cec_config_log_addr(adap, i, last_la);
1419                 if (err > 0) /* Reused last LA */
1420                         continue;
1421
1422                 if (err < 0)
1423                         goto unconfigure;
1424
1425                 for (j = 0; la_list[j] != CEC_LOG_ADDR_INVALID; j++) {
1426                         /* Tried this one already, skip it */
1427                         if (la_list[j] == last_la)
1428                                 continue;
1429                         /* The backup addresses are CEC 2.0 specific */
1430                         if ((la_list[j] == CEC_LOG_ADDR_BACKUP_1 ||
1431                              la_list[j] == CEC_LOG_ADDR_BACKUP_2) &&
1432                             las->cec_version < CEC_OP_CEC_VERSION_2_0)
1433                                 continue;
1434
1435                         err = cec_config_log_addr(adap, i, la_list[j]);
1436                         if (err == 0) /* LA is in use */
1437                                 continue;
1438                         if (err < 0)
1439                                 goto unconfigure;
1440                         /* Done, claimed an LA */
1441                         break;
1442                 }
1443
1444                 if (la_list[j] == CEC_LOG_ADDR_INVALID)
1445                         dprintk(1, "could not claim LA %d\n", i);
1446         }
1447
1448         if (adap->log_addrs.log_addr_mask == 0 &&
1449             !(las->flags & CEC_LOG_ADDRS_FL_ALLOW_UNREG_FALLBACK))
1450                 goto unconfigure;
1451
1452 configured:
1453         if (adap->log_addrs.log_addr_mask == 0) {
1454                 /* Fall back to unregistered */
1455                 las->log_addr[0] = CEC_LOG_ADDR_UNREGISTERED;
1456                 las->log_addr_mask = 1 << las->log_addr[0];
1457                 for (i = 1; i < las->num_log_addrs; i++)
1458                         las->log_addr[i] = CEC_LOG_ADDR_INVALID;
1459         }
1460         for (i = las->num_log_addrs; i < CEC_MAX_LOG_ADDRS; i++)
1461                 las->log_addr[i] = CEC_LOG_ADDR_INVALID;
1462         adap->is_configured = true;
1463         adap->is_configuring = false;
1464         cec_post_state_event(adap);
1465
1466         /*
1467          * Now post the Report Features and Report Physical Address broadcast
1468          * messages. Note that these are non-blocking transmits, meaning that
1469          * they are just queued up and once adap->lock is unlocked the main
1470          * thread will kick in and start transmitting these.
1471          *
1472          * If after this function is done (but before one or more of these
1473          * messages are actually transmitted) the CEC adapter is unconfigured,
1474          * then any remaining messages will be dropped by the main thread.
1475          */
1476         for (i = 0; i < las->num_log_addrs; i++) {
1477                 struct cec_msg msg = {};
1478
1479                 if (las->log_addr[i] == CEC_LOG_ADDR_INVALID ||
1480                     (las->flags & CEC_LOG_ADDRS_FL_CDC_ONLY))
1481                         continue;
1482
1483                 msg.msg[0] = (las->log_addr[i] << 4) | 0x0f;
1484
1485                 /* Report Features must come first according to CEC 2.0 */
1486                 if (las->log_addr[i] != CEC_LOG_ADDR_UNREGISTERED &&
1487                     adap->log_addrs.cec_version >= CEC_OP_CEC_VERSION_2_0) {
1488                         cec_fill_msg_report_features(adap, &msg, i);
1489                         cec_transmit_msg_fh(adap, &msg, NULL, false);
1490                 }
1491
1492                 /* Report Physical Address */
1493                 cec_msg_report_physical_addr(&msg, adap->phys_addr,
1494                                              las->primary_device_type[i]);
1495                 dprintk(1, "config: la %d pa %x.%x.%x.%x\n",
1496                         las->log_addr[i],
1497                         cec_phys_addr_exp(adap->phys_addr));
1498                 cec_transmit_msg_fh(adap, &msg, NULL, false);
1499
1500                 /* Report Vendor ID */
1501                 if (adap->log_addrs.vendor_id != CEC_VENDOR_ID_NONE) {
1502                         cec_msg_device_vendor_id(&msg,
1503                                                  adap->log_addrs.vendor_id);
1504                         cec_transmit_msg_fh(adap, &msg, NULL, false);
1505                 }
1506         }
1507         adap->kthread_config = NULL;
1508         complete(&adap->config_completion);
1509         mutex_unlock(&adap->lock);
1510         return 0;
1511
1512 unconfigure:
1513         for (i = 0; i < las->num_log_addrs; i++)
1514                 las->log_addr[i] = CEC_LOG_ADDR_INVALID;
1515         cec_adap_unconfigure(adap);
1516         adap->kthread_config = NULL;
1517         mutex_unlock(&adap->lock);
1518         complete(&adap->config_completion);
1519         return 0;
1520 }
1521
1522 /*
1523  * Called from either __cec_s_phys_addr or __cec_s_log_addrs to claim the
1524  * logical addresses.
1525  *
1526  * This function is called with adap->lock held.
1527  */
1528 static void cec_claim_log_addrs(struct cec_adapter *adap, bool block)
1529 {
1530         if (WARN_ON(adap->is_configuring || adap->is_configured))
1531                 return;
1532
1533         init_completion(&adap->config_completion);
1534
1535         /* Ready to kick off the thread */
1536         adap->is_configuring = true;
1537         adap->kthread_config = kthread_run(cec_config_thread_func, adap,
1538                                            "ceccfg-%s", adap->name);
1539         if (IS_ERR(adap->kthread_config)) {
1540                 adap->kthread_config = NULL;
1541         } else if (block) {
1542                 mutex_unlock(&adap->lock);
1543                 wait_for_completion(&adap->config_completion);
1544                 mutex_lock(&adap->lock);
1545         }
1546 }
1547
1548 /* Set a new physical address and send an event notifying userspace of this.
1549  *
1550  * This function is called with adap->lock held.
1551  */
1552 void __cec_s_phys_addr(struct cec_adapter *adap, u16 phys_addr, bool block)
1553 {
1554         if (phys_addr == adap->phys_addr)
1555                 return;
1556         if (phys_addr != CEC_PHYS_ADDR_INVALID && adap->devnode.unregistered)
1557                 return;
1558
1559         dprintk(1, "new physical address %x.%x.%x.%x\n",
1560                 cec_phys_addr_exp(phys_addr));
1561         if (phys_addr == CEC_PHYS_ADDR_INVALID ||
1562             adap->phys_addr != CEC_PHYS_ADDR_INVALID) {
1563                 adap->phys_addr = CEC_PHYS_ADDR_INVALID;
1564                 cec_post_state_event(adap);
1565                 cec_adap_unconfigure(adap);
1566                 /* Disabling monitor all mode should always succeed */
1567                 if (adap->monitor_all_cnt)
1568                         WARN_ON(call_op(adap, adap_monitor_all_enable, false));
1569                 mutex_lock(&adap->devnode.lock);
1570                 if (adap->needs_hpd || list_empty(&adap->devnode.fhs)) {
1571                         WARN_ON(adap->ops->adap_enable(adap, false));
1572                         adap->transmit_in_progress = false;
1573                         wake_up_interruptible(&adap->kthread_waitq);
1574                 }
1575                 mutex_unlock(&adap->devnode.lock);
1576                 if (phys_addr == CEC_PHYS_ADDR_INVALID)
1577                         return;
1578         }
1579
1580         mutex_lock(&adap->devnode.lock);
1581         adap->last_initiator = 0xff;
1582         adap->transmit_in_progress = false;
1583
1584         if ((adap->needs_hpd || list_empty(&adap->devnode.fhs)) &&
1585             adap->ops->adap_enable(adap, true)) {
1586                 mutex_unlock(&adap->devnode.lock);
1587                 return;
1588         }
1589
1590         if (adap->monitor_all_cnt &&
1591             call_op(adap, adap_monitor_all_enable, true)) {
1592                 if (adap->needs_hpd || list_empty(&adap->devnode.fhs))
1593                         WARN_ON(adap->ops->adap_enable(adap, false));
1594                 mutex_unlock(&adap->devnode.lock);
1595                 return;
1596         }
1597         mutex_unlock(&adap->devnode.lock);
1598
1599         adap->phys_addr = phys_addr;
1600         cec_post_state_event(adap);
1601         if (adap->log_addrs.num_log_addrs)
1602                 cec_claim_log_addrs(adap, block);
1603 }
1604
1605 void cec_s_phys_addr(struct cec_adapter *adap, u16 phys_addr, bool block)
1606 {
1607         if (IS_ERR_OR_NULL(adap))
1608                 return;
1609
1610         mutex_lock(&adap->lock);
1611         __cec_s_phys_addr(adap, phys_addr, block);
1612         mutex_unlock(&adap->lock);
1613 }
1614 EXPORT_SYMBOL_GPL(cec_s_phys_addr);
1615
1616 void cec_s_phys_addr_from_edid(struct cec_adapter *adap,
1617                                const struct edid *edid)
1618 {
1619         u16 pa = CEC_PHYS_ADDR_INVALID;
1620
1621         if (edid && edid->extensions)
1622                 pa = cec_get_edid_phys_addr((const u8 *)edid,
1623                                 EDID_LENGTH * (edid->extensions + 1), NULL);
1624         cec_s_phys_addr(adap, pa, false);
1625 }
1626 EXPORT_SYMBOL_GPL(cec_s_phys_addr_from_edid);
1627
1628 void cec_s_conn_info(struct cec_adapter *adap,
1629                      const struct cec_connector_info *conn_info)
1630 {
1631         if (IS_ERR_OR_NULL(adap))
1632                 return;
1633
1634         if (!(adap->capabilities & CEC_CAP_CONNECTOR_INFO))
1635                 return;
1636
1637         mutex_lock(&adap->lock);
1638         if (conn_info)
1639                 adap->conn_info = *conn_info;
1640         else
1641                 memset(&adap->conn_info, 0, sizeof(adap->conn_info));
1642         cec_post_state_event(adap);
1643         mutex_unlock(&adap->lock);
1644 }
1645 EXPORT_SYMBOL_GPL(cec_s_conn_info);
1646
1647 /*
1648  * Called from either the ioctl or a driver to set the logical addresses.
1649  *
1650  * This function is called with adap->lock held.
1651  */
1652 int __cec_s_log_addrs(struct cec_adapter *adap,
1653                       struct cec_log_addrs *log_addrs, bool block)
1654 {
1655         u16 type_mask = 0;
1656         int i;
1657
1658         if (adap->devnode.unregistered)
1659                 return -ENODEV;
1660
1661         if (!log_addrs || log_addrs->num_log_addrs == 0) {
1662                 cec_adap_unconfigure(adap);
1663                 adap->log_addrs.num_log_addrs = 0;
1664                 for (i = 0; i < CEC_MAX_LOG_ADDRS; i++)
1665                         adap->log_addrs.log_addr[i] = CEC_LOG_ADDR_INVALID;
1666                 adap->log_addrs.osd_name[0] = '\0';
1667                 adap->log_addrs.vendor_id = CEC_VENDOR_ID_NONE;
1668                 adap->log_addrs.cec_version = CEC_OP_CEC_VERSION_2_0;
1669                 return 0;
1670         }
1671
1672         if (log_addrs->flags & CEC_LOG_ADDRS_FL_CDC_ONLY) {
1673                 /*
1674                  * Sanitize log_addrs fields if a CDC-Only device is
1675                  * requested.
1676                  */
1677                 log_addrs->num_log_addrs = 1;
1678                 log_addrs->osd_name[0] = '\0';
1679                 log_addrs->vendor_id = CEC_VENDOR_ID_NONE;
1680                 log_addrs->log_addr_type[0] = CEC_LOG_ADDR_TYPE_UNREGISTERED;
1681                 /*
1682                  * This is just an internal convention since a CDC-Only device
1683                  * doesn't have to be a switch. But switches already use
1684                  * unregistered, so it makes some kind of sense to pick this
1685                  * as the primary device. Since a CDC-Only device never sends
1686                  * any 'normal' CEC messages this primary device type is never
1687                  * sent over the CEC bus.
1688                  */
1689                 log_addrs->primary_device_type[0] = CEC_OP_PRIM_DEVTYPE_SWITCH;
1690                 log_addrs->all_device_types[0] = 0;
1691                 log_addrs->features[0][0] = 0;
1692                 log_addrs->features[0][1] = 0;
1693         }
1694
1695         /* Ensure the osd name is 0-terminated */
1696         log_addrs->osd_name[sizeof(log_addrs->osd_name) - 1] = '\0';
1697
1698         /* Sanity checks */
1699         if (log_addrs->num_log_addrs > adap->available_log_addrs) {
1700                 dprintk(1, "num_log_addrs > %d\n", adap->available_log_addrs);
1701                 return -EINVAL;
1702         }
1703
1704         /*
1705          * Vendor ID is a 24 bit number, so check if the value is
1706          * within the correct range.
1707          */
1708         if (log_addrs->vendor_id != CEC_VENDOR_ID_NONE &&
1709             (log_addrs->vendor_id & 0xff000000) != 0) {
1710                 dprintk(1, "invalid vendor ID\n");
1711                 return -EINVAL;
1712         }
1713
1714         if (log_addrs->cec_version != CEC_OP_CEC_VERSION_1_4 &&
1715             log_addrs->cec_version != CEC_OP_CEC_VERSION_2_0) {
1716                 dprintk(1, "invalid CEC version\n");
1717                 return -EINVAL;
1718         }
1719
1720         if (log_addrs->num_log_addrs > 1)
1721                 for (i = 0; i < log_addrs->num_log_addrs; i++)
1722                         if (log_addrs->log_addr_type[i] ==
1723                                         CEC_LOG_ADDR_TYPE_UNREGISTERED) {
1724                                 dprintk(1, "num_log_addrs > 1 can't be combined with unregistered LA\n");
1725                                 return -EINVAL;
1726                         }
1727
1728         for (i = 0; i < log_addrs->num_log_addrs; i++) {
1729                 const u8 feature_sz = ARRAY_SIZE(log_addrs->features[0]);
1730                 u8 *features = log_addrs->features[i];
1731                 bool op_is_dev_features = false;
1732                 unsigned j;
1733
1734                 log_addrs->log_addr[i] = CEC_LOG_ADDR_INVALID;
1735                 if (type_mask & (1 << log_addrs->log_addr_type[i])) {
1736                         dprintk(1, "duplicate logical address type\n");
1737                         return -EINVAL;
1738                 }
1739                 type_mask |= 1 << log_addrs->log_addr_type[i];
1740                 if ((type_mask & (1 << CEC_LOG_ADDR_TYPE_RECORD)) &&
1741                     (type_mask & (1 << CEC_LOG_ADDR_TYPE_PLAYBACK))) {
1742                         /* Record already contains the playback functionality */
1743                         dprintk(1, "invalid record + playback combination\n");
1744                         return -EINVAL;
1745                 }
1746                 if (log_addrs->primary_device_type[i] >
1747                                         CEC_OP_PRIM_DEVTYPE_PROCESSOR) {
1748                         dprintk(1, "unknown primary device type\n");
1749                         return -EINVAL;
1750                 }
1751                 if (log_addrs->primary_device_type[i] == 2) {
1752                         dprintk(1, "invalid primary device type\n");
1753                         return -EINVAL;
1754                 }
1755                 if (log_addrs->log_addr_type[i] > CEC_LOG_ADDR_TYPE_UNREGISTERED) {
1756                         dprintk(1, "unknown logical address type\n");
1757                         return -EINVAL;
1758                 }
1759                 for (j = 0; j < feature_sz; j++) {
1760                         if ((features[j] & 0x80) == 0) {
1761                                 if (op_is_dev_features)
1762                                         break;
1763                                 op_is_dev_features = true;
1764                         }
1765                 }
1766                 if (!op_is_dev_features || j == feature_sz) {
1767                         dprintk(1, "malformed features\n");
1768                         return -EINVAL;
1769                 }
1770                 /* Zero unused part of the feature array */
1771                 memset(features + j + 1, 0, feature_sz - j - 1);
1772         }
1773
1774         if (log_addrs->cec_version >= CEC_OP_CEC_VERSION_2_0) {
1775                 if (log_addrs->num_log_addrs > 2) {
1776                         dprintk(1, "CEC 2.0 allows no more than 2 logical addresses\n");
1777                         return -EINVAL;
1778                 }
1779                 if (log_addrs->num_log_addrs == 2) {
1780                         if (!(type_mask & ((1 << CEC_LOG_ADDR_TYPE_AUDIOSYSTEM) |
1781                                            (1 << CEC_LOG_ADDR_TYPE_TV)))) {
1782                                 dprintk(1, "two LAs is only allowed for audiosystem and TV\n");
1783                                 return -EINVAL;
1784                         }
1785                         if (!(type_mask & ((1 << CEC_LOG_ADDR_TYPE_PLAYBACK) |
1786                                            (1 << CEC_LOG_ADDR_TYPE_RECORD)))) {
1787                                 dprintk(1, "an audiosystem/TV can only be combined with record or playback\n");
1788                                 return -EINVAL;
1789                         }
1790                 }
1791         }
1792
1793         /* Zero unused LAs */
1794         for (i = log_addrs->num_log_addrs; i < CEC_MAX_LOG_ADDRS; i++) {
1795                 log_addrs->primary_device_type[i] = 0;
1796                 log_addrs->log_addr_type[i] = 0;
1797                 log_addrs->all_device_types[i] = 0;
1798                 memset(log_addrs->features[i], 0,
1799                        sizeof(log_addrs->features[i]));
1800         }
1801
1802         log_addrs->log_addr_mask = adap->log_addrs.log_addr_mask;
1803         adap->log_addrs = *log_addrs;
1804         if (adap->phys_addr != CEC_PHYS_ADDR_INVALID)
1805                 cec_claim_log_addrs(adap, block);
1806         return 0;
1807 }
1808
1809 int cec_s_log_addrs(struct cec_adapter *adap,
1810                     struct cec_log_addrs *log_addrs, bool block)
1811 {
1812         int err;
1813
1814         mutex_lock(&adap->lock);
1815         err = __cec_s_log_addrs(adap, log_addrs, block);
1816         mutex_unlock(&adap->lock);
1817         return err;
1818 }
1819 EXPORT_SYMBOL_GPL(cec_s_log_addrs);
1820
1821 /* High-level core CEC message handling */
1822
1823 /* Fill in the Report Features message */
1824 static void cec_fill_msg_report_features(struct cec_adapter *adap,
1825                                          struct cec_msg *msg,
1826                                          unsigned int la_idx)
1827 {
1828         const struct cec_log_addrs *las = &adap->log_addrs;
1829         const u8 *features = las->features[la_idx];
1830         bool op_is_dev_features = false;
1831         unsigned int idx;
1832
1833         /* Report Features */
1834         msg->msg[0] = (las->log_addr[la_idx] << 4) | 0x0f;
1835         msg->len = 4;
1836         msg->msg[1] = CEC_MSG_REPORT_FEATURES;
1837         msg->msg[2] = adap->log_addrs.cec_version;
1838         msg->msg[3] = las->all_device_types[la_idx];
1839
1840         /* Write RC Profiles first, then Device Features */
1841         for (idx = 0; idx < ARRAY_SIZE(las->features[0]); idx++) {
1842                 msg->msg[msg->len++] = features[idx];
1843                 if ((features[idx] & CEC_OP_FEAT_EXT) == 0) {
1844                         if (op_is_dev_features)
1845                                 break;
1846                         op_is_dev_features = true;
1847                 }
1848         }
1849 }
1850
1851 /* Transmit the Feature Abort message */
1852 static int cec_feature_abort_reason(struct cec_adapter *adap,
1853                                     struct cec_msg *msg, u8 reason)
1854 {
1855         struct cec_msg tx_msg = { };
1856
1857         /*
1858          * Don't reply with CEC_MSG_FEATURE_ABORT to a CEC_MSG_FEATURE_ABORT
1859          * message!
1860          */
1861         if (msg->msg[1] == CEC_MSG_FEATURE_ABORT)
1862                 return 0;
1863         /* Don't Feature Abort messages from 'Unregistered' */
1864         if (cec_msg_initiator(msg) == CEC_LOG_ADDR_UNREGISTERED)
1865                 return 0;
1866         cec_msg_set_reply_to(&tx_msg, msg);
1867         cec_msg_feature_abort(&tx_msg, msg->msg[1], reason);
1868         return cec_transmit_msg(adap, &tx_msg, false);
1869 }
1870
1871 static int cec_feature_abort(struct cec_adapter *adap, struct cec_msg *msg)
1872 {
1873         return cec_feature_abort_reason(adap, msg,
1874                                         CEC_OP_ABORT_UNRECOGNIZED_OP);
1875 }
1876
1877 static int cec_feature_refused(struct cec_adapter *adap, struct cec_msg *msg)
1878 {
1879         return cec_feature_abort_reason(adap, msg,
1880                                         CEC_OP_ABORT_REFUSED);
1881 }
1882
1883 /*
1884  * Called when a CEC message is received. This function will do any
1885  * necessary core processing. The is_reply bool is true if this message
1886  * is a reply to an earlier transmit.
1887  *
1888  * The message is either a broadcast message or a valid directed message.
1889  */
1890 static int cec_receive_notify(struct cec_adapter *adap, struct cec_msg *msg,
1891                               bool is_reply)
1892 {
1893         bool is_broadcast = cec_msg_is_broadcast(msg);
1894         u8 dest_laddr = cec_msg_destination(msg);
1895         u8 init_laddr = cec_msg_initiator(msg);
1896         u8 devtype = cec_log_addr2dev(adap, dest_laddr);
1897         int la_idx = cec_log_addr2idx(adap, dest_laddr);
1898         bool from_unregistered = init_laddr == 0xf;
1899         struct cec_msg tx_cec_msg = { };
1900
1901         dprintk(2, "%s: %*ph\n", __func__, msg->len, msg->msg);
1902
1903         /* If this is a CDC-Only device, then ignore any non-CDC messages */
1904         if (cec_is_cdc_only(&adap->log_addrs) &&
1905             msg->msg[1] != CEC_MSG_CDC_MESSAGE)
1906                 return 0;
1907
1908         if (adap->ops->received) {
1909                 /* Allow drivers to process the message first */
1910                 if (adap->ops->received(adap, msg) != -ENOMSG)
1911                         return 0;
1912         }
1913
1914         /*
1915          * REPORT_PHYSICAL_ADDR, CEC_MSG_USER_CONTROL_PRESSED and
1916          * CEC_MSG_USER_CONTROL_RELEASED messages always have to be
1917          * handled by the CEC core, even if the passthrough mode is on.
1918          * The others are just ignored if passthrough mode is on.
1919          */
1920         switch (msg->msg[1]) {
1921         case CEC_MSG_GET_CEC_VERSION:
1922         case CEC_MSG_ABORT:
1923         case CEC_MSG_GIVE_DEVICE_POWER_STATUS:
1924         case CEC_MSG_GIVE_OSD_NAME:
1925                 /*
1926                  * These messages reply with a directed message, so ignore if
1927                  * the initiator is Unregistered.
1928                  */
1929                 if (!adap->passthrough && from_unregistered)
1930                         return 0;
1931                 /* Fall through */
1932         case CEC_MSG_GIVE_DEVICE_VENDOR_ID:
1933         case CEC_MSG_GIVE_FEATURES:
1934         case CEC_MSG_GIVE_PHYSICAL_ADDR:
1935                 /*
1936                  * Skip processing these messages if the passthrough mode
1937                  * is on.
1938                  */
1939                 if (adap->passthrough)
1940                         goto skip_processing;
1941                 /* Ignore if addressing is wrong */
1942                 if (is_broadcast)
1943                         return 0;
1944                 break;
1945
1946         case CEC_MSG_USER_CONTROL_PRESSED:
1947         case CEC_MSG_USER_CONTROL_RELEASED:
1948                 /* Wrong addressing mode: don't process */
1949                 if (is_broadcast || from_unregistered)
1950                         goto skip_processing;
1951                 break;
1952
1953         case CEC_MSG_REPORT_PHYSICAL_ADDR:
1954                 /*
1955                  * This message is always processed, regardless of the
1956                  * passthrough setting.
1957                  *
1958                  * Exception: don't process if wrong addressing mode.
1959                  */
1960                 if (!is_broadcast)
1961                         goto skip_processing;
1962                 break;
1963
1964         default:
1965                 break;
1966         }
1967
1968         cec_msg_set_reply_to(&tx_cec_msg, msg);
1969
1970         switch (msg->msg[1]) {
1971         /* The following messages are processed but still passed through */
1972         case CEC_MSG_REPORT_PHYSICAL_ADDR: {
1973                 u16 pa = (msg->msg[2] << 8) | msg->msg[3];
1974
1975                 if (!from_unregistered)
1976                         adap->phys_addrs[init_laddr] = pa;
1977                 dprintk(1, "reported physical address %x.%x.%x.%x for logical address %d\n",
1978                         cec_phys_addr_exp(pa), init_laddr);
1979                 break;
1980         }
1981
1982         case CEC_MSG_USER_CONTROL_PRESSED:
1983                 if (!(adap->capabilities & CEC_CAP_RC) ||
1984                     !(adap->log_addrs.flags & CEC_LOG_ADDRS_FL_ALLOW_RC_PASSTHRU))
1985                         break;
1986
1987 #ifdef CONFIG_MEDIA_CEC_RC
1988                 switch (msg->msg[2]) {
1989                 /*
1990                  * Play function, this message can have variable length
1991                  * depending on the specific play function that is used.
1992                  */
1993                 case 0x60:
1994                         if (msg->len == 2)
1995                                 rc_keydown(adap->rc, RC_PROTO_CEC,
1996                                            msg->msg[2], 0);
1997                         else
1998                                 rc_keydown(adap->rc, RC_PROTO_CEC,
1999                                            msg->msg[2] << 8 | msg->msg[3], 0);
2000                         break;
2001                 /*
2002                  * Other function messages that are not handled.
2003                  * Currently the RC framework does not allow to supply an
2004                  * additional parameter to a keypress. These "keys" contain
2005                  * other information such as channel number, an input number
2006                  * etc.
2007                  * For the time being these messages are not processed by the
2008                  * framework and are simply forwarded to the user space.
2009                  */
2010                 case 0x56: case 0x57:
2011                 case 0x67: case 0x68: case 0x69: case 0x6a:
2012                         break;
2013                 default:
2014                         rc_keydown(adap->rc, RC_PROTO_CEC, msg->msg[2], 0);
2015                         break;
2016                 }
2017 #endif
2018                 break;
2019
2020         case CEC_MSG_USER_CONTROL_RELEASED:
2021                 if (!(adap->capabilities & CEC_CAP_RC) ||
2022                     !(adap->log_addrs.flags & CEC_LOG_ADDRS_FL_ALLOW_RC_PASSTHRU))
2023                         break;
2024 #ifdef CONFIG_MEDIA_CEC_RC
2025                 rc_keyup(adap->rc);
2026 #endif
2027                 break;
2028
2029         /*
2030          * The remaining messages are only processed if the passthrough mode
2031          * is off.
2032          */
2033         case CEC_MSG_GET_CEC_VERSION:
2034                 cec_msg_cec_version(&tx_cec_msg, adap->log_addrs.cec_version);
2035                 return cec_transmit_msg(adap, &tx_cec_msg, false);
2036
2037         case CEC_MSG_GIVE_PHYSICAL_ADDR:
2038                 /* Do nothing for CEC switches using addr 15 */
2039                 if (devtype == CEC_OP_PRIM_DEVTYPE_SWITCH && dest_laddr == 15)
2040                         return 0;
2041                 cec_msg_report_physical_addr(&tx_cec_msg, adap->phys_addr, devtype);
2042                 return cec_transmit_msg(adap, &tx_cec_msg, false);
2043
2044         case CEC_MSG_GIVE_DEVICE_VENDOR_ID:
2045                 if (adap->log_addrs.vendor_id == CEC_VENDOR_ID_NONE)
2046                         return cec_feature_abort(adap, msg);
2047                 cec_msg_device_vendor_id(&tx_cec_msg, adap->log_addrs.vendor_id);
2048                 return cec_transmit_msg(adap, &tx_cec_msg, false);
2049
2050         case CEC_MSG_ABORT:
2051                 /* Do nothing for CEC switches */
2052                 if (devtype == CEC_OP_PRIM_DEVTYPE_SWITCH)
2053                         return 0;
2054                 return cec_feature_refused(adap, msg);
2055
2056         case CEC_MSG_GIVE_OSD_NAME: {
2057                 if (adap->log_addrs.osd_name[0] == 0)
2058                         return cec_feature_abort(adap, msg);
2059                 cec_msg_set_osd_name(&tx_cec_msg, adap->log_addrs.osd_name);
2060                 return cec_transmit_msg(adap, &tx_cec_msg, false);
2061         }
2062
2063         case CEC_MSG_GIVE_FEATURES:
2064                 if (adap->log_addrs.cec_version < CEC_OP_CEC_VERSION_2_0)
2065                         return cec_feature_abort(adap, msg);
2066                 cec_fill_msg_report_features(adap, &tx_cec_msg, la_idx);
2067                 return cec_transmit_msg(adap, &tx_cec_msg, false);
2068
2069         default:
2070                 /*
2071                  * Unprocessed messages are aborted if userspace isn't doing
2072                  * any processing either.
2073                  */
2074                 if (!is_broadcast && !is_reply && !adap->follower_cnt &&
2075                     !adap->cec_follower && msg->msg[1] != CEC_MSG_FEATURE_ABORT)
2076                         return cec_feature_abort(adap, msg);
2077                 break;
2078         }
2079
2080 skip_processing:
2081         /* If this was a reply, then we're done, unless otherwise specified */
2082         if (is_reply && !(msg->flags & CEC_MSG_FL_REPLY_TO_FOLLOWERS))
2083                 return 0;
2084
2085         /*
2086          * Send to the exclusive follower if there is one, otherwise send
2087          * to all followers.
2088          */
2089         if (adap->cec_follower)
2090                 cec_queue_msg_fh(adap->cec_follower, msg);
2091         else
2092                 cec_queue_msg_followers(adap, msg);
2093         return 0;
2094 }
2095
2096 /*
2097  * Helper functions to keep track of the 'monitor all' use count.
2098  *
2099  * These functions are called with adap->lock held.
2100  */
2101 int cec_monitor_all_cnt_inc(struct cec_adapter *adap)
2102 {
2103         int ret = 0;
2104
2105         if (adap->monitor_all_cnt == 0)
2106                 ret = call_op(adap, adap_monitor_all_enable, 1);
2107         if (ret == 0)
2108                 adap->monitor_all_cnt++;
2109         return ret;
2110 }
2111
2112 void cec_monitor_all_cnt_dec(struct cec_adapter *adap)
2113 {
2114         adap->monitor_all_cnt--;
2115         if (adap->monitor_all_cnt == 0)
2116                 WARN_ON(call_op(adap, adap_monitor_all_enable, 0));
2117 }
2118
2119 /*
2120  * Helper functions to keep track of the 'monitor pin' use count.
2121  *
2122  * These functions are called with adap->lock held.
2123  */
2124 int cec_monitor_pin_cnt_inc(struct cec_adapter *adap)
2125 {
2126         int ret = 0;
2127
2128         if (adap->monitor_pin_cnt == 0)
2129                 ret = call_op(adap, adap_monitor_pin_enable, 1);
2130         if (ret == 0)
2131                 adap->monitor_pin_cnt++;
2132         return ret;
2133 }
2134
2135 void cec_monitor_pin_cnt_dec(struct cec_adapter *adap)
2136 {
2137         adap->monitor_pin_cnt--;
2138         if (adap->monitor_pin_cnt == 0)
2139                 WARN_ON(call_op(adap, adap_monitor_pin_enable, 0));
2140 }
2141
2142 #ifdef CONFIG_DEBUG_FS
2143 /*
2144  * Log the current state of the CEC adapter.
2145  * Very useful for debugging.
2146  */
2147 int cec_adap_status(struct seq_file *file, void *priv)
2148 {
2149         struct cec_adapter *adap = dev_get_drvdata(file->private);
2150         struct cec_data *data;
2151
2152         mutex_lock(&adap->lock);
2153         seq_printf(file, "configured: %d\n", adap->is_configured);
2154         seq_printf(file, "configuring: %d\n", adap->is_configuring);
2155         seq_printf(file, "phys_addr: %x.%x.%x.%x\n",
2156                    cec_phys_addr_exp(adap->phys_addr));
2157         seq_printf(file, "number of LAs: %d\n", adap->log_addrs.num_log_addrs);
2158         seq_printf(file, "LA mask: 0x%04x\n", adap->log_addrs.log_addr_mask);
2159         if (adap->cec_follower)
2160                 seq_printf(file, "has CEC follower%s\n",
2161                            adap->passthrough ? " (in passthrough mode)" : "");
2162         if (adap->cec_initiator)
2163                 seq_puts(file, "has CEC initiator\n");
2164         if (adap->monitor_all_cnt)
2165                 seq_printf(file, "file handles in Monitor All mode: %u\n",
2166                            adap->monitor_all_cnt);
2167         if (adap->tx_timeouts) {
2168                 seq_printf(file, "transmit timeouts: %u\n",
2169                            adap->tx_timeouts);
2170                 adap->tx_timeouts = 0;
2171         }
2172         data = adap->transmitting;
2173         if (data)
2174                 seq_printf(file, "transmitting message: %*ph (reply: %02x, timeout: %ums)\n",
2175                            data->msg.len, data->msg.msg, data->msg.reply,
2176                            data->msg.timeout);
2177         seq_printf(file, "pending transmits: %u\n", adap->transmit_queue_sz);
2178         list_for_each_entry(data, &adap->transmit_queue, list) {
2179                 seq_printf(file, "queued tx message: %*ph (reply: %02x, timeout: %ums)\n",
2180                            data->msg.len, data->msg.msg, data->msg.reply,
2181                            data->msg.timeout);
2182         }
2183         list_for_each_entry(data, &adap->wait_queue, list) {
2184                 seq_printf(file, "message waiting for reply: %*ph (reply: %02x, timeout: %ums)\n",
2185                            data->msg.len, data->msg.msg, data->msg.reply,
2186                            data->msg.timeout);
2187         }
2188
2189         call_void_op(adap, adap_status, file);
2190         mutex_unlock(&adap->lock);
2191         return 0;
2192 }
2193 #endif