Linux-libre 4.9.46-gnu
[librecmc/linux-libre.git] / drivers / md / raid5.c
1 /*
2  * raid5.c : Multiple Devices driver for Linux
3  *         Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4  *         Copyright (C) 1999, 2000 Ingo Molnar
5  *         Copyright (C) 2002, 2003 H. Peter Anvin
6  *
7  * RAID-4/5/6 management functions.
8  * Thanks to Penguin Computing for making the RAID-6 development possible
9  * by donating a test server!
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2, or (at your option)
14  * any later version.
15  *
16  * You should have received a copy of the GNU General Public License
17  * (for example /usr/src/linux/COPYING); if not, write to the Free
18  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19  */
20
21 /*
22  * BITMAP UNPLUGGING:
23  *
24  * The sequencing for updating the bitmap reliably is a little
25  * subtle (and I got it wrong the first time) so it deserves some
26  * explanation.
27  *
28  * We group bitmap updates into batches.  Each batch has a number.
29  * We may write out several batches at once, but that isn't very important.
30  * conf->seq_write is the number of the last batch successfully written.
31  * conf->seq_flush is the number of the last batch that was closed to
32  *    new additions.
33  * When we discover that we will need to write to any block in a stripe
34  * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
35  * the number of the batch it will be in. This is seq_flush+1.
36  * When we are ready to do a write, if that batch hasn't been written yet,
37  *   we plug the array and queue the stripe for later.
38  * When an unplug happens, we increment bm_flush, thus closing the current
39  *   batch.
40  * When we notice that bm_flush > bm_write, we write out all pending updates
41  * to the bitmap, and advance bm_write to where bm_flush was.
42  * This may occasionally write a bit out twice, but is sure never to
43  * miss any bits.
44  */
45
46 #include <linux/blkdev.h>
47 #include <linux/kthread.h>
48 #include <linux/raid/pq.h>
49 #include <linux/async_tx.h>
50 #include <linux/module.h>
51 #include <linux/async.h>
52 #include <linux/seq_file.h>
53 #include <linux/cpu.h>
54 #include <linux/slab.h>
55 #include <linux/ratelimit.h>
56 #include <linux/nodemask.h>
57 #include <linux/flex_array.h>
58 #include <trace/events/block.h>
59
60 #include "md.h"
61 #include "raid5.h"
62 #include "raid0.h"
63 #include "bitmap.h"
64
65 #define cpu_to_group(cpu) cpu_to_node(cpu)
66 #define ANY_GROUP NUMA_NO_NODE
67
68 static bool devices_handle_discard_safely = false;
69 module_param(devices_handle_discard_safely, bool, 0644);
70 MODULE_PARM_DESC(devices_handle_discard_safely,
71                  "Set to Y if all devices in each array reliably return zeroes on reads from discarded regions");
72 static struct workqueue_struct *raid5_wq;
73 /*
74  * Stripe cache
75  */
76
77 #define NR_STRIPES              256
78 #define STRIPE_SIZE             PAGE_SIZE
79 #define STRIPE_SHIFT            (PAGE_SHIFT - 9)
80 #define STRIPE_SECTORS          (STRIPE_SIZE>>9)
81 #define IO_THRESHOLD            1
82 #define BYPASS_THRESHOLD        1
83 #define NR_HASH                 (PAGE_SIZE / sizeof(struct hlist_head))
84 #define HASH_MASK               (NR_HASH - 1)
85 #define MAX_STRIPE_BATCH        8
86
87 static inline struct hlist_head *stripe_hash(struct r5conf *conf, sector_t sect)
88 {
89         int hash = (sect >> STRIPE_SHIFT) & HASH_MASK;
90         return &conf->stripe_hashtbl[hash];
91 }
92
93 static inline int stripe_hash_locks_hash(sector_t sect)
94 {
95         return (sect >> STRIPE_SHIFT) & STRIPE_HASH_LOCKS_MASK;
96 }
97
98 static inline void lock_device_hash_lock(struct r5conf *conf, int hash)
99 {
100         spin_lock_irq(conf->hash_locks + hash);
101         spin_lock(&conf->device_lock);
102 }
103
104 static inline void unlock_device_hash_lock(struct r5conf *conf, int hash)
105 {
106         spin_unlock(&conf->device_lock);
107         spin_unlock_irq(conf->hash_locks + hash);
108 }
109
110 static inline void lock_all_device_hash_locks_irq(struct r5conf *conf)
111 {
112         int i;
113         local_irq_disable();
114         spin_lock(conf->hash_locks);
115         for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
116                 spin_lock_nest_lock(conf->hash_locks + i, conf->hash_locks);
117         spin_lock(&conf->device_lock);
118 }
119
120 static inline void unlock_all_device_hash_locks_irq(struct r5conf *conf)
121 {
122         int i;
123         spin_unlock(&conf->device_lock);
124         for (i = NR_STRIPE_HASH_LOCKS; i; i--)
125                 spin_unlock(conf->hash_locks + i - 1);
126         local_irq_enable();
127 }
128
129 /* bio's attached to a stripe+device for I/O are linked together in bi_sector
130  * order without overlap.  There may be several bio's per stripe+device, and
131  * a bio could span several devices.
132  * When walking this list for a particular stripe+device, we must never proceed
133  * beyond a bio that extends past this device, as the next bio might no longer
134  * be valid.
135  * This function is used to determine the 'next' bio in the list, given the sector
136  * of the current stripe+device
137  */
138 static inline struct bio *r5_next_bio(struct bio *bio, sector_t sector)
139 {
140         int sectors = bio_sectors(bio);
141         if (bio->bi_iter.bi_sector + sectors < sector + STRIPE_SECTORS)
142                 return bio->bi_next;
143         else
144                 return NULL;
145 }
146
147 /*
148  * We maintain a biased count of active stripes in the bottom 16 bits of
149  * bi_phys_segments, and a count of processed stripes in the upper 16 bits
150  */
151 static inline int raid5_bi_processed_stripes(struct bio *bio)
152 {
153         atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
154         return (atomic_read(segments) >> 16) & 0xffff;
155 }
156
157 static inline int raid5_dec_bi_active_stripes(struct bio *bio)
158 {
159         atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
160         return atomic_sub_return(1, segments) & 0xffff;
161 }
162
163 static inline void raid5_inc_bi_active_stripes(struct bio *bio)
164 {
165         atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
166         atomic_inc(segments);
167 }
168
169 static inline void raid5_set_bi_processed_stripes(struct bio *bio,
170         unsigned int cnt)
171 {
172         atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
173         int old, new;
174
175         do {
176                 old = atomic_read(segments);
177                 new = (old & 0xffff) | (cnt << 16);
178         } while (atomic_cmpxchg(segments, old, new) != old);
179 }
180
181 static inline void raid5_set_bi_stripes(struct bio *bio, unsigned int cnt)
182 {
183         atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
184         atomic_set(segments, cnt);
185 }
186
187 /* Find first data disk in a raid6 stripe */
188 static inline int raid6_d0(struct stripe_head *sh)
189 {
190         if (sh->ddf_layout)
191                 /* ddf always start from first device */
192                 return 0;
193         /* md starts just after Q block */
194         if (sh->qd_idx == sh->disks - 1)
195                 return 0;
196         else
197                 return sh->qd_idx + 1;
198 }
199 static inline int raid6_next_disk(int disk, int raid_disks)
200 {
201         disk++;
202         return (disk < raid_disks) ? disk : 0;
203 }
204
205 /* When walking through the disks in a raid5, starting at raid6_d0,
206  * We need to map each disk to a 'slot', where the data disks are slot
207  * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
208  * is raid_disks-1.  This help does that mapping.
209  */
210 static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
211                              int *count, int syndrome_disks)
212 {
213         int slot = *count;
214
215         if (sh->ddf_layout)
216                 (*count)++;
217         if (idx == sh->pd_idx)
218                 return syndrome_disks;
219         if (idx == sh->qd_idx)
220                 return syndrome_disks + 1;
221         if (!sh->ddf_layout)
222                 (*count)++;
223         return slot;
224 }
225
226 static void return_io(struct bio_list *return_bi)
227 {
228         struct bio *bi;
229         while ((bi = bio_list_pop(return_bi)) != NULL) {
230                 bi->bi_iter.bi_size = 0;
231                 trace_block_bio_complete(bdev_get_queue(bi->bi_bdev),
232                                          bi, 0);
233                 bio_endio(bi);
234         }
235 }
236
237 static void print_raid5_conf (struct r5conf *conf);
238
239 static int stripe_operations_active(struct stripe_head *sh)
240 {
241         return sh->check_state || sh->reconstruct_state ||
242                test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
243                test_bit(STRIPE_COMPUTE_RUN, &sh->state);
244 }
245
246 static void raid5_wakeup_stripe_thread(struct stripe_head *sh)
247 {
248         struct r5conf *conf = sh->raid_conf;
249         struct r5worker_group *group;
250         int thread_cnt;
251         int i, cpu = sh->cpu;
252
253         if (!cpu_online(cpu)) {
254                 cpu = cpumask_any(cpu_online_mask);
255                 sh->cpu = cpu;
256         }
257
258         if (list_empty(&sh->lru)) {
259                 struct r5worker_group *group;
260                 group = conf->worker_groups + cpu_to_group(cpu);
261                 list_add_tail(&sh->lru, &group->handle_list);
262                 group->stripes_cnt++;
263                 sh->group = group;
264         }
265
266         if (conf->worker_cnt_per_group == 0) {
267                 md_wakeup_thread(conf->mddev->thread);
268                 return;
269         }
270
271         group = conf->worker_groups + cpu_to_group(sh->cpu);
272
273         group->workers[0].working = true;
274         /* at least one worker should run to avoid race */
275         queue_work_on(sh->cpu, raid5_wq, &group->workers[0].work);
276
277         thread_cnt = group->stripes_cnt / MAX_STRIPE_BATCH - 1;
278         /* wakeup more workers */
279         for (i = 1; i < conf->worker_cnt_per_group && thread_cnt > 0; i++) {
280                 if (group->workers[i].working == false) {
281                         group->workers[i].working = true;
282                         queue_work_on(sh->cpu, raid5_wq,
283                                       &group->workers[i].work);
284                         thread_cnt--;
285                 }
286         }
287 }
288
289 static void do_release_stripe(struct r5conf *conf, struct stripe_head *sh,
290                               struct list_head *temp_inactive_list)
291 {
292         BUG_ON(!list_empty(&sh->lru));
293         BUG_ON(atomic_read(&conf->active_stripes)==0);
294         if (test_bit(STRIPE_HANDLE, &sh->state)) {
295                 if (test_bit(STRIPE_DELAYED, &sh->state) &&
296                     !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
297                         list_add_tail(&sh->lru, &conf->delayed_list);
298                 else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
299                            sh->bm_seq - conf->seq_write > 0)
300                         list_add_tail(&sh->lru, &conf->bitmap_list);
301                 else {
302                         clear_bit(STRIPE_DELAYED, &sh->state);
303                         clear_bit(STRIPE_BIT_DELAY, &sh->state);
304                         if (conf->worker_cnt_per_group == 0) {
305                                 list_add_tail(&sh->lru, &conf->handle_list);
306                         } else {
307                                 raid5_wakeup_stripe_thread(sh);
308                                 return;
309                         }
310                 }
311                 md_wakeup_thread(conf->mddev->thread);
312         } else {
313                 BUG_ON(stripe_operations_active(sh));
314                 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
315                         if (atomic_dec_return(&conf->preread_active_stripes)
316                             < IO_THRESHOLD)
317                                 md_wakeup_thread(conf->mddev->thread);
318                 atomic_dec(&conf->active_stripes);
319                 if (!test_bit(STRIPE_EXPANDING, &sh->state))
320                         list_add_tail(&sh->lru, temp_inactive_list);
321         }
322 }
323
324 static void __release_stripe(struct r5conf *conf, struct stripe_head *sh,
325                              struct list_head *temp_inactive_list)
326 {
327         if (atomic_dec_and_test(&sh->count))
328                 do_release_stripe(conf, sh, temp_inactive_list);
329 }
330
331 /*
332  * @hash could be NR_STRIPE_HASH_LOCKS, then we have a list of inactive_list
333  *
334  * Be careful: Only one task can add/delete stripes from temp_inactive_list at
335  * given time. Adding stripes only takes device lock, while deleting stripes
336  * only takes hash lock.
337  */
338 static void release_inactive_stripe_list(struct r5conf *conf,
339                                          struct list_head *temp_inactive_list,
340                                          int hash)
341 {
342         int size;
343         bool do_wakeup = false;
344         unsigned long flags;
345
346         if (hash == NR_STRIPE_HASH_LOCKS) {
347                 size = NR_STRIPE_HASH_LOCKS;
348                 hash = NR_STRIPE_HASH_LOCKS - 1;
349         } else
350                 size = 1;
351         while (size) {
352                 struct list_head *list = &temp_inactive_list[size - 1];
353
354                 /*
355                  * We don't hold any lock here yet, raid5_get_active_stripe() might
356                  * remove stripes from the list
357                  */
358                 if (!list_empty_careful(list)) {
359                         spin_lock_irqsave(conf->hash_locks + hash, flags);
360                         if (list_empty(conf->inactive_list + hash) &&
361                             !list_empty(list))
362                                 atomic_dec(&conf->empty_inactive_list_nr);
363                         list_splice_tail_init(list, conf->inactive_list + hash);
364                         do_wakeup = true;
365                         spin_unlock_irqrestore(conf->hash_locks + hash, flags);
366                 }
367                 size--;
368                 hash--;
369         }
370
371         if (do_wakeup) {
372                 wake_up(&conf->wait_for_stripe);
373                 if (atomic_read(&conf->active_stripes) == 0)
374                         wake_up(&conf->wait_for_quiescent);
375                 if (conf->retry_read_aligned)
376                         md_wakeup_thread(conf->mddev->thread);
377         }
378 }
379
380 /* should hold conf->device_lock already */
381 static int release_stripe_list(struct r5conf *conf,
382                                struct list_head *temp_inactive_list)
383 {
384         struct stripe_head *sh;
385         int count = 0;
386         struct llist_node *head;
387
388         head = llist_del_all(&conf->released_stripes);
389         head = llist_reverse_order(head);
390         while (head) {
391                 int hash;
392
393                 sh = llist_entry(head, struct stripe_head, release_list);
394                 head = llist_next(head);
395                 /* sh could be readded after STRIPE_ON_RELEASE_LIST is cleard */
396                 smp_mb();
397                 clear_bit(STRIPE_ON_RELEASE_LIST, &sh->state);
398                 /*
399                  * Don't worry the bit is set here, because if the bit is set
400                  * again, the count is always > 1. This is true for
401                  * STRIPE_ON_UNPLUG_LIST bit too.
402                  */
403                 hash = sh->hash_lock_index;
404                 __release_stripe(conf, sh, &temp_inactive_list[hash]);
405                 count++;
406         }
407
408         return count;
409 }
410
411 void raid5_release_stripe(struct stripe_head *sh)
412 {
413         struct r5conf *conf = sh->raid_conf;
414         unsigned long flags;
415         struct list_head list;
416         int hash;
417         bool wakeup;
418
419         /* Avoid release_list until the last reference.
420          */
421         if (atomic_add_unless(&sh->count, -1, 1))
422                 return;
423
424         if (unlikely(!conf->mddev->thread) ||
425                 test_and_set_bit(STRIPE_ON_RELEASE_LIST, &sh->state))
426                 goto slow_path;
427         wakeup = llist_add(&sh->release_list, &conf->released_stripes);
428         if (wakeup)
429                 md_wakeup_thread(conf->mddev->thread);
430         return;
431 slow_path:
432         local_irq_save(flags);
433         /* we are ok here if STRIPE_ON_RELEASE_LIST is set or not */
434         if (atomic_dec_and_lock(&sh->count, &conf->device_lock)) {
435                 INIT_LIST_HEAD(&list);
436                 hash = sh->hash_lock_index;
437                 do_release_stripe(conf, sh, &list);
438                 spin_unlock(&conf->device_lock);
439                 release_inactive_stripe_list(conf, &list, hash);
440         }
441         local_irq_restore(flags);
442 }
443
444 static inline void remove_hash(struct stripe_head *sh)
445 {
446         pr_debug("remove_hash(), stripe %llu\n",
447                 (unsigned long long)sh->sector);
448
449         hlist_del_init(&sh->hash);
450 }
451
452 static inline void insert_hash(struct r5conf *conf, struct stripe_head *sh)
453 {
454         struct hlist_head *hp = stripe_hash(conf, sh->sector);
455
456         pr_debug("insert_hash(), stripe %llu\n",
457                 (unsigned long long)sh->sector);
458
459         hlist_add_head(&sh->hash, hp);
460 }
461
462 /* find an idle stripe, make sure it is unhashed, and return it. */
463 static struct stripe_head *get_free_stripe(struct r5conf *conf, int hash)
464 {
465         struct stripe_head *sh = NULL;
466         struct list_head *first;
467
468         if (list_empty(conf->inactive_list + hash))
469                 goto out;
470         first = (conf->inactive_list + hash)->next;
471         sh = list_entry(first, struct stripe_head, lru);
472         list_del_init(first);
473         remove_hash(sh);
474         atomic_inc(&conf->active_stripes);
475         BUG_ON(hash != sh->hash_lock_index);
476         if (list_empty(conf->inactive_list + hash))
477                 atomic_inc(&conf->empty_inactive_list_nr);
478 out:
479         return sh;
480 }
481
482 static void shrink_buffers(struct stripe_head *sh)
483 {
484         struct page *p;
485         int i;
486         int num = sh->raid_conf->pool_size;
487
488         for (i = 0; i < num ; i++) {
489                 WARN_ON(sh->dev[i].page != sh->dev[i].orig_page);
490                 p = sh->dev[i].page;
491                 if (!p)
492                         continue;
493                 sh->dev[i].page = NULL;
494                 put_page(p);
495         }
496 }
497
498 static int grow_buffers(struct stripe_head *sh, gfp_t gfp)
499 {
500         int i;
501         int num = sh->raid_conf->pool_size;
502
503         for (i = 0; i < num; i++) {
504                 struct page *page;
505
506                 if (!(page = alloc_page(gfp))) {
507                         return 1;
508                 }
509                 sh->dev[i].page = page;
510                 sh->dev[i].orig_page = page;
511         }
512         return 0;
513 }
514
515 static void raid5_build_block(struct stripe_head *sh, int i, int previous);
516 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
517                             struct stripe_head *sh);
518
519 static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
520 {
521         struct r5conf *conf = sh->raid_conf;
522         int i, seq;
523
524         BUG_ON(atomic_read(&sh->count) != 0);
525         BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
526         BUG_ON(stripe_operations_active(sh));
527         BUG_ON(sh->batch_head);
528
529         pr_debug("init_stripe called, stripe %llu\n",
530                 (unsigned long long)sector);
531 retry:
532         seq = read_seqcount_begin(&conf->gen_lock);
533         sh->generation = conf->generation - previous;
534         sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
535         sh->sector = sector;
536         stripe_set_idx(sector, conf, previous, sh);
537         sh->state = 0;
538
539         for (i = sh->disks; i--; ) {
540                 struct r5dev *dev = &sh->dev[i];
541
542                 if (dev->toread || dev->read || dev->towrite || dev->written ||
543                     test_bit(R5_LOCKED, &dev->flags)) {
544                         printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n",
545                                (unsigned long long)sh->sector, i, dev->toread,
546                                dev->read, dev->towrite, dev->written,
547                                test_bit(R5_LOCKED, &dev->flags));
548                         WARN_ON(1);
549                 }
550                 dev->flags = 0;
551                 raid5_build_block(sh, i, previous);
552         }
553         if (read_seqcount_retry(&conf->gen_lock, seq))
554                 goto retry;
555         sh->overwrite_disks = 0;
556         insert_hash(conf, sh);
557         sh->cpu = smp_processor_id();
558         set_bit(STRIPE_BATCH_READY, &sh->state);
559 }
560
561 static struct stripe_head *__find_stripe(struct r5conf *conf, sector_t sector,
562                                          short generation)
563 {
564         struct stripe_head *sh;
565
566         pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
567         hlist_for_each_entry(sh, stripe_hash(conf, sector), hash)
568                 if (sh->sector == sector && sh->generation == generation)
569                         return sh;
570         pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
571         return NULL;
572 }
573
574 /*
575  * Need to check if array has failed when deciding whether to:
576  *  - start an array
577  *  - remove non-faulty devices
578  *  - add a spare
579  *  - allow a reshape
580  * This determination is simple when no reshape is happening.
581  * However if there is a reshape, we need to carefully check
582  * both the before and after sections.
583  * This is because some failed devices may only affect one
584  * of the two sections, and some non-in_sync devices may
585  * be insync in the section most affected by failed devices.
586  */
587 static int calc_degraded(struct r5conf *conf)
588 {
589         int degraded, degraded2;
590         int i;
591
592         rcu_read_lock();
593         degraded = 0;
594         for (i = 0; i < conf->previous_raid_disks; i++) {
595                 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
596                 if (rdev && test_bit(Faulty, &rdev->flags))
597                         rdev = rcu_dereference(conf->disks[i].replacement);
598                 if (!rdev || test_bit(Faulty, &rdev->flags))
599                         degraded++;
600                 else if (test_bit(In_sync, &rdev->flags))
601                         ;
602                 else
603                         /* not in-sync or faulty.
604                          * If the reshape increases the number of devices,
605                          * this is being recovered by the reshape, so
606                          * this 'previous' section is not in_sync.
607                          * If the number of devices is being reduced however,
608                          * the device can only be part of the array if
609                          * we are reverting a reshape, so this section will
610                          * be in-sync.
611                          */
612                         if (conf->raid_disks >= conf->previous_raid_disks)
613                                 degraded++;
614         }
615         rcu_read_unlock();
616         if (conf->raid_disks == conf->previous_raid_disks)
617                 return degraded;
618         rcu_read_lock();
619         degraded2 = 0;
620         for (i = 0; i < conf->raid_disks; i++) {
621                 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
622                 if (rdev && test_bit(Faulty, &rdev->flags))
623                         rdev = rcu_dereference(conf->disks[i].replacement);
624                 if (!rdev || test_bit(Faulty, &rdev->flags))
625                         degraded2++;
626                 else if (test_bit(In_sync, &rdev->flags))
627                         ;
628                 else
629                         /* not in-sync or faulty.
630                          * If reshape increases the number of devices, this
631                          * section has already been recovered, else it
632                          * almost certainly hasn't.
633                          */
634                         if (conf->raid_disks <= conf->previous_raid_disks)
635                                 degraded2++;
636         }
637         rcu_read_unlock();
638         if (degraded2 > degraded)
639                 return degraded2;
640         return degraded;
641 }
642
643 static int has_failed(struct r5conf *conf)
644 {
645         int degraded;
646
647         if (conf->mddev->reshape_position == MaxSector)
648                 return conf->mddev->degraded > conf->max_degraded;
649
650         degraded = calc_degraded(conf);
651         if (degraded > conf->max_degraded)
652                 return 1;
653         return 0;
654 }
655
656 struct stripe_head *
657 raid5_get_active_stripe(struct r5conf *conf, sector_t sector,
658                         int previous, int noblock, int noquiesce)
659 {
660         struct stripe_head *sh;
661         int hash = stripe_hash_locks_hash(sector);
662         int inc_empty_inactive_list_flag;
663
664         pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
665
666         spin_lock_irq(conf->hash_locks + hash);
667
668         do {
669                 wait_event_lock_irq(conf->wait_for_quiescent,
670                                     conf->quiesce == 0 || noquiesce,
671                                     *(conf->hash_locks + hash));
672                 sh = __find_stripe(conf, sector, conf->generation - previous);
673                 if (!sh) {
674                         if (!test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state)) {
675                                 sh = get_free_stripe(conf, hash);
676                                 if (!sh && !test_bit(R5_DID_ALLOC,
677                                                      &conf->cache_state))
678                                         set_bit(R5_ALLOC_MORE,
679                                                 &conf->cache_state);
680                         }
681                         if (noblock && sh == NULL)
682                                 break;
683                         if (!sh) {
684                                 set_bit(R5_INACTIVE_BLOCKED,
685                                         &conf->cache_state);
686                                 wait_event_lock_irq(
687                                         conf->wait_for_stripe,
688                                         !list_empty(conf->inactive_list + hash) &&
689                                         (atomic_read(&conf->active_stripes)
690                                          < (conf->max_nr_stripes * 3 / 4)
691                                          || !test_bit(R5_INACTIVE_BLOCKED,
692                                                       &conf->cache_state)),
693                                         *(conf->hash_locks + hash));
694                                 clear_bit(R5_INACTIVE_BLOCKED,
695                                           &conf->cache_state);
696                         } else {
697                                 init_stripe(sh, sector, previous);
698                                 atomic_inc(&sh->count);
699                         }
700                 } else if (!atomic_inc_not_zero(&sh->count)) {
701                         spin_lock(&conf->device_lock);
702                         if (!atomic_read(&sh->count)) {
703                                 if (!test_bit(STRIPE_HANDLE, &sh->state))
704                                         atomic_inc(&conf->active_stripes);
705                                 BUG_ON(list_empty(&sh->lru) &&
706                                        !test_bit(STRIPE_EXPANDING, &sh->state));
707                                 inc_empty_inactive_list_flag = 0;
708                                 if (!list_empty(conf->inactive_list + hash))
709                                         inc_empty_inactive_list_flag = 1;
710                                 list_del_init(&sh->lru);
711                                 if (list_empty(conf->inactive_list + hash) && inc_empty_inactive_list_flag)
712                                         atomic_inc(&conf->empty_inactive_list_nr);
713                                 if (sh->group) {
714                                         sh->group->stripes_cnt--;
715                                         sh->group = NULL;
716                                 }
717                         }
718                         atomic_inc(&sh->count);
719                         spin_unlock(&conf->device_lock);
720                 }
721         } while (sh == NULL);
722
723         spin_unlock_irq(conf->hash_locks + hash);
724         return sh;
725 }
726
727 static bool is_full_stripe_write(struct stripe_head *sh)
728 {
729         BUG_ON(sh->overwrite_disks > (sh->disks - sh->raid_conf->max_degraded));
730         return sh->overwrite_disks == (sh->disks - sh->raid_conf->max_degraded);
731 }
732
733 static void lock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2)
734 {
735         local_irq_disable();
736         if (sh1 > sh2) {
737                 spin_lock(&sh2->stripe_lock);
738                 spin_lock_nested(&sh1->stripe_lock, 1);
739         } else {
740                 spin_lock(&sh1->stripe_lock);
741                 spin_lock_nested(&sh2->stripe_lock, 1);
742         }
743 }
744
745 static void unlock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2)
746 {
747         spin_unlock(&sh1->stripe_lock);
748         spin_unlock(&sh2->stripe_lock);
749         local_irq_enable();
750 }
751
752 /* Only freshly new full stripe normal write stripe can be added to a batch list */
753 static bool stripe_can_batch(struct stripe_head *sh)
754 {
755         struct r5conf *conf = sh->raid_conf;
756
757         if (conf->log)
758                 return false;
759         return test_bit(STRIPE_BATCH_READY, &sh->state) &&
760                 !test_bit(STRIPE_BITMAP_PENDING, &sh->state) &&
761                 is_full_stripe_write(sh);
762 }
763
764 /* we only do back search */
765 static void stripe_add_to_batch_list(struct r5conf *conf, struct stripe_head *sh)
766 {
767         struct stripe_head *head;
768         sector_t head_sector, tmp_sec;
769         int hash;
770         int dd_idx;
771         int inc_empty_inactive_list_flag;
772
773         /* Don't cross chunks, so stripe pd_idx/qd_idx is the same */
774         tmp_sec = sh->sector;
775         if (!sector_div(tmp_sec, conf->chunk_sectors))
776                 return;
777         head_sector = sh->sector - STRIPE_SECTORS;
778
779         hash = stripe_hash_locks_hash(head_sector);
780         spin_lock_irq(conf->hash_locks + hash);
781         head = __find_stripe(conf, head_sector, conf->generation);
782         if (head && !atomic_inc_not_zero(&head->count)) {
783                 spin_lock(&conf->device_lock);
784                 if (!atomic_read(&head->count)) {
785                         if (!test_bit(STRIPE_HANDLE, &head->state))
786                                 atomic_inc(&conf->active_stripes);
787                         BUG_ON(list_empty(&head->lru) &&
788                                !test_bit(STRIPE_EXPANDING, &head->state));
789                         inc_empty_inactive_list_flag = 0;
790                         if (!list_empty(conf->inactive_list + hash))
791                                 inc_empty_inactive_list_flag = 1;
792                         list_del_init(&head->lru);
793                         if (list_empty(conf->inactive_list + hash) && inc_empty_inactive_list_flag)
794                                 atomic_inc(&conf->empty_inactive_list_nr);
795                         if (head->group) {
796                                 head->group->stripes_cnt--;
797                                 head->group = NULL;
798                         }
799                 }
800                 atomic_inc(&head->count);
801                 spin_unlock(&conf->device_lock);
802         }
803         spin_unlock_irq(conf->hash_locks + hash);
804
805         if (!head)
806                 return;
807         if (!stripe_can_batch(head))
808                 goto out;
809
810         lock_two_stripes(head, sh);
811         /* clear_batch_ready clear the flag */
812         if (!stripe_can_batch(head) || !stripe_can_batch(sh))
813                 goto unlock_out;
814
815         if (sh->batch_head)
816                 goto unlock_out;
817
818         dd_idx = 0;
819         while (dd_idx == sh->pd_idx || dd_idx == sh->qd_idx)
820                 dd_idx++;
821         if (head->dev[dd_idx].towrite->bi_opf != sh->dev[dd_idx].towrite->bi_opf ||
822             bio_op(head->dev[dd_idx].towrite) != bio_op(sh->dev[dd_idx].towrite))
823                 goto unlock_out;
824
825         if (head->batch_head) {
826                 spin_lock(&head->batch_head->batch_lock);
827                 /* This batch list is already running */
828                 if (!stripe_can_batch(head)) {
829                         spin_unlock(&head->batch_head->batch_lock);
830                         goto unlock_out;
831                 }
832
833                 /*
834                  * at this point, head's BATCH_READY could be cleared, but we
835                  * can still add the stripe to batch list
836                  */
837                 list_add(&sh->batch_list, &head->batch_list);
838                 spin_unlock(&head->batch_head->batch_lock);
839
840                 sh->batch_head = head->batch_head;
841         } else {
842                 head->batch_head = head;
843                 sh->batch_head = head->batch_head;
844                 spin_lock(&head->batch_lock);
845                 list_add_tail(&sh->batch_list, &head->batch_list);
846                 spin_unlock(&head->batch_lock);
847         }
848
849         if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
850                 if (atomic_dec_return(&conf->preread_active_stripes)
851                     < IO_THRESHOLD)
852                         md_wakeup_thread(conf->mddev->thread);
853
854         if (test_and_clear_bit(STRIPE_BIT_DELAY, &sh->state)) {
855                 int seq = sh->bm_seq;
856                 if (test_bit(STRIPE_BIT_DELAY, &sh->batch_head->state) &&
857                     sh->batch_head->bm_seq > seq)
858                         seq = sh->batch_head->bm_seq;
859                 set_bit(STRIPE_BIT_DELAY, &sh->batch_head->state);
860                 sh->batch_head->bm_seq = seq;
861         }
862
863         atomic_inc(&sh->count);
864 unlock_out:
865         unlock_two_stripes(head, sh);
866 out:
867         raid5_release_stripe(head);
868 }
869
870 /* Determine if 'data_offset' or 'new_data_offset' should be used
871  * in this stripe_head.
872  */
873 static int use_new_offset(struct r5conf *conf, struct stripe_head *sh)
874 {
875         sector_t progress = conf->reshape_progress;
876         /* Need a memory barrier to make sure we see the value
877          * of conf->generation, or ->data_offset that was set before
878          * reshape_progress was updated.
879          */
880         smp_rmb();
881         if (progress == MaxSector)
882                 return 0;
883         if (sh->generation == conf->generation - 1)
884                 return 0;
885         /* We are in a reshape, and this is a new-generation stripe,
886          * so use new_data_offset.
887          */
888         return 1;
889 }
890
891 static void
892 raid5_end_read_request(struct bio *bi);
893 static void
894 raid5_end_write_request(struct bio *bi);
895
896 static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
897 {
898         struct r5conf *conf = sh->raid_conf;
899         int i, disks = sh->disks;
900         struct stripe_head *head_sh = sh;
901
902         might_sleep();
903
904         if (r5l_write_stripe(conf->log, sh) == 0)
905                 return;
906         for (i = disks; i--; ) {
907                 int op, op_flags = 0;
908                 int replace_only = 0;
909                 struct bio *bi, *rbi;
910                 struct md_rdev *rdev, *rrdev = NULL;
911
912                 sh = head_sh;
913                 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
914                         op = REQ_OP_WRITE;
915                         if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags))
916                                 op_flags = WRITE_FUA;
917                         if (test_bit(R5_Discard, &sh->dev[i].flags))
918                                 op = REQ_OP_DISCARD;
919                 } else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
920                         op = REQ_OP_READ;
921                 else if (test_and_clear_bit(R5_WantReplace,
922                                             &sh->dev[i].flags)) {
923                         op = REQ_OP_WRITE;
924                         replace_only = 1;
925                 } else
926                         continue;
927                 if (test_and_clear_bit(R5_SyncIO, &sh->dev[i].flags))
928                         op_flags |= REQ_SYNC;
929
930 again:
931                 bi = &sh->dev[i].req;
932                 rbi = &sh->dev[i].rreq; /* For writing to replacement */
933
934                 rcu_read_lock();
935                 rrdev = rcu_dereference(conf->disks[i].replacement);
936                 smp_mb(); /* Ensure that if rrdev is NULL, rdev won't be */
937                 rdev = rcu_dereference(conf->disks[i].rdev);
938                 if (!rdev) {
939                         rdev = rrdev;
940                         rrdev = NULL;
941                 }
942                 if (op_is_write(op)) {
943                         if (replace_only)
944                                 rdev = NULL;
945                         if (rdev == rrdev)
946                                 /* We raced and saw duplicates */
947                                 rrdev = NULL;
948                 } else {
949                         if (test_bit(R5_ReadRepl, &head_sh->dev[i].flags) && rrdev)
950                                 rdev = rrdev;
951                         rrdev = NULL;
952                 }
953
954                 if (rdev && test_bit(Faulty, &rdev->flags))
955                         rdev = NULL;
956                 if (rdev)
957                         atomic_inc(&rdev->nr_pending);
958                 if (rrdev && test_bit(Faulty, &rrdev->flags))
959                         rrdev = NULL;
960                 if (rrdev)
961                         atomic_inc(&rrdev->nr_pending);
962                 rcu_read_unlock();
963
964                 /* We have already checked bad blocks for reads.  Now
965                  * need to check for writes.  We never accept write errors
966                  * on the replacement, so we don't to check rrdev.
967                  */
968                 while (op_is_write(op) && rdev &&
969                        test_bit(WriteErrorSeen, &rdev->flags)) {
970                         sector_t first_bad;
971                         int bad_sectors;
972                         int bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
973                                               &first_bad, &bad_sectors);
974                         if (!bad)
975                                 break;
976
977                         if (bad < 0) {
978                                 set_bit(BlockedBadBlocks, &rdev->flags);
979                                 if (!conf->mddev->external &&
980                                     conf->mddev->flags) {
981                                         /* It is very unlikely, but we might
982                                          * still need to write out the
983                                          * bad block log - better give it
984                                          * a chance*/
985                                         md_check_recovery(conf->mddev);
986                                 }
987                                 /*
988                                  * Because md_wait_for_blocked_rdev
989                                  * will dec nr_pending, we must
990                                  * increment it first.
991                                  */
992                                 atomic_inc(&rdev->nr_pending);
993                                 md_wait_for_blocked_rdev(rdev, conf->mddev);
994                         } else {
995                                 /* Acknowledged bad block - skip the write */
996                                 rdev_dec_pending(rdev, conf->mddev);
997                                 rdev = NULL;
998                         }
999                 }
1000
1001                 if (rdev) {
1002                         if (s->syncing || s->expanding || s->expanded
1003                             || s->replacing)
1004                                 md_sync_acct(rdev->bdev, STRIPE_SECTORS);
1005
1006                         set_bit(STRIPE_IO_STARTED, &sh->state);
1007
1008                         bi->bi_bdev = rdev->bdev;
1009                         bio_set_op_attrs(bi, op, op_flags);
1010                         bi->bi_end_io = op_is_write(op)
1011                                 ? raid5_end_write_request
1012                                 : raid5_end_read_request;
1013                         bi->bi_private = sh;
1014
1015                         pr_debug("%s: for %llu schedule op %d on disc %d\n",
1016                                 __func__, (unsigned long long)sh->sector,
1017                                 bi->bi_opf, i);
1018                         atomic_inc(&sh->count);
1019                         if (sh != head_sh)
1020                                 atomic_inc(&head_sh->count);
1021                         if (use_new_offset(conf, sh))
1022                                 bi->bi_iter.bi_sector = (sh->sector
1023                                                  + rdev->new_data_offset);
1024                         else
1025                                 bi->bi_iter.bi_sector = (sh->sector
1026                                                  + rdev->data_offset);
1027                         if (test_bit(R5_ReadNoMerge, &head_sh->dev[i].flags))
1028                                 bi->bi_opf |= REQ_NOMERGE;
1029
1030                         if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
1031                                 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
1032                         sh->dev[i].vec.bv_page = sh->dev[i].page;
1033                         bi->bi_vcnt = 1;
1034                         bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
1035                         bi->bi_io_vec[0].bv_offset = 0;
1036                         bi->bi_iter.bi_size = STRIPE_SIZE;
1037                         /*
1038                          * If this is discard request, set bi_vcnt 0. We don't
1039                          * want to confuse SCSI because SCSI will replace payload
1040                          */
1041                         if (op == REQ_OP_DISCARD)
1042                                 bi->bi_vcnt = 0;
1043                         if (rrdev)
1044                                 set_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags);
1045
1046                         if (conf->mddev->gendisk)
1047                                 trace_block_bio_remap(bdev_get_queue(bi->bi_bdev),
1048                                                       bi, disk_devt(conf->mddev->gendisk),
1049                                                       sh->dev[i].sector);
1050                         generic_make_request(bi);
1051                 }
1052                 if (rrdev) {
1053                         if (s->syncing || s->expanding || s->expanded
1054                             || s->replacing)
1055                                 md_sync_acct(rrdev->bdev, STRIPE_SECTORS);
1056
1057                         set_bit(STRIPE_IO_STARTED, &sh->state);
1058
1059                         rbi->bi_bdev = rrdev->bdev;
1060                         bio_set_op_attrs(rbi, op, op_flags);
1061                         BUG_ON(!op_is_write(op));
1062                         rbi->bi_end_io = raid5_end_write_request;
1063                         rbi->bi_private = sh;
1064
1065                         pr_debug("%s: for %llu schedule op %d on "
1066                                  "replacement disc %d\n",
1067                                 __func__, (unsigned long long)sh->sector,
1068                                 rbi->bi_opf, i);
1069                         atomic_inc(&sh->count);
1070                         if (sh != head_sh)
1071                                 atomic_inc(&head_sh->count);
1072                         if (use_new_offset(conf, sh))
1073                                 rbi->bi_iter.bi_sector = (sh->sector
1074                                                   + rrdev->new_data_offset);
1075                         else
1076                                 rbi->bi_iter.bi_sector = (sh->sector
1077                                                   + rrdev->data_offset);
1078                         if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
1079                                 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
1080                         sh->dev[i].rvec.bv_page = sh->dev[i].page;
1081                         rbi->bi_vcnt = 1;
1082                         rbi->bi_io_vec[0].bv_len = STRIPE_SIZE;
1083                         rbi->bi_io_vec[0].bv_offset = 0;
1084                         rbi->bi_iter.bi_size = STRIPE_SIZE;
1085                         /*
1086                          * If this is discard request, set bi_vcnt 0. We don't
1087                          * want to confuse SCSI because SCSI will replace payload
1088                          */
1089                         if (op == REQ_OP_DISCARD)
1090                                 rbi->bi_vcnt = 0;
1091                         if (conf->mddev->gendisk)
1092                                 trace_block_bio_remap(bdev_get_queue(rbi->bi_bdev),
1093                                                       rbi, disk_devt(conf->mddev->gendisk),
1094                                                       sh->dev[i].sector);
1095                         generic_make_request(rbi);
1096                 }
1097                 if (!rdev && !rrdev) {
1098                         if (op_is_write(op))
1099                                 set_bit(STRIPE_DEGRADED, &sh->state);
1100                         pr_debug("skip op %d on disc %d for sector %llu\n",
1101                                 bi->bi_opf, i, (unsigned long long)sh->sector);
1102                         clear_bit(R5_LOCKED, &sh->dev[i].flags);
1103                         set_bit(STRIPE_HANDLE, &sh->state);
1104                 }
1105
1106                 if (!head_sh->batch_head)
1107                         continue;
1108                 sh = list_first_entry(&sh->batch_list, struct stripe_head,
1109                                       batch_list);
1110                 if (sh != head_sh)
1111                         goto again;
1112         }
1113 }
1114
1115 static struct dma_async_tx_descriptor *
1116 async_copy_data(int frombio, struct bio *bio, struct page **page,
1117         sector_t sector, struct dma_async_tx_descriptor *tx,
1118         struct stripe_head *sh)
1119 {
1120         struct bio_vec bvl;
1121         struct bvec_iter iter;
1122         struct page *bio_page;
1123         int page_offset;
1124         struct async_submit_ctl submit;
1125         enum async_tx_flags flags = 0;
1126
1127         if (bio->bi_iter.bi_sector >= sector)
1128                 page_offset = (signed)(bio->bi_iter.bi_sector - sector) * 512;
1129         else
1130                 page_offset = (signed)(sector - bio->bi_iter.bi_sector) * -512;
1131
1132         if (frombio)
1133                 flags |= ASYNC_TX_FENCE;
1134         init_async_submit(&submit, flags, tx, NULL, NULL, NULL);
1135
1136         bio_for_each_segment(bvl, bio, iter) {
1137                 int len = bvl.bv_len;
1138                 int clen;
1139                 int b_offset = 0;
1140
1141                 if (page_offset < 0) {
1142                         b_offset = -page_offset;
1143                         page_offset += b_offset;
1144                         len -= b_offset;
1145                 }
1146
1147                 if (len > 0 && page_offset + len > STRIPE_SIZE)
1148                         clen = STRIPE_SIZE - page_offset;
1149                 else
1150                         clen = len;
1151
1152                 if (clen > 0) {
1153                         b_offset += bvl.bv_offset;
1154                         bio_page = bvl.bv_page;
1155                         if (frombio) {
1156                                 if (sh->raid_conf->skip_copy &&
1157                                     b_offset == 0 && page_offset == 0 &&
1158                                     clen == STRIPE_SIZE)
1159                                         *page = bio_page;
1160                                 else
1161                                         tx = async_memcpy(*page, bio_page, page_offset,
1162                                                   b_offset, clen, &submit);
1163                         } else
1164                                 tx = async_memcpy(bio_page, *page, b_offset,
1165                                                   page_offset, clen, &submit);
1166                 }
1167                 /* chain the operations */
1168                 submit.depend_tx = tx;
1169
1170                 if (clen < len) /* hit end of page */
1171                         break;
1172                 page_offset +=  len;
1173         }
1174
1175         return tx;
1176 }
1177
1178 static void ops_complete_biofill(void *stripe_head_ref)
1179 {
1180         struct stripe_head *sh = stripe_head_ref;
1181         struct bio_list return_bi = BIO_EMPTY_LIST;
1182         int i;
1183
1184         pr_debug("%s: stripe %llu\n", __func__,
1185                 (unsigned long long)sh->sector);
1186
1187         /* clear completed biofills */
1188         for (i = sh->disks; i--; ) {
1189                 struct r5dev *dev = &sh->dev[i];
1190
1191                 /* acknowledge completion of a biofill operation */
1192                 /* and check if we need to reply to a read request,
1193                  * new R5_Wantfill requests are held off until
1194                  * !STRIPE_BIOFILL_RUN
1195                  */
1196                 if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
1197                         struct bio *rbi, *rbi2;
1198
1199                         BUG_ON(!dev->read);
1200                         rbi = dev->read;
1201                         dev->read = NULL;
1202                         while (rbi && rbi->bi_iter.bi_sector <
1203                                 dev->sector + STRIPE_SECTORS) {
1204                                 rbi2 = r5_next_bio(rbi, dev->sector);
1205                                 if (!raid5_dec_bi_active_stripes(rbi))
1206                                         bio_list_add(&return_bi, rbi);
1207                                 rbi = rbi2;
1208                         }
1209                 }
1210         }
1211         clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
1212
1213         return_io(&return_bi);
1214
1215         set_bit(STRIPE_HANDLE, &sh->state);
1216         raid5_release_stripe(sh);
1217 }
1218
1219 static void ops_run_biofill(struct stripe_head *sh)
1220 {
1221         struct dma_async_tx_descriptor *tx = NULL;
1222         struct async_submit_ctl submit;
1223         int i;
1224
1225         BUG_ON(sh->batch_head);
1226         pr_debug("%s: stripe %llu\n", __func__,
1227                 (unsigned long long)sh->sector);
1228
1229         for (i = sh->disks; i--; ) {
1230                 struct r5dev *dev = &sh->dev[i];
1231                 if (test_bit(R5_Wantfill, &dev->flags)) {
1232                         struct bio *rbi;
1233                         spin_lock_irq(&sh->stripe_lock);
1234                         dev->read = rbi = dev->toread;
1235                         dev->toread = NULL;
1236                         spin_unlock_irq(&sh->stripe_lock);
1237                         while (rbi && rbi->bi_iter.bi_sector <
1238                                 dev->sector + STRIPE_SECTORS) {
1239                                 tx = async_copy_data(0, rbi, &dev->page,
1240                                         dev->sector, tx, sh);
1241                                 rbi = r5_next_bio(rbi, dev->sector);
1242                         }
1243                 }
1244         }
1245
1246         atomic_inc(&sh->count);
1247         init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL);
1248         async_trigger_callback(&submit);
1249 }
1250
1251 static void mark_target_uptodate(struct stripe_head *sh, int target)
1252 {
1253         struct r5dev *tgt;
1254
1255         if (target < 0)
1256                 return;
1257
1258         tgt = &sh->dev[target];
1259         set_bit(R5_UPTODATE, &tgt->flags);
1260         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1261         clear_bit(R5_Wantcompute, &tgt->flags);
1262 }
1263
1264 static void ops_complete_compute(void *stripe_head_ref)
1265 {
1266         struct stripe_head *sh = stripe_head_ref;
1267
1268         pr_debug("%s: stripe %llu\n", __func__,
1269                 (unsigned long long)sh->sector);
1270
1271         /* mark the computed target(s) as uptodate */
1272         mark_target_uptodate(sh, sh->ops.target);
1273         mark_target_uptodate(sh, sh->ops.target2);
1274
1275         clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
1276         if (sh->check_state == check_state_compute_run)
1277                 sh->check_state = check_state_compute_result;
1278         set_bit(STRIPE_HANDLE, &sh->state);
1279         raid5_release_stripe(sh);
1280 }
1281
1282 /* return a pointer to the address conversion region of the scribble buffer */
1283 static addr_conv_t *to_addr_conv(struct stripe_head *sh,
1284                                  struct raid5_percpu *percpu, int i)
1285 {
1286         void *addr;
1287
1288         addr = flex_array_get(percpu->scribble, i);
1289         return addr + sizeof(struct page *) * (sh->disks + 2);
1290 }
1291
1292 /* return a pointer to the address conversion region of the scribble buffer */
1293 static struct page **to_addr_page(struct raid5_percpu *percpu, int i)
1294 {
1295         void *addr;
1296
1297         addr = flex_array_get(percpu->scribble, i);
1298         return addr;
1299 }
1300
1301 static struct dma_async_tx_descriptor *
1302 ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu)
1303 {
1304         int disks = sh->disks;
1305         struct page **xor_srcs = to_addr_page(percpu, 0);
1306         int target = sh->ops.target;
1307         struct r5dev *tgt = &sh->dev[target];
1308         struct page *xor_dest = tgt->page;
1309         int count = 0;
1310         struct dma_async_tx_descriptor *tx;
1311         struct async_submit_ctl submit;
1312         int i;
1313
1314         BUG_ON(sh->batch_head);
1315
1316         pr_debug("%s: stripe %llu block: %d\n",
1317                 __func__, (unsigned long long)sh->sector, target);
1318         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1319
1320         for (i = disks; i--; )
1321                 if (i != target)
1322                         xor_srcs[count++] = sh->dev[i].page;
1323
1324         atomic_inc(&sh->count);
1325
1326         init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL,
1327                           ops_complete_compute, sh, to_addr_conv(sh, percpu, 0));
1328         if (unlikely(count == 1))
1329                 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1330         else
1331                 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1332
1333         return tx;
1334 }
1335
1336 /* set_syndrome_sources - populate source buffers for gen_syndrome
1337  * @srcs - (struct page *) array of size sh->disks
1338  * @sh - stripe_head to parse
1339  *
1340  * Populates srcs in proper layout order for the stripe and returns the
1341  * 'count' of sources to be used in a call to async_gen_syndrome.  The P
1342  * destination buffer is recorded in srcs[count] and the Q destination
1343  * is recorded in srcs[count+1]].
1344  */
1345 static int set_syndrome_sources(struct page **srcs,
1346                                 struct stripe_head *sh,
1347                                 int srctype)
1348 {
1349         int disks = sh->disks;
1350         int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
1351         int d0_idx = raid6_d0(sh);
1352         int count;
1353         int i;
1354
1355         for (i = 0; i < disks; i++)
1356                 srcs[i] = NULL;
1357
1358         count = 0;
1359         i = d0_idx;
1360         do {
1361                 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1362                 struct r5dev *dev = &sh->dev[i];
1363
1364                 if (i == sh->qd_idx || i == sh->pd_idx ||
1365                     (srctype == SYNDROME_SRC_ALL) ||
1366                     (srctype == SYNDROME_SRC_WANT_DRAIN &&
1367                      test_bit(R5_Wantdrain, &dev->flags)) ||
1368                     (srctype == SYNDROME_SRC_WRITTEN &&
1369                      dev->written))
1370                         srcs[slot] = sh->dev[i].page;
1371                 i = raid6_next_disk(i, disks);
1372         } while (i != d0_idx);
1373
1374         return syndrome_disks;
1375 }
1376
1377 static struct dma_async_tx_descriptor *
1378 ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu)
1379 {
1380         int disks = sh->disks;
1381         struct page **blocks = to_addr_page(percpu, 0);
1382         int target;
1383         int qd_idx = sh->qd_idx;
1384         struct dma_async_tx_descriptor *tx;
1385         struct async_submit_ctl submit;
1386         struct r5dev *tgt;
1387         struct page *dest;
1388         int i;
1389         int count;
1390
1391         BUG_ON(sh->batch_head);
1392         if (sh->ops.target < 0)
1393                 target = sh->ops.target2;
1394         else if (sh->ops.target2 < 0)
1395                 target = sh->ops.target;
1396         else
1397                 /* we should only have one valid target */
1398                 BUG();
1399         BUG_ON(target < 0);
1400         pr_debug("%s: stripe %llu block: %d\n",
1401                 __func__, (unsigned long long)sh->sector, target);
1402
1403         tgt = &sh->dev[target];
1404         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1405         dest = tgt->page;
1406
1407         atomic_inc(&sh->count);
1408
1409         if (target == qd_idx) {
1410                 count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_ALL);
1411                 blocks[count] = NULL; /* regenerating p is not necessary */
1412                 BUG_ON(blocks[count+1] != dest); /* q should already be set */
1413                 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1414                                   ops_complete_compute, sh,
1415                                   to_addr_conv(sh, percpu, 0));
1416                 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
1417         } else {
1418                 /* Compute any data- or p-drive using XOR */
1419                 count = 0;
1420                 for (i = disks; i-- ; ) {
1421                         if (i == target || i == qd_idx)
1422                                 continue;
1423                         blocks[count++] = sh->dev[i].page;
1424                 }
1425
1426                 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1427                                   NULL, ops_complete_compute, sh,
1428                                   to_addr_conv(sh, percpu, 0));
1429                 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, &submit);
1430         }
1431
1432         return tx;
1433 }
1434
1435 static struct dma_async_tx_descriptor *
1436 ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu)
1437 {
1438         int i, count, disks = sh->disks;
1439         int syndrome_disks = sh->ddf_layout ? disks : disks-2;
1440         int d0_idx = raid6_d0(sh);
1441         int faila = -1, failb = -1;
1442         int target = sh->ops.target;
1443         int target2 = sh->ops.target2;
1444         struct r5dev *tgt = &sh->dev[target];
1445         struct r5dev *tgt2 = &sh->dev[target2];
1446         struct dma_async_tx_descriptor *tx;
1447         struct page **blocks = to_addr_page(percpu, 0);
1448         struct async_submit_ctl submit;
1449
1450         BUG_ON(sh->batch_head);
1451         pr_debug("%s: stripe %llu block1: %d block2: %d\n",
1452                  __func__, (unsigned long long)sh->sector, target, target2);
1453         BUG_ON(target < 0 || target2 < 0);
1454         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1455         BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags));
1456
1457         /* we need to open-code set_syndrome_sources to handle the
1458          * slot number conversion for 'faila' and 'failb'
1459          */
1460         for (i = 0; i < disks ; i++)
1461                 blocks[i] = NULL;
1462         count = 0;
1463         i = d0_idx;
1464         do {
1465                 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1466
1467                 blocks[slot] = sh->dev[i].page;
1468
1469                 if (i == target)
1470                         faila = slot;
1471                 if (i == target2)
1472                         failb = slot;
1473                 i = raid6_next_disk(i, disks);
1474         } while (i != d0_idx);
1475
1476         BUG_ON(faila == failb);
1477         if (failb < faila)
1478                 swap(faila, failb);
1479         pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
1480                  __func__, (unsigned long long)sh->sector, faila, failb);
1481
1482         atomic_inc(&sh->count);
1483
1484         if (failb == syndrome_disks+1) {
1485                 /* Q disk is one of the missing disks */
1486                 if (faila == syndrome_disks) {
1487                         /* Missing P+Q, just recompute */
1488                         init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1489                                           ops_complete_compute, sh,
1490                                           to_addr_conv(sh, percpu, 0));
1491                         return async_gen_syndrome(blocks, 0, syndrome_disks+2,
1492                                                   STRIPE_SIZE, &submit);
1493                 } else {
1494                         struct page *dest;
1495                         int data_target;
1496                         int qd_idx = sh->qd_idx;
1497
1498                         /* Missing D+Q: recompute D from P, then recompute Q */
1499                         if (target == qd_idx)
1500                                 data_target = target2;
1501                         else
1502                                 data_target = target;
1503
1504                         count = 0;
1505                         for (i = disks; i-- ; ) {
1506                                 if (i == data_target || i == qd_idx)
1507                                         continue;
1508                                 blocks[count++] = sh->dev[i].page;
1509                         }
1510                         dest = sh->dev[data_target].page;
1511                         init_async_submit(&submit,
1512                                           ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1513                                           NULL, NULL, NULL,
1514                                           to_addr_conv(sh, percpu, 0));
1515                         tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE,
1516                                        &submit);
1517
1518                         count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_ALL);
1519                         init_async_submit(&submit, ASYNC_TX_FENCE, tx,
1520                                           ops_complete_compute, sh,
1521                                           to_addr_conv(sh, percpu, 0));
1522                         return async_gen_syndrome(blocks, 0, count+2,
1523                                                   STRIPE_SIZE, &submit);
1524                 }
1525         } else {
1526                 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1527                                   ops_complete_compute, sh,
1528                                   to_addr_conv(sh, percpu, 0));
1529                 if (failb == syndrome_disks) {
1530                         /* We're missing D+P. */
1531                         return async_raid6_datap_recov(syndrome_disks+2,
1532                                                        STRIPE_SIZE, faila,
1533                                                        blocks, &submit);
1534                 } else {
1535                         /* We're missing D+D. */
1536                         return async_raid6_2data_recov(syndrome_disks+2,
1537                                                        STRIPE_SIZE, faila, failb,
1538                                                        blocks, &submit);
1539                 }
1540         }
1541 }
1542
1543 static void ops_complete_prexor(void *stripe_head_ref)
1544 {
1545         struct stripe_head *sh = stripe_head_ref;
1546
1547         pr_debug("%s: stripe %llu\n", __func__,
1548                 (unsigned long long)sh->sector);
1549 }
1550
1551 static struct dma_async_tx_descriptor *
1552 ops_run_prexor5(struct stripe_head *sh, struct raid5_percpu *percpu,
1553                 struct dma_async_tx_descriptor *tx)
1554 {
1555         int disks = sh->disks;
1556         struct page **xor_srcs = to_addr_page(percpu, 0);
1557         int count = 0, pd_idx = sh->pd_idx, i;
1558         struct async_submit_ctl submit;
1559
1560         /* existing parity data subtracted */
1561         struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1562
1563         BUG_ON(sh->batch_head);
1564         pr_debug("%s: stripe %llu\n", __func__,
1565                 (unsigned long long)sh->sector);
1566
1567         for (i = disks; i--; ) {
1568                 struct r5dev *dev = &sh->dev[i];
1569                 /* Only process blocks that are known to be uptodate */
1570                 if (test_bit(R5_Wantdrain, &dev->flags))
1571                         xor_srcs[count++] = dev->page;
1572         }
1573
1574         init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
1575                           ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0));
1576         tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1577
1578         return tx;
1579 }
1580
1581 static struct dma_async_tx_descriptor *
1582 ops_run_prexor6(struct stripe_head *sh, struct raid5_percpu *percpu,
1583                 struct dma_async_tx_descriptor *tx)
1584 {
1585         struct page **blocks = to_addr_page(percpu, 0);
1586         int count;
1587         struct async_submit_ctl submit;
1588
1589         pr_debug("%s: stripe %llu\n", __func__,
1590                 (unsigned long long)sh->sector);
1591
1592         count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_WANT_DRAIN);
1593
1594         init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_PQ_XOR_DST, tx,
1595                           ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0));
1596         tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE,  &submit);
1597
1598         return tx;
1599 }
1600
1601 static struct dma_async_tx_descriptor *
1602 ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
1603 {
1604         int disks = sh->disks;
1605         int i;
1606         struct stripe_head *head_sh = sh;
1607
1608         pr_debug("%s: stripe %llu\n", __func__,
1609                 (unsigned long long)sh->sector);
1610
1611         for (i = disks; i--; ) {
1612                 struct r5dev *dev;
1613                 struct bio *chosen;
1614
1615                 sh = head_sh;
1616                 if (test_and_clear_bit(R5_Wantdrain, &head_sh->dev[i].flags)) {
1617                         struct bio *wbi;
1618
1619 again:
1620                         dev = &sh->dev[i];
1621                         spin_lock_irq(&sh->stripe_lock);
1622                         chosen = dev->towrite;
1623                         dev->towrite = NULL;
1624                         sh->overwrite_disks = 0;
1625                         BUG_ON(dev->written);
1626                         wbi = dev->written = chosen;
1627                         spin_unlock_irq(&sh->stripe_lock);
1628                         WARN_ON(dev->page != dev->orig_page);
1629
1630                         while (wbi && wbi->bi_iter.bi_sector <
1631                                 dev->sector + STRIPE_SECTORS) {
1632                                 if (wbi->bi_opf & REQ_FUA)
1633                                         set_bit(R5_WantFUA, &dev->flags);
1634                                 if (wbi->bi_opf & REQ_SYNC)
1635                                         set_bit(R5_SyncIO, &dev->flags);
1636                                 if (bio_op(wbi) == REQ_OP_DISCARD)
1637                                         set_bit(R5_Discard, &dev->flags);
1638                                 else {
1639                                         tx = async_copy_data(1, wbi, &dev->page,
1640                                                 dev->sector, tx, sh);
1641                                         if (dev->page != dev->orig_page) {
1642                                                 set_bit(R5_SkipCopy, &dev->flags);
1643                                                 clear_bit(R5_UPTODATE, &dev->flags);
1644                                                 clear_bit(R5_OVERWRITE, &dev->flags);
1645                                         }
1646                                 }
1647                                 wbi = r5_next_bio(wbi, dev->sector);
1648                         }
1649
1650                         if (head_sh->batch_head) {
1651                                 sh = list_first_entry(&sh->batch_list,
1652                                                       struct stripe_head,
1653                                                       batch_list);
1654                                 if (sh == head_sh)
1655                                         continue;
1656                                 goto again;
1657                         }
1658                 }
1659         }
1660
1661         return tx;
1662 }
1663
1664 static void ops_complete_reconstruct(void *stripe_head_ref)
1665 {
1666         struct stripe_head *sh = stripe_head_ref;
1667         int disks = sh->disks;
1668         int pd_idx = sh->pd_idx;
1669         int qd_idx = sh->qd_idx;
1670         int i;
1671         bool fua = false, sync = false, discard = false;
1672
1673         pr_debug("%s: stripe %llu\n", __func__,
1674                 (unsigned long long)sh->sector);
1675
1676         for (i = disks; i--; ) {
1677                 fua |= test_bit(R5_WantFUA, &sh->dev[i].flags);
1678                 sync |= test_bit(R5_SyncIO, &sh->dev[i].flags);
1679                 discard |= test_bit(R5_Discard, &sh->dev[i].flags);
1680         }
1681
1682         for (i = disks; i--; ) {
1683                 struct r5dev *dev = &sh->dev[i];
1684
1685                 if (dev->written || i == pd_idx || i == qd_idx) {
1686                         if (!discard && !test_bit(R5_SkipCopy, &dev->flags))
1687                                 set_bit(R5_UPTODATE, &dev->flags);
1688                         if (fua)
1689                                 set_bit(R5_WantFUA, &dev->flags);
1690                         if (sync)
1691                                 set_bit(R5_SyncIO, &dev->flags);
1692                 }
1693         }
1694
1695         if (sh->reconstruct_state == reconstruct_state_drain_run)
1696                 sh->reconstruct_state = reconstruct_state_drain_result;
1697         else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
1698                 sh->reconstruct_state = reconstruct_state_prexor_drain_result;
1699         else {
1700                 BUG_ON(sh->reconstruct_state != reconstruct_state_run);
1701                 sh->reconstruct_state = reconstruct_state_result;
1702         }
1703
1704         set_bit(STRIPE_HANDLE, &sh->state);
1705         raid5_release_stripe(sh);
1706 }
1707
1708 static void
1709 ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu,
1710                      struct dma_async_tx_descriptor *tx)
1711 {
1712         int disks = sh->disks;
1713         struct page **xor_srcs;
1714         struct async_submit_ctl submit;
1715         int count, pd_idx = sh->pd_idx, i;
1716         struct page *xor_dest;
1717         int prexor = 0;
1718         unsigned long flags;
1719         int j = 0;
1720         struct stripe_head *head_sh = sh;
1721         int last_stripe;
1722
1723         pr_debug("%s: stripe %llu\n", __func__,
1724                 (unsigned long long)sh->sector);
1725
1726         for (i = 0; i < sh->disks; i++) {
1727                 if (pd_idx == i)
1728                         continue;
1729                 if (!test_bit(R5_Discard, &sh->dev[i].flags))
1730                         break;
1731         }
1732         if (i >= sh->disks) {
1733                 atomic_inc(&sh->count);
1734                 set_bit(R5_Discard, &sh->dev[pd_idx].flags);
1735                 ops_complete_reconstruct(sh);
1736                 return;
1737         }
1738 again:
1739         count = 0;
1740         xor_srcs = to_addr_page(percpu, j);
1741         /* check if prexor is active which means only process blocks
1742          * that are part of a read-modify-write (written)
1743          */
1744         if (head_sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1745                 prexor = 1;
1746                 xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1747                 for (i = disks; i--; ) {
1748                         struct r5dev *dev = &sh->dev[i];
1749                         if (head_sh->dev[i].written)
1750                                 xor_srcs[count++] = dev->page;
1751                 }
1752         } else {
1753                 xor_dest = sh->dev[pd_idx].page;
1754                 for (i = disks; i--; ) {
1755                         struct r5dev *dev = &sh->dev[i];
1756                         if (i != pd_idx)
1757                                 xor_srcs[count++] = dev->page;
1758                 }
1759         }
1760
1761         /* 1/ if we prexor'd then the dest is reused as a source
1762          * 2/ if we did not prexor then we are redoing the parity
1763          * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
1764          * for the synchronous xor case
1765          */
1766         last_stripe = !head_sh->batch_head ||
1767                 list_first_entry(&sh->batch_list,
1768                                  struct stripe_head, batch_list) == head_sh;
1769         if (last_stripe) {
1770                 flags = ASYNC_TX_ACK |
1771                         (prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
1772
1773                 atomic_inc(&head_sh->count);
1774                 init_async_submit(&submit, flags, tx, ops_complete_reconstruct, head_sh,
1775                                   to_addr_conv(sh, percpu, j));
1776         } else {
1777                 flags = prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST;
1778                 init_async_submit(&submit, flags, tx, NULL, NULL,
1779                                   to_addr_conv(sh, percpu, j));
1780         }
1781
1782         if (unlikely(count == 1))
1783                 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1784         else
1785                 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1786         if (!last_stripe) {
1787                 j++;
1788                 sh = list_first_entry(&sh->batch_list, struct stripe_head,
1789                                       batch_list);
1790                 goto again;
1791         }
1792 }
1793
1794 static void
1795 ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu,
1796                      struct dma_async_tx_descriptor *tx)
1797 {
1798         struct async_submit_ctl submit;
1799         struct page **blocks;
1800         int count, i, j = 0;
1801         struct stripe_head *head_sh = sh;
1802         int last_stripe;
1803         int synflags;
1804         unsigned long txflags;
1805
1806         pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);
1807
1808         for (i = 0; i < sh->disks; i++) {
1809                 if (sh->pd_idx == i || sh->qd_idx == i)
1810                         continue;
1811                 if (!test_bit(R5_Discard, &sh->dev[i].flags))
1812                         break;
1813         }
1814         if (i >= sh->disks) {
1815                 atomic_inc(&sh->count);
1816                 set_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
1817                 set_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
1818                 ops_complete_reconstruct(sh);
1819                 return;
1820         }
1821
1822 again:
1823         blocks = to_addr_page(percpu, j);
1824
1825         if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1826                 synflags = SYNDROME_SRC_WRITTEN;
1827                 txflags = ASYNC_TX_ACK | ASYNC_TX_PQ_XOR_DST;
1828         } else {
1829                 synflags = SYNDROME_SRC_ALL;
1830                 txflags = ASYNC_TX_ACK;
1831         }
1832
1833         count = set_syndrome_sources(blocks, sh, synflags);
1834         last_stripe = !head_sh->batch_head ||
1835                 list_first_entry(&sh->batch_list,
1836                                  struct stripe_head, batch_list) == head_sh;
1837
1838         if (last_stripe) {
1839                 atomic_inc(&head_sh->count);
1840                 init_async_submit(&submit, txflags, tx, ops_complete_reconstruct,
1841                                   head_sh, to_addr_conv(sh, percpu, j));
1842         } else
1843                 init_async_submit(&submit, 0, tx, NULL, NULL,
1844                                   to_addr_conv(sh, percpu, j));
1845         tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE,  &submit);
1846         if (!last_stripe) {
1847                 j++;
1848                 sh = list_first_entry(&sh->batch_list, struct stripe_head,
1849                                       batch_list);
1850                 goto again;
1851         }
1852 }
1853
1854 static void ops_complete_check(void *stripe_head_ref)
1855 {
1856         struct stripe_head *sh = stripe_head_ref;
1857
1858         pr_debug("%s: stripe %llu\n", __func__,
1859                 (unsigned long long)sh->sector);
1860
1861         sh->check_state = check_state_check_result;
1862         set_bit(STRIPE_HANDLE, &sh->state);
1863         raid5_release_stripe(sh);
1864 }
1865
1866 static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu)
1867 {
1868         int disks = sh->disks;
1869         int pd_idx = sh->pd_idx;
1870         int qd_idx = sh->qd_idx;
1871         struct page *xor_dest;
1872         struct page **xor_srcs = to_addr_page(percpu, 0);
1873         struct dma_async_tx_descriptor *tx;
1874         struct async_submit_ctl submit;
1875         int count;
1876         int i;
1877
1878         pr_debug("%s: stripe %llu\n", __func__,
1879                 (unsigned long long)sh->sector);
1880
1881         BUG_ON(sh->batch_head);
1882         count = 0;
1883         xor_dest = sh->dev[pd_idx].page;
1884         xor_srcs[count++] = xor_dest;
1885         for (i = disks; i--; ) {
1886                 if (i == pd_idx || i == qd_idx)
1887                         continue;
1888                 xor_srcs[count++] = sh->dev[i].page;
1889         }
1890
1891         init_async_submit(&submit, 0, NULL, NULL, NULL,
1892                           to_addr_conv(sh, percpu, 0));
1893         tx = async_xor_val(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
1894                            &sh->ops.zero_sum_result, &submit);
1895
1896         atomic_inc(&sh->count);
1897         init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL);
1898         tx = async_trigger_callback(&submit);
1899 }
1900
1901 static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp)
1902 {
1903         struct page **srcs = to_addr_page(percpu, 0);
1904         struct async_submit_ctl submit;
1905         int count;
1906
1907         pr_debug("%s: stripe %llu checkp: %d\n", __func__,
1908                 (unsigned long long)sh->sector, checkp);
1909
1910         BUG_ON(sh->batch_head);
1911         count = set_syndrome_sources(srcs, sh, SYNDROME_SRC_ALL);
1912         if (!checkp)
1913                 srcs[count] = NULL;
1914
1915         atomic_inc(&sh->count);
1916         init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check,
1917                           sh, to_addr_conv(sh, percpu, 0));
1918         async_syndrome_val(srcs, 0, count+2, STRIPE_SIZE,
1919                            &sh->ops.zero_sum_result, percpu->spare_page, &submit);
1920 }
1921
1922 static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
1923 {
1924         int overlap_clear = 0, i, disks = sh->disks;
1925         struct dma_async_tx_descriptor *tx = NULL;
1926         struct r5conf *conf = sh->raid_conf;
1927         int level = conf->level;
1928         struct raid5_percpu *percpu;
1929         unsigned long cpu;
1930
1931         cpu = get_cpu();
1932         percpu = per_cpu_ptr(conf->percpu, cpu);
1933         if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
1934                 ops_run_biofill(sh);
1935                 overlap_clear++;
1936         }
1937
1938         if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
1939                 if (level < 6)
1940                         tx = ops_run_compute5(sh, percpu);
1941                 else {
1942                         if (sh->ops.target2 < 0 || sh->ops.target < 0)
1943                                 tx = ops_run_compute6_1(sh, percpu);
1944                         else
1945                                 tx = ops_run_compute6_2(sh, percpu);
1946                 }
1947                 /* terminate the chain if reconstruct is not set to be run */
1948                 if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request))
1949                         async_tx_ack(tx);
1950         }
1951
1952         if (test_bit(STRIPE_OP_PREXOR, &ops_request)) {
1953                 if (level < 6)
1954                         tx = ops_run_prexor5(sh, percpu, tx);
1955                 else
1956                         tx = ops_run_prexor6(sh, percpu, tx);
1957         }
1958
1959         if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
1960                 tx = ops_run_biodrain(sh, tx);
1961                 overlap_clear++;
1962         }
1963
1964         if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) {
1965                 if (level < 6)
1966                         ops_run_reconstruct5(sh, percpu, tx);
1967                 else
1968                         ops_run_reconstruct6(sh, percpu, tx);
1969         }
1970
1971         if (test_bit(STRIPE_OP_CHECK, &ops_request)) {
1972                 if (sh->check_state == check_state_run)
1973                         ops_run_check_p(sh, percpu);
1974                 else if (sh->check_state == check_state_run_q)
1975                         ops_run_check_pq(sh, percpu, 0);
1976                 else if (sh->check_state == check_state_run_pq)
1977                         ops_run_check_pq(sh, percpu, 1);
1978                 else
1979                         BUG();
1980         }
1981
1982         if (overlap_clear && !sh->batch_head)
1983                 for (i = disks; i--; ) {
1984                         struct r5dev *dev = &sh->dev[i];
1985                         if (test_and_clear_bit(R5_Overlap, &dev->flags))
1986                                 wake_up(&sh->raid_conf->wait_for_overlap);
1987                 }
1988         put_cpu();
1989 }
1990
1991 static struct stripe_head *alloc_stripe(struct kmem_cache *sc, gfp_t gfp,
1992         int disks)
1993 {
1994         struct stripe_head *sh;
1995         int i;
1996
1997         sh = kmem_cache_zalloc(sc, gfp);
1998         if (sh) {
1999                 spin_lock_init(&sh->stripe_lock);
2000                 spin_lock_init(&sh->batch_lock);
2001                 INIT_LIST_HEAD(&sh->batch_list);
2002                 INIT_LIST_HEAD(&sh->lru);
2003                 atomic_set(&sh->count, 1);
2004                 for (i = 0; i < disks; i++) {
2005                         struct r5dev *dev = &sh->dev[i];
2006
2007                         bio_init(&dev->req);
2008                         dev->req.bi_io_vec = &dev->vec;
2009                         dev->req.bi_max_vecs = 1;
2010
2011                         bio_init(&dev->rreq);
2012                         dev->rreq.bi_io_vec = &dev->rvec;
2013                         dev->rreq.bi_max_vecs = 1;
2014                 }
2015         }
2016         return sh;
2017 }
2018 static int grow_one_stripe(struct r5conf *conf, gfp_t gfp)
2019 {
2020         struct stripe_head *sh;
2021
2022         sh = alloc_stripe(conf->slab_cache, gfp, conf->pool_size);
2023         if (!sh)
2024                 return 0;
2025
2026         sh->raid_conf = conf;
2027
2028         if (grow_buffers(sh, gfp)) {
2029                 shrink_buffers(sh);
2030                 kmem_cache_free(conf->slab_cache, sh);
2031                 return 0;
2032         }
2033         sh->hash_lock_index =
2034                 conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS;
2035         /* we just created an active stripe so... */
2036         atomic_inc(&conf->active_stripes);
2037
2038         raid5_release_stripe(sh);
2039         conf->max_nr_stripes++;
2040         return 1;
2041 }
2042
2043 static int grow_stripes(struct r5conf *conf, int num)
2044 {
2045         struct kmem_cache *sc;
2046         int devs = max(conf->raid_disks, conf->previous_raid_disks);
2047
2048         if (conf->mddev->gendisk)
2049                 sprintf(conf->cache_name[0],
2050                         "raid%d-%s", conf->level, mdname(conf->mddev));
2051         else
2052                 sprintf(conf->cache_name[0],
2053                         "raid%d-%p", conf->level, conf->mddev);
2054         sprintf(conf->cache_name[1], "%s-alt", conf->cache_name[0]);
2055
2056         conf->active_name = 0;
2057         sc = kmem_cache_create(conf->cache_name[conf->active_name],
2058                                sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
2059                                0, 0, NULL);
2060         if (!sc)
2061                 return 1;
2062         conf->slab_cache = sc;
2063         conf->pool_size = devs;
2064         while (num--)
2065                 if (!grow_one_stripe(conf, GFP_KERNEL))
2066                         return 1;
2067
2068         return 0;
2069 }
2070
2071 /**
2072  * scribble_len - return the required size of the scribble region
2073  * @num - total number of disks in the array
2074  *
2075  * The size must be enough to contain:
2076  * 1/ a struct page pointer for each device in the array +2
2077  * 2/ room to convert each entry in (1) to its corresponding dma
2078  *    (dma_map_page()) or page (page_address()) address.
2079  *
2080  * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
2081  * calculate over all devices (not just the data blocks), using zeros in place
2082  * of the P and Q blocks.
2083  */
2084 static struct flex_array *scribble_alloc(int num, int cnt, gfp_t flags)
2085 {
2086         struct flex_array *ret;
2087         size_t len;
2088
2089         len = sizeof(struct page *) * (num+2) + sizeof(addr_conv_t) * (num+2);
2090         ret = flex_array_alloc(len, cnt, flags);
2091         if (!ret)
2092                 return NULL;
2093         /* always prealloc all elements, so no locking is required */
2094         if (flex_array_prealloc(ret, 0, cnt, flags)) {
2095                 flex_array_free(ret);
2096                 return NULL;
2097         }
2098         return ret;
2099 }
2100
2101 static int resize_chunks(struct r5conf *conf, int new_disks, int new_sectors)
2102 {
2103         unsigned long cpu;
2104         int err = 0;
2105
2106         /*
2107          * Never shrink. And mddev_suspend() could deadlock if this is called
2108          * from raid5d. In that case, scribble_disks and scribble_sectors
2109          * should equal to new_disks and new_sectors
2110          */
2111         if (conf->scribble_disks >= new_disks &&
2112             conf->scribble_sectors >= new_sectors)
2113                 return 0;
2114         mddev_suspend(conf->mddev);
2115         get_online_cpus();
2116         for_each_present_cpu(cpu) {
2117                 struct raid5_percpu *percpu;
2118                 struct flex_array *scribble;
2119
2120                 percpu = per_cpu_ptr(conf->percpu, cpu);
2121                 scribble = scribble_alloc(new_disks,
2122                                           new_sectors / STRIPE_SECTORS,
2123                                           GFP_NOIO);
2124
2125                 if (scribble) {
2126                         flex_array_free(percpu->scribble);
2127                         percpu->scribble = scribble;
2128                 } else {
2129                         err = -ENOMEM;
2130                         break;
2131                 }
2132         }
2133         put_online_cpus();
2134         mddev_resume(conf->mddev);
2135         if (!err) {
2136                 conf->scribble_disks = new_disks;
2137                 conf->scribble_sectors = new_sectors;
2138         }
2139         return err;
2140 }
2141
2142 static int resize_stripes(struct r5conf *conf, int newsize)
2143 {
2144         /* Make all the stripes able to hold 'newsize' devices.
2145          * New slots in each stripe get 'page' set to a new page.
2146          *
2147          * This happens in stages:
2148          * 1/ create a new kmem_cache and allocate the required number of
2149          *    stripe_heads.
2150          * 2/ gather all the old stripe_heads and transfer the pages across
2151          *    to the new stripe_heads.  This will have the side effect of
2152          *    freezing the array as once all stripe_heads have been collected,
2153          *    no IO will be possible.  Old stripe heads are freed once their
2154          *    pages have been transferred over, and the old kmem_cache is
2155          *    freed when all stripes are done.
2156          * 3/ reallocate conf->disks to be suitable bigger.  If this fails,
2157          *    we simple return a failre status - no need to clean anything up.
2158          * 4/ allocate new pages for the new slots in the new stripe_heads.
2159          *    If this fails, we don't bother trying the shrink the
2160          *    stripe_heads down again, we just leave them as they are.
2161          *    As each stripe_head is processed the new one is released into
2162          *    active service.
2163          *
2164          * Once step2 is started, we cannot afford to wait for a write,
2165          * so we use GFP_NOIO allocations.
2166          */
2167         struct stripe_head *osh, *nsh;
2168         LIST_HEAD(newstripes);
2169         struct disk_info *ndisks;
2170         int err;
2171         struct kmem_cache *sc;
2172         int i;
2173         int hash, cnt;
2174
2175         if (newsize <= conf->pool_size)
2176                 return 0; /* never bother to shrink */
2177
2178         err = md_allow_write(conf->mddev);
2179         if (err)
2180                 return err;
2181
2182         /* Step 1 */
2183         sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
2184                                sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
2185                                0, 0, NULL);
2186         if (!sc)
2187                 return -ENOMEM;
2188
2189         /* Need to ensure auto-resizing doesn't interfere */
2190         mutex_lock(&conf->cache_size_mutex);
2191
2192         for (i = conf->max_nr_stripes; i; i--) {
2193                 nsh = alloc_stripe(sc, GFP_KERNEL, newsize);
2194                 if (!nsh)
2195                         break;
2196
2197                 nsh->raid_conf = conf;
2198                 list_add(&nsh->lru, &newstripes);
2199         }
2200         if (i) {
2201                 /* didn't get enough, give up */
2202                 while (!list_empty(&newstripes)) {
2203                         nsh = list_entry(newstripes.next, struct stripe_head, lru);
2204                         list_del(&nsh->lru);
2205                         kmem_cache_free(sc, nsh);
2206                 }
2207                 kmem_cache_destroy(sc);
2208                 mutex_unlock(&conf->cache_size_mutex);
2209                 return -ENOMEM;
2210         }
2211         /* Step 2 - Must use GFP_NOIO now.
2212          * OK, we have enough stripes, start collecting inactive
2213          * stripes and copying them over
2214          */
2215         hash = 0;
2216         cnt = 0;
2217         list_for_each_entry(nsh, &newstripes, lru) {
2218                 lock_device_hash_lock(conf, hash);
2219                 wait_event_cmd(conf->wait_for_stripe,
2220                                     !list_empty(conf->inactive_list + hash),
2221                                     unlock_device_hash_lock(conf, hash),
2222                                     lock_device_hash_lock(conf, hash));
2223                 osh = get_free_stripe(conf, hash);
2224                 unlock_device_hash_lock(conf, hash);
2225
2226                 for(i=0; i<conf->pool_size; i++) {
2227                         nsh->dev[i].page = osh->dev[i].page;
2228                         nsh->dev[i].orig_page = osh->dev[i].page;
2229                 }
2230                 nsh->hash_lock_index = hash;
2231                 kmem_cache_free(conf->slab_cache, osh);
2232                 cnt++;
2233                 if (cnt >= conf->max_nr_stripes / NR_STRIPE_HASH_LOCKS +
2234                     !!((conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS) > hash)) {
2235                         hash++;
2236                         cnt = 0;
2237                 }
2238         }
2239         kmem_cache_destroy(conf->slab_cache);
2240
2241         /* Step 3.
2242          * At this point, we are holding all the stripes so the array
2243          * is completely stalled, so now is a good time to resize
2244          * conf->disks and the scribble region
2245          */
2246         ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
2247         if (ndisks) {
2248                 for (i=0; i<conf->raid_disks; i++)
2249                         ndisks[i] = conf->disks[i];
2250                 kfree(conf->disks);
2251                 conf->disks = ndisks;
2252         } else
2253                 err = -ENOMEM;
2254
2255         mutex_unlock(&conf->cache_size_mutex);
2256
2257         conf->slab_cache = sc;
2258         conf->active_name = 1-conf->active_name;
2259
2260         /* Step 4, return new stripes to service */
2261         while(!list_empty(&newstripes)) {
2262                 nsh = list_entry(newstripes.next, struct stripe_head, lru);
2263                 list_del_init(&nsh->lru);
2264
2265                 for (i=conf->raid_disks; i < newsize; i++)
2266                         if (nsh->dev[i].page == NULL) {
2267                                 struct page *p = alloc_page(GFP_NOIO);
2268                                 nsh->dev[i].page = p;
2269                                 nsh->dev[i].orig_page = p;
2270                                 if (!p)
2271                                         err = -ENOMEM;
2272                         }
2273                 raid5_release_stripe(nsh);
2274         }
2275         /* critical section pass, GFP_NOIO no longer needed */
2276
2277         if (!err)
2278                 conf->pool_size = newsize;
2279         return err;
2280 }
2281
2282 static int drop_one_stripe(struct r5conf *conf)
2283 {
2284         struct stripe_head *sh;
2285         int hash = (conf->max_nr_stripes - 1) & STRIPE_HASH_LOCKS_MASK;
2286
2287         spin_lock_irq(conf->hash_locks + hash);
2288         sh = get_free_stripe(conf, hash);
2289         spin_unlock_irq(conf->hash_locks + hash);
2290         if (!sh)
2291                 return 0;
2292         BUG_ON(atomic_read(&sh->count));
2293         shrink_buffers(sh);
2294         kmem_cache_free(conf->slab_cache, sh);
2295         atomic_dec(&conf->active_stripes);
2296         conf->max_nr_stripes--;
2297         return 1;
2298 }
2299
2300 static void shrink_stripes(struct r5conf *conf)
2301 {
2302         while (conf->max_nr_stripes &&
2303                drop_one_stripe(conf))
2304                 ;
2305
2306         kmem_cache_destroy(conf->slab_cache);
2307         conf->slab_cache = NULL;
2308 }
2309
2310 static void raid5_end_read_request(struct bio * bi)
2311 {
2312         struct stripe_head *sh = bi->bi_private;
2313         struct r5conf *conf = sh->raid_conf;
2314         int disks = sh->disks, i;
2315         char b[BDEVNAME_SIZE];
2316         struct md_rdev *rdev = NULL;
2317         sector_t s;
2318
2319         for (i=0 ; i<disks; i++)
2320                 if (bi == &sh->dev[i].req)
2321                         break;
2322
2323         pr_debug("end_read_request %llu/%d, count: %d, error %d.\n",
2324                 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
2325                 bi->bi_error);
2326         if (i == disks) {
2327                 bio_reset(bi);
2328                 BUG();
2329                 return;
2330         }
2331         if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
2332                 /* If replacement finished while this request was outstanding,
2333                  * 'replacement' might be NULL already.
2334                  * In that case it moved down to 'rdev'.
2335                  * rdev is not removed until all requests are finished.
2336                  */
2337                 rdev = conf->disks[i].replacement;
2338         if (!rdev)
2339                 rdev = conf->disks[i].rdev;
2340
2341         if (use_new_offset(conf, sh))
2342                 s = sh->sector + rdev->new_data_offset;
2343         else
2344                 s = sh->sector + rdev->data_offset;
2345         if (!bi->bi_error) {
2346                 set_bit(R5_UPTODATE, &sh->dev[i].flags);
2347                 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
2348                         /* Note that this cannot happen on a
2349                          * replacement device.  We just fail those on
2350                          * any error
2351                          */
2352                         printk_ratelimited(
2353                                 KERN_INFO
2354                                 "md/raid:%s: read error corrected"
2355                                 " (%lu sectors at %llu on %s)\n",
2356                                 mdname(conf->mddev), STRIPE_SECTORS,
2357                                 (unsigned long long)s,
2358                                 bdevname(rdev->bdev, b));
2359                         atomic_add(STRIPE_SECTORS, &rdev->corrected_errors);
2360                         clear_bit(R5_ReadError, &sh->dev[i].flags);
2361                         clear_bit(R5_ReWrite, &sh->dev[i].flags);
2362                 } else if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2363                         clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2364
2365                 if (atomic_read(&rdev->read_errors))
2366                         atomic_set(&rdev->read_errors, 0);
2367         } else {
2368                 const char *bdn = bdevname(rdev->bdev, b);
2369                 int retry = 0;
2370                 int set_bad = 0;
2371
2372                 clear_bit(R5_UPTODATE, &sh->dev[i].flags);
2373                 atomic_inc(&rdev->read_errors);
2374                 if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
2375                         printk_ratelimited(
2376                                 KERN_WARNING
2377                                 "md/raid:%s: read error on replacement device "
2378                                 "(sector %llu on %s).\n",
2379                                 mdname(conf->mddev),
2380                                 (unsigned long long)s,
2381                                 bdn);
2382                 else if (conf->mddev->degraded >= conf->max_degraded) {
2383                         set_bad = 1;
2384                         printk_ratelimited(
2385                                 KERN_WARNING
2386                                 "md/raid:%s: read error not correctable "
2387                                 "(sector %llu on %s).\n",
2388                                 mdname(conf->mddev),
2389                                 (unsigned long long)s,
2390                                 bdn);
2391                 } else if (test_bit(R5_ReWrite, &sh->dev[i].flags)) {
2392                         /* Oh, no!!! */
2393                         set_bad = 1;
2394                         printk_ratelimited(
2395                                 KERN_WARNING
2396                                 "md/raid:%s: read error NOT corrected!! "
2397                                 "(sector %llu on %s).\n",
2398                                 mdname(conf->mddev),
2399                                 (unsigned long long)s,
2400                                 bdn);
2401                 } else if (atomic_read(&rdev->read_errors)
2402                          > conf->max_nr_stripes)
2403                         printk(KERN_WARNING
2404                                "md/raid:%s: Too many read errors, failing device %s.\n",
2405                                mdname(conf->mddev), bdn);
2406                 else
2407                         retry = 1;
2408                 if (set_bad && test_bit(In_sync, &rdev->flags)
2409                     && !test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2410                         retry = 1;
2411                 if (retry)
2412                         if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) {
2413                                 set_bit(R5_ReadError, &sh->dev[i].flags);
2414                                 clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2415                         } else
2416                                 set_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2417                 else {
2418                         clear_bit(R5_ReadError, &sh->dev[i].flags);
2419                         clear_bit(R5_ReWrite, &sh->dev[i].flags);
2420                         if (!(set_bad
2421                               && test_bit(In_sync, &rdev->flags)
2422                               && rdev_set_badblocks(
2423                                       rdev, sh->sector, STRIPE_SECTORS, 0)))
2424                                 md_error(conf->mddev, rdev);
2425                 }
2426         }
2427         rdev_dec_pending(rdev, conf->mddev);
2428         bio_reset(bi);
2429         clear_bit(R5_LOCKED, &sh->dev[i].flags);
2430         set_bit(STRIPE_HANDLE, &sh->state);
2431         raid5_release_stripe(sh);
2432 }
2433
2434 static void raid5_end_write_request(struct bio *bi)
2435 {
2436         struct stripe_head *sh = bi->bi_private;
2437         struct r5conf *conf = sh->raid_conf;
2438         int disks = sh->disks, i;
2439         struct md_rdev *uninitialized_var(rdev);
2440         sector_t first_bad;
2441         int bad_sectors;
2442         int replacement = 0;
2443
2444         for (i = 0 ; i < disks; i++) {
2445                 if (bi == &sh->dev[i].req) {
2446                         rdev = conf->disks[i].rdev;
2447                         break;
2448                 }
2449                 if (bi == &sh->dev[i].rreq) {
2450                         rdev = conf->disks[i].replacement;
2451                         if (rdev)
2452                                 replacement = 1;
2453                         else
2454                                 /* rdev was removed and 'replacement'
2455                                  * replaced it.  rdev is not removed
2456                                  * until all requests are finished.
2457                                  */
2458                                 rdev = conf->disks[i].rdev;
2459                         break;
2460                 }
2461         }
2462         pr_debug("end_write_request %llu/%d, count %d, error: %d.\n",
2463                 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
2464                 bi->bi_error);
2465         if (i == disks) {
2466                 bio_reset(bi);
2467                 BUG();
2468                 return;
2469         }
2470
2471         if (replacement) {
2472                 if (bi->bi_error)
2473                         md_error(conf->mddev, rdev);
2474                 else if (is_badblock(rdev, sh->sector,
2475                                      STRIPE_SECTORS,
2476                                      &first_bad, &bad_sectors))
2477                         set_bit(R5_MadeGoodRepl, &sh->dev[i].flags);
2478         } else {
2479                 if (bi->bi_error) {
2480                         set_bit(STRIPE_DEGRADED, &sh->state);
2481                         set_bit(WriteErrorSeen, &rdev->flags);
2482                         set_bit(R5_WriteError, &sh->dev[i].flags);
2483                         if (!test_and_set_bit(WantReplacement, &rdev->flags))
2484                                 set_bit(MD_RECOVERY_NEEDED,
2485                                         &rdev->mddev->recovery);
2486                 } else if (is_badblock(rdev, sh->sector,
2487                                        STRIPE_SECTORS,
2488                                        &first_bad, &bad_sectors)) {
2489                         set_bit(R5_MadeGood, &sh->dev[i].flags);
2490                         if (test_bit(R5_ReadError, &sh->dev[i].flags))
2491                                 /* That was a successful write so make
2492                                  * sure it looks like we already did
2493                                  * a re-write.
2494                                  */
2495                                 set_bit(R5_ReWrite, &sh->dev[i].flags);
2496                 }
2497         }
2498         rdev_dec_pending(rdev, conf->mddev);
2499
2500         if (sh->batch_head && bi->bi_error && !replacement)
2501                 set_bit(STRIPE_BATCH_ERR, &sh->batch_head->state);
2502
2503         bio_reset(bi);
2504         if (!test_and_clear_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags))
2505                 clear_bit(R5_LOCKED, &sh->dev[i].flags);
2506         set_bit(STRIPE_HANDLE, &sh->state);
2507         raid5_release_stripe(sh);
2508
2509         if (sh->batch_head && sh != sh->batch_head)
2510                 raid5_release_stripe(sh->batch_head);
2511 }
2512
2513 static void raid5_build_block(struct stripe_head *sh, int i, int previous)
2514 {
2515         struct r5dev *dev = &sh->dev[i];
2516
2517         dev->flags = 0;
2518         dev->sector = raid5_compute_blocknr(sh, i, previous);
2519 }
2520
2521 static void raid5_error(struct mddev *mddev, struct md_rdev *rdev)
2522 {
2523         char b[BDEVNAME_SIZE];
2524         struct r5conf *conf = mddev->private;
2525         unsigned long flags;
2526         pr_debug("raid456: error called\n");
2527
2528         spin_lock_irqsave(&conf->device_lock, flags);
2529         clear_bit(In_sync, &rdev->flags);
2530         mddev->degraded = calc_degraded(conf);
2531         spin_unlock_irqrestore(&conf->device_lock, flags);
2532         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2533
2534         set_bit(Blocked, &rdev->flags);
2535         set_bit(Faulty, &rdev->flags);
2536         set_mask_bits(&mddev->flags, 0,
2537                       BIT(MD_CHANGE_DEVS) | BIT(MD_CHANGE_PENDING));
2538         printk(KERN_ALERT
2539                "md/raid:%s: Disk failure on %s, disabling device.\n"
2540                "md/raid:%s: Operation continuing on %d devices.\n",
2541                mdname(mddev),
2542                bdevname(rdev->bdev, b),
2543                mdname(mddev),
2544                conf->raid_disks - mddev->degraded);
2545 }
2546
2547 /*
2548  * Input: a 'big' sector number,
2549  * Output: index of the data and parity disk, and the sector # in them.
2550  */
2551 sector_t raid5_compute_sector(struct r5conf *conf, sector_t r_sector,
2552                               int previous, int *dd_idx,
2553                               struct stripe_head *sh)
2554 {
2555         sector_t stripe, stripe2;
2556         sector_t chunk_number;
2557         unsigned int chunk_offset;
2558         int pd_idx, qd_idx;
2559         int ddf_layout = 0;
2560         sector_t new_sector;
2561         int algorithm = previous ? conf->prev_algo
2562                                  : conf->algorithm;
2563         int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2564                                          : conf->chunk_sectors;
2565         int raid_disks = previous ? conf->previous_raid_disks
2566                                   : conf->raid_disks;
2567         int data_disks = raid_disks - conf->max_degraded;
2568
2569         /* First compute the information on this sector */
2570
2571         /*
2572          * Compute the chunk number and the sector offset inside the chunk
2573          */
2574         chunk_offset = sector_div(r_sector, sectors_per_chunk);
2575         chunk_number = r_sector;
2576
2577         /*
2578          * Compute the stripe number
2579          */
2580         stripe = chunk_number;
2581         *dd_idx = sector_div(stripe, data_disks);
2582         stripe2 = stripe;
2583         /*
2584          * Select the parity disk based on the user selected algorithm.
2585          */
2586         pd_idx = qd_idx = -1;
2587         switch(conf->level) {
2588         case 4:
2589                 pd_idx = data_disks;
2590                 break;
2591         case 5:
2592                 switch (algorithm) {
2593                 case ALGORITHM_LEFT_ASYMMETRIC:
2594                         pd_idx = data_disks - sector_div(stripe2, raid_disks);
2595                         if (*dd_idx >= pd_idx)
2596                                 (*dd_idx)++;
2597                         break;
2598                 case ALGORITHM_RIGHT_ASYMMETRIC:
2599                         pd_idx = sector_div(stripe2, raid_disks);
2600                         if (*dd_idx >= pd_idx)
2601                                 (*dd_idx)++;
2602                         break;
2603                 case ALGORITHM_LEFT_SYMMETRIC:
2604                         pd_idx = data_disks - sector_div(stripe2, raid_disks);
2605                         *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2606                         break;
2607                 case ALGORITHM_RIGHT_SYMMETRIC:
2608                         pd_idx = sector_div(stripe2, raid_disks);
2609                         *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2610                         break;
2611                 case ALGORITHM_PARITY_0:
2612                         pd_idx = 0;
2613                         (*dd_idx)++;
2614                         break;
2615                 case ALGORITHM_PARITY_N:
2616                         pd_idx = data_disks;
2617                         break;
2618                 default:
2619                         BUG();
2620                 }
2621                 break;
2622         case 6:
2623
2624                 switch (algorithm) {
2625                 case ALGORITHM_LEFT_ASYMMETRIC:
2626                         pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2627                         qd_idx = pd_idx + 1;
2628                         if (pd_idx == raid_disks-1) {
2629                                 (*dd_idx)++;    /* Q D D D P */
2630                                 qd_idx = 0;
2631                         } else if (*dd_idx >= pd_idx)
2632                                 (*dd_idx) += 2; /* D D P Q D */
2633                         break;
2634                 case ALGORITHM_RIGHT_ASYMMETRIC:
2635                         pd_idx = sector_div(stripe2, raid_disks);
2636                         qd_idx = pd_idx + 1;
2637                         if (pd_idx == raid_disks-1) {
2638                                 (*dd_idx)++;    /* Q D D D P */
2639                                 qd_idx = 0;
2640                         } else if (*dd_idx >= pd_idx)
2641                                 (*dd_idx) += 2; /* D D P Q D */
2642                         break;
2643                 case ALGORITHM_LEFT_SYMMETRIC:
2644                         pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2645                         qd_idx = (pd_idx + 1) % raid_disks;
2646                         *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
2647                         break;
2648                 case ALGORITHM_RIGHT_SYMMETRIC:
2649                         pd_idx = sector_div(stripe2, raid_disks);
2650                         qd_idx = (pd_idx + 1) % raid_disks;
2651                         *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
2652                         break;
2653
2654                 case ALGORITHM_PARITY_0:
2655                         pd_idx = 0;
2656                         qd_idx = 1;
2657                         (*dd_idx) += 2;
2658                         break;
2659                 case ALGORITHM_PARITY_N:
2660                         pd_idx = data_disks;
2661                         qd_idx = data_disks + 1;
2662                         break;
2663
2664                 case ALGORITHM_ROTATING_ZERO_RESTART:
2665                         /* Exactly the same as RIGHT_ASYMMETRIC, but or
2666                          * of blocks for computing Q is different.
2667                          */
2668                         pd_idx = sector_div(stripe2, raid_disks);
2669                         qd_idx = pd_idx + 1;
2670                         if (pd_idx == raid_disks-1) {
2671                                 (*dd_idx)++;    /* Q D D D P */
2672                                 qd_idx = 0;
2673                         } else if (*dd_idx >= pd_idx)
2674                                 (*dd_idx) += 2; /* D D P Q D */
2675                         ddf_layout = 1;
2676                         break;
2677
2678                 case ALGORITHM_ROTATING_N_RESTART:
2679                         /* Same a left_asymmetric, by first stripe is
2680                          * D D D P Q  rather than
2681                          * Q D D D P
2682                          */
2683                         stripe2 += 1;
2684                         pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2685                         qd_idx = pd_idx + 1;
2686                         if (pd_idx == raid_disks-1) {
2687                                 (*dd_idx)++;    /* Q D D D P */
2688                                 qd_idx = 0;
2689                         } else if (*dd_idx >= pd_idx)
2690                                 (*dd_idx) += 2; /* D D P Q D */
2691                         ddf_layout = 1;
2692                         break;
2693
2694                 case ALGORITHM_ROTATING_N_CONTINUE:
2695                         /* Same as left_symmetric but Q is before P */
2696                         pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2697                         qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
2698                         *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2699                         ddf_layout = 1;
2700                         break;
2701
2702                 case ALGORITHM_LEFT_ASYMMETRIC_6:
2703                         /* RAID5 left_asymmetric, with Q on last device */
2704                         pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2705                         if (*dd_idx >= pd_idx)
2706                                 (*dd_idx)++;
2707                         qd_idx = raid_disks - 1;
2708                         break;
2709
2710                 case ALGORITHM_RIGHT_ASYMMETRIC_6:
2711                         pd_idx = sector_div(stripe2, raid_disks-1);
2712                         if (*dd_idx >= pd_idx)
2713                                 (*dd_idx)++;
2714                         qd_idx = raid_disks - 1;
2715                         break;
2716
2717                 case ALGORITHM_LEFT_SYMMETRIC_6:
2718                         pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2719                         *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2720                         qd_idx = raid_disks - 1;
2721                         break;
2722
2723                 case ALGORITHM_RIGHT_SYMMETRIC_6:
2724                         pd_idx = sector_div(stripe2, raid_disks-1);
2725                         *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2726                         qd_idx = raid_disks - 1;
2727                         break;
2728
2729                 case ALGORITHM_PARITY_0_6:
2730                         pd_idx = 0;
2731                         (*dd_idx)++;
2732                         qd_idx = raid_disks - 1;
2733                         break;
2734
2735                 default:
2736                         BUG();
2737                 }
2738                 break;
2739         }
2740
2741         if (sh) {
2742                 sh->pd_idx = pd_idx;
2743                 sh->qd_idx = qd_idx;
2744                 sh->ddf_layout = ddf_layout;
2745         }
2746         /*
2747          * Finally, compute the new sector number
2748          */
2749         new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
2750         return new_sector;
2751 }
2752
2753 sector_t raid5_compute_blocknr(struct stripe_head *sh, int i, int previous)
2754 {
2755         struct r5conf *conf = sh->raid_conf;
2756         int raid_disks = sh->disks;
2757         int data_disks = raid_disks - conf->max_degraded;
2758         sector_t new_sector = sh->sector, check;
2759         int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2760                                          : conf->chunk_sectors;
2761         int algorithm = previous ? conf->prev_algo
2762                                  : conf->algorithm;
2763         sector_t stripe;
2764         int chunk_offset;
2765         sector_t chunk_number;
2766         int dummy1, dd_idx = i;
2767         sector_t r_sector;
2768         struct stripe_head sh2;
2769
2770         chunk_offset = sector_div(new_sector, sectors_per_chunk);
2771         stripe = new_sector;
2772
2773         if (i == sh->pd_idx)
2774                 return 0;
2775         switch(conf->level) {
2776         case 4: break;
2777         case 5:
2778                 switch (algorithm) {
2779                 case ALGORITHM_LEFT_ASYMMETRIC:
2780                 case ALGORITHM_RIGHT_ASYMMETRIC:
2781                         if (i > sh->pd_idx)
2782                                 i--;
2783                         break;
2784                 case ALGORITHM_LEFT_SYMMETRIC:
2785                 case ALGORITHM_RIGHT_SYMMETRIC:
2786                         if (i < sh->pd_idx)
2787                                 i += raid_disks;
2788                         i -= (sh->pd_idx + 1);
2789                         break;
2790                 case ALGORITHM_PARITY_0:
2791                         i -= 1;
2792                         break;
2793                 case ALGORITHM_PARITY_N:
2794                         break;
2795                 default:
2796                         BUG();
2797                 }
2798                 break;
2799         case 6:
2800                 if (i == sh->qd_idx)
2801                         return 0; /* It is the Q disk */
2802                 switch (algorithm) {
2803                 case ALGORITHM_LEFT_ASYMMETRIC:
2804                 case ALGORITHM_RIGHT_ASYMMETRIC:
2805                 case ALGORITHM_ROTATING_ZERO_RESTART:
2806                 case ALGORITHM_ROTATING_N_RESTART:
2807                         if (sh->pd_idx == raid_disks-1)
2808                                 i--;    /* Q D D D P */
2809                         else if (i > sh->pd_idx)
2810                                 i -= 2; /* D D P Q D */
2811                         break;
2812                 case ALGORITHM_LEFT_SYMMETRIC:
2813                 case ALGORITHM_RIGHT_SYMMETRIC:
2814                         if (sh->pd_idx == raid_disks-1)
2815                                 i--; /* Q D D D P */
2816                         else {
2817                                 /* D D P Q D */
2818                                 if (i < sh->pd_idx)
2819                                         i += raid_disks;
2820                                 i -= (sh->pd_idx + 2);
2821                         }
2822                         break;
2823                 case ALGORITHM_PARITY_0:
2824                         i -= 2;
2825                         break;
2826                 case ALGORITHM_PARITY_N:
2827                         break;
2828                 case ALGORITHM_ROTATING_N_CONTINUE:
2829                         /* Like left_symmetric, but P is before Q */
2830                         if (sh->pd_idx == 0)
2831                                 i--;    /* P D D D Q */
2832                         else {
2833                                 /* D D Q P D */
2834                                 if (i < sh->pd_idx)
2835                                         i += raid_disks;
2836                                 i -= (sh->pd_idx + 1);
2837                         }
2838                         break;
2839                 case ALGORITHM_LEFT_ASYMMETRIC_6:
2840                 case ALGORITHM_RIGHT_ASYMMETRIC_6:
2841                         if (i > sh->pd_idx)
2842                                 i--;
2843                         break;
2844                 case ALGORITHM_LEFT_SYMMETRIC_6:
2845                 case ALGORITHM_RIGHT_SYMMETRIC_6:
2846                         if (i < sh->pd_idx)
2847                                 i += data_disks + 1;
2848                         i -= (sh->pd_idx + 1);
2849                         break;
2850                 case ALGORITHM_PARITY_0_6:
2851                         i -= 1;
2852                         break;
2853                 default:
2854                         BUG();
2855                 }
2856                 break;
2857         }
2858
2859         chunk_number = stripe * data_disks + i;
2860         r_sector = chunk_number * sectors_per_chunk + chunk_offset;
2861
2862         check = raid5_compute_sector(conf, r_sector,
2863                                      previous, &dummy1, &sh2);
2864         if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
2865                 || sh2.qd_idx != sh->qd_idx) {
2866                 printk(KERN_ERR "md/raid:%s: compute_blocknr: map not correct\n",
2867                        mdname(conf->mddev));
2868                 return 0;
2869         }
2870         return r_sector;
2871 }
2872
2873 static void
2874 schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s,
2875                          int rcw, int expand)
2876 {
2877         int i, pd_idx = sh->pd_idx, qd_idx = sh->qd_idx, disks = sh->disks;
2878         struct r5conf *conf = sh->raid_conf;
2879         int level = conf->level;
2880
2881         if (rcw) {
2882
2883                 for (i = disks; i--; ) {
2884                         struct r5dev *dev = &sh->dev[i];
2885
2886                         if (dev->towrite) {
2887                                 set_bit(R5_LOCKED, &dev->flags);
2888                                 set_bit(R5_Wantdrain, &dev->flags);
2889                                 if (!expand)
2890                                         clear_bit(R5_UPTODATE, &dev->flags);
2891                                 s->locked++;
2892                         }
2893                 }
2894                 /* if we are not expanding this is a proper write request, and
2895                  * there will be bios with new data to be drained into the
2896                  * stripe cache
2897                  */
2898                 if (!expand) {
2899                         if (!s->locked)
2900                                 /* False alarm, nothing to do */
2901                                 return;
2902                         sh->reconstruct_state = reconstruct_state_drain_run;
2903                         set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2904                 } else
2905                         sh->reconstruct_state = reconstruct_state_run;
2906
2907                 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2908
2909                 if (s->locked + conf->max_degraded == disks)
2910                         if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
2911                                 atomic_inc(&conf->pending_full_writes);
2912         } else {
2913                 BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
2914                         test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
2915                 BUG_ON(level == 6 &&
2916                         (!(test_bit(R5_UPTODATE, &sh->dev[qd_idx].flags) ||
2917                            test_bit(R5_Wantcompute, &sh->dev[qd_idx].flags))));
2918
2919                 for (i = disks; i--; ) {
2920                         struct r5dev *dev = &sh->dev[i];
2921                         if (i == pd_idx || i == qd_idx)
2922                                 continue;
2923
2924                         if (dev->towrite &&
2925                             (test_bit(R5_UPTODATE, &dev->flags) ||
2926                              test_bit(R5_Wantcompute, &dev->flags))) {
2927                                 set_bit(R5_Wantdrain, &dev->flags);
2928                                 set_bit(R5_LOCKED, &dev->flags);
2929                                 clear_bit(R5_UPTODATE, &dev->flags);
2930                                 s->locked++;
2931                         }
2932                 }
2933                 if (!s->locked)
2934                         /* False alarm - nothing to do */
2935                         return;
2936                 sh->reconstruct_state = reconstruct_state_prexor_drain_run;
2937                 set_bit(STRIPE_OP_PREXOR, &s->ops_request);
2938                 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2939                 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2940         }
2941
2942         /* keep the parity disk(s) locked while asynchronous operations
2943          * are in flight
2944          */
2945         set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
2946         clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
2947         s->locked++;
2948
2949         if (level == 6) {
2950                 int qd_idx = sh->qd_idx;
2951                 struct r5dev *dev = &sh->dev[qd_idx];
2952
2953                 set_bit(R5_LOCKED, &dev->flags);
2954                 clear_bit(R5_UPTODATE, &dev->flags);
2955                 s->locked++;
2956         }
2957
2958         pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
2959                 __func__, (unsigned long long)sh->sector,
2960                 s->locked, s->ops_request);
2961 }
2962
2963 /*
2964  * Each stripe/dev can have one or more bion attached.
2965  * toread/towrite point to the first in a chain.
2966  * The bi_next chain must be in order.
2967  */
2968 static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx,
2969                           int forwrite, int previous)
2970 {
2971         struct bio **bip;
2972         struct r5conf *conf = sh->raid_conf;
2973         int firstwrite=0;
2974
2975         pr_debug("adding bi b#%llu to stripe s#%llu\n",
2976                 (unsigned long long)bi->bi_iter.bi_sector,
2977                 (unsigned long long)sh->sector);
2978
2979         /*
2980          * If several bio share a stripe. The bio bi_phys_segments acts as a
2981          * reference count to avoid race. The reference count should already be
2982          * increased before this function is called (for example, in
2983          * raid5_make_request()), so other bio sharing this stripe will not free the
2984          * stripe. If a stripe is owned by one stripe, the stripe lock will
2985          * protect it.
2986          */
2987         spin_lock_irq(&sh->stripe_lock);
2988         /* Don't allow new IO added to stripes in batch list */
2989         if (sh->batch_head)
2990                 goto overlap;
2991         if (forwrite) {
2992                 bip = &sh->dev[dd_idx].towrite;
2993                 if (*bip == NULL)
2994                         firstwrite = 1;
2995         } else
2996                 bip = &sh->dev[dd_idx].toread;
2997         while (*bip && (*bip)->bi_iter.bi_sector < bi->bi_iter.bi_sector) {
2998                 if (bio_end_sector(*bip) > bi->bi_iter.bi_sector)
2999                         goto overlap;
3000                 bip = & (*bip)->bi_next;
3001         }
3002         if (*bip && (*bip)->bi_iter.bi_sector < bio_end_sector(bi))
3003                 goto overlap;
3004
3005         if (!forwrite || previous)
3006                 clear_bit(STRIPE_BATCH_READY, &sh->state);
3007
3008         BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
3009         if (*bip)
3010                 bi->bi_next = *bip;
3011         *bip = bi;
3012         raid5_inc_bi_active_stripes(bi);
3013
3014         if (forwrite) {
3015                 /* check if page is covered */
3016                 sector_t sector = sh->dev[dd_idx].sector;
3017                 for (bi=sh->dev[dd_idx].towrite;
3018                      sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
3019                              bi && bi->bi_iter.bi_sector <= sector;
3020                      bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
3021                         if (bio_end_sector(bi) >= sector)
3022                                 sector = bio_end_sector(bi);
3023                 }
3024                 if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
3025                         if (!test_and_set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags))
3026                                 sh->overwrite_disks++;
3027         }
3028
3029         pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
3030                 (unsigned long long)(*bip)->bi_iter.bi_sector,
3031                 (unsigned long long)sh->sector, dd_idx);
3032
3033         if (conf->mddev->bitmap && firstwrite) {
3034                 /* Cannot hold spinlock over bitmap_startwrite,
3035                  * but must ensure this isn't added to a batch until
3036                  * we have added to the bitmap and set bm_seq.
3037                  * So set STRIPE_BITMAP_PENDING to prevent
3038                  * batching.
3039                  * If multiple add_stripe_bio() calls race here they
3040                  * much all set STRIPE_BITMAP_PENDING.  So only the first one
3041                  * to complete "bitmap_startwrite" gets to set
3042                  * STRIPE_BIT_DELAY.  This is important as once a stripe
3043                  * is added to a batch, STRIPE_BIT_DELAY cannot be changed
3044                  * any more.
3045                  */
3046                 set_bit(STRIPE_BITMAP_PENDING, &sh->state);
3047                 spin_unlock_irq(&sh->stripe_lock);
3048                 bitmap_startwrite(conf->mddev->bitmap, sh->sector,
3049                                   STRIPE_SECTORS, 0);
3050                 spin_lock_irq(&sh->stripe_lock);
3051                 clear_bit(STRIPE_BITMAP_PENDING, &sh->state);
3052                 if (!sh->batch_head) {
3053                         sh->bm_seq = conf->seq_flush+1;
3054                         set_bit(STRIPE_BIT_DELAY, &sh->state);
3055                 }
3056         }
3057         spin_unlock_irq(&sh->stripe_lock);
3058
3059         if (stripe_can_batch(sh))
3060                 stripe_add_to_batch_list(conf, sh);
3061         return 1;
3062
3063  overlap:
3064         set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
3065         spin_unlock_irq(&sh->stripe_lock);
3066         return 0;
3067 }
3068
3069 static void end_reshape(struct r5conf *conf);
3070
3071 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
3072                             struct stripe_head *sh)
3073 {
3074         int sectors_per_chunk =
3075                 previous ? conf->prev_chunk_sectors : conf->chunk_sectors;
3076         int dd_idx;
3077         int chunk_offset = sector_div(stripe, sectors_per_chunk);
3078         int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
3079
3080         raid5_compute_sector(conf,
3081                              stripe * (disks - conf->max_degraded)
3082                              *sectors_per_chunk + chunk_offset,
3083                              previous,
3084                              &dd_idx, sh);
3085 }
3086
3087 static void
3088 handle_failed_stripe(struct r5conf *conf, struct stripe_head *sh,
3089                                 struct stripe_head_state *s, int disks,
3090                                 struct bio_list *return_bi)
3091 {
3092         int i;
3093         BUG_ON(sh->batch_head);
3094         for (i = disks; i--; ) {
3095                 struct bio *bi;
3096                 int bitmap_end = 0;
3097
3098                 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
3099                         struct md_rdev *rdev;
3100                         rcu_read_lock();
3101                         rdev = rcu_dereference(conf->disks[i].rdev);
3102                         if (rdev && test_bit(In_sync, &rdev->flags) &&
3103                             !test_bit(Faulty, &rdev->flags))
3104                                 atomic_inc(&rdev->nr_pending);
3105                         else
3106                                 rdev = NULL;
3107                         rcu_read_unlock();
3108                         if (rdev) {
3109                                 if (!rdev_set_badblocks(
3110                                             rdev,
3111                                             sh->sector,
3112                                             STRIPE_SECTORS, 0))
3113                                         md_error(conf->mddev, rdev);
3114                                 rdev_dec_pending(rdev, conf->mddev);
3115                         }
3116                 }
3117                 spin_lock_irq(&sh->stripe_lock);
3118                 /* fail all writes first */
3119                 bi = sh->dev[i].towrite;
3120                 sh->dev[i].towrite = NULL;
3121                 sh->overwrite_disks = 0;
3122                 spin_unlock_irq(&sh->stripe_lock);
3123                 if (bi)
3124                         bitmap_end = 1;
3125
3126                 r5l_stripe_write_finished(sh);
3127
3128                 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
3129                         wake_up(&conf->wait_for_overlap);
3130
3131                 while (bi && bi->bi_iter.bi_sector <
3132                         sh->dev[i].sector + STRIPE_SECTORS) {
3133                         struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
3134
3135                         bi->bi_error = -EIO;
3136                         if (!raid5_dec_bi_active_stripes(bi)) {
3137                                 md_write_end(conf->mddev);
3138                                 bio_list_add(return_bi, bi);
3139                         }
3140                         bi = nextbi;
3141                 }
3142                 if (bitmap_end)
3143                         bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3144                                 STRIPE_SECTORS, 0, 0);
3145                 bitmap_end = 0;
3146                 /* and fail all 'written' */
3147                 bi = sh->dev[i].written;
3148                 sh->dev[i].written = NULL;
3149                 if (test_and_clear_bit(R5_SkipCopy, &sh->dev[i].flags)) {
3150                         WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
3151                         sh->dev[i].page = sh->dev[i].orig_page;
3152                 }
3153
3154                 if (bi) bitmap_end = 1;
3155                 while (bi && bi->bi_iter.bi_sector <
3156                        sh->dev[i].sector + STRIPE_SECTORS) {
3157                         struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
3158
3159                         bi->bi_error = -EIO;
3160                         if (!raid5_dec_bi_active_stripes(bi)) {
3161                                 md_write_end(conf->mddev);
3162                                 bio_list_add(return_bi, bi);
3163                         }
3164                         bi = bi2;
3165                 }
3166
3167                 /* fail any reads if this device is non-operational and
3168                  * the data has not reached the cache yet.
3169                  */
3170                 if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
3171                     s->failed > conf->max_degraded &&
3172                     (!test_bit(R5_Insync, &sh->dev[i].flags) ||
3173                       test_bit(R5_ReadError, &sh->dev[i].flags))) {
3174                         spin_lock_irq(&sh->stripe_lock);
3175                         bi = sh->dev[i].toread;
3176                         sh->dev[i].toread = NULL;
3177                         spin_unlock_irq(&sh->stripe_lock);
3178                         if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
3179                                 wake_up(&conf->wait_for_overlap);
3180                         if (bi)
3181                                 s->to_read--;
3182                         while (bi && bi->bi_iter.bi_sector <
3183                                sh->dev[i].sector + STRIPE_SECTORS) {
3184                                 struct bio *nextbi =
3185                                         r5_next_bio(bi, sh->dev[i].sector);
3186
3187                                 bi->bi_error = -EIO;
3188                                 if (!raid5_dec_bi_active_stripes(bi))
3189                                         bio_list_add(return_bi, bi);
3190                                 bi = nextbi;
3191                         }
3192                 }
3193                 if (bitmap_end)
3194                         bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3195                                         STRIPE_SECTORS, 0, 0);
3196                 /* If we were in the middle of a write the parity block might
3197                  * still be locked - so just clear all R5_LOCKED flags
3198                  */
3199                 clear_bit(R5_LOCKED, &sh->dev[i].flags);
3200         }
3201         s->to_write = 0;
3202         s->written = 0;
3203
3204         if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
3205                 if (atomic_dec_and_test(&conf->pending_full_writes))
3206                         md_wakeup_thread(conf->mddev->thread);
3207 }
3208
3209 static void
3210 handle_failed_sync(struct r5conf *conf, struct stripe_head *sh,
3211                    struct stripe_head_state *s)
3212 {
3213         int abort = 0;
3214         int i;
3215
3216         BUG_ON(sh->batch_head);
3217         clear_bit(STRIPE_SYNCING, &sh->state);
3218         if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
3219                 wake_up(&conf->wait_for_overlap);
3220         s->syncing = 0;
3221         s->replacing = 0;
3222         /* There is nothing more to do for sync/check/repair.
3223          * Don't even need to abort as that is handled elsewhere
3224          * if needed, and not always wanted e.g. if there is a known
3225          * bad block here.
3226          * For recover/replace we need to record a bad block on all
3227          * non-sync devices, or abort the recovery
3228          */
3229         if (test_bit(MD_RECOVERY_RECOVER, &conf->mddev->recovery)) {
3230                 /* During recovery devices cannot be removed, so
3231                  * locking and refcounting of rdevs is not needed
3232                  */
3233                 rcu_read_lock();
3234                 for (i = 0; i < conf->raid_disks; i++) {
3235                         struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
3236                         if (rdev
3237                             && !test_bit(Faulty, &rdev->flags)
3238                             && !test_bit(In_sync, &rdev->flags)
3239                             && !rdev_set_badblocks(rdev, sh->sector,
3240                                                    STRIPE_SECTORS, 0))
3241                                 abort = 1;
3242                         rdev = rcu_dereference(conf->disks[i].replacement);
3243                         if (rdev
3244                             && !test_bit(Faulty, &rdev->flags)
3245                             && !test_bit(In_sync, &rdev->flags)
3246                             && !rdev_set_badblocks(rdev, sh->sector,
3247                                                    STRIPE_SECTORS, 0))
3248                                 abort = 1;
3249                 }
3250                 rcu_read_unlock();
3251                 if (abort)
3252                         conf->recovery_disabled =
3253                                 conf->mddev->recovery_disabled;
3254         }
3255         md_done_sync(conf->mddev, STRIPE_SECTORS, !abort);
3256 }
3257
3258 static int want_replace(struct stripe_head *sh, int disk_idx)
3259 {
3260         struct md_rdev *rdev;
3261         int rv = 0;
3262
3263         rcu_read_lock();
3264         rdev = rcu_dereference(sh->raid_conf->disks[disk_idx].replacement);
3265         if (rdev
3266             && !test_bit(Faulty, &rdev->flags)
3267             && !test_bit(In_sync, &rdev->flags)
3268             && (rdev->recovery_offset <= sh->sector
3269                 || rdev->mddev->recovery_cp <= sh->sector))
3270                 rv = 1;
3271         rcu_read_unlock();
3272         return rv;
3273 }
3274
3275 /* fetch_block - checks the given member device to see if its data needs
3276  * to be read or computed to satisfy a request.
3277  *
3278  * Returns 1 when no more member devices need to be checked, otherwise returns
3279  * 0 to tell the loop in handle_stripe_fill to continue
3280  */
3281
3282 static int need_this_block(struct stripe_head *sh, struct stripe_head_state *s,
3283                            int disk_idx, int disks)
3284 {
3285         struct r5dev *dev = &sh->dev[disk_idx];
3286         struct r5dev *fdev[2] = { &sh->dev[s->failed_num[0]],
3287                                   &sh->dev[s->failed_num[1]] };
3288         int i;
3289
3290
3291         if (test_bit(R5_LOCKED, &dev->flags) ||
3292             test_bit(R5_UPTODATE, &dev->flags))
3293                 /* No point reading this as we already have it or have
3294                  * decided to get it.
3295                  */
3296                 return 0;
3297
3298         if (dev->toread ||
3299             (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)))
3300                 /* We need this block to directly satisfy a request */
3301                 return 1;
3302
3303         if (s->syncing || s->expanding ||
3304             (s->replacing && want_replace(sh, disk_idx)))
3305                 /* When syncing, or expanding we read everything.
3306                  * When replacing, we need the replaced block.
3307                  */
3308                 return 1;
3309
3310         if ((s->failed >= 1 && fdev[0]->toread) ||
3311             (s->failed >= 2 && fdev[1]->toread))
3312                 /* If we want to read from a failed device, then
3313                  * we need to actually read every other device.
3314                  */
3315                 return 1;
3316
3317         /* Sometimes neither read-modify-write nor reconstruct-write
3318          * cycles can work.  In those cases we read every block we
3319          * can.  Then the parity-update is certain to have enough to
3320          * work with.
3321          * This can only be a problem when we need to write something,
3322          * and some device has failed.  If either of those tests
3323          * fail we need look no further.
3324          */
3325         if (!s->failed || !s->to_write)
3326                 return 0;
3327
3328         if (test_bit(R5_Insync, &dev->flags) &&
3329             !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3330                 /* Pre-reads at not permitted until after short delay
3331                  * to gather multiple requests.  However if this
3332                  * device is no Insync, the block could only be be computed
3333                  * and there is no need to delay that.
3334                  */
3335                 return 0;
3336
3337         for (i = 0; i < s->failed && i < 2; i++) {
3338                 if (fdev[i]->towrite &&
3339                     !test_bit(R5_UPTODATE, &fdev[i]->flags) &&
3340                     !test_bit(R5_OVERWRITE, &fdev[i]->flags))
3341                         /* If we have a partial write to a failed
3342                          * device, then we will need to reconstruct
3343                          * the content of that device, so all other
3344                          * devices must be read.
3345                          */
3346                         return 1;
3347         }
3348
3349         /* If we are forced to do a reconstruct-write, either because
3350          * the current RAID6 implementation only supports that, or
3351          * or because parity cannot be trusted and we are currently
3352          * recovering it, there is extra need to be careful.
3353          * If one of the devices that we would need to read, because
3354          * it is not being overwritten (and maybe not written at all)
3355          * is missing/faulty, then we need to read everything we can.
3356          */
3357         if (sh->raid_conf->level != 6 &&
3358             sh->sector < sh->raid_conf->mddev->recovery_cp)
3359                 /* reconstruct-write isn't being forced */
3360                 return 0;
3361         for (i = 0; i < s->failed && i < 2; i++) {
3362                 if (s->failed_num[i] != sh->pd_idx &&
3363                     s->failed_num[i] != sh->qd_idx &&
3364                     !test_bit(R5_UPTODATE, &fdev[i]->flags) &&
3365                     !test_bit(R5_OVERWRITE, &fdev[i]->flags))
3366                         return 1;
3367         }
3368
3369         return 0;
3370 }
3371
3372 static int fetch_block(struct stripe_head *sh, struct stripe_head_state *s,
3373                        int disk_idx, int disks)
3374 {
3375         struct r5dev *dev = &sh->dev[disk_idx];
3376
3377         /* is the data in this block needed, and can we get it? */
3378         if (need_this_block(sh, s, disk_idx, disks)) {
3379                 /* we would like to get this block, possibly by computing it,
3380                  * otherwise read it if the backing disk is insync
3381                  */
3382                 BUG_ON(test_bit(R5_Wantcompute, &dev->flags));
3383                 BUG_ON(test_bit(R5_Wantread, &dev->flags));
3384                 BUG_ON(sh->batch_head);
3385                 if ((s->uptodate == disks - 1) &&
3386                     (s->failed && (disk_idx == s->failed_num[0] ||
3387                                    disk_idx == s->failed_num[1]))) {
3388                         /* have disk failed, and we're requested to fetch it;
3389                          * do compute it
3390                          */
3391                         pr_debug("Computing stripe %llu block %d\n",
3392                                (unsigned long long)sh->sector, disk_idx);
3393                         set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3394                         set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3395                         set_bit(R5_Wantcompute, &dev->flags);
3396                         sh->ops.target = disk_idx;
3397                         sh->ops.target2 = -1; /* no 2nd target */
3398                         s->req_compute = 1;
3399                         /* Careful: from this point on 'uptodate' is in the eye
3400                          * of raid_run_ops which services 'compute' operations
3401                          * before writes. R5_Wantcompute flags a block that will
3402                          * be R5_UPTODATE by the time it is needed for a
3403                          * subsequent operation.
3404                          */
3405                         s->uptodate++;
3406                         return 1;
3407                 } else if (s->uptodate == disks-2 && s->failed >= 2) {
3408                         /* Computing 2-failure is *very* expensive; only
3409                          * do it if failed >= 2
3410                          */
3411                         int other;
3412                         for (other = disks; other--; ) {
3413                                 if (other == disk_idx)
3414                                         continue;
3415                                 if (!test_bit(R5_UPTODATE,
3416                                       &sh->dev[other].flags))
3417                                         break;
3418                         }
3419                         BUG_ON(other < 0);
3420                         pr_debug("Computing stripe %llu blocks %d,%d\n",
3421                                (unsigned long long)sh->sector,
3422                                disk_idx, other);
3423                         set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3424                         set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3425                         set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags);
3426                         set_bit(R5_Wantcompute, &sh->dev[other].flags);
3427                         sh->ops.target = disk_idx;
3428                         sh->ops.target2 = other;
3429                         s->uptodate += 2;
3430                         s->req_compute = 1;
3431                         return 1;
3432                 } else if (test_bit(R5_Insync, &dev->flags)) {
3433                         set_bit(R5_LOCKED, &dev->flags);
3434                         set_bit(R5_Wantread, &dev->flags);
3435                         s->locked++;
3436                         pr_debug("Reading block %d (sync=%d)\n",
3437                                 disk_idx, s->syncing);
3438                 }
3439         }
3440
3441         return 0;
3442 }
3443
3444 /**
3445  * handle_stripe_fill - read or compute data to satisfy pending requests.
3446  */
3447 static void handle_stripe_fill(struct stripe_head *sh,
3448                                struct stripe_head_state *s,
3449                                int disks)
3450 {
3451         int i;
3452
3453         /* look for blocks to read/compute, skip this if a compute
3454          * is already in flight, or if the stripe contents are in the
3455          * midst of changing due to a write
3456          */
3457         if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
3458             !sh->reconstruct_state)
3459                 for (i = disks; i--; )
3460                         if (fetch_block(sh, s, i, disks))
3461                                 break;
3462         set_bit(STRIPE_HANDLE, &sh->state);
3463 }
3464
3465 static void break_stripe_batch_list(struct stripe_head *head_sh,
3466                                     unsigned long handle_flags);
3467 /* handle_stripe_clean_event
3468  * any written block on an uptodate or failed drive can be returned.
3469  * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
3470  * never LOCKED, so we don't need to test 'failed' directly.
3471  */
3472 static void handle_stripe_clean_event(struct r5conf *conf,
3473         struct stripe_head *sh, int disks, struct bio_list *return_bi)
3474 {
3475         int i;
3476         struct r5dev *dev;
3477         int discard_pending = 0;
3478         struct stripe_head *head_sh = sh;
3479         bool do_endio = false;
3480
3481         for (i = disks; i--; )
3482                 if (sh->dev[i].written) {
3483                         dev = &sh->dev[i];
3484                         if (!test_bit(R5_LOCKED, &dev->flags) &&
3485                             (test_bit(R5_UPTODATE, &dev->flags) ||
3486                              test_bit(R5_Discard, &dev->flags) ||
3487                              test_bit(R5_SkipCopy, &dev->flags))) {
3488                                 /* We can return any write requests */
3489                                 struct bio *wbi, *wbi2;
3490                                 pr_debug("Return write for disc %d\n", i);
3491                                 if (test_and_clear_bit(R5_Discard, &dev->flags))
3492                                         clear_bit(R5_UPTODATE, &dev->flags);
3493                                 if (test_and_clear_bit(R5_SkipCopy, &dev->flags)) {
3494                                         WARN_ON(test_bit(R5_UPTODATE, &dev->flags));
3495                                 }
3496                                 do_endio = true;
3497
3498 returnbi:
3499                                 dev->page = dev->orig_page;
3500                                 wbi = dev->written;
3501                                 dev->written = NULL;
3502                                 while (wbi && wbi->bi_iter.bi_sector <
3503                                         dev->sector + STRIPE_SECTORS) {
3504                                         wbi2 = r5_next_bio(wbi, dev->sector);
3505                                         if (!raid5_dec_bi_active_stripes(wbi)) {
3506                                                 md_write_end(conf->mddev);
3507                                                 bio_list_add(return_bi, wbi);
3508                                         }
3509                                         wbi = wbi2;
3510                                 }
3511                                 bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3512                                                 STRIPE_SECTORS,
3513                                          !test_bit(STRIPE_DEGRADED, &sh->state),
3514                                                 0);
3515                                 if (head_sh->batch_head) {
3516                                         sh = list_first_entry(&sh->batch_list,
3517                                                               struct stripe_head,
3518                                                               batch_list);
3519                                         if (sh != head_sh) {
3520                                                 dev = &sh->dev[i];
3521                                                 goto returnbi;
3522                                         }
3523                                 }
3524                                 sh = head_sh;
3525                                 dev = &sh->dev[i];
3526                         } else if (test_bit(R5_Discard, &dev->flags))
3527                                 discard_pending = 1;
3528                 }
3529
3530         r5l_stripe_write_finished(sh);
3531
3532         if (!discard_pending &&
3533             test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags)) {
3534                 int hash;
3535                 clear_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
3536                 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
3537                 if (sh->qd_idx >= 0) {
3538                         clear_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
3539                         clear_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags);
3540                 }
3541                 /* now that discard is done we can proceed with any sync */
3542                 clear_bit(STRIPE_DISCARD, &sh->state);
3543                 /*
3544                  * SCSI discard will change some bio fields and the stripe has
3545                  * no updated data, so remove it from hash list and the stripe
3546                  * will be reinitialized
3547                  */
3548 unhash:
3549                 hash = sh->hash_lock_index;
3550                 spin_lock_irq(conf->hash_locks + hash);
3551                 remove_hash(sh);
3552                 spin_unlock_irq(conf->hash_locks + hash);
3553                 if (head_sh->batch_head) {
3554                         sh = list_first_entry(&sh->batch_list,
3555                                               struct stripe_head, batch_list);
3556                         if (sh != head_sh)
3557                                         goto unhash;
3558                 }
3559                 sh = head_sh;
3560
3561                 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state))
3562                         set_bit(STRIPE_HANDLE, &sh->state);
3563
3564         }
3565
3566         if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
3567                 if (atomic_dec_and_test(&conf->pending_full_writes))
3568                         md_wakeup_thread(conf->mddev->thread);
3569
3570         if (head_sh->batch_head && do_endio)
3571                 break_stripe_batch_list(head_sh, STRIPE_EXPAND_SYNC_FLAGS);
3572 }
3573
3574 static void handle_stripe_dirtying(struct r5conf *conf,
3575                                    struct stripe_head *sh,
3576                                    struct stripe_head_state *s,
3577                                    int disks)
3578 {
3579         int rmw = 0, rcw = 0, i;
3580         sector_t recovery_cp = conf->mddev->recovery_cp;
3581
3582         /* Check whether resync is now happening or should start.
3583          * If yes, then the array is dirty (after unclean shutdown or
3584          * initial creation), so parity in some stripes might be inconsistent.
3585          * In this case, we need to always do reconstruct-write, to ensure
3586          * that in case of drive failure or read-error correction, we
3587          * generate correct data from the parity.
3588          */
3589         if (conf->rmw_level == PARITY_DISABLE_RMW ||
3590             (recovery_cp < MaxSector && sh->sector >= recovery_cp &&
3591              s->failed == 0)) {
3592                 /* Calculate the real rcw later - for now make it
3593                  * look like rcw is cheaper
3594                  */
3595                 rcw = 1; rmw = 2;
3596                 pr_debug("force RCW rmw_level=%u, recovery_cp=%llu sh->sector=%llu\n",
3597                          conf->rmw_level, (unsigned long long)recovery_cp,
3598                          (unsigned long long)sh->sector);
3599         } else for (i = disks; i--; ) {
3600                 /* would I have to read this buffer for read_modify_write */
3601                 struct r5dev *dev = &sh->dev[i];
3602                 if ((dev->towrite || i == sh->pd_idx || i == sh->qd_idx) &&
3603                     !test_bit(R5_LOCKED, &dev->flags) &&
3604                     !(test_bit(R5_UPTODATE, &dev->flags) ||
3605                       test_bit(R5_Wantcompute, &dev->flags))) {
3606                         if (test_bit(R5_Insync, &dev->flags))
3607                                 rmw++;
3608                         else
3609                                 rmw += 2*disks;  /* cannot read it */
3610                 }
3611                 /* Would I have to read this buffer for reconstruct_write */
3612                 if (!test_bit(R5_OVERWRITE, &dev->flags) &&
3613                     i != sh->pd_idx && i != sh->qd_idx &&
3614                     !test_bit(R5_LOCKED, &dev->flags) &&
3615                     !(test_bit(R5_UPTODATE, &dev->flags) ||
3616                     test_bit(R5_Wantcompute, &dev->flags))) {
3617                         if (test_bit(R5_Insync, &dev->flags))
3618                                 rcw++;
3619                         else
3620                                 rcw += 2*disks;
3621                 }
3622         }
3623         pr_debug("for sector %llu, rmw=%d rcw=%d\n",
3624                 (unsigned long long)sh->sector, rmw, rcw);
3625         set_bit(STRIPE_HANDLE, &sh->state);
3626         if ((rmw < rcw || (rmw == rcw && conf->rmw_level == PARITY_PREFER_RMW)) && rmw > 0) {
3627                 /* prefer read-modify-write, but need to get some data */
3628                 if (conf->mddev->queue)
3629                         blk_add_trace_msg(conf->mddev->queue,
3630                                           "raid5 rmw %llu %d",
3631                                           (unsigned long long)sh->sector, rmw);
3632                 for (i = disks; i--; ) {
3633                         struct r5dev *dev = &sh->dev[i];
3634                         if ((dev->towrite || i == sh->pd_idx || i == sh->qd_idx) &&
3635                             !test_bit(R5_LOCKED, &dev->flags) &&
3636                             !(test_bit(R5_UPTODATE, &dev->flags) ||
3637                             test_bit(R5_Wantcompute, &dev->flags)) &&
3638                             test_bit(R5_Insync, &dev->flags)) {
3639                                 if (test_bit(STRIPE_PREREAD_ACTIVE,
3640                                              &sh->state)) {
3641                                         pr_debug("Read_old block %d for r-m-w\n",
3642                                                  i);
3643                                         set_bit(R5_LOCKED, &dev->flags);
3644                                         set_bit(R5_Wantread, &dev->flags);
3645                                         s->locked++;
3646                                 } else {
3647                                         set_bit(STRIPE_DELAYED, &sh->state);
3648                                         set_bit(STRIPE_HANDLE, &sh->state);
3649                                 }
3650                         }
3651                 }
3652         }
3653         if ((rcw < rmw || (rcw == rmw && conf->rmw_level != PARITY_PREFER_RMW)) && rcw > 0) {
3654                 /* want reconstruct write, but need to get some data */
3655                 int qread =0;
3656                 rcw = 0;
3657                 for (i = disks; i--; ) {
3658                         struct r5dev *dev = &sh->dev[i];
3659                         if (!test_bit(R5_OVERWRITE, &dev->flags) &&
3660                             i != sh->pd_idx && i != sh->qd_idx &&
3661                             !test_bit(R5_LOCKED, &dev->flags) &&
3662                             !(test_bit(R5_UPTODATE, &dev->flags) ||
3663                               test_bit(R5_Wantcompute, &dev->flags))) {
3664                                 rcw++;
3665                                 if (test_bit(R5_Insync, &dev->flags) &&
3666                                     test_bit(STRIPE_PREREAD_ACTIVE,
3667                                              &sh->state)) {
3668                                         pr_debug("Read_old block "
3669                                                 "%d for Reconstruct\n", i);
3670                                         set_bit(R5_LOCKED, &dev->flags);
3671                                         set_bit(R5_Wantread, &dev->flags);
3672                                         s->locked++;
3673                                         qread++;
3674                                 } else {
3675                                         set_bit(STRIPE_DELAYED, &sh->state);
3676                                         set_bit(STRIPE_HANDLE, &sh->state);
3677                                 }
3678                         }
3679                 }
3680                 if (rcw && conf->mddev->queue)
3681                         blk_add_trace_msg(conf->mddev->queue, "raid5 rcw %llu %d %d %d",
3682                                           (unsigned long long)sh->sector,
3683                                           rcw, qread, test_bit(STRIPE_DELAYED, &sh->state));
3684         }
3685
3686         if (rcw > disks && rmw > disks &&
3687             !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3688                 set_bit(STRIPE_DELAYED, &sh->state);
3689
3690         /* now if nothing is locked, and if we have enough data,
3691          * we can start a write request
3692          */
3693         /* since handle_stripe can be called at any time we need to handle the
3694          * case where a compute block operation has been submitted and then a
3695          * subsequent call wants to start a write request.  raid_run_ops only
3696          * handles the case where compute block and reconstruct are requested
3697          * simultaneously.  If this is not the case then new writes need to be
3698          * held off until the compute completes.
3699          */
3700         if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
3701             (s->locked == 0 && (rcw == 0 || rmw == 0) &&
3702             !test_bit(STRIPE_BIT_DELAY, &sh->state)))
3703                 schedule_reconstruction(sh, s, rcw == 0, 0);
3704 }
3705
3706 static void handle_parity_checks5(struct r5conf *conf, struct stripe_head *sh,
3707                                 struct stripe_head_state *s, int disks)
3708 {
3709         struct r5dev *dev = NULL;
3710
3711         BUG_ON(sh->batch_head);
3712         set_bit(STRIPE_HANDLE, &sh->state);
3713
3714         switch (sh->check_state) {
3715         case check_state_idle:
3716                 /* start a new check operation if there are no failures */
3717                 if (s->failed == 0) {
3718                         BUG_ON(s->uptodate != disks);
3719                         sh->check_state = check_state_run;
3720                         set_bit(STRIPE_OP_CHECK, &s->ops_request);
3721                         clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
3722                         s->uptodate--;
3723                         break;
3724                 }
3725                 dev = &sh->dev[s->failed_num[0]];
3726                 /* fall through */
3727         case check_state_compute_result:
3728                 sh->check_state = check_state_idle;
3729                 if (!dev)
3730                         dev = &sh->dev[sh->pd_idx];
3731
3732                 /* check that a write has not made the stripe insync */
3733                 if (test_bit(STRIPE_INSYNC, &sh->state))
3734                         break;
3735
3736                 /* either failed parity check, or recovery is happening */
3737                 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
3738                 BUG_ON(s->uptodate != disks);
3739
3740                 set_bit(R5_LOCKED, &dev->flags);
3741                 s->locked++;
3742                 set_bit(R5_Wantwrite, &dev->flags);
3743
3744                 clear_bit(STRIPE_DEGRADED, &sh->state);
3745                 set_bit(STRIPE_INSYNC, &sh->state);
3746                 break;
3747         case check_state_run:
3748                 break; /* we will be called again upon completion */
3749         case check_state_check_result:
3750                 sh->check_state = check_state_idle;
3751
3752                 /* if a failure occurred during the check operation, leave
3753                  * STRIPE_INSYNC not set and let the stripe be handled again
3754                  */
3755                 if (s->failed)
3756                         break;
3757
3758                 /* handle a successful check operation, if parity is correct
3759                  * we are done.  Otherwise update the mismatch count and repair
3760                  * parity if !MD_RECOVERY_CHECK
3761                  */
3762                 if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0)
3763                         /* parity is correct (on disc,
3764                          * not in buffer any more)
3765                          */
3766                         set_bit(STRIPE_INSYNC, &sh->state);
3767                 else {
3768                         atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
3769                         if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
3770                                 /* don't try to repair!! */
3771                                 set_bit(STRIPE_INSYNC, &sh->state);
3772                         else {
3773                                 sh->check_state = check_state_compute_run;
3774                                 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3775                                 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3776                                 set_bit(R5_Wantcompute,
3777                                         &sh->dev[sh->pd_idx].flags);
3778                                 sh->ops.target = sh->pd_idx;
3779                                 sh->ops.target2 = -1;
3780                                 s->uptodate++;
3781                         }
3782                 }
3783                 break;
3784         case check_state_compute_run:
3785                 break;
3786         default:
3787                 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
3788                        __func__, sh->check_state,
3789                        (unsigned long long) sh->sector);
3790                 BUG();
3791         }
3792 }
3793
3794 static void handle_parity_checks6(struct r5conf *conf, struct stripe_head *sh,
3795                                   struct stripe_head_state *s,
3796                                   int disks)
3797 {
3798         int pd_idx = sh->pd_idx;
3799         int qd_idx = sh->qd_idx;
3800         struct r5dev *dev;
3801
3802         BUG_ON(sh->batch_head);
3803         set_bit(STRIPE_HANDLE, &sh->state);
3804
3805         BUG_ON(s->failed > 2);
3806
3807         /* Want to check and possibly repair P and Q.
3808          * However there could be one 'failed' device, in which
3809          * case we can only check one of them, possibly using the
3810          * other to generate missing data
3811          */
3812
3813         switch (sh->check_state) {
3814         case check_state_idle:
3815                 /* start a new check operation if there are < 2 failures */
3816                 if (s->failed == s->q_failed) {
3817                         /* The only possible failed device holds Q, so it
3818                          * makes sense to check P (If anything else were failed,
3819                          * we would have used P to recreate it).
3820                          */
3821                         sh->check_state = check_state_run;
3822                 }
3823                 if (!s->q_failed && s->failed < 2) {
3824                         /* Q is not failed, and we didn't use it to generate
3825                          * anything, so it makes sense to check it
3826                          */
3827                         if (sh->check_state == check_state_run)
3828                                 sh->check_state = check_state_run_pq;
3829                         else
3830                                 sh->check_state = check_state_run_q;
3831                 }
3832
3833                 /* discard potentially stale zero_sum_result */
3834                 sh->ops.zero_sum_result = 0;
3835
3836                 if (sh->check_state == check_state_run) {
3837                         /* async_xor_zero_sum destroys the contents of P */
3838                         clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
3839                         s->uptodate--;
3840                 }
3841                 if (sh->check_state >= check_state_run &&
3842                     sh->check_state <= check_state_run_pq) {
3843                         /* async_syndrome_zero_sum preserves P and Q, so
3844                          * no need to mark them !uptodate here
3845                          */
3846                         set_bit(STRIPE_OP_CHECK, &s->ops_request);
3847                         break;
3848                 }
3849
3850                 /* we have 2-disk failure */
3851                 BUG_ON(s->failed != 2);
3852                 /* fall through */
3853         case check_state_compute_result:
3854                 sh->check_state = check_state_idle;
3855
3856                 /* check that a write has not made the stripe insync */
3857                 if (test_bit(STRIPE_INSYNC, &sh->state))
3858                         break;
3859
3860                 /* now write out any block on a failed drive,
3861                  * or P or Q if they were recomputed
3862                  */
3863                 BUG_ON(s->uptodate < disks - 1); /* We don't need Q to recover */
3864                 if (s->failed == 2) {
3865                         dev = &sh->dev[s->failed_num[1]];
3866                         s->locked++;
3867                         set_bit(R5_LOCKED, &dev->flags);
3868                         set_bit(R5_Wantwrite, &dev->flags);
3869                 }
3870                 if (s->failed >= 1) {
3871                         dev = &sh->dev[s->failed_num[0]];
3872                         s->locked++;
3873                         set_bit(R5_LOCKED, &dev->flags);
3874                         set_bit(R5_Wantwrite, &dev->flags);
3875                 }
3876                 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
3877                         dev = &sh->dev[pd_idx];
3878                         s->locked++;
3879                         set_bit(R5_LOCKED, &dev->flags);
3880                         set_bit(R5_Wantwrite, &dev->flags);
3881                 }
3882                 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
3883                         dev = &sh->dev[qd_idx];
3884                         s->locked++;
3885                         set_bit(R5_LOCKED, &dev->flags);
3886                         set_bit(R5_Wantwrite, &dev->flags);
3887                 }
3888                 clear_bit(STRIPE_DEGRADED, &sh->state);
3889
3890                 set_bit(STRIPE_INSYNC, &sh->state);
3891                 break;
3892         case check_state_run:
3893         case check_state_run_q:
3894         case check_state_run_pq:
3895                 break; /* we will be called again upon completion */
3896         case check_state_check_result:
3897                 sh->check_state = check_state_idle;
3898
3899                 /* handle a successful check operation, if parity is correct
3900                  * we are done.  Otherwise update the mismatch count and repair
3901                  * parity if !MD_RECOVERY_CHECK
3902                  */
3903                 if (sh->ops.zero_sum_result == 0) {
3904                         /* both parities are correct */
3905                         if (!s->failed)
3906                                 set_bit(STRIPE_INSYNC, &sh->state);
3907                         else {
3908                                 /* in contrast to the raid5 case we can validate
3909                                  * parity, but still have a failure to write
3910                                  * back
3911                                  */
3912                                 sh->check_state = check_state_compute_result;
3913                                 /* Returning at this point means that we may go
3914                                  * off and bring p and/or q uptodate again so
3915                                  * we make sure to check zero_sum_result again
3916                                  * to verify if p or q need writeback
3917                                  */
3918                         }
3919                 } else {
3920                         atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
3921                         if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
3922                                 /* don't try to repair!! */
3923                                 set_bit(STRIPE_INSYNC, &sh->state);
3924                         else {
3925                                 int *target = &sh->ops.target;
3926
3927                                 sh->ops.target = -1;
3928                                 sh->ops.target2 = -1;
3929                                 sh->check_state = check_state_compute_run;
3930                                 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3931                                 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3932                                 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
3933                                         set_bit(R5_Wantcompute,
3934                                                 &sh->dev[pd_idx].flags);
3935                                         *target = pd_idx;
3936                                         target = &sh->ops.target2;
3937                                         s->uptodate++;
3938                                 }
3939                                 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
3940                                         set_bit(R5_Wantcompute,
3941                                                 &sh->dev[qd_idx].flags);
3942                                         *target = qd_idx;
3943                                         s->uptodate++;
3944                                 }
3945                         }
3946                 }
3947                 break;
3948         case check_state_compute_run:
3949                 break;
3950         default:
3951                 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
3952                        __func__, sh->check_state,
3953                        (unsigned long long) sh->sector);
3954                 BUG();
3955         }
3956 }
3957
3958 static void handle_stripe_expansion(struct r5conf *conf, struct stripe_head *sh)
3959 {
3960         int i;
3961
3962         /* We have read all the blocks in this stripe and now we need to
3963          * copy some of them into a target stripe for expand.
3964          */
3965         struct dma_async_tx_descriptor *tx = NULL;
3966         BUG_ON(sh->batch_head);
3967         clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3968         for (i = 0; i < sh->disks; i++)
3969                 if (i != sh->pd_idx && i != sh->qd_idx) {
3970                         int dd_idx, j;
3971                         struct stripe_head *sh2;
3972                         struct async_submit_ctl submit;
3973
3974                         sector_t bn = raid5_compute_blocknr(sh, i, 1);
3975                         sector_t s = raid5_compute_sector(conf, bn, 0,
3976                                                           &dd_idx, NULL);
3977                         sh2 = raid5_get_active_stripe(conf, s, 0, 1, 1);
3978                         if (sh2 == NULL)
3979                                 /* so far only the early blocks of this stripe
3980                                  * have been requested.  When later blocks
3981                                  * get requested, we will try again
3982                                  */
3983                                 continue;
3984                         if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
3985                            test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
3986                                 /* must have already done this block */
3987                                 raid5_release_stripe(sh2);
3988                                 continue;
3989                         }
3990
3991                         /* place all the copies on one channel */
3992                         init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
3993                         tx = async_memcpy(sh2->dev[dd_idx].page,
3994                                           sh->dev[i].page, 0, 0, STRIPE_SIZE,
3995                                           &submit);
3996
3997                         set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
3998                         set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
3999                         for (j = 0; j < conf->raid_disks; j++)
4000                                 if (j != sh2->pd_idx &&
4001                                     j != sh2->qd_idx &&
4002                                     !test_bit(R5_Expanded, &sh2->dev[j].flags))
4003                                         break;
4004                         if (j == conf->raid_disks) {
4005                                 set_bit(STRIPE_EXPAND_READY, &sh2->state);
4006                                 set_bit(STRIPE_HANDLE, &sh2->state);
4007                         }
4008                         raid5_release_stripe(sh2);
4009
4010                 }
4011         /* done submitting copies, wait for them to complete */
4012         async_tx_quiesce(&tx);
4013 }
4014
4015 /*
4016  * handle_stripe - do things to a stripe.
4017  *
4018  * We lock the stripe by setting STRIPE_ACTIVE and then examine the
4019  * state of various bits to see what needs to be done.
4020  * Possible results:
4021  *    return some read requests which now have data
4022  *    return some write requests which are safely on storage
4023  *    schedule a read on some buffers
4024  *    schedule a write of some buffers
4025  *    return confirmation of parity correctness
4026  *
4027  */
4028
4029 static void analyse_stripe(struct stripe_head *sh, struct stripe_head_state *s)
4030 {
4031         struct r5conf *conf = sh->raid_conf;
4032         int disks = sh->disks;
4033         struct r5dev *dev;
4034         int i;
4035         int do_recovery = 0;
4036
4037         memset(s, 0, sizeof(*s));
4038
4039         s->expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state) && !sh->batch_head;
4040         s->expanded = test_bit(STRIPE_EXPAND_READY, &sh->state) && !sh->batch_head;
4041         s->failed_num[0] = -1;
4042         s->failed_num[1] = -1;
4043         s->log_failed = r5l_log_disk_error(conf);
4044
4045         /* Now to look around and see what can be done */
4046         rcu_read_lock();
4047         for (i=disks; i--; ) {
4048                 struct md_rdev *rdev;
4049                 sector_t first_bad;
4050                 int bad_sectors;
4051                 int is_bad = 0;
4052
4053                 dev = &sh->dev[i];
4054
4055                 pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
4056                          i, dev->flags,
4057                          dev->toread, dev->towrite, dev->written);
4058                 /* maybe we can reply to a read
4059                  *
4060                  * new wantfill requests are only permitted while
4061                  * ops_complete_biofill is guaranteed to be inactive
4062                  */
4063                 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
4064                     !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
4065                         set_bit(R5_Wantfill, &dev->flags);
4066
4067                 /* now count some things */
4068                 if (test_bit(R5_LOCKED, &dev->flags))
4069                         s->locked++;
4070                 if (test_bit(R5_UPTODATE, &dev->flags))
4071                         s->uptodate++;
4072                 if (test_bit(R5_Wantcompute, &dev->flags)) {
4073                         s->compute++;
4074                         BUG_ON(s->compute > 2);
4075                 }
4076
4077                 if (test_bit(R5_Wantfill, &dev->flags))
4078                         s->to_fill++;
4079                 else if (dev->toread)
4080                         s->to_read++;
4081                 if (dev->towrite) {
4082                         s->to_write++;
4083                         if (!test_bit(R5_OVERWRITE, &dev->flags))
4084                                 s->non_overwrite++;
4085                 }
4086                 if (dev->written)
4087                         s->written++;
4088                 /* Prefer to use the replacement for reads, but only
4089                  * if it is recovered enough and has no bad blocks.
4090                  */
4091                 rdev = rcu_dereference(conf->disks[i].replacement);
4092                 if (rdev && !test_bit(Faulty, &rdev->flags) &&
4093                     rdev->recovery_offset >= sh->sector + STRIPE_SECTORS &&
4094                     !is_badblock(rdev, sh->sector, STRIPE_SECTORS,
4095                                  &first_bad, &bad_sectors))
4096                         set_bit(R5_ReadRepl, &dev->flags);
4097                 else {
4098                         if (rdev && !test_bit(Faulty, &rdev->flags))
4099                                 set_bit(R5_NeedReplace, &dev->flags);
4100                         else
4101                                 clear_bit(R5_NeedReplace, &dev->flags);
4102                         rdev = rcu_dereference(conf->disks[i].rdev);
4103                         clear_bit(R5_ReadRepl, &dev->flags);
4104                 }
4105                 if (rdev && test_bit(Faulty, &rdev->flags))
4106                         rdev = NULL;
4107                 if (rdev) {
4108                         is_bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
4109                                              &first_bad, &bad_sectors);
4110                         if (s->blocked_rdev == NULL
4111                             && (test_bit(Blocked, &rdev->flags)
4112                                 || is_bad < 0)) {
4113                                 if (is_bad < 0)
4114                                         set_bit(BlockedBadBlocks,
4115                                                 &rdev->flags);
4116                                 s->blocked_rdev = rdev;
4117                                 atomic_inc(&rdev->nr_pending);
4118                         }
4119                 }
4120                 clear_bit(R5_Insync, &dev->flags);
4121                 if (!rdev)
4122                         /* Not in-sync */;
4123                 else if (is_bad) {
4124                         /* also not in-sync */
4125                         if (!test_bit(WriteErrorSeen, &rdev->flags) &&
4126                             test_bit(R5_UPTODATE, &dev->flags)) {
4127                                 /* treat as in-sync, but with a read error
4128                                  * which we can now try to correct
4129                                  */
4130                                 set_bit(R5_Insync, &dev->flags);
4131                                 set_bit(R5_ReadError, &dev->flags);
4132                         }
4133                 } else if (test_bit(In_sync, &rdev->flags))
4134                         set_bit(R5_Insync, &dev->flags);
4135                 else if (sh->sector + STRIPE_SECTORS <= rdev->recovery_offset)
4136                         /* in sync if before recovery_offset */
4137                         set_bit(R5_Insync, &dev->flags);
4138                 else if (test_bit(R5_UPTODATE, &dev->flags) &&
4139                          test_bit(R5_Expanded, &dev->flags))
4140                         /* If we've reshaped into here, we assume it is Insync.
4141                          * We will shortly update recovery_offset to make
4142                          * it official.
4143                          */
4144                         set_bit(R5_Insync, &dev->flags);
4145
4146                 if (test_bit(R5_WriteError, &dev->flags)) {
4147                         /* This flag does not apply to '.replacement'
4148                          * only to .rdev, so make sure to check that*/
4149                         struct md_rdev *rdev2 = rcu_dereference(
4150                                 conf->disks[i].rdev);
4151                         if (rdev2 == rdev)
4152                                 clear_bit(R5_Insync, &dev->flags);
4153                         if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4154                                 s->handle_bad_blocks = 1;
4155                                 atomic_inc(&rdev2->nr_pending);
4156                         } else
4157                                 clear_bit(R5_WriteError, &dev->flags);
4158                 }
4159                 if (test_bit(R5_MadeGood, &dev->flags)) {
4160                         /* This flag does not apply to '.replacement'
4161                          * only to .rdev, so make sure to check that*/
4162                         struct md_rdev *rdev2 = rcu_dereference(
4163                                 conf->disks[i].rdev);
4164                         if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4165                                 s->handle_bad_blocks = 1;
4166                                 atomic_inc(&rdev2->nr_pending);
4167                         } else
4168                                 clear_bit(R5_MadeGood, &dev->flags);
4169                 }
4170                 if (test_bit(R5_MadeGoodRepl, &dev->flags)) {
4171                         struct md_rdev *rdev2 = rcu_dereference(
4172                                 conf->disks[i].replacement);
4173                         if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4174                                 s->handle_bad_blocks = 1;
4175                                 atomic_inc(&rdev2->nr_pending);
4176                         } else
4177                                 clear_bit(R5_MadeGoodRepl, &dev->flags);
4178                 }
4179                 if (!test_bit(R5_Insync, &dev->flags)) {
4180                         /* The ReadError flag will just be confusing now */
4181                         clear_bit(R5_ReadError, &dev->flags);
4182                         clear_bit(R5_ReWrite, &dev->flags);
4183                 }
4184                 if (test_bit(R5_ReadError, &dev->flags))
4185                         clear_bit(R5_Insync, &dev->flags);
4186                 if (!test_bit(R5_Insync, &dev->flags)) {
4187                         if (s->failed < 2)
4188                                 s->failed_num[s->failed] = i;
4189                         s->failed++;
4190                         if (rdev && !test_bit(Faulty, &rdev->flags))
4191                                 do_recovery = 1;
4192                 }
4193         }
4194         if (test_bit(STRIPE_SYNCING, &sh->state)) {
4195                 /* If there is a failed device being replaced,
4196                  *     we must be recovering.
4197                  * else if we are after recovery_cp, we must be syncing
4198                  * else if MD_RECOVERY_REQUESTED is set, we also are syncing.
4199                  * else we can only be replacing
4200                  * sync and recovery both need to read all devices, and so
4201                  * use the same flag.
4202                  */
4203                 if (do_recovery ||
4204                     sh->sector >= conf->mddev->recovery_cp ||
4205                     test_bit(MD_RECOVERY_REQUESTED, &(conf->mddev->recovery)))
4206                         s->syncing = 1;
4207                 else
4208                         s->replacing = 1;
4209         }
4210         rcu_read_unlock();
4211 }
4212
4213 static int clear_batch_ready(struct stripe_head *sh)
4214 {
4215         /* Return '1' if this is a member of batch, or
4216          * '0' if it is a lone stripe or a head which can now be
4217          * handled.
4218          */
4219         struct stripe_head *tmp;
4220         if (!test_and_clear_bit(STRIPE_BATCH_READY, &sh->state))
4221                 return (sh->batch_head && sh->batch_head != sh);
4222         spin_lock(&sh->stripe_lock);
4223         if (!sh->batch_head) {
4224                 spin_unlock(&sh->stripe_lock);
4225                 return 0;
4226         }
4227
4228         /*
4229          * this stripe could be added to a batch list before we check
4230          * BATCH_READY, skips it
4231          */
4232         if (sh->batch_head != sh) {
4233                 spin_unlock(&sh->stripe_lock);
4234                 return 1;
4235         }
4236         spin_lock(&sh->batch_lock);
4237         list_for_each_entry(tmp, &sh->batch_list, batch_list)
4238                 clear_bit(STRIPE_BATCH_READY, &tmp->state);
4239         spin_unlock(&sh->batch_lock);
4240         spin_unlock(&sh->stripe_lock);
4241
4242         /*
4243          * BATCH_READY is cleared, no new stripes can be added.
4244          * batch_list can be accessed without lock
4245          */
4246         return 0;
4247 }
4248
4249 static void break_stripe_batch_list(struct stripe_head *head_sh,
4250                                     unsigned long handle_flags)
4251 {
4252         struct stripe_head *sh, *next;
4253         int i;
4254         int do_wakeup = 0;
4255
4256         list_for_each_entry_safe(sh, next, &head_sh->batch_list, batch_list) {
4257
4258                 list_del_init(&sh->batch_list);
4259
4260                 WARN_ONCE(sh->state & ((1 << STRIPE_ACTIVE) |
4261                                           (1 << STRIPE_SYNCING) |
4262                                           (1 << STRIPE_REPLACED) |
4263                                           (1 << STRIPE_DELAYED) |
4264                                           (1 << STRIPE_BIT_DELAY) |
4265                                           (1 << STRIPE_FULL_WRITE) |
4266                                           (1 << STRIPE_BIOFILL_RUN) |
4267                                           (1 << STRIPE_COMPUTE_RUN)  |
4268                                           (1 << STRIPE_OPS_REQ_PENDING) |
4269                                           (1 << STRIPE_DISCARD) |
4270                                           (1 << STRIPE_BATCH_READY) |
4271                                           (1 << STRIPE_BATCH_ERR) |
4272                                           (1 << STRIPE_BITMAP_PENDING)),
4273                         "stripe state: %lx\n", sh->state);
4274                 WARN_ONCE(head_sh->state & ((1 << STRIPE_DISCARD) |
4275                                               (1 << STRIPE_REPLACED)),
4276                         "head stripe state: %lx\n", head_sh->state);
4277
4278                 set_mask_bits(&sh->state, ~(STRIPE_EXPAND_SYNC_FLAGS |
4279                                             (1 << STRIPE_PREREAD_ACTIVE) |
4280                                             (1 << STRIPE_DEGRADED)),
4281                               head_sh->state & (1 << STRIPE_INSYNC));
4282
4283                 sh->check_state = head_sh->check_state;
4284                 sh->reconstruct_state = head_sh->reconstruct_state;
4285                 for (i = 0; i < sh->disks; i++) {
4286                         if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
4287                                 do_wakeup = 1;
4288                         sh->dev[i].flags = head_sh->dev[i].flags &
4289                                 (~((1 << R5_WriteError) | (1 << R5_Overlap)));
4290                 }
4291                 spin_lock_irq(&sh->stripe_lock);
4292                 sh->batch_head = NULL;
4293                 spin_unlock_irq(&sh->stripe_lock);
4294                 if (handle_flags == 0 ||
4295                     sh->state & handle_flags)
4296                         set_bit(STRIPE_HANDLE, &sh->state);
4297                 raid5_release_stripe(sh);
4298         }
4299         spin_lock_irq(&head_sh->stripe_lock);
4300         head_sh->batch_head = NULL;
4301         spin_unlock_irq(&head_sh->stripe_lock);
4302         for (i = 0; i < head_sh->disks; i++)
4303                 if (test_and_clear_bit(R5_Overlap, &head_sh->dev[i].flags))
4304                         do_wakeup = 1;
4305         if (head_sh->state & handle_flags)
4306                 set_bit(STRIPE_HANDLE, &head_sh->state);
4307
4308         if (do_wakeup)
4309                 wake_up(&head_sh->raid_conf->wait_for_overlap);
4310 }
4311
4312 static void handle_stripe(struct stripe_head *sh)
4313 {
4314         struct stripe_head_state s;
4315         struct r5conf *conf = sh->raid_conf;
4316         int i;
4317         int prexor;
4318         int disks = sh->disks;
4319         struct r5dev *pdev, *qdev;
4320
4321         clear_bit(STRIPE_HANDLE, &sh->state);
4322         if (test_and_set_bit_lock(STRIPE_ACTIVE, &sh->state)) {
4323                 /* already being handled, ensure it gets handled
4324                  * again when current action finishes */
4325                 set_bit(STRIPE_HANDLE, &sh->state);
4326                 return;
4327         }
4328
4329         if (clear_batch_ready(sh) ) {
4330                 clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
4331                 return;
4332         }
4333
4334         if (test_and_clear_bit(STRIPE_BATCH_ERR, &sh->state))
4335                 break_stripe_batch_list(sh, 0);
4336
4337         if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state) && !sh->batch_head) {
4338                 spin_lock(&sh->stripe_lock);
4339                 /* Cannot process 'sync' concurrently with 'discard' */
4340                 if (!test_bit(STRIPE_DISCARD, &sh->state) &&
4341                     test_and_clear_bit(STRIPE_SYNC_REQUESTED, &sh->state)) {
4342                         set_bit(STRIPE_SYNCING, &sh->state);
4343                         clear_bit(STRIPE_INSYNC, &sh->state);
4344                         clear_bit(STRIPE_REPLACED, &sh->state);
4345                 }
4346                 spin_unlock(&sh->stripe_lock);
4347         }
4348         clear_bit(STRIPE_DELAYED, &sh->state);
4349
4350         pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
4351                 "pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
4352                (unsigned long long)sh->sector, sh->state,
4353                atomic_read(&sh->count), sh->pd_idx, sh->qd_idx,
4354                sh->check_state, sh->reconstruct_state);
4355
4356         analyse_stripe(sh, &s);
4357
4358         if (test_bit(STRIPE_LOG_TRAPPED, &sh->state))
4359                 goto finish;
4360
4361         if (s.handle_bad_blocks) {
4362                 set_bit(STRIPE_HANDLE, &sh->state);
4363                 goto finish;
4364         }
4365
4366         if (unlikely(s.blocked_rdev)) {
4367                 if (s.syncing || s.expanding || s.expanded ||
4368                     s.replacing || s.to_write || s.written) {
4369                         set_bit(STRIPE_HANDLE, &sh->state);
4370                         goto finish;
4371                 }
4372                 /* There is nothing for the blocked_rdev to block */
4373                 rdev_dec_pending(s.blocked_rdev, conf->mddev);
4374                 s.blocked_rdev = NULL;
4375         }
4376
4377         if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
4378                 set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
4379                 set_bit(STRIPE_BIOFILL_RUN, &sh->state);
4380         }
4381
4382         pr_debug("locked=%d uptodate=%d to_read=%d"
4383                " to_write=%d failed=%d failed_num=%d,%d\n",
4384                s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
4385                s.failed_num[0], s.failed_num[1]);
4386         /* check if the array has lost more than max_degraded devices and,
4387          * if so, some requests might need to be failed.
4388          */
4389         if (s.failed > conf->max_degraded || s.log_failed) {
4390                 sh->check_state = 0;
4391                 sh->reconstruct_state = 0;
4392                 break_stripe_batch_list(sh, 0);
4393                 if (s.to_read+s.to_write+s.written)
4394                         handle_failed_stripe(conf, sh, &s, disks, &s.return_bi);
4395                 if (s.syncing + s.replacing)
4396                         handle_failed_sync(conf, sh, &s);
4397         }
4398
4399         /* Now we check to see if any write operations have recently
4400          * completed
4401          */
4402         prexor = 0;
4403         if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
4404                 prexor = 1;
4405         if (sh->reconstruct_state == reconstruct_state_drain_result ||
4406             sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
4407                 sh->reconstruct_state = reconstruct_state_idle;
4408
4409                 /* All the 'written' buffers and the parity block are ready to
4410                  * be written back to disk
4411                  */
4412                 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags) &&
4413                        !test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags));
4414                 BUG_ON(sh->qd_idx >= 0 &&
4415                        !test_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags) &&
4416                        !test_bit(R5_Discard, &sh->dev[sh->qd_idx].flags));
4417                 for (i = disks; i--; ) {
4418                         struct r5dev *dev = &sh->dev[i];
4419                         if (test_bit(R5_LOCKED, &dev->flags) &&
4420                                 (i == sh->pd_idx || i == sh->qd_idx ||
4421                                  dev->written)) {
4422                                 pr_debug("Writing block %d\n", i);
4423                                 set_bit(R5_Wantwrite, &dev->flags);
4424                                 if (prexor)
4425                                         continue;
4426                                 if (s.failed > 1)
4427                                         continue;
4428                                 if (!test_bit(R5_Insync, &dev->flags) ||
4429                                     ((i == sh->pd_idx || i == sh->qd_idx)  &&
4430                                      s.failed == 0))
4431                                         set_bit(STRIPE_INSYNC, &sh->state);
4432                         }
4433                 }
4434                 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4435                         s.dec_preread_active = 1;
4436         }
4437
4438         /*
4439          * might be able to return some write requests if the parity blocks
4440          * are safe, or on a failed drive
4441          */
4442         pdev = &sh->dev[sh->pd_idx];
4443         s.p_failed = (s.failed >= 1 && s.failed_num[0] == sh->pd_idx)
4444                 || (s.failed >= 2 && s.failed_num[1] == sh->pd_idx);
4445         qdev = &sh->dev[sh->qd_idx];
4446         s.q_failed = (s.failed >= 1 && s.failed_num[0] == sh->qd_idx)
4447                 || (s.failed >= 2 && s.failed_num[1] == sh->qd_idx)
4448                 || conf->level < 6;
4449
4450         if (s.written &&
4451             (s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
4452                              && !test_bit(R5_LOCKED, &pdev->flags)
4453                              && (test_bit(R5_UPTODATE, &pdev->flags) ||
4454                                  test_bit(R5_Discard, &pdev->flags))))) &&
4455             (s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
4456                              && !test_bit(R5_LOCKED, &qdev->flags)
4457                              && (test_bit(R5_UPTODATE, &qdev->flags) ||
4458                                  test_bit(R5_Discard, &qdev->flags))))))
4459                 handle_stripe_clean_event(conf, sh, disks, &s.return_bi);
4460
4461         /* Now we might consider reading some blocks, either to check/generate
4462          * parity, or to satisfy requests
4463          * or to load a block that is being partially written.
4464          */
4465         if (s.to_read || s.non_overwrite
4466             || (conf->level == 6 && s.to_write && s.failed)
4467             || (s.syncing && (s.uptodate + s.compute < disks))
4468             || s.replacing
4469             || s.expanding)
4470                 handle_stripe_fill(sh, &s, disks);
4471
4472         /* Now to consider new write requests and what else, if anything
4473          * should be read.  We do not handle new writes when:
4474          * 1/ A 'write' operation (copy+xor) is already in flight.
4475          * 2/ A 'check' operation is in flight, as it may clobber the parity
4476          *    block.
4477          */
4478         if (s.to_write && !sh->reconstruct_state && !sh->check_state)
4479                 handle_stripe_dirtying(conf, sh, &s, disks);
4480
4481         /* maybe we need to check and possibly fix the parity for this stripe
4482          * Any reads will already have been scheduled, so we just see if enough
4483          * data is available.  The parity check is held off while parity
4484          * dependent operations are in flight.
4485          */
4486         if (sh->check_state ||
4487             (s.syncing && s.locked == 0 &&
4488              !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
4489              !test_bit(STRIPE_INSYNC, &sh->state))) {
4490                 if (conf->level == 6)
4491                         handle_parity_checks6(conf, sh, &s, disks);
4492                 else
4493                         handle_parity_checks5(conf, sh, &s, disks);
4494         }
4495
4496         if ((s.replacing || s.syncing) && s.locked == 0
4497             && !test_bit(STRIPE_COMPUTE_RUN, &sh->state)
4498             && !test_bit(STRIPE_REPLACED, &sh->state)) {
4499                 /* Write out to replacement devices where possible */
4500                 for (i = 0; i < conf->raid_disks; i++)
4501                         if (test_bit(R5_NeedReplace, &sh->dev[i].flags)) {
4502                                 WARN_ON(!test_bit(R5_UPTODATE, &sh->dev[i].flags));
4503                                 set_bit(R5_WantReplace, &sh->dev[i].flags);
4504                                 set_bit(R5_LOCKED, &sh->dev[i].flags);
4505                                 s.locked++;
4506                         }
4507                 if (s.replacing)
4508                         set_bit(STRIPE_INSYNC, &sh->state);
4509                 set_bit(STRIPE_REPLACED, &sh->state);
4510         }
4511         if ((s.syncing || s.replacing) && s.locked == 0 &&
4512             !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
4513             test_bit(STRIPE_INSYNC, &sh->state)) {
4514                 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
4515                 clear_bit(STRIPE_SYNCING, &sh->state);
4516                 if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
4517                         wake_up(&conf->wait_for_overlap);
4518         }
4519
4520         /* If the failed drives are just a ReadError, then we might need
4521          * to progress the repair/check process
4522          */
4523         if (s.failed <= conf->max_degraded && !conf->mddev->ro)
4524                 for (i = 0; i < s.failed; i++) {
4525                         struct r5dev *dev = &sh->dev[s.failed_num[i]];
4526                         if (test_bit(R5_ReadError, &dev->flags)
4527                             && !test_bit(R5_LOCKED, &dev->flags)
4528                             && test_bit(R5_UPTODATE, &dev->flags)
4529                                 ) {
4530                                 if (!test_bit(R5_ReWrite, &dev->flags)) {
4531                                         set_bit(R5_Wantwrite, &dev->flags);
4532                                         set_bit(R5_ReWrite, &dev->flags);
4533                                         set_bit(R5_LOCKED, &dev->flags);
4534                                         s.locked++;
4535                                 } else {
4536                                         /* let's read it back */
4537                                         set_bit(R5_Wantread, &dev->flags);
4538                                         set_bit(R5_LOCKED, &dev->flags);
4539                                         s.locked++;
4540                                 }
4541                         }
4542                 }
4543
4544         /* Finish reconstruct operations initiated by the expansion process */
4545         if (sh->reconstruct_state == reconstruct_state_result) {
4546                 struct stripe_head *sh_src
4547                         = raid5_get_active_stripe(conf, sh->sector, 1, 1, 1);
4548                 if (sh_src && test_bit(STRIPE_EXPAND_SOURCE, &sh_src->state)) {
4549                         /* sh cannot be written until sh_src has been read.
4550                          * so arrange for sh to be delayed a little
4551                          */
4552                         set_bit(STRIPE_DELAYED, &sh->state);
4553                         set_bit(STRIPE_HANDLE, &sh->state);
4554                         if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
4555                                               &sh_src->state))
4556                                 atomic_inc(&conf->preread_active_stripes);
4557                         raid5_release_stripe(sh_src);
4558                         goto finish;
4559                 }
4560                 if (sh_src)
4561                         raid5_release_stripe(sh_src);
4562
4563                 sh->reconstruct_state = reconstruct_state_idle;
4564                 clear_bit(STRIPE_EXPANDING, &sh->state);
4565                 for (i = conf->raid_disks; i--; ) {
4566                         set_bit(R5_Wantwrite, &sh->dev[i].flags);
4567                         set_bit(R5_LOCKED, &sh->dev[i].flags);
4568                         s.locked++;
4569                 }
4570         }
4571
4572         if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
4573             !sh->reconstruct_state) {
4574                 /* Need to write out all blocks after computing parity */
4575                 sh->disks = conf->raid_disks;
4576                 stripe_set_idx(sh->sector, conf, 0, sh);
4577                 schedule_reconstruction(sh, &s, 1, 1);
4578         } else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
4579                 clear_bit(STRIPE_EXPAND_READY, &sh->state);
4580                 atomic_dec(&conf->reshape_stripes);
4581                 wake_up(&conf->wait_for_overlap);
4582                 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
4583         }
4584
4585         if (s.expanding && s.locked == 0 &&
4586             !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
4587                 handle_stripe_expansion(conf, sh);
4588
4589 finish:
4590         /* wait for this device to become unblocked */
4591         if (unlikely(s.blocked_rdev)) {
4592                 if (conf->mddev->external)
4593                         md_wait_for_blocked_rdev(s.blocked_rdev,
4594                                                  conf->mddev);
4595                 else
4596                         /* Internal metadata will immediately
4597                          * be written by raid5d, so we don't
4598                          * need to wait here.
4599                          */
4600                         rdev_dec_pending(s.blocked_rdev,
4601                                          conf->mddev);
4602         }
4603
4604         if (s.handle_bad_blocks)
4605                 for (i = disks; i--; ) {
4606                         struct md_rdev *rdev;
4607                         struct r5dev *dev = &sh->dev[i];
4608                         if (test_and_clear_bit(R5_WriteError, &dev->flags)) {
4609                                 /* We own a safe reference to the rdev */
4610                                 rdev = conf->disks[i].rdev;
4611                                 if (!rdev_set_badblocks(rdev, sh->sector,
4612                                                         STRIPE_SECTORS, 0))
4613                                         md_error(conf->mddev, rdev);
4614                                 rdev_dec_pending(rdev, conf->mddev);
4615                         }
4616                         if (test_and_clear_bit(R5_MadeGood, &dev->flags)) {
4617                                 rdev = conf->disks[i].rdev;
4618                                 rdev_clear_badblocks(rdev, sh->sector,
4619                                                      STRIPE_SECTORS, 0);
4620                                 rdev_dec_pending(rdev, conf->mddev);
4621                         }
4622                         if (test_and_clear_bit(R5_MadeGoodRepl, &dev->flags)) {
4623                                 rdev = conf->disks[i].replacement;
4624                                 if (!rdev)
4625                                         /* rdev have been moved down */
4626                                         rdev = conf->disks[i].rdev;
4627                                 rdev_clear_badblocks(rdev, sh->sector,
4628                                                      STRIPE_SECTORS, 0);
4629                                 rdev_dec_pending(rdev, conf->mddev);
4630                         }
4631                 }
4632
4633         if (s.ops_request)
4634                 raid_run_ops(sh, s.ops_request);
4635
4636         ops_run_io(sh, &s);
4637
4638         if (s.dec_preread_active) {
4639                 /* We delay this until after ops_run_io so that if make_request
4640                  * is waiting on a flush, it won't continue until the writes
4641                  * have actually been submitted.
4642                  */
4643                 atomic_dec(&conf->preread_active_stripes);
4644                 if (atomic_read(&conf->preread_active_stripes) <
4645                     IO_THRESHOLD)
4646                         md_wakeup_thread(conf->mddev->thread);
4647         }
4648
4649         if (!bio_list_empty(&s.return_bi)) {
4650                 if (test_bit(MD_CHANGE_PENDING, &conf->mddev->flags) &&
4651                                 (s.failed <= conf->max_degraded ||
4652                                         conf->mddev->external == 0)) {
4653                         spin_lock_irq(&conf->device_lock);
4654                         bio_list_merge(&conf->return_bi, &s.return_bi);
4655                         spin_unlock_irq(&conf->device_lock);
4656                         md_wakeup_thread(conf->mddev->thread);
4657                 } else
4658                         return_io(&s.return_bi);
4659         }
4660
4661         clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
4662 }
4663
4664 static void raid5_activate_delayed(struct r5conf *conf)
4665 {
4666         if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
4667                 while (!list_empty(&conf->delayed_list)) {
4668                         struct list_head *l = conf->delayed_list.next;
4669                         struct stripe_head *sh;
4670                         sh = list_entry(l, struct stripe_head, lru);
4671                         list_del_init(l);
4672                         clear_bit(STRIPE_DELAYED, &sh->state);
4673                         if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4674                                 atomic_inc(&conf->preread_active_stripes);
4675                         list_add_tail(&sh->lru, &conf->hold_list);
4676                         raid5_wakeup_stripe_thread(sh);
4677                 }
4678         }
4679 }
4680
4681 static void activate_bit_delay(struct r5conf *conf,
4682         struct list_head *temp_inactive_list)
4683 {
4684         /* device_lock is held */
4685         struct list_head head;
4686         list_add(&head, &conf->bitmap_list);
4687         list_del_init(&conf->bitmap_list);
4688         while (!list_empty(&head)) {
4689                 struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
4690                 int hash;
4691                 list_del_init(&sh->lru);
4692                 atomic_inc(&sh->count);
4693                 hash = sh->hash_lock_index;
4694                 __release_stripe(conf, sh, &temp_inactive_list[hash]);
4695         }
4696 }
4697
4698 static int raid5_congested(struct mddev *mddev, int bits)
4699 {
4700         struct r5conf *conf = mddev->private;
4701
4702         /* No difference between reads and writes.  Just check
4703          * how busy the stripe_cache is
4704          */
4705
4706         if (test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state))
4707                 return 1;
4708         if (conf->quiesce)
4709                 return 1;
4710         if (atomic_read(&conf->empty_inactive_list_nr))
4711                 return 1;
4712
4713         return 0;
4714 }
4715
4716 static int in_chunk_boundary(struct mddev *mddev, struct bio *bio)
4717 {
4718         struct r5conf *conf = mddev->private;
4719         sector_t sector = bio->bi_iter.bi_sector + get_start_sect(bio->bi_bdev);
4720         unsigned int chunk_sectors;
4721         unsigned int bio_sectors = bio_sectors(bio);
4722
4723         chunk_sectors = min(conf->chunk_sectors, conf->prev_chunk_sectors);
4724         return  chunk_sectors >=
4725                 ((sector & (chunk_sectors - 1)) + bio_sectors);
4726 }
4727
4728 /*
4729  *  add bio to the retry LIFO  ( in O(1) ... we are in interrupt )
4730  *  later sampled by raid5d.
4731  */
4732 static void add_bio_to_retry(struct bio *bi,struct r5conf *conf)
4733 {
4734         unsigned long flags;
4735
4736         spin_lock_irqsave(&conf->device_lock, flags);
4737
4738         bi->bi_next = conf->retry_read_aligned_list;
4739         conf->retry_read_aligned_list = bi;
4740
4741         spin_unlock_irqrestore(&conf->device_lock, flags);
4742         md_wakeup_thread(conf->mddev->thread);
4743 }
4744
4745 static struct bio *remove_bio_from_retry(struct r5conf *conf)
4746 {
4747         struct bio *bi;
4748
4749         bi = conf->retry_read_aligned;
4750         if (bi) {
4751                 conf->retry_read_aligned = NULL;
4752                 return bi;
4753         }
4754         bi = conf->retry_read_aligned_list;
4755         if(bi) {
4756                 conf->retry_read_aligned_list = bi->bi_next;
4757                 bi->bi_next = NULL;
4758                 /*
4759                  * this sets the active strip count to 1 and the processed
4760                  * strip count to zero (upper 8 bits)
4761                  */
4762                 raid5_set_bi_stripes(bi, 1); /* biased count of active stripes */
4763         }
4764
4765         return bi;
4766 }
4767
4768 /*
4769  *  The "raid5_align_endio" should check if the read succeeded and if it
4770  *  did, call bio_endio on the original bio (having bio_put the new bio
4771  *  first).
4772  *  If the read failed..
4773  */
4774 static void raid5_align_endio(struct bio *bi)
4775 {
4776         struct bio* raid_bi  = bi->bi_private;
4777         struct mddev *mddev;
4778         struct r5conf *conf;
4779         struct md_rdev *rdev;
4780         int error = bi->bi_error;
4781
4782         bio_put(bi);
4783
4784         rdev = (void*)raid_bi->bi_next;
4785         raid_bi->bi_next = NULL;
4786         mddev = rdev->mddev;
4787         conf = mddev->private;
4788
4789         rdev_dec_pending(rdev, conf->mddev);
4790
4791         if (!error) {
4792                 trace_block_bio_complete(bdev_get_queue(raid_bi->bi_bdev),
4793                                          raid_bi, 0);
4794                 bio_endio(raid_bi);
4795                 if (atomic_dec_and_test(&conf->active_aligned_reads))
4796                         wake_up(&conf->wait_for_quiescent);
4797                 return;
4798         }
4799
4800         pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
4801
4802         add_bio_to_retry(raid_bi, conf);
4803 }
4804
4805 static int raid5_read_one_chunk(struct mddev *mddev, struct bio *raid_bio)
4806 {
4807         struct r5conf *conf = mddev->private;
4808         int dd_idx;
4809         struct bio* align_bi;
4810         struct md_rdev *rdev;
4811         sector_t end_sector;
4812
4813         if (!in_chunk_boundary(mddev, raid_bio)) {
4814                 pr_debug("%s: non aligned\n", __func__);
4815                 return 0;
4816         }
4817         /*
4818          * use bio_clone_mddev to make a copy of the bio
4819          */
4820         align_bi = bio_clone_mddev(raid_bio, GFP_NOIO, mddev);
4821         if (!align_bi)
4822                 return 0;
4823         /*
4824          *   set bi_end_io to a new function, and set bi_private to the
4825          *     original bio.
4826          */
4827         align_bi->bi_end_io  = raid5_align_endio;
4828         align_bi->bi_private = raid_bio;
4829         /*
4830          *      compute position
4831          */
4832         align_bi->bi_iter.bi_sector =
4833                 raid5_compute_sector(conf, raid_bio->bi_iter.bi_sector,
4834                                      0, &dd_idx, NULL);
4835
4836         end_sector = bio_end_sector(align_bi);
4837         rcu_read_lock();
4838         rdev = rcu_dereference(conf->disks[dd_idx].replacement);
4839         if (!rdev || test_bit(Faulty, &rdev->flags) ||
4840             rdev->recovery_offset < end_sector) {
4841                 rdev = rcu_dereference(conf->disks[dd_idx].rdev);
4842                 if (rdev &&
4843                     (test_bit(Faulty, &rdev->flags) ||
4844                     !(test_bit(In_sync, &rdev->flags) ||
4845                       rdev->recovery_offset >= end_sector)))
4846                         rdev = NULL;
4847         }
4848         if (rdev) {
4849                 sector_t first_bad;
4850                 int bad_sectors;
4851
4852                 atomic_inc(&rdev->nr_pending);
4853                 rcu_read_unlock();
4854                 raid_bio->bi_next = (void*)rdev;
4855                 align_bi->bi_bdev =  rdev->bdev;
4856                 bio_clear_flag(align_bi, BIO_SEG_VALID);
4857
4858                 if (is_badblock(rdev, align_bi->bi_iter.bi_sector,
4859                                 bio_sectors(align_bi),
4860                                 &first_bad, &bad_sectors)) {
4861                         bio_put(align_bi);
4862                         rdev_dec_pending(rdev, mddev);
4863                         return 0;
4864                 }
4865
4866                 /* No reshape active, so we can trust rdev->data_offset */
4867                 align_bi->bi_iter.bi_sector += rdev->data_offset;
4868
4869                 spin_lock_irq(&conf->device_lock);
4870                 wait_event_lock_irq(conf->wait_for_quiescent,
4871                                     conf->quiesce == 0,
4872                                     conf->device_lock);
4873                 atomic_inc(&conf->active_aligned_reads);
4874                 spin_unlock_irq(&conf->device_lock);
4875
4876                 if (mddev->gendisk)
4877                         trace_block_bio_remap(bdev_get_queue(align_bi->bi_bdev),
4878                                               align_bi, disk_devt(mddev->gendisk),
4879                                               raid_bio->bi_iter.bi_sector);
4880                 generic_make_request(align_bi);
4881                 return 1;
4882         } else {
4883                 rcu_read_unlock();
4884                 bio_put(align_bi);
4885                 return 0;
4886         }
4887 }
4888
4889 static struct bio *chunk_aligned_read(struct mddev *mddev, struct bio *raid_bio)
4890 {
4891         struct bio *split;
4892
4893         do {
4894                 sector_t sector = raid_bio->bi_iter.bi_sector;
4895                 unsigned chunk_sects = mddev->chunk_sectors;
4896                 unsigned sectors = chunk_sects - (sector & (chunk_sects-1));
4897
4898                 if (sectors < bio_sectors(raid_bio)) {
4899                         split = bio_split(raid_bio, sectors, GFP_NOIO, fs_bio_set);
4900                         bio_chain(split, raid_bio);
4901                 } else
4902                         split = raid_bio;
4903
4904                 if (!raid5_read_one_chunk(mddev, split)) {
4905                         if (split != raid_bio)
4906                                 generic_make_request(raid_bio);
4907                         return split;
4908                 }
4909         } while (split != raid_bio);
4910
4911         return NULL;
4912 }
4913
4914 /* __get_priority_stripe - get the next stripe to process
4915  *
4916  * Full stripe writes are allowed to pass preread active stripes up until
4917  * the bypass_threshold is exceeded.  In general the bypass_count
4918  * increments when the handle_list is handled before the hold_list; however, it
4919  * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
4920  * stripe with in flight i/o.  The bypass_count will be reset when the
4921  * head of the hold_list has changed, i.e. the head was promoted to the
4922  * handle_list.
4923  */
4924 static struct stripe_head *__get_priority_stripe(struct r5conf *conf, int group)
4925 {
4926         struct stripe_head *sh = NULL, *tmp;
4927         struct list_head *handle_list = NULL;
4928         struct r5worker_group *wg = NULL;
4929
4930         if (conf->worker_cnt_per_group == 0) {
4931                 handle_list = &conf->handle_list;
4932         } else if (group != ANY_GROUP) {
4933                 handle_list = &conf->worker_groups[group].handle_list;
4934                 wg = &conf->worker_groups[group];
4935         } else {
4936                 int i;
4937                 for (i = 0; i < conf->group_cnt; i++) {
4938                         handle_list = &conf->worker_groups[i].handle_list;
4939                         wg = &conf->worker_groups[i];
4940                         if (!list_empty(handle_list))
4941                                 break;
4942                 }
4943         }
4944
4945         pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
4946                   __func__,
4947                   list_empty(handle_list) ? "empty" : "busy",
4948                   list_empty(&conf->hold_list) ? "empty" : "busy",
4949                   atomic_read(&conf->pending_full_writes), conf->bypass_count);
4950
4951         if (!list_empty(handle_list)) {
4952                 sh = list_entry(handle_list->next, typeof(*sh), lru);
4953
4954                 if (list_empty(&conf->hold_list))
4955                         conf->bypass_count = 0;
4956                 else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
4957                         if (conf->hold_list.next == conf->last_hold)
4958                                 conf->bypass_count++;
4959                         else {
4960                                 conf->last_hold = conf->hold_list.next;
4961                                 conf->bypass_count -= conf->bypass_threshold;
4962                                 if (conf->bypass_count < 0)
4963                                         conf->bypass_count = 0;
4964                         }
4965                 }
4966         } else if (!list_empty(&conf->hold_list) &&
4967                    ((conf->bypass_threshold &&
4968                      conf->bypass_count > conf->bypass_threshold) ||
4969                     atomic_read(&conf->pending_full_writes) == 0)) {
4970
4971                 list_for_each_entry(tmp, &conf->hold_list,  lru) {
4972                         if (conf->worker_cnt_per_group == 0 ||
4973                             group == ANY_GROUP ||
4974                             !cpu_online(tmp->cpu) ||
4975                             cpu_to_group(tmp->cpu) == group) {
4976                                 sh = tmp;
4977                                 break;
4978                         }
4979                 }
4980
4981                 if (sh) {
4982                         conf->bypass_count -= conf->bypass_threshold;
4983                         if (conf->bypass_count < 0)
4984                                 conf->bypass_count = 0;
4985                 }
4986                 wg = NULL;
4987         }
4988
4989         if (!sh)
4990                 return NULL;
4991
4992         if (wg) {
4993                 wg->stripes_cnt--;
4994                 sh->group = NULL;
4995         }
4996         list_del_init(&sh->lru);
4997         BUG_ON(atomic_inc_return(&sh->count) != 1);
4998         return sh;
4999 }
5000
5001 struct raid5_plug_cb {
5002         struct blk_plug_cb      cb;
5003         struct list_head        list;
5004         struct list_head        temp_inactive_list[NR_STRIPE_HASH_LOCKS];
5005 };
5006
5007 static void raid5_unplug(struct blk_plug_cb *blk_cb, bool from_schedule)
5008 {
5009         struct raid5_plug_cb *cb = container_of(
5010                 blk_cb, struct raid5_plug_cb, cb);
5011         struct stripe_head *sh;
5012         struct mddev *mddev = cb->cb.data;
5013         struct r5conf *conf = mddev->private;
5014         int cnt = 0;
5015         int hash;
5016
5017         if (cb->list.next && !list_empty(&cb->list)) {
5018                 spin_lock_irq(&conf->device_lock);
5019                 while (!list_empty(&cb->list)) {
5020                         sh = list_first_entry(&cb->list, struct stripe_head, lru);
5021                         list_del_init(&sh->lru);
5022                         /*
5023                          * avoid race release_stripe_plug() sees
5024                          * STRIPE_ON_UNPLUG_LIST clear but the stripe
5025                          * is still in our list
5026                          */
5027                         smp_mb__before_atomic();
5028                         clear_bit(STRIPE_ON_UNPLUG_LIST, &sh->state);
5029                         /*
5030                          * STRIPE_ON_RELEASE_LIST could be set here. In that
5031                          * case, the count is always > 1 here
5032                          */
5033                         hash = sh->hash_lock_index;
5034                         __release_stripe(conf, sh, &cb->temp_inactive_list[hash]);
5035                         cnt++;
5036                 }
5037                 spin_unlock_irq(&conf->device_lock);
5038         }
5039         release_inactive_stripe_list(conf, cb->temp_inactive_list,
5040                                      NR_STRIPE_HASH_LOCKS);
5041         if (mddev->queue)
5042                 trace_block_unplug(mddev->queue, cnt, !from_schedule);
5043         kfree(cb);
5044 }
5045
5046 static void release_stripe_plug(struct mddev *mddev,
5047                                 struct stripe_head *sh)
5048 {
5049         struct blk_plug_cb *blk_cb = blk_check_plugged(
5050                 raid5_unplug, mddev,
5051                 sizeof(struct raid5_plug_cb));
5052         struct raid5_plug_cb *cb;
5053
5054         if (!blk_cb) {
5055                 raid5_release_stripe(sh);
5056                 return;
5057         }
5058
5059         cb = container_of(blk_cb, struct raid5_plug_cb, cb);
5060
5061         if (cb->list.next == NULL) {
5062                 int i;
5063                 INIT_LIST_HEAD(&cb->list);
5064                 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
5065                         INIT_LIST_HEAD(cb->temp_inactive_list + i);
5066         }
5067
5068         if (!test_and_set_bit(STRIPE_ON_UNPLUG_LIST, &sh->state))
5069                 list_add_tail(&sh->lru, &cb->list);
5070         else
5071                 raid5_release_stripe(sh);
5072 }
5073
5074 static void make_discard_request(struct mddev *mddev, struct bio *bi)
5075 {
5076         struct r5conf *conf = mddev->private;
5077         sector_t logical_sector, last_sector;
5078         struct stripe_head *sh;
5079         int remaining;
5080         int stripe_sectors;
5081
5082         if (mddev->reshape_position != MaxSector)
5083                 /* Skip discard while reshape is happening */
5084                 return;
5085
5086         logical_sector = bi->bi_iter.bi_sector & ~((sector_t)STRIPE_SECTORS-1);
5087         last_sector = bi->bi_iter.bi_sector + (bi->bi_iter.bi_size>>9);
5088
5089         bi->bi_next = NULL;
5090         bi->bi_phys_segments = 1; /* over-loaded to count active stripes */
5091
5092         stripe_sectors = conf->chunk_sectors *
5093                 (conf->raid_disks - conf->max_degraded);
5094         logical_sector = DIV_ROUND_UP_SECTOR_T(logical_sector,
5095                                                stripe_sectors);
5096         sector_div(last_sector, stripe_sectors);
5097
5098         logical_sector *= conf->chunk_sectors;
5099         last_sector *= conf->chunk_sectors;
5100
5101         for (; logical_sector < last_sector;
5102              logical_sector += STRIPE_SECTORS) {
5103                 DEFINE_WAIT(w);
5104                 int d;
5105         again:
5106                 sh = raid5_get_active_stripe(conf, logical_sector, 0, 0, 0);
5107                 prepare_to_wait(&conf->wait_for_overlap, &w,
5108                                 TASK_UNINTERRUPTIBLE);
5109                 set_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
5110                 if (test_bit(STRIPE_SYNCING, &sh->state)) {
5111                         raid5_release_stripe(sh);
5112                         schedule();
5113                         goto again;
5114                 }
5115                 clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
5116                 spin_lock_irq(&sh->stripe_lock);
5117                 for (d = 0; d < conf->raid_disks; d++) {
5118                         if (d == sh->pd_idx || d == sh->qd_idx)
5119                                 continue;
5120                         if (sh->dev[d].towrite || sh->dev[d].toread) {
5121                                 set_bit(R5_Overlap, &sh->dev[d].flags);
5122                                 spin_unlock_irq(&sh->stripe_lock);
5123                                 raid5_release_stripe(sh);
5124                                 schedule();
5125                                 goto again;
5126                         }
5127                 }
5128                 set_bit(STRIPE_DISCARD, &sh->state);
5129                 finish_wait(&conf->wait_for_overlap, &w);
5130                 sh->overwrite_disks = 0;
5131                 for (d = 0; d < conf->raid_disks; d++) {
5132                         if (d == sh->pd_idx || d == sh->qd_idx)
5133                                 continue;
5134                         sh->dev[d].towrite = bi;
5135                         set_bit(R5_OVERWRITE, &sh->dev[d].flags);
5136                         raid5_inc_bi_active_stripes(bi);
5137                         sh->overwrite_disks++;
5138                 }
5139                 spin_unlock_irq(&sh->stripe_lock);
5140                 if (conf->mddev->bitmap) {
5141                         for (d = 0;
5142                              d < conf->raid_disks - conf->max_degraded;
5143                              d++)
5144                                 bitmap_startwrite(mddev->bitmap,
5145                                                   sh->sector,
5146                                                   STRIPE_SECTORS,
5147                                                   0);
5148                         sh->bm_seq = conf->seq_flush + 1;
5149                         set_bit(STRIPE_BIT_DELAY, &sh->state);
5150                 }
5151
5152                 set_bit(STRIPE_HANDLE, &sh->state);
5153                 clear_bit(STRIPE_DELAYED, &sh->state);
5154                 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5155                         atomic_inc(&conf->preread_active_stripes);
5156                 release_stripe_plug(mddev, sh);
5157         }
5158
5159         remaining = raid5_dec_bi_active_stripes(bi);
5160         if (remaining == 0) {
5161                 md_write_end(mddev);
5162                 bio_endio(bi);
5163         }
5164 }
5165
5166 static void raid5_make_request(struct mddev *mddev, struct bio * bi)
5167 {
5168         struct r5conf *conf = mddev->private;
5169         int dd_idx;
5170         sector_t new_sector;
5171         sector_t logical_sector, last_sector;
5172         struct stripe_head *sh;
5173         const int rw = bio_data_dir(bi);
5174         int remaining;
5175         DEFINE_WAIT(w);
5176         bool do_prepare;
5177
5178         if (unlikely(bi->bi_opf & REQ_PREFLUSH)) {
5179                 int ret = r5l_handle_flush_request(conf->log, bi);
5180
5181                 if (ret == 0)
5182                         return;
5183                 if (ret == -ENODEV) {
5184                         md_flush_request(mddev, bi);
5185                         return;
5186                 }
5187                 /* ret == -EAGAIN, fallback */
5188         }
5189
5190         md_write_start(mddev, bi);
5191
5192         /*
5193          * If array is degraded, better not do chunk aligned read because
5194          * later we might have to read it again in order to reconstruct
5195          * data on failed drives.
5196          */
5197         if (rw == READ && mddev->degraded == 0 &&
5198             mddev->reshape_position == MaxSector) {
5199                 bi = chunk_aligned_read(mddev, bi);
5200                 if (!bi)
5201                         return;
5202         }
5203
5204         if (unlikely(bio_op(bi) == REQ_OP_DISCARD)) {
5205                 make_discard_request(mddev, bi);
5206                 return;
5207         }
5208
5209         logical_sector = bi->bi_iter.bi_sector & ~((sector_t)STRIPE_SECTORS-1);
5210         last_sector = bio_end_sector(bi);
5211         bi->bi_next = NULL;
5212         bi->bi_phys_segments = 1;       /* over-loaded to count active stripes */
5213
5214         prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
5215         for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
5216                 int previous;
5217                 int seq;
5218
5219                 do_prepare = false;
5220         retry:
5221                 seq = read_seqcount_begin(&conf->gen_lock);
5222                 previous = 0;
5223                 if (do_prepare)
5224                         prepare_to_wait(&conf->wait_for_overlap, &w,
5225                                 TASK_UNINTERRUPTIBLE);
5226                 if (unlikely(conf->reshape_progress != MaxSector)) {
5227                         /* spinlock is needed as reshape_progress may be
5228                          * 64bit on a 32bit platform, and so it might be
5229                          * possible to see a half-updated value
5230                          * Of course reshape_progress could change after
5231                          * the lock is dropped, so once we get a reference
5232                          * to the stripe that we think it is, we will have
5233                          * to check again.
5234                          */
5235                         spin_lock_irq(&conf->device_lock);
5236                         if (mddev->reshape_backwards
5237                             ? logical_sector < conf->reshape_progress
5238                             : logical_sector >= conf->reshape_progress) {
5239                                 previous = 1;
5240                         } else {
5241                                 if (mddev->reshape_backwards
5242                                     ? logical_sector < conf->reshape_safe
5243                                     : logical_sector >= conf->reshape_safe) {
5244                                         spin_unlock_irq(&conf->device_lock);
5245                                         schedule();
5246                                         do_prepare = true;
5247                                         goto retry;
5248                                 }
5249                         }
5250                         spin_unlock_irq(&conf->device_lock);
5251                 }
5252
5253                 new_sector = raid5_compute_sector(conf, logical_sector,
5254                                                   previous,
5255                                                   &dd_idx, NULL);
5256                 pr_debug("raid456: raid5_make_request, sector %llu logical %llu\n",
5257                         (unsigned long long)new_sector,
5258                         (unsigned long long)logical_sector);
5259
5260                 sh = raid5_get_active_stripe(conf, new_sector, previous,
5261                                        (bi->bi_opf & REQ_RAHEAD), 0);
5262                 if (sh) {
5263                         if (unlikely(previous)) {
5264                                 /* expansion might have moved on while waiting for a
5265                                  * stripe, so we must do the range check again.
5266                                  * Expansion could still move past after this
5267                                  * test, but as we are holding a reference to
5268                                  * 'sh', we know that if that happens,
5269                                  *  STRIPE_EXPANDING will get set and the expansion
5270                                  * won't proceed until we finish with the stripe.
5271                                  */
5272                                 int must_retry = 0;
5273                                 spin_lock_irq(&conf->device_lock);
5274                                 if (mddev->reshape_backwards
5275                                     ? logical_sector >= conf->reshape_progress
5276                                     : logical_sector < conf->reshape_progress)
5277                                         /* mismatch, need to try again */
5278                                         must_retry = 1;
5279                                 spin_unlock_irq(&conf->device_lock);
5280                                 if (must_retry) {
5281                                         raid5_release_stripe(sh);
5282                                         schedule();
5283                                         do_prepare = true;
5284                                         goto retry;
5285                                 }
5286                         }
5287                         if (read_seqcount_retry(&conf->gen_lock, seq)) {
5288                                 /* Might have got the wrong stripe_head
5289                                  * by accident
5290                                  */
5291                                 raid5_release_stripe(sh);
5292                                 goto retry;
5293                         }
5294
5295                         if (rw == WRITE &&
5296                             logical_sector >= mddev->suspend_lo &&
5297                             logical_sector < mddev->suspend_hi) {
5298                                 raid5_release_stripe(sh);
5299                                 /* As the suspend_* range is controlled by
5300                                  * userspace, we want an interruptible
5301                                  * wait.
5302                                  */
5303                                 prepare_to_wait(&conf->wait_for_overlap,
5304                                                 &w, TASK_INTERRUPTIBLE);
5305                                 if (logical_sector >= mddev->suspend_lo &&
5306                                     logical_sector < mddev->suspend_hi) {
5307                                         sigset_t full, old;
5308                                         sigfillset(&full);
5309                                         sigprocmask(SIG_BLOCK, &full, &old);
5310                                         schedule();
5311                                         sigprocmask(SIG_SETMASK, &old, NULL);
5312                                         do_prepare = true;
5313                                 }
5314                                 goto retry;
5315                         }
5316
5317                         if (test_bit(STRIPE_EXPANDING, &sh->state) ||
5318                             !add_stripe_bio(sh, bi, dd_idx, rw, previous)) {
5319                                 /* Stripe is busy expanding or
5320                                  * add failed due to overlap.  Flush everything
5321                                  * and wait a while
5322                                  */
5323                                 md_wakeup_thread(mddev->thread);
5324                                 raid5_release_stripe(sh);
5325                                 schedule();
5326                                 do_prepare = true;
5327                                 goto retry;
5328                         }
5329                         set_bit(STRIPE_HANDLE, &sh->state);
5330                         clear_bit(STRIPE_DELAYED, &sh->state);
5331                         if ((!sh->batch_head || sh == sh->batch_head) &&
5332                             (bi->bi_opf & REQ_SYNC) &&
5333                             !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5334                                 atomic_inc(&conf->preread_active_stripes);
5335                         release_stripe_plug(mddev, sh);
5336                 } else {
5337                         /* cannot get stripe for read-ahead, just give-up */
5338                         bi->bi_error = -EIO;
5339                         break;
5340                 }
5341         }
5342         finish_wait(&conf->wait_for_overlap, &w);
5343
5344         remaining = raid5_dec_bi_active_stripes(bi);
5345         if (remaining == 0) {
5346
5347                 if ( rw == WRITE )
5348                         md_write_end(mddev);
5349
5350                 trace_block_bio_complete(bdev_get_queue(bi->bi_bdev),
5351                                          bi, 0);
5352                 bio_endio(bi);
5353         }
5354 }
5355
5356 static sector_t raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks);
5357
5358 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, int *skipped)
5359 {
5360         /* reshaping is quite different to recovery/resync so it is
5361          * handled quite separately ... here.
5362          *
5363          * On each call to sync_request, we gather one chunk worth of
5364          * destination stripes and flag them as expanding.
5365          * Then we find all the source stripes and request reads.
5366          * As the reads complete, handle_stripe will copy the data
5367          * into the destination stripe and release that stripe.
5368          */
5369         struct r5conf *conf = mddev->private;
5370         struct stripe_head *sh;
5371         sector_t first_sector, last_sector;
5372         int raid_disks = conf->previous_raid_disks;
5373         int data_disks = raid_disks - conf->max_degraded;
5374         int new_data_disks = conf->raid_disks - conf->max_degraded;
5375         int i;
5376         int dd_idx;
5377         sector_t writepos, readpos, safepos;
5378         sector_t stripe_addr;
5379         int reshape_sectors;
5380         struct list_head stripes;
5381         sector_t retn;
5382
5383         if (sector_nr == 0) {
5384                 /* If restarting in the middle, skip the initial sectors */
5385                 if (mddev->reshape_backwards &&
5386                     conf->reshape_progress < raid5_size(mddev, 0, 0)) {
5387                         sector_nr = raid5_size(mddev, 0, 0)
5388                                 - conf->reshape_progress;
5389                 } else if (mddev->reshape_backwards &&
5390                            conf->reshape_progress == MaxSector) {
5391                         /* shouldn't happen, but just in case, finish up.*/
5392                         sector_nr = MaxSector;
5393                 } else if (!mddev->reshape_backwards &&
5394                            conf->reshape_progress > 0)
5395                         sector_nr = conf->reshape_progress;
5396                 sector_div(sector_nr, new_data_disks);
5397                 if (sector_nr) {
5398                         mddev->curr_resync_completed = sector_nr;
5399                         sysfs_notify(&mddev->kobj, NULL, "sync_completed");
5400                         *skipped = 1;
5401                         retn = sector_nr;
5402                         goto finish;
5403                 }
5404         }
5405
5406         /* We need to process a full chunk at a time.
5407          * If old and new chunk sizes differ, we need to process the
5408          * largest of these
5409          */
5410
5411         reshape_sectors = max(conf->chunk_sectors, conf->prev_chunk_sectors);
5412
5413         /* We update the metadata at least every 10 seconds, or when
5414          * the data about to be copied would over-write the source of
5415          * the data at the front of the range.  i.e. one new_stripe
5416          * along from reshape_progress new_maps to after where
5417          * reshape_safe old_maps to
5418          */
5419         writepos = conf->reshape_progress;
5420         sector_div(writepos, new_data_disks);
5421         readpos = conf->reshape_progress;
5422         sector_div(readpos, data_disks);
5423         safepos = conf->reshape_safe;
5424         sector_div(safepos, data_disks);
5425         if (mddev->reshape_backwards) {
5426                 BUG_ON(writepos < reshape_sectors);
5427                 writepos -= reshape_sectors;
5428                 readpos += reshape_sectors;
5429                 safepos += reshape_sectors;
5430         } else {
5431                 writepos += reshape_sectors;
5432                 /* readpos and safepos are worst-case calculations.
5433                  * A negative number is overly pessimistic, and causes
5434                  * obvious problems for unsigned storage.  So clip to 0.
5435                  */
5436                 readpos -= min_t(sector_t, reshape_sectors, readpos);
5437                 safepos -= min_t(sector_t, reshape_sectors, safepos);
5438         }
5439
5440         /* Having calculated the 'writepos' possibly use it
5441          * to set 'stripe_addr' which is where we will write to.
5442          */
5443         if (mddev->reshape_backwards) {
5444                 BUG_ON(conf->reshape_progress == 0);
5445                 stripe_addr = writepos;
5446                 BUG_ON((mddev->dev_sectors &
5447                         ~((sector_t)reshape_sectors - 1))
5448                        - reshape_sectors - stripe_addr
5449                        != sector_nr);
5450         } else {
5451                 BUG_ON(writepos != sector_nr + reshape_sectors);
5452                 stripe_addr = sector_nr;
5453         }
5454
5455         /* 'writepos' is the most advanced device address we might write.
5456          * 'readpos' is the least advanced device address we might read.
5457          * 'safepos' is the least address recorded in the metadata as having
5458          *     been reshaped.
5459          * If there is a min_offset_diff, these are adjusted either by
5460          * increasing the safepos/readpos if diff is negative, or
5461          * increasing writepos if diff is positive.
5462          * If 'readpos' is then behind 'writepos', there is no way that we can
5463          * ensure safety in the face of a crash - that must be done by userspace
5464          * making a backup of the data.  So in that case there is no particular
5465          * rush to update metadata.
5466          * Otherwise if 'safepos' is behind 'writepos', then we really need to
5467          * update the metadata to advance 'safepos' to match 'readpos' so that
5468          * we can be safe in the event of a crash.
5469          * So we insist on updating metadata if safepos is behind writepos and
5470          * readpos is beyond writepos.
5471          * In any case, update the metadata every 10 seconds.
5472          * Maybe that number should be configurable, but I'm not sure it is
5473          * worth it.... maybe it could be a multiple of safemode_delay???
5474          */
5475         if (conf->min_offset_diff < 0) {
5476                 safepos += -conf->min_offset_diff;
5477                 readpos += -conf->min_offset_diff;
5478         } else
5479                 writepos += conf->min_offset_diff;
5480
5481         if ((mddev->reshape_backwards
5482              ? (safepos > writepos && readpos < writepos)
5483              : (safepos < writepos && readpos > writepos)) ||
5484             time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
5485                 /* Cannot proceed until we've updated the superblock... */
5486                 wait_event(conf->wait_for_overlap,
5487                            atomic_read(&conf->reshape_stripes)==0
5488                            || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5489                 if (atomic_read(&conf->reshape_stripes) != 0)
5490                         return 0;
5491                 mddev->reshape_position = conf->reshape_progress;
5492                 mddev->curr_resync_completed = sector_nr;
5493                 conf->reshape_checkpoint = jiffies;
5494                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
5495                 md_wakeup_thread(mddev->thread);
5496                 wait_event(mddev->sb_wait, mddev->flags == 0 ||
5497                            test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5498                 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
5499                         return 0;
5500                 spin_lock_irq(&conf->device_lock);
5501                 conf->reshape_safe = mddev->reshape_position;
5502                 spin_unlock_irq(&conf->device_lock);
5503                 wake_up(&conf->wait_for_overlap);
5504                 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
5505         }
5506
5507         INIT_LIST_HEAD(&stripes);
5508         for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) {
5509                 int j;
5510                 int skipped_disk = 0;
5511                 sh = raid5_get_active_stripe(conf, stripe_addr+i, 0, 0, 1);
5512                 set_bit(STRIPE_EXPANDING, &sh->state);
5513                 atomic_inc(&conf->reshape_stripes);
5514                 /* If any of this stripe is beyond the end of the old
5515                  * array, then we need to zero those blocks
5516                  */
5517                 for (j=sh->disks; j--;) {
5518                         sector_t s;
5519                         if (j == sh->pd_idx)
5520                                 continue;
5521                         if (conf->level == 6 &&
5522                             j == sh->qd_idx)
5523                                 continue;
5524                         s = raid5_compute_blocknr(sh, j, 0);
5525                         if (s < raid5_size(mddev, 0, 0)) {
5526                                 skipped_disk = 1;
5527                                 continue;
5528                         }
5529                         memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
5530                         set_bit(R5_Expanded, &sh->dev[j].flags);
5531                         set_bit(R5_UPTODATE, &sh->dev[j].flags);
5532                 }
5533                 if (!skipped_disk) {
5534                         set_bit(STRIPE_EXPAND_READY, &sh->state);
5535                         set_bit(STRIPE_HANDLE, &sh->state);
5536                 }
5537                 list_add(&sh->lru, &stripes);
5538         }
5539         spin_lock_irq(&conf->device_lock);
5540         if (mddev->reshape_backwards)
5541                 conf->reshape_progress -= reshape_sectors * new_data_disks;
5542         else
5543                 conf->reshape_progress += reshape_sectors * new_data_disks;
5544         spin_unlock_irq(&conf->device_lock);
5545         /* Ok, those stripe are ready. We can start scheduling
5546          * reads on the source stripes.
5547          * The source stripes are determined by mapping the first and last
5548          * block on the destination stripes.
5549          */
5550         first_sector =
5551                 raid5_compute_sector(conf, stripe_addr*(new_data_disks),
5552                                      1, &dd_idx, NULL);
5553         last_sector =
5554                 raid5_compute_sector(conf, ((stripe_addr+reshape_sectors)
5555                                             * new_data_disks - 1),
5556                                      1, &dd_idx, NULL);
5557         if (last_sector >= mddev->dev_sectors)
5558                 last_sector = mddev->dev_sectors - 1;
5559         while (first_sector <= last_sector) {
5560                 sh = raid5_get_active_stripe(conf, first_sector, 1, 0, 1);
5561                 set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
5562                 set_bit(STRIPE_HANDLE, &sh->state);
5563                 raid5_release_stripe(sh);
5564                 first_sector += STRIPE_SECTORS;
5565         }
5566         /* Now that the sources are clearly marked, we can release
5567          * the destination stripes
5568          */
5569         while (!list_empty(&stripes)) {
5570                 sh = list_entry(stripes.next, struct stripe_head, lru);
5571                 list_del_init(&sh->lru);
5572                 raid5_release_stripe(sh);
5573         }
5574         /* If this takes us to the resync_max point where we have to pause,
5575          * then we need to write out the superblock.
5576          */
5577         sector_nr += reshape_sectors;
5578         retn = reshape_sectors;
5579 finish:
5580         if (mddev->curr_resync_completed > mddev->resync_max ||
5581             (sector_nr - mddev->curr_resync_completed) * 2
5582             >= mddev->resync_max - mddev->curr_resync_completed) {
5583                 /* Cannot proceed until we've updated the superblock... */
5584                 wait_event(conf->wait_for_overlap,
5585                            atomic_read(&conf->reshape_stripes) == 0
5586                            || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5587                 if (atomic_read(&conf->reshape_stripes) != 0)
5588                         goto ret;
5589                 mddev->reshape_position = conf->reshape_progress;
5590                 mddev->curr_resync_completed = sector_nr;
5591                 conf->reshape_checkpoint = jiffies;
5592                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
5593                 md_wakeup_thread(mddev->thread);
5594                 wait_event(mddev->sb_wait,
5595                            !test_bit(MD_CHANGE_DEVS, &mddev->flags)
5596                            || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5597                 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
5598                         goto ret;
5599                 spin_lock_irq(&conf->device_lock);
5600                 conf->reshape_safe = mddev->reshape_position;
5601                 spin_unlock_irq(&conf->device_lock);
5602                 wake_up(&conf->wait_for_overlap);
5603                 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
5604         }
5605 ret:
5606         return retn;
5607 }
5608
5609 static inline sector_t raid5_sync_request(struct mddev *mddev, sector_t sector_nr,
5610                                           int *skipped)
5611 {
5612         struct r5conf *conf = mddev->private;
5613         struct stripe_head *sh;
5614         sector_t max_sector = mddev->dev_sectors;
5615         sector_t sync_blocks;
5616         int still_degraded = 0;
5617         int i;
5618
5619         if (sector_nr >= max_sector) {
5620                 /* just being told to finish up .. nothing much to do */
5621
5622                 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
5623                         end_reshape(conf);
5624                         return 0;
5625                 }
5626
5627                 if (mddev->curr_resync < max_sector) /* aborted */
5628                         bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
5629                                         &sync_blocks, 1);
5630                 else /* completed sync */
5631                         conf->fullsync = 0;
5632                 bitmap_close_sync(mddev->bitmap);
5633
5634                 return 0;
5635         }
5636
5637         /* Allow raid5_quiesce to complete */
5638         wait_event(conf->wait_for_overlap, conf->quiesce != 2);
5639
5640         if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
5641                 return reshape_request(mddev, sector_nr, skipped);
5642
5643         /* No need to check resync_max as we never do more than one
5644          * stripe, and as resync_max will always be on a chunk boundary,
5645          * if the check in md_do_sync didn't fire, there is no chance
5646          * of overstepping resync_max here
5647          */
5648
5649         /* if there is too many failed drives and we are trying
5650          * to resync, then assert that we are finished, because there is
5651          * nothing we can do.
5652          */
5653         if (mddev->degraded >= conf->max_degraded &&
5654             test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
5655                 sector_t rv = mddev->dev_sectors - sector_nr;
5656                 *skipped = 1;
5657                 return rv;
5658         }
5659         if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
5660             !conf->fullsync &&
5661             !bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
5662             sync_blocks >= STRIPE_SECTORS) {
5663                 /* we can skip this block, and probably more */
5664                 sync_blocks /= STRIPE_SECTORS;
5665                 *skipped = 1;
5666                 return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
5667         }
5668
5669         bitmap_cond_end_sync(mddev->bitmap, sector_nr, false);
5670
5671         sh = raid5_get_active_stripe(conf, sector_nr, 0, 1, 0);
5672         if (sh == NULL) {
5673                 sh = raid5_get_active_stripe(conf, sector_nr, 0, 0, 0);
5674                 /* make sure we don't swamp the stripe cache if someone else
5675                  * is trying to get access
5676                  */
5677                 schedule_timeout_uninterruptible(1);
5678         }
5679         /* Need to check if array will still be degraded after recovery/resync
5680          * Note in case of > 1 drive failures it's possible we're rebuilding
5681          * one drive while leaving another faulty drive in array.
5682          */
5683         rcu_read_lock();
5684         for (i = 0; i < conf->raid_disks; i++) {
5685                 struct md_rdev *rdev = ACCESS_ONCE(conf->disks[i].rdev);
5686
5687                 if (rdev == NULL || test_bit(Faulty, &rdev->flags))
5688                         still_degraded = 1;
5689         }
5690         rcu_read_unlock();
5691
5692         bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
5693
5694         set_bit(STRIPE_SYNC_REQUESTED, &sh->state);
5695         set_bit(STRIPE_HANDLE, &sh->state);
5696
5697         raid5_release_stripe(sh);
5698
5699         return STRIPE_SECTORS;
5700 }
5701
5702 static int  retry_aligned_read(struct r5conf *conf, struct bio *raid_bio)
5703 {
5704         /* We may not be able to submit a whole bio at once as there
5705          * may not be enough stripe_heads available.
5706          * We cannot pre-allocate enough stripe_heads as we may need
5707          * more than exist in the cache (if we allow ever large chunks).
5708          * So we do one stripe head at a time and record in
5709          * ->bi_hw_segments how many have been done.
5710          *
5711          * We *know* that this entire raid_bio is in one chunk, so
5712          * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
5713          */
5714         struct stripe_head *sh;
5715         int dd_idx;
5716         sector_t sector, logical_sector, last_sector;
5717         int scnt = 0;
5718         int remaining;
5719         int handled = 0;
5720
5721         logical_sector = raid_bio->bi_iter.bi_sector &
5722                 ~((sector_t)STRIPE_SECTORS-1);
5723         sector = raid5_compute_sector(conf, logical_sector,
5724                                       0, &dd_idx, NULL);
5725         last_sector = bio_end_sector(raid_bio);
5726
5727         for (; logical_sector < last_sector;
5728              logical_sector += STRIPE_SECTORS,
5729                      sector += STRIPE_SECTORS,
5730                      scnt++) {
5731
5732                 if (scnt < raid5_bi_processed_stripes(raid_bio))
5733                         /* already done this stripe */
5734                         continue;
5735
5736                 sh = raid5_get_active_stripe(conf, sector, 0, 1, 1);
5737
5738                 if (!sh) {
5739                         /* failed to get a stripe - must wait */
5740                         raid5_set_bi_processed_stripes(raid_bio, scnt);
5741                         conf->retry_read_aligned = raid_bio;
5742                         return handled;
5743                 }
5744
5745                 if (!add_stripe_bio(sh, raid_bio, dd_idx, 0, 0)) {
5746                         raid5_release_stripe(sh);
5747                         raid5_set_bi_processed_stripes(raid_bio, scnt);
5748                         conf->retry_read_aligned = raid_bio;
5749                         return handled;
5750                 }
5751
5752                 set_bit(R5_ReadNoMerge, &sh->dev[dd_idx].flags);
5753                 handle_stripe(sh);
5754                 raid5_release_stripe(sh);
5755                 handled++;
5756         }
5757         remaining = raid5_dec_bi_active_stripes(raid_bio);
5758         if (remaining == 0) {
5759                 trace_block_bio_complete(bdev_get_queue(raid_bio->bi_bdev),
5760                                          raid_bio, 0);
5761                 bio_endio(raid_bio);
5762         }
5763         if (atomic_dec_and_test(&conf->active_aligned_reads))
5764                 wake_up(&conf->wait_for_quiescent);
5765         return handled;
5766 }
5767
5768 static int handle_active_stripes(struct r5conf *conf, int group,
5769                                  struct r5worker *worker,
5770                                  struct list_head *temp_inactive_list)
5771 {
5772         struct stripe_head *batch[MAX_STRIPE_BATCH], *sh;
5773         int i, batch_size = 0, hash;
5774         bool release_inactive = false;
5775
5776         while (batch_size < MAX_STRIPE_BATCH &&
5777                         (sh = __get_priority_stripe(conf, group)) != NULL)
5778                 batch[batch_size++] = sh;
5779
5780         if (batch_size == 0) {
5781                 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
5782                         if (!list_empty(temp_inactive_list + i))
5783                                 break;
5784                 if (i == NR_STRIPE_HASH_LOCKS) {
5785                         spin_unlock_irq(&conf->device_lock);
5786                         r5l_flush_stripe_to_raid(conf->log);
5787                         spin_lock_irq(&conf->device_lock);
5788                         return batch_size;
5789                 }
5790                 release_inactive = true;
5791         }
5792         spin_unlock_irq(&conf->device_lock);
5793
5794         release_inactive_stripe_list(conf, temp_inactive_list,
5795                                      NR_STRIPE_HASH_LOCKS);
5796
5797         r5l_flush_stripe_to_raid(conf->log);
5798         if (release_inactive) {
5799                 spin_lock_irq(&conf->device_lock);
5800                 return 0;
5801         }
5802
5803         for (i = 0; i < batch_size; i++)
5804                 handle_stripe(batch[i]);
5805         r5l_write_stripe_run(conf->log);
5806
5807         cond_resched();
5808
5809         spin_lock_irq(&conf->device_lock);
5810         for (i = 0; i < batch_size; i++) {
5811                 hash = batch[i]->hash_lock_index;
5812                 __release_stripe(conf, batch[i], &temp_inactive_list[hash]);
5813         }
5814         return batch_size;
5815 }
5816
5817 static void raid5_do_work(struct work_struct *work)
5818 {
5819         struct r5worker *worker = container_of(work, struct r5worker, work);
5820         struct r5worker_group *group = worker->group;
5821         struct r5conf *conf = group->conf;
5822         int group_id = group - conf->worker_groups;
5823         int handled;
5824         struct blk_plug plug;
5825
5826         pr_debug("+++ raid5worker active\n");
5827
5828         blk_start_plug(&plug);
5829         handled = 0;
5830         spin_lock_irq(&conf->device_lock);
5831         while (1) {
5832                 int batch_size, released;
5833
5834                 released = release_stripe_list(conf, worker->temp_inactive_list);
5835
5836                 batch_size = handle_active_stripes(conf, group_id, worker,
5837                                                    worker->temp_inactive_list);
5838                 worker->working = false;
5839                 if (!batch_size && !released)
5840                         break;
5841                 handled += batch_size;
5842         }
5843         pr_debug("%d stripes handled\n", handled);
5844
5845         spin_unlock_irq(&conf->device_lock);
5846
5847         async_tx_issue_pending_all();
5848         blk_finish_plug(&plug);
5849
5850         pr_debug("--- raid5worker inactive\n");
5851 }
5852
5853 /*
5854  * This is our raid5 kernel thread.
5855  *
5856  * We scan the hash table for stripes which can be handled now.
5857  * During the scan, completed stripes are saved for us by the interrupt
5858  * handler, so that they will not have to wait for our next wakeup.
5859  */
5860 static void raid5d(struct md_thread *thread)
5861 {
5862         struct mddev *mddev = thread->mddev;
5863         struct r5conf *conf = mddev->private;
5864         int handled;
5865         struct blk_plug plug;
5866
5867         pr_debug("+++ raid5d active\n");
5868
5869         md_check_recovery(mddev);
5870
5871         if (!bio_list_empty(&conf->return_bi) &&
5872             !test_bit(MD_CHANGE_PENDING, &mddev->flags)) {
5873                 struct bio_list tmp = BIO_EMPTY_LIST;
5874                 spin_lock_irq(&conf->device_lock);
5875                 if (!test_bit(MD_CHANGE_PENDING, &mddev->flags)) {
5876                         bio_list_merge(&tmp, &conf->return_bi);
5877                         bio_list_init(&conf->return_bi);
5878                 }
5879                 spin_unlock_irq(&conf->device_lock);
5880                 return_io(&tmp);
5881         }
5882
5883         blk_start_plug(&plug);
5884         handled = 0;
5885         spin_lock_irq(&conf->device_lock);
5886         while (1) {
5887                 struct bio *bio;
5888                 int batch_size, released;
5889
5890                 released = release_stripe_list(conf, conf->temp_inactive_list);
5891                 if (released)
5892                         clear_bit(R5_DID_ALLOC, &conf->cache_state);
5893
5894                 if (
5895                     !list_empty(&conf->bitmap_list)) {
5896                         /* Now is a good time to flush some bitmap updates */
5897                         conf->seq_flush++;
5898                         spin_unlock_irq(&conf->device_lock);
5899                         bitmap_unplug(mddev->bitmap);
5900                         spin_lock_irq(&conf->device_lock);
5901                         conf->seq_write = conf->seq_flush;
5902                         activate_bit_delay(conf, conf->temp_inactive_list);
5903                 }
5904                 raid5_activate_delayed(conf);
5905
5906                 while ((bio = remove_bio_from_retry(conf))) {
5907                         int ok;
5908                         spin_unlock_irq(&conf->device_lock);
5909                         ok = retry_aligned_read(conf, bio);
5910                         spin_lock_irq(&conf->device_lock);
5911                         if (!ok)
5912                                 break;
5913                         handled++;
5914                 }
5915
5916                 batch_size = handle_active_stripes(conf, ANY_GROUP, NULL,
5917                                                    conf->temp_inactive_list);
5918                 if (!batch_size && !released)
5919                         break;
5920                 handled += batch_size;
5921
5922                 if (mddev->flags & ~(1<<MD_CHANGE_PENDING)) {
5923                         spin_unlock_irq(&conf->device_lock);
5924                         md_check_recovery(mddev);
5925                         spin_lock_irq(&conf->device_lock);
5926                 }
5927         }
5928         pr_debug("%d stripes handled\n", handled);
5929
5930         spin_unlock_irq(&conf->device_lock);
5931         if (test_and_clear_bit(R5_ALLOC_MORE, &conf->cache_state) &&
5932             mutex_trylock(&conf->cache_size_mutex)) {
5933                 grow_one_stripe(conf, __GFP_NOWARN);
5934                 /* Set flag even if allocation failed.  This helps
5935                  * slow down allocation requests when mem is short
5936                  */
5937                 set_bit(R5_DID_ALLOC, &conf->cache_state);
5938                 mutex_unlock(&conf->cache_size_mutex);
5939         }
5940
5941         r5l_flush_stripe_to_raid(conf->log);
5942
5943         async_tx_issue_pending_all();
5944         blk_finish_plug(&plug);
5945
5946         pr_debug("--- raid5d inactive\n");
5947 }
5948
5949 static ssize_t
5950 raid5_show_stripe_cache_size(struct mddev *mddev, char *page)
5951 {
5952         struct r5conf *conf;
5953         int ret = 0;
5954         spin_lock(&mddev->lock);
5955         conf = mddev->private;
5956         if (conf)
5957                 ret = sprintf(page, "%d\n", conf->min_nr_stripes);
5958         spin_unlock(&mddev->lock);
5959         return ret;
5960 }
5961
5962 int
5963 raid5_set_cache_size(struct mddev *mddev, int size)
5964 {
5965         struct r5conf *conf = mddev->private;
5966         int err;
5967
5968         if (size <= 16 || size > 32768)
5969                 return -EINVAL;
5970
5971         conf->min_nr_stripes = size;
5972         mutex_lock(&conf->cache_size_mutex);
5973         while (size < conf->max_nr_stripes &&
5974                drop_one_stripe(conf))
5975                 ;
5976         mutex_unlock(&conf->cache_size_mutex);
5977
5978
5979         err = md_allow_write(mddev);
5980         if (err)
5981                 return err;
5982
5983         mutex_lock(&conf->cache_size_mutex);
5984         while (size > conf->max_nr_stripes)
5985                 if (!grow_one_stripe(conf, GFP_KERNEL))
5986                         break;
5987         mutex_unlock(&conf->cache_size_mutex);
5988
5989         return 0;
5990 }
5991 EXPORT_SYMBOL(raid5_set_cache_size);
5992
5993 static ssize_t
5994 raid5_store_stripe_cache_size(struct mddev *mddev, const char *page, size_t len)
5995 {
5996         struct r5conf *conf;
5997         unsigned long new;
5998         int err;
5999
6000         if (len >= PAGE_SIZE)
6001                 return -EINVAL;
6002         if (kstrtoul(page, 10, &new))
6003                 return -EINVAL;
6004         err = mddev_lock(mddev);
6005         if (err)
6006                 return err;
6007         conf = mddev->private;
6008         if (!conf)
6009                 err = -ENODEV;
6010         else
6011                 err = raid5_set_cache_size(mddev, new);
6012         mddev_unlock(mddev);
6013
6014         return err ?: len;
6015 }
6016
6017 static struct md_sysfs_entry
6018 raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
6019                                 raid5_show_stripe_cache_size,
6020                                 raid5_store_stripe_cache_size);
6021
6022 static ssize_t
6023 raid5_show_rmw_level(struct mddev  *mddev, char *page)
6024 {
6025         struct r5conf *conf = mddev->private;
6026         if (conf)
6027                 return sprintf(page, "%d\n", conf->rmw_level);
6028         else
6029                 return 0;
6030 }
6031
6032 static ssize_t
6033 raid5_store_rmw_level(struct mddev  *mddev, const char *page, size_t len)
6034 {
6035         struct r5conf *conf = mddev->private;
6036         unsigned long new;
6037
6038         if (!conf)
6039                 return -ENODEV;
6040
6041         if (len >= PAGE_SIZE)
6042                 return -EINVAL;
6043
6044         if (kstrtoul(page, 10, &new))
6045                 return -EINVAL;
6046
6047         if (new != PARITY_DISABLE_RMW && !raid6_call.xor_syndrome)
6048                 return -EINVAL;
6049
6050         if (new != PARITY_DISABLE_RMW &&
6051             new != PARITY_ENABLE_RMW &&
6052             new != PARITY_PREFER_RMW)
6053                 return -EINVAL;
6054
6055         conf->rmw_level = new;
6056         return len;
6057 }
6058
6059 static struct md_sysfs_entry
6060 raid5_rmw_level = __ATTR(rmw_level, S_IRUGO | S_IWUSR,
6061                          raid5_show_rmw_level,
6062                          raid5_store_rmw_level);
6063
6064
6065 static ssize_t
6066 raid5_show_preread_threshold(struct mddev *mddev, char *page)
6067 {
6068         struct r5conf *conf;
6069         int ret = 0;
6070         spin_lock(&mddev->lock);
6071         conf = mddev->private;
6072         if (conf)
6073                 ret = sprintf(page, "%d\n", conf->bypass_threshold);
6074         spin_unlock(&mddev->lock);
6075         return ret;
6076 }
6077
6078 static ssize_t
6079 raid5_store_preread_threshold(struct mddev *mddev, const char *page, size_t len)
6080 {
6081         struct r5conf *conf;
6082         unsigned long new;
6083         int err;
6084
6085         if (len >= PAGE_SIZE)
6086                 return -EINVAL;
6087         if (kstrtoul(page, 10, &new))
6088                 return -EINVAL;
6089
6090         err = mddev_lock(mddev);
6091         if (err)
6092                 return err;
6093         conf = mddev->private;
6094         if (!conf)
6095                 err = -ENODEV;
6096         else if (new > conf->min_nr_stripes)
6097                 err = -EINVAL;
6098         else
6099                 conf->bypass_threshold = new;
6100         mddev_unlock(mddev);
6101         return err ?: len;
6102 }
6103
6104 static struct md_sysfs_entry
6105 raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
6106                                         S_IRUGO | S_IWUSR,
6107                                         raid5_show_preread_threshold,
6108                                         raid5_store_preread_threshold);
6109
6110 static ssize_t
6111 raid5_show_skip_copy(struct mddev *mddev, char *page)
6112 {
6113         struct r5conf *conf;
6114         int ret = 0;
6115         spin_lock(&mddev->lock);
6116         conf = mddev->private;
6117         if (conf)
6118                 ret = sprintf(page, "%d\n", conf->skip_copy);
6119         spin_unlock(&mddev->lock);
6120         return ret;
6121 }
6122
6123 static ssize_t
6124 raid5_store_skip_copy(struct mddev *mddev, const char *page, size_t len)
6125 {
6126         struct r5conf *conf;
6127         unsigned long new;
6128         int err;
6129
6130         if (len >= PAGE_SIZE)
6131                 return -EINVAL;
6132         if (kstrtoul(page, 10, &new))
6133                 return -EINVAL;
6134         new = !!new;
6135
6136         err = mddev_lock(mddev);
6137         if (err)
6138                 return err;
6139         conf = mddev->private;
6140         if (!conf)
6141                 err = -ENODEV;
6142         else if (new != conf->skip_copy) {
6143                 mddev_suspend(mddev);
6144                 conf->skip_copy = new;
6145                 if (new)
6146                         mddev->queue->backing_dev_info.capabilities |=
6147                                 BDI_CAP_STABLE_WRITES;
6148                 else
6149                         mddev->queue->backing_dev_info.capabilities &=
6150                                 ~BDI_CAP_STABLE_WRITES;
6151                 mddev_resume(mddev);
6152         }
6153         mddev_unlock(mddev);
6154         return err ?: len;
6155 }
6156
6157 static struct md_sysfs_entry
6158 raid5_skip_copy = __ATTR(skip_copy, S_IRUGO | S_IWUSR,
6159                                         raid5_show_skip_copy,
6160                                         raid5_store_skip_copy);
6161
6162 static ssize_t
6163 stripe_cache_active_show(struct mddev *mddev, char *page)
6164 {
6165         struct r5conf *conf = mddev->private;
6166         if (conf)
6167                 return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
6168         else
6169                 return 0;
6170 }
6171
6172 static struct md_sysfs_entry
6173 raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
6174
6175 static ssize_t
6176 raid5_show_group_thread_cnt(struct mddev *mddev, char *page)
6177 {
6178         struct r5conf *conf;
6179         int ret = 0;
6180         spin_lock(&mddev->lock);
6181         conf = mddev->private;
6182         if (conf)
6183                 ret = sprintf(page, "%d\n", conf->worker_cnt_per_group);
6184         spin_unlock(&mddev->lock);
6185         return ret;
6186 }
6187
6188 static int alloc_thread_groups(struct r5conf *conf, int cnt,
6189                                int *group_cnt,
6190                                int *worker_cnt_per_group,
6191                                struct r5worker_group **worker_groups);
6192 static ssize_t
6193 raid5_store_group_thread_cnt(struct mddev *mddev, const char *page, size_t len)
6194 {
6195         struct r5conf *conf;
6196         unsigned long new;
6197         int err;
6198         struct r5worker_group *new_groups, *old_groups;
6199         int group_cnt, worker_cnt_per_group;
6200
6201         if (len >= PAGE_SIZE)
6202                 return -EINVAL;
6203         if (kstrtoul(page, 10, &new))
6204                 return -EINVAL;
6205
6206         err = mddev_lock(mddev);
6207         if (err)
6208                 return err;
6209         conf = mddev->private;
6210         if (!conf)
6211                 err = -ENODEV;
6212         else if (new != conf->worker_cnt_per_group) {
6213                 mddev_suspend(mddev);
6214
6215                 old_groups = conf->worker_groups;
6216                 if (old_groups)
6217                         flush_workqueue(raid5_wq);
6218
6219                 err = alloc_thread_groups(conf, new,
6220                                           &group_cnt, &worker_cnt_per_group,
6221                                           &new_groups);
6222                 if (!err) {
6223                         spin_lock_irq(&conf->device_lock);
6224                         conf->group_cnt = group_cnt;
6225                         conf->worker_cnt_per_group = worker_cnt_per_group;
6226                         conf->worker_groups = new_groups;
6227                         spin_unlock_irq(&conf->device_lock);
6228
6229                         if (old_groups)
6230                                 kfree(old_groups[0].workers);
6231                         kfree(old_groups);
6232                 }
6233                 mddev_resume(mddev);
6234         }
6235         mddev_unlock(mddev);
6236
6237         return err ?: len;
6238 }
6239
6240 static struct md_sysfs_entry
6241 raid5_group_thread_cnt = __ATTR(group_thread_cnt, S_IRUGO | S_IWUSR,
6242                                 raid5_show_group_thread_cnt,
6243                                 raid5_store_group_thread_cnt);
6244
6245 static struct attribute *raid5_attrs[] =  {
6246         &raid5_stripecache_size.attr,
6247         &raid5_stripecache_active.attr,
6248         &raid5_preread_bypass_threshold.attr,
6249         &raid5_group_thread_cnt.attr,
6250         &raid5_skip_copy.attr,
6251         &raid5_rmw_level.attr,
6252         NULL,
6253 };
6254 static struct attribute_group raid5_attrs_group = {
6255         .name = NULL,
6256         .attrs = raid5_attrs,
6257 };
6258
6259 static int alloc_thread_groups(struct r5conf *conf, int cnt,
6260                                int *group_cnt,
6261                                int *worker_cnt_per_group,
6262                                struct r5worker_group **worker_groups)
6263 {
6264         int i, j, k;
6265         ssize_t size;
6266         struct r5worker *workers;
6267
6268         *worker_cnt_per_group = cnt;
6269         if (cnt == 0) {
6270                 *group_cnt = 0;
6271                 *worker_groups = NULL;
6272                 return 0;
6273         }
6274         *group_cnt = num_possible_nodes();
6275         size = sizeof(struct r5worker) * cnt;
6276         workers = kzalloc(size * *group_cnt, GFP_NOIO);
6277         *worker_groups = kzalloc(sizeof(struct r5worker_group) *
6278                                 *group_cnt, GFP_NOIO);
6279         if (!*worker_groups || !workers) {
6280                 kfree(workers);
6281                 kfree(*worker_groups);
6282                 return -ENOMEM;
6283         }
6284
6285         for (i = 0; i < *group_cnt; i++) {
6286                 struct r5worker_group *group;
6287
6288                 group = &(*worker_groups)[i];
6289                 INIT_LIST_HEAD(&group->handle_list);
6290                 group->conf = conf;
6291                 group->workers = workers + i * cnt;
6292
6293                 for (j = 0; j < cnt; j++) {
6294                         struct r5worker *worker = group->workers + j;
6295                         worker->group = group;
6296                         INIT_WORK(&worker->work, raid5_do_work);
6297
6298                         for (k = 0; k < NR_STRIPE_HASH_LOCKS; k++)
6299                                 INIT_LIST_HEAD(worker->temp_inactive_list + k);
6300                 }
6301         }
6302
6303         return 0;
6304 }
6305
6306 static void free_thread_groups(struct r5conf *conf)
6307 {
6308         if (conf->worker_groups)
6309                 kfree(conf->worker_groups[0].workers);
6310         kfree(conf->worker_groups);
6311         conf->worker_groups = NULL;
6312 }
6313
6314 static sector_t
6315 raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks)
6316 {
6317         struct r5conf *conf = mddev->private;
6318
6319         if (!sectors)
6320                 sectors = mddev->dev_sectors;
6321         if (!raid_disks)
6322                 /* size is defined by the smallest of previous and new size */
6323                 raid_disks = min(conf->raid_disks, conf->previous_raid_disks);
6324
6325         sectors &= ~((sector_t)conf->chunk_sectors - 1);
6326         sectors &= ~((sector_t)conf->prev_chunk_sectors - 1);
6327         return sectors * (raid_disks - conf->max_degraded);
6328 }
6329
6330 static void free_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
6331 {
6332         safe_put_page(percpu->spare_page);
6333         if (percpu->scribble)
6334                 flex_array_free(percpu->scribble);
6335         percpu->spare_page = NULL;
6336         percpu->scribble = NULL;
6337 }
6338
6339 static int alloc_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
6340 {
6341         if (conf->level == 6 && !percpu->spare_page)
6342                 percpu->spare_page = alloc_page(GFP_KERNEL);
6343         if (!percpu->scribble)
6344                 percpu->scribble = scribble_alloc(max(conf->raid_disks,
6345                                                       conf->previous_raid_disks),
6346                                                   max(conf->chunk_sectors,
6347                                                       conf->prev_chunk_sectors)
6348                                                    / STRIPE_SECTORS,
6349                                                   GFP_KERNEL);
6350
6351         if (!percpu->scribble || (conf->level == 6 && !percpu->spare_page)) {
6352                 free_scratch_buffer(conf, percpu);
6353                 return -ENOMEM;
6354         }
6355
6356         return 0;
6357 }
6358
6359 static int raid456_cpu_dead(unsigned int cpu, struct hlist_node *node)
6360 {
6361         struct r5conf *conf = hlist_entry_safe(node, struct r5conf, node);
6362
6363         free_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
6364         return 0;
6365 }
6366
6367 static void raid5_free_percpu(struct r5conf *conf)
6368 {
6369         if (!conf->percpu)
6370                 return;
6371
6372         cpuhp_state_remove_instance(CPUHP_MD_RAID5_PREPARE, &conf->node);
6373         free_percpu(conf->percpu);
6374 }
6375
6376 static void free_conf(struct r5conf *conf)
6377 {
6378         if (conf->log)
6379                 r5l_exit_log(conf->log);
6380         if (conf->shrinker.nr_deferred)
6381                 unregister_shrinker(&conf->shrinker);
6382
6383         free_thread_groups(conf);
6384         shrink_stripes(conf);
6385         raid5_free_percpu(conf);
6386         kfree(conf->disks);
6387         kfree(conf->stripe_hashtbl);
6388         kfree(conf);
6389 }
6390
6391 static int raid456_cpu_up_prepare(unsigned int cpu, struct hlist_node *node)
6392 {
6393         struct r5conf *conf = hlist_entry_safe(node, struct r5conf, node);
6394         struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu);
6395
6396         if (alloc_scratch_buffer(conf, percpu)) {
6397                 pr_err("%s: failed memory allocation for cpu%u\n",
6398                        __func__, cpu);
6399                 return -ENOMEM;
6400         }
6401         return 0;
6402 }
6403
6404 static int raid5_alloc_percpu(struct r5conf *conf)
6405 {
6406         int err = 0;
6407
6408         conf->percpu = alloc_percpu(struct raid5_percpu);
6409         if (!conf->percpu)
6410                 return -ENOMEM;
6411
6412         err = cpuhp_state_add_instance(CPUHP_MD_RAID5_PREPARE, &conf->node);
6413         if (!err) {
6414                 conf->scribble_disks = max(conf->raid_disks,
6415                         conf->previous_raid_disks);
6416                 conf->scribble_sectors = max(conf->chunk_sectors,
6417                         conf->prev_chunk_sectors);
6418         }
6419         return err;
6420 }
6421
6422 static unsigned long raid5_cache_scan(struct shrinker *shrink,
6423                                       struct shrink_control *sc)
6424 {
6425         struct r5conf *conf = container_of(shrink, struct r5conf, shrinker);
6426         unsigned long ret = SHRINK_STOP;
6427
6428         if (mutex_trylock(&conf->cache_size_mutex)) {
6429                 ret= 0;
6430                 while (ret < sc->nr_to_scan &&
6431                        conf->max_nr_stripes > conf->min_nr_stripes) {
6432                         if (drop_one_stripe(conf) == 0) {
6433                                 ret = SHRINK_STOP;
6434                                 break;
6435                         }
6436                         ret++;
6437                 }
6438                 mutex_unlock(&conf->cache_size_mutex);
6439         }
6440         return ret;
6441 }
6442
6443 static unsigned long raid5_cache_count(struct shrinker *shrink,
6444                                        struct shrink_control *sc)
6445 {
6446         struct r5conf *conf = container_of(shrink, struct r5conf, shrinker);
6447
6448         if (conf->max_nr_stripes < conf->min_nr_stripes)
6449                 /* unlikely, but not impossible */
6450                 return 0;
6451         return conf->max_nr_stripes - conf->min_nr_stripes;
6452 }
6453
6454 static struct r5conf *setup_conf(struct mddev *mddev)
6455 {
6456         struct r5conf *conf;
6457         int raid_disk, memory, max_disks;
6458         struct md_rdev *rdev;
6459         struct disk_info *disk;
6460         char pers_name[6];
6461         int i;
6462         int group_cnt, worker_cnt_per_group;
6463         struct r5worker_group *new_group;
6464
6465         if (mddev->new_level != 5
6466             && mddev->new_level != 4
6467             && mddev->new_level != 6) {
6468                 printk(KERN_ERR "md/raid:%s: raid level not set to 4/5/6 (%d)\n",
6469                        mdname(mddev), mddev->new_level);
6470                 return ERR_PTR(-EIO);
6471         }
6472         if ((mddev->new_level == 5
6473              && !algorithm_valid_raid5(mddev->new_layout)) ||
6474             (mddev->new_level == 6
6475              && !algorithm_valid_raid6(mddev->new_layout))) {
6476                 printk(KERN_ERR "md/raid:%s: layout %d not supported\n",
6477                        mdname(mddev), mddev->new_layout);
6478                 return ERR_PTR(-EIO);
6479         }
6480         if (mddev->new_level == 6 && mddev->raid_disks < 4) {
6481                 printk(KERN_ERR "md/raid:%s: not enough configured devices (%d, minimum 4)\n",
6482                        mdname(mddev), mddev->raid_disks);
6483                 return ERR_PTR(-EINVAL);
6484         }
6485
6486         if (!mddev->new_chunk_sectors ||
6487             (mddev->new_chunk_sectors << 9) % PAGE_SIZE ||
6488             !is_power_of_2(mddev->new_chunk_sectors)) {
6489                 printk(KERN_ERR "md/raid:%s: invalid chunk size %d\n",
6490                        mdname(mddev), mddev->new_chunk_sectors << 9);
6491                 return ERR_PTR(-EINVAL);
6492         }
6493
6494         conf = kzalloc(sizeof(struct r5conf), GFP_KERNEL);
6495         if (conf == NULL)
6496                 goto abort;
6497         /* Don't enable multi-threading by default*/
6498         if (!alloc_thread_groups(conf, 0, &group_cnt, &worker_cnt_per_group,
6499                                  &new_group)) {
6500                 conf->group_cnt = group_cnt;
6501                 conf->worker_cnt_per_group = worker_cnt_per_group;
6502                 conf->worker_groups = new_group;
6503         } else
6504                 goto abort;
6505         spin_lock_init(&conf->device_lock);
6506         seqcount_init(&conf->gen_lock);
6507         mutex_init(&conf->cache_size_mutex);
6508         init_waitqueue_head(&conf->wait_for_quiescent);
6509         init_waitqueue_head(&conf->wait_for_stripe);
6510         init_waitqueue_head(&conf->wait_for_overlap);
6511         INIT_LIST_HEAD(&conf->handle_list);
6512         INIT_LIST_HEAD(&conf->hold_list);
6513         INIT_LIST_HEAD(&conf->delayed_list);
6514         INIT_LIST_HEAD(&conf->bitmap_list);
6515         bio_list_init(&conf->return_bi);
6516         init_llist_head(&conf->released_stripes);
6517         atomic_set(&conf->active_stripes, 0);
6518         atomic_set(&conf->preread_active_stripes, 0);
6519         atomic_set(&conf->active_aligned_reads, 0);
6520         conf->bypass_threshold = BYPASS_THRESHOLD;
6521         conf->recovery_disabled = mddev->recovery_disabled - 1;
6522
6523         conf->raid_disks = mddev->raid_disks;
6524         if (mddev->reshape_position == MaxSector)
6525                 conf->previous_raid_disks = mddev->raid_disks;
6526         else
6527                 conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
6528         max_disks = max(conf->raid_disks, conf->previous_raid_disks);
6529
6530         conf->disks = kzalloc(max_disks * sizeof(struct disk_info),
6531                               GFP_KERNEL);
6532         if (!conf->disks)
6533                 goto abort;
6534
6535         conf->mddev = mddev;
6536
6537         if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
6538                 goto abort;
6539
6540         /* We init hash_locks[0] separately to that it can be used
6541          * as the reference lock in the spin_lock_nest_lock() call
6542          * in lock_all_device_hash_locks_irq in order to convince
6543          * lockdep that we know what we are doing.
6544          */
6545         spin_lock_init(conf->hash_locks);
6546         for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
6547                 spin_lock_init(conf->hash_locks + i);
6548
6549         for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
6550                 INIT_LIST_HEAD(conf->inactive_list + i);
6551
6552         for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
6553                 INIT_LIST_HEAD(conf->temp_inactive_list + i);
6554
6555         conf->level = mddev->new_level;
6556         conf->chunk_sectors = mddev->new_chunk_sectors;
6557         if (raid5_alloc_percpu(conf) != 0)
6558                 goto abort;
6559
6560         pr_debug("raid456: run(%s) called.\n", mdname(mddev));
6561
6562         rdev_for_each(rdev, mddev) {
6563                 raid_disk = rdev->raid_disk;
6564                 if (raid_disk >= max_disks
6565                     || raid_disk < 0 || test_bit(Journal, &rdev->flags))
6566                         continue;
6567                 disk = conf->disks + raid_disk;
6568
6569                 if (test_bit(Replacement, &rdev->flags)) {
6570                         if (disk->replacement)
6571                                 goto abort;
6572                         disk->replacement = rdev;
6573                 } else {
6574                         if (disk->rdev)
6575                                 goto abort;
6576                         disk->rdev = rdev;
6577                 }
6578
6579                 if (test_bit(In_sync, &rdev->flags)) {
6580                         char b[BDEVNAME_SIZE];
6581                         printk(KERN_INFO "md/raid:%s: device %s operational as raid"
6582                                " disk %d\n",
6583                                mdname(mddev), bdevname(rdev->bdev, b), raid_disk);
6584                 } else if (rdev->saved_raid_disk != raid_disk)
6585                         /* Cannot rely on bitmap to complete recovery */
6586                         conf->fullsync = 1;
6587         }
6588
6589         conf->level = mddev->new_level;
6590         if (conf->level == 6) {
6591                 conf->max_degraded = 2;
6592                 if (raid6_call.xor_syndrome)
6593                         conf->rmw_level = PARITY_ENABLE_RMW;
6594                 else
6595                         conf->rmw_level = PARITY_DISABLE_RMW;
6596         } else {
6597                 conf->max_degraded = 1;
6598                 conf->rmw_level = PARITY_ENABLE_RMW;
6599         }
6600         conf->algorithm = mddev->new_layout;
6601         conf->reshape_progress = mddev->reshape_position;
6602         if (conf->reshape_progress != MaxSector) {
6603                 conf->prev_chunk_sectors = mddev->chunk_sectors;
6604                 conf->prev_algo = mddev->layout;
6605         } else {
6606                 conf->prev_chunk_sectors = conf->chunk_sectors;
6607                 conf->prev_algo = conf->algorithm;
6608         }
6609
6610         conf->min_nr_stripes = NR_STRIPES;
6611         if (mddev->reshape_position != MaxSector) {
6612                 int stripes = max_t(int,
6613                         ((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4,
6614                         ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4);
6615                 conf->min_nr_stripes = max(NR_STRIPES, stripes);
6616                 if (conf->min_nr_stripes != NR_STRIPES)
6617                         printk(KERN_INFO
6618                                 "md/raid:%s: force stripe size %d for reshape\n",
6619                                 mdname(mddev), conf->min_nr_stripes);
6620         }
6621         memory = conf->min_nr_stripes * (sizeof(struct stripe_head) +
6622                  max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
6623         atomic_set(&conf->empty_inactive_list_nr, NR_STRIPE_HASH_LOCKS);
6624         if (grow_stripes(conf, conf->min_nr_stripes)) {
6625                 printk(KERN_ERR
6626                        "md/raid:%s: couldn't allocate %dkB for buffers\n",
6627                        mdname(mddev), memory);
6628                 goto abort;
6629         } else
6630                 printk(KERN_INFO "md/raid:%s: allocated %dkB\n",
6631                        mdname(mddev), memory);
6632         /*
6633          * Losing a stripe head costs more than the time to refill it,
6634          * it reduces the queue depth and so can hurt throughput.
6635          * So set it rather large, scaled by number of devices.
6636          */
6637         conf->shrinker.seeks = DEFAULT_SEEKS * conf->raid_disks * 4;
6638         conf->shrinker.scan_objects = raid5_cache_scan;
6639         conf->shrinker.count_objects = raid5_cache_count;
6640         conf->shrinker.batch = 128;
6641         conf->shrinker.flags = 0;
6642         if (register_shrinker(&conf->shrinker)) {
6643                 printk(KERN_ERR
6644                        "md/raid:%s: couldn't register shrinker.\n",
6645                        mdname(mddev));
6646                 goto abort;
6647         }
6648
6649         sprintf(pers_name, "raid%d", mddev->new_level);
6650         conf->thread = md_register_thread(raid5d, mddev, pers_name);
6651         if (!conf->thread) {
6652                 printk(KERN_ERR
6653                        "md/raid:%s: couldn't allocate thread.\n",
6654                        mdname(mddev));
6655                 goto abort;
6656         }
6657
6658         return conf;
6659
6660  abort:
6661         if (conf) {
6662                 free_conf(conf);
6663                 return ERR_PTR(-EIO);
6664         } else
6665                 return ERR_PTR(-ENOMEM);
6666 }
6667
6668 static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded)
6669 {
6670         switch (algo) {
6671         case ALGORITHM_PARITY_0:
6672                 if (raid_disk < max_degraded)
6673                         return 1;
6674                 break;
6675         case ALGORITHM_PARITY_N:
6676                 if (raid_disk >= raid_disks - max_degraded)
6677                         return 1;
6678                 break;
6679         case ALGORITHM_PARITY_0_6:
6680                 if (raid_disk == 0 ||
6681                     raid_disk == raid_disks - 1)
6682                         return 1;
6683                 break;
6684         case ALGORITHM_LEFT_ASYMMETRIC_6:
6685         case ALGORITHM_RIGHT_ASYMMETRIC_6:
6686         case ALGORITHM_LEFT_SYMMETRIC_6:
6687         case ALGORITHM_RIGHT_SYMMETRIC_6:
6688                 if (raid_disk == raid_disks - 1)
6689                         return 1;
6690         }
6691         return 0;
6692 }
6693
6694 static int raid5_run(struct mddev *mddev)
6695 {
6696         struct r5conf *conf;
6697         int working_disks = 0;
6698         int dirty_parity_disks = 0;
6699         struct md_rdev *rdev;
6700         struct md_rdev *journal_dev = NULL;
6701         sector_t reshape_offset = 0;
6702         int i;
6703         long long min_offset_diff = 0;
6704         int first = 1;
6705
6706         if (mddev->recovery_cp != MaxSector)
6707                 printk(KERN_NOTICE "md/raid:%s: not clean"
6708                        " -- starting background reconstruction\n",
6709                        mdname(mddev));
6710
6711         rdev_for_each(rdev, mddev) {
6712                 long long diff;
6713
6714                 if (test_bit(Journal, &rdev->flags)) {
6715                         journal_dev = rdev;
6716                         continue;
6717                 }
6718                 if (rdev->raid_disk < 0)
6719                         continue;
6720                 diff = (rdev->new_data_offset - rdev->data_offset);
6721                 if (first) {
6722                         min_offset_diff = diff;
6723                         first = 0;
6724                 } else if (mddev->reshape_backwards &&
6725                          diff < min_offset_diff)
6726                         min_offset_diff = diff;
6727                 else if (!mddev->reshape_backwards &&
6728                          diff > min_offset_diff)
6729                         min_offset_diff = diff;
6730         }
6731
6732         if (mddev->reshape_position != MaxSector) {
6733                 /* Check that we can continue the reshape.
6734                  * Difficulties arise if the stripe we would write to
6735                  * next is at or after the stripe we would read from next.
6736                  * For a reshape that changes the number of devices, this
6737                  * is only possible for a very short time, and mdadm makes
6738                  * sure that time appears to have past before assembling
6739                  * the array.  So we fail if that time hasn't passed.
6740                  * For a reshape that keeps the number of devices the same
6741                  * mdadm must be monitoring the reshape can keeping the
6742                  * critical areas read-only and backed up.  It will start
6743                  * the array in read-only mode, so we check for that.
6744                  */
6745                 sector_t here_new, here_old;
6746                 int old_disks;
6747                 int max_degraded = (mddev->level == 6 ? 2 : 1);
6748                 int chunk_sectors;
6749                 int new_data_disks;
6750
6751                 if (journal_dev) {
6752                         printk(KERN_ERR "md/raid:%s: don't support reshape with journal - aborting.\n",
6753                                mdname(mddev));
6754                         return -EINVAL;
6755                 }
6756
6757                 if (mddev->new_level != mddev->level) {
6758                         printk(KERN_ERR "md/raid:%s: unsupported reshape "
6759                                "required - aborting.\n",
6760                                mdname(mddev));
6761                         return -EINVAL;
6762                 }
6763                 old_disks = mddev->raid_disks - mddev->delta_disks;
6764                 /* reshape_position must be on a new-stripe boundary, and one
6765                  * further up in new geometry must map after here in old
6766                  * geometry.
6767                  * If the chunk sizes are different, then as we perform reshape
6768                  * in units of the largest of the two, reshape_position needs
6769                  * be a multiple of the largest chunk size times new data disks.
6770                  */
6771                 here_new = mddev->reshape_position;
6772                 chunk_sectors = max(mddev->chunk_sectors, mddev->new_chunk_sectors);
6773                 new_data_disks = mddev->raid_disks - max_degraded;
6774                 if (sector_div(here_new, chunk_sectors * new_data_disks)) {
6775                         printk(KERN_ERR "md/raid:%s: reshape_position not "
6776                                "on a stripe boundary\n", mdname(mddev));
6777                         return -EINVAL;
6778                 }
6779                 reshape_offset = here_new * chunk_sectors;
6780                 /* here_new is the stripe we will write to */
6781                 here_old = mddev->reshape_position;
6782                 sector_div(here_old, chunk_sectors * (old_disks-max_degraded));
6783                 /* here_old is the first stripe that we might need to read
6784                  * from */
6785                 if (mddev->delta_disks == 0) {
6786                         /* We cannot be sure it is safe to start an in-place
6787                          * reshape.  It is only safe if user-space is monitoring
6788                          * and taking constant backups.
6789                          * mdadm always starts a situation like this in
6790                          * readonly mode so it can take control before
6791                          * allowing any writes.  So just check for that.
6792                          */
6793                         if (abs(min_offset_diff) >= mddev->chunk_sectors &&
6794                             abs(min_offset_diff) >= mddev->new_chunk_sectors)
6795                                 /* not really in-place - so OK */;
6796                         else if (mddev->ro == 0) {
6797                                 printk(KERN_ERR "md/raid:%s: in-place reshape "
6798                                        "must be started in read-only mode "
6799                                        "- aborting\n",
6800                                        mdname(mddev));
6801                                 return -EINVAL;
6802                         }
6803                 } else if (mddev->reshape_backwards
6804                     ? (here_new * chunk_sectors + min_offset_diff <=
6805                        here_old * chunk_sectors)
6806                     : (here_new * chunk_sectors >=
6807                        here_old * chunk_sectors + (-min_offset_diff))) {
6808                         /* Reading from the same stripe as writing to - bad */
6809                         printk(KERN_ERR "md/raid:%s: reshape_position too early for "
6810                                "auto-recovery - aborting.\n",
6811                                mdname(mddev));
6812                         return -EINVAL;
6813                 }
6814                 printk(KERN_INFO "md/raid:%s: reshape will continue\n",
6815                        mdname(mddev));
6816                 /* OK, we should be able to continue; */
6817         } else {
6818                 BUG_ON(mddev->level != mddev->new_level);
6819                 BUG_ON(mddev->layout != mddev->new_layout);
6820                 BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors);
6821                 BUG_ON(mddev->delta_disks != 0);
6822         }
6823
6824         if (mddev->private == NULL)
6825                 conf = setup_conf(mddev);
6826         else
6827                 conf = mddev->private;
6828
6829         if (IS_ERR(conf))
6830                 return PTR_ERR(conf);
6831
6832         if (test_bit(MD_HAS_JOURNAL, &mddev->flags)) {
6833                 if (!journal_dev) {
6834                         pr_err("md/raid:%s: journal disk is missing, force array readonly\n",
6835                                mdname(mddev));
6836                         mddev->ro = 1;
6837                         set_disk_ro(mddev->gendisk, 1);
6838                 } else if (mddev->recovery_cp == MaxSector)
6839                         set_bit(MD_JOURNAL_CLEAN, &mddev->flags);
6840         }
6841
6842         conf->min_offset_diff = min_offset_diff;
6843         mddev->thread = conf->thread;
6844         conf->thread = NULL;
6845         mddev->private = conf;
6846
6847         for (i = 0; i < conf->raid_disks && conf->previous_raid_disks;
6848              i++) {
6849                 rdev = conf->disks[i].rdev;
6850                 if (!rdev && conf->disks[i].replacement) {
6851                         /* The replacement is all we have yet */
6852                         rdev = conf->disks[i].replacement;
6853                         conf->disks[i].replacement = NULL;
6854                         clear_bit(Replacement, &rdev->flags);
6855                         conf->disks[i].rdev = rdev;
6856                 }
6857                 if (!rdev)
6858                         continue;
6859                 if (conf->disks[i].replacement &&
6860                     conf->reshape_progress != MaxSector) {
6861                         /* replacements and reshape simply do not mix. */
6862                         printk(KERN_ERR "md: cannot handle concurrent "
6863                                "replacement and reshape.\n");
6864                         goto abort;
6865                 }
6866                 if (test_bit(In_sync, &rdev->flags)) {
6867                         working_disks++;
6868                         continue;
6869                 }
6870                 /* This disc is not fully in-sync.  However if it
6871                  * just stored parity (beyond the recovery_offset),
6872                  * when we don't need to be concerned about the
6873                  * array being dirty.
6874                  * When reshape goes 'backwards', we never have
6875                  * partially completed devices, so we only need
6876                  * to worry about reshape going forwards.
6877                  */
6878                 /* Hack because v0.91 doesn't store recovery_offset properly. */
6879                 if (mddev->major_version == 0 &&
6880                     mddev->minor_version > 90)
6881                         rdev->recovery_offset = reshape_offset;
6882
6883                 if (rdev->recovery_offset < reshape_offset) {
6884                         /* We need to check old and new layout */
6885                         if (!only_parity(rdev->raid_disk,
6886                                          conf->algorithm,
6887                                          conf->raid_disks,
6888                                          conf->max_degraded))
6889                                 continue;
6890                 }
6891                 if (!only_parity(rdev->raid_disk,
6892                                  conf->prev_algo,
6893                                  conf->previous_raid_disks,
6894                                  conf->max_degraded))
6895                         continue;
6896                 dirty_parity_disks++;
6897         }
6898
6899         /*
6900          * 0 for a fully functional array, 1 or 2 for a degraded array.
6901          */
6902         mddev->degraded = calc_degraded(conf);
6903
6904         if (has_failed(conf)) {
6905                 printk(KERN_ERR "md/raid:%s: not enough operational devices"
6906                         " (%d/%d failed)\n",
6907                         mdname(mddev), mddev->degraded, conf->raid_disks);
6908                 goto abort;
6909         }
6910
6911         /* device size must be a multiple of chunk size */
6912         mddev->dev_sectors &= ~(mddev->chunk_sectors - 1);
6913         mddev->resync_max_sectors = mddev->dev_sectors;
6914
6915         if (mddev->degraded > dirty_parity_disks &&
6916             mddev->recovery_cp != MaxSector) {
6917                 if (mddev->ok_start_degraded)
6918                         printk(KERN_WARNING
6919                                "md/raid:%s: starting dirty degraded array"
6920                                " - data corruption possible.\n",
6921                                mdname(mddev));
6922                 else {
6923                         printk(KERN_ERR
6924                                "md/raid:%s: cannot start dirty degraded array.\n",
6925                                mdname(mddev));
6926                         goto abort;
6927                 }
6928         }
6929
6930         if (mddev->degraded == 0)
6931                 printk(KERN_INFO "md/raid:%s: raid level %d active with %d out of %d"
6932                        " devices, algorithm %d\n", mdname(mddev), conf->level,
6933                        mddev->raid_disks-mddev->degraded, mddev->raid_disks,
6934                        mddev->new_layout);
6935         else
6936                 printk(KERN_ALERT "md/raid:%s: raid level %d active with %d"
6937                        " out of %d devices, algorithm %d\n",
6938                        mdname(mddev), conf->level,
6939                        mddev->raid_disks - mddev->degraded,
6940                        mddev->raid_disks, mddev->new_layout);
6941
6942         print_raid5_conf(conf);
6943
6944         if (conf->reshape_progress != MaxSector) {
6945                 conf->reshape_safe = conf->reshape_progress;
6946                 atomic_set(&conf->reshape_stripes, 0);
6947                 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
6948                 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
6949                 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
6950                 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
6951                 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
6952                                                         "reshape");
6953         }
6954
6955         /* Ok, everything is just fine now */
6956         if (mddev->to_remove == &raid5_attrs_group)
6957                 mddev->to_remove = NULL;
6958         else if (mddev->kobj.sd &&
6959             sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
6960                 printk(KERN_WARNING
6961                        "raid5: failed to create sysfs attributes for %s\n",
6962                        mdname(mddev));
6963         md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
6964
6965         if (mddev->queue) {
6966                 int chunk_size;
6967                 bool discard_supported = true;
6968                 /* read-ahead size must cover two whole stripes, which
6969                  * is 2 * (datadisks) * chunksize where 'n' is the
6970                  * number of raid devices
6971                  */
6972                 int data_disks = conf->previous_raid_disks - conf->max_degraded;
6973                 int stripe = data_disks *
6974                         ((mddev->chunk_sectors << 9) / PAGE_SIZE);
6975                 if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
6976                         mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
6977
6978                 chunk_size = mddev->chunk_sectors << 9;
6979                 blk_queue_io_min(mddev->queue, chunk_size);
6980                 blk_queue_io_opt(mddev->queue, chunk_size *
6981                                  (conf->raid_disks - conf->max_degraded));
6982                 mddev->queue->limits.raid_partial_stripes_expensive = 1;
6983                 /*
6984                  * We can only discard a whole stripe. It doesn't make sense to
6985                  * discard data disk but write parity disk
6986                  */
6987                 stripe = stripe * PAGE_SIZE;
6988                 /* Round up to power of 2, as discard handling
6989                  * currently assumes that */
6990                 while ((stripe-1) & stripe)
6991                         stripe = (stripe | (stripe-1)) + 1;
6992                 mddev->queue->limits.discard_alignment = stripe;
6993                 mddev->queue->limits.discard_granularity = stripe;
6994
6995                 /*
6996                  * We use 16-bit counter of active stripes in bi_phys_segments
6997                  * (minus one for over-loaded initialization)
6998                  */
6999                 blk_queue_max_hw_sectors(mddev->queue, 0xfffe * STRIPE_SECTORS);
7000                 blk_queue_max_discard_sectors(mddev->queue,
7001                                               0xfffe * STRIPE_SECTORS);
7002
7003                 /*
7004                  * unaligned part of discard request will be ignored, so can't
7005                  * guarantee discard_zeroes_data
7006                  */
7007                 mddev->queue->limits.discard_zeroes_data = 0;
7008
7009                 blk_queue_max_write_same_sectors(mddev->queue, 0);
7010
7011                 rdev_for_each(rdev, mddev) {
7012                         disk_stack_limits(mddev->gendisk, rdev->bdev,
7013                                           rdev->data_offset << 9);
7014                         disk_stack_limits(mddev->gendisk, rdev->bdev,
7015                                           rdev->new_data_offset << 9);
7016                         /*
7017                          * discard_zeroes_data is required, otherwise data
7018                          * could be lost. Consider a scenario: discard a stripe
7019                          * (the stripe could be inconsistent if
7020                          * discard_zeroes_data is 0); write one disk of the
7021                          * stripe (the stripe could be inconsistent again
7022                          * depending on which disks are used to calculate
7023                          * parity); the disk is broken; The stripe data of this
7024                          * disk is lost.
7025                          */
7026                         if (!blk_queue_discard(bdev_get_queue(rdev->bdev)) ||
7027                             !bdev_get_queue(rdev->bdev)->
7028                                                 limits.discard_zeroes_data)
7029                                 discard_supported = false;
7030                         /* Unfortunately, discard_zeroes_data is not currently
7031                          * a guarantee - just a hint.  So we only allow DISCARD
7032                          * if the sysadmin has confirmed that only safe devices
7033                          * are in use by setting a module parameter.
7034                          */
7035                         if (!devices_handle_discard_safely) {
7036                                 if (discard_supported) {
7037                                         pr_info("md/raid456: discard support disabled due to uncertainty.\n");
7038                                         pr_info("Set raid456.devices_handle_discard_safely=Y to override.\n");
7039                                 }
7040                                 discard_supported = false;
7041                         }
7042                 }
7043
7044                 if (discard_supported &&
7045                     mddev->queue->limits.max_discard_sectors >= (stripe >> 9) &&
7046                     mddev->queue->limits.discard_granularity >= stripe)
7047                         queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
7048                                                 mddev->queue);
7049                 else
7050                         queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
7051                                                 mddev->queue);
7052
7053                 blk_queue_max_hw_sectors(mddev->queue, UINT_MAX);
7054         }
7055
7056         if (journal_dev) {
7057                 char b[BDEVNAME_SIZE];
7058
7059                 printk(KERN_INFO"md/raid:%s: using device %s as journal\n",
7060                        mdname(mddev), bdevname(journal_dev->bdev, b));
7061                 r5l_init_log(conf, journal_dev);
7062         }
7063
7064         return 0;
7065 abort:
7066         md_unregister_thread(&mddev->thread);
7067         print_raid5_conf(conf);
7068         free_conf(conf);
7069         mddev->private = NULL;
7070         printk(KERN_ALERT "md/raid:%s: failed to run raid set.\n", mdname(mddev));
7071         return -EIO;
7072 }
7073
7074 static void raid5_free(struct mddev *mddev, void *priv)
7075 {
7076         struct r5conf *conf = priv;
7077
7078         free_conf(conf);
7079         mddev->to_remove = &raid5_attrs_group;
7080 }
7081
7082 static void raid5_status(struct seq_file *seq, struct mddev *mddev)
7083 {
7084         struct r5conf *conf = mddev->private;
7085         int i;
7086
7087         seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level,
7088                 conf->chunk_sectors / 2, mddev->layout);
7089         seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
7090         rcu_read_lock();
7091         for (i = 0; i < conf->raid_disks; i++) {
7092                 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
7093                 seq_printf (seq, "%s", rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
7094         }
7095         rcu_read_unlock();
7096         seq_printf (seq, "]");
7097 }
7098
7099 static void print_raid5_conf (struct r5conf *conf)
7100 {
7101         int i;
7102         struct disk_info *tmp;
7103
7104         printk(KERN_DEBUG "RAID conf printout:\n");
7105         if (!conf) {
7106                 printk("(conf==NULL)\n");
7107                 return;
7108         }
7109         printk(KERN_DEBUG " --- level:%d rd:%d wd:%d\n", conf->level,
7110                conf->raid_disks,
7111                conf->raid_disks - conf->mddev->degraded);
7112
7113         for (i = 0; i < conf->raid_disks; i++) {
7114                 char b[BDEVNAME_SIZE];
7115                 tmp = conf->disks + i;
7116                 if (tmp->rdev)
7117                         printk(KERN_DEBUG " disk %d, o:%d, dev:%s\n",
7118                                i, !test_bit(Faulty, &tmp->rdev->flags),
7119                                bdevname(tmp->rdev->bdev, b));
7120         }
7121 }
7122
7123 static int raid5_spare_active(struct mddev *mddev)
7124 {
7125         int i;
7126         struct r5conf *conf = mddev->private;
7127         struct disk_info *tmp;
7128         int count = 0;
7129         unsigned long flags;
7130
7131         for (i = 0; i < conf->raid_disks; i++) {
7132                 tmp = conf->disks + i;
7133                 if (tmp->replacement
7134                     && tmp->replacement->recovery_offset == MaxSector
7135                     && !test_bit(Faulty, &tmp->replacement->flags)
7136                     && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
7137                         /* Replacement has just become active. */
7138                         if (!tmp->rdev
7139                             || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
7140                                 count++;
7141                         if (tmp->rdev) {
7142                                 /* Replaced device not technically faulty,
7143                                  * but we need to be sure it gets removed
7144                                  * and never re-added.
7145                                  */
7146                                 set_bit(Faulty, &tmp->rdev->flags);
7147                                 sysfs_notify_dirent_safe(
7148                                         tmp->rdev->sysfs_state);
7149                         }
7150                         sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
7151                 } else if (tmp->rdev
7152                     && tmp->rdev->recovery_offset == MaxSector
7153                     && !test_bit(Faulty, &tmp->rdev->flags)
7154                     && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
7155                         count++;
7156                         sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
7157                 }
7158         }
7159         spin_lock_irqsave(&conf->device_lock, flags);
7160         mddev->degraded = calc_degraded(conf);
7161         spin_unlock_irqrestore(&conf->device_lock, flags);
7162         print_raid5_conf(conf);
7163         return count;
7164 }
7165
7166 static int raid5_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
7167 {
7168         struct r5conf *conf = mddev->private;
7169         int err = 0;
7170         int number = rdev->raid_disk;
7171         struct md_rdev **rdevp;
7172         struct disk_info *p = conf->disks + number;
7173
7174         print_raid5_conf(conf);
7175         if (test_bit(Journal, &rdev->flags) && conf->log) {
7176                 struct r5l_log *log;
7177                 /*
7178                  * we can't wait pending write here, as this is called in
7179                  * raid5d, wait will deadlock.
7180                  */
7181                 if (atomic_read(&mddev->writes_pending))
7182                         return -EBUSY;
7183                 log = conf->log;
7184                 conf->log = NULL;
7185                 synchronize_rcu();
7186                 r5l_exit_log(log);
7187                 return 0;
7188         }
7189         if (rdev == p->rdev)
7190                 rdevp = &p->rdev;
7191         else if (rdev == p->replacement)
7192                 rdevp = &p->replacement;
7193         else
7194                 return 0;
7195
7196         if (number >= conf->raid_disks &&
7197             conf->reshape_progress == MaxSector)
7198                 clear_bit(In_sync, &rdev->flags);
7199
7200         if (test_bit(In_sync, &rdev->flags) ||
7201             atomic_read(&rdev->nr_pending)) {
7202                 err = -EBUSY;
7203                 goto abort;
7204         }
7205         /* Only remove non-faulty devices if recovery
7206          * isn't possible.
7207          */
7208         if (!test_bit(Faulty, &rdev->flags) &&
7209             mddev->recovery_disabled != conf->recovery_disabled &&
7210             !has_failed(conf) &&
7211             (!p->replacement || p->replacement == rdev) &&
7212             number < conf->raid_disks) {
7213                 err = -EBUSY;
7214                 goto abort;
7215         }
7216         *rdevp = NULL;
7217         if (!test_bit(RemoveSynchronized, &rdev->flags)) {
7218                 synchronize_rcu();
7219                 if (atomic_read(&rdev->nr_pending)) {
7220                         /* lost the race, try later */
7221                         err = -EBUSY;
7222                         *rdevp = rdev;
7223                 }
7224         }
7225         if (p->replacement) {
7226                 /* We must have just cleared 'rdev' */
7227                 p->rdev = p->replacement;
7228                 clear_bit(Replacement, &p->replacement->flags);
7229                 smp_mb(); /* Make sure other CPUs may see both as identical
7230                            * but will never see neither - if they are careful
7231                            */
7232                 p->replacement = NULL;
7233                 clear_bit(WantReplacement, &rdev->flags);
7234         } else
7235                 /* We might have just removed the Replacement as faulty-
7236                  * clear the bit just in case
7237                  */
7238                 clear_bit(WantReplacement, &rdev->flags);
7239 abort:
7240
7241         print_raid5_conf(conf);
7242         return err;
7243 }
7244
7245 static int raid5_add_disk(struct mddev *mddev, struct md_rdev *rdev)
7246 {
7247         struct r5conf *conf = mddev->private;
7248         int err = -EEXIST;
7249         int disk;
7250         struct disk_info *p;
7251         int first = 0;
7252         int last = conf->raid_disks - 1;
7253
7254         if (test_bit(Journal, &rdev->flags)) {
7255                 char b[BDEVNAME_SIZE];
7256                 if (conf->log)
7257                         return -EBUSY;
7258
7259                 rdev->raid_disk = 0;
7260                 /*
7261                  * The array is in readonly mode if journal is missing, so no
7262                  * write requests running. We should be safe
7263                  */
7264                 r5l_init_log(conf, rdev);
7265                 printk(KERN_INFO"md/raid:%s: using device %s as journal\n",
7266                        mdname(mddev), bdevname(rdev->bdev, b));
7267                 return 0;
7268         }
7269         if (mddev->recovery_disabled == conf->recovery_disabled)
7270                 return -EBUSY;
7271
7272         if (rdev->saved_raid_disk < 0 && has_failed(conf))
7273                 /* no point adding a device */
7274                 return -EINVAL;
7275
7276         if (rdev->raid_disk >= 0)
7277                 first = last = rdev->raid_disk;
7278
7279         /*
7280          * find the disk ... but prefer rdev->saved_raid_disk
7281          * if possible.
7282          */
7283         if (rdev->saved_raid_disk >= 0 &&
7284             rdev->saved_raid_disk >= first &&
7285             conf->disks[rdev->saved_raid_disk].rdev == NULL)
7286                 first = rdev->saved_raid_disk;
7287
7288         for (disk = first; disk <= last; disk++) {
7289                 p = conf->disks + disk;
7290                 if (p->rdev == NULL) {
7291                         clear_bit(In_sync, &rdev->flags);
7292                         rdev->raid_disk = disk;
7293                         err = 0;
7294                         if (rdev->saved_raid_disk != disk)
7295                                 conf->fullsync = 1;
7296                         rcu_assign_pointer(p->rdev, rdev);
7297                         goto out;
7298                 }
7299         }
7300         for (disk = first; disk <= last; disk++) {
7301                 p = conf->disks + disk;
7302                 if (test_bit(WantReplacement, &p->rdev->flags) &&
7303                     p->replacement == NULL) {
7304                         clear_bit(In_sync, &rdev->flags);
7305                         set_bit(Replacement, &rdev->flags);
7306                         rdev->raid_disk = disk;
7307                         err = 0;
7308                         conf->fullsync = 1;
7309                         rcu_assign_pointer(p->replacement, rdev);
7310                         break;
7311                 }
7312         }
7313 out:
7314         print_raid5_conf(conf);
7315         return err;
7316 }
7317
7318 static int raid5_resize(struct mddev *mddev, sector_t sectors)
7319 {
7320         /* no resync is happening, and there is enough space
7321          * on all devices, so we can resize.
7322          * We need to make sure resync covers any new space.
7323          * If the array is shrinking we should possibly wait until
7324          * any io in the removed space completes, but it hardly seems
7325          * worth it.
7326          */
7327         sector_t newsize;
7328         struct r5conf *conf = mddev->private;
7329
7330         if (conf->log)
7331                 return -EINVAL;
7332         sectors &= ~((sector_t)conf->chunk_sectors - 1);
7333         newsize = raid5_size(mddev, sectors, mddev->raid_disks);
7334         if (mddev->external_size &&
7335             mddev->array_sectors > newsize)
7336                 return -EINVAL;
7337         if (mddev->bitmap) {
7338                 int ret = bitmap_resize(mddev->bitmap, sectors, 0, 0);
7339                 if (ret)
7340                         return ret;
7341         }
7342         md_set_array_sectors(mddev, newsize);
7343         set_capacity(mddev->gendisk, mddev->array_sectors);
7344         revalidate_disk(mddev->gendisk);
7345         if (sectors > mddev->dev_sectors &&
7346             mddev->recovery_cp > mddev->dev_sectors) {
7347                 mddev->recovery_cp = mddev->dev_sectors;
7348                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7349         }
7350         mddev->dev_sectors = sectors;
7351         mddev->resync_max_sectors = sectors;
7352         return 0;
7353 }
7354
7355 static int check_stripe_cache(struct mddev *mddev)
7356 {
7357         /* Can only proceed if there are plenty of stripe_heads.
7358          * We need a minimum of one full stripe,, and for sensible progress
7359          * it is best to have about 4 times that.
7360          * If we require 4 times, then the default 256 4K stripe_heads will
7361          * allow for chunk sizes up to 256K, which is probably OK.
7362          * If the chunk size is greater, user-space should request more
7363          * stripe_heads first.
7364          */
7365         struct r5conf *conf = mddev->private;
7366         if (((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4
7367             > conf->min_nr_stripes ||
7368             ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4
7369             > conf->min_nr_stripes) {
7370                 printk(KERN_WARNING "md/raid:%s: reshape: not enough stripes.  Needed %lu\n",
7371                        mdname(mddev),
7372                        ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9)
7373                         / STRIPE_SIZE)*4);
7374                 return 0;
7375         }
7376         return 1;
7377 }
7378
7379 static int check_reshape(struct mddev *mddev)
7380 {
7381         struct r5conf *conf = mddev->private;
7382
7383         if (conf->log)
7384                 return -EINVAL;
7385         if (mddev->delta_disks == 0 &&
7386             mddev->new_layout == mddev->layout &&
7387             mddev->new_chunk_sectors == mddev->chunk_sectors)
7388                 return 0; /* nothing to do */
7389         if (has_failed(conf))
7390                 return -EINVAL;
7391         if (mddev->delta_disks < 0 && mddev->reshape_position == MaxSector) {
7392                 /* We might be able to shrink, but the devices must
7393                  * be made bigger first.
7394                  * For raid6, 4 is the minimum size.
7395                  * Otherwise 2 is the minimum
7396                  */
7397                 int min = 2;
7398                 if (mddev->level == 6)
7399                         min = 4;
7400                 if (mddev->raid_disks + mddev->delta_disks < min)
7401                         return -EINVAL;
7402         }
7403
7404         if (!check_stripe_cache(mddev))
7405                 return -ENOSPC;
7406
7407         if (mddev->new_chunk_sectors > mddev->chunk_sectors ||
7408             mddev->delta_disks > 0)
7409                 if (resize_chunks(conf,
7410                                   conf->previous_raid_disks
7411                                   + max(0, mddev->delta_disks),
7412                                   max(mddev->new_chunk_sectors,
7413                                       mddev->chunk_sectors)
7414                             ) < 0)
7415                         return -ENOMEM;
7416         return resize_stripes(conf, (conf->previous_raid_disks
7417                                      + mddev->delta_disks));
7418 }
7419
7420 static int raid5_start_reshape(struct mddev *mddev)
7421 {
7422         struct r5conf *conf = mddev->private;
7423         struct md_rdev *rdev;
7424         int spares = 0;
7425         unsigned long flags;
7426
7427         if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
7428                 return -EBUSY;
7429
7430         if (!check_stripe_cache(mddev))
7431                 return -ENOSPC;
7432
7433         if (has_failed(conf))
7434                 return -EINVAL;
7435
7436         rdev_for_each(rdev, mddev) {
7437                 if (!test_bit(In_sync, &rdev->flags)
7438                     && !test_bit(Faulty, &rdev->flags))
7439                         spares++;
7440         }
7441
7442         if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
7443                 /* Not enough devices even to make a degraded array
7444                  * of that size
7445                  */
7446                 return -EINVAL;
7447
7448         /* Refuse to reduce size of the array.  Any reductions in
7449          * array size must be through explicit setting of array_size
7450          * attribute.
7451          */
7452         if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
7453             < mddev->array_sectors) {
7454                 printk(KERN_ERR "md/raid:%s: array size must be reduced "
7455                        "before number of disks\n", mdname(mddev));
7456                 return -EINVAL;
7457         }
7458
7459         atomic_set(&conf->reshape_stripes, 0);
7460         spin_lock_irq(&conf->device_lock);
7461         write_seqcount_begin(&conf->gen_lock);
7462         conf->previous_raid_disks = conf->raid_disks;
7463         conf->raid_disks += mddev->delta_disks;
7464         conf->prev_chunk_sectors = conf->chunk_sectors;
7465         conf->chunk_sectors = mddev->new_chunk_sectors;
7466         conf->prev_algo = conf->algorithm;
7467         conf->algorithm = mddev->new_layout;
7468         conf->generation++;
7469         /* Code that selects data_offset needs to see the generation update
7470          * if reshape_progress has been set - so a memory barrier needed.
7471          */
7472         smp_mb();
7473         if (mddev->reshape_backwards)
7474                 conf->reshape_progress = raid5_size(mddev, 0, 0);
7475         else
7476                 conf->reshape_progress = 0;
7477         conf->reshape_safe = conf->reshape_progress;
7478         write_seqcount_end(&conf->gen_lock);
7479         spin_unlock_irq(&conf->device_lock);
7480
7481         /* Now make sure any requests that proceeded on the assumption
7482          * the reshape wasn't running - like Discard or Read - have
7483          * completed.
7484          */
7485         mddev_suspend(mddev);
7486         mddev_resume(mddev);
7487
7488         /* Add some new drives, as many as will fit.
7489          * We know there are enough to make the newly sized array work.
7490          * Don't add devices if we are reducing the number of
7491          * devices in the array.  This is because it is not possible
7492          * to correctly record the "partially reconstructed" state of
7493          * such devices during the reshape and confusion could result.
7494          */
7495         if (mddev->delta_disks >= 0) {
7496                 rdev_for_each(rdev, mddev)
7497                         if (rdev->raid_disk < 0 &&
7498                             !test_bit(Faulty, &rdev->flags)) {
7499                                 if (raid5_add_disk(mddev, rdev) == 0) {
7500                                         if (rdev->raid_disk
7501                                             >= conf->previous_raid_disks)
7502                                                 set_bit(In_sync, &rdev->flags);
7503                                         else
7504                                                 rdev->recovery_offset = 0;
7505
7506                                         if (sysfs_link_rdev(mddev, rdev))
7507                                                 /* Failure here is OK */;
7508                                 }
7509                         } else if (rdev->raid_disk >= conf->previous_raid_disks
7510                                    && !test_bit(Faulty, &rdev->flags)) {
7511                                 /* This is a spare that was manually added */
7512                                 set_bit(In_sync, &rdev->flags);
7513                         }
7514
7515                 /* When a reshape changes the number of devices,
7516                  * ->degraded is measured against the larger of the
7517                  * pre and post number of devices.
7518                  */
7519                 spin_lock_irqsave(&conf->device_lock, flags);
7520                 mddev->degraded = calc_degraded(conf);
7521                 spin_unlock_irqrestore(&conf->device_lock, flags);
7522         }
7523         mddev->raid_disks = conf->raid_disks;
7524         mddev->reshape_position = conf->reshape_progress;
7525         set_bit(MD_CHANGE_DEVS, &mddev->flags);
7526
7527         clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7528         clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7529         clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
7530         set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7531         set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7532         mddev->sync_thread = md_register_thread(md_do_sync, mddev,
7533                                                 "reshape");
7534         if (!mddev->sync_thread) {
7535                 mddev->recovery = 0;
7536                 spin_lock_irq(&conf->device_lock);
7537                 write_seqcount_begin(&conf->gen_lock);
7538                 mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
7539                 mddev->new_chunk_sectors =
7540                         conf->chunk_sectors = conf->prev_chunk_sectors;
7541                 mddev->new_layout = conf->algorithm = conf->prev_algo;
7542                 rdev_for_each(rdev, mddev)
7543                         rdev->new_data_offset = rdev->data_offset;
7544                 smp_wmb();
7545                 conf->generation --;
7546                 conf->reshape_progress = MaxSector;
7547                 mddev->reshape_position = MaxSector;
7548                 write_seqcount_end(&conf->gen_lock);
7549                 spin_unlock_irq(&conf->device_lock);
7550                 return -EAGAIN;
7551         }
7552         conf->reshape_checkpoint = jiffies;
7553         md_wakeup_thread(mddev->sync_thread);
7554         md_new_event(mddev);
7555         return 0;
7556 }
7557
7558 /* This is called from the reshape thread and should make any
7559  * changes needed in 'conf'
7560  */
7561 static void end_reshape(struct r5conf *conf)
7562 {
7563
7564         if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
7565
7566                 spin_lock_irq(&conf->device_lock);
7567                 conf->previous_raid_disks = conf->raid_disks;
7568                 md_finish_reshape(conf->mddev);
7569                 smp_wmb();
7570                 conf->reshape_progress = MaxSector;
7571                 conf->mddev->reshape_position = MaxSector;
7572                 spin_unlock_irq(&conf->device_lock);
7573                 wake_up(&conf->wait_for_overlap);
7574
7575                 /* read-ahead size must cover two whole stripes, which is
7576                  * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
7577                  */
7578                 if (conf->mddev->queue) {
7579                         int data_disks = conf->raid_disks - conf->max_degraded;
7580                         int stripe = data_disks * ((conf->chunk_sectors << 9)
7581                                                    / PAGE_SIZE);
7582                         if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
7583                                 conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
7584                 }
7585         }
7586 }
7587
7588 /* This is called from the raid5d thread with mddev_lock held.
7589  * It makes config changes to the device.
7590  */
7591 static void raid5_finish_reshape(struct mddev *mddev)
7592 {
7593         struct r5conf *conf = mddev->private;
7594
7595         if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7596
7597                 if (mddev->delta_disks > 0) {
7598                         md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
7599                         if (mddev->queue) {
7600                                 set_capacity(mddev->gendisk, mddev->array_sectors);
7601                                 revalidate_disk(mddev->gendisk);
7602                         }
7603                 } else {
7604                         int d;
7605                         spin_lock_irq(&conf->device_lock);
7606                         mddev->degraded = calc_degraded(conf);
7607                         spin_unlock_irq(&conf->device_lock);
7608                         for (d = conf->raid_disks ;
7609                              d < conf->raid_disks - mddev->delta_disks;
7610                              d++) {
7611                                 struct md_rdev *rdev = conf->disks[d].rdev;
7612                                 if (rdev)
7613                                         clear_bit(In_sync, &rdev->flags);
7614                                 rdev = conf->disks[d].replacement;
7615                                 if (rdev)
7616                                         clear_bit(In_sync, &rdev->flags);
7617                         }
7618                 }
7619                 mddev->layout = conf->algorithm;
7620                 mddev->chunk_sectors = conf->chunk_sectors;
7621                 mddev->reshape_position = MaxSector;
7622                 mddev->delta_disks = 0;
7623                 mddev->reshape_backwards = 0;
7624         }
7625 }
7626
7627 static void raid5_quiesce(struct mddev *mddev, int state)
7628 {
7629         struct r5conf *conf = mddev->private;
7630
7631         switch(state) {
7632         case 2: /* resume for a suspend */
7633                 wake_up(&conf->wait_for_overlap);
7634                 break;
7635
7636         case 1: /* stop all writes */
7637                 lock_all_device_hash_locks_irq(conf);
7638                 /* '2' tells resync/reshape to pause so that all
7639                  * active stripes can drain
7640                  */
7641                 conf->quiesce = 2;
7642                 wait_event_cmd(conf->wait_for_quiescent,
7643                                     atomic_read(&conf->active_stripes) == 0 &&
7644                                     atomic_read(&conf->active_aligned_reads) == 0,
7645                                     unlock_all_device_hash_locks_irq(conf),
7646                                     lock_all_device_hash_locks_irq(conf));
7647                 conf->quiesce = 1;
7648                 unlock_all_device_hash_locks_irq(conf);
7649                 /* allow reshape to continue */
7650                 wake_up(&conf->wait_for_overlap);
7651                 break;
7652
7653         case 0: /* re-enable writes */
7654                 lock_all_device_hash_locks_irq(conf);
7655                 conf->quiesce = 0;
7656                 wake_up(&conf->wait_for_quiescent);
7657                 wake_up(&conf->wait_for_overlap);
7658                 unlock_all_device_hash_locks_irq(conf);
7659                 break;
7660         }
7661         r5l_quiesce(conf->log, state);
7662 }
7663
7664 static void *raid45_takeover_raid0(struct mddev *mddev, int level)
7665 {
7666         struct r0conf *raid0_conf = mddev->private;
7667         sector_t sectors;
7668
7669         /* for raid0 takeover only one zone is supported */
7670         if (raid0_conf->nr_strip_zones > 1) {
7671                 printk(KERN_ERR "md/raid:%s: cannot takeover raid0 with more than one zone.\n",
7672                        mdname(mddev));
7673                 return ERR_PTR(-EINVAL);
7674         }
7675
7676         sectors = raid0_conf->strip_zone[0].zone_end;
7677         sector_div(sectors, raid0_conf->strip_zone[0].nb_dev);
7678         mddev->dev_sectors = sectors;
7679         mddev->new_level = level;
7680         mddev->new_layout = ALGORITHM_PARITY_N;
7681         mddev->new_chunk_sectors = mddev->chunk_sectors;
7682         mddev->raid_disks += 1;
7683         mddev->delta_disks = 1;
7684         /* make sure it will be not marked as dirty */
7685         mddev->recovery_cp = MaxSector;
7686
7687         return setup_conf(mddev);
7688 }
7689
7690 static void *raid5_takeover_raid1(struct mddev *mddev)
7691 {
7692         int chunksect;
7693
7694         if (mddev->raid_disks != 2 ||
7695             mddev->degraded > 1)
7696                 return ERR_PTR(-EINVAL);
7697
7698         /* Should check if there are write-behind devices? */
7699
7700         chunksect = 64*2; /* 64K by default */
7701
7702         /* The array must be an exact multiple of chunksize */
7703         while (chunksect && (mddev->array_sectors & (chunksect-1)))
7704                 chunksect >>= 1;
7705
7706         if ((chunksect<<9) < STRIPE_SIZE)
7707                 /* array size does not allow a suitable chunk size */
7708                 return ERR_PTR(-EINVAL);
7709
7710         mddev->new_level = 5;
7711         mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
7712         mddev->new_chunk_sectors = chunksect;
7713
7714         return setup_conf(mddev);
7715 }
7716
7717 static void *raid5_takeover_raid6(struct mddev *mddev)
7718 {
7719         int new_layout;
7720
7721         switch (mddev->layout) {
7722         case ALGORITHM_LEFT_ASYMMETRIC_6:
7723                 new_layout = ALGORITHM_LEFT_ASYMMETRIC;
7724                 break;
7725         case ALGORITHM_RIGHT_ASYMMETRIC_6:
7726                 new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
7727                 break;
7728         case ALGORITHM_LEFT_SYMMETRIC_6:
7729                 new_layout = ALGORITHM_LEFT_SYMMETRIC;
7730                 break;
7731         case ALGORITHM_RIGHT_SYMMETRIC_6:
7732                 new_layout = ALGORITHM_RIGHT_SYMMETRIC;
7733                 break;
7734         case ALGORITHM_PARITY_0_6:
7735                 new_layout = ALGORITHM_PARITY_0;
7736                 break;
7737         case ALGORITHM_PARITY_N:
7738                 new_layout = ALGORITHM_PARITY_N;
7739                 break;
7740         default:
7741                 return ERR_PTR(-EINVAL);
7742         }
7743         mddev->new_level = 5;
7744         mddev->new_layout = new_layout;
7745         mddev->delta_disks = -1;
7746         mddev->raid_disks -= 1;
7747         return setup_conf(mddev);
7748 }
7749
7750 static int raid5_check_reshape(struct mddev *mddev)
7751 {
7752         /* For a 2-drive array, the layout and chunk size can be changed
7753          * immediately as not restriping is needed.
7754          * For larger arrays we record the new value - after validation
7755          * to be used by a reshape pass.
7756          */
7757         struct r5conf *conf = mddev->private;
7758         int new_chunk = mddev->new_chunk_sectors;
7759
7760         if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout))
7761                 return -EINVAL;
7762         if (new_chunk > 0) {
7763                 if (!is_power_of_2(new_chunk))
7764                         return -EINVAL;
7765                 if (new_chunk < (PAGE_SIZE>>9))
7766                         return -EINVAL;
7767                 if (mddev->array_sectors & (new_chunk-1))
7768                         /* not factor of array size */
7769                         return -EINVAL;
7770         }
7771
7772         /* They look valid */
7773
7774         if (mddev->raid_disks == 2) {
7775                 /* can make the change immediately */
7776                 if (mddev->new_layout >= 0) {
7777                         conf->algorithm = mddev->new_layout;
7778                         mddev->layout = mddev->new_layout;
7779                 }
7780                 if (new_chunk > 0) {
7781                         conf->chunk_sectors = new_chunk ;
7782                         mddev->chunk_sectors = new_chunk;
7783                 }
7784                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
7785                 md_wakeup_thread(mddev->thread);
7786         }
7787         return check_reshape(mddev);
7788 }
7789
7790 static int raid6_check_reshape(struct mddev *mddev)
7791 {
7792         int new_chunk = mddev->new_chunk_sectors;
7793
7794         if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout))
7795                 return -EINVAL;
7796         if (new_chunk > 0) {
7797                 if (!is_power_of_2(new_chunk))
7798                         return -EINVAL;
7799                 if (new_chunk < (PAGE_SIZE >> 9))
7800                         return -EINVAL;
7801                 if (mddev->array_sectors & (new_chunk-1))
7802                         /* not factor of array size */
7803                         return -EINVAL;
7804         }
7805
7806         /* They look valid */
7807         return check_reshape(mddev);
7808 }
7809
7810 static void *raid5_takeover(struct mddev *mddev)
7811 {
7812         /* raid5 can take over:
7813          *  raid0 - if there is only one strip zone - make it a raid4 layout
7814          *  raid1 - if there are two drives.  We need to know the chunk size
7815          *  raid4 - trivial - just use a raid4 layout.
7816          *  raid6 - Providing it is a *_6 layout
7817          */
7818         if (mddev->level == 0)
7819                 return raid45_takeover_raid0(mddev, 5);
7820         if (mddev->level == 1)
7821                 return raid5_takeover_raid1(mddev);
7822         if (mddev->level == 4) {
7823                 mddev->new_layout = ALGORITHM_PARITY_N;
7824                 mddev->new_level = 5;
7825                 return setup_conf(mddev);
7826         }
7827         if (mddev->level == 6)
7828                 return raid5_takeover_raid6(mddev);
7829
7830         return ERR_PTR(-EINVAL);
7831 }
7832
7833 static void *raid4_takeover(struct mddev *mddev)
7834 {
7835         /* raid4 can take over:
7836          *  raid0 - if there is only one strip zone
7837          *  raid5 - if layout is right
7838          */
7839         if (mddev->level == 0)
7840                 return raid45_takeover_raid0(mddev, 4);
7841         if (mddev->level == 5 &&
7842             mddev->layout == ALGORITHM_PARITY_N) {
7843                 mddev->new_layout = 0;
7844                 mddev->new_level = 4;
7845                 return setup_conf(mddev);
7846         }
7847         return ERR_PTR(-EINVAL);
7848 }
7849
7850 static struct md_personality raid5_personality;
7851
7852 static void *raid6_takeover(struct mddev *mddev)
7853 {
7854         /* Currently can only take over a raid5.  We map the
7855          * personality to an equivalent raid6 personality
7856          * with the Q block at the end.
7857          */
7858         int new_layout;
7859
7860         if (mddev->pers != &raid5_personality)
7861                 return ERR_PTR(-EINVAL);
7862         if (mddev->degraded > 1)
7863                 return ERR_PTR(-EINVAL);
7864         if (mddev->raid_disks > 253)
7865                 return ERR_PTR(-EINVAL);
7866         if (mddev->raid_disks < 3)
7867                 return ERR_PTR(-EINVAL);
7868
7869         switch (mddev->layout) {
7870         case ALGORITHM_LEFT_ASYMMETRIC:
7871                 new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
7872                 break;
7873         case ALGORITHM_RIGHT_ASYMMETRIC:
7874                 new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
7875                 break;
7876         case ALGORITHM_LEFT_SYMMETRIC:
7877                 new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
7878                 break;
7879         case ALGORITHM_RIGHT_SYMMETRIC:
7880                 new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
7881                 break;
7882         case ALGORITHM_PARITY_0:
7883                 new_layout = ALGORITHM_PARITY_0_6;
7884                 break;
7885         case ALGORITHM_PARITY_N:
7886                 new_layout = ALGORITHM_PARITY_N;
7887                 break;
7888         default:
7889                 return ERR_PTR(-EINVAL);
7890         }
7891         mddev->new_level = 6;
7892         mddev->new_layout = new_layout;
7893         mddev->delta_disks = 1;
7894         mddev->raid_disks += 1;
7895         return setup_conf(mddev);
7896 }
7897
7898 static struct md_personality raid6_personality =
7899 {
7900         .name           = "raid6",
7901         .level          = 6,
7902         .owner          = THIS_MODULE,
7903         .make_request   = raid5_make_request,
7904         .run            = raid5_run,
7905         .free           = raid5_free,
7906         .status         = raid5_status,
7907         .error_handler  = raid5_error,
7908         .hot_add_disk   = raid5_add_disk,
7909         .hot_remove_disk= raid5_remove_disk,
7910         .spare_active   = raid5_spare_active,
7911         .sync_request   = raid5_sync_request,
7912         .resize         = raid5_resize,
7913         .size           = raid5_size,
7914         .check_reshape  = raid6_check_reshape,
7915         .start_reshape  = raid5_start_reshape,
7916         .finish_reshape = raid5_finish_reshape,
7917         .quiesce        = raid5_quiesce,
7918         .takeover       = raid6_takeover,
7919         .congested      = raid5_congested,
7920 };
7921 static struct md_personality raid5_personality =
7922 {
7923         .name           = "raid5",
7924         .level          = 5,
7925         .owner          = THIS_MODULE,
7926         .make_request   = raid5_make_request,
7927         .run            = raid5_run,
7928         .free           = raid5_free,
7929         .status         = raid5_status,
7930         .error_handler  = raid5_error,
7931         .hot_add_disk   = raid5_add_disk,
7932         .hot_remove_disk= raid5_remove_disk,
7933         .spare_active   = raid5_spare_active,
7934         .sync_request   = raid5_sync_request,
7935         .resize         = raid5_resize,
7936         .size           = raid5_size,
7937         .check_reshape  = raid5_check_reshape,
7938         .start_reshape  = raid5_start_reshape,
7939         .finish_reshape = raid5_finish_reshape,
7940         .quiesce        = raid5_quiesce,
7941         .takeover       = raid5_takeover,
7942         .congested      = raid5_congested,
7943 };
7944
7945 static struct md_personality raid4_personality =
7946 {
7947         .name           = "raid4",
7948         .level          = 4,
7949         .owner          = THIS_MODULE,
7950         .make_request   = raid5_make_request,
7951         .run            = raid5_run,
7952         .free           = raid5_free,
7953         .status         = raid5_status,
7954         .error_handler  = raid5_error,
7955         .hot_add_disk   = raid5_add_disk,
7956         .hot_remove_disk= raid5_remove_disk,
7957         .spare_active   = raid5_spare_active,
7958         .sync_request   = raid5_sync_request,
7959         .resize         = raid5_resize,
7960         .size           = raid5_size,
7961         .check_reshape  = raid5_check_reshape,
7962         .start_reshape  = raid5_start_reshape,
7963         .finish_reshape = raid5_finish_reshape,
7964         .quiesce        = raid5_quiesce,
7965         .takeover       = raid4_takeover,
7966         .congested      = raid5_congested,
7967 };
7968
7969 static int __init raid5_init(void)
7970 {
7971         int ret;
7972
7973         raid5_wq = alloc_workqueue("raid5wq",
7974                 WQ_UNBOUND|WQ_MEM_RECLAIM|WQ_CPU_INTENSIVE|WQ_SYSFS, 0);
7975         if (!raid5_wq)
7976                 return -ENOMEM;
7977
7978         ret = cpuhp_setup_state_multi(CPUHP_MD_RAID5_PREPARE,
7979                                       "md/raid5:prepare",
7980                                       raid456_cpu_up_prepare,
7981                                       raid456_cpu_dead);
7982         if (ret) {
7983                 destroy_workqueue(raid5_wq);
7984                 return ret;
7985         }
7986         register_md_personality(&raid6_personality);
7987         register_md_personality(&raid5_personality);
7988         register_md_personality(&raid4_personality);
7989         return 0;
7990 }
7991
7992 static void raid5_exit(void)
7993 {
7994         unregister_md_personality(&raid6_personality);
7995         unregister_md_personality(&raid5_personality);
7996         unregister_md_personality(&raid4_personality);
7997         cpuhp_remove_multi_state(CPUHP_MD_RAID5_PREPARE);
7998         destroy_workqueue(raid5_wq);
7999 }
8000
8001 module_init(raid5_init);
8002 module_exit(raid5_exit);
8003 MODULE_LICENSE("GPL");
8004 MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
8005 MODULE_ALIAS("md-personality-4"); /* RAID5 */
8006 MODULE_ALIAS("md-raid5");
8007 MODULE_ALIAS("md-raid4");
8008 MODULE_ALIAS("md-level-5");
8009 MODULE_ALIAS("md-level-4");
8010 MODULE_ALIAS("md-personality-8"); /* RAID6 */
8011 MODULE_ALIAS("md-raid6");
8012 MODULE_ALIAS("md-level-6");
8013
8014 /* This used to be two separate modules, they were: */
8015 MODULE_ALIAS("raid5");
8016 MODULE_ALIAS("raid6");