Linux-libre 3.10.98-gnu
[librecmc/linux-libre.git] / drivers / md / linear.c
1 /*
2    linear.c : Multiple Devices driver for Linux
3               Copyright (C) 1994-96 Marc ZYNGIER
4               <zyngier@ufr-info-p7.ibp.fr> or
5               <maz@gloups.fdn.fr>
6
7    Linear mode management functions.
8
9    This program is free software; you can redistribute it and/or modify
10    it under the terms of the GNU General Public License as published by
11    the Free Software Foundation; either version 2, or (at your option)
12    any later version.
13    
14    You should have received a copy of the GNU General Public License
15    (for example /usr/src/linux/COPYING); if not, write to the Free
16    Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.  
17 */
18
19 #include <linux/blkdev.h>
20 #include <linux/raid/md_u.h>
21 #include <linux/seq_file.h>
22 #include <linux/module.h>
23 #include <linux/slab.h>
24 #include "md.h"
25 #include "linear.h"
26
27 /*
28  * find which device holds a particular offset 
29  */
30 static inline struct dev_info *which_dev(struct mddev *mddev, sector_t sector)
31 {
32         int lo, mid, hi;
33         struct linear_conf *conf;
34
35         lo = 0;
36         hi = mddev->raid_disks - 1;
37         conf = rcu_dereference(mddev->private);
38
39         /*
40          * Binary Search
41          */
42
43         while (hi > lo) {
44
45                 mid = (hi + lo) / 2;
46                 if (sector < conf->disks[mid].end_sector)
47                         hi = mid;
48                 else
49                         lo = mid + 1;
50         }
51
52         return conf->disks + lo;
53 }
54
55 /**
56  *      linear_mergeable_bvec -- tell bio layer if two requests can be merged
57  *      @q: request queue
58  *      @bvm: properties of new bio
59  *      @biovec: the request that could be merged to it.
60  *
61  *      Return amount of bytes we can take at this offset
62  */
63 static int linear_mergeable_bvec(struct request_queue *q,
64                                  struct bvec_merge_data *bvm,
65                                  struct bio_vec *biovec)
66 {
67         struct mddev *mddev = q->queuedata;
68         struct dev_info *dev0;
69         unsigned long maxsectors, bio_sectors = bvm->bi_size >> 9;
70         sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
71         int maxbytes = biovec->bv_len;
72         struct request_queue *subq;
73
74         rcu_read_lock();
75         dev0 = which_dev(mddev, sector);
76         maxsectors = dev0->end_sector - sector;
77         subq = bdev_get_queue(dev0->rdev->bdev);
78         if (subq->merge_bvec_fn) {
79                 bvm->bi_bdev = dev0->rdev->bdev;
80                 bvm->bi_sector -= dev0->end_sector - dev0->rdev->sectors;
81                 maxbytes = min(maxbytes, subq->merge_bvec_fn(subq, bvm,
82                                                              biovec));
83         }
84         rcu_read_unlock();
85
86         if (maxsectors < bio_sectors)
87                 maxsectors = 0;
88         else
89                 maxsectors -= bio_sectors;
90
91         if (maxsectors <= (PAGE_SIZE >> 9 ) && bio_sectors == 0)
92                 return maxbytes;
93
94         if (maxsectors > (maxbytes >> 9))
95                 return maxbytes;
96         else
97                 return maxsectors << 9;
98 }
99
100 static int linear_congested(void *data, int bits)
101 {
102         struct mddev *mddev = data;
103         struct linear_conf *conf;
104         int i, ret = 0;
105
106         if (mddev_congested(mddev, bits))
107                 return 1;
108
109         rcu_read_lock();
110         conf = rcu_dereference(mddev->private);
111
112         for (i = 0; i < mddev->raid_disks && !ret ; i++) {
113                 struct request_queue *q = bdev_get_queue(conf->disks[i].rdev->bdev);
114                 ret |= bdi_congested(&q->backing_dev_info, bits);
115         }
116
117         rcu_read_unlock();
118         return ret;
119 }
120
121 static sector_t linear_size(struct mddev *mddev, sector_t sectors, int raid_disks)
122 {
123         struct linear_conf *conf;
124         sector_t array_sectors;
125
126         rcu_read_lock();
127         conf = rcu_dereference(mddev->private);
128         WARN_ONCE(sectors || raid_disks,
129                   "%s does not support generic reshape\n", __func__);
130         array_sectors = conf->array_sectors;
131         rcu_read_unlock();
132
133         return array_sectors;
134 }
135
136 static struct linear_conf *linear_conf(struct mddev *mddev, int raid_disks)
137 {
138         struct linear_conf *conf;
139         struct md_rdev *rdev;
140         int i, cnt;
141         bool discard_supported = false;
142
143         conf = kzalloc (sizeof (*conf) + raid_disks*sizeof(struct dev_info),
144                         GFP_KERNEL);
145         if (!conf)
146                 return NULL;
147
148         cnt = 0;
149         conf->array_sectors = 0;
150
151         rdev_for_each(rdev, mddev) {
152                 int j = rdev->raid_disk;
153                 struct dev_info *disk = conf->disks + j;
154                 sector_t sectors;
155
156                 if (j < 0 || j >= raid_disks || disk->rdev) {
157                         printk(KERN_ERR "md/linear:%s: disk numbering problem. Aborting!\n",
158                                mdname(mddev));
159                         goto out;
160                 }
161
162                 disk->rdev = rdev;
163                 if (mddev->chunk_sectors) {
164                         sectors = rdev->sectors;
165                         sector_div(sectors, mddev->chunk_sectors);
166                         rdev->sectors = sectors * mddev->chunk_sectors;
167                 }
168
169                 disk_stack_limits(mddev->gendisk, rdev->bdev,
170                                   rdev->data_offset << 9);
171
172                 conf->array_sectors += rdev->sectors;
173                 cnt++;
174
175                 if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
176                         discard_supported = true;
177         }
178         if (cnt != raid_disks) {
179                 printk(KERN_ERR "md/linear:%s: not enough drives present. Aborting!\n",
180                        mdname(mddev));
181                 goto out;
182         }
183
184         if (!discard_supported)
185                 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD, mddev->queue);
186         else
187                 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, mddev->queue);
188
189         /*
190          * Here we calculate the device offsets.
191          */
192         conf->disks[0].end_sector = conf->disks[0].rdev->sectors;
193
194         for (i = 1; i < raid_disks; i++)
195                 conf->disks[i].end_sector =
196                         conf->disks[i-1].end_sector +
197                         conf->disks[i].rdev->sectors;
198
199         return conf;
200
201 out:
202         kfree(conf);
203         return NULL;
204 }
205
206 static int linear_run (struct mddev *mddev)
207 {
208         struct linear_conf *conf;
209         int ret;
210
211         if (md_check_no_bitmap(mddev))
212                 return -EINVAL;
213         conf = linear_conf(mddev, mddev->raid_disks);
214
215         if (!conf)
216                 return 1;
217         mddev->private = conf;
218         md_set_array_sectors(mddev, linear_size(mddev, 0, 0));
219
220         blk_queue_merge_bvec(mddev->queue, linear_mergeable_bvec);
221         mddev->queue->backing_dev_info.congested_fn = linear_congested;
222         mddev->queue->backing_dev_info.congested_data = mddev;
223
224         ret =  md_integrity_register(mddev);
225         if (ret) {
226                 kfree(conf);
227                 mddev->private = NULL;
228         }
229         return ret;
230 }
231
232 static int linear_add(struct mddev *mddev, struct md_rdev *rdev)
233 {
234         /* Adding a drive to a linear array allows the array to grow.
235          * It is permitted if the new drive has a matching superblock
236          * already on it, with raid_disk equal to raid_disks.
237          * It is achieved by creating a new linear_private_data structure
238          * and swapping it in in-place of the current one.
239          * The current one is never freed until the array is stopped.
240          * This avoids races.
241          */
242         struct linear_conf *newconf, *oldconf;
243
244         if (rdev->saved_raid_disk != mddev->raid_disks)
245                 return -EINVAL;
246
247         rdev->raid_disk = rdev->saved_raid_disk;
248         rdev->saved_raid_disk = -1;
249
250         newconf = linear_conf(mddev,mddev->raid_disks+1);
251
252         if (!newconf)
253                 return -ENOMEM;
254
255         oldconf = rcu_dereference_protected(mddev->private,
256                                             lockdep_is_held(
257                                                     &mddev->reconfig_mutex));
258         mddev->raid_disks++;
259         rcu_assign_pointer(mddev->private, newconf);
260         md_set_array_sectors(mddev, linear_size(mddev, 0, 0));
261         set_capacity(mddev->gendisk, mddev->array_sectors);
262         revalidate_disk(mddev->gendisk);
263         kfree_rcu(oldconf, rcu);
264         return 0;
265 }
266
267 static int linear_stop (struct mddev *mddev)
268 {
269         struct linear_conf *conf =
270                 rcu_dereference_protected(mddev->private,
271                                           lockdep_is_held(
272                                                   &mddev->reconfig_mutex));
273
274         /*
275          * We do not require rcu protection here since
276          * we hold reconfig_mutex for both linear_add and
277          * linear_stop, so they cannot race.
278          * We should make sure any old 'conf's are properly
279          * freed though.
280          */
281         rcu_barrier();
282         blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
283         kfree(conf);
284         mddev->private = NULL;
285
286         return 0;
287 }
288
289 static void linear_make_request(struct mddev *mddev, struct bio *bio)
290 {
291         struct dev_info *tmp_dev;
292         sector_t start_sector;
293
294         if (unlikely(bio->bi_rw & REQ_FLUSH)) {
295                 md_flush_request(mddev, bio);
296                 return;
297         }
298
299         rcu_read_lock();
300         tmp_dev = which_dev(mddev, bio->bi_sector);
301         start_sector = tmp_dev->end_sector - tmp_dev->rdev->sectors;
302
303
304         if (unlikely(bio->bi_sector >= (tmp_dev->end_sector)
305                      || (bio->bi_sector < start_sector))) {
306                 char b[BDEVNAME_SIZE];
307
308                 printk(KERN_ERR
309                        "md/linear:%s: make_request: Sector %llu out of bounds on "
310                        "dev %s: %llu sectors, offset %llu\n",
311                        mdname(mddev),
312                        (unsigned long long)bio->bi_sector,
313                        bdevname(tmp_dev->rdev->bdev, b),
314                        (unsigned long long)tmp_dev->rdev->sectors,
315                        (unsigned long long)start_sector);
316                 rcu_read_unlock();
317                 bio_io_error(bio);
318                 return;
319         }
320         if (unlikely(bio_end_sector(bio) > tmp_dev->end_sector)) {
321                 /* This bio crosses a device boundary, so we have to
322                  * split it.
323                  */
324                 struct bio_pair *bp;
325                 sector_t end_sector = tmp_dev->end_sector;
326
327                 rcu_read_unlock();
328
329                 bp = bio_split(bio, end_sector - bio->bi_sector);
330
331                 linear_make_request(mddev, &bp->bio1);
332                 linear_make_request(mddev, &bp->bio2);
333                 bio_pair_release(bp);
334                 return;
335         }
336                     
337         bio->bi_bdev = tmp_dev->rdev->bdev;
338         bio->bi_sector = bio->bi_sector - start_sector
339                 + tmp_dev->rdev->data_offset;
340         rcu_read_unlock();
341
342         if (unlikely((bio->bi_rw & REQ_DISCARD) &&
343                      !blk_queue_discard(bdev_get_queue(bio->bi_bdev)))) {
344                 /* Just ignore it */
345                 bio_endio(bio, 0);
346                 return;
347         }
348
349         generic_make_request(bio);
350 }
351
352 static void linear_status (struct seq_file *seq, struct mddev *mddev)
353 {
354
355         seq_printf(seq, " %dk rounding", mddev->chunk_sectors / 2);
356 }
357
358
359 static struct md_personality linear_personality =
360 {
361         .name           = "linear",
362         .level          = LEVEL_LINEAR,
363         .owner          = THIS_MODULE,
364         .make_request   = linear_make_request,
365         .run            = linear_run,
366         .stop           = linear_stop,
367         .status         = linear_status,
368         .hot_add_disk   = linear_add,
369         .size           = linear_size,
370 };
371
372 static int __init linear_init (void)
373 {
374         return register_md_personality (&linear_personality);
375 }
376
377 static void linear_exit (void)
378 {
379         unregister_md_personality (&linear_personality);
380 }
381
382
383 module_init(linear_init);
384 module_exit(linear_exit);
385 MODULE_LICENSE("GPL");
386 MODULE_DESCRIPTION("Linear device concatenation personality for MD");
387 MODULE_ALIAS("md-personality-1"); /* LINEAR - deprecated*/
388 MODULE_ALIAS("md-linear");
389 MODULE_ALIAS("md-level--1");